
SAS/OR® 9.2 User’s Guide
Mathematical Programming

TW10645_ormpug_colortitlepg.indd 1 1/16/09 4:19:47 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/OR ® 9.2
User’s Guide: Mathematical Programming. Cary, NC: SAS Institute Inc.

SAS/OR® 9.2 User’s Guide: Mathematical Programming

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-59047-946-9

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008
2nd electronic book, February 2009

1st printing, February 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Chapter 1. Introduction to Optimization . 1

Chapter 2. The INTPOINT Procedure . 29

Chapter 3. The LP Procedure . 157

Chapter 4. The NLP Procedure . 287

Chapter 5. The NETFLOW Procedure . 433

Chapter 6. The OPTMODEL Procedure . 665

Chapter 7. The Interior Point Nonlinear Programming Solver 807

Chapter 8. The Linear Programming Solver . 829

Chapter 9. The Mixed Integer Linear Programming Solver 861

Chapter 10. The NLPC Nonlinear Optimization Solver 911

Chapter 11. The Unconstrained Nonlinear Programming Solver 955

Chapter 12. The Quadratic Programming Solver . 971

Chapter 13. The Sequential Quadratic Programming Solver 995

Chapter 14. The MPS-Format SAS Data Set . 1025

Chapter 15. The OPTLP Procedure . 1043

Chapter 16. The OPTMILP Procedure . 1093

Chapter 17. The OPTQP Procedure . 1143

Subject Index . 1175

Syntax Index . 1191

iv

Acknowledgments

Credits

Documentation

Writing Trevor Kearney, Dmitry V. Golovashkin, Michelle Opp,
Ben-Hao Wang, Jack Rouse, Zhifeng Li, Tao Huang,
Wenwen Zhou, Yan Xu, Kaihong Xu, Hao Cheng,
Matthew Galati, Jennie Hu, Girish Ramachandra, Richard
Liu, Melanie Bain

Editing Virginia Clark, Donna Sawyer, Ed Huddleston, Anne
Jones

Documentation Support Tim Arnold, Michelle Opp, Girish Ramachandra, Richard
Liu, Melanie Bain, Remya Chandran

Technical Review Radhika Kulkarni, Tao Huang, Edward P. Hughes, John
Jasperse, Rob Pratt, Bengt Pederson, Charles B. Kelly,
Donna Fulenwider, Bill Gjertsen, Tonya Chapman

Software

The procedures in SAS/OR software were implemented by the Operations Research
and Development Department. Substantial support was given to the project by
other members of the Analytical Solutions Division. Core Development Division,
Display Products Division, Graphics Division, and the Host Systems Division also
contributed to this product.

In the following list, the name of the developer(s) currently supporting the procedure
is listed.

INTPOINT Trevor Kearney

LP Ben-Hao Wang

NETFLOW Trevor Kearney

NLP Tao Huang

vi � Acknowledgments

OPTMODEL Jack Rouse

IPNLP Solver Ioannis Akrotirianakis

LP Simplex Solvers Ben-Hao Wang, Hao Cheng, Yan Xu

LP Iterative Interior Solver Dmitry V. Golovashkin, Ivan Oliveira, Hao Cheng

MILP Solver Yan Xu, Matthew Galati, Jennie Hu

NLPC Solver Tao Huang

NLPU Solver Dmitry V. Golovashkin, Ivan Oliveira

QP Solver Dmitry V. Golovashkin, Ivan Oliveira

SQP Solver Wenwen Zhou

OPTLP Ben-Hao Wang, Hao Cheng, Yan Xu, Kaihong Xu

OPTQP Dmitry V. Golovashkin, Ivan Oliveira, Wenwen Zhou, Kaihong Xu

OPTMILP Yan Xu, Matthew Galati, Jennie Hu, Kaihong Xu

MPS-Format SAS Data Set Hao Cheng

ODS Output Kaihong Xu

LP and MILP Pre-solve Yan Xu

QP Pre-solve Wenwen Zhou

Linear Algebra Specialist Alexander Andrianov

Support Groups

Software Testing Bengt Pederson, Rob Pratt, Jonathan Stephenson, Wei
Huang, Lois Zhu, Sanjeewa Naranpanawe, Wei Zhang,
Jennifer Lee, Rui Kang, Yu-Min Lin

Technical Support Tonya Chapman

Acknowledgments
Many people have been instrumental in the development of SAS/OR software. The
individuals acknowledged here have been especially helpful.

Acknowledgments � vii

Richard Brockmeier Union Electric Company

Ken Cruthers Goodyear Tire & Rubber Company

Patricia Duffy Auburn University

Richard A. Ehrhardt University of North Carolina at Greensboro

Paul Hardy Babcock & Wilcox

Don Henderson ORI Consulting Group

Dave Jennings Lockheed Martin

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill

Wayne Maruska Basin Electric Power Cooperative

Roger Perala United Sugars Corporation

Bruce Reed Auburn University

Charles Rissmiller Lockheed Martin

David Rubin University of North Carolina at Chapel Hill

John Stone North Carolina State University

Keith R. Weiss ICI Americas Inc.

The final responsibility for the SAS System lies with SAS Institute alone. We hope
that you will always let us know your opinions about the SAS System and its doc-
umentation. It is through your participation that SAS software is continuously im-
proved.

viii

What’s New in SAS/OR 9.2

Overview
SAS/OR 9.2 continues the improvements delivered starting with SAS/OR 9.1.3 re-
lease 3.1 and release 3.2. Several new and enhanced features expand the scale and
scope of problems that SAS/OR can address. These enhancements also make it easier
for you to use the capabilities of SAS/OR. Brief descriptions of these new features
are presented in the following sections. For more information, see the SAS/OR doc-
umentation, available in the following volumes:

• SAS/OR User’s Guide: Bills of Material Processing

• SAS/OR User’s Guide: Constraint Programming

• SAS/OR User’s Guide: Local Search Optimization

• SAS/OR User’s Guide: Mathematical Programming

• SAS/OR User’s Guide: Project Management

• SAS/OR User’s Guide: The QSIM Application

Online help can also be found under the corresponding classification.

The NETFLOW Procedure
The NETFLOW procedure for network flow optimization contains a new feature that
enables you to specify and solve generalized network problems. In generalized net-
works, the amount of flow that enters an arc might not equal the amount of flow that
leaves the arc, signifying a loss or a gain as flow traverses the arc. A new PROC
NETFLOW option, GENNET, indicates that the network is generalized. Generalized
networks have a broad range of practical applications, including the following:

• transportation of perishable goods (weight loss due to drying)

• financial investment account balances (interest rates)

• manufacturing (yield ratios)

• electrical power generation (loss during transmission along lines)

Another new option, EXCESS=, enables you to use PROC NETFLOW to solve an
even wider variety of network flow optimization problems for both standard and gen-
eralized networks. As a result, PROC NETFLOW is equipped to deal with many
frequently encountered challenges to successful network flow optimization, such as
the following:

x � What’s New in SAS/OR 9.2

• networks with excess supply or demand

• networks that contain nodes with unknown supply and demand values

• networks with nodes that have range constraints on supply and demand

In SAS/OR 9.2, the MPSOUT= option directs the NETFLOW procedure to save in-
put problem data in an MPS-format SAS data set. Invoking the MPSOUT= option
causes the NETFLOW procedure to output the data and halt without attempting opti-
mization. The MPS-format SAS data set corresponds closely to the MPS-format text
file (commonly used in the optimization community). Problems that are specified in
this format can be solved by using the OPTLP procedure.

The INTPOINT Procedure
In SAS/OR 9.2, the MPSOUT= option directs the INTPOINT procedure to save in-
put problem data in an MPS-format SAS data set. Invoking the MPSOUT= option
causes the INTPOINT procedure to output the data and halt without attempting opti-
mization. The MPS-format SAS data set corresponds closely to the MPS-format text
file (commonly used in the optimization community). Problems that are specified in
this format can be solved by using the OPTLP procedure.

The LP Procedure
In SAS/OR 9.2, the MPSOUT= option directs the LP procedure to save input problem
data in an MPS-format SAS data set. Invoking the MPSOUT= option causes the LP
procedure to output the data and halt without attempting optimization. The MPS-
format SAS data set corresponds closely to the MPS-format text file (commonly used
in the optimization community). Problems that are specified in this format can be
solved by using the OPTLP or OPTMILP procedure.

The OPTLP Procedure
The OPTLP procedure enables you to choose from three linear programming solvers:
primal simplex, dual simplex, and interior point (experimental). The simplex solvers
implement a two-phase simplex method, and the interior point solver implements a
primal-dual predictor-corrector algorithm.

The TIMETYPE= option enables you to specify the type of time (real time or
CPU time) that can be limited via the MAXTIME= option and reported via the
–OROPTLP– macro variable.

PROC OPTLP accepts linear programming problems that are submitted in an MPS-
format SAS data set. The MPS-format SAS data set corresponds closely to the MPS-
format text file (commonly used in the optimization community). Problem data in
formats that are used by the LP, INTPOINT, and NETFLOW procedures can be con-
verted into MPS-format SAS data sets by using the new MPSOUT= option in each
of these procedures.

The OPTMODEL Procedure � xi

New in SAS/OR 9.2, the experimental IIS= option enables you to identify, for an
infeasible problem, constraints and variable bounds that form an irreducible infea-
sible set (IIS). Identifying an IIS can be very helpful in diagnosing and remedy-
ing infeasibility in a linear program. Information about the IIS is contained in the
PRIMALOUT= and DUALOUT= data sets.

Also new in SAS/OR 9.2, the value “2” for the PRINTLEVEL= option directs the
OPTLP procedure to produce an ODS table called “ProblemStatistics” in addition to
the “ProblemSummary” and “SolutionSummary” ODS tables that are produced for
PRINTLEVEL=1.

The OPTMILP Procedure
The OPTMILP procedure solves mixed-integer linear programming problems with
an LP-based branch-and-bound algorithm that has been completely rewritten for this
release. The algorithm also implements advanced techniques including presolvers,
cutting planes, and primal heuristics. The resulting improvements in efficiency enable
you to use PROC OPTMILP to solve larger and more complex optimization problems
than you could solve with previous releases of SAS/OR.

PROC OPTMILP accepts mixed-integer linear programming problems that are sub-
mitted in an MPS-format SAS data set.

New in SAS/OR 9.2, the value “2” for the PRINTLEVEL= option directs the
OPTMILP procedure to produce an ODS table called “ProblemStatistics” in addition
to the “ProblemSummary” and “SolutionSummary” ODS tables that are produced for
PRINTLEVEL=1.

The OPTMODEL Procedure
The OPTMODEL procedure provides a modeling environment that is tailored to
building, solving, and maintaining optimization models. This makes the pro-
cess of translating the symbolic formulation of an optimization model into PROC
OPTMODEL virtually transparent, since the modeling language mimics the symbolic
algebra of the formulation as closely as possible. PROC OPTMODEL also stream-
lines and simplifies the critical process of populating optimization models with data
from SAS data sets. All of this transparency produces models that are more easily
inspected for completeness and correctness, more easily corrected, and more easily
modified, whether through structural changes or through the substitution of new data
for old.

The OPTMODEL procedure comprises the powerful OPTMODEL modeling lan-
guage and state-of-the-art solvers for several classes of mathematical programming
problems.

xii � What’s New in SAS/OR 9.2

Seven solvers are available to OPTMODEL as listed in Table 1:

Table 1. List of OPTMODEL Solvers

Problem Solver
linear programming LP
mixed integer programming MILP
quadratic programming (experimental) QP
nonlinear programming, unconstrained NLPU
general nonlinear programming NLPC
general nonlinear programming SQP
general nonlinear programming (experimental) IPNLP

New in SAS/OR 9.2, the experimental IIS= option for the LP solver enables you to
identify, for an infeasible linear program, constraints and variable bounds that form
an irreducible infeasible set (IIS). Identifying an IIS can be very helpful in diagnosing
and remedying infeasibility in a linear program.

The OPTQP Procedure
The OPTQP procedure solves quadratic programming problems with a new infeasible
primal-dual predictor-corrector interior point algorithm. Performance is excellent for
both sparse and dense quadratic programming problems, and PROC OPTQP excels
at solving large problems efficiently.

PROC OPTQP accepts quadratic programming problems that are submitted in a QPS-
format SAS data set. The QPS-format SAS data set corresponds closely to the format
of the QPS text file (a widely accepted extension of the MPS format).

Earned Value Management Macros
The set of earned value management macros complements the current SAS/OR pro-
cedures for project and resource scheduling (PROC CPM and PROC PM) by provid-
ing diagnostic information about the execution of scheduled projects. Earned value
management (EVM) is growing in prominence and acceptance in the project man-
agement community due to its ability to turn information about partially completed
projects into valid, early projections of overall project performance. EVM measures
current project execution against the project execution plan on a cost and schedule
basis.

SAS/OR provides two sets of EVM macros: a set of four analytical macros to com-
pute EVM metrics, and a set of six macros to create graphical reports based on these
metrics. A wide variety of EVM metrics and performance projections, for both task-
by-task and project-wide evaluations, are supported.

The GA Procedure � xiii

Microsoft Project Conversion Macros
The SAS macros %MDBTOPM and %MP2KTOPM have been used in previous
releases of SAS/OR to convert files saved by Microsoft Project 98 and Microsoft
Project 2000 (and later), respectively, into SAS data sets that can be used as input for
project scheduling with SAS/OR. Now these two macros are combined in the SAS
macro %MSPTOSAS, which converts Microsoft Project 98 (and later) data. This
macro generates the necessary SAS data sets, determines the values of the relevant
options, and invokes PROC PM in SAS/OR with the converted project data. The
%MSPTOSAS macro enables you to use Microsoft Project for the input of project
data and still take advantage of the excellent project and resource scheduling capabil-
ities of SAS/OR.

In SAS/OR 9.2, the experimental %SASTOMSP macro converts data sets used by
the CPM and PM procedures into an MDB file that is readable by Microsoft Project.
The macro converts information that is common to both PROC CPM / PROC PM
and Microsoft Project, including hierarchical relationships, precedence relationships,
time constraints, resource availabilities, resource requirements, project calendars, re-
source calendars, task calendars, holiday information, and work-shift information. In
addition, the early and late schedules, the actual start and finish times, the resource-
constrained schedule, and the baseline schedule are also extracted and stored as start-
finish variables.

Execution of the %MSPTOSAS and %SASTOMSP macros requires SAS/ACCESS
software.

The GA Procedure
The GA procedure solves optimization problems through the use of genetic algo-
rithms. The procedure uses functions and call routines to set parameters such as
crossover operators and mutation probabilities for genetic algorithm optimization. In
SAS/OR 9.2, the routines that are used to specify procedure-supplied mutation and
crossover operators (SetMut and SetCross), objective functions (SetObj), and selec-
tion options (SetSel) have been revised to a more flexible and readable form. The
operator type is now specified as a parameter in these routines instead of being incor-
porated into the name of a separate call routine. Parameters for each operator type
are now specified as property name-value pairs.

Note: Several call routines that were available in SAS/OR 9.1.3 have been replaced
by new call routines and are not available in SAS/OR 9.2. Table 2 lists the routines
and their replacements.

xiv � What’s New in SAS/OR 9.2

Table 2. PROC GA Routines Replaced in SAS/OR 9.2

New Routine Routines Replaced
Cross call CrossSimple call, Cross2Point call, CrossUniform call,

CrossArithmetic call, CrossHeuristic call, CrossOrder call,
CrossPMatch call, CrossCycle call

Mutate call MutDelta call, MutUniform call, MutSwap call, MutInvert call
SetCross call SetCrossSimple call, SetCross2Point call, SetCrossUniform call,

SetCrossArithmetic call, SetCrossHeuristic call,
SetCrossOrder call, SetCrossPMatch call, SetCrossCycle call

SetMut call SetMutRoutine call, SetMutDelta call, SetMutUniform call,
SetMutSwap call, SetMutInvert call

SetObj call SetObjTSP call
SetSel call SetSelTournament call, SetSelDuel call

In addition, the following new routines are provided:

• Objective function

• ReadCompare call

• SetCompareRoutine call

• SetObjFunc call

• SetProperty call

• ShellSort call

• Shuffle call

The Boolean encoding has been modified so that 0/1 values can be read from and writ-
ten to solution segments directly, instead of requiring the PackBits and UnpackBits
routines. In addition, each Boolean value is represented by one variable in a
LASTGEN= or FIRSTGEN= data set, similar to the other encodings.

If the FIRSTGEN= data set has a field named “OBJECTIVE,” then in the Initialize
call, the value of that field (if nonmissing) is used as the initial objective value for the
solution represented by that observation.

The default crossover and mutation probabilities have been changed to 0.

New options have been implemented for the Initialize call and the ReEvaluate call.

New in SAS/OR 9.2, the option LIBRARY= specifies an external library of routines.
The NOVALIDATE= and NOVALIDATEWARNING= options control the level of
feasibility checks performed by the GA procedure.

The CLP Procedure (Experimental) � xv

The CLP Procedure (Experimental)
The CLP procedure features improved algorithms for the “alldifferent” constraint
as well as several extensions to the edgefinder algorithm for resource-constrained
scheduling. The EDGEFINDER option can now determine whether an activity must
be the first (last) to be scheduled from among a set of activities, while the NF= and
NL= options specify the level of propagation for the “not first” and “not last” ex-
tensions. A new activity selection strategy RJRAND and a corresponding activity
assignment strategy MAXTW have been added; these strategies tend to favor right-
justified schedules. The MAXTIME= option enables you to specify a time limit on
the CPU time for controlling execution times.

xvi

Using This Book

Purpose
SAS/OR User’s Guide: Mathematical Programming provides a complete reference
for the mathematical programming procedures in SAS/OR software. This book
serves as the primary documentation for the INTPOINT, LP, NETFLOW, and NLP
procedures, in addition to the new OPTMODEL, OPTLP, OPTQP, and OPTMILP
procedures, the various solvers called by the OPTMODEL procedure, and the MPS-
format SAS data set specification.

“Using This Book” describes the organization of this book and the conventions used
in the text and example code. To gain full benefit from using this book, you should
familiarize yourself with the information presented in this section and refer to it when
needed. “Additional Documentation” at the end of this section provides references to
other books that contain information on related topics.

Organization
Chapter 1 contains a brief overview of the mathematical programming procedures
in SAS/OR software and provides an introduction to optimization and the use of the
optimization tools in the SAS System. The first chapter also describes the flow of
data between the procedures and how the components of the SAS System fit together.

After the introductory chapter, the next five chapters describe the INTPOINT, LP,
NETFLOW, NLP, and OPTMODEL procedures. The next seven chapters describe
the linear programming, mixed integer linear programming, quadratic programming,
nonlinear optimization, sequential quadratic programming, interior point nonlinear
programming, and unconstrained nonlinear programming solvers, which are used by
the OPTMODEL procedure. The next chapter is the specification of the newly intro-
duced MPS-format SAS data set. The last three chapters describe the new OPTLP,
OPTQP, and OPTMILP procedures for solving linear programming, quadratic pro-
gramming, and mixed integer linear programming problems, respectively. Each pro-
cedure description is self-contained; you need to be familiar with only the basic fea-
tures of the SAS System and SAS terminology to use most procedures. The state-
ments and syntax necessary to run each procedure are presented in a uniform format
throughout this book.

The following list summarizes the types of information provided for each procedure:

Overview provides a general description of what the procedure does.
It outlines major capabilities of the procedure and lists all
input and output data sets that are used with it.

xviii � Using This Book

Getting Started illustrates simple uses of the procedure using a few short
examples. It provides introductory hands-on information
for the procedure.

Syntax constitutes the major reference section for the syntax of
the procedure. First, the statement syntax is summa-
rized. Next, a functional summary table lists all the state-
ments and options in the procedure, classified by function.
In addition, the online version includes a Dictionary of
Options, which provides an alphabetical list of all options.
Following these tables, the PROC statement is described,
and then all other statements are described in alphabetical
order.

Details describes the features of the procedure, including algorith-
mic details and computational methods. It also explains
how the various options interact with each other. This sec-
tion describes input and output data sets in greater detail,
with definitions of the output variables, and explains the
format of printed output, if any.

Examples consists of examples designed to illustrate the use of the
procedure. Each example includes a description of the
problem and lists the options highlighted by the exam-
ple. The example shows the data and the SAS statements
needed, and includes the output produced. You can du-
plicate the examples by copying the statements and data
and running the SAS program. The SAS Sample Library
contains the code used to run the examples shown in this
book; consult your SAS Software representative for spe-
cific information about the Sample Library.

References lists references that are relevant to the chapter.

Typographical Conventions
The printed version of SAS/OR User’s Guide: Mathematical Programming uses var-
ious type styles, as explained by the following list:

Accessing the SAS/OR Sample Library � xix

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However,
you can enter these elements in your own SAS code in
lowercase, uppercase, or a mixture of the two. This style
is also used for identifying arguments and values (in the
Syntax specifications) that are literals (for example, to
denote valid keywords for a specific option).

UPPERCASE BOLD is used in the “Syntax” section to identify SAS key-
words, such as the names of procedures, statements, and
options.

bold is used in the “Syntax” section to identify options.

helvetica is used for the names of SAS variables and data sets
when they appear in the text.

oblique is used for user-supplied values for options (for example,
VARSELECT= rule).

italic is used for terms that are defined in the text, for empha-
sis, and for references to publications.

monospace is used to show examples of SAS statements. In most
cases, this book uses lowercase type for SAS code. You
can enter your own SAS code in lowercase, uppercase,
or a mixture of the two. This style is also used for values
of character variables when they appear in the text.

Conventions for Examples
Most of the output shown in this book is produced with the following SAS System
options:

options linesize=80 pagesize=60 nonumber nodate;

Accessing the SAS/OR Sample Library
The SAS/OR sample library includes many examples that illustrate the use of
SAS/OR software, including the examples used in this documentation. To access
these sample programs, select Learning to Use SAS->Sample SAS Programs from
the SAS Help and Documentation window, and then select SAS/OR from the list
of available topics.

xx � Using This Book

Online Help System and Updates
You can access online help information about SAS/OR software in two ways, de-
pending on whether you are using the SAS windowing environment in the command
line mode or the pull-down menu mode.

If you are using a command line, you can access the SAS/OR help menus by typing
help or on the command line. If you are using the pull-down menus, you can select
SAS Help and Documentation->SAS Products from the Help pull-down menu, and
then select SAS/OR from the list of available topics.

Additional Documentation for SAS/OR Software
In addition to SAS/OR User’s Guide: Mathematical Programming, you may find
these other documents helpful when using SAS/OR software:

SAS/OR User’s Guide: Bills of Material Processing
provides documentation for the BOM procedure and all bill-of-material post-
processing SAS macros. The BOM procedure and SAS macros provide the ability to
generate different reports and to perform several transactions to maintain and update
bills of material.

SAS/OR User’s Guide: Constraint Programming
provides documentation for the constraint programming procedure in SAS/OR soft-
ware. This book serves as the primary documentation for the CLP procedure, an
experimental procedure in SAS/OR software.

SAS/OR User’s Guide: Local Search Optimization
provides documentation for the local search optimization procedure in SAS/OR soft-
ware. This book serves as the primary documentation for the GA procedure, which
uses genetic algorithms to solve optimization problems.

SAS/OR User’s Guide: Project Management
provides documentation for the project management procedures in SAS/OR soft-
ware. This book serves as the primary documentation for the CPM, DTREE,
GANTT, NETDRAW, and PM procedures, the earned value management macros,
the Microsoft Project conversion macros, and the PROJMAN application.

SAS/OR User’s Guide: The QSIM Application
provides documentation for the QSIM Application, which is used to build and analyze
models of queueing systems using discrete event simulation. This book shows you
how to build models using the simple point-and-click graphical user interface, how
to run the models, and how to collect and analyze the sample data to give you insight
into the behavior of the system.

SAS/OR Software: Project Management Examples, Version 6
contains a series of examples that illustrate how to use SAS/OR software to man-
age projects. Each chapter contains a complete project management scenario and
describes how to use PROC GANTT, PROC CPM, and PROC NETDRAW, in addi-

Additional Documentation for SAS/OR Software � xxi

tion to other reporting and graphing procedures in the SAS System, to perform the
necessary project management tasks.

SAS/IRP User’s Guide: Inventory Replenishment Planning
provides documentation for SAS/IRP software. This book serves as the primary doc-
umentation for the IRP procedure for determining replenishment policies, as well as
the %IRPSIM SAS programming macro for simulating replenishment policies.

xxii � Using This Book

Chapter 1
Introduction to Optimization

Chapter Contents

OVERVIEW . 3

LINEAR PROGRAMMING PROBLEMS 4
PROC OPTLP . 4
PROC OPTMODEL . 5
PROC LP . 5
PROC INTPOINT . 5

NETWORK PROBLEMS . 6
PROC NETFLOW . 6
PROC INTPOINT . 7

MIXED INTEGER LINEAR PROBLEMS 7
PROC OPTMILP . 7
PROC OPTMODEL . 8
PROC LP . 8

QUADRATIC PROGRAMMING PROBLEMS 8
PROC OPTQP . 8
PROC OPTMODEL . 8

NONLINEAR PROBLEMS . 9
PROC OPTMODEL . 9
PROC NLP . 9

MODEL BUILDING . 10
PROC OPTLP . 10
PROC NETFLOW . 12
PROC OPTMODEL . 16

MATRIX GENERATION . 18

EXPLOITING MODEL STRUCTURE . 21

REPORT WRITING . 24
The DATA Step . 24
Other Reporting Procedures . 25

REFERENCES . 27

2

Chapter 1
Introduction to Optimization
Overview

Operations Research tools are directed toward the solution of resource management
and planning problems. Models in Operations Research are representations of the
structure of a physical object or a conceptual or business process. Using the tools of
Operations Research involves the following:

• defining a structural model of the system under investigation

• collecting the data for the model

• analyzing the model

SAS/OR software is a set of procedures for exploring models of distribution net-
works, production systems, resource allocation problems, and scheduling problems
using the tools of Operations Research.

The following list suggests some of the application areas where optimization-based
decision support systems have been used. In practice, models often contain elements
of several applications listed here.

• Product-mix problems find the mix of products that generates the largest re-
turn when there are several products competing for limited resources.

• Blending problems find the mix of ingredients to be used in a product so that
it meets minimum standards at minimum cost.

• Time-staged problems are models whose structure repeats as a function of
time. Production and inventory models are classic examples of time-staged
problems. In each period, production plus inventory minus current demand
equals inventory carried to the next period.

• Scheduling problems assign people to times, places, or tasks so as to opti-
mize people’s preferences or performance while satisfying the demands of the
schedule.

• Multiple objective problems have multiple, possibly conflicting, objectives.
Typically, the objectives are prioritized and the problems are solved sequen-
tially in a priority order.

• Capital budgeting and project selection problems ask for the project or set
of projects that will yield the greatest return.

• Location problems seek the set of locations that meets the distribution needs
at minimum cost.

• Cutting stock problems find the partition of raw material that minimizes waste
and fulfills demand.

4 � Chapter 1. Introduction to Optimization

A problem is formalized with the construction of a model to represent it. These
models, called mathematical programs, are represented in SAS data sets and then
solved using SAS/OR procedures. The solution of mathematical programs is called
mathematical programming. Since mathematical programs are represented in SAS
data sets, they can be saved, easily changed, and re-solved. The SAS/OR procedures
also output SAS data sets containing the solutions. These can then be used to produce
customized reports. In addition, this structure enables you to build decision support
systems using the tools of Operations Research and other tools in the SAS System as
building blocks.

The basic optimization problem is that of minimizing or maximizing an objective
function subject to constraints imposed on the variables of that function. The objec-
tive function and constraints can be linear or nonlinear; the constraints can be bound
constraints, equality or inequality constraints, or integer constraints. Traditionally,
optimization problems are divided into linear programming (LP; all functions and
constraints are linear) and nonlinear programming (NLP).

The data describing the model are supplied to an optimizer (such as one of the pro-
cedures described in this book), an optimizing algorithm is used to determine the
optimal values for the decision variables so the objective is either maximized or min-
imized, the optimal values assigned to decision variables are on or between allowable
bounds, and the constraints are obeyed. Determining the optimal values is the process
called optimization.

This chapter describes how to use SAS/OR software to solve a wide variety of op-
timization problems. We describe various types of optimization problems, indicate
which SAS/OR procedure you can use, and show how you provide data, run the pro-
cedure, and obtain optimal solutions.

In the next section we broadly classify the SAS/OR procedures based on the types of
mathematical programming problems they can solve.

Linear Programming Problems

PROC OPTLP

PROC OPTLP solves linear programming problems that are submitted either in an
MPS-format file or in an MPS-format SAS data set.

The MPS file format is a format commonly used for describing linear programming
(LP) and integer programming (IP) problems (Murtagh 1981; IBM 1988). MPS-
format files are in text format and have specific conventions for the order in which
the different pieces of the mathematical model are specified. The MPS-format SAS
data set corresponds closely to the MPS file format and is used to describe linear
programming problems for PROC OPTLP. For more details, refer to Chapter 14,
“The MPS-Format SAS Data Set.”

PROC OPTLP provides three solvers to solve the LP: primal simplex, dual simplex,
and interior point. The simplex solvers implement a two-phase simplex method, and

PROC INTPOINT � 5

the interior point solver implements a primal-dual predictor-corrector algorithm. For
more details refer to Chapter 15, “The OPTLP Procedure.”

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling linear programming
problems. The language allows a model to be expressed in a form that matches the
mathematical formulation. Within OPTMODEL you can declare a model, pass it
directly to various solvers, and review the solver result. You can also save an instance
of a linear model in data set form for use by PROC OPTLP. For more details, refer to
Chapter 6, “The OPTMODEL Procedure.”

PROC LP

The LP procedure solves linear and mixed integer programs with a primal simplex
solver. It can perform several types of post-optimality analysis, including range anal-
ysis, sensitivity analysis, and parametric programming. The procedure can also be
used interactively.

PROC LP requires a problem data set that contains the model. In addition, a primal
and active data set can be used for warm starting a problem that has been partially
solved previously.

The problem data describing the model can be in one of two formats: dense or sparse.
The dense format represents the model as a rectangular coefficient matrix. The sparse
format, on the other hand, represents only the nonzero elements of a rectangular
coefficient matrix.

For more details on the LP procedure, refer to Chapter 3, “The LP Procedure.”

Problem data specified in the format used by the LP procedure can be readily refor-
matted for use with the newer OPTLP procedure. The MPSOUT= option in the LP
procedure enables you to convert data in the format used by the LP procedure into an
MPS-format SAS data set for use with the OPTLP procedure. For more information
about the OPTLP procedure, see Chapter 15, “The OPTLP Procedure.” For more
information about the MPS-format SAS data set, see Chapter 14, “The MPS-Format
SAS Data Set.”

PROC INTPOINT

The INTPOINT procedure solves linear programming problems using the interior
point algorithm.

The constraint data can be specified in either the sparse or dense input format. This is
the same format that is used by PROC LP; therefore, any model-building techniques
that apply to models for PROC LP also apply to PROC INTPOINT.

For more details on PROC INTPOINT refer to Chapter 2, “The INTPOINT
Procedure.”

Problem data specified in the format used by the INTPOINT procedure can be read-
ily reformatted for use with the newer OPTLP procedure. The MPSOUT= option

6 � Chapter 1. Introduction to Optimization

in the INTPOINT procedure enables you to convert data in the format used by the
INTPOINT procedure into an MPS-format SAS data set for use with the OPTLP
procedure. For more information about the OPTLP procedure, see Chapter 15, “The
OPTLP Procedure.” For more information about the MPS-format SAS data set, see
Chapter 14, “The MPS-Format SAS Data Set.”

Network Problems

PROC NETFLOW

The NETFLOW procedure solves network flow problems with linear side constraints
using either a network simplex algorithm or an interior point algorithm. In addition,
it can solve linear programming (LP) problems using the interior point algorithm.

Networks and the Network Simplex Algorithm

PROC NETFLOW’s network simplex algorithm solves pure network flow problems
and network flow problems with linear side constraints. The procedure accepts the
network specification in formats that are particularly suited to networks. Although
network problems could be solved by PROC LP, the NETFLOW procedure generally
solves network flow problems more efficiently than PROC LP.

Network flow problems, such as finding the minimum cost flow in a network, re-
quire model representation in a format that is specialized for network structures. The
network is represented in two data sets: a node data set that names the nodes in the
network and gives supply and demand information at them, and an arc data set that
defines the arcs in the network using the node names and gives arc costs and capaci-
ties. In addition, a side-constraint data set is included that gives any side constraints
that apply to the flow through the network. Examples of these are found later in this
chapter.

The constraint data can be specified in either the sparse or dense input format. This is
the same format that is used by PROC LP; therefore, any model-building techniques
that apply to models for PROC LP also apply to network flow models having side
constraints.

Problem data specified in the format used by the NETFLOW procedure can be read-
ily reformatted for use with the newer OPTLP procedure. The MPSOUT= option
in the NETFLOW procedure enables you to convert data in the format used by the
NETFLOW procedure into an MPS-format SAS data set for use with the OPTLP
procedure. For more information about the OPTLP procedure, see Chapter 15, “The
OPTLP Procedure.” For more information about the MPS-format SAS data set, see
Chapter 14, “The MPS-Format SAS Data Set.”

Linear and Network Programs Solved by the Interior Point Algorithm

The data required by PROC NETFLOW for a linear program resemble the data for
nonarc variables and constraints for constrained network problems. They are similar
to the data required by PROC LP.

PROC OPTMILP � 7

The LP representation requires a data set that defines the variables in the LP using
variable names, and gives objective function coefficients and upper and lower bounds.
In addition, a constraint data set can be included that specifies any constraints.

When solving a constrained network problem, you can specify the INTPOINT option
to indicate that the interior point algorithm is to be used. The input data are the same
whether the simplex or interior point method is used. The interior point method is
often faster when problems have many side constraints.

The constraint data can be specified in either the sparse or dense input format. This
is the same format that is used by PROC LP; therefore, any model-building tech-
niques that apply to models for PROC LP also apply to LP models solved by PROC
NETFLOW.

Problem data specified in the format used by the NETFLOW procedure can be read-
ily reformatted for use with the newer OPTLP procedure. The MPSOUT= option
in the NETFLOW procedure enables you to convert data in the format used by the
NETFLOW procedure into an MPS-format SAS data set for use with the OPTLP
procedure. For more information about the OPTLP procedure, see Chapter 15, “The
OPTLP Procedure.” For more information about the MPS-format SAS data set, see
Chapter 14, “The MPS-Format SAS Data Set.”

PROC INTPOINT

The INTPOINT procedure solves the Network Program with Side Constraints
(NPSC) problem using the interior point algorithm.

The data required by PROC INTPOINT are similar to the data required by PROC
NETFLOW when solving network flow models using the interior point algorithm.

The constraint data can be specified in either the sparse or dense input format. This
is the same format that is used by PROC LP and PROC NETFLOW; therefore, any
model-building techniques that apply to models for PROC LP or PROC NETFLOW
also apply to PROC INTPOINT.

For more details on PROC INTPOINT refer to Chapter 2, “The INTPOINT
Procedure.”

Mixed Integer Linear Problems

PROC OPTMILP

The OPTMILP procedure solves general mixed integer linear programs (MILPs)
—linear programs in which a subset of the decision variables are constrained to
be integers. The OPTMILP procedure solves MILPs with an LP-based branch-and-
bound algorithm augmented by advanced techniques such as cutting planes and pri-
mal heuristics.

The OPTMILP procedure requires a MILP to be specified using a SAS data set that
adheres to the MPS format. See Chapter 14, “The MPS-Format SAS Data Set,” for
details about the MPS-format data set.

8 � Chapter 1. Introduction to Optimization

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling mixed integer linear
programming problems. The language allows a model to be expressed in a form
that matches the mathematical formulation. Within OPTMODEL you can declare a
model, pass it directly to various solvers, and review the solver result. You can also
save an instance of a mixed integer linear model in data set form for use by PROC
OPTMILP. For more details, refer to Chapter 6, “The OPTMODEL Procedure.”

PROC LP

The LP procedure solves MILPs with a primal simplex solver. To solve a MILP you
need to identify the integer variables. You can do this with a row in the input data
set that has the keyword INTEGER for the type variable. It is important to note that
integer variables must have upper bounds explicitly defined.

As with linear programs, you can specify MIP problem data using sparse or dense
format. For more details see Chapter 3, “The LP Procedure.”

Quadratic Programming Problems

PROC OPTQP

The OPTQP procedure solves quadratic programs—problems with quadratic objec-
tive function and a collection of linear constraints, including general linear constraints
along with lower and/or upper bounds on the decision variables.

You can specify the problem input data in one of two formats: QPS-format flat file
or QPS-format SAS data set. For details on the QPS-format data specification, refer
to Chapter 14, “The MPS-Format SAS Data Set.” For more details on the OPTQP
procedure, refer to Chapter 17, “The OPTQP Procedure.”

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling quadratic program-
ming problems. The language allows a model to be expressed in a form that matches
the mathematical formulation. Within OPTMODEL you can declare a model, pass it
directly to various solvers, and review the solver result. You can also save an instance
of a quadratic model in data set form for use by PROC OPTQP. For more details,
refer to Chapter 6, “The OPTMODEL Procedure.”

PROC NLP � 9

Nonlinear Problems

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling nonlinear program-
ming (NLP) problems. The language allows a model to be expressed in a form
that matches the mathematical formulation. Within OPTMODEL you can declare
a model, pass it directly to various solvers, and review the solver result. For more
details, refer to Chapter 6, “The OPTMODEL Procedure.”

You can solve the following types of nonlinear programming problems using PROC
OPTMODEL:

• Nonlinear objective function, linear constraints: Invoke the constrained
nonlinear programming (NLPC) solver. For more details about the NLPC
solver, refer to Chapter 10, “The NLPC Nonlinear Optimization Solver.”

• Nonlinear objective function, nonlinear constraints: Invoke the sequential
programming (SQP) or interior point nonlinear programming (IPNLP) solver.
For more details about the SQP solver, refer to Chapter 13, “The Sequential
Quadratic Programming Solver.” For more details about the IPNLP solver,
refer to Chapter 7, “The Interior Point Nonlinear Programming Solver.”

• Nonlinear objective function, no constraints: Invoke the unconstrained non-
linear programming (NLPU) solver. For more details about the NLPU solver,
refer to Chapter 11, “The Unconstrained Nonlinear Programming Solver.”

PROC NLP

The NLP procedure (NonLinear Programming) offers a set of optimization tech-
niques for minimizing or maximizing a continuous nonlinear function subject to lin-
ear and nonlinear, equality and inequality, and lower and upper bound constraints.
Problems of this type are found in many settings ranging from optimal control to
maximum likelihood estimation.

Nonlinear programs can be input into the procedure in various ways. The objective,
constraint, and derivative functions are specified using the programming statements
of PROC NLP. In addition, information in SAS data sets can be used to define the
structure of objectives and constraints, and to specify constants used in objectives,
constraints, and derivatives.

PROC NLP uses the following data sets to input various pieces of information:

• The DATA= data set enables you to specify data shared by all functions in-
volved in a least squares problem.

• The INQUAD= data set contains the arrays appearing in a quadratic program-
ming problem.

10 � Chapter 1. Introduction to Optimization

• The INEST= data set specifies initial values for the decision variables, the val-
ues of constants that are referred to in the program statements, and simple
boundary and general linear constraints.

• The MODEL= data set specifies a model (functions, constraints, derivatives)
saved at a previous execution of the NLP procedure.

As an alternative to supplying data in SAS data sets, some or all data for the model
can be specified using SAS programming statements. These are similar to those used
in the SAS DATA step.

For more details on PROC NLP refer to Chapter 4, “The NLP Procedure.”

Model Building

PROC OPTLP

A candy manufacturer makes two products: chocolates and toffee. What combination
of chocolates and toffee should be produced in a day in order to maximize the com-
pany’s profit? Chocolates contribute $0.25 per pound to profit, and toffee contributes
$0.75 per pound. The decision variables are chocolates and toffee.

Four processes are used to manufacture the candy:

1. Process 1 combines and cooks the basic ingredients for both chocolates and
toffee.

2. Process 2 adds colors and flavors to the toffee, then cools and shapes the con-
fection.

3. Process 3 chops and mixes nuts and raisins, adds them to the chocolates, and
then cools and cuts the bars.

4. Process 4 is packaging: chocolates are placed in individual paper shells; toffee
is wrapped in cellophane packages.

During the day, there are 7.5 hours (27,000 seconds) available for each process.

Firm time standards have been established for each process. For Process 1, mixing
and cooking take 15 seconds for each pound of chocolate, and 40 seconds for each
pound of toffee. Process 2 takes 56.25 seconds per pound of toffee. For Process 3,
each pound of chocolate requires 18.75 seconds of processing. In packaging, a pound
of chocolates can be wrapped in 12 seconds, whereas a pound of toffee requires 50
seconds. These data are summarized as follows:

Available Required per Pound
Time chocolates toffee

Process (sec) (sec) (sec)
1 Cooking 27,000 15 40
2 Color/Flavor 27,000 56.25
3 Condiments 27,000 18.75
4 Packaging 27,000 12 50

PROC OPTLP � 11

The objective is to

Maximize: 0.25(chocolates) + 0.75(toffee)

which is the company’s total profit.

The production of the candy is limited by the time available for each process. The
limits placed on production by Process 1 are expressed by the following inequality:

Process 1: 15(chocolates) + 40(toffee)≤ 27,000

Process 1 can handle any combination of chocolates and toffee that satisfies this in-
equality.

The limits on production by other processes generate constraints described by the
following inequalities:

Process 2: 56.25(toffee) ≤ 27,000

Process 3: 18.75(chocolates) ≤ 27,000

Process 4: 12(chocolates) + 50(toffee) ≤ 27,000

This linear program illustrates the type of problem known as a product mix example.
The mix of products that maximizes the objective without violating the constraints is
the solution. This model can be represented in an MPS-format SAS data set.

MPS-Format SAS Data Set

Typically, mathematical programming models are sparse; that is, few of the coeffi-
cients in the constraint matrix are nonzero. The OPTLP procedure accepts data in an
MPS-format SAS data set, which is an efficient way to represent sparse models.

An example of an MPS-format SAS data set is illustrated here. The following data
set contains the data from the product mix problem of the preceding section.

data sp_factory;
length field2 field3 field5 $10;
input field1 $ field2 $ field3 $ field4 field5 $ field6;

datalines;
NAME . factory . . .
ROWS
MAX object
L process1
L process2
L process3
L process4
COLUMNS
. chocolate object .25 process1 15
. chocolate process3 18.75 process4 12
. toffee object .75 process1 40
. toffee process2 56.25 process4 50
RHS
. _RHS_ process1 27000 . .
. _RHS_ process2 27000 . .
. _RHS_ process3 27000 . .

12 � Chapter 1. Introduction to Optimization

. _RHS_ process4 27000 . .
ENDATA
;

To solve this problem by using PROC OPTLP, specify the following:

proc optlp data = sp_factory;
run;

The Solution Summary (shown in Figure 1.1) gives information about the solution
that was found, including whether the optimizer terminated successfully after finding
the optimum.

When PROC OPTLP solves a problem, it uses an iterative process. First, the proce-
dure finds a feasible solution that satisfies the constraints. Second, it finds the optimal
solution from the set of feasible solutions. The Solution Summary lists information
about the optimization process such as the number of iterations, the infeasibilities of
the solution, and the time required to solve the problem.

The OPTLP Procedure

Solution Summary

Solver Dual simplex
Objective Function object
Solution Status Optimal
Objective Value 475

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 2
Presolve Time 0.00
Solution Time 0.00

Figure 1.1. Solution Summary

PROC NETFLOW

Network flow problems can be described by specifying the nodes in the network and
their supplies and demands, and the arcs in the network and their costs, capacities,
and lower flow bounds. Consider the simple transshipment problem in Figure 1.2 as
an illustration.

PROC NETFLOW � 13

�

	
�

factory–2

�

	
�

factory–1

�

	
�

warehouse–2

�

	
�

warehouse–1

�

	
�

customer–3

�

	
�

customer–2

�

	
�

customer–1

-

-�
�

�
�

�
�

���@
@

@
@

@
@

@@R

�
���

����*

HH
HHH

HHHj

J
J

J
J

J
J

J
J

J
J
Ĵ

�

���
���

��*

H
HHH

HHHHj

500

500

−50

−200

−100

Figure 1.2. Transshipment Problem

Suppose the candy manufacturing company has two factories, two warehouses, and
three customers for chocolate. The two factories each have a production capacity of
500 pounds per day. The three customers have demands of 100, 200, and 50 pounds
per day, respectively.

The following data set describes the supplies (positive values for the supdem vari-
able) and the demands (negative values for the supdem variable) for each of the
customers and factories.

data nodes;
format node $10. ;
input node $ supdem;
datalines;

customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;

Suppose that there are two warehouses that are used to store the chocolate before
shipment to the customers, and that there are different costs for shipping between each
factory, warehouse, and customer. What is the minimum cost routing for supplying
the customers?

Arcs are described in another data set. Each observation defines a new arc in the
network and gives data about the arc. For example, there is an arc between the
node factory–1 and the node warehouse–1. Each unit of flow on that arc costs 10.

14 � Chapter 1. Introduction to Optimization

Although this example does not include it, lower and upper bounds on the flow across
that arc can be listed here.

data network;
format from $12. to $12.;
input from $ to $ cost ;
datalines;

factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;

You can use PROC NETFLOW to find the minimum cost routing. This procedure
takes the model as defined in the network and nodes data sets and finds the minimum
cost flow.

proc netflow arcout=arc_sav
arcdata=network nodedata=nodes;

node node; /* node data set information */
supdem supdem;
tail from; /* arc data set information */
head to;
cost cost;
run;

proc print;
var from to cost _capac_ _lo_ _supply_ _demand_

flow _fcost_ _rcost_;
sum _fcost_;
run;

PROC NETFLOW produces the following messages in the SAS log:

NOTE: Number of nodes= 7 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 3 .
NOTE: Total supply= 1000 , total demand= 350 .
NOTE: Number of arcs= 10 .
NOTE: Number of iterations performed (neglecting

any constraints)= 7 .
NOTE: Of these, 2 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 3050 .
NOTE: The data set WORK.ARC_SAV has 10 observations

and 13 variables.

PROC NETFLOW � 15

The solution (Figure 1.3) saved in the arc–sav data set shows the optimal amount
of chocolate to send across each arc (the amount to ship from each factory to each
warehouse and from each warehouse to each customer) in the network per day.

_ _
_ S D _ _
C U E _ F R
A P M F C C

f c P _ P A L O O
O r o A L L N O S S
b o t s C O Y D W T T
s m o t _ _ _ _ _ _ _

1 warehouse_1 customer_1 3 99999999 0 . 100 100 300 .
2 warehouse_2 customer_1 5 99999999 0 . 100 0 0 4
3 warehouse_1 customer_2 4 99999999 0 . 200 200 800 .
4 warehouse_2 customer_2 5 99999999 0 . 200 0 0 3
5 warehouse_1 customer_3 4 99999999 0 . 50 50 200 .
6 warehouse_2 customer_3 6 99999999 0 . 50 0 0 4
7 factory_1 warehouse_1 10 99999999 0 500 . 0 0 5
8 factory_2 warehouse_1 5 99999999 0 500 . 350 1750 .
9 factory_1 warehouse_2 7 99999999 0 500 . 0 0 .
10 factory_2 warehouse_2 9 99999999 0 500 . 0 0 2

====
3050

Figure 1.3. ARCOUT Data Set

Notice which arcs have positive flow (–FLOW– is greater than 0). These arcs indi-
cate the amount of chocolate that should be sent from factory–2 to warehouse–1 and
from there to the three customers. The model indicates no production at factory–1
and no use of warehouse–2.

�

	
�

factory–2

�

	
�

factory–1

�

	
�

warehouse–2

�

	
�

warehouse–1

�

	
�

customer–3

�

	
�

customer–2

�

	
�

customer–1

-

-�
�

�
�

�
�

���@
@

@
@

@
@

@@R

���
���

��*

HHH
HHH

HHj

J
J

J
J

J
J

J
J

J
J
Ĵ

�

�
���

����*

HH
HHH

HHHj

500

500

−50

−200

−100

350 50

100

200

Figure 1.4. Optimal Solution for the Transshipment Problem

16 � Chapter 1. Introduction to Optimization

PROC OPTMODEL
Modeling a Linear Programming Problem

Consider the candy manufacturer’s problem described in the section “PROC OPTLP”
on page 10. You can formulate the problem using PROC OPTMODEL and solve it
using the primal simplex solver as follows:

proc optmodel;

/* declare variables */
var choco, toffee;

/* maximize objective function (profit) */
maximize profit = 0.25*choco + 0.75*toffee;

/* subject to constraints */
con process1: 15*choco + 40*toffee <= 27000;
con process2: 56.25*toffee <= 27000;
con process3: 18.75*choco <= 27000;
con process4: 12*choco + 50*toffee <= 27000;

/* solve LP using primal simplex solver */
solve with lp / solver = primal_spx;

/* display solution */
print choco toffee;

quit;

The optimal objective value and the optimal solution are displayed in the following
summary output:

The OPTMODEL Procedure

Solution Summary

Solver Primal Simplex
Objective Function profit
Solution Status Optimal
Objective Value 475
Iterations 3

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

choco toffee

1000 300

You can observe from the preceding example that PROC OPTMODEL provides an
easy and intuitive way of modeling and solving mathematical programming models.

PROC OPTMODEL � 17

Modeling a Nonlinear Programming Problem

The following optimization problem illustrates how you can use some features of
PROC OPTMODEL to formulate and solve nonlinear programming problems. The
objective of the problem is to find coefficients for an approximation function that
matches the values of a given function, f(x), at a set of points P . The approximation
is a rational function with degree d in the numerator and denominator:

r(x) =
α0 +

∑d
i=1 αix

i

β0 +
∑d

i=1 βixi

The problem can be formulated by minimizing the sum of squared errors at each point
in P :

min
∑
x∈P

[r(x)− f(x)]2

The following code implements this model. The function f(x) = 2x is approximated
over a set of points P in the range 0 to 1. The function values are saved in a data set
that is used by PROC OPTMODEL to set model parameters:

data points;
/* generate data points */
keep f x;
do i = 0 to 100;

x = i/100;
f = 2**x;
output;

end;

proc optmodel;
/* declare, read, and save our data points */
set points;
number f{points};
read data points into points = [x] f;

/* declare variables and model parameters */
number d=1; /* linear polynomial */
var a{0..d};
var b{0..d} init 1;
constraint fixb0: b[0] = 1;

/* minimize sum of squared errors */
min z=sum{x in points}

((a[0] + sum{i in 1..d} a[i]*x**i) /
(b[0] + sum{i in 1..d} b[i]*x**i) - f[x])**2;

/* solve and show coefficients */
solve;
print a b;
quit;

18 � Chapter 1. Introduction to Optimization

The expression for the objective z is defined using operators that parallel the mathe-
matical form. In this case the polynomials in the rational function are linear, so d is
equal to 1.

The constraint fixb0 forces the constant term of the rational function denomina-
tor, b[0], to equal 1. This causes the resulting coefficients to be normalized. The
OPTMODEL presolver preprocesses the problem to remove the constraint. An un-
constrained solver is used after substituting for b[0].

The SOLVE statement selects a solver, calls it, and displays the status. The PRINT
command then prints the values of coefficient arrays a and b:

The OPTMODEL Procedure

Solution Summary

Solver L-BFGS
Objective Function z
Solution Status Optimal
Objective Value 0.0000590999
Iterations 21

Optimality Error 3.9537991E-7

[1] a b

0 0.99817 1.00000
1 0.42064 -0.29129

The approximation for f(x) = 2x between 0 and 1 is therefore

fapprox(x) =
0.99817 + 0.42064x

1− 0.29129x

Matrix Generation
It is desirable to keep data in separate tables, and then to automate model building
and reporting. This example illustrates a problem that has elements of both a product
mix problem and a blending problem. Suppose four kinds of ties are made: all silk,
all polyester, a 50-50 polyester-cotton blend, and a 70-30 cotton-polyester blend.

The data include cost and supplies of raw material, selling price, minimum contract
sales, maximum demand of the finished products, and the proportions of raw materi-
als that go into each product. The objective is to find the product mix that maximizes
profit.

The data are saved in three SAS data sets. The program that follows demonstrates
one way for these data to be saved.

Matrix Generation � 19

data material;
format descpt $20.;
input descpt $ cost supply;
datalines;

silk_material .21 25.8
polyester_material .6 22.0
cotton_material .9 13.6
;

data tie;
format descpt $20.;
input descpt $ price contract demand;
datalines;

all_silk 6.70 6.0 7.00
all_polyester 3.55 10.0 14.00
poly_cotton_blend 4.31 13.0 16.00
cotton_poly_blend 4.81 6.0 8.50
;

data manfg;
format descpt $20.;
input descpt $ silk poly cotton;
datalines;

all_silk 100 0 0
all_polyester 0 100 0
poly_cotton_blend 0 50 50
cotton_poly_blend 0 30 70
;

The following program takes the raw data from the three data sets and builds a linear
program model in the data set called model. Although it is designed for the three-
resource, four-product problem described here, it can easily be extended to include
more resources and products. The model-building DATA step remains essentially the
same; all that changes are the dimensions of loops and arrays. Of course, the data
tables must expand to accommodate the new data.

data model;
array raw_mat {3} $ 20 ;
array raw_comp {3} silk poly cotton;
length _type_ $ 8 _col_ $ 20 _row_ $ 20 _coef_ 8 ;
keep _type_ _col_ _row_ _coef_ ;

/* define the objective, lower, and upper bound rows */

row=’profit’; _type_=’max’; output;
row=’lower’; _type_=’lowerbd’; output;
row=’upper’; _type_=’upperbd’; output;
type=’ ’;

/* the object and upper rows for the raw materials */

do i=1 to 3;

20 � Chapter 1. Introduction to Optimization

set material;
raw_mat[i]=descpt; _col_=descpt;
row=’profit’; _coef_=-cost; output;
row=’upper’; _coef_=supply; output;

end;

/* the object, upper, and lower rows for the products */

do i=1 to 4;
set tie;
col=descpt;
row=’profit’; _coef_=price; output;
row=’lower’; _coef_=contract; output;
row=’upper’; _coef_=demand; output;

end;

/* the coefficient matrix for manufacturing */

type=’eq’;
do i=1 to 4; /* loop for each raw material */

set manfg;
do j=1 to 3; /* loop for each product */

col=descpt; /* % of material in product */
row = raw_mat[j];
coef = raw_comp[j]/100;
output;

col = raw_mat[j]; _coef_ = -1;
output;

/* the right-hand side */

if i=1 then do;
col=’_RHS_’;
coef=0;
output;

end;
end;
type=’ ’;

end;
stop;

run;

The model is solved using PROC LP, which saves the solution in the PRIMALOUT
data set named solution. PROC PRINT displays the solution, shown in Figure 1.5.

proc lp sparsedata primalout=solution;

proc print ;
id _var_;
var _lbound_--_r_cost_;

run;

Exploiting Model Structure � 21

VAR _LBOUND_ _VALUE_ _UBOUND_ _PRICE_ _R_COST_

all_polyester 10 11.800 14.0 3.55 0.000
all_silk 6 7.000 7.0 6.70 6.490
cotton_material 0 13.600 13.6 -0.90 4.170
cotton_poly_blend 6 8.500 8.5 4.81 0.196
polyester_material 0 22.000 22.0 -0.60 2.950
poly_cotton_blend 13 15.300 16.0 4.31 0.000
silk_material 0 7.000 25.8 -0.21 0.000
PHASE_1_OBJECTIVE 0 0.000 0.0 0.00 0.000
profit 0 168.708 1.7977E308 0.00 0.000

Figure 1.5. Solution Data Set

The solution shows that 11.8 units of polyester ties, 7 units of silk ties, 8.5 units of
the cotton-polyester blend, and 15.3 units of the polyester-cotton blend should be
produced. It also shows the amounts of raw materials that go into this product mix to
generate a total profit of 168.708.

Exploiting Model Structure
Another example helps to illustrate how the model can be simplified by exploiting
the structure in the model when using the NETFLOW procedure.

Recall the chocolate transshipment problem discussed previously. The solution re-
quired no production at factory–1 and no storage at warehouse–2. Suppose this
solution, although optimal, is unacceptable. An additional constraint requiring the
production at the two factories to be balanced is needed. Now, the production at the
two factories can differ by, at most, 100 units. Such a constraint might look like this:

-100 <= (factory_1_warehouse_1 + factory_1_warehouse_2 -
factory_2_warehouse_1 - factory_2_warehouse_2) <= 100

The network and supply and demand information are saved in the following two data
sets:

22 � Chapter 1. Introduction to Optimization

data network;
format from $12. to $12.;
input from $ to $ cost ;
datalines;

factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;

data nodes;
format node $12. ;
input node $ supdem;
datalines;

customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;

The factory-balancing constraint is not a part of the network. It is represented in the
sparse format in a data set for side constraints.

data side_con;
format _type_ $8. _row_ $8. _col_ $21. ;
input _type_ _row_ _col_ _coef_ ;
datalines;

eq balance . .
. balance factory_1_warehouse_1 1
. balance factory_1_warehouse_2 1
. balance factory_2_warehouse_1 -1
. balance factory_2_warehouse_2 -1
. balance diff -1
lo lowerbd diff -100
up upperbd diff 100
;

This data set contains an equality constraint that sets the value of DIFF to be the
amount that factory 1 production exceeds factory 2 production. It also contains im-
plicit bounds on the DIFF variable. Note that the DIFF variable is a nonarc variable.

You can use the following call to PROC NETFLOW to solve the problem:

Exploiting Model Structure � 23

proc netflow
conout=con_sav
arcdata=network nodedata=nodes condata=side_con
sparsecondata ;
node node;
supdem supdem;
tail from;
head to;
cost cost;
run;

proc print;
var from to _name_ cost _capac_ _lo_ _supply_ _demand_

flow _fcost_ _rcost_;
sum _fcost_;
run;

The solution is saved in the con–sav data set, as displayed in Figure 1.6.

_ _
_ S D _ _

_ C U E _ F R
N A P M F C C

f A c P _ P A L O O
O r M o A L L N O S S
b o t E s C O Y D W T T
s m o _ t _ _ _ _ _ _ _

1 warehouse_1 customer_1 3 99999999 0 . 100 100 300 .
2 warehouse_2 customer_1 5 99999999 0 . 100 0 0 1.0
3 warehouse_1 customer_2 4 99999999 0 . 200 75 300 .
4 warehouse_2 customer_2 5 99999999 0 . 200 125 625 .
5 warehouse_1 customer_3 4 99999999 0 . 50 50 200 .
6 warehouse_2 customer_3 6 99999999 0 . 50 0 0 1.0
7 factory_1 warehouse_1 10 99999999 0 500 . 0 0 2.0
8 factory_2 warehouse_1 5 99999999 0 500 . 225 1125 .
9 factory_1 warehouse_2 7 99999999 0 500 . 125 875 .
10 factory_2 warehouse_2 9 99999999 0 500 . 0 0 5.0
11 diff 0 100 -100 . . -100 0 1.5

====
3425

Figure 1.6. CON–SAV Data Set

Notice that the solution now has production balanced across the factories; the pro-
duction at factory 2 exceeds that at factory 1 by 100 units.

24 � Chapter 1. Introduction to Optimization

�

	
�

factory–2

�

	
�

factory–1

�

	
�

warehouse–2

�

	
�

warehouse–1

�

	
�

customer–3

�

	
�

customer–2

�

	
�

customer–1

-

-�
�

�
�

�
�

���@
@

@
@

@
@

@@R

�
���

����*

HH
HHH

HHHj

J
J

J
J

J
J

J
J

J
J
Ĵ

�

���
���

��*

H
HHH

HHHHj

500

500

−50

−200

−100

225

125

50

100

75

125

Figure 1.7. Constrained Optimum for the Transshipment Problem

Report Writing
The reporting of the solution is also an important aspect of modeling. Since the
optimization procedures save the solution in one or more SAS data sets, reports can
be written using any of the tools in the SAS language.

The DATA Step

Use of the DATA step and PROC PRINT is the most common way to produce reports.
For example, from the data set solution shown in Figure 1.5, a table showing the
revenue of the optimal production plan and a table of the cost of material can be
produced with the following program.

data product(keep= _var_ _value_ _price_ revenue)
material(keep=_var_ _value_ _price_ cost);

set solution;
if _price_>0 then do;

revenue=_price_*_value_; output product;
end;
else if _price_<0 then do;

price=-_price_;
cost = _price_*_value_; output material;

end;
run;

/* display the product report */

proc print data=product;

Other Reporting Procedures � 25

id _var_;
var _value_ _price_ revenue ;
sum revenue;
title ’Revenue Generated from Tie Sales’;

run;

/* display the materials report */

proc print data=material;
id _var_;
var _value_ _price_ cost;
sum cost;
title ’Cost of Raw Materials’;

run;

This DATA step reads the solution data set saved by PROC LP and segregates the
records based on whether they correspond to materials or products—namely whether
the contribution to profit is positive or negative. Each of these is then displayed to
produce Figure 1.8.

Revenue Generated from Tie Sales

VAR _VALUE_ _PRICE_ revenue

all_polyester 11.8 3.55 41.890
all_silk 7.0 6.70 46.900
cotton_poly_blend 8.5 4.81 40.885
poly_cotton_blend 15.3 4.31 65.943

=======
195.618

Cost of Raw Materials

VAR _VALUE_ _PRICE_ cost

cotton_material 13.6 0.90 12.24
polyester_material 22.0 0.60 13.20
silk_material 7.0 0.21 1.47

=====
26.91

Figure 1.8. Tie Problem: Revenues and Costs

Other Reporting Procedures

The GCHART procedure can be a useful tool for displaying the solution to mathe-
matical programming models. The con–solv data set that contains the solution to the
balanced transshipment problem can be effectively displayed using PROC GCHART.
In Figure 1.9, the amount that is shipped from each factory and warehouse can be
seen by submitting the following SAS code:

26 � Chapter 1. Introduction to Optimization

title;
proc gchart data=con_sav;

hbar from / sumvar=_flow_;
run;

Figure 1.9. Tie Problem: Throughputs

The horizontal bar chart is just one way of displaying the solution to a mathematical
program. The solution to the Tie Product Mix problem that was solved using PROC
LP can also be illustrated using PROC GCHART. Here, a pie chart shows the relative
contribution of each product to total revenues.

proc gchart data=product;
pie _var_ / sumvar=revenue;

title ’Projected Tie Sales Revenue’;
run;

References � 27

Figure 1.10. Tie Problem: Projected Tie Sales Revenue

The TABULATE procedure is another procedure that can help automate solution re-
porting. Several examples in Chapter 3, “The LP Procedure,” illustrate its use.

References
IBM (1988), Mathematical Programming System Extended/370 (MPSX/370) Version

2 Program Reference Manual, volume SH19-6553-0, IBM.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice,
New York: McGraw-Hill.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function,” Computer Journal, 3, 175–184.

28

Chapter 2
The INTPOINT Procedure

Chapter Contents

OVERVIEW: INTPOINT PROCEDURE 31
Mathematical Description of NPSC . 32
Mathematical Description of LP . 34
The Interior Point Algorithm . 34
Network Models . 42

INTRODUCTION . 50
Getting Started: NPSC Problems . 50
Getting Started: LP Problems . 57
Typical PROC INTPOINT Run . 65

SYNTAX: INTPOINT PROCEDURE . 66
Functional Summary . 67
PROC INTPOINT Statement . 69
CAPACITY Statement . 89
COEF Statement . 89
COLUMN Statement . 90
COST Statement . 90
DEMAND Statement . 91
HEADNODE Statement . 91
ID Statement . 91
LO Statement . 92
NAME Statement . 92
NODE Statement . 92
QUIT Statement . 92
RHS Statement . 93
ROW Statement . 93
RUN Statement . 93
SUPDEM Statement . 94
SUPPLY Statement . 94
TAILNODE Statement . 94
TYPE Statement . 95
VAR Statement . 96

DETAILS: INTPOINT PROCEDURE . 97
Input Data Sets . 97
Output Data Sets . 106

Converting Any PROC INTPOINT Format to an MPS-Format SAS Data Set 108
Case Sensitivity . 108
Loop Arcs . 109
Multiple Arcs . 109
Flow and Value Bounds . 109
Tightening Bounds and Side Constraints 110
Reasons for Infeasibility . 110
Missing S Supply and Missing D Demand Values 112
Balancing Total Supply and Total Demand 116
How to Make the Data Read of PROC INTPOINT More Efficient 117
Stopping Criteria . 123
Macro Variable –ORINTPO . 126
Memory Limit . 128

EXAMPLES: INTPOINT PROCEDURE 129
Example 2.1. Production, Inventory, Distribution Problem 130
Example 2.2. Altering Arc Data . 135
Example 2.3. Adding Side Constraints . 139
Example 2.4. Using Constraints and More Alteration to Arc Data 144
Example 2.5. Nonarc Variables in the Side Constraints 148
Example 2.6. Solving an LP Problem with Data in MPS Format 153
Example 2.7. Converting to an MPS-Format SAS Data Set 154

REFERENCES . 156

Chapter 2
The INTPOINT Procedure
Overview: INTPOINT Procedure

The INTPOINT procedure solves the Network Program with Side Constraints
(NPSC) problem (defined in the section “Mathematical Description of NPSC” on
page 32) and the more general Linear Programming (LP) problem (defined in the
section “Mathematical Description of LP” on page 34). NPSC and LP models can be
used to describe a wide variety of real-world applications ranging from production,
inventory, and distribution problems to financial applications.

Whether your problem is NPSC or LP, PROC INTPOINT uses the same optimization
algorithm, the interior point algorithm. This algorithm is outlined in the section “The
Interior Point Algorithm” on page 34.

While many of your problems may best be formulated as LP problems, there may be
other instances when your problems are better formulated as NPSC problems. The
section “Network Models” on page 42 describes typical models that have a network
component and suggests reasons why NPSC may be preferable to LP. The section
“Getting Started: NPSC Problems” on page 50 outlines how you supply data of any
NPSC problem to PROC INTPOINT and call the procedure. After it reads the NPSC
data, PROC INTPOINT converts the problem into an equivalent LP problem, per-
forms interior point optimization, then converts the solution it finds back into a form
you can use as the optimum to the original NPSC model.

If your model is an LP problem, the way you supply the data to PROC INTPOINT
and run the procedure is described in the section “Getting Started: LP Problems” on
page 57.

You can also solve LP problems by using the OPTLP procedure. The OPTLP proce-
dure requires a linear program to be specified by using a SAS data set that adheres
to the MPS format, a widely accepted format in the optimization community. You
can use the MPSOUT= option in the INTPOINT procedure to convert typical PROC
INTPOINT format data sets into MPS-format SAS data sets.

The remainder of this chapter is organized as follows:

• The section “Typical PROC INTPOINT Run” on page 65 describes how to use
this procedure.

• The section “Syntax: INTPOINT Procedure” on page 66 describes all the state-
ments and options of PROC INTPOINT.

• The section “Functional Summary” on page 67 lists the statements and options
that can be used to control PROC INTPOINT.

• The section “Details: INTPOINT Procedure” on page 97 contains detailed ex-
planations, descriptions, and advice on the use and behavior of the procedure.

32 � Chapter 2. The INTPOINT Procedure

• PROC INTPOINT is demonstrated by solving several examples in the section
“Examples: INTPOINT Procedure” on page 129.

Mathematical Description of NPSC

A network consists of a collection of nodes joined by a collection of arcs. The arcs
connect nodes and convey flow of one or more commodities that are supplied at
supply nodes and demanded at demand nodes in the network. Each arc has a cost
per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling is conservation of flow. Conservation of flow
means that the total flow in arcs directed toward a node, plus the supply at the node,
minus the demand at the node, equals the total flow in arcs directed away from the
node.

Often all the details of a problem cannot be specified in a network model alone. In
many of these cases, these details can be represented by the addition of side con-
straints to the model. Side constraints are linear functions of arc variables (variables
containing flow through an arc) and nonarc variables (variables that are not part of the
network). The data for a side constraint consist of coefficients of arcs and coefficients
of nonarc variables, a constraint type (that is, ≤, =, or ≥) and a right-hand-side value
(rhs). A nonarc variable has a name, an objective function coefficient analogous to an
arc cost, an upper bound analogous to an arc capacity, and a lower bound analogous
to an arc lower flow bound.

If a network component of NPSC is removed by merging arcs and nonarc variables
into a single set of variables, and if the flow conservation constraints and side con-
straints are merged into a single set of constraints, the result is an LP problem. PROC
INTPOINT will automatically transform an NPSC problem into an equivalent LP
problem, perform the optimization, then transform the problem back into its original
form. By doing this, PROC INTPOINT finds the flow through the network and the
values of any nonarc variables that minimize the total cost of the solution. Flow con-
servation is met, flow through each arc is on or between the arc’s lower flow bound
and capacity, the value of each nonarc variable is on or between the nonarc’s lower
and upper bounds, and the side constraints are satisfied.

Note that, since many LPs have large embedded networks, PROC INTPOINT is an
attractive alternative to the LP procedure in many cases. Rather than formulating all
problems as LPs, network models remain conceptually easy since they are based on
network diagrams that represent the problem pictorially. PROC INTPOINT accepts
the network specification in a format that is particularly suited to networks. This not
only simplifies problem description but also aids in the interpretation of the solution.
The conversion to and from the equivalent LP is done “behind the scenes” by the
procedure.

If a network programming problem with side constraints has n nodes, a arcs, g nonarc
variables, and k side constraints, then the formal statement of the problem solved by
PROC INTPOINT is

Mathematical Description of NPSC � 33

minimize cT x + dT z
subject to Fx = b

Hx + Qz {≥,=,≤} r
l ≤ x ≤ u
m ≤ z ≤ v

where

• c is the a× 1 arc variable objective function coefficient vector (the cost vector)

• x is the a× 1 arc variable value vector (the flow vector)

• d is the g × 1 nonarc variable objective function coefficient vector

• z is the g × 1 nonarc variable value vector

• F is the n× a node-arc incidence matrix of the network, where

Fi,j =


−1, if arc j is directed from node i

1, if arc j is directed toward node i
0, otherwise

• b is the n× 1 node supply/demand vector, where

bi =


s, if node i has supply capability of s units of flow

−d, if node i has demand of d units of flow
0, if node i is a transshipment node

• H is the k × a side constraint coefficient matrix for arc variables, where Hi,j

is the coefficient of arc j in the ith side constraint

• Q is the k × g side constraint coefficient matrix for nonarc variables, where
Qi,j is the coefficient of nonarc j in the ith side constraint

• r is the k × 1 side constraint right-hand-side vector

• l is the a× 1 arc lower flow bound vector

• u is the a× 1 arc capacity vector

• m is the g × 1 nonarc variable lower bound vector

• v is the g × 1 nonarc variable upper bound vector

The INTPOINT procedure can also be used to solve an unconstrained network prob-
lem, that is, one in which H , Q, d, r, and z do not exist. It can also be used to solve
a network problem with side constraints but no nonarc variables, in which case Q, d,
and z do not exist.

34 � Chapter 2. The INTPOINT Procedure

Mathematical Description of LP

A linear programming (LP) problem has a linear objective function and a collection of
linear constraints. PROC INTPOINT finds the values of variables that minimize the
total cost of the solution. The value of each variable is on or between the variable’s
lower and upper bounds, and the constraints are satisfied.

If an LP has g variables and k constraints, then the formal statement of the problem
solved by PROC INTPOINT is

minimize dT z
subject to Qz {≥,=,≤} r

m ≤ z ≤ v

where

• d is the g × 1 variable objective function coefficient vector

• z is the g × 1 variable value vector

• Q is the k × g constraint coefficient matrix for the variables, where Qi,j is the
coefficient of variable j in the ith constraint

• r is the k × 1 side constraint right-hand-side vector

• m is the g × 1 variable lower bound vector

• v is the g × 1 variable upper bound vector

The Interior Point Algorithm

The simplex algorithm, developed shortly after World War II, was for many years the
main method used to solve linear programming problems. Over the last fifteen years,
however, the interior point algorithm has been developed. This algorithm also solves
linear programming problems. From the start it showed great theoretical promise, and
considerable research in the area resulted in practical implementations that performed
competitively with the simplex algorithm. More recently, interior point algorithms
have evolved to become superior to the simplex algorithm, in general, especially
when the problems are large.

There are many variations of interior point algorithms. PROC INTPOINT uses the
Primal-Dual with Predictor-Corrector algorithm. More information on this particular
algorithm and related theory can be found in the texts by Roos, Terlaky, and Vial
(1997), Wright (1996), and Ye (1996).

The Interior Point Algorithm � 35

Interior Point Algorithmic Details

After preprocessing, the linear program to be solved is

minimize cT x
subject to Ax = b

x ≥ 0

This is the primal problem. The matrices d, z, and Q of NPSC have been renamed
c, x, and A, respectively, as these symbols are by convention used more, the problem
to be solved is different from the original because of preprocessing, and there has
been a change of primal variable to transform the LP into one whose variables have
zero lower bounds. To simplify the algebra here, assume that variables have infinite
upper bounds, and constraints are equalities. (Interior point algorithms do efficiently
handle finite upper bounds, and it is easy to introduce primal slack variables to change
inequalities into equalities.) The problem has n variables; i is a variable number; k is
an iteration number, and if used as a subscript or superscript it denotes “of iteration
k”.

There exists an equivalent problem, the dual problem, stated as

maximize bT y
subject to AT y + s = c

s ≥ 0

where y are dual variables, and s are dual constraint slacks.

The interior point algorithm solves the system of equations to satisfy the Karush-
Kuhn-Tucker (KKT) conditions for optimality:

Ax = b

AT y + s = c

XSe = 0

x ≥ 0

s ≥ 0

where

S = diag(s) (that is, Si,j = si if i = j, Si,j = 0 otherwise)

X = diag(x)

ei = 1 ∀i

These are the conditions for feasibility, with the complementarity condition XSe = 0
added. Complementarity forces the optimal objectives of the primal and dual to be
equal, cT xopt = bT yopt, as

0 = xT
optsopt = sT

optxopt = (c−AT yopt)T xopt =

cT xopt − yT
opt(Axopt) = cT xopt − bT yopt

36 � Chapter 2. The INTPOINT Procedure

Before the optimum is reached, a solution (x, y, s) may not satisfy the KKT condi-
tions:

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s 6= 0.

• Complementarity may not be satisfied, xT s = cT x − bT y 6= 0. This is called
the duality gap.

The interior point algorithm works by using Newton’s method to find a direction to
move (∆xk,∆yk,∆sk) from the current solution (xk, yk, sk) toward a better solu-
tion:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the step length and is assigned a value as large as possible but not so large
that an xk+1

i or sk+1
i is “too close” to zero. The direction in which to move is found

using

A∆xk = infeasc

AT ∆yk + ∆sk = infeasd

Sk∆xk + Xk∆sk = −XkSke

To greatly improve performance, the third equation is changed to

Sk∆xk + Xk∆sk = −XkSke + σkµke

where µk = (xk)T sk/n, the average complementarity, and 0 ≤ σk ≤ 1.

The effect now is to find a direction in which to move to reduce infeasibilities and
to reduce the complementarity toward zero, but if any xk

i s
k
i is too close to zero, it is

“nudged out” to µ, and any xk
i s

k
i that is larger than µ is “nudged into” µ. A σk close

to or equal to 0.0 biases a direction toward the optimum, and a value of σk close
to or equal to 1.0 “centers” the direction toward a point where all pairwise products
xk

i s
k
i = µ. Such points make up the central path in the interior. Although centering

directions make little, if any, progress in reducing µ and moving the solution closer
to the optimum, substantial progress toward the optimum can usually be made in the
next iteration.

The central path is crucial to why the interior point algorithm is so efficient. As µ
is decreased, this path “guides” the algorithm to the optimum through the interior of
feasible space. Without centering, the algorithm would find a series of solutions near
each other close to the boundary of feasible space. Step lengths along the direction
would be small and many more iterations would probably be required to reach the
optimum.

That in a nutshell is the primal-dual interior point algorithm. Varieties of the algo-
rithm differ in the way α and σk are chosen and the direction adjusted during each

The Interior Point Algorithm � 37

iteration. A wealth of information can be found in the texts by Roos, Terlaky, and
Vial (1997), Wright (1996), and Ye (1996).

The calculation of the direction is the most time-consuming step of the interior point
algorithm. Assume the kth iteration is being performed, so the subscript and super-
script k can be dropped from the algebra:

A∆x = infeasc

AT ∆y + ∆s = infeasd

S∆x + X∆s = −XSe + σµe

Rearranging the second equation,

∆s = infeasd −AT ∆y

Rearranging the third equation,

∆s = X−1(−S∆x−XSe + σµe)

∆s = −Θ∆x− Se + X−1σµe

where Θ = SX−1.

Equating these two expressions for ∆s and rearranging,

−Θ∆x− Se + X−1σµe = infeasd −AT ∆y

−Θ∆x = Se−X−1σµe + infeasd −AT ∆y

∆x = Θ−1(−Se + X−1σµe− infeasd + AT ∆y)

∆x = ρ + Θ−1AT ∆y

where ρ = Θ−1(−Se + X−1σµe− infeasd).

Substituting into the first direction equation,

A∆x = infeasc

A(ρ + Θ−1AT ∆y) = infeasc

AΘ−1AT ∆y = infeasc −Aρ

∆y = (AΘ−1AT)−1(infeasc −Aρ)

Θ, ρ, ∆y, ∆x, and ∆s are calculated in that order. The hardest term is the factoriza-
tion of the (AΘ−1AT) matrix to determine ∆y. Fortunately, although the values of
(AΘ−1AT) are different for each iteration, the locations of the nonzeros in this ma-
trix remain fixed; the nonzero locations are the same as those in the matrix (AAT).

38 � Chapter 2. The INTPOINT Procedure

This is because Θ−1 = XS−1 is a diagonal matrix that has the effect of merely
scaling the columns of (AAT).

The fact that the nonzeros in AΘ−1AT have a constant pattern is exploited by all in-
terior point algorithms and is a major reason for their excellent performance. Before
iterations begin, AAT is examined and its rows and columns are symmetrically per-
muted so that during Cholesky factorization, the number of fill-ins created is smaller.
A list of arithmetic operations to perform the factorization is saved in concise com-
puter data structures (working with memory locations rather than actual numerical
values). This is called symbolic factorization. During iterations, when memory has
been initialized with numerical values, the operations list is performed sequentially.
Determining how the factorization should be performed again and again is unneces-
sary.

The Primal-Dual Predictor-Corrector Interior Point Algorithm

The variant of the interior point algorithm implemented in PROC INTPOINT is a
Primal-Dual Predictor-Corrector interior point algorithm. At first, Newton’s method
is used to find a direction (∆xk

aff ,∆yk
aff ,∆sk

aff) to move, but calculated as if µ is
zero, that is, as a step with no centering, known as an affine step:

A∆xk
aff = infeasc

AT ∆yk
aff + ∆sk

aff = infeasd

Sk∆xk
aff + Xk∆sk

aff = −XkSke

(xk
aff , yk

aff , sk
aff) = (xk, yk, sk) + α(∆xk

aff ,∆yk
aff ,∆sk

aff)

where α is the step length as before.

Complementarity xT s is calculated at (xk
aff , yk

aff , sk
aff) and compared with the com-

plementarity at the starting point (xk, yk, sk), and the success of the affine step is
gauged. If the affine step was successful in reducing the complementarity by a sub-
stantial amount, the need for centering is not great, and σk in the following linear
system is assigned a value close to zero. If, however, the affine step was unsuccess-
ful, centering would be beneficial, and σk in the following linear system is assigned a
value closer to 1.0. The value of σk is therefore adaptively altered depending on the
progress made toward the optimum.

A second linear system is solved to determine a centering vector (∆xk
c ,∆yk

c ,∆sk
c)

from (xk
aff , yk

aff , sk
aff):

A∆xk
c = 0

AT ∆yk
c + ∆sk

c = 0

Sk∆xk
c + Xk∆sk

c = −Xk
aff Sk

aff e + σkµke

Then

The Interior Point Algorithm � 39

(∆xk,∆yk,∆sk) = (∆xk
aff ,∆yk

aff ,∆sk
aff) + (∆xk

c ,∆yk
c ,∆sk

c)

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where, as before, α is the step length assigned a value as large as possible but not so
large that an xk+1

i or sk+1
i is “too close” to zero.

Although the Predictor-Corrector variant entails solving two linear systems instead
of one, fewer iterations are usually required to reach the optimum. The additional
overhead of calculating the second linear system is small, as the factorization of the
(AΘ−1AT) matrix has already been performed to solve the first linear system.

Interior Point: Upper Bounds

If the LP had upper bounds (0 ≤ x ≤ u where u is the upper bound vector), then the
primal and dual problems, the duality gap, and the KKT conditions would have to be
expanded.

The primal linear program to be solved is

minimize cT x
subject to Ax = b

0 ≤ x ≤ u

where 0 ≤ x ≤ u is split into x ≥ 0 and x ≤ u. Let z be primal slack so that
x + z = u, and associate dual variables w with these constraints. The interior point
algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT)
conditions for optimality:

Ax = b

x + z = u

AT y + s− w = c

XSe = 0

ZWe = 0

x, s, z, w ≥ 0

These are the conditions for feasibility, with the complementarity conditions XSe =
0 and ZWe = 0 added. Complementarity forces the optimal objectives of the primal
and dual to be equal, cT xopt = bT yopt − uT wopt, as

0 = zT
optwopt = (u− xopt)T wopt = uT wopt − xT

optwopt

0 = xT
optsopt = sT

optxopt = (c−AT yopt + wopt)T xopt =

cT xopt − yT
opt(Axopt) + wT

optxopt = cT xopt − bT yopt + uT wopt

40 � Chapter 2. The INTPOINT Procedure

Before the optimum is reached, a solution (x, y, s, z, w) might not satisfy the KKT
conditions:

• Primal bound constraints may be violated, infeasb = u− x− z 6= 0.

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s + w 6= 0.

• Complementarity conditions may not be satisfied, xT s 6= 0 or zT w 6= 0.

The calculations of the interior point algorithm can easily be derived in a fashion
similar to calculations for when an LP has no upper bounds. See the paper by Lustig,
Marsten, and Shanno (1992).

In some iteration k, the affine step system that must be solved is

∆xaff + ∆zaff = infeasb

A∆xaff = infeasc

AT ∆yaff + ∆saff −∆waff = infeasd

S∆xaff + X∆saff = −XSe

Z∆waff + W∆zaff = −ZWe

Therefore, the computations involved in solving the affine step are

Θ = SX−1 + WZ−1

ρ = Θ−1(infeasd + (S −W)e− Z−1W infeasb)

∆yaff = (AΘ−1AT)−1(infeasc + Aρ)

∆xaff = Θ−1AT ∆yaff − ρ

∆zaff = infeasb −∆xaff

∆waff = −We− Z−1W∆zaff

∆saff = −Se−X−1S∆xaff

(xaff , yaff , saff , zaff , waff) = (x, y, s, z, w)+

α(∆xaff ,∆yaff ,∆saff ,∆zaff ,∆waff)

and α is the step length as before.

A second linear system is solved to determine a centering vector
(∆xc,∆yc,∆sc,∆zc,∆wc) from (xaff , yaff , saff , zaff , waff):

∆xc + ∆zc = 0

A∆xc = 0

AT ∆yc + ∆sc −∆wc = 0

S∆xc + X∆sc = −Xaff Saff e + σµe

The Interior Point Algorithm � 41

Z∆wc + W∆zc = −Zaff Waff e + σµe

where

ζstart = xT s + zT w, complementarity at the start of the iteration

ζaff = xT
aff saff + zT

aff waff , the affine complementarity

µ = ζaff /2n, the average complementarity

σ = (ζaff /ζstart)3

Therefore, the computations involved in solving the centering step are

ρ = Θ−1(σµ(X−1 − Z−1)e−X−1Xaff Saff e + Z−1Zaff Waff e)

∆yc = (AΘ−1AT)−1Aρ

∆xc = Θ−1AT ∆yc − ρ

∆zc = −∆xc

∆wc = σµZ−1e− Z−1Zaff Waff e− Z−1Waff ∆zc

∆sc = σµX−1e−X−1Xaff Saff e−X−1Saff ∆xc

Then

(∆x,∆y, ∆s,∆z, ∆w) =

(∆xaff ,∆yaff ,∆saff ,∆zaff ,∆waff)

+(∆xc,∆yc,∆sc,∆zc,∆wc)

(xk+1, yk+1, sk+1, zk+1, wk+1) =

(xk, yk, sk, zk, wk)

+α(∆x,∆y, ∆s,∆z, ∆w)

where, as before, α is the step length assigned a value as large as possible but not so
large that an xk+1

i , sk+1
i , zk+1

i , or wk+1
i is “too close” to zero.

The algebra in this section has been simplified by assuming that all variables have
finite upper bounds. If the number of variables with finite upper bounds nu < n,
you need to change the algebra to reflect that the Z and W matrices have dimension
nu × 1 or nu × nu. Other computations need slight modification. For example, the
average complementarity is

µ = xT
aff saff /n + zT

aff waff /nu

An important point is that any upper bounds can be handled by specializing the al-
gorithm and not by generating the constraints x ≤ u and adding these to the main
primal constraints Ax = b.

42 � Chapter 2. The INTPOINT Procedure

Network Models

The following are descriptions of some typical NPSC models.

Production, Inventory, and Distribution (Supply Chain) Problems

One common class of network models is the production-inventory-distribution or
supply-chain problem. The diagram in Figure 2.1 illustrates this problem. The sub-
scripts on the Production, Inventory, and Sales nodes indicate the time period. By
replicating sections of the model, the notion of time can be included.

�

	
�

Salesi−1

�

	
�

Salesi

�

	
�

Salesi+1

�

	
�

Inventoryi−1

�

	
�

Inventoryi

�

	
�

Inventoryi+1

�

	
�

Productioni−1

�

	
�

Productioni

�

	
�

Productioni+1

�

	
�

Stock on hand

�

	
�

Stock at end
- - - -

� �

? ? ?

6 6 6

Figure 2.1. Production-Inventory-Distribution Problem

In this type of model, the nodes can represent a wide variety of facilities. Several
examples are suppliers, spot markets, importers, farmers, manufacturers, factories,
parts of a plant, production lines, waste disposal facilities, workstations, warehouses,
coolstores, depots, wholesalers, export markets, ports, rail junctions, airports, road
intersections, cities, regions, shops, customers, and consumers. The diversity of this
selection demonstrates how rich the potential applications of this model are.

Depending upon the interpretation of the nodes, the objectives of the modeling exer-
cise can vary widely. Some common types of objectives are

• to reduce collection or purchase costs of raw materials

• to reduce inventory holding or backorder costs. Warehouses and other storage
facilities sometimes have capacities, and there can be limits on the amount of
goods that can be placed on backorder.

• to decide where facilities should be located and what the capacity of these
should be. Network models have been used to help decide where factories,
hospitals, ambulance and fire stations, oil and water wells, and schools should
be sited.

Network Models � 43

• to determine the assignment of resources (machines, production capability,
workforce) to tasks, schedules, classes, or files

• to determine the optimal distribution of goods or services. This usually means
minimizing transportation costs and reducing transit time or distances covered.

• to find the shortest path from one location to another

• to ensure that demands (for example, production requirements, market de-
mands, contractual obligations) are met

• to maximize profits from the sale of products or the charge for services

• to maximize production by identifying bottlenecks

Some specific applications are

• car distribution models. These help determine which models and numbers of
cars should be manufactured in which factories and where to distribute cars
from these factories to zones in the United States in order to meet customer
demand at least cost.

• models in the timber industry. These help determine when to plant and mill
forests, schedule production of pulp, paper, and wood products, and distribute
products for sale or export.

• military applications. The nodes can be theaters, bases, ammunition dumps,
logistical suppliers, or radar installations. Some models are used to find the
best ways to mobilize personnel and supplies and to evacuate the wounded in
the least amount of time.

• communications applications. The nodes can be telephone exchanges, trans-
mission lines, satellite links, and consumers. In a model of an electrical grid,
the nodes can be transformers, powerstations, watersheds, reservoirs, dams,
and consumers. The effect of high loads or outages might be of concern.

Proportionality Constraints

In many models, you have the characteristic that a flow through an arc must be pro-
portional to the flow through another arc. Side constraints are often necessary to
model that situation. Such constraints are called proportionality constraints and are
useful in models where production is subject to refining or modification into different
materials. The amount of each output, or any waste, evaporation, or reduction can be
specified as a proportion of input.

Typically, the arcs near the supply nodes carry raw materials and the arcs near the
demand nodes carry refined products. For example, in a model of the milling industry,
the flow through some arcs may represent quantities of wheat. After the wheat is
processed, the flow through other arcs might be flour. For others it might be bran. The
side constraints model the relationship between the amount of flour or bran produced
as a proportion of the amount of wheat milled. Some of the wheat can end up as
neither flour, bran, nor any useful product, so this waste is drained away via arcs to a
waste node.

44 � Chapter 2. The INTPOINT Procedure

�

	
�

Wheat

�

	
�

Mill

�

	
�

Flour

�

	
�

Bran

�

	
�

Other

- �
�

�
�

�
�

�
�

�
�3

-
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qs

1.0 0.2

0.3

0.5

Figure 2.2. Proportionality Constraints

In order for arcs to be specified in side constraints, they must be named. By default,
PROC INTPOINT names arcs using the names of the nodes at the head and tail of the
arc. An arc is named with its tail node name followed by an underscore and its head
node name. For example, an arc from node from to node to is called from–to.

Consider the network fragment in Figure 2.2. The arc Wheat–Mill conveys the wheat
milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the
capacity of the mill. The lower flow bound on this arc is the minimum quantity that
must be milled for the mill to operate economically. The constraints

0.3 Wheat–Mill − Mill–Flour = 0.0
0.2 Wheat–Mill − Mill–Bran = 0.0

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of
bran. Note that it is not necessary to specify the constraint

0.5 Wheat–Mill − Mill–Other = 0.0

since flow conservation implies that any flow that does not traverse through
Mill–Flour or Mill–Bran must be conveyed through Mill–Other. And, computation-
ally, it is better if this constraint is not specified, since there is one less side constraint
and fewer problems with numerical precision. Notice that the sum of the proportions
must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of in-
gredients that are mixed. For example, different raw materials can have different
properties. In an application of the oil industry, the amount of products that are ob-
tained could be different for each type of crude oil. Furthermore, fuel might have a
minimum octane requirement or limited sulphur or lead content, so that a blending of
crudes is needed to produce the product.

Network Models � 45

The network fragment in Figure 2.3 shows an example of this.

�

	
�

USA

�

	
�

MidEast

�

	
�

Port

�

	
�

Refinery

�

	
�

Gasoline

�

	
�

Diesel

�

	
�

Other�
�

�
�

��

@
@

@
@

@R

- �
�

�
�

�
�
��

-
@

@
@

@
@

@
@R

5 units/
liter

4 units/
liter

4.75 units/
liter

Figure 2.3. Blending Constraints

The arcs MidEast–Port and USA–Port convey crude oil from the two sources.
The arc Port–Refinery represents refining while the arcs Refinery–Gasoline and
Refinery–Diesel carry the gas and diesel produced. The proportionality constraints

0.4 Port–Refinery − Refinery–Gasoline = 0.0
0.2 Port–Refinery − Refinery–Diesel = 0.0

capture the restrictions for producing gasoline and diesel from crude. Suppose that
only crude from the Middle East is used, then the resulting diesel would contain 5
units of sulphur per liter. If only crude from the U.S.A. is used, the resulting diesel
would contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of
sulphur per liter. Some crude from the U.S.A. must be used if Middle East crude is
used in order to meet the 4.75 sulphur per liter limit. The side constraint to model
this requirement is

5 MidEast–Port +4 USA–Port −4.75 Port–Refinery ≤ 0.0

Since Port–Refinery = MidEast–Port + USA–Port, flow conservation allows this
constraint to be simplified to

1 MidEast–Port −3 USA–Port ≤ 0.0

If, for example, 120 units of crude from the Middle East is used, then at least 40
units of crude from the U.S.A. must be used. The preceding constraint is simplified
because you assume that the sulphur concentration of diesel is proportional to the
sulphur concentration of the crude mix. If this is not the case, the relation

46 � Chapter 2. The INTPOINT Procedure

0.2 Port–Refinery = Refinery–Diesel

is used to obtain

5 MidEast–Port +4 USA–Port −4.75 (1.0/0.2 Refinery–Diesel) ≤ 0.0

which equals

5 MidEast–Port +4 USA–Port −23.75 Refinery–Diesel ≤ 0.0

An example similar to this oil industry problem is solved in the section “Introductory
NPSC Example” on page 51.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transporta-
tion or some other shared resource, or there are limits on overall production or de-
mand in multicommodity, multidivisional, or multiperiod problems. Each commod-
ity, division, or period can have a separate network coupled to one main system by the
side constraints. Side constraints are used to combine the outputs of subdivisions of
a problem (either commodities, outputs in distinct time periods, or different process
streams) to meet overall demands or to limit overall production or expenditures. This
method is more desirable than doing separate local optimizations for individual com-
modity, process, or time networks and then trying to establish relationships between
each when determining an overall policy if the global constraint is not satisfied. Of
course, to make models more realistic, side constraints may be necessary in the local
problems.

�

	
�

Factorycom2

�

	
�

Factorycom1

�

	
�

City2com2

�

	
�

City1com2

�

	
�

City2com1

�

	
�

City1com1

XXXXXXXXXXXXXXz

��������������:

XXXXXXXXXXXXXXz

��������������:

Commodity 1

Commodity 2

Figure 2.4. Multicommodity Problem

Network Models � 47

Figure 2.4 shows two network fragments. They represent identical production and
distribution sites of two different commodities. Suffix com1 represents commod-
ity 1 and suffix com2 represents commodity 2. The nodes Factorycom1 and
Factorycom2 model the same factory, and nodes City1com1 and City1com2 model
the same location, city 1. Similarly, City2com1 and City2com2 are the same loca-
tion, city 2. Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occu-
pies 3 cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters,
and the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of
each commodity can be loaded onto each truck? The side constraints for this case are

2 Factorycom1–City1com1 +3 Factorycom2–City1com2 ≤ 200
2 Factorycom1–City2com1 +3 Factorycom2–City2com2 ≤ 250

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement
of a commodity from place to place or from time period to time period. However,
sometimes an arc is included in the network as a method of capturing some aspect of
the problem that you would not normally think of as part of a network model. There
is no commodity movement associated with that arc. For example, in a multiprocess,
multiproduct model (Figure 2.5), there might be subnetworks for each process and
each product. The subnetworks can be joined together by a set of arcs that have flows
that represent the amount of product j produced by process i. To model an upper-
limit constraint on the total amount of product j that can be produced, direct all arcs
carrying product j to a single node and from there through a single arc. The capacity
of this arc is the upper limit of product j production. It is preferable to model this
structure in the network rather than to include it in the side constraints because the
efficiency of the optimizer may be less affected by a reasonable increase in the size
of the network rather than increasing the number or complicating side constraints.

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 2

Process 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 1

Process 1 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 2 production

Product 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 1 production

Product 1 subnetwork

-

-

�
�

�
�

��>Z
Z

Z
Z

ZZ~

Figure 2.5. Multiprocess, Multiproduct Example

When starting a project, it is often a good strategy to use a small network formulation
and then use that model as a framework upon which to add detail. For example, in
the multiprocess, multiproduct model, you might start with the network depicted in

48 � Chapter 2. The INTPOINT Procedure

Figure 2.5. Then, for example, the process subnetwork can be enhanced to include
the distribution of products. Other phases of the operation could be included by
adding more subnetworks. Initially, these subnetworks can be single nodes, but in
subsequent studies they can be expanded to include greater detail.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such
problems often result when modeling manufacturing processes, transportation or dis-
tribution networks, or resource allocation, or when deciding where to locate facilities.
Often, some commodity is to be moved from place to place, so the more natural for-
mulation in many applications is that of a constrained network rather than a linear
program.

Using a network diagram to visualize a problem makes it possible to capture the
important relationships in an easily understood picture form. The network diagram
aids the communication between model builder and model user, making it easier to
comprehend how the model is structured, how it can be changed, and how results can
be interpreted.

If a network structure is embedded in a linear program, the problem is an NPSC (see
the section “Mathematical Description of NPSC” on page 32). When the network
part of the problem is large compared to the nonnetwork part, especially if the number
of side constraints is small, it is worthwhile to exploit this structure to describe the
model. Rather than generating the data for the flow conservation constraints, generate
instead the data for the nodes and arcs of the network.

Flow Conservation Constraints

The constraints Fx = b in NPSC (see the section “Mathematical Description of
NPSC” on page 32) are referred to as the nodal flow conservation constraints. These
constraints algebraically state that the sum of the flow through arcs directed toward
a node plus that node’s supply, if any, equals the sum of the flow through arcs di-
rected away from that node plus that node’s demand, if any. The flow conservation
constraints are implicit in the network model and should not be specified explicitly in
side constraint data when using PROC INTPOINT to solve NPSC problems.

Nonarc Variables

Nonarc variables can be used to simplify side constraints. For example, if a sum of
flows appears in many constraints, it may be worthwhile to equate this expression
with a nonarc variable and use this in the other constraints. This keeps the constraint
coefficient matrix sparse. By assigning a nonarc variable a nonzero objective func-
tion, it is then possible to incur a cost for using resources above some lowest feasible
limit. Similarly, a profit (a negative objective function coefficient value) can be made
if all available resources are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or
supply needed resources. Then, either the excess resource can be used or the needed
resource can be supplied to another component of the model.

Network Models � 49

For example, consider a multicommodity problem of making television sets that have
either 19- or 25-inch screens. In their manufacture, three and four chips, respectively,
are used. Production occurs at two factories during March and April. The supplier
of chips can supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 each
month. The names of arcs are in the form Prodn–s–m, where n is the factory number,
s is the screen size, and m is the month. For example, Prod1–25–Apr is the arc that
conveys the number of 25-inch TVs produced in factory 1 during April. You might
have to determine similar systematic naming schemes for your application.

As described, the constraints are

3 Prod1–19–Mar +4 Prod1–25–Mar ≤ 2600
3 Prod2–19–Mar +4 Prod2–25–Mar ≤ 3750
3 Prod1–19–Apr +4 Prod1–25–Apr ≤ 2600
3 Prod2–19–Apr +4 Prod2–25–Apr ≤ 3750

If there are chips that could be obtained for use in March but not used for production
in March, why not keep these unused chips until April? Furthermore, if the March
excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the
model becomes

3 Prod1–19–Mar +4 Prod1–25–Mar + F1–Unused–Mar = 2600
3 Prod2–19–Mar +4 Prod2–25–Mar + F2–Unused–Mar = 3750

3 Prod1–19–Apr +4 Prod1–25–Apr − F1–Kept–Since–Mar = 2600
3 Prod2–19–Apr +4 Prod2–25–Apr − F2–Kept–Since–Mar = 3750

F1–Unused–Mar + F2–Unused–Mar (continued)
− F1–Kept–Since–Mar − F2–Kept–Since–Mar ≥ 0.0

where F1–Kept–Since–Mar is the number of chips used during April at
factory 1 that were obtained in March at either factory 1 or factory 2, and
F2–Kept–Since–Mar is the number of chips used during April at factory 2 that
were obtained in March. The last constraint ensures that the number of chips used
during April that were obtained in March does not exceed the number of chips
not used in March. There may be a cost to hold chips in inventory. This can be
modeled having a positive objective function coefficient for the nonarc variables
F1–Kept–Since–Mar and F2–Kept–Since–Mar. Moreover, nonarc variable
upper bounds represent an upper limit on the number of chips that can be held in
inventory between March and April.

See Example 2.1 through Example 2.5, which use this TV problem. The use of nonarc
variables as described previously is illustrated.

50 � Chapter 2. The INTPOINT Procedure

Introduction

Getting Started: NPSC Problems

To solve NPSC problems using PROC INTPOINT, you save a representation of the
network and the side constraints in three SAS data sets. These data sets are then
passed to PROC INTPOINT for solution. There are various forms that a problem’s
data can take. You can use any one or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vector b in the NPSC problem (see the section “Mathematical Description of NPSC”
on page 32).

The ARCDATA= data set contains information about the variables of the problem.
Usually these are arcs, but there can be data related to nonarc variables in the
ARCDATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s capacity, lower flow
bound, and name. These data are associated with the matrix F and the vectors c, l,
and u in the NPSC problem (see the section “Mathematical Description of NPSC” on
page 32).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions. Do not explicitly specify these flow conservation con-
straints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectors d, m, and v in the NPSC
problem (see the section “Mathematical Description of NPSC” on page 32). Data for
an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides.
These data are elements of the matrices H and Q and the vector r. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that arc. Each arc also has a default name that is the name of the tail and
head node of the arc concatenated together and separated by an underscore character;
tail–head, for example.

Getting Started: NPSC Problems � 51

If you use the dense side constraint input format (described in the section
“CONDATA= Data Set” on page 98), and want to use the default arc names, these
arc names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (see the section “CONDATA= Data
Set” on page 98) and want to use the default arc names, these arc names are values of
the COLUMN list variable of the CONDATA= data set.

PROC INTPOINT reads the data from the NODEDATA= data set, the ARCDATA=
data set, and the CONDATA= data set. Error checking is performed, and the model
is converted into an equivalent LP. This LP is preprocessed. Preprocessing is op-
tional but highly recommended. Preprocessing analyzes the model and tries to de-
termine before optimization whether variables can be “fixed” to their optimal values.
Knowing that, the model can be modified and these variables dropped out. It can be
determined that some constraints are redundant. Sometimes, preprocessing succeeds
in reducing the size of the problem, thereby making the subsequent optimization eas-
ier and faster.

The optimal solution to the equivalent LP is then found. This LP is converted back to
the original NPSC problem, and the optimum for this is derived from the optimum of
the equivalent LP. If the problem was preprocessed, the model is now post-processed,
where fixed variables are reintroduced. The solution can be saved in the CONOUT=
data set.

Introductory NPSC Example

Consider the following transshipment problem for an oil company. Crude oil is
shipped to refineries where it is processed into gasoline and diesel fuel. The gaso-
line and diesel fuel are then distributed to service stations. At each stage, there are
shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the
crude from the Middle East cannot exceed the throughput of a refinery plus 15 units.
(The phrase “plus 15 units” that finishes the last sentence is used to enable some side
constraints in this example to have a nonzero rhs.) The second set of constraints are
necessary to model the situation that one unit of crude mix processed at a refinery
yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they flow
through the network, an NPSC is an appropriate model for this example (see Figure
2.6). The side constraints are used to model the limitations on the amount of Middle
Eastern crude that can be processed by each refinery and the conversion proportions
of crude to gasoline and diesel fuel.

52 � Chapter 2. The INTPOINT Procedure

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 2.6. Oil Industry Example

To solve this problem with PROC INTPOINT, save a representation of the model in
three SAS data sets. In the NODEDATA= data set, you name the supply and demand
nodes and give the associated supplies and demands. To distinguish demand nodes
from supply nodes, specify demands as negative quantities. For the oil example, the
NODEDATA= data set can be saved as follows:

title ’Oil Industry Example’;
title3 ’Setting Up Nodedata = Noded For PROC INTPOINT’;
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The ARCDATA= data set contains the rest of the information about the network.
Each observation in the data set identifies an arc in the network and gives the cost per
flow unit across the arc, the capacities of the arc, the lower bound on flow across the
arc, and the name of the arc.

Getting Started: NPSC Problems � 53

title3 ’Setting Up Arcdata = Arcd1 For PROC INTPOINT’;
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

Finally, the CONDATA= data set contains the side constraints for the model:

title3 ’Setting Up Condata = Cond1 For PROC INTPOINT’;
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

Note that the SAS variable names in the CONDATA= data set are the names of arcs
given in the ARCDATA= data set. These are the arcs that have nonzero constraint
coefficients in side constraints. For example, the proportionality constraint that spec-
ifies that one unit of crude at each refinery yields three-fourths of a unit of gasoline
and one-fourth of a unit of diesel fuel is given for refinery 1 in the third observa-
tion and for refinery 2 in the last observation. The third observation requires that
each unit of flow on the arc thruput1 equals three-fourths of a unit of flow on the
arc r1–gas. Because all crude processed at refinery 1 flows through thruput1 and
all gasoline produced at refinery 1 flows through r1–gas, the constraint models the
situation. It proceeds similarly for refinery 2 in the last observation.

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC INTPOINT as follows:

54 � Chapter 2. The INTPOINT Procedure

proc intpoint
bytes=1000000
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read
by PROC INTPOINT and note the progress toward a solution.

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .
NOTE: Number of variables= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 5.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 11 constraints from the

problem.
NOTE: The preprocessor eliminated 25 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 8.
NOTE: The preprocessor eliminated 10 variables from the

problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 13 nonzero elements in A * A transpose.
NOTE: Of the 7 rows and columns, 2 are sparse.
NOTE: There are 6 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 2 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.

Getting Started: NPSC Problems � 55

NOTE: The Primal-Dual Predictor-Corrector Interior Point
algorithm performed 7 iterations.

NOTE: Objective = 50875.01279.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.
NOTE: There were 18 observations read from the data set

WORK.ARCD1.
NOTE: There were 6 observations read from the data set

WORK.NODED.
NOTE: There were 4 observations read from the data set

WORK.COND1.

The first set of messages shows the size of the problem. The next set of messages
provides statistics on the size of the equivalent LP problem. The number of variables
may not equal the number of arcs if the problem has nonarc variables. This example
has none. To convert a network to the equivalent LP problem, a flow conservation
constraint must be created for each node (including an excess or bypass node, if
required). This explains why the number of equality constraints and the number of
constraint coefficients differ from the number of equality side constraints and the
number of coefficients in all side constraints.

If the preprocessor was successful in decreasing the problem size, some messages
will report how well it did. In this example, the model size was cut approximately in
half!

The next set of messages describes aspects of the interior point algorithm. Of partic-
ular interest are those concerned with the Cholesky factorization of AAT where A is
the coefficient matrix of the final LP. It is crucial to preorder the rows and columns
of this matrix to prevent fill-in and reduce the number of row operations to undertake
the factorization. See the section “Interior Point Algorithmic Details” on page 35 for
a more extensive explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC
INTPOINT saves the optimum in the output SAS data set that you specify. For this
example, the solution is saved in the SOLUTION data set. It can be displayed with
the PRINT procedure as

title3 ’Optimum’;
proc print data=solution;

var _from_ _to_ _cost_ _capac_ _lo_ _name_
supply _demand_ _flow_ _fcost_;

sum _fcost_;
run;

56 � Chapter 2. The INTPOINT Procedure

Oil Industry Example

Optimum

_ _
_ S D _

_ _ c _ U E _ F
f c a n P M F C
r _ o p _ a P A L O

O o t s a l m L N O S
b m o t c o e Y D W T
s _ _ _ _ _ _ _ _ _ _

1 refinery 1 r1 200 175 50 thruput1 . . 145.000 29000.00
2 refinery 2 r2 220 100 35 thruput2 . . 35.000 7700.00
3 r1 ref1 diesel 0 75 0 . . 36.250 0.00
4 r1 ref1 gas 0 140 0 r1_gas . . 108.750 0.00
5 r2 ref2 diesel 0 75 0 . . 8.750 0.00
6 r2 ref2 gas 0 100 0 r2_gas . . 26.250 0.00
7 middle east refinery 1 63 95 20 m_e_ref1 100 . 80.000 5040.00
8 u.s.a. refinery 1 55 99999999 0 80 . 65.000 3575.00
9 middle east refinery 2 81 80 10 m_e_ref2 100 . 20.000 1620.00
10 u.s.a. refinery 2 49 99999999 0 80 . 15.000 735.00
11 ref1 diesel servstn1 diesel 18 99999999 0 . 30 30.000 540.00
12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 0.000 0.00
13 ref1 gas servstn1 gas 15 70 0 . 95 68.750 1031.25
14 ref2 gas servstn1 gas 17 35 5 . 95 26.250 446.25
15 ref1 diesel servstn2 diesel 17 99999999 0 . 15 6.250 106.25
16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 8.750 201.25
17 ref1 gas servstn2 gas 22 60 0 . 40 40.000 880.00
18 ref2 gas servstn2 gas 31 99999999 0 . 40 0.000 0.00

========
50875.00

Figure 2.7. CONOUT=SOLUTION

Notice that, in CONOUT=SOLUTION (Figure 2.7), the optimal flow through each
arc in the network is given in the variable named –FLOW– , and the cost of flow
through each arc is given in the variable –FCOST– .

Getting Started: LP Problems � 57

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

80

100

15

80

20

65

35

145

8.75

26.25

36.25

108.75
68.75

8.75

30

40 26.25

6.25

−95

−30

−40

−15

Figure 2.8. Oil Industry Solution

Getting Started: LP Problems

Data for an LP problem resembles the data for side constraints and nonarc variables
supplied to PROC INTPOINT when solving an NPSC problem. It is also very similar
to the data required by the LP procedure.

To solve LP problems using PROC INTPOINT, you save a representation of the LP
variables and the constraints in one or two SAS data sets. These data sets are then
passed to PROC INTPOINT for solution. There are various forms that a problem’s
data can take. You can use any one or a combination of several of these forms.

The ARCDATA= data set contains information about the LP variables of the problem.
Although this data set is called ARCDATA, it contains data for no arcs. Instead, all
data in this data set are related to LP variables. This data set has no SAS variables
containing values that are node names.

The ARCDATA= data set can be used to specify information about LP variables,
including objective function coefficients, lower and upper value bounds, and names.
These data are the elements of the vectors d, m, and v in problem (LP). Data for an
LP variable can be given in more than one observation.

The CONDATA= data set describes the constraints and their right-hand sides. These
data are elements of the matrix Q and the vector r.

58 � Chapter 2. The INTPOINT Procedure

Constraint types are also specified in the CONDATA= data set. You can include in
this data set LP variable data such as upper bound values, lower value bounds, and
objective function coefficients. It is possible to give all information about some or all
LP variables in the CONDATA= data set.

Because PROC INTPOINT evolved from PROC NETFLOW, another procedure in
SAS/OR software that was originally designed to solve models with networks, the
ARCDATA= data set is always expected. If the ARCDATA= data set is not specified,
by default the last data set created before PROC INTPOINT is invoked is assumed to
be the ARCDATA= data set. However, these characteristics of PROC INTPOINT are
not helpful when an LP problem is being solved and all data is provided in a single
data set specified by the CONDATA= data set, and that data set is not the last data
set created before PROC INTPOINT starts. In this case, you must specify that the
ARCDATA= data set and the CONDATA= data set are both equal to the input data
set. PROC INTPOINT then knows that an LP problem is to be solved and that the
data reside in one data set.

An LP variable is identified in this data set by its name. If you specify an LP variable’s
name in the ARCDATA= data set, then this name is used to associate data in the
CONDATA= data set with that LP variable.

If you use the dense constraint input format (described in the section “CONDATA=
Data Set” on page 98), these LP variable names are names of SAS variables in the
VAR list of the CONDATA= data set.

If you use the sparse constraint input format (described in the section “CONDATA=
Data Set” on page 98), these LP variable names are values of the SAS variables in
the COLUMN list of the CONDATA= data set.

PROC INTPOINT reads the data from the ARCDATA= data set (if there is one) and
the CONDATA= data set. Error checking is performed, and the LP is preprocessed.
Preprocessing is optional but highly recommended. The preprocessor analyzes the
model and tries to determine before optimization whether LP variables can be “fixed”
to their optimal values. Knowing that, the model can be modified and these LP vari-
ables dropped out. Some constraints may be found to be redundant. Sometimes,
preprocessing succeeds in reducing the size of the problem, thereby making the sub-
sequent optimization easier and faster.

The optimal solution is then found for the resulting LP. If the problem was prepro-
cessed, the model is now post-processed, where fixed LP variables are reintroduced.
The solution can be saved in the CONOUT= data set.

Introductory LP Example

Consider the linear programming problem in the section “An Introductory Example”
on page 162. The SAS data set in that section is created the same way here:

Getting Started: LP Problems � 59

title ’Linear Programming Example’;
title3 ’Setting Up Condata = dcon1 For PROC INTPOINT’;
data dcon1;

input _id_ $17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

To solve this problem, use

proc intpoint
bytes=1000000
condata=dcon1
conout=solutn1;
run;

Note how it is possible to use an input SAS data set of PROC LP and, without requir-
ing any changes to be made to the data set, to use that as an input data set for PROC
INTPOINT.

The following messages that appear on the SAS log summarize the model as read by
PROC INTPOINT and note the progress toward a solution

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 0.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 5 constraints from the

problem.
NOTE: The preprocessor eliminated 18 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 0.
NOTE: The preprocessor eliminated 8 variables from the

problem.
WARNING: Optimization is unnecessary as the problem no

longer has any variables and rows.
NOTE: Preprocessing could have caused that.
NOTE: Objective = 1544.
NOTE: The data set WORK.SOLUTN1 has 8 observations and 6

60 � Chapter 2. The INTPOINT Procedure

variables.
NOTE: There were 7 observations read from the data set

WORK.DCON1.

Notice that the preprocessor succeeded in fixing all LP variables to their optimal
values, eliminating the need to do any actual optimization.

Unlike PROC LP, which displays the solution and other information as output, PROC
INTPOINT saves the optimum in the output SAS data set you specify. For this exam-
ple, the solution is saved in the SOLUTION data set. It can be displayed with PROC
PRINT as

title3 ’LP Optimum’;
proc print data=solutn1;

var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
sum _fcost_;
run;

Notice that in the CONOUT=SOLUTION (Figure 2.9) the optimal value through
each variable in the LP is given in the variable named –VALUE– , and that the cost
of value for each variable is given in the variable –FCOST– .

Linear Programming Example

LP Optimum

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _FCOST_

1 a_heavy -165 165 0 0.00 0
2 a_light -175 110 0 110.00 -19250
3 brega -205 80 0 80.00 -16400
4 heatingo 0 99999999 0 77.30 0
5 jet_1 300 99999999 0 60.65 18195
6 jet_2 300 99999999 0 63.33 18999
7 naphthai 0 99999999 0 21.80 0
8 naphthal 0 99999999 0 7.45 0

=======
1544

Figure 2.9. CONOUT=SOLUTN1

The same model can be specified in the sparse format as in the following scon2 data
set. This format enables you to omit the zero coefficients.

title3 ’Setting Up Condata = scon2 For PROC INTPOINT’;
data scon2;

format _type_ $8. _col_ $8. _row_ $16.;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .

Getting Started: LP Problems � 61

. a_light profit -175

. a_light napha_l_conv .035

. a_light napha_i_conv .100

. a_light heating_oil_conv .390

. a_light available 110

. a_heavy profit -165

. a_heavy napha_l_conv .030

. a_heavy napha_i_conv .075

. a_heavy heating_oil_conv .300

. a_heavy available 165

. brega profit -205

. brega napha_l_conv .045

. brega napha_i_conv .135

. brega heating_oil_conv .430

. brega available 80

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 profit 300

. jet_1 recipe_1 -1

. jet_2 profit 300

. jet_2 recipe_2 -1
;

To find the minimum cost solution, invoke PROC INTPOINT (note the
SPARSECONDATA option which must be specified) as follows:

proc intpoint
bytes=1000000
sparsecondata
condata=scon2
conout=solutn2;
run;

A data set that can be used as the ARCDATA= data set can be initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

62 � Chapter 2. The INTPOINT Procedure

The following CONDATA= data set is the original dense format CONDATA= dcon1
data set after the LP variable’s nonconstraint information has been removed. (You
could have left some or all of that information in CONDATA as PROC INTPOINT
“merges” data, but doing that and checking for consistency takes time.)

data dcon3;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

Note: You must now specify the MAXIMIZE option; otherwise, PROC INTPOINT
will optimize to the minimum (which, incidentally, has a total objective = -3539.25).
You must indicate that the SAS variable profit in the ARCDATA=vars3 data set has
values that are objective function coefficients, by specifying the OBJFN statement.
The UPPERBD must be specified as the SAS variable available that has as values
upper bounds:

proc intpoint
maximize /* ***** necessary ***** */
bytes=1000000
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

The ARCDATA=vars3 data set can become more concise by noting that the model
variables heatingo, naphthai, and naphthal have zero objective function coeffi-
cients (the default) and default upper bounds, so those observations need not be
present:

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

Getting Started: LP Problems � 63

The CONDATA=dcon3 data set can become more concise by noting that all the con-
straints have the same type (eq) and zero (the default) rhs values. This model is a
good candidate for using the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the
same type as is the case here, but also when most constraints have the same type and
you want to change the default type from ≤ to = or ≥. The essential constraint type
data in the CONDATA= data set is that which overrides the DEFCONTYPE= type
you specified.

data dcon4;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;

proc intpoint
maximize defcontype=eq
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

Here are several different ways of using the ARCDATA= data set and a sparse for-
mat CONDATA= data set for this LP. The following CONDATA= data set is the
result of removing the profit and available data from the original sparse format
CONDATA=scon2 data set.

data scon5;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300

64 � Chapter 2. The INTPOINT Procedure

. brega napha_l_conv .045

. brega napha_i_conv .135

. brega heating_oil_conv .430

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 recipe_1 -1

. jet_2 recipe_2 -1
;

proc intpoint
maximize
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon5
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can become more concise by noting that all
the constraints have the same type (eq) and zero (the default) rhs values. Use
the DEFCONTYPE= option again. Once the first five observations of the
CONDATA=scon5 data set are removed, the –type– variable has values that are
missing in all of the remaining observations. Therefore, this variable can be removed.

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

a_light napha_l_conv .035
a_light napha_i_conv .100
a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

Typical PROC INTPOINT Run � 65

proc intpoint
maximize
defcontype=eq
sparsecondata
arcdata=vars4
condata=scon6
conout=solutn6;

objfn profit;
upperbd available;
run;

Typical PROC INTPOINT Run

You start PROC INTPOINT by giving the PROC INTPOINT statement. You can
specify many options in the PROC INTPOINT statement to control the procedure,
or you can rely on default settings and specify very few options. However, there are
some options you must specify:

• You must specify the BYTES= parameter indicating the size of the working
memory that the procedure is allowed to use. This option has no default.

• In many instances (and certainly when solving NPSC problems), you need to
specify the ARCDATA= data set. This option has a default (which is the SAS
data set that was created last before PROC INTPOINT began running), but that
may need to be overridden.

• The CONDATA= data set must also be specified if the problem is NPSC and
has side constraints, or if it is an LP problem.

• When solving a network problem, you have to specify the NODEDATA= data
set, if some model data is given in such a data set.

Some options, while optional, are frequently required. To have the optimal solution
output to a SAS data set, you have to specify the CONOUT= data set. You may
want to indicate reasons why optimization should stop (for example, you can indicate
the maximum number of iterations that can be performed), or you might want to alter
stopping criteria so that optimization does not stop prematurely. Some options enable
you to control other aspects of the interior point algorithm. Specifying certain values
for these options can reduce the time it takes to solve a problem.

The SAS variable lists should be given next. If you have SAS variables in the input
data sets that have special names (for example, a SAS variable in the ARCDATA=
data set named –TAIL– that has tail nodes of arcs as values), it may not be necessary
to have many or any variable lists. If you do not specify a TAIL variable list, PROC
INTPOINT will search the ARCDATA= data set for a SAS variable named –TAIL–.

What usually follows is a RUN statement, which indicates that all information that
you, the user, need to supply to PROC INTPOINT has been given, and the procedure
is to start running. This also happens if you specify a statement in your SAS program
that PROC INTPOINT does not recognize as one of its own, the next DATA step or
procedure.

66 � Chapter 2. The INTPOINT Procedure

The QUIT statement indicates that PROC INTPOINT must immediately finish.

For example, a PROC INTPOINT run might look something like this:

proc intpoint
bytes= /* working memory size */
arcdata= /* data set */
condata= /* data set */
/* other options */

;
variable list specifications; /* if necessary */
run; /* start running, read data, */

/* and do the optimization. */

Syntax: INTPOINT Procedure
Below are statements used in PROC INTPOINT, listed in alphabetical order as they
appear in the text that follows.

PROC INTPOINT options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
QUIT;
RHS variable ;
ROW variables ;
RUN;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

Functional Summary � 67

Functional Summary

Table 2.1 outlines the options that can be specified in the INTPOINT procedure. All
options are specified in the PROC INTPOINT statement.

Table 2.1. Functional Summary

Description Statement Option

Input Data Set Options:
arcs input data set PROC INTPOINT ARCDATA=
nodes input data set PROC INTPOINT NODEDATA=
constraint input data set PROC INTPOINT CONDATA=

Output Data Set Options:
constrained solution data set PROC INTPOINT CONOUT=
convert sparse or dense format input data set
into MPS-format output data set

PROC INTPOINT MPSOUT=

Data Set Read Options:
CONDATA has sparse data format PROC INTPOINT SPARSECONDATA
default constraint type PROC INTPOINT DEFCONTYPE=
special COLUMN variable value PROC INTPOINT TYPEOBS=
special COLUMN variable value PROC INTPOINT RHSOBS=
used to interpret arc and variable names PROC INTPOINT NAMECTRL=
no nonarc data in ARCDATA PROC INTPOINT ARCS–ONLY–ARCDATA
data for an arc found once in ARCDATA PROC INTPOINT ARC–SINGLE–OBS
data for a constraint found once in CONDATA PROC INTPOINT CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC INTPOINT NON–REPLIC=
data is grouped, exploited during data read PROC INTPOINT GROUPED=

Problem Size Specification Options:
approximate number of nodes PROC INTPOINT NNODES=
approximate number of arcs PROC INTPOINT NARCS=
approximate number of variables PROC INTPOINT NNAS=
approximate number of coefficients PROC INTPOINT NCOEFS=
approximate number of constraints PROC INTPOINT NCONS=

Network Options:
default arc cost, objective function coefficient PROC INTPOINT DEFCOST=
default arc capacity, variable upper bound PROC INTPOINT DEFCAPACITY=
default arc flow and variable lower bound PROC INTPOINT DEFMINFLOW=
network’s only supply node PROC INTPOINT SOURCE=
SOURCE’s supply capability PROC INTPOINT SUPPLY=
network’s only demand node PROC INTPOINT SINK=
SINK’s demand PROC INTPOINT DEMAND=
convey excess supply/demand through network PROC INTPOINT THRUNET
find max flow between SOURCE and SINK PROC INTPOINT MAXFLOW

68 � Chapter 2. The INTPOINT Procedure

Description Statement Option

cost of bypass arc, MAXFLOW problem PROC INTPOINT BYPASSDIVIDE=
find shortest path from SOURCE to SINK PROC INTPOINT SHORTPATH

Interior Point Algorithm Options:
factorization method PROC INTPOINT FACT–METHOD=
allowed amount of dual infeasibility PROC INTPOINT TOLDINF=
allowed amount of primal infeasibility PROC INTPOINT TOLPINF=
allowed total amount of dual infeasibility PROC INTPOINT TOLTOTDINF=
allowed total amount of primal infeasibility PROC INTPOINT TOLTOTPINF=
cut-off tolerance for Cholesky factorization PROC INTPOINT CHOLTINYTOL=
density threshold for Cholesky processing PROC INTPOINT DENSETHR=
step-length multiplier PROC INTPOINT PDSTEPMULT=
preprocessing type PROC INTPOINT PRSLTYPE=
print optimization progress on SAS log PROC INTPOINT PRINTLEVEL2=
ratio test zero tolerance PROC INTPOINT RTTOL=

Interior Point Algorithm Stopping Criteria:
maximum number of interior point iterations PROC INTPOINT MAXITERB=
primal-dual (duality) gap tolerance PROC INTPOINT PDGAPTOL=
stop because of complementarity PROC INTPOINT STOP–C=
stop because of duality gap PROC INTPOINT STOP–DG=
stop because of infeasb PROC INTPOINT STOP–IB=
stop because of infeasc PROC INTPOINT STOP–IC=
stop because of infeasd PROC INTPOINT STOP–ID=
stop because of complementarity PROC INTPOINT AND–STOP–C=
stop because of duality gap PROC INTPOINT AND–STOP–DG=
stop because of infeasb PROC INTPOINT AND–STOP–IB=
stop because of infeasc PROC INTPOINT AND–STOP–IC=
stop because of infeasd PROC INTPOINT AND–STOP–ID=
stop because of complementarity PROC INTPOINT KEEPGOING–C=
stop because of duality gap PROC INTPOINT KEEPGOING–DG=
stop because of infeasb PROC INTPOINT KEEPGOING–IB=
stop because of infeasc PROC INTPOINT KEEPGOING–IC=
stop because of infeasd PROC INTPOINT KEEPGOING–ID=
stop because of complementarity PROC INTPOINT AND–KEEPGOING–C=
stop because of duality gap PROC INTPOINT AND–KEEPGOING–DG=
stop because of infeasb PROC INTPOINT AND–KEEPGOING–IB=
stop because of infeasc PROC INTPOINT AND–KEEPGOING–IC=
stop because of infeasd PROC INTPOINT AND–KEEPGOING–ID=

Memory Control Options:
issue memory usage messages to SAS log PROC INTPOINT MEMREP
number of bytes to use for main memory PROC INTPOINT BYTES=

PROC INTPOINT Statement � 69

Description Statement Option

Miscellaneous Options:
infinity value PROC INTPOINT INFINITY=
maximization instead of minimization PROC INTPOINT MAXIMIZE
zero tolerance - optimization PROC INTPOINT ZERO2=
zero tolerance - real number comparisons PROC INTPOINT ZEROTOL=
suppress similar SAS log messages PROC INTPOINT VERBOSE=
scale problem data PROC INTPOINT SCALE=
write optimization time to SAS log PROC INTPOINT OPTIM–TIMER

PROC INTPOINT Statement

PROC INTPOINT options ;

This statement invokes the procedure. The following options can be specified in the
PROC INTPOINT statement.

Data Set Options

This section briefly describes all the input and output data sets used by PROC
INTPOINT. The ARCDATA= data set, the NODEDATA= data set, and the
CONDATA= data set can contain SAS variables that have special names, for instance
–CAPAC– , –COST– , and –HEAD– . PROC INTPOINT looks for such variables
if you do not give explicit variable list specifications. If a SAS variable with a special
name is found and that SAS variable is not in another variable list specification,
PROC INTPOINT determines that values of the SAS variable are to be interpreted
in a special way. By using SAS variables that have special names, you may not need
to have any variable list specifications.

ARCDATA=SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and
nodal supply/demand data. The ARCDATA= data set must be specified in all PROC
INTPOINT statements when solving NPSC problems.

If your problem is an LP, the ARCDATA= data set is optional. You can specify
LP variable information such as objective function coefficients, and lower and upper
bounds.

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also contain
other data such as arc costs, capacities, lower flow bounds, nonarc variable upper
and lower bounds, and objective function coefficients. PROC INTPOINT needs a
CONDATA= data set to solve a constrained problem. See the section “CONDATA=
Data Set” on page 98 for more information.

If your problem is an LP, this data set contains the constraint data, and can also contain
other data such as objective function coefficients, and lower and upper bounds. PROC
INTPOINT needs a CONDATA= data set to solve an LP.

70 � Chapter 2. The INTPOINT Procedure

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that receives an optimal solution. See the section
“CONOUT= Data Set” on page 106 for more information.

If PROC INTPOINT is outputting observations to the output data set and you want
this to stop, press the keys used to stop SAS procedures.

MPSOUT=SAS-data-set
names the SAS data set that contains converted sparse or dense format input data in
MPS format. Invoking this option directs the INTPOINT procedure to halt before
attempting optimization. For more information about the MPSOUT= option, see the
section “Converting Any PROC INTPOINT Format to an MPS-Format SAS Data
Set” on page 108. For more information about the MPS-format SAS data set, see
Chapter 14, “The MPS-Format SAS Data Set.”

NODEDATA=SAS-data-set
names the data set that contains the node supply and demand specifications. You
do not need observations in the NODEDATA= data set for transshipment nodes.
(Transshipment nodes neither supply nor demand flow.) All nodes are assumed to
be transshipment nodes unless supply or demand data indicate otherwise. It is ac-
ceptable for some arcs to be directed toward supply nodes or away from demand
nodes.

This data set is used only when you are solving network problems (not when solv-
ing LP problems), in which case the use of the NODEDATA= data set is optional
provided that, if the NODEDATA= data set is not used, supply and demand de-
tails are specified by other means. Other means include using the MAXFLOW
or SHORTPATH option, SUPPLY or DEMAND variable list (or both) in the
ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= op-
tion in the PROC INTPOINT statement.

General Options

The following is a list of options you can use with PROC INTPOINT. The options
are listed in alphabetical order.

ARCS–ONLY–ARCDATA
indicates that data for arcs only are in the ARCDATA= data set. When PROC
INTPOINT reads the data in the ARCDATA= data set, memory would not be wasted
to receive data for nonarc variables. The read might then be performed faster. See the
section “How to Make the Data Read of PROC INTPOINT More Efficient” on page
117.

ARC–SINGLE–OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is
found in only one observation of the ARCDATA= data set. When reading the data in
the ARCDATA= data set, PROC INTPOINT knows that the data in an observation is
for an arc or a nonarc variable that has not had data previously read and that needs to
be checked for consistency. The read might then be performed faster.

PROC INTPOINT Statement � 71

When solving an LP, specifying the ARC–SINGLE–OBS option indicates that for
all LP variables, data for each LP variable is found in only one observation of the
ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC
INTPOINT knows that the data in an observation is for an LP variable that has not
had data previously read and that needs to be checked for consistency. The read might
then be performed faster.

If you specify ARC–SINGLE–OBS, PROC INTPOINT automatically works as if
GROUPED=ARCDATA is also specified.

See the section “How to Make the Data Read of PROC INTPOINT More Efficient”
on page 117.

BYPASSDIVIDE=b
BYPASSDIV=b
BPD=b

should be used only when the MAXFLOW option has been specified; that is, PROC
INTPOINT is solving a maximal flow problem. PROC INTPOINT prepares to solve
maximal flow problems by setting up a bypass arc. This arc is directed from the
SOURCE= to the SINK= and will eventually convey flow equal to INFINITY minus
the maximal flow through the network. The cost of the bypass arc must be great
enough to drive flow through the network, rather than through the bypass arc. Also,
the cost of the bypass arc must be greater than the eventual total cost of the maxi-
mal flow, which can be nonzero if some network arcs have nonzero costs. The cost
of the bypass is set to the value of the INFINITY= option. Valid values for the
BYPASSDIVIDE= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the by-
pass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE=
option. The default value for the BYPASSDIVIDE= option (in the presence of
nonzero arc costs) is 100.0.

BYTES=b
indicates the size of the main working memory (in bytes) that PROC INTPOINT
will allocate. Specifying this option is mandatory. The working memory is used
to store all the arrays and buffers used by PROC INTPOINT. If this memory has a
size smaller than what is required to store all arrays and buffers, PROC INTPOINT
uses various schemes that page information between auxiliary memory (often your
machine’s disk) and RAM.

For small problems, specify BYTES=100000. For large problems (those with hun-
dreds of thousands or millions of variables), BYTES=1000000 might do. For solving
problems of that size, if you are running on a machine with an inadequate amount of
RAM, PROC INTPOINT’s performance will suffer since it will be forced to page or
to rely on virtual memory.

If you specify the MEMREP option, PROC INTPOINT will issue messages on the
SAS log informing you of its memory usage; that is, how much memory is required
to prevent paging, and details about the amount of paging that must be performed, if
applicable.

72 � Chapter 2. The INTPOINT Procedure

CON–SINGLE–OBS
improves how the CONDATA= data set is read. How it works depends on whether
the CONDATA has a dense or sparse format.

If the CONDATA= data set has the dense format, specifying CON–SINGLE–OBS
indicates that, for each constraint, data for each can be found in only one observation
of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each arc, nonarc variable,
or LP variable can be found in only one observation of the CONDATA, then specify
the CON–SINGLE–OBS option. If there are n SAS variables in the ROW and COEF
list, then each arc or nonarc can have at most n constraint coefficients in the model.
See the section “How to Make the Data Read of PROC INTPOINT More Efficient”
on page 117.

DEFCAPACITY=c
DC=c

requests that the default arc capacity and the default nonarc variable value upper
bound (or for LP problems, the default LP variable value upper bound) be c. If this
option is not specified, then DEFCAPACITY=INFINITY.

DEFCONTYPE=c
DEFTYPE=c
DCT=c

specifies the default constraint type. This default constraint type is either less than or
equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option
are

LE, le, or <= for less than or equal to

EQ, eq, or = for equal to

GE, ge, or >= for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function
coefficient (or for an LP, the default LP variable objective function coefficient) be c.
If this option is not specified, then DEFCOST=0.0.

DEFMINFLOW=m
DMF=m

requests that the default lower flow bound through arcs and the default lower value
bound of nonarc variables (or for an LP, the default lower value bound of LP vari-
ables) be m. If a value is not specified, then DEFMINFLOW=0.0.

DEMAND=d
specifies the demand at the SINK node specified by the SINK= option. The
DEMAND= option should be used only if the SINK= option is given in the PROC
INTPOINT statement and neither the SHORTPATH option nor the MAXFLOW op-
tion is specified. If you are solving a minimum cost network problem and the SINK=

PROC INTPOINT Statement � 73

option is used to identify the sink node, and the DEMAND= option is not specified,
then the demand at the sink node is made equal to the network’s total supply.

GROUPED=grouped
PROC INTPOINT can take a much shorter time to read data if the data have been
grouped prior to the PROC INTPOINT call. This enables PROC INTPOINT to con-
clude that, for instance, a new NAME list variable value seen in the ARCDATA=
data set grouped by the values of the NAME list variable before PROC INTPOINT
was called is new. PROC INTPOINT does not need to check that the NAME has
been read in a previous observation. See the section “How to Make the Data Read of
PROC INTPOINT More Efficient” on page 117.

• GROUPED=ARCDATA indicates that the ARCDATA= data set has been
grouped by values of the NAME list variable. If –NAME– is the name of
the NAME list variable, you could use

proc sort data=arcdata; by _name_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the
data, only to ensure that all similar values of the NAME list variable are
grouped together. If you specify the ARCS–ONLY–ARCDATA option, PROC
INTPOINT automatically works as if GROUPED=ARCDATA is also speci-
fied.

• GROUPED=CONDATA indicates that the CONDATA= data set has been
grouped.

If the CONDATA= data set has a dense format, GROUPED=CONDATA indi-
cates that the CONDATA= data set has been grouped by values of the ROW
list variable. If –ROW– is the name of the ROW list variable, you could use

proc sort data=condata; by _row_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the
data, only to ensure that all similar values of the ROW list variable are
grouped together. If you specify the CON–SINGLE–OBS option, or if
there is no ROW list variable, PROC INTPOINT automatically works as if
GROUPED=CONDATA has been specified.

If the CONDATA= data set has the sparse format, GROUPED=CONDATA
indicates that CONDATA has been grouped by values of the COLUMN list
variable. If –COL– is the name of the COLUMN list variable, you could use

proc sort data=condata; by _col_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the data,
only to ensure that all similar values of the COLUMN list variable are grouped
together.

• GROUPED=BOTH indicates that both GROUPED=ARCDATA and
GROUPED=CONDATA are TRUE.

74 � Chapter 2. The INTPOINT Procedure

• GROUPED=NONE indicates that the data sets have not been grouped, that
is, neither GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE.
This is the default, but it is much better if GROUPED=ARCDATA, or
GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb
bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When
PROC INTPOINT is reading the ith observation, either the value of the –XXXXX–
variable is the same as the (i − 1)st (that is, the previous observation’s) –XXXXX–
value, or it is a new –XXXXX– value not seen in any previous observation. This also
means that if the ith –XXXXX– value is different from the (i−1)st –XXXXX– value,
the value of the (i − 1)st –XXXXX– variable will not be seen in any observations
i, i + 1,

INFINITY=i
INF=i

is the largest number used by PROC INTPOINT in computations. A number too small
can adversely affect the solution process. You should avoid specifying an enormous
value for the INFINITY= option because numerical roundoff errors can result. If a
value is not specified, then INFINITY=99999999. The INFINITY= option cannot be
assigned a value less than 9999.

MAXFLOW
MF

specifies that PROC INTPOINT solve a maximum flow problem. In this case, the
PROC INTPOINT procedure finds the maximum flow from the node specified by the
SOURCE= option to the node specified by the SINK= option. PROC INTPOINT
automatically assigns an INFINITY= option supply to the SOURCE= option node
and the SINK= option is assigned the INFINITY= option demand. In this way, the
MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost
problem.

You can use the MAXFLOW option when solving any flow problem (not necessar-
ily a maximum flow problem) when the network has one supply node (with infinite
supply) and one demand node (with infinite demand). The MAXFLOW option can
be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and
DEMAND=) and capabilities of PROC INTPOINT.

MAXIMIZE
MAX

specifies that PROC INTPOINT find the maximum cost flow through the network.

PROC INTPOINT Statement � 75

If both the MAXIMIZE and the SHORTPATH options are specified, the solution
obtained is the longest path between the SOURCE= and SINK= nodes. Similarly,
MAXIMIZE and MAXFLOW together cause PROC INTPOINT to find the minimum
flow between these two nodes; this is zero if there are no nonzero lower flow bounds.
If solving an LP, specifying the MAXIMIZE option is necessary if you want the
maximal optimal solution found instead of the minimal optimum.

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is
reported by PROC INTPOINT on the SAS log.

NAMECTRL=i
is used to interpret arc and nonarc variable names in the CONDATA= data set. In the
ARCDATA= data set, an arc is identified by its tail and head node. In the CONDATA=
data set, arcs are identified by names. You can give a name to an arc by having a
NAME list specification that indicates a SAS variable in the ARCDATA= data set
that has names of arcs as values.

PROC INTPOINT requires that arcs that have information about them in the
CONDATA= data set have names, but arcs that do not have information about them
in the CONDATA= data set can also have names. Unlike a nonarc variable whose
name uniquely identifies it, an arc can have several different names. An arc has a
default name in the form tail–head, that is, the name of the arc’s tail node followed
by an underscore and the name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used (described in the section
“CONDATA= Data Set” on page 98), a name of an arc or a nonarc variable is the
name of a SAS variable listed in the VAR list specification. If the sparse data format
of the CONDATA= data set is used, a name of an arc or a nonarc variable is a value
of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or a nonarc variable in the
CONDATA= data set (either a VAR list variable name or a value of the COLUMN
list variable) is in the form tail–head and there exists an arc with these end nodes. If
tail–head has not already been tagged as belonging to an arc or nonarc variable in
the ARCDATA= data set, PROC INTPOINT needs to know whether tail–head is the
name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set
is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail–head as
the name of the arc with these endnodes, provided no other name is used to associate
data in the CONDATA= data set with this arc. If the arc does have other names that
appear in the CONDATA= data set, tail–head is assumed to be the name of a nonarc
variable. If you specify NAMECTRL=3, tail–head is assumed to be a name of the
arc with these end nodes, whether the arc has other names or not. The default value
of NAMECTRL is 3.

If the dense format is used for the CONDATA= data set, there are two circumstances
that affect how this data set is read:

76 � Chapter 2. The INTPOINT Procedure

1. if you are running SAS Version 6, or a previous version to that, or if you are
running SAS Version 7 onward and you specify

options validvarname=v6;

in your SAS session. Let’s refer to this as case 1.

2. if you are running SAS Version 7 onward and you do not specify

options validvarname=v6;

in your SAS session. Let’s refer to this as case 2.

For case 1, the SAS System converts SAS variable names in a SAS program to
uppercase. The VAR list variable names are uppercased. Because of this, PROC
INTPOINT automatically uppercases names of arcs and nonarc variables or LP vari-
ables (the values of the NAME list variable) in the ARCDATA= data set. The names
of arcs and nonarc variables or LP variables (the values of the NAME list variable)
appear uppercased in the CONOUT= data set.

Also, if the dense format is used for the CONDATA= data set, be careful with default
arc names (names in the form tailnode–headnode). Node names (values in the
TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not
automatically uppercased by PROC INTPOINT. Consider the following statements:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 3 5
;
proc intpoint

arcdata=arcdata condata=densecon;
run;

The SAS System does not uppercase character string values within SAS data sets.
PROC INTPOINT never uppercases node names, so the arcs in observations 1, 2, and
3 in the preceding ARCDATA= data set have the default names from–to1, from–to2,
and TAIL–TO3, respectively. When the dense format of the CONDATA= data set is
used, PROC INTPOINT does uppercase values of the NAME list variable, so the
name of the arc in the second observation of the ARCDATA= data set is ARC2.
Thus, the second arc has two names: its default from–to2 and the other that was
specified ARC2.

As the SAS System uppercases program code, you must think of the input statement

PROC INTPOINT Statement � 77

input from_to1 from_to2 arc2 tail_to3;

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

The SAS variables named FROM–TO1 and FROM–TO2 are not associated with
any of the arcs in the preceding ARCDATA= data set. The values FROM–TO1
and FROM–TO2 are different from all of the arc names from–to1, from–to2,
TAIL–TO3, and ARC2. FROM–TO1 and FROM–TO2 could end up being the
names of two nonarc variables.

The SAS variable named ARC2 is the name of the second arc in the ARCDATA=
data set, even though the name specified in the ARCDATA= data set looks like
arc2. The SAS variable named TAIL–TO3 is the default name of the third arc in
the ARCDATA= data set.

For case 2, the SAS System does not convert SAS variable names in a SAS program to
uppercase. The VAR list variable names are not uppercased. PROC INTPOINT does
not automatically uppercase names of arcs and nonarc variables or LP variables (the
values of the NAME list variable) in the ARCDATA= data set. PROC INTPOINT
does not uppercase any SAS variable names, data set values, or indeed anything.
Therefore, PROC INTPOINT respects case, and characters in the data if compared
must have the right case if you mean them to be the same. Note how the input
statement in the data step that initialized the data set densecon below is specified in
the following code:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 TAIL_TO3;
datalines;

2 3 3 5
;
proc intpoint

arcdata=arcdata condata=densecon;
run;

NARCS=n
specifies the approximate number of arcs. See the section “How to Make the Data
Read of PROC INTPOINT More Efficient” on page 117.

NCOEFS=n
specifies the approximate number of constraint coefficients. See the section “How to
Make the Data Read of PROC INTPOINT More Efficient” on page 117.

78 � Chapter 2. The INTPOINT Procedure

NCONS=n
specifies the approximate number of constraints. See the section “How to Make the
Data Read of PROC INTPOINT More Efficient” on page 117.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make
the Data Read of PROC INTPOINT More Efficient” on page 117.

NNODES=n
specifies the approximate number of nodes. See the section “How to Make the Data
Read of PROC INTPOINT More Efficient” on page 117.

NON–REPLIC=non–replic
prevents PROC INTPOINT from doing unnecessary checks of data previously read.

• NON–REPLIC=COEFS indicates that each constraint coefficient is specified
once in the CONDATA= data set.

• NON–REPLIC=NONE indicates that constraint coefficients can be specified
more than once in the CONDATA= data set. NON–REPLIC=NONE is the
default.

See the section “How to Make the Data Read of PROC INTPOINT More Efficient”
on page 117.

OPTIM–TIMER
indicates that the procedure is to issue a message to the SAS log giving the CPU time
spent doing optimization. This includes the time spent preprocessing, performing
optimization, and postprocessing. Not counted in that time is the rest of the procedure
execution, which includes reading the data and creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the
procedure. This is especially true when the problem is quite small (e.g., fewer than
10,000 variables).

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the
sparse format for data in the CONDATA= data set. The keyword is expected as a
value of the SAS variable in the CONDATA= data set named in the COLUMN list
specification. The default value of the RHSOBS= option is –RHS– or –rhs–. If
charstr is not a valid SAS variable name, enclose it in quotes.

SCALE=scale
indicates that the NPSC side constraints or the LP constraints are to be scaled. Scaling
is useful when some coefficients are either much larger or much smaller than other co-
efficients. Scaling might make all coefficients have values that have a smaller range,
and this can make computations more stable numerically. Try the SCALE= option
if PROC INTPOINT is unable to solve a problem because of numerical instability.
Specify

• SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if you want the
largest absolute value of coefficients in each constraint to be about 1.0

PROC INTPOINT Statement � 79

• SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if you want NPSC
nonarc variable columns or LP variable columns to be scaled so that the abso-
lute value of the largest constraint coefficient of that variable is near to 1

• SCALE=BOTH if you want the largest absolute value of coefficients in each
constraint, and the absolute value of the largest constraint coefficient of an
NPSC nonarc variable or LP variable to be near to 1. This is the default.

• SCALE=NONE if no scaling should be done

SHORTPATH
SP

specifies that PROC INTPOINT solve a shortest path problem. The INTPOINT pro-
cedure finds the shortest path between the nodes specified in the SOURCE= option
and the SINK= option. The costs of arcs are their lengths. PROC INTPOINT auto-
matically assigns a supply of one flow unit to the SOURCE= node, and the SINK=
node is assigned to have a one flow unit demand. In this way, the SHORTPATH
option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node
(with demand of one unit), you could specify the SHORTPATH option, with the
SOURCE= and SINK= nodes, even if the problem is not a shortest path problem.
You then should not provide any supply or demand data in the NODEDATA= data set
or the ARCDATA= data set.

SINK=sinkname
SINKNODE=sinkname

identifies the demand node. The SINK= option is useful when you specify the
MAXFLOW option or the SHORTPATH option and you need to specify toward
which node the shortest path or maximum flow is directed. The SINK= option also
can be used when a minimum cost problem has only one demand node. Rather than
having this information in the ARCDATA= data set or the NODEDATA= data set,
use the SINK= option with an accompanying DEMAND= specification for this node.
The SINK= option must be the name of a head node of at least one arc; thus, it must
have a character value. If the value of the SINK= option is not a valid SAS character
variable name (if, for example, it contains embedded blanks), it must be enclosed in
quotes.

SOURCE=sourcename
SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the
MAXFLOW or the SHORTPATH option and need to specify from which node the
shortest path or maximum flow originates. The SOURCE= option also can be used
when a minimum cost problem has only one supply node. Rather than having
this information in the ARCDATA= data set or the NODEDATA= data set, use the
SOURCE= option with an accompanying SUPPLY= amount of supply at this node.
The SOURCE= option must be the name of a tail node of at least one arc; thus, it
must have a character value. If the value of the SOURCE= option is not a valid SAS
character variable name (if, for example, it contains embedded blanks), it must be
enclosed in quotes.

80 � Chapter 2. The INTPOINT Procedure

SPARSECONDATA
SCDATA

indicates that the CONDATA= data set has data in the sparse data format. Otherwise,
it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you are running SAS
software Version 6 or you have specified

options validvarname=v6;

all NAME list variable values in the ARCDATA= data set are uppercased. See the
section “Case Sensitivity” on page 108.

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The
SUPPLY= option should be used only if the SOURCE= option is given in the PROC
INTPOINT statement and neither the SHORTPATH option nor the MAXFLOW op-
tion is specified. If you are solving a minimum cost network problem and the
SOURCE= option is used to identify the source node and the SUPPLY= option is
not specified, then by default the supply at the source node is made equal to the net-
work’s total demand.

THRUNET
tells PROC INTPOINT to force through the network any excess supply (the amount
by which total supply exceeds total demand) or any excess demand (the amount by
which total demand exceeds total supply) as is required. If a network problem has
unequal total supply and total demand and the THRUNET option is not specified,
PROC INTPOINT drains away the excess supply or excess demand in an optimal
manner. The consequences of specifying or not specifying THRUNET are discussed
in the section “Balancing Total Supply and Total Demand” on page 116.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format
for data in the CONDATA= data set. The keyword is expected as a value of the SAS
variable in the CONDATA= data set named in the COLUMN list specification. The
default value of the TYPEOBS= option is –TYPE– or –type–. If charstr is not a
valid SAS variable name, enclose it in quotes.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the ARCDATA= data set, PROC INTPOINT might have
cause to issue the following message many times:

ERROR: The HEAD list variable value in obs i in ARCDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are many observations that have this fault, messages that are similar are issued
for only the first VERBOSE= such observations. After the ARCDATA= data set has
been read, PROC INTPOINT will issue the message

PROC INTPOINT Statement � 81

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

If observations in the ARCDATA= data set have this error, PROC INTPOINT stops
and you have to fix the data. Imagine that this error is only a warning and PROC
INTPOINT proceeded to other operations such as reading the CONDATA= data set.
If PROC INTPOINT finds there are numerous errors when reading that data set, the
number of messages issued to the SAS log are also limited by the VERBOSE= option.

When PROC INTPOINT finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=vmin.

is issued. The value of vmin is the smallest value that should be specified for the
VERBOSE= option so that all messages are displayed if PROC INTPOINT is run
again with the same data and everything else (except VERBOSE=vmin) unchanged.

The default value for the VERBOSE= option is 12.

ZERO2=z
Z2=z

specifies the zero tolerance level used when determining whether the final solu-
tion has been reached. ZERO2= is also used when outputting the solution to the
CONOUT= data set. Values within z of zero are set to 0.0, where z is the value of
the ZERO2= option. Flows close to the lower flow bound or capacity of arcs are re-
assigned those exact values. If there are nonarc variables, values close to the lower or
upper value bound of nonarc variables are reassigned those exact values. When solv-
ing an LP problem, values close to the lower or upper value bound of LP variables
are reassigned those exact values.

The ZERO2= option works when determining whether optimality has been reached
or whether an element in the vector (∆xk,∆yk,∆sk) is less than or greater than zero.
It is crucial to know that when determining the maximal value for the step length α
in the formula

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

See the description of the PDSTEPMULT= option for more details on this computa-
tion.

Two values are deemed to be close if one is within z of the other. The default value
for the ZERO2= option is 0.000001. Any value specified for the ZERO2= option that
is < 0.0 or > 0.0001 is not valid.

ZEROTOL=z
specifies the zero tolerance used when PROC INTPOINT must compare any real
number with another real number, or zero. For example, if x and y are real numbers,
then for x to be considered greater than y, x must be at least y + z. The ZEROTOL=
option is used throughout any PROC INTPOINT run.

82 � Chapter 2. The INTPOINT Procedure

ZEROTOL=z controls the way PROC INTPOINT performs all double precision com-
parisons; that is, whether a double precision number is equal to, not equal to, greater
than (or equal to), or less than (or equal to) zero or some other double precision num-
ber. A double precision number is deemed to be the same as another such value if the
absolute difference between them is less than or equal to the value of the ZEROTOL=
option.

The default value for the ZEROTOL= option is 1.0E−14. You can specify the
ZEROTOL= option in the INTPOINT statement. Valid values for the ZEROTOL=
option must be > 0.0 and < 0.0001. Do not specify a value too close to zero as this
defeats the purpose of the ZEROTOL= option. Neither should the value be too large,
as comparisons might be incorrectly performed.

Interior Point Algorithm Options

FACT–METHOD=f
enables you to choose the type of algorithm used to factorize and solve the main
linear systems at each iteration of the interior point algorithm.

FACT–METHOD=LEFT–LOOKING is new for SAS 9.1.2. It uses algorithms de-
scribed in George, Liu, and Ng (2001). Left looking is one of the main methods used
to perform Cholesky optimization and, along with some recently developed imple-
mentation approaches, can be faster and require less memory than other algorithms.

Specify FACT–METHOD=USE–OLD if you want the procedure to use the only
factorization available prior to SAS 9.1.2.

TOLDINF=t
RTOLDINF=t

specifies the allowed amount of dual infeasibility. In the section “Interior Point
Algorithmic Details” on page 35, the vector infeasd is defined. If all elements of
this vector are ≤ t, the solution is considered dual feasible. infeasd is replaced by
a zero vector, making computations faster. This option is the dual equivalent to the
TOLPINF= option. Increasing the value of the TOLDINF= option too much can lead
to instability, but a modest increase can give the algorithm added flexibility and de-
crease the iteration count. Valid values for t are greater than 1.0E−12. The default is
1.0E−7.

TOLPINF=t
RTOLPINF=t

specifies the allowed amount of primal infeasibility. This option is the primal equiva-
lent to the TOLDINF= option. In the section “Interior Point: Upper Bounds” on page
39, the vector infeasb is defined. In the section “Interior Point Algorithmic Details”
on page 35, the vector infeasc is defined. If all elements in these vectors are ≤ t, the
solution is considered primal feasible. infeasb and infeasc are replaced by zero vec-
tors, making computations faster. Increasing the value of the TOLPINF= option too
much can lead to instability, but a modest increase can give the algorithm added flex-
ibility and decrease the iteration count. Valid values for t are greater than 1.0E−12.
The default is 1.0E−7.

PROC INTPOINT Statement � 83

TOLTOTDINF=t
RTOLTOTDINF=t

specifies the allowed total amount of dual infeasibility. In the section “Interior Point
Algorithmic Details” on page 35, the vector infeasd is defined. If

∑n
i=1 infeasdi ≤ t,

the solution is considered dual feasible. infeasd is replaced by a zero vector, making
computations faster. This option is the dual equivalent to the TOLTOTPINF= option.
Increasing the value of the TOLTOTDINF= option too much can lead to instabil-
ity, but a modest increase can give the algorithm added flexibility and decrease the
iteration count. Valid values for t are greater than 1.0E−12. The default is 1.0E−7.

TOLTOTPINF=t
RTOLTOTPINF=t

specifies the allowed total amount of primal infeasibility. This option is the pri-
mal equivalent to the TOLTOTDINF= option. In the section “Interior Point: Upper
Bounds” on page 39, the vector infeasb is defined. In the section “Interior Point
Algorithmic Details” on page 35, the vector infeasc is defined. If

∑n
i=1 infeasbi ≤ t

and
∑m

i=1 infeasci ≤ t, the solution is considered primal feasible. infeasb and
infeasc are replaced by zero vectors, making computations faster. Increasing the
value of the TOLTOTPINF= option too much can lead to instability, but a modest in-
crease can give the algorithm added flexibility and decrease the iteration count. Valid
values for t are greater than 1.0E−12. The default is 1.0E−7.

CHOLTINYTOL=c
RCHOLTINYTOL=c

specifies the cut-off tolerance for Cholesky factorization of the AΘA−1. If a diagonal
value drops below c, the row is essentially treated as dependent and is ignored in the
factorization. Valid values for c are between 1.0E−30 and 1.0E−6. The default value
is 1.0E−8.

DENSETHR=d
RDENSETHR=d

specifies the density threshold for Cholesky factorization. When the symbolic factor-
ization encounters a column of L (where L is the remaining unfactorized submatrix)
that has DENSETHR= proportion of nonzeros and the remaining part of L is at least
12 × 12, the remainder of L is treated as dense. In practice, the lower right part of
the Cholesky triangular factor L is quite dense and it can be computationally more
efficient to treat it as 100% dense. The default value for d is 0.7. A specification of
d ≤ 0.0 causes all dense processing; d ≥ 1.0 causes all sparse processing.

PDSTEPMULT=p
RPDSTEPMULT=p

specifies the step-length multiplier. The maximum feasible step-length chosen by the
interior point algorithm is multiplied by the value of the PDSTEPMULT= option.
This number must be less than 1 to avoid moving beyond the barrier. An actual step-
length greater than 1 indicates numerical difficulties. Valid values for p are between
0.01 and 0.999999. The default value is 0.99995.

In the section “Interior Point Algorithmic Details” on page 35, the solution of the next

84 � Chapter 2. The INTPOINT Procedure

iteration is obtained by moving along a direction from the current iteration’s solution:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the maximum feasible step-length chosen by the interior point algorithm.
If α ≤ 1, then α is reduced slightly by multiplying it by p. α is a value as large as
possible but ≤ 1.0 and not so large that an xk+1

i or sk+1
i of some variable i is “too

close” to zero.

PRSLTYPE=p
IPRSLTYPE=p

Preprocessing the linear programming problem often succeeds in allowing some vari-
ables and constraints to be temporarily eliminated from the resulting LP that must be
solved. This reduces the solution time and possibly also the chance that the optimizer
will run into numerical difficulties. The task of preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE=p, where p
can be –1, 0, 1, 2, or 3:

–1 Do not perform preprocessing. For most problems, specifying
PRSLTYPE= –1 is not recommended.

0 Given upper and lower bounds on each variable, the greatest and least con-
tribution to the row activity of each variable is computed. If these are
within the limits set by the upper and lower bounds on the row activity,
then the row is redundant and can be discarded. Otherwise, whenever pos-
sible, the bounds on any of the variables are tightened. For example, if all
coefficients in a constraint are positive and all variables have zero lower
bounds, then the row’s smallest contribution is zero. If the rhs value of this
constraint is zero, then if the constraint type is = or ≤, all the variables
in that constraint are fixed to zero. These variables and the constraint are
removed. If the constraint type is ≥, the constraint is redundant. If the
rhs is negative and the constraint is ≤, the problem is infeasible. If just
one variable in a row is not fixed, the row to used to impose an implicit
upper or lower bound on the variable and then this row is eliminated. The
preprocessor also tries to tighten the bounds on constraint right-hand sides.

1 When there are exactly two unfixed variables with coefficients in an equal-
ity constraint, one variable is solved in terms of the other. The problem will
have one less variable. The new matrix will have at least two fewer coef-
ficients and one less constraint. In other constraints where both variables
appear, two coefficients are combined into one. PRSLTYPE=0 reductions
are also done.

2 It may be possible to determine that an equality constraint is not constrain-
ing a variable. That is, if all variables are nonnegative, then x−

∑
i yi = 0

does not constrain x, since it must be nonnegative if all the yi’s are non-
negative. In this case, x is eliminated by subtracting this equation from all
others containing x. This is useful when the only other entry for x is in
the objective function. This reduction is performed if there is at most one
other nonobjective coefficient. PRSLTYPE=0 reductions are also done.

3 All possible reductions are performed. PRSLTYPE=3 is the default.

PROC INTPOINT Statement � 85

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are
found to be redundant and they too are eliminated, and as variable bounds and con-
straint right-hand sides are tightened, the LP to be optimized is modified to reflect
these changes. Another iteration of preprocessing of the modified LP may reveal
more variables and constraints that are eliminated, or tightened.

PRINTLEVEL2=p
is used when you want to see PROC INTPOINT’s progress to the optimum. PROC
INTPOINT will produce a table on the SAS log. A row of the table is generated
during each iteration and may consist of values of

• the affine step complementarity

• the complementarity of the solution for the next iteration

• the total bound infeasibility
∑n

i=1 infeasbi (see the infeasb array in the section
“Interior Point: Upper Bounds” on page 39)

• the total constraint infeasibility
∑m

i=1 infeasci (see the infeasc array in the
section “Interior Point Algorithmic Details” on page 35)

• the total dual infeasibility
∑n

i=1 infeasdi (see the infeasd array in the section
“Interior Point Algorithmic Details” on page 35)

As optimization progresses, the values in all columns should converge to zero.
If you specify PRINTLEVEL2=2, all columns will appear in the table. If
PRINTLEVEL2=1 is specified, only the affine step complementarity and the com-
plementarity of the solution for the next iteration will appear. Some time is saved by
not calculating the infeasibility values.

PRINTLEVEL2=2 is specified in all PROC INTPOINT runs in the section
“Examples: INTPOINT Procedure” on page 129.

RTTOL=r
specifies the zero tolerance used during the ratio test of the interior point algorithm.
The ratio test determines α, the maximum feasible step length.

Valid values for r are greater than 1.0E−14. The default value is 1.0E−10.

In the section “Interior Point Algorithmic Details” on page 35, the solution of the next
iteration is obtained by moving along a direction from the current iteration’s solution:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the maximum feasible step-length chosen by the interior point algo-
rithm. If α ≤ 1, then α is reduced slightly by multiplying it by the value of the
PDSTEPMULT= option. α is a value as large as possible but ≤ 1.0 and not so large
that an xk+1

i or sk+1
i of some variable i is negative. When determining α, only nega-

tive elements of ∆x and ∆s are important.

RTTOL=r indicates a number close to zero so that another number n is considered
truly negative if n ≤ −r. Even though n < 0, if n > −r, n may be too close to zero
and may have the wrong sign due to rounding error.

86 � Chapter 2. The INTPOINT Procedure

Interior Point Algorithm Options: Stopping Criteria

MAXITERB=m
IMAXITERB=m

specifies the maximum number of iterations that the interior point algorithm can per-
form. The default value for m is 100. One of the most remarkable aspects of the
interior point algorithm is that for most problems, it usually needs to do a small num-
ber of iterations, no matter the size of the problem.

PDGAPTOL=p
RPDGAPTOL=p

specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in
the section “Interior Point Algorithmic Details” on page 35. If the relative gap
(duality gap/(cT x)) between the primal and dual objectives is smaller than the value
of the PDGAPTOL= option and both the primal and dual problems are feasible, then
PROC INTPOINT stops optimization with a solution that is deemed optimal. Valid
values for p are between 1.0E−12 and 1.0E−1. The default is 1.0E−7.

STOP–C=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, optimization
will stop. This option is discussed in the section “Stopping Criteria” on page 123.

STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, optimization
will stop. This option is discussed in the section “Stopping Criteria” on page 123.

STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

section “Interior Point: Upper Bounds” on page 39; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is <= s, optimization will stop. This option is discussed in the
section “Stopping Criteria” on page 123.

STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each itera-
tion, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasc
column in the table produced when you specify PRINTLEVEL2=2) is <= s, opti-
mization will stop. This option is discussed in the section “Stopping Criteria” on
page 123.

STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each it-
eration, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is <= s, opti-

PROC INTPOINT Statement � 87

mization will stop. This option is discussed in the section “Stopping Criteria” on
page 123.

AND–STOP–C=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, and the other
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the section “Stopping Criteria” on page 123.

AND–STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, and the other
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the section “Stopping Criteria” on page 123.

AND–STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

section “Interior Point: Upper Bounds” on page 39; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is <= s, and the other conditions related to other AND–STOP
parameters are also satisfied, optimization will stop. This option is discussed in the
section “Stopping Criteria” on page 123.

AND–STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each itera-
tion, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasc
column in the table produced when you specify PRINTLEVEL2=2) is <= s, and the
other conditions related to other AND–STOP parameters are also satisfied, optimiza-
tion will stop. This option is discussed in the section “Stopping Criteria” on page
123.

AND–STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each it-
eration, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is <= s, and the
other conditions related to other AND–STOP parameters are also satisfied, optimiza-
tion will stop. This option is discussed in the section “Stopping Criteria” on page
123.

KEEPGOING–C=s
is used to determine whether optimization should stop. When a stopping condition is
met, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 123.

88 � Chapter 2. The INTPOINT Procedure

KEEPGOING–DG=s
is used to determine whether optimization should stop. When a stopping condition
is met, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 123.

KEEPGOING–IB=s
is used to determine whether optimization should stop. When a stopping con-
dition is met, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in

the section “Interior Point: Upper Bounds” on page 39; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in
the section “Stopping Criteria” on page 123.

KEEPGOING–IC=s
is used to determine whether optimization should stop. When a stopping condition is
met, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasc
column in the table produced when you specify PRINTLEVEL2=2) is > s, optimiza-
tion will continue. This option is discussed in the section “Stopping Criteria” on page
123.

KEEPGOING–ID=s
is used to determine whether optimization should stop. When a stopping condition
is met, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is > s, optimiza-
tion will continue. This option is discussed in the section “Stopping Criteria” on page
123.

AND–KEEPGOING–C=s
is used to determine whether optimization should stop. When a stopping condition is
met, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the other
conditions related to other AND–KEEPGOING parameters are also satisfied, opti-
mization will continue. This option is discussed in the section “Stopping Criteria” on
page 123.

AND–KEEPGOING–DG=s
is used to determine whether optimization should stop. When a stopping condition
is met, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the other
conditions related to other AND–KEEPGOING parameters are also satisfied, opti-
mization will continue. This option is discussed in the section “Stopping Criteria” on
page 123.

AND–KEEPGOING–IB=s
is used to determine whether optimization should stop. When a stopping condition
is met, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the section

“Interior Point: Upper Bounds” on page 39; this value appears in the Tot–infeasb
column in the table produced when you specify PRINTLEVEL2=2) is > s, and the

COEF Statement � 89

other conditions related to other AND–KEEPGOING parameters are also satisfied,
optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 123.

AND–KEEPGOING–IC=s
is used to determine whether optimization should stop. When a stopping condition is
met, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasc
column in the table produced when you specify PRINTLEVEL2=2) is > s, and the
other conditions related to other AND–KEEPGOING parameters are also satisfied,
optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 123.

AND–KEEPGOING–ID=s
is used to determine whether optimization should stop. When a stopping condition
is met, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the section

“Interior Point Algorithmic Details” on page 35; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is > s, and the
other conditions related to other AND–KEEPGOING parameters are also satisfied,
optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 123.

CAPACITY Statement

CAPACITY variable ;

CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set
that contains the maximum feasible flow or capacity of the network arcs. If an ob-
servation contains nonarc variable information, the CAPACITY list variable is the
upper value bound for the nonarc variable named in the NAME list variable in that
observation.

When solving an LP, the CAPACITY statement identifies the SAS variable in the
ARCDATA= data set that contains the maximum feasible value of the LP variables.

The CAPACITY list variable must have numeric values. It is not necessary to have
a CAPACITY statement if the name of the SAS variable is –CAPAC– , –UPPER– ,
–UPPERBD, or –HI– .

COEF Statement

COEF variables ;

The COEF list is used with the sparse input format of the CONDATA= data set. The
COEF list can contain more than one SAS variable, each of which must have numeric
values. If the COEF statement is not specified, the CONDATA= data set is searched
and SAS variables with names beginning with –COE are used. The number of SAS

90 � Chapter 2. The INTPOINT Procedure

variables in the COEF list must be no greater than the number of SAS variables in
the ROW list.

The values of the COEF list variables in an observation can be interpreted differently
than these variables’ values in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, bound data, constraint
type data, or rhs data. If the COLUMN list variable has a value that is a name of an
arc or a nonarc variable, the ith COEF list variable is associated with the constraint
or special row name named in the ith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

When solving an LP, the values of the COEF list variables in an observation can be
interpreted differently than these variables’ values in other observations. The val-
ues can be coefficients in the constraints, objective function coefficients, bound data,
constraint type data, or rhs data. If the COLUMN list variable has a value that is a
name of an LP variable, the ith COEF list variable is associated with the constraint
or special row name named in the ith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

COLUMN Statement

COLUMN variable ;

The COLUMN list is used with the sparse input format of the CONDATA= data set.

This list consists of one SAS variable in the CONDATA= data set that has as values
the names of arc variables, nonarc variables, or missing values. When solving an LP,
this list consists of one SAS variable in the CONDATA= data set that has as values
the names of LP variables, or missing values. Some, if not all, of these values also
can be values of the NAME list variables of the ARCDATA= data set. The COLUMN
list variable can have other special values (Refer to the TYPEOBS= and RHSOBS=
options). If the COLUMN list is not specified after the PROC INTPOINT statement,
the CONDATA= data set is searched and a SAS variable named –COLUMN– is
used. The COLUMN list variable must have character values.

COST Statement

COST variable ;

OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that
contains the per unit flow cost through an arc. If an observation contains nonarc
variable information, the value of the COST list variable is the objective function
coefficient of the nonarc variable named in the NAME list variable in that observation.

If solving an LP, the COST statement identifies the SAS variable in the ARCDATA=
data set that contains the per unit objective function coefficient of an LP variable
named in the NAME list variable in that observation.

The COST list variable must have numeric values. It is not necessary to specify a
COST statement if the name of the SAS variable is –COST– or –LENGTH– .

ID Statement � 91

DEMAND Statement

DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set
that contains the demand at the node named in the corresponding HEADNODE list
variable. The DEMAND list variable must have numeric values. It is not necessary
to have a DEMAND statement if the name of this SAS variable is –DEMAND– . See
the section “Missing S Supply and Missing D Demand Values” on page 112 for cases
when the SUPDEM list variable values can have other values. There should be no
DEMAND statement if you are solving an LP.

HEADNODE Statement

HEADNODE variable ;

HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that contains the names of nodes toward which arcs are directed.
It is not necessary to have a HEADNODE statement if the name of the SAS variable
is –HEAD– or –TO– . The HEADNODE variable must have character values.

There should be no HEAD statement if you are solving an LP.

ID Statement

ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal
processing and analysis. These variables are not processed by PROC INTPOINT
but are read by the procedure and written in the CONOUT= data set. For example,
imagine a network used to model a distribution system. The SAS variables listed on
the ID statement can contain information on the type of vehicle, the transportation
mode, the condition of the road, the time to complete the journey, the name of the
driver, or other ancillary information useful for report writing or describing facets of
the operation that do not have bearing on the optimization. The ID variables can be
character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not
included in any other implicit or explicit list specification. If the ID list is specified,
any SAS variables in the ARCDATA= data set not in any list are dropped and do not
appear in the CONOUT= data set.

92 � Chapter 2. The INTPOINT Procedure

LO Statement

LO variable ;

LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that con-
tains the minimum feasible flow or lower flow bound for arcs in the network. If an
observation contains nonarc variable information, the LO list variable has the value
of the lower bound for the nonarc variable named in the NAME list variable. If solv-
ing an LP, the LO statement identifies the SAS variable in the ARCDATA= data set
that contains the lower value bound for LP variables. The LO list variables must have
numeric values. It is not necessary to have a LO statement if the name of this SAS
variable is –LOWER– , –LO– , –LOWERBD, or –MINFLOW.

NAME Statement

NAME variable ;

ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable in an NPSC, or each variable in an LP, that has data
in the CONDATA= data set must have a unique name. This variable is identified in
the ARCDATA= data set. The NAME list variable must have character values (see
the NAMECTRL= option in the PROC INTPOINT statement for more information).
It is not necessary to have a NAME statement if the name of this SAS variable is
–NAME– .

NODE Statement

NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has
names of nodes as values. These values must also be values of the TAILNODE list
variable, the HEADNODE list variable, or both. If this list is not explicitly specified,
the NODEDATA= data set is searched for a SAS variable with the name –NODE– .
The NODE list variable must have character values.

QUIT Statement

QUIT ;

The QUIT statement indicates that PROC INTPOINT is to stop immediately. The
solution is not saved in the CONOUT= data set. The QUIT statement has no options.

RUN Statement � 93

RHS Statement

RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is
used. The values of the SAS variable specified in the RHS list are constraint right-
hand-side values. If the RHS list is not specified, the CONDATA= data set is searched
and a SAS variable with the name –RHS– is used. The RHS list variable must have
numeric values. If there is no RHS list and no SAS variable named –RHS– , all
constraints are assumed to have zero right-hand-side values.

ROW Statement

ROW variables ;

The ROW list is used when either the sparse or the dense format of the CONDATA=
data set is being used. SAS variables in the ROW list have values that are constraint
or special row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In
this case, if a ROW list is not specified, the CONDATA= data set is searched and the
SAS variable with the name –ROW– or –CON– is used. If that search fails to find
a suitable SAS variable, data for each constraint must reside in only one observation.

If the sparse data format is used and the ROW statement is not specified, the
CONDATA= data set is searched and SAS variables with names beginning with
–ROW or –CON are used. The number of SAS variables in the ROW list must
not be less than the number of SAS variables in the COEF list. The ith ROW list
variable is paired with the ith COEF list variable. If the number of ROW list vari-
ables is greater than the number of COEF list variables, the last ROW list variables
have no COEF partner. These ROW list variables that have no corresponding COEF
list variable are used in observations that have a TYPE list variable value. All ROW
list variable values are tagged as having the type indicated. If there is no TYPE list
variable, all ROW list variable values are constraint names.

RUN Statement

RUN ;

The RUN statement causes optimization to be started. The RUN statement has no
options. If PROC INTPOINT is called and is not terminated because of an error
or a QUIT statement, and you have not used a RUN statement, a RUN statement
is assumed implicitly as the last statement of PROC INTPOINT. Therefore, PROC
INTPOINT reads that data, performs optimization, and saves the optimal solution in
the CONOUT= data set.

94 � Chapter 2. The INTPOINT Procedure

SUPDEM Statement

SUPDEM variable ;

The SAS variable in this list, which must be present in the NODEDATA= data set,
contains supply and demand information for the nodes in the NODE list. A positive
SUPDEM list variable value s (s > 0) denotes that the node named in the NODE list
variable can supply s units of flow. A negative SUPDEM list variable value −d (d >
0) means that this node demands d units of flow. If a SAS variable is not explicitly
specified, a SAS variable with the name –SUPDEM– or –SD– in the NODEDATA=
data set is used as the SUPDEM variable. If a node is a transshipment node (neither
a supply nor a demand node), an observation associated with this node need not be
present in the NODEDATA= data set. If present, the SUPDEM list variable value
must be zero or a missing value. See the section “Missing S Supply and Missing D
Demand Values” on page 112 for cases when the SUPDEM list variable values can
have other values.

SUPPLY Statement

SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that
contains the supply at the node named in that observation’s TAILNODE list variable.
If a tail node does not supply flow, use zero or a missing value for the observation’s
SUPPLY list variable value. If a tail node has supply capability, a missing value
indicates that the supply quantity is given in another observation. It is not necessary
to have a SUPPLY statement if the name of this SAS variable is –SUPPLY– . See
the section “Missing S Supply and Missing D Demand Values” on page 112 for cases
when the SUPDEM list variable values can have other values. There should be no
SUPPLY statement if you are solving an LP.

TAILNODE Statement

TAILNODE variable ;

TAIL variable ;

FROMNODE variable ;

FROM variable ;

The TAILNODE statement specifies the SAS variable that must (when solving an
NPSC problem) be present in the ARCDATA= data set that has as values the names
of tail nodes of arcs. The TAILNODE variable must have character values. It is not
necessary to have a TAILNODE statement if the name of the SAS variable is –TAIL–
or –FROM– . If the TAILNODE list variable value is missing, it is assumed that the
observation of the ARCDATA= data set contains information concerning a nonarc
variable. There should be no TAILNODE statement if you are solving an LP.

TYPE Statement � 95

TYPE Statement

TYPE variable ;

CONTYPE variable ;

The TYPE list, which is optional, names the SAS variable that has as values keywords
that indicate either the constraint type for each constraint or the type of special rows
in the CONDATA= data set. The values of the TYPE list variable also indicate, in
each observation of the CONDATA= data set, how values of the VAR or COEF list
variables are to be interpreted and how the type of each constraint or special row
name is determined. If the TYPE list is not specified, the CONDATA= data set is
searched and a SAS variable with the name –TYPE– is used. Valid keywords for the
TYPE variable are given below. If there is no TYPE statement and no other method
is used to furnish type information (see the DEFCONTYPE= option), all constraints
are assumed to be of the type “less than or equal to” and no special rows are used.
The TYPE list variable must have character values and can be used when the data in
the CONDATA= data set is in either the sparse or the dense format. If the TYPE list
variable value has a * as its first character, the observation is ignored because it is a
comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the
characters that PROC INTPOINT uses to determine what type the value suggests.
You need to have at least these characters. In the following list, the minimal TYPE
list variable values have additional characters to aid you in remembering these values.

< less than or equal to (≤)
= equal to (=)
> greater than or equal to (≥)
CAPAC capacity
COST cost
EQ equal to
FREE free row (used only for linear programs solved by interior point)
GE greater than or equal to
LE less than or equal to
LOWERBD lower flow or value bound
LOWblank lower flow or value bound
MAXIMIZE maximize (opposite of cost)
MINIMIZE minimize (same as cost)
OBJECTIVE objective function (same as cost)
RHS rhs of constraint
TYPE type of constraint
UPPCOST reserved for future use
UNREST unrestricted variable (used only for linear programs solved by in-

terior point)
UPPER upper value bound or capacity; second letter must not be N

96 � Chapter 2. The INTPOINT Procedure

The valid TYPE list variable values in function order are

• LE less than or equal to (≤)

• EQ equal to (=)

• GE greater than or equal to (≥)

• COST
MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

• CAPAC
UPPER
capacity or upper value bound

• LOWERBD
LOWblank
lower flow or value bound

• RHS rhs of constraint

• TYPE type of constraint

A TYPE list variable value that has the first character ∗ causes the observation to be
treated as a comment. If the first character is a negative sign, then≤ is the type. If the
first character is a zero, then = is the type. If the first character is a positive number,
then ≥ is the type.

VAR Statement

VAR variables ;

The VAR variable list is used when the dense data format is used for the CONDATA=
data set. The names of these SAS variables are also names of the arc and nonarc
variables that have data in the CONDATA= data set. If solving an LP, the names
of these SAS variables are also names of the LP variables. If no explicit VAR list
is specified, all numeric SAS variables in the CONDATA= data set that are not in
other SAS variable lists are put onto the VAR list. The VAR list variables must have
numeric values. The values of the VAR list variables in some observations can be
interpreted differently than in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, or bound data. When
solving an LP, the values of the SAS variables in the VAR list can be constraint
coefficients, objective function coefficients, or bound data. How these numeric values
are interpreted depends on the value of each observation’s TYPE or ROW list variable
value. If there are no TYPE list variables, the VAR list variable values are all assumed
to be side constraint coefficients.

Input Data Sets � 97

Details: INTPOINT Procedure
Input Data Sets

PROC INTPOINT is designed so that there are as few rules as possible that you
must obey when inputting a problem’s data. Raw data are acceptable. This should
cut the amount of processing required to groom the data before it is input to PROC
INTPOINT. Data formats are so flexible that, due to space restrictions, all possible
forms for a problem’s data are not shown here. Try any reasonable form for your
problem’s data; it should be acceptable. PROC INTPOINT will outline its objections.

You can supply the same piece of data several ways. You do not have to restrict
yourself to using any particular one. If you use several ways, PROC INTPOINT
checks that the data are consistent each time that the data are encountered. After
all input data sets have been read, data are merged so that the problem is described
completely. The observations can be in any order.

ARCDATA= Data Set

See the section “Getting Started: NPSC Problems” on page 50 and the section
“Introductory NPSC Example” on page 51 for a description of this input data set.

Note: Information for an arc or nonarc variable can be specified in more than one
observation. For example, consider an arc directed from node A toward node B that
has a cost of 50, capacity of 100, and lower flow bound of 10 flow units. Some
possible observations in the ARCDATA= data set are as follows:

tail _head_ _cost_ _capac_ _lo_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable that has an upper bound of 100, a lower bound of
10, and an objective function coefficient of 50, the –TAIL– and –HEAD– values are
missing.

When solving an LP that has an LP variable named my–var with an upper bound of
100, a lower bound of 10, and an objective function coefficient of 50, some possible
observations in the ARCDATA= data set are

name _cost_ _capac_ _lo_
my_var 50 . .
my_var . 100 .
my_var . . 10
my_var 50 100 .
my_var . 100 10
my_var 50 . 10
my_var 50 100 10

98 � Chapter 2. The INTPOINT Procedure

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense
format, you will receive a warning if PROC INTPOINT finds a constraint row that
has no coefficients. You will also be warned if any nonarc or LP variable has no
constraint coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong
to the VAR list. The names of the SAS variables belonging to this list have names
of arc and nonarc variables or, if solving an LP, names of the LP variables. These
names can be values of the SAS variables in the ARCDATA= data set that belong
to the NAME list, or names of nonarc variables, or names in the form tail–head, or
any combination of these three forms. Names in the form tail–head are default arc
names, and if you use them, you must specify node names in the ARCDATA= data
set (values of the TAILNODE and HEADNODE list variables).

The CONDATA= data set can have three other SAS variables belonging, respectively,
to the ROW, the TYPE, and the RHS lists. The CONDATA= data set of the oil
industry example in the section “Introductory NPSC Example” on page 51 uses the
dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has
data for three constraints. This data set was used in the section “Introductory NPSC
Example” on page 51.

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

You can use nonconstraint type values to furnish data on costs, capacities, lower
flow bounds (and, if there are nonarc or LP variables, objective function coefficients
and upper and lower bounds). You need not have such (or as much) data in the
ARCDATA= data set. The first three observations in the following data set are exam-
ples of observations that provide cost, capacity, and lower bound data.

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15

Input Data Sets � 99

. -2 . . 1 . GE -15

. . -3 4 . . EQ 0

. . . . -3 4 = 0
;

If a ROW list variable is used, the data for a constraint can be spread over more
than one observation. To illustrate, the data for the first constraint (which is called
con1) and the cost and capacity data (in special rows called costrow and caprow,
respectively) are spread over more than one observation in the following data set.

data cond1c;
input _row_ $

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63
costrow . 81 200 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .
con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 -3 4 = 0
;

Using both ROW and TYPE lists, you can use special row names. Examples of these
are costrow and caprow in the last data set. It should be restated that in any of the
input data sets of PROC INTPOINT, the order of the observations does not matter.
However, the CONDATA= data set can be read more quickly if PROC INTPOINT
knows what type of constraint or special row a ROW list variable value is. For ex-
ample, when the first observation is read, PROC INTPOINT does not know whether
costrow is a constraint or special row and how to interpret the value 63 for the arc
with the name m–e–ref1. When PROC INTPOINT reads the second observation,
it learns that costrow has cost type and that the values 81 and 200 are costs. When
the entire CONDATA= data set has been read, PROC INTPOINT knows the type of
all special rows and constraints. Data that PROC INTPOINT had to set aside (such
as the first observation 63 value and the costrow ROW list variable value, which at
the time had unknown type, but is subsequently known to be a cost special row) is
reprocessed. During this second pass, if a ROW list variable value has unassigned
constraint or special row type, it is treated as a constraint with DEFCONTYPE= (or
DEFCONTYPE= default) type. Associated VAR list variable values are coefficients
of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When
the sparse data format of the CONDATA= data set is used, only nonzero constraint

100 � Chapter 2. The INTPOINT Procedure

coefficients must be specified. Remember to specify the SPARSECONDATA option
in the PROC INTPOINT statement. With the sparse method of specifying constraint
information, the names of arc and nonarc variables or, if solving an LP, the names of
LP variables do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the section
“Introductory NPSC Example” on page 51 is displayed below.

title ’Setting Up Condata = Cond2 for PROC INTPOINT’;
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values –type– and –rhs– are the default
values of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of
constraints (con3 and con4) is zero. The third to last observation has the value
–type– for the COLUMN list variable. The –ROW1 variable value is con1, and
the –COEF1– variable has the value 1. This indicates that the constraint con1 is
greater than or equal to type (because the value 1 is greater than zero). Similarly,
the data in the second to last observation’s –ROW2 and –COEF2 variables indicate
that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable, is

title ’Setting Up Condata = Cond3 for PROC INTPOINT’;
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last 2 obser-
vations in the data set cond3, for instance), the constraints named in the ROW list
variables all have the constraint type indicated by the value in the TYPE list variable.

Input Data Sets � 101

It is for this type of observation that you are allowed more ROW list variables than
COEF list variables. If corresponding COEF list variables are not missing (for ex-
ample, the last observation in the data set cond3), these values are the rhs values of
those constraints. Therefore, you can specify both constraint type and rhs in the same
observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or
nonarc variable, the COEF list variable values are coefficient values for that arc or
nonarc variable in the constraints indicated in the corresponding ROW list variables.
If in this same observation the TYPE list variable contains a constraint type, all con-
straints named in the ROW list variables in that observation have this constraint type
(for example, the first observation in the data set cond3). Therefore, you can specify
both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from hav-
ing to include in the data that con3 and con4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are presented
in the ARCDATA= data set. Alternatively, you could have used the following input
data sets. The arcd2 data set has only two SAS variables. For each arc, there is an
observation in which the arc’s tail and head node are specified.

title3 ’Setting Up Arcdata = Arcd2 for PROC INTPOINT’;
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

title ’Setting Up Condata = Cond4 for PROC INTPOINT’;
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac

102 � Chapter 2. The INTPOINT Procedure

middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

The first observation in the cond4 data set defines con1 and con2 as greater than
or equal to (≥) constraints that both (by coincidence) have rhs values of -15. The
second observation defines the special row costrow as a cost row. When costrow
is a ROW list variable value, the associated COEF list variable value is interpreted
as a cost or objective function coefficient. PROC INTPOINT has to do less work
if constraint names and special rows are defined in observations near the top of a
data set, but this is not a strict requirement. The fourth to ninth observations contain
constraint coefficient data. Observations seven and nine have TYPE list variable
values that indicate that constraints con3 and con4 are equality constraints. The last
five observations contain lower flow bound data. Observations that have an arc or
nonarc variable name in the COLUMN list variable, a nonconstraint type TYPE list
variable value, and a value in (one of) the COEF list variables are valid.

Input Data Sets � 103

The following data set is equivalent to the cond4 data set.

title ’Setting Up Condata = Cond5 for PROC INTPOINT’;
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .
middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

Converting from an NPSC to an LP Problem

If you have data for a linear programming program that has an embedded network, the
steps required to change that data into a form that is acceptable by PROC INTPOINT
are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these
constraints (a submatrix of the LP’s constraint coefficient matrix) has only two
nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s sup-
plies and demands. Use this information to create the NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient
matrix. The arc is directed from the node associated with the row that has

104 � Chapter 2. The INTPOINT Procedure

the 1 element in it and directed toward to the node associated with the row
that has the −1 element in it. Set up the ARCDATA= data set that has two
SAS variables. This data set could resemble ARCDATA=arcd2. These will
eventually be the TAILNODE and HEADNODE list variables when PROC
INTPOINT is used. Each observation consists of the tail and head node of
each arc.

5. Remove from the data of the linear program all data concerning the nodal flow
conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably
resemble CONDATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse for-
mats. a1, b1, b2, b3 and c1 have as a –COLUMN– variable value either the name of
an arc (possibly in the form tail–head) or the name of a nonarc variable (if you are
solving an NPSC), or the name of the LP variable (if you are solving an LP). These
are collectively referred to as variable in the tables that follow.

• If there is no TYPE list variable in the CONDATA= data set, the problem must
be constrained and there is no nonconstraint data in the CONDATA= data set:

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed
to make problem generation easier.

• If there are no ROW list variables in the data set, the problem has no constraints
and the information is nonconstraint data. There must be a TYPE list variable
and only one COEF list variable in this case. The COLUMN list variable has as
values the names of arcs or nonarc variables and must not have missing values
or special row names as values:

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

Input Data Sets � 105

• Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

c1 variable missing +-----+ lhs coef +------------+
c2 _TYPE_ or missing | c | -1 0 1 | |

TYPEOBS= | o | | |
c3 _RHS_ or missing | n | rhs value | constraint |

missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is in form c4 or c5, and the –COEFx– values are missing,
the constraint is assigned the type data specified in the –TYPE– variable.

• Using a TYPE list variable for arc and nonarc variable data implies the follow-
ing:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

+---------+ +---------+ +---------+
d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

The observations of the form d1 to d5 can have ROW list variable values.
Observation d4 must have ROW list variable values. The ROW value is put
into the ROW name tree so that when dealing with observation d4 or d5, the
COEF list variable value is interpreted according to the type of ROW list vari-
able value. For example, the following three observations define the –ROWx–
variable values up–row, lo–row, and co–row as being an upper value bound
row, lower value bound row, and cost row, respectively:

106 � Chapter 2. The INTPOINT Procedure

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC INTPOINT is now able to correctly interpret the following observation:

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the
COLUMN list variable equals the value of the TYPEOBS= option or the de-
fault value –TYPE– , the TYPE list variable value is ignored.

NODEDATA= Data Set

See the section “Getting Started: NPSC Problems” on page 50 and the section
“Introductory NPSC Example” on page 51 for a description of this input data set.

Output Data Sets

For NPSC problems, the procedure determines the flow that should pass through each
arc as well as the value that should be assigned to each nonarc variable. The goal is
that the minimum flow bounds, capacities, lower and upper value bounds, and side
constraints are not violated. This goal is reached when total cost incurred by such a
flow pattern and value assignment is feasible and optimal. The solution found must
also conserve flow at each node.

For LP problems, the procedure determines the value that should be assigned to each
variable. The goal is that the lower and upper value bounds and the constraints are not
violated. This goal is reached when the total cost incurred by such a value assignment
is feasible and optimal.

The CONOUT= data set can be produced and contains a solution obtained after per-
forming optimization.

CONOUT= Data Set

The variables in the CONOUT= data set depend on whether or not the problem has a
network component. If the problem has a network component, the variables and their
possible values in an observation are as follows:

–FROM– a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable.

–TO– a head node of an arc. This is a missing value if an observation
has information about a nonarc variable.

–COST– the cost of an arc or the objective function coefficient of a nonarc
variable

–CAPAC– the capacity of an arc or upper value bound of a nonarc variable

Output Data Sets � 107

–LO– the lower flow bound of an arc or lower value bound of a nonarc
variable

–NAME– a name of an arc or nonarc variable
–SUPPLY– the supply of the tail node of the arc in the observation. This is

a missing value if an observation has information about a nonarc
variable.

–DEMAND– the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable.

–FLOW– the flow through the arc or value of the nonarc variable
–FCOST– flow cost, the product of –COST– and –FLOW–
–RCOST– the reduced cost of the arc or nonarc variable
–ANUMB– the number of the arc (positive) or nonarc variable (nonpositive);

used for warm starting PROC NETFLOW
–TNUMB– the number of the tail node in the network basis spanning tree;

used for warm starting PROC NETFLOW
–STATUS– the status of the arc or nonarc variable

If the problem does not have a network component, the variables and their possible
values in an observation are as follows:

–OBJFN– the objective function coefficient of a variable
–UPPERBD the upper value bound of a variable
–LOWERBD the lower value bound of a variable
–NAME– the name of a variable
–VALUE– the value of the variable
–FCOST– objective function value for that variable; the product of

–OBJFN– and –VALUE–

The variables present in the ARCDATA= data set are present in a CONOUT= data
set. For example, if there is a variable called tail in the ARCDATA= data set and you
specified the SAS variable list

from tail;

then tail is a variable in the CONOUT= data sets instead of –FROM– . Any ID list
variables also appear in the CONOUT= data sets.

MPSOUT= Data Set

The MPSOUT= data set contains problem data converted from a PROC INTPOINT
format into an MPS-format SAS data set. The six fields, FIELD1 to FIELD6, in
the MPSOUT= data set correspond to the six columns in MPS standard. For more
information about the MPS-format SAS data set, see Chapter 14, “The MPS-Format
SAS Data Set.”

108 � Chapter 2. The INTPOINT Procedure

Converting Any PROC INTPOINT Format to an MPS-Format
SAS Data Set
The MPSOUT= option enables you to convert an input data set for the INTPOINT
procedure into an MPS-format SAS data set. The converted data set is readable by
the OPTLP procedure.

The conversion can handle linear programs and network flow formulations. If you
specify a network flow formulation, it will be converted into an equivalent linear
program. When multiple objective row names are present, rows with the name en-
countered first are combined into the objective row. The remaining rows are marked
as free rows.

For information about how the contents of the MPS-format SAS data set are inter-
preted, see Chapter 14, “The MPS-Format SAS Data Set.”

For an example that demonstrates the use of the MPSOUT= option, see Example 2.7.

Case Sensitivity
Whenever the INTPOINT procedure has to compare character strings, whether they
are node names, arc names, nonarc names, LP variable names, or constraint names,
if the two strings have different lengths, or on a character by character basis the
character is different or has different cases, PROC INTPOINT judges the character
strings to be different.

Not only is this rule enforced when one or both character strings are obtained as
values of SAS variables in PROC INTPOINT’s input data sets, it also should be
obeyed if one or both character strings were originally SAS variable names, or were
obtained as the values of options or statements parsed to PROC INTPOINT. For ex-
ample, if the network has only one node that has supply capability, or if you are
solving a MAXFLOW or SHORTPATH problem, you can indicate that node using
the SOURCE= option. If you specify

proc intpoint source=NotableNode

then PROC INTPOINT looks for a value of the TAILNODE list variable that is
NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase.
The name of the node searched for would be NOTABLENODE, even if this was your
SAS code:

proc intpoint source=NotableNode

If you want PROC INTPOINT to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified, and you are running SAS software
Version 6, or you are running SAS software Version 7 onward and have specified

Flow and Value Bounds � 109

options validvarname=v6;

all values of the SAS variables that belong to the NAME list are uppercased. This is
because the SAS System has uppercased all SAS variable names, particularly those
in the VAR list of the CONDATA= data set.

Entities that contain blanks must be enclosed in quotes.

Loop Arcs

Loop arcs (which are arcs directed toward nodes from which they originate) are pro-
hibited. Rather, introduce a dummy intermediate node in loop arcs. For example,
replace arc (A,A) with (A,B) and (B,A); B is the name of a new node, and it must be
distinct for each loop arc.

Multiple Arcs

Multiple arcs with the same tail and head nodes are prohibited. PROC INTPOINT
checks to ensure there are no such arcs before proceeding with the optimization.
Introduce a new dummy intermediate node in multiple arcs. This node must be dis-
tinct for each multiple arc. For example, if some network has three arcs directed
from node A toward node B, then replace one of these three with arcs (A,C) and
(C,B) and replace another one with (A,D) and (D,B). C and D are new nodes added
to the network.

Flow and Value Bounds

The capacity and lower flow bound of an arc can be equal. Negative arc capacities
and lower flow bounds are permitted. If both arc capacities and lower flow bounds
are negative, the lower flow bound must be at least as negative as the capacity. An arc
(A,B) that has a negative flow of −f units can be interpreted as an arc that conveys f
units of flow from node B to node A.

The upper and lower value bound of a nonarc variable can be equal. Negative upper
and lower bounds are permitted. If both are negative, the lower bound must be at least
as negative as the upper bound.

When solving an LP, the upper and lower value bounds of an LP variable can be equal.
Negative upper and lower bounds are permitted. If both are negative, the lower bound
must be at least as negative as the upper bound.

In short, for any problem to be feasible, a lower bound must be ≤ the associated
upper bound.

110 � Chapter 2. The INTPOINT Procedure

Tightening Bounds and Side Constraints

If any piece of data is furnished to PROC INTPOINT more than once, PROC
INTPOINT checks for consistency so that no conflict exists concerning the data val-
ues. For example, if the cost of some arc is seen to be one value and as more data are
read, the cost of the same arc is seen to be another value, PROC INTPOINT issues
an error message on the SAS log and stops. There are two exceptions to this:

• The bounds of arcs and nonarc variables, or the bounds of LP variables, are
made as tight as possible. If several different values are given for the lower
flow bound of an arc, the greatest value is used. If several different values are
given for the lower bound of a nonarc or LP variable, the greatest value is used.
If several different values are given for the capacity of an arc, the smallest value
is used. If several different values are given for the upper bound of a nonarc or
LP variable, the smallest value is used.

• Several values can be given for inequality constraint right-hand sides. For a
particular constraint, the lowest rhs value is used for the rhs if the constraint is
of less than or equal to type. For a particular constraint, the greatest rhs value
is used for the rhs if the constraint is of greater than or equal to type.

Reasons for Infeasibility

Before optimization commences, PROC INTPOINT tests to ensure that the problem
is not infeasible by ensuring that, with respect to supplies, demands, and arc flow
bounds, flow conservation can be obeyed at each node:

• Let IN be the sum of lower flow bounds of arcs directed toward a node plus
the node’s supply. Let OUT be the sum of capacities of arcs directed from that
node plus the node’s demand. If IN exceeds OUT, not enough flow can leave
the node.

• Let OUT be the sum of lower flow bounds of arcs directed from a node plus the
node’s demand. Let IN be the total capacity of arcs directed toward the node
plus the node’s supply. If OUT exceeds IN, not enough flow can arrive at the
node.

Reasons why a network problem can be infeasible are similar to those previously
mentioned but apply to a set of nodes rather than for an individual node.

Reasons for Infeasibility � 111

Consider the network illustrated in Figure 2.10.

NODE_1----------------->NODE_2
/ capac=55 \

/ lo=50 \
/ \
/ \

/ \
NODE_3 NODE_4

supply=100 \ / demand=120
\ /
\ /
\ capac=62 /
\ lo=60 /
NODE_5----------------->NODE_6

Figure 2.10. An Infeasible Network

The demand of NODE–4 is 120. That can never be satisfied because the maximal
flow through arcs (NODE–1, NODE–2) and (NODE–5, NODE–6) is 117. More
specifically, the implicit supply of NODE–2 and NODE–6 is only 117, which is
insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE–1, NODE–2) and (NODE–5,
NODE–6) are greater than the flow that can reach the tail nodes of these arcs, that,
by coincidence, is the total supply of the network. The implicit demand of nodes
NODE–1 and NODE–5 is 110, which is greater than the amount of flow that can
reach these nodes.

112 � Chapter 2. The INTPOINT Procedure

Missing S Supply and Missing D Demand Values

In some models, you may want a node to be either a supply or demand node but you
want the node to supply or demand the optimal number of flow units. To indicate
that a node is such a supply node, use a missing S value in the SUPPLY list variable
in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data
set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in
the NODEDATA= data set.

Suppose the oil example in the section “Introductory NPSC Example” on page 51 is
changed so that crude oil can be obtained from either the Middle East or U.S.A. in
any amounts. You should specify that the node middle east is a supply node, but you
do not want to stipulate that it supplies 100 units, as before. The node u.s.a. should
also remain a supply node, but you do not want to stipulate that it supplies 80 units.
You must specify that these nodes have missing S supply capabilities:

title ’Oil Industry Example’;
title3 ’Crude Oil can come from anywhere’;
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The following PROC INTPOINT run uses the same ARCDATA= and CONDATA=
data sets used in the section “Introductory NPSC Example” on page 51:

proc intpoint
bytes=100000
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

proc print;
var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
sum _fcost_;
run;

Missing S Supply and Missing D Demand Values � 113

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 7.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 10 constraints from the

problem.
NOTE: The preprocessor eliminated 23 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 11.

NOTE: The preprocessor eliminated 9 variables from the
problem.

NOTE: 2 columns, 0 rows and 2 coefficients were added to
the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 16 nonzero elements in A * A transpose.
NOTE: Of the 9 rows and columns, 4 are sparse.
NOTE: There are 11 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 5 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 7 iterations.
NOTE: Objective = 50075.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.
NOTE: There were 18 observations read from the data set

WORK.ARCD1.

114 � Chapter 2. The INTPOINT Procedure

NOTE: There were 6 observations read from the data set
WORK.MISS_S.

NOTE: There were 4 observations read from the data set
WORK.COND1.

The CONOUT= data set is shown in Figure 2.11.

Oil Industry Example

Crude Oil can come from anywhere

Obs _from_ _to_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 refinery 1 r1 200 175 50 145.000 29000.00
2 refinery 2 r2 220 100 35 35.000 7700.00
3 r1 ref1 diesel 0 75 0 36.250 0.00
4 r1 ref1 gas 0 140 0 108.750 0.00
5 r2 ref2 diesel 0 75 0 8.750 0.00
6 r2 ref2 gas 0 100 0 26.250 0.00
7 middle east refinery 1 63 95 20 20.000 1260.00
8 u.s.a. refinery 1 55 99999999 0 125.000 6875.00
9 middle east refinery 2 81 80 10 10.000 810.00
10 u.s.a. refinery 2 49 99999999 0 25.000 1225.00
11 ref1 diesel servstn1 diesel 18 99999999 0 30.000 540.00
12 ref2 diesel servstn1 diesel 36 99999999 0 0.000 0.00
13 ref1 gas servstn1 gas 15 70 0 68.750 1031.25
14 ref2 gas servstn1 gas 17 35 5 26.250 446.25
15 ref1 diesel servstn2 diesel 17 99999999 0 6.250 106.25
16 ref2 diesel servstn2 diesel 23 99999999 0 8.750 201.25
17 ref1 gas servstn2 gas 22 60 0 40.000 880.00
18 ref2 gas servstn2 gas 31 99999999 0 0.000 0.00

========
50075.00

Figure 2.11. Missing S SUPDEM Values in NODEDATA

The optimal supplies of nodes middle east and u.s.a. are 30 and 150 units, re-
spectively. For this example, the same optimal solution is obtained if these nodes had
supplies less than these values (each supplies 1 unit, for example) and the THRUNET
option was specified in the PROC INTPOINT statement. With the THRUNET option
active, when total supply exceeds total demand, the specified nonmissing demand
values are the lowest number of flow units that must be absorbed by the correspond-
ing node. This is demonstrated in the following PROC INTPOINT run. The missing
S is most useful when nodes are to supply optimal numbers of flow units and it turns
out that for some nodes, the optimal supply is 0.

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

proc intpoint
bytes=100000

Missing S Supply and Missing D Demand Values � 115

thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

proc print;
var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
sum _fcost_;
run;

The following messages appear on the SAS log. Note that the Total supply= 2, not 0
as in the last run:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 7.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 10 constraints from the

problem.
NOTE: The preprocessor eliminated 23 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 11.
NOTE: The preprocessor eliminated 9 variables from the

problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 16 nonzero elements in A * A transpose.
NOTE: Of the 9 rows and columns, 4 are sparse.
NOTE: There are 11 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 5 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the

116 � Chapter 2. The INTPOINT Procedure

sparse rows of A * A transpose.
NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 7 iterations.
NOTE: Objective = 50075.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.
NOTE: There were 18 observations read from the data set

WORK.ARCD1.
NOTE: There were 6 observations read from the data set

WORK.MISS_S_X.
NOTE: There were 4 observations read from the data set

WORK.COND1.

If total supply exceeds total demand, any missing S values are ignored. If total de-
mand exceeds total supply, any missing D values are ignored.

Balancing Total Supply and Total Demand

When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC INTPOINT
adds an extra node (called the excess node) to the problem and sets the demand at
that node equal to the difference between total supply and total demand. There are
three ways that this excess node can be joined to the network. All three ways entail
PROC INTPOINT generating a set of arcs (henceforth referred to as the generated
arcs) that are directed toward the excess node. The total amount of flow in generated
arcs equals the demand of the excess node. The generated arcs originate from one of
three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs origi-
nate from are all demand nodes, even those demand nodes with unspecified demand
capability. You indicate that a node has unspecified demand capability by using a
missing D value instead of an actual value for demand data (discussed in the section
“Missing S Supply and Missing D Demand Values” on page 112). The value speci-
fied as the demand of a demand node is in effect a lower bound of the number of flow
units that node can actually demand. For missing D demand nodes, this lower bound
is zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are demand nodes with unspecified
demand capability (nodes with missing D demand) or not.

If there are missing D demand nodes, these nodes are the set of nodes that generated
arcs originate from. The value specified as the demand of a demand node, if not
missing D, is the number of flow units that node can actually demand. For a missing
D demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate
from are the set of supply nodes. The value specified as the supply of a supply node

How to Make the Data Read of PROC INTPOINT More Efficient � 117

is in effect an upper bound of the number of flow units that node can actually supply.
For missing S supply nodes (discussed in the section “Missing S Supply and Missing
D Demand Values” on page 112), this upper bound is zero, so missing S nodes when
total supply exceeds total demand are transshipment nodes, that is, nodes that neither
supply nor demand flow.

When Total Supply Is Less Than Total Demand

When total supply of a network problem is less than total demand, PROC INTPOINT
adds an extra node (called the excess node) to the problem and sets the supply at that
node equal to the difference between total demand and total supply. There are three
ways that this excess node can be joined to the network. All three ways entail PROC
INTPOINT generating a set of arcs (henceforth referred to as the generated arcs) that
originate from the excess node. The total amount of flow in generated arcs equals the
supply of the excess node. The generated arcs are directed toward one of three sets
of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are
directed toward are all supply nodes, even those supply nodes with unspecified supply
capability. You indicate that a node has unspecified supply capability by using a
missing S value instead of an actual value for supply data (discussed in the section
“Missing S Supply and Missing D Demand Values” on page 112). The value specified
as the supply of a supply node is in effect a lower bound of the number of flow units
that the node can actually supply. For missing S supply nodes, this lower bound is
zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are supply nodes with unspecified
supply capability (nodes with missing S supply) or not.

If there are missing S supply nodes, these nodes are the set of nodes that generated
arcs are directed toward. The value specified as the supply of a supply node, if not
missing S, is the number of flow units that the node can actually supply. For a missing
S supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed
toward are the set of demand nodes. The value specified as the demand of a demand
node is in effect an upper bound of the number of flow units that node can actually
demand. For missing D demand nodes (discussed in the section “Missing S Supply
and Missing D Demand Values” on page 112), this upper bound is zero, so missing
D nodes when total supply is less than total demand are transshipment nodes, that is,
nodes that neither supply nor demand flow.

How to Make the Data Read of PROC INTPOINT More Efficient
This section contains information that is useful when you want to solve large
constrained network problems. However, much of this information is also use-
ful if you have a large linear programming problem. All of the options de-
scribed in this section that are not directly applicable to networks (options such as
ARCS–ONLY–ARCDATA, ARC–SINGLE–OBS, NNODES=, and NARCS=) can
be specified to improve the speed at which LP data is read.

118 � Chapter 2. The INTPOINT Procedure

Large Constrained Network Problems

Many of the models presented to PROC INTPOINT are enormous. They can be
considered large by linear programming standards; problems with thousands, even
millions, of variables and constraints. When dealing with side constrained network
programming problems, models can have not only a linear programming component
of that magnitude, but also a larger, possibly much larger, network component.

The majority of network problem’s decision variables are arcs. Like an LP decision
variable, an arc has an objective function coefficient, upper and lower value bounds,
and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite
similar to an LP variable and places the same memory demands on optimization
software as an LP variable. But a typical network model has many more arcs and
nonarc variables than the typical LP model has variables. And arcs have tail and head
nodes. Storing and processing node names require huge amounts of memory. To
make matters worse, node names occupy memory at times when a large amount of
other data should reside in memory as well.

While memory requirements are lower for a model with embedded network compo-
nent compared with the equivalent LP once optimization starts, the same is usually
not true during the data read. Even though nodal flow conservation constraints in
the LP should not be specified in the constrained network formulation, the memory
requirements to read the latter are greater because each arc (unlike an LP variable)
originates at one node and is directed toward another.

Paging

PROC INTPOINT has facilities to read data when the available memory is insufficient
to store all the data at once. PROC INTPOINT does this by allocating memory for
different purposes; for example, to store an array or receive data read from an input
SAS data set. After that memory has filled, the information is written to disk and
PROC INTPOINT can resume filling that memory with new information. Often,
information must be retrieved from disk so that data previously read can be examined
or checked for consistency. Sometimes, to prevent any data from being lost, or to
retain any changes made to the information in memory, the contents of the memory
must be sent to disk before other information can take its place. This process of
swapping information to and from disk is called paging. Paging can be very time-
consuming, so it is crucial to minimize the amount of paging performed.

There are several steps you can take to make PROC INTPOINT read the data of
network and linear programming models more efficiently, particularly when memory
is scarce and the amount of paging must be reduced. PROC INTPOINT will then be
able to tackle large problems in what can be considered reasonable amounts of time.

The Order of Observations

PROC INTPOINT is quite flexible in the ways data can be supplied to it. Data can
be given by any reasonable means. PROC INTPOINT has convenient defaults that
can save you work when generating the data. There can be several ways to supply
the same piece of data, and some pieces of data can be given more than once. PROC
INTPOINT reads everything, then merges it all together. However, this flexibility and

How to Make the Data Read of PROC INTPOINT More Efficient � 119

convenience come at a price; PROC INTPOINT may not assume the data has a char-
acteristic that, if possessed by the data, could save time and memory during the data
read. Several options can indicate that the data has some exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA=
data set or the CONDATA= data set, or both. Every time it is given in the ARCDATA=
data set, a check is made to ensure that the new value is the same as any correspond-
ing value read in a previous observation of the ARCDATA= data set. Every time it
is given in the CONDATA= data set, a check is made to ensure that the new value is
the same as the value read in a previous observation of the CONDATA= data set, or
previously in the ARCDATA= data set. PROC INTPOINT would save time if it knew
that arc cost data would be encountered only once while reading the ARCDATA= data
set, so performing the time-consuming check for consistency would not be necessary.
Also, if you indicate that the CONDATA= data set contains data for constraints only,
PROC INTPOINT will not expect any arc information, so memory will not be allo-
cated to receive such data while reading the CONDATA= data set. This memory is
used for other purposes and this might lead to a reduction in paging. If applicable,
use the ARC–SINGLE–OBS or the CON–SINGLE–OBS option, or both, and the
NON–REPLIC=COEFS specification to improve how the ARCDATA= data set and
the CONDATA= data set are read.

PROC INTPOINT allows the observations in input data sets to be in any order.
However, major time savings can result if you are prepared to order observations
in particular ways. Time spent by the SORT procedure to sort the input data sets,
particularly the CONDATA= data set, may be more than made up for when PROC
INTPOINT reads them, because PROC INTPOINT has in memory information pos-
sibly used when the previous observation was read. PROC INTPOINT can assume a
piece of data is either similar to that of the last observation read or is new. In the first
case, valuable information such as an arc or a nonarc variable number or a constraint
number is retained from the previous observation. In the last case, checking the data
with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain
data for the same arc or nonarc variable or the same row pays off. PROC INTPOINT
establishes whether an observation being read is similar to the observation just read.

In practice, many input data sets for PROC INTPOINT have this characteristic, be-
cause it is natural for data for each constraint to be grouped together (when using
the dense format of the CONDATA= data set) or data for each column to be grouped
together (when using the sparse format of the CONDATA= data set). If data for each
arc or nonarc is spread over more than one observation of the ARCDATA= data set,
it is natural to group these observations together.

Use the GROUPED= option to indicate whether observations of the ARCDATA=
data set, the CONDATA= data set, or both, are grouped in a way that can be exploited
during data read.

You can save time if the type data for each row appears near the top of the
CONDATA= data set, especially if it has the sparse format. Otherwise, when read-
ing an observation, if PROC INTPOINT does not know if a row is a constraint or

120 � Chapter 2. The INTPOINT Procedure

special row, the data is set aside. Once the data set has been completely read, PROC
INTPOINT must reprocess the data it set aside. By then, it knows the type of each
constraint or row or, if its type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC INTPOINT to make better utilization of available memory,
you can specify options that indicate the approximate size of the model. PROC
INTPOINT then knows what to expect. For example, if you indicate that the problem
has no nonarc variables, PROC INTPOINT will not allocate memory to store nonarc
data. That memory is better utilized for other purposes. Memory is often allocated
to receive or store data of some type. If you indicate that the model does not have
much data of a particular type, the memory that would otherwise have been allocated
to receive or store that data can be used to receive or store data of another type.

The problem size options are as follows:

• NNODES= approximate number of nodes

• NARCS= approximate number of arcs

• NNAS= approximate number of nonarc variables or LP variables

• NCONS= approximate number of NPSC side constraints or LP constraints

• NCOEFS= approximate number of NPSC side constraint coefficients or LP
constraint coefficients

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these options for the model, but the more you do,
the better. If you do not specify some or all of these options, PROC INTPOINT
guesses the size of the problem by using what it already knows about the model.
Sometimes PROC INTPOINT guesses the size of the model by looking at the number
of observations in the ARCDATA= and the CONDATA= data sets. However, PROC
INTPOINT uses rough rules of thumb, that typical models are proportioned in certain
ways (for example, if there are constraints, then arcs, nonarc variables, or LP variables
usually have about five constraint coefficients). If your model has an unusual shape
or structure, you are encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overesti-
mate the values. For example, if you specify NARCS=10000 but the model has 10100
arcs, when dealing with the last 100 arcs, PROC INTPOINT might have to page out
data for 10000 arcs each time one of the last arcs must be dealt with. Memory could
have been allocated for all 10100 arcs without affecting (much) the rest of the data
read, so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC
INTPOINT does not know it. When PROC INTPOINT knows the “real” value, that
value is used instead of Nxxxx= .

ARCS–ONLY–ARCDATA indicates that data for only arcs are in the ARCDATA=
data set. Memory would not be wasted to receive data for nonarc variables.

Use the memory usage options:

How to Make the Data Read of PROC INTPOINT More Efficient � 121

• The BYTES= option specifies the size of PROC INTPOINT main working
memory in number of bytes.

• The MEMREP option indicates that memory usage report is to be displayed on
the SAS log.

Specifying an appropriate value for the BYTES= parameter is particularly important.
Specify as large a number as possible, but not so large a number that will cause PROC
INTPOINT (that is, the SAS System running underneath PROC INTPOINT) to run
out of memory.

PROC INTPOINT reports its memory requirements on the SAS log if you specify the
MEMREP option.

Use Defaults to Reduce the Amount of Data

Use the parameters that specify default values as much as possible. For example,
if there are many arcs with the same cost value c, use DEFCOST=c for arcs that
have that cost. Use missing values in the COST variable in the ARCDATA= data set
instead of c. PROC INTPOINT ignores missing values, but must read, store, and pro-
cess nonmissing values, even if they are equal to a default option or could have been
equal to a default parameter had it been specified. Sometimes, using default parame-
ters makes the need for some SAS variables in the ARCDATA= and the CONDATA=
data sets no longer necessary, or reduces the quantity of data that must be read. The
default options are

• DEFCOST= default cost of arcs, objective function of nonarc variables or LP
variables

• DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc
variables or LP variables

• DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or
LP variables

• DEFCONTYPE= LE or DEFCONTYPE= <=
DEFCONTYPE= EQ or DEFCONTYPE= =
DEFCONTYPE= GE or DEFCONTYPE= >=

DEFCONTYPE=LE is the default.

The default options themselves have defaults. For example, you do not need to spec-
ify DEFCOST=0 in the PROC INTPOINT statement. You should still have missing
values in the COST variable in the ARCDATA= data set for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

• SOURCE= name of single node that has supply capability

• SUPPLY= the amount of supply at SOURCE

• SINK= name of single node that demands flow

• DEMAND= the amount of flow SINK demands

122 � Chapter 2. The INTPOINT Procedure

Do not specify that a constraint has zero right-hand-side values. That is the default.
The only time it might be practical to specify a zero rhs is in observations of the
CONDATA= data set read early so that PROC INTPOINT can infer that a row is a
constraint. This could prevent coefficient data from being put aside because PROC
INTPOINT did not know the row was a constraint.

Names of Things

To cut data read time and memory requirements, reduce the number of bytes in the
longest node name, the longest arc name, the longest nonarc variable name, the
longest LP variable name, and the longest constraint name to 8 bytes or less. The
longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable
in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC INTPOINT can have a default name for each arc. If an arc is directed
from node tailname toward node headname, the default name for that arc is
tailname–headname. If you do not want PROC INTPOINT to use these default arc
names, specify NAMECTRL=1. Otherwise, PROC INTPOINT must use memory for
storing node names and these node names must be searched often.

If you want to use the default tailname–headname name, that is, NAMECTRL=2
or NAMECTRL=3, do not use underscores in node names. If the CONDATA has
a dense format and has a variable in the VAR list A–B–C–D, or if the value
A–B–C–D is encountered as a value of the COLUMN list variable when reading
the CONDATA= data set that has the sparse format, PROC INTPOINT first looks
for a node named A. If it finds it, it looks for a node called B–C–D. It then looks
for a node with the name A–B and possibly a node with name C–D. A search is
then conducted for a node named A–B–C and possibly a node named D is done.
Underscores could have caused PROC INTPOINT to look unnecessarily for nonexis-
tent nodes. Searching for node names can be expensive, and the amount of memory to
store node names is often large. It might be better to assign the arc name A–B–C–D
directly to an arc by having that value as a NAME list variable value for that arc in
the ARCDATA= data set and specify NAMECTRL=1.

Other Ways to Speed Up Data Reads

Arcs and nonarc variables, or LP variables, can have associated with them values or
quantities that have no bearing on the optimization. This information is given in the
ARCDATA= data set in the ID list variables. For example, in a distribution problem,
information such as truck number and driver’s name can be associated with each arc.
This is useful when the optimal solution saved in the CONOUT= data set is analyzed.
However, PROC INTPOINT needs to reserve memory to process this information
when data is being read. For large problems when memory is scarce, it might be
better to remove ancillary data from the ARCDATA. After PROC INTPOINT runs,
use SAS software to merge this information into the CONOUT= data set that contains
the optimal solution.

Stopping Criteria � 123

Stopping Criteria

There are several reasons why PROC INTPOINT stops interior point optimization.
Optimization stops when

• the number of iteration equals MAXITERB=m

• the relative gap (duality gap/(cT x)) between the primal and dual objectives
is smaller than the value of the PDGAPTOL= option, and both the primal and
dual problems are feasible. Duality gap is defined in the section “Interior Point
Algorithmic Details” on page 35.

PROC INTPOINT may stop optimization when it detects that the rate at which the
complementarity or duality gap is being reduced is too slow; that is, that there are
consecutive iterations when the complementarity or duality gap has stopped getting
smaller and the infeasibilities, if nonzero, have also stalled. Sometimes this indicates
that the problem is infeasible.

The reasons to stop optimization outlined in the previous paragraph will be termed
the usual stopping conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual
stopping criteria are inappropriate. PROC INTPOINT might stop optimizing prema-
turely. If it were allowed to perform additional optimization, a better solution would
be found. On other occasions, PROC INTPOINT might do too much work. A suf-
ficiently good solution might be reached several iterations before PROC INTPOINT
eventually stops.

You can see PROC INTPOINT’s progress to the optimum by specifying
PRINTLEVEL2=2. PROC INTPOINT will produce a table on the SAS log.
A row of the table is generated during each iteration and consists of values of
the affine step complementarity, the complementarity of the solution for the next
iteration, the total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

section “Interior Point: Upper Bounds” on page 39), the total constraint infeasibility∑m
i=1 infeasci (see the infeasc array in the section “Interior Point Algorithmic

Details” on page 35), and the total dual infeasibility
∑n

i=1 infeasdi (see the infeasd

array in the section “Interior Point Algorithmic Details” on page 35). As optimization
progresses, the values in all columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parameters: the
STOP–x and the KEEPGOING–x parameters. The STOP–x parameters (STOP–C,
STOP–DG, STOP–IB, STOP–IC, and STOP–ID) are used to test for some con-
dition at the beginning of each iteration and if met, to stop optimizing imme-
diately. The KEEPGOING–x parameters (KEEPGOING–C, KEEPGOING–DG,
KEEPGOING–IB, KEEPGOING–IC, and KEEPGOING–ID) are used when PROC
INTPOINT would ordinarily stop optimizing but does not if some conditions are not
met.

For the sake of conciseness, a set of options might be referred to as the part of the
option name they have in common followed by the suffix x. For example, STOP–C,

124 � Chapter 2. The INTPOINT Procedure

STOP–DG, STOP–IB, STOP–IC, and STOP–ID will collectively be referred to as
STOP–x.

At the beginning of each iteration, PROC INTPOINT will test whether complemen-
tarity is <= STOP–C (provided you have specified a STOP–C parameter) and if
it is, PROC INTPOINT will stop optimizing. If the duality gap is <= STOP–DG
(provided you have specified a STOP–DG parameter), PROC INTPOINT will stop
optimizing immediately. This is true as well for the other STOP–x parameters that
are related to infeasibilities, STOP–IB, STOP–IC, and STOP–ID.

For example, if you want PROC INTPOINT to stop optimizing for the usual stopping
conditions, plus the additional condition, complementarity ≤ 100 or duality gap ≤
0.001, then use

proc intpoint stop_c=100 stop_dg=0.001

If you want PROC INTPOINT to stop optimizing for the usual stopping conditions,
plus the additional condition, complementarity ≤ 1000 and duality gap ≤ 0.001 and
constraint infeasibility ≤ 0.0001, then use

proc intpoint
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Unlike the STOP–x parameters that cause PROC INTPOINT to stop optimiz-
ing when any one of them is satisfied, the corresponding AND–STOP–x param-
eters (AND–STOP–C, AND–STOP–DG, AND–STOP–IB, AND–STOP–IC, and
AND–STOP–ID) cause PROC INTPOINT to stop only if all (more precisely, all that
are specified) options are satisfied. For example, if PROC INTPOINT should stop
optimizing when

• complementarity ≤ 100 or duality gap ≤ 0.001 or

• complementarity ≤ 1000 and duality gap ≤ 0.001 and constraint infeasibility
≤ 0.000

then use

proc intpoint
stop_c=100 stop_dg=0.001
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Just as the STOP–x parameters have AND–STOP–x partners, the KEEPGOING–x
parameters have AND–KEEPGOING–x partners. The role of the KEEPGOING–x
and AND–KEEPGOING–x parameters is to prevent optimization from stopping too
early, even though a usual stopping criteria is met.

When PROC INTPOINT detects that it should stop optimizing for a usual stopping
condition, it will perform the following tests:

Stopping Criteria � 125

• It will test whether complementarity is > KEEPGOING–C (provided you have
specified a KEEPGOING–C parameter), and if it is, PROC INTPOINT will
perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the primal-dual gap is >
KEEPGOING–DG (provided you have specified a KEEPGOING–DG param-
eter), and if it is, PROC INTPOINT will perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the total bound infea-
sibility

∑n
i=1 infeasbi > KEEPGOING–IB (provided you have specified a

KEEPGOING–IB parameter), and if it is, PROC INTPOINT will perform
more optimization.

• Otherwise, PROC INTPOINT will then test whether the total constraint in-
feasibility

∑m
i=1 infeasci > KEEPGOING–IC (provided you have specified

a KEEPGOING–IC parameter), and if it is, PROC INTPOINT will perform
more optimization.

• Otherwise, PROC INTPOINT will then test whether the total dual infeasi-
bility

∑n
i=1 infeasdi > KEEPGOING–ID (provided you have specified a

KEEPGOING–ID parameter), and if it is, PROC INTPOINT will perform
more optimization.

• Otherwise it will test whether complementarity is > AND–KEEPGOING–C
(provided you have specified an AND–KEEPGOING–C parameter), and the
primal-dual gap is > AND–KEEPGOING–DG (provided you have speci-
fied an AND–KEEPGOING–DG parameter), and the total bound infeasi-
bility

∑n
i=1 infeasbi > AND–KEEPGOING–IB (provided you have speci-

fied an AND–KEEPGOING–IB parameter), and the total constraint infeasi-
bility

∑m
i=1 infeasci > AND–KEEPGOING–IC (provided you have speci-

fied an AND–KEEPGOING–IC parameter), and the total dual infeasibility∑n
i=1 infeasdi > AND–KEEPGOING–ID (provided you have specified an

AND–KEEPGOING–ID parameter), and if it is, PROC INTPOINT will per-
form more optimization.

If all these tests to decide whether more optimization should be performed are false,
optimization is stopped.

The following PROC INTPOINT example is used to illustrate how several stopping
criteria options can be used together:

proc intpoint
stop_c=1000
and_stop_c=2000 and_stop_dg=0.01
and_stop_ib=1 and_stop_ic=1 and_stop_id=1
keepgoing_c=1500
and_keepgoing_c=2500 and_keepgoing_dg=0.05
and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1

At the beginning of each iteration, PROC INTPOINT will stop optimizing if

• complementarity ≤ 1000 or

126 � Chapter 2. The INTPOINT Procedure

• complementarity ≤ 2000 and duality gap ≤ 0.01 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

When PROC INTPOINT determines it should stop optimizing because a usual stop-
ping condition is met, it will stop optimizing only if

• complementarity ≤ 1500 or

• complementarity ≤ 2500 and duality gap ≤ 0.05 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

Macro Variable –ORINTPO

The INTPOINT procedure creates and initializes a SAS macro variable called
–ORINTPO. After exiting the procedure, you can use %put &-ORINTPO; to view
details about the optimization.

The value of –ORINTPO consists of the following:

• ERROR–STATUS, indicating the existence or absence of any errors

• OPT–STATUS, the stage of the optimization, or what solution has been found

• OBJECTIVE=objective, the total cost or profit of the current solution.
OBJECTIVE can be followed by or replaced by one of the following:

– MAXFLOW=maxflow, the amount of the current solution’s maximal
flow, follows OBJECTIVE= if PROC INTPOINT is solving a maximal
flow problem (MAXFLOW specified)

– MINFLOW=minflow, the amount of the current solution’s minimal flow,
follows OBJECTIVE= if PROC INTPOINT is solving a minimal flow
problem (MAXFLOW and MAXIMIZE specified at the same time)

– SHORTEST–PATH=shortpath, the length of the shortest path, appears
instead of OBJECTIVE= if PROC INTPOINT is solving a shortest path
problem (SHORTPATH specified)

– LONGEST–PATH=longpath, the length of the longest path, appears in-
stead of OBJECTIVE= if PROC INTPOINT is solving a longest path
problem (SHORTPATH and MAXIMIZE specified at the same time)

• SOLUTION, describing the nature of the current solution

• ITERATIONS=n, the number of iterations required to solve the problem

• ITERATING–TIME=Ti, the time in seconds taken by the interior point algo-
rithm to perform iterations for solving the problem

• SOLUTION–TIME=Ts, the time in seconds taken by the procedure to presolve
the problem, perform interior point iterations, and postsolve the problem

Nontrailing blank characters that are unnecessary are removed. Ideally, at the end a
PROC INTPOINT run, –ORINTPO has the following value:

Macro Variable –ORINTPO � 127

ERROR_STATUS=OK OPT_STATUS=OPTIMAL OBJECTIVE=x
SOLUTION=OPTIMAL ITERATIONS=x ITERATING_TIME=x SOLUTION_TIME=x

If the preprocessor detects that a problem is infeasible, –ORINTPO has the following
value:

ERROR_STATUS=OK SOLUTION=INFEASIBLE
ITERATIONS=0 ITERATING_TIME=0 SOLUTION_TIME=0

Table 2.2 lists alternate values for the –ORINTPO value parts.

Table 2.2. PROC INTPOINT –ORINTPO Macro Values

Keyword Value Meaning

ERROR–STATUS OK no errors
MEMORY memory request failed
IO input/output error
DATA error in the data
BUG error in PROC INTPOINT
SEMANTIC semantic error
SYNTAX syntax error
UNKNOWN unknown error

OPT–STATUS START no optimization has been done
STAGE–1 performing stage 1 optimization
UNCON–OPT reached unconstrained optimum,

but there are side constraints
STAGE–2 performing stage 2 optimization
OPTIMAL reached the optimum

OBJECTIVE objective total cost or profit
MINFLOW minflow if MAXFLOW and MAXIMIZE

are specified at the same time
MAXFLOW maxflow if MAXFLOW is specified
SHORTEST–PATH shortpath if SHORTPATH is specified
LONGEST–PATH longpath if SHORTPATH and MAXIMIZE

are specified at the same time
SOLUTION NONOPTIMAL more optimization is required

STAGE–2–REQUIRED reached unconstrained optimum,
stage 2 optimization is required

OPTIMAL have determined the optimum
INFEASIBLE infeasible; no solution exists
UNRESOLVED–OPTIMALITY
–OR–FEASIBILITY

the optimization process stops
before optimality or infeasibility
can be proven

MAXITERB–OPTION
–STOPPED–OPTIMIZATION

the interior point algorithm stops
after performing maximal
number of iterations specified by
the MAXITERB= option

128 � Chapter 2. The INTPOINT Procedure

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the SAS
System. If you do not specify a value for this option, then the SAS System sets a
default memory limit. Your operating environment determines the actual size of the
default memory limit, which is sufficient for many applications. However, to solve
most realistic optimization problems, the INTPOINT procedure might require more
memory. Increasing the memory limit can reduce the chance of an out-of-memory
condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-
ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For
example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to
enable the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion for
your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion for your operating environment.

Examples: INTPOINT Procedure � 129

Examples: INTPOINT Procedure
The following examples illustrate some of the capabilities of PROC INTPOINT.
These examples, together with the other SAS/OR examples, can be found in the SAS
sample library.

In order to illustrate variations in the use of the INTPOINT procedure, Example 2.1
through Example 2.5 use data from a company that produces two sizes of televisions.
The company makes televisions with a diagonal screen measurement of either 19
inches or 25 inches. These televisions are made between March and May at both
of the company’s two factories. Each factory has a limit on the total number of
televisions of each screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they
were made, and sold later or shipped to the other factory. Some sets can be used to
fill backorders from the previous months. Each shop demands a number of each type
of TV for the months of March through May. The following network in Figure 2.12
illustrates the model. Arc costs can be interpreted as production costs, storage costs,
backorder penalty costs, inter-factory transportation costs, and sales profits. The arcs
can have capacities and lower flow bounds.

Production

Inventory and
Backorders

Inter-factory

Distribution

fact2

f2–may

f2–apl

f2–mar

fact1

f1–may

f1–apl

f1–mar

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

shop2

shop1
�

�
�

�
�7

-

S
S

S
S
Sw

���������������1

-
PPPPPPPPPPPPPPPq �

�
�

���

�
�

�
��

l
l

l
l

ll
�

�
��

T
T
T
T
T
T
T
T
T

�
�
�
�
�
�
�
�
�
�
�
�
��

%
%

%
%

%
%%

�
�
�
�
�
�
�
�
�
�
���

�
���

��

�
�
�
�
�
�
�
�
�
��

hhhhhh

S
S

S
S

S
S

S
S

S
S

S
Sw

�����������S
S

S
S

S
S

S
S

S
S

S
S

Sw

hhhhhhhhhhh
S

S
S

S
S

S
S

S
S

S
S

S
S

S
Sw

H
HHH

HHH
HHH

Q
Q

Q
Q

Q
Q

Qs

Q
Q

Q
Q

Q
QQs��������������

Q
Q

Q
QQs

"
"

"
"

"
"

"
"

"
"

"
"

"
""

6

?

6

?

6

?

6

?

Figure 2.12. TV Problem

There are two similarly structured networks, one for the 19-inch televisions and the
other for the 25-inch screen TVs. The minimum cost production, inventory, and
distribution plan for both TV types can be determined in the same run of PROC
INTPOINT. To ensure that node names are unambiguous, the names of nodes in the
19-inch network have suffix –1, and the node names in the 25-inch network have
suffix –2.

130 � Chapter 2. The INTPOINT Procedure

Example 2.1. Production, Inventory, Distribution Problem

The following code shows how to save a specific problem’s data in data sets and solve
the model with PROC INTPOINT.

title ’Production Planning/Inventory/Distribution’;
title2 ’Minimum Cost Flow problem’;
title3;

data node0;
input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17. ;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .

Example 2.1. Production, Inventory, Distribution Problem � 131

fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0
arcdata=arc0
conout=arc1;
run;

proc print data=arc1;
var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_

diagonal factory key_id mth_made;
sum _fcost_;
run;

132 � Chapter 2. The INTPOINT Procedure

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 136 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor elimiated 9 constraint coefficients

from the problem.
NOTE: 0 columns, 0 rows and 0 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 48 nonzero elements in A * A transpose.
NOTE: Of the 20 rows and columns, 11 are sparse.
NOTE: There are 40 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 49 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 169009903 0.835362 52835 25664 38005
1 36984291 17566249 0.914108 1649.363089 801.164462 0
2 1982553 866890 0.413012 0 1.461734E-12 0
3 542347 234381 0.153440 0 0 0
4 129900 52560 0.038044 0 0 0
5 25835 18168 0.013343 0 0 0
6 8923.214994 2976.020480 0.002203 0 0 0
7 928.231932 624.792307 0.000463 0 0 0
8 218.771392 74.386900 0.000055131 0 0 0
9 11.639195 2.197862 0.000001629 0 0 0
10 0.089160 0.000399 2.958631E-10 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 10 iterations.
NOTE: Objective = -1281110.35.
NOTE: The data set WORK.ARC1 has 64 observations and 14

variables.
NOTE: There were 64 observations read from the data set

WORK.ARC0.
NOTE: There were 8 observations read from the data set

WORK.NODE0.

The solution is given in the CONOUT=arc1 data sets. In the CONOUT= data set,
shown in Output 2.1.1, the variables diagonal, factory, key–id, and mth–made

Example 2.1. Production, Inventory, Distribution Problem � 133

form an implicit ID list. The diagonal variable has one of two values, 19 or 25.
factory also has one of two values, 1 or 2, to denote the factory where either pro-
duction or storage occurs, from where TVs are either sold to shops or used to satisfy
backorders. production, storage, sales, and backorder are values of the key–id
variable.

Other values of this variable, f1–to–2 and f2–to–1, are used when flow through
arcs represents the transportation of TVs between factories. The mth–made variable
has values March, April, and May, the months when TVs that are modeled as flow
through an arc were made (assuming that no televisions are stored for more than one
month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC INTPOINT run to produce reports and
perform analysis on particular parts of the company’s operation. For example, reports
can be generated for production numbers for each factory; optimal sales figures for
each shop; and how many TVs should be stored, used to fill backorders, sent to the
other factory, or any combination of these, for TVs with a particular screen, those
produced in a particular month, or both.

134 � Chapter 2. The INTPOINT Procedure

Output 2.1.1. CONOUT=ARC1
Production Planning/Inventory/Distribution

Minimum Cost Flow problem

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_ diagonal factory key_id mth_made

1 fact1_1 f1_apr_1 78.60 600 50 600.000 47160.00 19 1 production April
2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00 19 1 storage March
3 f1_may_1 f1_apr_1 28.00 20 0 0.000 0.00 19 1 backorder May
4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00 19 . f2_to_1 April
5 fact1_2 f1_apr_2 174.50 550 50 550.000 95975.00 25 1 production April
6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00 25 1 storage March
7 f1_may_2 f1_apr_2 41.00 15 0 15.000 615.00 25 1 backorder May
8 f2_apr_2 f1_apr_2 21.00 25 0 0.000 0.00 25 . f2_to_1 April
9 fact1_1 f1_mar_1 127.90 500 50 344.999 44125.43 19 1 production March

10 f1_apr_1 f1_mar_1 28.00 20 0 20.000 560.00 19 1 backorder April
11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00 19 . f2_to_1 March
12 fact1_2 f1_mar_2 217.90 400 40 400.000 87160.00 25 1 production March
13 f1_apr_2 f1_mar_2 32.00 30 0 30.000 960.00 25 1 backorder April
14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00 25 . f2_to_1 March
15 fact1_1 f1_may_1 95.10 400 50 50.001 4755.06 19 1 production May
16 f1_apr_1 f1_may_1 12.00 50 0 50.000 600.00 19 1 storage April
17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00 19 . f2_to_1 May
18 fact1_2 f1_may_2 133.30 350 40 40.000 5332.04 25 1 production May
19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00 25 1 storage April
20 f2_may_2 f1_may_2 43.00 25 0 0.000 0.00 25 . f2_to_1 May
21 f1_apr_1 f2_apr_1 11.00 99999999 0 30.000 330.00 19 . f1_to_2 April
22 fact2_1 f2_apr_1 62.40 480 35 480.000 29952.00 19 2 production April
23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00 19 2 storage March
24 f2_may_1 f2_apr_1 25.00 15 0 0.000 0.00 19 2 backorder May
25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00 25 . f1_to_2 April
26 fact2_2 f2_apr_2 196.70 680 35 680.000 133755.99 25 2 production April
27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00 25 2 storage March
28 f2_may_2 f2_apr_2 54.00 15 0 15.000 810.00 25 2 backorder May
29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00 19 . f1_to_2 March
30 fact2_1 f2_mar_1 88.00 450 35 290.000 25520.00 19 2 production March
31 f2_apr_1 f2_mar_1 17.00 15 0 0.000 0.00 19 2 backorder April
32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00 25 . f1_to_2 March
33 fact2_2 f2_mar_2 182.00 650 35 645.000 117389.96 25 2 production March
34 f2_apr_2 f2_mar_2 31.00 15 0 0.000 0.00 25 2 backorder April
35 f1_may_1 f2_may_1 16.00 99999999 0 100.000 1600.01 19 . f1_to_2 May
36 fact2_1 f2_may_1 133.80 250 35 35.000 4683.00 19 2 production May
37 f2_apr_1 f2_may_1 20.00 30 0 15.000 299.99 19 2 storage April
38 f1_may_2 f2_may_2 26.00 99999999 0 0.000 0.00 25 . f1_to_2 May
39 fact2_2 f2_may_2 201.40 550 35 35.000 7049.00 25 2 production May
40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00 25 2 storage April
41 f1_mar_1 shop1_1 -327.65 250 0 154.999 -50785.56 19 1 sales March
42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00 19 1 sales April
43 f1_may_1 shop1_1 -285.00 250 0 0.000 0.00 19 1 sales May
44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74349.99 19 2 sales March
45 f2_apr_1 shop1_1 -290.00 250 0 245.001 -71050.17 19 2 sales April
46 f2_may_1 shop1_1 -292.00 250 0 0.000 0.00 19 2 sales May
47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00 25 1 sales March
48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 -0.01 25 1 sales April
49 f1_may_2 shop1_2 -475.02 99999999 0 25.000 -11875.64 25 1 sales May
50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283915.00 25 2 sales March
51 f2_apr_2 shop1_2 -542.19 500 0 375.000 -203321.08 25 2 sales April
52 f2_may_2 shop1_2 -461.56 500 0 0.000 0.00 25 2 sales May
53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90685.00 19 1 sales March
54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00 19 1 sales April
55 f1_may_1 shop2_1 -245.00 250 0 0.000 0.00 19 1 sales May
56 f2_mar_1 shop2_1 -272.70 250 0 0.000 0.00 19 2 sales March
57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00 19 2 sales April
58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00 19 2 sales May
59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.94 25 1 sales March
60 f1_apr_2 shop2_2 -549.68 99999999 0 535.000 -294078.78 25 1 sales April
61 f1_may_2 shop2_2 -460.00 99999999 0 0.000 0.00 25 1 sales May
62 f2_mar_2 shop2_2 -542.83 500 0 120.000 -65139.47 25 2 sales March
63 f2_apr_2 shop2_2 -559.19 500 0 320.000 -178940.96 25 2 sales April
64 f2_may_2 shop2_2 -489.06 500 0 20.000 -9781.20 25 2 sales May

===========
-1281110.34

Example 2.2. Altering Arc Data � 135

Example 2.2. Altering Arc Data

This example examines the effect of changing some of the arc costs. The backorder
penalty costs are increased by 20 percent. The sales profit of 25-inch TVs sent to the
shops in May is increased by 30 units. The backorder penalty costs of 25-inch TVs
manufactured in May for April consumption is decreased by 30 units. The produc-
tion cost of 19-inch and 25-inch TVs made in May are decreased by 5 units and 20
units, respectively. How does the optimal solution of the network after these arc cost
alterations compare with the optimum of the original network?

These SAS statements produce the new NODEDATA= and ARCDATA= data sets:

title2 ’Minimum Cost Flow problem- Altered Arc Data’;
data arc2;

set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id=’backorder’

then _cost_=_cost_*1.2;
else if _tail_=’f2_may_2’ then _cost_=_cost_-30;

if key_id=’production’ & mth_made=’May’ then
if diagonal=19 then _cost_=_cost_-5;

else _cost_=_cost_-20;
run;

proc intpoint
bytes=100000
printlevel2=2
nodedata=node0
arcdata=arc2
conout=arc3;
run;

proc print data=arc3;
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made;
/* to get this variable order */

sum oldfc _fcost_;
run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: The following messages relate to the equivalent Linear

Programming problem solved by the Interior Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 136 .
NOTE: Number of variables= 68 .

136 � Chapter 2. The INTPOINT Procedure

NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

from the problem.
NOTE: 0 columns, 0 rows and 0 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 48 nonzero elements in A * A transpose.
NOTE: Of the 20 rows and columns, 11 are sparse.
NOTE: There are 40 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 49 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 169822194 0.834344 52835 25664 38174
1 37113367 17651592 0.912723 1650.135100 801.539460 0
2 1990318 739344 0.369751 0 1.363097E-12 0
3 358794 186448 0.125234 0 0 0
4 116081 45454 0.033002 0 0 0
5 26298 16467 0.012077 0 0 0
6 8963.676317 3893.499547 0.002875 0 0 0
7 1615.258886 718.590270 0.000532 0 0 0
8 178.225920 47.380105 0.000035062 0 0 0
9 6.698353 0.020987 1.5531175E-8 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 9 iterations.
NOTE: Objective = -1285086.46.
NOTE: The data set WORK.ARC3 has 64 observations and 17

variables.
NOTE: There were 64 observations read from the data set

WORK.ARC2.
NOTE: There were 8 observations read from the data set

WORK.NODE0.

Example 2.2. Altering Arc Data � 137

The solution is displayed in Output 2.2.1.

Output 2.2.1. CONOUT=ARC3
Minimum Cost Flow problem- Altered arc data

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_

1 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 540.000
2 f1_mar_1 f1_apr_1 50 0 . . 15.00 0.000
3 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0.000
4 f2_apr_1 f1_apr_1 40 0 . . 11.00 0.000
5 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250.000
6 f1_mar_2 f1_apr_2 40 0 . . 20.00 0.000
7 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 15.000
8 f2_apr_2 f1_apr_2 25 0 . . 21.00 0.000
9 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 340.000

10 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20.000
11 f2_mar_1 f1_mar_1 40 0 . . 10.00 40.000
12 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400.000
13 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30.000
14 f2_mar_2 f1_mar_2 25 0 . . 20.00 25.000
15 fact1_1 f1_may_1 400 50 1000 . 90.10 115.000
16 f1_apr_1 f1_may_1 50 0 . . 12.00 0.000
17 f2_may_1 f1_may_1 40 0 . . 13.00 0.000
18 fact1_2 f1_may_2 350 40 1000 . 113.30 350.000
19 f1_apr_2 f1_may_2 40 0 . . 18.00 0.000
20 f2_may_2 f1_may_2 25 0 . . 13.00 0.000
21 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 20.000
22 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480.000
23 f2_mar_1 f2_apr_1 30 0 . . 18.00 0.000
24 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0.000
25 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0.000
26 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 680.000
27 f2_mar_2 f2_apr_2 50 0 . . 28.00 0.000
28 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0.000
29 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0.000
30 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290.000
31 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0.000
32 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0.000
33 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 635.000
34 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0.000
35 f1_may_1 f2_may_1 99999999 0 . . 16.00 115.000
36 fact2_1 f2_may_1 250 35 850 . 128.80 35.000
37 f2_apr_1 f2_may_1 30 0 . . 20.00 0.000
38 f1_may_2 f2_may_2 99999999 0 . . 26.00 335.000
39 fact2_2 f2_may_2 550 35 1500 . 181.40 35.000
40 f2_apr_2 f2_may_2 50 0 . . 38.00 0.000
41 f1_mar_1 shop1_1 250 0 . 900 -327.65 150.000
42 f1_apr_1 shop1_1 250 0 . 900 -300.00 250.000
43 f1_may_1 shop1_1 250 0 . 900 -285.00 0.000
44 f2_mar_1 shop1_1 250 0 . 900 -297.40 250.000
45 f2_apr_1 shop1_1 250 0 . 900 -290.00 250.000
46 f2_may_1 shop1_1 250 0 . 900 -292.00 0.000
47 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0.000
48 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0.000
49 f1_may_2 shop1_2 99999999 0 . 900 -475.02 0.000
50 f2_mar_2 shop1_2 500 0 . 900 -567.83 500.000
51 f2_apr_2 shop1_2 500 0 . 900 -542.19 400.000
52 f2_may_2 shop1_2 500 0 . 900 -491.56 0.000
53 f1_mar_1 shop2_1 250 0 . 900 -362.74 250.000
54 f1_apr_1 shop2_1 250 0 . 900 -300.00 250.000
55 f1_may_1 shop2_1 250 0 . 900 -245.00 0.000
56 f2_mar_1 shop2_1 250 0 . 900 -272.70 0.000
57 f2_apr_1 shop2_1 250 0 . 900 -312.00 250.000
58 f2_may_1 shop2_1 250 0 . 900 -299.00 150.000
59 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455.000
60 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 235.000
61 f1_may_2 shop2_2 99999999 0 . 1450 -460.00 0.000
62 f2_mar_2 shop2_2 500 0 . 1450 -542.83 110.000
63 f2_apr_2 shop2_2 500 0 . 1450 -559.19 280.000
64 f2_may_2 shop2_2 500 0 . 1450 -519.06 370.000

138 � Chapter 2. The INTPOINT Procedure

Obs _FCOST_ oldcost oldflow oldfc diagonal factory key_id mth_made

1 42444.01 78.60 600.000 47160.00 19 1 production April
2 0.00 15.00 0.000 0.00 19 1 storage March
3 0.00 28.00 0.000 0.00 19 1 backorder May
4 0.00 11.00 0.000 0.00 19 . f2_to_1 April
5 43625.00 174.50 550.000 95975.00 25 1 production April
6 0.00 20.00 0.000 0.00 25 1 storage March
7 738.00 41.00 15.000 615.00 25 1 backorder May
8 0.00 21.00 0.000 0.00 25 . f2_to_1 April
9 43486.02 127.90 344.999 44125.43 19 1 production March
10 672.00 28.00 20.000 560.00 19 1 backorder April
11 400.00 10.00 40.000 400.00 19 . f2_to_1 March
12 87160.00 217.90 400.000 87160.00 25 1 production March
13 1152.00 32.00 30.000 960.00 25 1 backorder April
14 500.00 20.00 25.000 500.00 25 . f2_to_1 March
15 10361.47 95.10 50.001 4755.06 19 1 production May
16 0.00 12.00 50.000 600.00 19 1 storage April
17 0.00 13.00 0.000 0.00 19 . f2_to_1 May
18 39655.00 133.30 40.000 5332.04 25 1 production May
19 0.00 18.00 0.000 0.00 25 1 storage April
20 0.00 43.00 0.000 0.00 25 . f2_to_1 May
21 220.00 11.00 30.000 330.00 19 . f1_to_2 April
22 29952.00 62.40 480.000 29952.00 19 2 production April
23 0.00 18.00 0.000 0.00 19 2 storage March
24 0.00 25.00 0.000 0.00 19 2 backorder May
25 0.00 23.00 0.000 0.00 25 . f1_to_2 April
26 133755.99 196.70 680.000 133755.99 25 2 production April
27 0.00 28.00 0.000 0.00 25 2 storage March
28 0.00 54.00 15.000 810.00 25 2 backorder May
29 0.00 11.00 0.000 0.00 19 . f1_to_2 March
30 25520.00 88.00 290.000 25520.00 19 2 production March
31 0.00 17.00 0.000 0.00 19 2 backorder April
32 0.00 23.00 0.000 0.00 25 . f1_to_2 March
33 115570.01 182.00 645.000 117389.96 25 2 production March
34 0.00 31.00 0.000 0.00 25 2 backorder April
35 1840.00 16.00 100.000 1600.01 19 . f1_to_2 May
36 4508.00 133.80 35.000 4683.00 19 2 production May
37 0.00 20.00 15.000 299.99 19 2 storage April
38 8710.00 26.00 0.000 0.00 25 . f1_to_2 May
39 6349.00 201.40 35.000 7049.00 25 2 production May
40 0.00 38.00 0.000 0.00 25 2 storage April
41 -49147.54 -327.65 154.999 -50785.56 19 1 sales March
42 -75000.00 -300.00 250.000 -75000.00 19 1 sales April
43 -0.01 -285.00 0.000 0.00 19 1 sales May
44 -74350.00 -297.40 250.000 -74349.99 19 2 sales March
45 -72499.96 -290.00 245.001 -71050.17 19 2 sales April
46 0.00 -292.00 0.000 0.00 19 2 sales May
47 0.00 -559.76 0.000 0.00 25 1 sales March
48 -0.01 -524.28 0.000 -0.01 25 1 sales April
49 -0.06 -475.02 25.000 -11875.64 25 1 sales May
50 -283915.00 -567.83 500.000 -283915.00 25 2 sales March
51 -216875.92 -542.19 375.000 -203321.08 25 2 sales April
52 0.00 -461.56 0.000 0.00 25 2 sales May
53 -90685.00 -362.74 250.000 -90685.00 19 1 sales March
54 -75000.00 -300.00 250.000 -75000.00 19 1 sales April
55 0.00 -245.00 0.000 0.00 19 1 sales May
56 -0.01 -272.70 0.000 0.00 19 2 sales March
57 -78000.00 -312.00 250.000 -78000.00 19 2 sales April
58 -44849.99 -299.00 150.000 -44850.00 19 2 sales May
59 -283869.94 -623.89 455.000 -283869.94 25 1 sales March
60 -129174.80 -549.68 535.000 -294078.78 25 1 sales April
61 0.00 -460.00 0.000 0.00 25 1 sales May
62 -59711.32 -542.83 120.000 -65139.47 25 2 sales March
63 -156573.27 -559.19 320.000 -178940.96 25 2 sales April
64 -192052.13 -489.06 20.000 -9781.20 25 2 sales May

=========== ===========
-1285086.44 -1281110.34

Example 2.3. Adding Side Constraints � 139

Example 2.3. Adding Side Constraints

The manufacturer of Gizmo chips, which are parts needed to make televisions, can
supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 in time for produc-
tion in each of the months of March and April. However, Gizmo chips will not be in
short supply in May. Three chips are required to make each 19-inch TV while the 25-
inch TVs require four chips each. To limit the production of televisions produced at
factory 1 in March so that the TVs have the correct number of chips, a side constraint
called FACT1 MAR GIZMO is used. The form of this constraint is

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

prod f1 19 mar is the name of the arc directed from the node fact1–1 toward
node f1–mar–1 and, in the previous constraint, designates the flow assigned to this
arc. The ARCDATA= and CONOUT= data sets have arc names in a variable called
–name– .

The other side constraints (shown below) are called FACT2 MAR GIZMO, FACT1
APL GIZMO, and FACT2 APL GIZMO.

3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750

To maintain customer goodwill, the total number of backorders is not to exceed 50
sets. The side constraint TOTAL BACKORDER that models this restriction is

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

The sparse CONDATA= data set format is used. All side constraints are of less than
or equal type. Because this is the default type value for the DEFCONTYPE= op-
tion, type information is not necessary in the following CONDATA=con3. Also,
DEFCONTYPE= <= does not have to be specified in the PROC INTPOINT state-
ment that follows. Notice that the –column– variable value CHIP/BO LIMIT indi-
cates that an observation of the con3 data set contains rhs information. Therefore,
specify RHSOBS=‘CHIP/BO LIMIT’ .

140 � Chapter 2. The INTPOINT Procedure

title2 ’Adding Side Constraints’;
data con3;

input _column_ &$14. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA=
data sets in the following PROC INTPOINT run. The set used depends on which cost
information the arcs are to have.

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node0
ARCDATA=arc2 NODEDATA=node0
ARCDATA=arc3 NODEDATA=node0

arc0, node0, and arc1 were created in Example 2.1. The first two data sets are the
original input data sets.

In the previous example, arc2 was created by modifying arc1 to reflect different arc
costs. arc2 and node0 can also be used as the ARCDATA= and NODEDATA= data
sets in a PROC INTPOINT run.

If you are going to continue optimization using the changed arc costs, it is probably
best to use arc3 and node0 as the ARCDATA= and NODEDATA= data sets.

PROC INTPOINT is used to find the changed cost network solution that obeys the
chip limit and backorder side constraints. An explicit ID list has also been specified
so that the variables oldcost, oldfc, and oldflow do not appear in the subsequent
output data sets:

proc intpoint
bytes=1000000
printlevel2=2

Example 2.3. Adding Side Constraints � 141

nodedata=node0 arcdata=arc3
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
conout=arc4;
id diagonal factory key_id mth_made;
run;

proc print data=arc4;
var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_;

/* to get this variable order */
sum _fcost_;
run;

The following messages appear on the SAS log:

NOTE: The following variables in ARCDATA do not belong to any
SAS variable list. These will be ignored.
FLOW
FCOST
oldcost
oldfc
oldflow

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of side constraint coefficients= 16 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 5 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 152 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 5.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

from the problem.
NOTE: 5 columns, 0 rows and 5 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 74 nonzero elements in A * A transpose.
NOTE: Of the 25 rows and columns, 14 are sparse.
NOTE: There are 74 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 65 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

142 � Chapter 2. The INTPOINT Procedure

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 176663849 0.834344 52835 39643 49140
1 51289701 21890177 0.912033 2958.813395 2220.091192 2621.647223
2 4297808 1359558 0.517260 0 7.06244E-11 42.614836
3 341918 246210 0.159762 0 0 7.723054
4 124303 68295 0.049237 0 0 1.115512
5 46970 29876 0.021786 0 0 0.482224
6 9976.439552 6294.587840 0.004647 0 0 0.094764
7 3266.423958 1984.437170 0.001468 0 0 0.022740
8 472.139836 257.075141 0.000190 0 0 0.003062
9 24.953361 6.458585 0.000004781 0 0 0.000114
10 0.007991 0.000361 2.671196E-10 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 10 iterations.
NOTE: Objective = -1282708.625.
NOTE: The data set WORK.ARC4 has 64 observations and 14

variables.
NOTE: There were 64 observations read from the data set

WORK.ARC3.
NOTE: There were 8 observations read from the data set

WORK.NODE0.
NOTE: There were 21 observations read from the data set

WORK.CON3.

Example 2.3. Adding Side Constraints � 143

Output 2.3.1. CONOUT=ARC4
Adding Side Constraints

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 78.60 600 50 533.333 41920.00
2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00
3 f1_may_1 f1_apr_1 33.60 20 0 0.000 0.00
4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00
5 fact1_2 f1_apr_2 174.50 550 50 250.000 43625.00
6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00
7 f1_may_2 f1_apr_2 49.20 15 0 0.000 0.00
8 f2_apr_2 f1_apr_2 21.00 25 0 0.000 0.00
9 fact1_1 f1_mar_1 127.90 500 50 333.333 42633.33
10 f1_apr_1 f1_mar_1 33.60 20 0 20.000 672.00
11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00
12 fact1_2 f1_mar_2 217.90 400 40 400.000 87160.00
13 f1_apr_2 f1_mar_2 38.40 30 0 30.000 1152.00
14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00
15 fact1_1 f1_may_1 90.10 400 50 128.333 11562.83
16 f1_apr_1 f1_may_1 12.00 50 0 0.000 0.00
17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00
18 fact1_2 f1_may_2 113.30 350 40 350.000 39655.00
19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00
20 f2_may_2 f1_may_2 13.00 25 0 0.000 0.00
21 f1_apr_1 f2_apr_1 11.00 99999999 0 13.333 146.67
22 fact2_1 f2_apr_1 62.40 480 35 480.000 29952.00
23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00
24 f2_may_1 f2_apr_1 30.00 15 0 0.000 0.00
25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00
26 fact2_2 f2_apr_2 196.70 680 35 577.500 113594.25
27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00
28 f2_may_2 f2_apr_2 64.80 15 0 0.000 0.00
29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00
30 fact2_1 f2_mar_1 88.00 450 35 290.000 25520.00
31 f2_apr_1 f2_mar_1 20.40 15 0 0.000 0.00
32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00
33 fact2_2 f2_mar_2 182.00 650 35 650.000 118300.00
34 f2_apr_2 f2_mar_2 37.20 15 0 0.000 0.00
35 f1_may_1 f2_may_1 16.00 99999999 0 115.000 1840.00
36 fact2_1 f2_may_1 128.80 250 35 35.000 4508.00
37 f2_apr_1 f2_may_1 20.00 30 0 0.000 0.00
38 f1_may_2 f2_may_2 26.00 99999999 0 350.000 9100.00
39 fact2_2 f2_may_2 181.40 550 35 122.500 22221.50
40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00
41 f1_mar_1 shop1_1 -327.65 250 0 143.333 -46963.16
42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00
43 f1_may_1 shop1_1 -285.00 250 0 13.333 -3800.00
44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74350.00
45 f2_apr_1 shop1_1 -290.00 250 0 243.333 -70566.67
46 f2_may_1 shop1_1 -292.00 250 0 0.000 0.00
47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00
48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 0.00
49 f1_may_2 shop1_2 -475.02 99999999 0 0.000 0.00
50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283915.00
51 f2_apr_2 shop1_2 -542.19 500 0 400.000 -216876.00
52 f2_may_2 shop1_2 -491.56 500 0 0.000 0.00
53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90685.00
54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00
55 f1_may_1 shop2_1 -245.00 250 0 0.000 0.00
56 f2_mar_1 shop2_1 -272.70 250 0 0.000 0.00
57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00
58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00
59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.95
60 f1_apr_2 shop2_2 -549.68 99999999 0 220.000 -120929.60
61 f1_may_2 shop2_2 -460.00 99999999 0 0.000 0.00
62 f2_mar_2 shop2_2 -542.83 500 0 125.000 -67853.75
63 f2_apr_2 shop2_2 -559.19 500 0 177.500 -99256.23
64 f2_may_2 shop2_2 -519.06 500 0 472.500 -245255.85

===========
-1282708.62

144 � Chapter 2. The INTPOINT Procedure

Example 2.4. Using Constraints and More Alteration to Arc
Data

Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either
shop with an increased profit of 40 dollars each. What is the new optimal solution?

title2 ’Using Constraints and Altering arc data’;
data new_arc4;

set arc4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_=’f1_may_2’ & (_head_=’shop1_2’ | _head_=’shop2_2’)

then _cost_=_cost_-40;
run;

proc intpoint
bytes=1000000
printlevel2=2
arcdata=new_arc4 nodedata=node0
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
conout=arc5;
run;

proc print data=arc5;
var _tail_ _head_ _cost_ _capac_ _lo_

supply _demand_ _name_
flow _fcost_ oldflow oldfc;

/* to get this variable order */
sum oldfc _fcost_;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of side constraint coefficients= 16 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 5 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 152 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 5.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

Example 2.4. Using Constraints and More Alteration to Arc Data � 145

from the problem.
NOTE: 5 columns, 0 rows and 5 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 74 nonzero elements in A * A transpose.
NOTE: Of the 25 rows and columns, 14 are sparse.
NOTE: There are 74 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 65 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 178045680 0.833846 52835 39643 49592
1 51679271 22114244 0.911781 2979.752508 2235.802470 2678.044487
2 4360227 1397064 0.521965 0 2.084022E-11 46.964760
3 337615 239843 0.155358 0 0 8.067907
4 119497 59613 0.042674 0 0 1.263035
5 30689 20758 0.015076 0 0 0.430638
6 9107.182114 7099.343072 0.005192 0 0 0.109413
7 3406.632390 1496.513249 0.001098 0 0 0.003935
8 616.222707 155.883444 0.000114 0 0 0.000480
9 23.880446 1.372116 0.000001007 0 0 0
10 0.000755 0.000068819 -4.28512E-10 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 10 iterations.
NOTE: Objective = -1295661.8.
NOTE: The data set WORK.ARC5 has 64 observations and 17

variables.
NOTE: There were 64 observations read from the data set

WORK.NEW_ARC4.
NOTE: There were 8 observations read from the data set

WORK.NODE0.
NOTE: There were 21 observations read from the data set

WORK.CON3.

146 � Chapter 2. The INTPOINT Procedure

Output 2.4.1. CONOUT=ARC5
Using Constraints and Altering arc data

Obs _tail_ _head_ _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_

1 fact1_1 f1_apr_1 78.60 600 50 1000 .
2 f1_mar_1 f1_apr_1 15.00 50 0 . .
3 f1_may_1 f1_apr_1 33.60 20 0 . .
4 f2_apr_1 f1_apr_1 11.00 40 0 . .
5 fact1_2 f1_apr_2 174.50 550 50 1000 .
6 f1_mar_2 f1_apr_2 20.00 40 0 . .
7 f1_may_2 f1_apr_2 49.20 15 0 . .
8 f2_apr_2 f1_apr_2 21.00 25 0 . .
9 fact1_1 f1_mar_1 127.90 500 50 1000 .
10 f1_apr_1 f1_mar_1 33.60 20 0 . .
11 f2_mar_1 f1_mar_1 10.00 40 0 . .
12 fact1_2 f1_mar_2 217.90 400 40 1000 .
13 f1_apr_2 f1_mar_2 38.40 30 0 . .
14 f2_mar_2 f1_mar_2 20.00 25 0 . .
15 fact1_1 f1_may_1 90.10 400 50 1000 .
16 f1_apr_1 f1_may_1 12.00 50 0 . .
17 f2_may_1 f1_may_1 13.00 40 0 . .
18 fact1_2 f1_may_2 113.30 350 40 1000 .
19 f1_apr_2 f1_may_2 18.00 40 0 . .
20 f2_may_2 f1_may_2 13.00 25 0 . .
21 f1_apr_1 f2_apr_1 11.00 99999999 0 . .
22 fact2_1 f2_apr_1 62.40 480 35 850 .
23 f2_mar_1 f2_apr_1 18.00 30 0 . .
24 f2_may_1 f2_apr_1 30.00 15 0 . .
25 f1_apr_2 f2_apr_2 23.00 99999999 0 . .
26 fact2_2 f2_apr_2 196.70 680 35 1500 .
27 f2_mar_2 f2_apr_2 28.00 50 0 . .
28 f2_may_2 f2_apr_2 64.80 15 0 . .
29 f1_mar_1 f2_mar_1 11.00 99999999 0 . .
30 fact2_1 f2_mar_1 88.00 450 35 850 .
31 f2_apr_1 f2_mar_1 20.40 15 0 . .
32 f1_mar_2 f2_mar_2 23.00 99999999 0 . .
33 fact2_2 f2_mar_2 182.00 650 35 1500 .
34 f2_apr_2 f2_mar_2 37.20 15 0 . .
35 f1_may_1 f2_may_1 16.00 99999999 0 . .
36 fact2_1 f2_may_1 128.80 250 35 850 .
37 f2_apr_1 f2_may_1 20.00 30 0 . .
38 f1_may_2 f2_may_2 26.00 99999999 0 . .
39 fact2_2 f2_may_2 181.40 550 35 1500 .
40 f2_apr_2 f2_may_2 38.00 50 0 . .
41 f1_mar_1 shop1_1 -327.65 250 0 . 900
42 f1_apr_1 shop1_1 -300.00 250 0 . 900
43 f1_may_1 shop1_1 -285.00 250 0 . 900
44 f2_mar_1 shop1_1 -297.40 250 0 . 900
45 f2_apr_1 shop1_1 -290.00 250 0 . 900
46 f2_may_1 shop1_1 -292.00 250 0 . 900
47 f1_mar_2 shop1_2 -559.76 99999999 0 . 900
48 f1_apr_2 shop1_2 -524.28 99999999 0 . 900
49 f1_may_2 shop1_2 -515.02 99999999 0 . 900
50 f2_mar_2 shop1_2 -567.83 500 0 . 900
51 f2_apr_2 shop1_2 -542.19 500 0 . 900
52 f2_may_2 shop1_2 -491.56 500 0 . 900
53 f1_mar_1 shop2_1 -362.74 250 0 . 900
54 f1_apr_1 shop2_1 -300.00 250 0 . 900
55 f1_may_1 shop2_1 -245.00 250 0 . 900
56 f2_mar_1 shop2_1 -272.70 250 0 . 900
57 f2_apr_1 shop2_1 -312.00 250 0 . 900
58 f2_may_1 shop2_1 -299.00 250 0 . 900
59 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450
60 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450
61 f1_may_2 shop2_2 -500.00 99999999 0 . 1450
62 f2_mar_2 shop2_2 -542.83 500 0 . 1450
63 f2_apr_2 shop2_2 -559.19 500 0 . 1450
64 f2_may_2 shop2_2 -519.06 500 0 . 1450

Example 2.4. Using Constraints and More Alteration to Arc Data � 147

Obs _name_ _FLOW_ _FCOST_ oldflow oldfc

1 prod f1 19 apl 533.333 41920.00 533.333 41920.00
2 0.000 0.00 0.000 0.00
3 back f1 19 may 0.000 0.00 0.000 0.00
4 0.000 0.00 0.000 0.00
5 prod f1 25 apl 250.000 43625.00 250.000 43625.00
6 0.000 0.00 0.000 0.00
7 back f1 25 may 0.000 0.00 0.000 0.00
8 0.000 0.00 0.000 0.00
9 prod f1 19 mar 333.333 42633.33 333.333 42633.33
10 back f1 19 apl 20.000 672.00 20.000 672.00
11 40.000 400.00 40.000 400.00
12 prod f1 25 mar 400.000 87160.00 400.000 87160.00
13 back f1 25 apl 30.000 1152.00 30.000 1152.00
14 25.000 500.00 25.000 500.00
15 128.333 11562.83 128.333 11562.83
16 0.000 0.00 0.000 0.00
17 0.000 0.00 0.000 0.00
18 350.000 39655.00 350.000 39655.00
19 0.000 0.00 0.000 0.00
20 0.000 0.00 0.000 0.00
21 13.333 146.67 13.333 146.67
22 prod f2 19 apl 480.000 29952.00 480.000 29952.00
23 0.000 0.00 0.000 0.00
24 back f2 19 may 0.000 0.00 0.000 0.00
25 0.000 0.00 0.000 0.00
26 prod f2 25 apl 550.000 108185.00 577.500 113594.25
27 0.000 0.00 0.000 0.00
28 back f2 25 may 0.000 0.00 0.000 0.00
29 0.000 0.00 0.000 0.00
30 prod f2 19 mar 290.000 25520.00 290.000 25520.00
31 back f2 19 apl 0.000 0.00 0.000 0.00
32 0.000 0.00 0.000 0.00
33 prod f2 25 mar 650.000 118300.00 650.000 118300.00
34 back f2 25 apl 0.000 0.00 0.000 0.00
35 115.000 1840.00 115.000 1840.00
36 35.000 4508.00 35.000 4508.00
37 0.000 0.00 0.000 0.00
38 0.000 0.00 350.000 9100.00
39 150.000 27210.00 122.500 22221.50
40 0.000 0.00 0.000 0.00
41 143.333 -46963.17 143.333 -46963.16
42 250.000 -75000.00 250.000 -75000.00
43 13.333 -3800.00 13.333 -3800.00
44 250.000 -74350.00 250.000 -74350.00
45 243.333 -70566.67 243.333 -70566.67
46 0.000 0.00 0.000 0.00
47 0.000 0.00 0.000 0.00
48 0.000 0.00 0.000 0.00
49 350.000 -180257.00 0.000 0.00
50 500.000 -283915.00 500.000 -283915.00
51 50.000 -27109.50 400.000 -216876.00
52 0.000 0.00 0.000 0.00
53 250.000 -90685.00 250.000 -90685.00
54 250.000 -75000.00 250.000 -75000.00
55 0.000 0.00 0.000 0.00
56 0.000 0.00 0.000 0.00
57 250.000 -78000.00 250.000 -78000.00
58 150.000 -44850.00 150.000 -44850.00
59 455.000 -283869.95 455.000 -283869.95
60 220.000 -120929.60 220.000 -120929.60
61 0.000 0.00 0.000 0.00
62 125.000 -67853.75 125.000 -67853.75
63 500.000 -279595.00 177.500 -99256.23
64 150.000 -77859.00 472.500 -245255.85

=========== ===========
-1295661.80 -1282708.62

148 � Chapter 2. The INTPOINT Procedure

Example 2.5. Nonarc Variables in the Side Constraints

You can verify that the FACT2 MAR GIZMO constraint has a left-hand-side activity
of 3,470, which is not equal to the –RHS– of this constraint. Not all of the 3,750
chips that can be supplied to factory 2 for March production are used. It is suggested
that all the possible chips be obtained in March and those not used be saved for April
production. Because chips must be kept in an air-controlled environment, it costs one
dollar to store each chip purchased in March until April. The maximum number of
chips that can be stored in this environment at each factory is 150. In addition, a
search of the parts inventory at factory 1 turned up 15 chips available for their March
production.

Nonarc variables are used in the side constraints that handle the limitations of supply
of Gizmo chips. A nonarc variable called f1 unused chips has as a value the number
of chips that are not used at factory 1 in March. Another nonarc variable, f2 unused
chips, has as a value the number of chips that are not used at factory 2 in March.
f1 chips from mar has as a value the number of chips left over from March used
for production at factory 1 in April. Similarly, f2 chips from mar has as a value
the number of chips left over from March used for April production at factory 2 in
April. The last two nonarc variables have objective function coefficients of 1 and
upper bounds of 150. The Gizmo side constraints are

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

The last side constraint states that the number of chips not used in March is not less
than the number of chips left over from March and used in April. Here, this constraint
is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems
that most of the constraints are now equalities, so you specify DEFCONTYPE=EQ
in the PROC INTPOINT statement from now on and provide constraint type data for
constraints that are not “equal to” type, using the default TYPEOBS value –TYPE–
as the –COLUMN– variable value to indicate observations that contain constraint
type data. Also, from now on, the default RHSOBS value is used.

title2 ’Nonarc Variables in the Side Constraints’;
data con6;

input _column_ &$17. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS FACT2 MAR GIZMO 3750

Example 2.5. Nonarc Variables in the Side Constraints � 149

prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
RHS FACT2 APL GIZMO 3750
f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1
f1 chips from mar CHIP LEFTOVER -1
f2 chips from mar CHIP LEFTOVER -1
TYPE CHIP LEFTOVER 1
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
TYPE TOTAL BACKORDER -1
RHS TOTAL BACKORDER 50
;

The nonarc variables f1 chips from mar and f2 chips from mar have objective
function coefficients of 1 and upper bounds of 150. There are various ways in which
this information can be furnished to PROC INTPOINT. If there were a TYPE list
variable in the CONDATA= data set, observations could be in the form

COLUMN _TYPE_ _ROW_ _COEF_
f1 chips from mar objfn . 1
f1 chips from mar upperbd . 150
f2 chips from mar objfn . 1
f2 chips from mar upperbd . 150

It is desirable to assign ID list variable values to all the nonarc variables:

150 � Chapter 2. The INTPOINT Procedure

data arc6;
set arc5;
drop oldcost oldfc oldflow _flow_ _fcost_ ;
run;

data arc6_b;
input _name_ &$17. _cost_ _capac_ factory key_id $;
datalines;

f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;

proc append force
base=arc6 data=arc6_b;
run;

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
conout=arc7;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of nonarc variables= 4 .
NOTE: Number of <= side constraints= 1 .
NOTE: Number of == side constraints= 4 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of side constraint coefficients= 24 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 1 .
NOTE: Number of == constraints= 25 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 160 .
NOTE: Number of variables= 72 .
NOTE: After preprocessing, number of <= constraints= 1.
NOTE: After preprocessing, number of == constraints= 24.
NOTE: After preprocessing, number of >= constraints= 1.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

from the problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

Example 2.5. Nonarc Variables in the Side Constraints � 151

NOTE: There are 78 nonzero elements in A * A transpose.
NOTE: Of the 26 rows and columns, 15 are sparse.
NOTE: There are 87 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 104 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 182185121 0.837584 55030 37757 47382
1 56730833 28510760 0.910015 5004.066395 3433.344938 6917.139928
2 9604878 2589633 0.665677 0 1.309672E-10 226.047223
3 328091 309636 0.191136 0 0 26.943297
4 135892 89815 0.063031 0 0 6.389904
5 62039 31604 0.022877 0 0 0
6 16881 7606.584128 0.005568 0 0 0
7 3753.426021 1918.980183 0.001408 0 0 0
8 709.549939 330.027670 0.000242 0 0 0
9 155.181759 36.697802 0.000026949 0 0 0
10 3.865957 0.421161 0.000000309 0 0 0
11 0.001557 0.000021177 1.557982E-11 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 11 iterations.
NOTE: Objective = -1295542.742.
NOTE: The data set WORK.ARC7 has 68 observations and 14

variables.
NOTE: There were 68 observations read from the data set

WORK.ARC6.
NOTE: There were 8 observations read from the data set

WORK.NODE0.
NOTE: There were 31 observations read from the data set

WORK.CON6.

The optimal solution data set, CONOUT=ARC7, is given in Output 2.5.1.

proc print data=arc7;
var _tail_ _head_ _name_ _cost_ _capac_ _lo_

flow _fcost_;
sum _fcost_;
run;

The optimal value of the nonarc variable f2 unused chips is 280. This means that
although there are 3,750 chips that can be used at factory 2 in March, only 3,470
are used. As the optimal value of f1 unused chips is zero, all chips available for
production in March at factory 1 are used. The nonarc variable f2 chips from mar
also has zero optimal value. This means that the April production at factory 2 does
not need any chips that could have been held in inventory since March. However,
the nonarc variable f1 chips from mar has value of 20. Thus, 3,490 chips should be
ordered for factory 2 in March. Twenty of these chips should be held in inventory
until April, then sent to factory 1.

152 � Chapter 2. The INTPOINT Procedure

Output 2.5.1. CONOUT=ARC7
Nonarc Variables in the Side Constraints

Obs _tail_ _head_ _name_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 prod f1 19 apl 78.60 600 50 540.000 42444.00
2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00
3 f1_may_1 f1_apr_1 back f1 19 may 33.60 20 0 0.000 0.00
4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00
5 fact1_2 f1_apr_2 prod f1 25 apl 174.50 550 50 250.000 43625.01
6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00
7 f1_may_2 f1_apr_2 back f1 25 may 49.20 15 0 0.000 0.00
8 f2_apr_2 f1_apr_2 21.00 25 0 25.000 525.00
9 fact1_1 f1_mar_1 prod f1 19 mar 127.90 500 50 338.333 43272.81
10 f1_apr_1 f1_mar_1 back f1 19 apl 33.60 20 0 20.000 672.00
11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00
12 fact1_2 f1_mar_2 prod f1 25 mar 217.90 400 40 400.000 87159.99
13 f1_apr_2 f1_mar_2 back f1 25 apl 38.40 30 0 30.000 1152.00
14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00
15 fact1_1 f1_may_1 90.10 400 50 116.667 10511.68
16 f1_apr_1 f1_may_1 12.00 50 0 0.000 0.00
17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00
18 fact1_2 f1_may_2 113.30 350 40 350.000 39655.00
19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00
20 f2_may_2 f1_may_2 13.00 25 0 0.000 0.00
21 f1_apr_1 f2_apr_1 11.00 99999999 0 20.000 220.00
22 fact2_1 f2_apr_1 prod f2 19 apl 62.40 480 35 480.000 29952.00
23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00
24 f2_may_1 f2_apr_1 back f2 19 may 30.00 15 0 0.000 0.00
25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00
26 fact2_2 f2_apr_2 prod f2 25 apl 196.70 680 35 577.500 113594.25
27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00
28 f2_may_2 f2_apr_2 back f2 25 may 64.80 15 0 0.000 0.00
29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00
30 fact2_1 f2_mar_1 prod f2 19 mar 88.00 450 35 290.000 25520.00
31 f2_apr_1 f2_mar_1 back f2 19 apl 20.40 15 0 0.000 0.00
32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00
33 fact2_2 f2_mar_2 prod f2 25 mar 182.00 650 35 650.000 118300.00
34 f2_apr_2 f2_mar_2 back f2 25 apl 37.20 15 0 0.000 0.00
35 f1_may_1 f2_may_1 16.00 99999999 0 115.000 1840.00
36 fact2_1 f2_may_1 128.80 250 35 35.000 4508.00
37 f2_apr_1 f2_may_1 20.00 30 0 0.000 0.00
38 f1_may_2 f2_may_2 26.00 99999999 0 0.000 0.00
39 fact2_2 f2_may_2 181.40 550 35 122.500 22221.50
40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00
41 f1_mar_1 shop1_1 -327.65 250 0 148.333 -48601.35
42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00
43 f1_may_1 shop1_1 -285.00 250 0 1.667 -475.01
44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74350.00
45 f2_apr_1 shop1_1 -290.00 250 0 250.000 -72500.00
46 f2_may_1 shop1_1 -292.00 250 0 0.000 -0.05
47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00
48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 0.00
49 f1_may_2 shop1_2 -515.02 99999999 0 347.500 -178969.34
50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283914.98
51 f2_apr_2 shop1_2 -542.19 500 0 52.500 -28465.09
52 f2_may_2 shop1_2 -491.56 500 0 0.000 0.00
53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90684.99
54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00
55 f1_may_1 shop2_1 -245.00 250 0 0.000 -0.00
56 f2_mar_1 shop2_1 -272.70 250 0 0.000 -0.01
57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00
58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00
59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.90
60 f1_apr_2 shop2_2 -549.68 99999999 0 245.000 -134671.54
61 f1_may_2 shop2_2 -500.00 99999999 0 2.500 -1250.00
62 f2_mar_2 shop2_2 -542.83 500 0 125.000 -67853.77
63 f2_apr_2 shop2_2 -559.19 500 0 500.000 -279594.99
64 f2_may_2 shop2_2 -519.06 500 0 122.500 -63584.94
65 f1 chips from mar 1.00 150 0 20.000 20.00
66 f1 unused chips 0.00 99999999 0 0.001 0.00
67 f2 chips from mar 1.00 150 0 0.000 0.00
68 f2 unused chips 0.00 99999999 0 280.000 0.00

===========
-1295542.72

Example 2.6. Solving an LP Problem with Data in MPS Format � 153

Example 2.6. Solving an LP Problem with Data in MPS Format

In this example, PROC INTPOINT is ultimately used to solve an LP. But prior to
that, there is SAS code that is used to read a MPS format file and initialize an in-
put SAS data set. MPS was an optimization package developed for IBM computers
many years ago and the format by which data had to be supplied to that system be-
came the industry standard for other optimization software packages, including those
developed recently. The MPS format is described in Murtagh (1981). If you have an
LP which has data in MPS format in a file /your-directory/your-filename.dat, then the
following SAS code should be run:

filename w ’/your-directorys/your-filename.dat’;
data raw;

infile w lrecl=80 pad;
input field1 $ 2-3 field2 $ 5-12 field3 $ 15-22

field4 25-36 field5 $ 40-47 field6 50-61;
run;

%sasmpsxs;

data lp;
set;
if _type_="FREE" then _type_="MIN";
if lag(_type_)="*HS" then _type_="RHS";
run;

proc sort data=lp;
by _col_;
run;

proc intpoint
arcdata=lp
condata=lp sparsecondata rhsobs=rhs grouped=condata
conout=solutn /* SAS data set for the optimal solution */
bytes=20000000
nnas=1700 ncoefs=4000 ncons=700
printlevel2=2 memrep;
run;

proc lp
data=lp sparsedata
endpause time=3600 maxit1=100000 maxit2=100000;
run;
show status;
quit;

You will have to specify the appropriate path and file name in which your MPS format
data resides.

SASMPSXS is a SAS macro provided within SAS/OR software. The MPS format
resembles the sparse format of the CONDATA= data set for PROC INTPOINT. The
SAS macro SASMPSXS examines the MPS data and transfers it into a SAS data set
while automatically taking into account how the MPS format differs slightly from
PROC INTPOINT’s sparse format.

154 � Chapter 2. The INTPOINT Procedure

The parameters NNAS=1700, NCOEFS=4000, and NCONS=700 indicate the ap-
proximate (overestimated) number of variables, coefficients and constraints this
model has. You must change these to your problems dimensions. Knowing these,
PROC INTPOINT is able to utilize memory better and read the data faster. These
parameters are optional.

The PROC SORT preceding PROC INTPOINT is not necessary, but sorting the SAS
data set can speed up PROC INTPOINT when it reads the data. After the sort, data
for each column is grouped together. GROUPED=condata can be specified.

For small problems, presorting and specifying those additional options is not going to
greatly influence PROC INTPOINT’s run time. However, when problems are large,
presorting and specifying those additional options can be very worthwhile.

If you generate the model yourself, you will be familiar enough with it to know
what to specify for the RHSOBS= parameter. If the value of the SAS variable in the
COLUMN list is equal to the character string specified as the RHSOBS= option, the
data in that observation is interpreted as right-hand-side data as opposed to coefficient
data. If you do not know what to specify for the RHSOBS= option, you should first
run PROC LP and optionally set MAXIT1=1 and MAXIT2=1. PROC LP will output
a Problem Summary that includes the line

Rhs Variable rhs-charstr

BYTES=20000000 is the size of working memory PROC INTPOINT is allowed.

The options PRINTLEVEL2=2 and MEMREP indicate that you want to see an iter-
ation log and messages about memory usage. Specifying these options is optional.

Example 2.7. Converting to an MPS-Format SAS Data Set

This example demonstrates the use of the MPSOUT= option to convert a problem
data set in PROC INTPOINT input format into an MPS-format SAS data set for use
with the OPTLP procedure.

Suppose you want to solve a linear program with the following formulation:

min 2x1 − 3x2 − 4x3

subject to − 2x2 − 3x3 ≥ −5
x1 + x2 + 2x3 ≤ 4
x1 + 2x2 + 3x3 ≥ 7

0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 15
0 ≤ x3 ≤ 20

Example 2.7. Converting to an MPS-Format SAS Data Set � 155

You can save the LP in dense format by using the following DATA step:

data exdata;
input x1 x2 x3 _type_ $ _rhs_;

datalines;
2 -3 -4 min .
. -2 -3 >= -5
1 1 2 <= 6
1 2 3 >= 7
10 15 20 upperbd .
;

If you decide to solve the problem by using the OPTLP procedure, you need to con-
vert the data set exdata from dense format to MPS format. You can accomplish this
by using the following statements:

proc intpoint condata=exdata mpsout=mpsdata bytes=100000;
run;

The MPS-format SAS data set mpsdata is shown in Output 2.7.1.

Output 2.7.1. Data Set mpsdata
Obs field1 field2 field3 field4 field5 field6

1 NAME modname . .
2 ROWS . .
3 MIN objfn . .
4 G _OBS2_ . .
5 L _OBS3_ . .
6 G _OBS4_ . .
7 COLUMNS . .
8 x1 objfn 2 _OBS3_ 1
9 x1 _OBS4_ 1 .
10 x2 objfn -3 _OBS2_ -2
11 x2 _OBS3_ 1 _OBS4_ 2
12 x3 objfn -4 _OBS2_ -3
13 x3 _OBS3_ 2 _OBS4_ 3
14 RHS . .
15 _OBS2_ -5 _OBS3_ 6
16 _OBS4_ 7 .
17 BOUNDS . .
18 UP bdsvect x1 10 .
19 UP bdsvect x2 15 .
20 UP bdsvect x3 20 .
21 ENDATA . .

The constraint names –OBS2– , –OBS3– , and –OBS4– are generated by the
INTPOINT procedure. If you want to provide your own constraint names, use the
ROW list variable in the CONOUT= data set. If you specify the problem data in
sparse format instead of dense format, the MPSOUT= option produces the same
MPS-format SAS data set shown in the preceding output.

Now that the problem data is in MPS format, you can solve the problem by using the
OPTLP procedure. For more information, see Chapter 15, “The OPTLP Procedure.”

156 � Chapter 2. The INTPOINT Procedure

References
George, A., Liu, J., and Ng, E. (2001), “Computer Solution of Positive Definite

Systems,” Unpublished book obtainable from authors.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992), “On Implementing
Mehrotra’s Predictor-Corrector Interior-Point Method for Linear Programming,”
SIAM Journal of Optimization, 2, 435–449.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice,
New York: McGraw-Hill.

Reid, J. K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases,” Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear
Optimization, Chichester, England: John Wiley & Sons.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John
Wiley & Sons.

Chapter 3
The LP Procedure

Chapter Contents

OVERVIEW: LP PROCEDURE . 159

GETTING STARTED: LP PROCEDURE 161
An Introductory Example . 162
An Integer Programming Example . 166
An MPS Format to Sparse Format Conversion Example 168

SYNTAX: LP PROCEDURE . 169
Functional Summary . 170
PROC LP Statement . 174
COEF Statement . 184
COL Statement . 184
ID Statement . 184
IPIVOT Statement . 185
PIVOT Statement . 185
PRINT Statement . 185
QUIT Statement . 187
RANGE Statement . 187
RESET Statement . 188
RHS Statement . 188
RHSSEN Statement . 189
ROW Statement . 189
RUN Statement . 190
SHOW Statement . 190
TYPE Statement . 190
VAR Statement . 192

DETAILS: LP PROCEDURE . 193
Missing Values . 193
Dense Data Input Format . 193
Sparse Data Input Format . 194
Converting Any PROC LP Format to an MPS-Format SAS Data Set 196
Converting Standard MPS Format to Sparse Format 196
The Reduced Costs, Dual Activities, and Current Tableau 199
Macro Variable –ORLP– . 200
Pricing . 201
Scaling . 202

Preprocessing . 203
Integer Programming . 203
Sensitivity Analysis . 212
Range Analysis . 214
Parametric Programming . 215
Interactive Facilities . 216
Memory Management . 218
Output Data Sets . 219
Input Data Sets . 221
Displayed Output . 221
ODS Table and Variable Names . 225
Memory Limit . 227

EXAMPLES: LP PROCEDURE . 228
Example 3.1. An Oil Blending Problem . 228
Example 3.2. A Sparse View of the Oil Blending Problem 233
Example 3.3. Sensitivity Analysis: Changes in Objective Coefficients 236
Example 3.4. Additional Sensitivity Analysis 238
Example 3.5. Price Parametric Programming for the Oil Blending Problem . 240
Example 3.6. Special Ordered Sets and the Oil Blending Problem 242
Example 3.7. Goal-Programming a Product Mix Problem 245
Example 3.8. A Simple Integer Program 251
Example 3.9. An Infeasible Problem . 255
Example 3.10. Restarting an Integer Program 257
Example 3.11. Alternative Search of the Branch-and-Bound Tree 263
Example 3.12. An Assignment Problem 266
Example 3.13. A Scheduling Problem . 273
Example 3.14. A Multicommodity Transshipment Problem with Fixed Charges280
Example 3.15. Converting to an MPS-Format SAS Data Set 283

REFERENCES . 284

Chapter 3
The LP Procedure
Overview: LP Procedure

The LP procedure solves linear programs, integer programs, and mixed-integer pro-
grams. It also performs parametric programming, range analysis, and reports on
solution sensitivity to changes in the right-hand-side constants and price coefficients.

The LP procedure provides various control options and solution strategies. It also
provides the functionality to produce various kinds of intermediate and final solution
information. The procedure’s interactive features enable you to take control of the
problem solving process. During linear or integer iterations, for example, you can
stop the procedure at intermediate stages and examine current results. If necessary,
you can change options or strategies and resume the execution of the procedure.

The LP procedure is used to optimize a linear function subject to linear and integer
constraints. Specifically, the LP procedure solves the general mixed-integer program
of the form

minimize cT x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u
xi is integer, i ∈ S

where

• A is an m× n matrix of technological coefficients

• b is an m× 1 matrix of right-hand-side (RHS) constants

• c is an n× 1 matrix of objective function coefficients

• x is an n× 1 matrix of structural variables

• l is an n× 1 matrix of lower bounds on x

• u is an n× 1 matrix of upper bounds on x

• S is a subset of the set of indices {1, . . . , n}

Linear programs (when S is empty) are denoted by (LP). For these problems, the
procedure employs the two-phase revised simplex method, which uses the Bartels-
Golub update of the LU decomposed basis matrix to pivot between feasible solutions
(Bartels 1971). In phase 1, PROC LP finds a basic feasible solution to (LP), while in
phase 2, PROC LP finds an optimal solution, xopt. The procedure implicitly handles
unrestricted variables, lower-bounded variables, upper-bounded variables, and ranges
on constraints. When no explicit lower bounds are specified, PROC LP assumes that
all variables are bounded below by zero.

160 � Chapter 3. The LP Procedure

When a variable is specified as an integer variable, S has at least one element. The
procedure then uses the branch-and-bound technique for optimization.

The relaxed problem (the problem with no integer constraints) is solved initially us-
ing the primal algorithm described previously. Constraints are added in defining the
subsequent descendant problems in the branch-and-bound tree. These problems are
then solved using the dual simplex algorithm. Dual pivots are referred to as phase 3
pivots.

The preprocessing option enables the procedure to identify redundant and infeasible
constraints, fix variables, and reduce the feasible region before solving a problem.
For linear programs, the option often can reduce the number of constraints and vari-
ables, leading to a quicker elapsed solution time and improved reliability. For integer
programs, it often reduces the gap between an integer program and its relaxed linear
program, which will likely lead to a reduced branch-and-bound tree and a quicker
CPU time. In general, it provides users an alternative to solving large, complicated
operations research problems.

The LP procedure can also analyze the sensitivity of the solution xopt to changes in
both the objective function and the right-hand-side constants. There are three tech-
niques available for this analysis: sensitivity analysis, parametric programming, and
range analysis. Sensitivity analysis enables you to examine the size of a perturbation
to the right-hand-side or objective vector by an arbitrary change vector for which the
basis of the current optimal solution remains optimal.

Parametric programming, on the other hand, enables you to specify the size of the
perturbation beforehand and examine how the optimal solution changes as the de-
sired perturbation is realized. With this technique, the procedure pivots to maintain
optimality as the right-hand-side or objective vector is perturbed beyond the range for
which the current solution is optimal. Range analysis is used to examine the range of
each right-hand-side value or objective coefficient for which the basis of the current
optimal solution remains optimal.

The LP procedure can also save both primal and dual solutions, the current tableau,
and the branch-and-bound tree in SAS data sets. This enables you to generate solution
reports and perform additional analyses with the SAS System. Although PROC LP
reports solutions, this feature is particularly useful for reporting solutions in formats
tailored to your specific needs. Saving computational results in a data set also enables
you to continue executing a problem not solved because of insufficient time or other
computational problems.

The LP procedure uses the Output Delivery System (ODS), a SAS subsystem that
provides capabilities for displaying and controlling the output from SAS procedures.
ODS enables you to modify the headers, column names, data formats, and layouts of
the output tables in PROC LP.

There are no restrictions on the problem size in the LP procedure. The number of
constraints and variables in a problem that PROC LP can solve depends on the host
platform, the available memory, and the available disk space for utility data sets.

You can also solve LP problems by using the OPTLP procedure. The OPTLP proce-

Getting Started: LP Procedure � 161

dure requires a linear program to be specified using a SAS data set that adheres to the
MPS format, a widely accepted format in the optimization community. You can use
the MPSOUT= option in the LP procedure to convert typical PROC LP format data
sets into MPS-format SAS data sets.

Getting Started: LP Procedure
PROC LP expects the definition of one or more linear, integer, or mixed-integer pro-
grams in an input data set. There are two formats, a dense format and a sparse format,
for this data set.

In the dense format, a model is expressed in a similar way as it is formulated. Each
SAS variable corresponds to a model’s column, and each SAS observation corre-
sponds to a model’s row. A SAS variable in the input data set is one of the following:

• a type variable

• an id variable

• a structural variable

• a right-hand-side variable

• a right-hand-side sensitivity analysis variable or

• a range variable

The type variable tells PROC LP how to interpret the observation as a part of the
mathematical programming problem. It identifies and classifies objectives, con-
straints, and the rows that contain information of variables like types, bounds, and
so on. PROC LP recognizes the following keywords as values for the type variable:
MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRT, LOWERBD, UPPERBD,
FIXED, INTEGER, BINARY, BASIC, PRICESEN, and FREE. The values of the id
variable are the names of the rows in the model. The other variables identify and
classify the columns with numerical values.

The sparse format to PROC LP is designed to enable you to specify only the nonzero
coefficients in the description of linear programs, integer programs, and mixed-
integer programs. The SAS data set that describes the sparse model must contain
at least four SAS variables:

• a type variable

• a column variable

• a row variable and

• a coefficient variable

Each observation in the data set associates a type with a row or a column, or defines
a coefficient or a numerical value in the model, or both. In addition to the keywords
in the dense format, PROC LP also recognizes the keywords RHS, RHSSEN, and
RANGE as values of the type variable. The values of the row and column variables

162 � Chapter 3. The LP Procedure

are the names of the rows and columns in the model. The values of the coefficient
variables give the coefficients or other numerical data. The SAS data set can contain
multiple pairs of row and coefficient variables. In this way, more information about
the model can be specified in each observation in the data set. See the section “Sparse
Data Input Format” on page 194 for further discussion.

With both the dense and sparse formats for model specification, the observation order
is not important. This feature is particularly useful when using the sparse model
input.

An Introductory Example

A simple blending problem illustrates the dense and sparse input formats and the
use of PROC LP. A step in refining crude oil into finished oil products involves a
distillation process that splits crude into various streams. Suppose there are three
types of crude available: Arabian light, Arabian heavy, and Brega. These types of
crude are distilled into light naphtha, intermediate naphtha, and heating oil. These in
turn are blended into jet fuel using one of two recipes. What amounts of the three
crudes maximize the profit from producing jet fuel? A formulation to answer this
question is as follows:

max − 175 a– light− 165 a–heavy − 205 brega + 300 jet–1 + 300 jet–2

subject to .035 a– light + .03 a–heavy + .045 brega = naphthal
.1 a– light + .075 a–heavy + .135 brega = naphthai

.39 a– light + .3 a–heavy + .43 brega = heatingo
.3 naphthai + .7 heatingo = jet–1
.2 naphthal + .8 heatingo = jet–2

a– light ≤ 110
a–heavy ≤ 165

brega ≤ 80
a– light, a–heavy,brega,naphthai,

naphthal,heatingo, jet–1, jet–2 ≥ 0

The following data set gives the representation of this formulation. Notice that the
variable names are the structural variables, the rows are the constraints, and the coef-
ficients are given as the values for the structural variables.

data;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0

An Introductory Example � 163

naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

The same model can be specified in the sparse format, as follows. This format enables
you to omit the zero coefficients.

data;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_ ;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165
. brega profit -205
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. brega available 80
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 profit 300
. jet_1 recipe_1 -1
. jet_2 profit 300
. jet_2 recipe_2 -1
. _rhs_ recipe_1 0
;

164 � Chapter 3. The LP Procedure

Because the input order of the model into PROC LP is unimportant, this model can be
specified in sparse input in arbitrary row order. Example 3.2 in the section “Examples:
LP Procedure” on page 228 demonstrates this.

The dense and sparse forms of model input give you flexibility to generate models
using the SAS language. The dense form of the model is solved with the statements

proc lp;
run;

The sparse form is solved with the statements

proc lp sparsedata;
run;

Example 3.1 and Example 3.2 in the section “Examples: LP Procedure” on page 228
continue with this problem.

Problem Input

As default, PROC LP uses the most recently created SAS data set as the problem
input data set. However, if you want to input the problem from a specific SAS data
set, use the DATA= option. For example, if the previous dense form data set has the
name DENSE, the PROC LP statements can be written as

proc lp data=dense;
run;

Problem Definition Statements

In the previous dense form data set, the –ID– , –TYPE– , and –RHS– variables
are special variables in PROC LP. They stand for id variable, type variable, and
right-hand-side variable. If you replace those variable names with, for example,
ROWNAME, TYPE, and RHS, you need the problem definition statements (ID,
TYPE and RHS) in PROC LP:

proc lp;
id rowname;
type type;
rhs rhs;

run;

Other special variables for the dense format are –RHSSEN– and –RANGE– , which
identify the vectors for the right-hand-side sensitivity and range analyses. The corre-
sponding statements are the RHSSEN and RANGE statements. (Notice that a vari-
able name can be identical to a statement name.)

In the same way, if you replace the variables –COL– , –ROW– , –TYPE– , and
–COEF– in the previous sparse form data set by COLUMN, ROW, TYPE, and
COEF, you need the problem definition statements (COL, ROW, TYPE, and COEF)
in PROC LP.

An Introductory Example � 165

proc lp sparsedata;
col column;
row row;
type type;
coef coef;

run;

In the sparse form data set, the value ‘–RHS–’ under the variable –COL– is a special
column name, which represents the model’s right-hand-side column. If you replace
it by a value ‘R’, the PROC LP statements would be

proc lp sparsedata;
rhs r;

run;

Other special column names for the sparse format are ‘–RHSSEN–’ and
‘–RANGE–’. The corresponding statements are the RHSSEN and RANGE
statements.

PROC LP is case insensitive to variable names and all character values, including
the row and column names in the sparse format. The order of the problem definition
statements is not important.

For the dense format, a model’s row names appear as character values in a SAS data
set. For the sparse format, both the row and the column names of the model appear as
character values in the data set. Thus, you can put spaces or other special characters
in the names. When referring to these names in the problem definition statement or
other LP statements, you must use single or double quotes around them. For example,
if you replace ‘–RHS–’ by ‘R H S’ in the previous sparse form data set, the PROC
LP statements would become

proc lp sparsedata;
rhs "r h s";

run;

LP Options

The specifications SPARSEDATA and DATA= in the previous examples are PROC
LP options. PROC LP options include

• data set options

• display control options

• interactive control options

• preprocessing options

• branch-and-bound control options

• sensitivity/parametric/ranging control options

• simplex options

166 � Chapter 3. The LP Procedure

Interactive Processing

Interactive control options include READPAUSE, ENDPAUSE, and so forth. You
can run PROC LP interactively using those options. For example, for the blending
problem example in the dense form, you can first pause the procedure before itera-
tions start with the READPAUSE option. The PROC LP statements are

proc lp readpause;
run;

When the procedure pauses, you run the PRINT statement to display the initial tech-
nological matrix and see if the input is correct. Then you run the PIVOT statement to
do one simplex pivot and pause. After that you use the SHOW statement to check the
current solution status. Then you apply the RESET statement to tell the procedure
to stop as soon as it finds a solution. Now you use the RUN statement to continue
the execution. When the procedure stops, you run the PRINT statement again to do a
price range analysis and QUIT the procedure. Use a SAS %PUT statement to display
the contents of PROC LP’s macro variable, –ORLP–, which contains iterations and
solution information. What follows are the complete statements in batch mode:

proc lp readpause;
run;
print matrix(,); /* display all rows and columns. */
pivot;
show status;
reset endpause;
run;
print rangeprice;
quit;
%put &_orlp_;

Note: You can force PROC LP to pause during iterations by using the CTRL-BREAK
key.

An Integer Programming Example

The following is a simple mixed-integer programming problem. Details can be found
in Example 3.8 in the section “Examples: LP Procedure” on page 228.

data;
format _row_ $10.;
input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0

An Integer Programming Example � 167

gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

The row with ‘binary’ type indicates that this problem is a mixed-integer program
and all the integer variables are binary. The integer values of the row set an ordering
for PROC LP to pick the branching variable when VARSELECT=PRIOR is chosen.
Smaller values will have higher priorities. The –ROW– variable here is an alias of
the –ID– variable.

This problem can be solved with the following statements:

proc lp canselect=lifo backtrack=obj varselect=far endpause;
run;
quit;
%put &_orlp_;

The options CANSELECT=, BACKTRACK=, and VARSELECT= specify the rules
for picking the next active problem and the rule to choose the branching variable. In
this example, the values LIFO, OBJ and FAR serve as the default values, so the three
options can be omitted from the PROC LP statement. The following is the output
from the %PUT statement:

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=3
INT_FEAS=2 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
PHASE3_ITER=5

Figure 3.1. The Output of –ORLP–

Preprocessing

Using the PREPROCESS= option, you can apply the preprocessing techniques to
pre-solve and then solve the preceding mixed-integer program:

proc lp preprocess=1 endpause;
run;
quit;
%put &_orlp_;

The preprocessing statistics are written to the SAS log file as follows:

NOTE: Preprocessing 1 ...
NOTE: 2 upper bounds decreased.
NOTE: 2 coefficients reduced.
NOTE: Preprocessing 2 ...
NOTE: 2 constraints eliminated.
NOTE: Preprocessing done.

168 � Chapter 3. The LP Procedure

The new output –ORLP– is as follows:

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=0
INT_FEAS=1 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
PHASE3_ITER=0

Figure 3.2. The Output of –ORLP– with Preprocessing Option On

In this example, the number of integer iterations (INT–ITER=) is zero, which means
that the preprocessing has reduced the gap between the relaxed linear problem and
the mixed-integer program to zero.

An MPS Format to Sparse Format Conversion Example

If your model input is in MPS input format, you can convert it to the sparse input
format of PROC LP using the SAS macro function SASMPSXS. For example, if
your have an MPS file called MODEL.MPS and it is stored in the directory C:\OR on
a PC, the following program can help you to convert the file and solve the problem.

%sasmpsxs(mpsfile="c:\or\model.mps",lpdata=lp);

data;
set lp;
retain i 1;
if _type_="FREE" and i=1 then

do;
type="MIN";
i=0;

end;
run;

proc lp sparsedata;
run;

In the MPS input format, all objective functions, price change rows, and free rows
have the type ‘N’. The SASMPSXS macro marks them as ‘FREE’ rows. After the
conversion, you must run a DATA step to identify the objective rows and price change
rows. In this example, assume that the problem is one of minimization and the first
‘FREE’ row is an objective row.

Syntax: LP Procedure � 169

Syntax: LP Procedure
Below are statements used in PROC LP, listed in alphabetical order as they appear in
the text that follows.

PROC LP options ;
COEF variables ;
COL variable ;
ID variable(s) ;
IPIVOT;
PIVOT;
PRINT options ;
QUIT options ;
RANGE variable ;
RESET options ;
RHS variables ;
RHSSEN variables ;
ROW variable(s) ;
RUN;
SHOW options ;
TYPE variable ;
VAR variables ;

The TYPE, ID (or ROW), VAR, RHS, RHSSEN, and RANGE statements are used
for identifying variables in the problem data set when the model is in the dense input
format. In the dense input format, a model’s variables appear as variables in the
problem data set. The TYPE, ID (or ROW), and RHS statements can be omitted if
the input data set contains variables –TYPE– , –ID– (or –ROW–), and –RHS– ;
otherwise, they must be used. The VAR statement is optional. When it is omitted,
PROC LP treats all numeric variables that are not explicitly or implicitly included
in RHS, RHSSEN, and RANGE statements as structural variables. The RHSSEN
and RANGE statements are optional statements for sensitivity and range analyses.
They can be omitted if the input data set contains the –RHSSEN– and –RANGE–
variables.

The TYPE, COL, ROW (or ID), COEF, RHS, RHSSEN, and RANGE statements
are used for identifying variables in the problem data set when the model is in the
sparse input format. In the sparse input format, a model’s rows and columns ap-
pear as observations in the problem data set. The TYPE, COL, ROW (or ID), and
COEF statements can be omitted if the input data set contains the –TYPE– and
–COL– variables, as well as variables beginning with the prefixes –ROW (or –ID)
and –COEF. Otherwise, they must be used. The RHS, RHSSEN, and RANGE state-
ments identify the corresponding columns in the model. These statements can be
omitted if there are observations that contain the RHS, RHSSEN, and RANGE types
or the –RHS–, –RHSSEN–, and –RANGE– column values.

The SHOW, RESET, PRINT, QUIT, PIVOT, IPIVOT, and RUN statements are espe-
cially useful when executing PROC LP interactively. However, they can also be used
in batch mode.

170 � Chapter 3. The LP Procedure

Functional Summary

The statements and options available with PROC LP are summarized by purpose in
the following table.

Table 3.1. Functional Summary

Description Statement Option

Interactive Statements:
perform one integer pivot and pause IPIVOT
perform one simplex pivot and pause PIVOT
display information at current iteration PRINT
terminate processing immediately QUIT
reset options specified RESET
start or resume optimization RUN
show settings of options SHOW

Variable Lists:
variables containing coefficients (sparse) COEF
variable containing column names (sparse) COL
alias for the ROW statement ID
variable (column) containing the range constant
for the dense (sparse) format

RANGE

variables (columns) containing RHS constants for
the dense (sparse) format

RHS

variables (columns) defining RHS change vectors
for the dense (sparse) format

RHSSEN

variable containing names of constraints and ob-
jective functions (names of rows) for the dense
(sparse) format

ROW

variable containing the type of each observation TYPE
structural variables (dense) VAR

Data Set Options:
active nodes input data set PROC LP ACTIVEIN=
active nodes output data set PROC LP ACTIVEOUT=
input data set PROC LP DATA=
dual output data set PROC LP DUALOUT=
primal input data set PROC LP PRIMALIN=
primal output data set PROC LP PRIMALOUT=
sparse format data input flag PROC LP SPARSEDATA
tableau output data set PROC LP TABLEAUOUT=
convert sparse or dense format input data set into
MPS-format output data set

PROC LP MPSOUT=

Display Control Options:
display iteration log PROC LP FLOW

Functional Summary � 171

Description Statement Option

nonzero tolerance displaying PROC LP FUZZ=
inverse of FLOW option PROC LP NOFLOW
inverse of PARAPRINT option PROC LP NOPARAPRINT
omit some displaying PROC LP NOPRINT
inverse of TABLEAUPRINT PROC LP NOTABLEAUPRINT
parametric programming displaying PROC LP PARAPRINT
inverse of NOPRINT PROC LP PRINT
iteration frequency of display PROC LP PRINTFREQ=
level of display desired PROC LP PRINTLEVEL=
display the final tableau PROC LP TABLEAUPRINT

Interactive Control Options:
pause before displaying the solution PROC LP ENDPAUSE
pause after first feasible solution PROC LP FEASIBLEPAUSE
pause frequency of integer solutions PROC LP IFEASIBLEPAUSE=
pause frequency of integer iterations PROC LP IPAUSE=
inverse of ENDPAUSE PROC LP NOENDPAUSE
inverse of FEASIBLEPAUSE PROC LP NOFEASIBLEPAUSE
pause frequency of iterations PROC LP PAUSE=
pause if within specified proximity PROC LP PROXIMITYPAUSE=
pause after data is read PROC LP READPAUSE

Preprocessing Options:
do not perform preprocessing PROC LP NOPREPROCESS
preprocessing error tolerance PROC LP PEPSILON=
limit preprocessing iterations PROC LP PMAXIT=
perform preprocessing techniques PROC LP PREPROCESS

Branch-and-Bound (BB) Control Options:
perform automatic node selection technique PROC LP AUTO
backtrack strategy to be used PROC LP BACKTRACK=
branch on binary variables first PROC LP BINFST
active node selection strategy PROC LP CANSELECT=
comprehensive node selection control parameter PROC LP CONTROL=
backtrack related technique PROC LP DELTAIT=
measure for pruning BB tree PROC LP DOBJECTIVE=
integer tolerance PROC LP IEPSILON=
limit integer iterations PROC LP IMAXIT=
measure for pruning BB tree PROC LP IOBJECTIVE=
order of two branched nodes in adding to BB tree PROC LP LIFOTYPE=
inverse of AUTO PROC LP NOAUTO
inverse of BINFST PROC LP NOBINFST
inverse of POSTPROCESS PROC LP NOPOSTPROCESS
limit number of branching variables PROC LP PENALTYDEPTH=
measure for pruning BB tree PROC LP POBJECTIVE=

172 � Chapter 3. The LP Procedure

Description Statement Option

perform variables fixing technique PROC LP POSTPROCESS
percentage used in updating WOBJECTIVE PROC LP PWOBJECTIVE=
compression algorithm for storing active nodes PROC LP TREETYPE=
branching variable selection strategy PROC LP VARSELECT=
delay examination of some active nodes PROC LP WOBJECTIVE=

Sensitivity/Parametric/Ranging Control Options:
inverse of RANGEPRICE PROC LP NORANGEPRICE
inverse of RANGERHS PROC LP NORANGERHS
limit perturbation of the price vector PROC LP PRICEPHI=
range analysis on the price coefficients PROC LP RANGEPRICE
range analysis on the RHS vector PROC LP RANGERHS
limit perturbation of the RHS vector PROC LP RHSPHI=

Simplex Algorithm Control Options:
use devex method PROC LP DEVEX
general error tolerance PROC LP EPSILON=
perform goal programming PROC LP GOALPROGRAM
largest number used in computation PROC LP INFINITY=
reinversion frequency PROC LP INVFREQ=
reinversion tolerance PROC LP INVTOL=
simultaneously set MAXIT1, MAXIT2, MAXIT3
and IMAXIT values

PROC LP MAXIT=

limit phase 1 iterations PROC LP MAXIT1=
limit phase 2 iterations PROC LP MAXIT2=
limit phase 3 iterations PROC LP MAXIT3=
inverse of devex PROC LP NODEVEX
restore basis after parametric programming PROC LP PARARESTORE
weight of the phase 2 objective function in phase 1 PROC LP PHASEMIX=
multiple pricing strategy PROC LP PRICETYPE=
number of columns to subset in multiple pricing PROC LP PRICE=
limit the number of iterations randomly selecting
each entering variable during phase 1

PROC LP RANDOMPRICEMULT=

zero tolerance in ratio test PROC LP REPSILON=
scaling type to be performed PROC LP SCALE=
zero tolerance in LU decomposition PROC LP SMALL=
time pause limit PROC LP TIME=
control pivoting during LU decomposition PROC LP U=

RESET Statement Options:
The RESET statement supports the same options as the PROC LP statement except for
the DATA=, PRIMALIN=, and ACTIVEIN= options, and supports the following additional
options:

new variable lower bound during phase 3 RESET LOWER=

Functional Summary � 173

Description Statement Option

new variable upper bound during phase 3 RESET UPPER=

PRINT Statement Options:
display the best integer solution PRINT BEST
display variable summary for specified columns PRINT COLUMN
display variable summary and price sensitivity
analysis for specified columns

PRINT COLUMN / SENSITIVITY

display variable summary for integer variables PRINT INTEGER
display variable summary for nonzero integer
variables

PRINT INTEGER–NONZEROS

display variable summary for integer variables
with zero activity

PRINT INTEGER–ZEROS

display submatrix for specified rows and columns PRINT MATRIX
display formatted submatrix for specified rows
and columns

PRINT MATRIX / PICTURE

display variable summary for continuous vari-
ables

PRINT NONINTEGER

display variable summary for nonzero continuous
variables

PRINT NONINTEGER–NONZEROS

display variable summary for variables with
nonzero activity

PRINT NONZEROS

display price sensitivity analysis or price paramet-
ric programming

PRINT PRICESEN

display price range analysis PRINT RANGEPRICE
display RHS range analysis PRINT RANGERHS
display RHS sensitivity analysis or RHS paramet-
ric programming

PRINT RHSSEN

display constraint summary for specified rows PRINT ROW
display constraint summary and RHS sensitivity
analysis for specified rows

PRINT ROW / SENSITIVITY

display solution, variable, and constraint sum-
maries

PRINT SOLUTION

display current tableau PRINT TABLEAU
display variables with zero activity PRINT ZEROS

SHOW Statement Options:
display options applied SHOW OPTIONS
display status of the current solution SHOW STATUS

QUIT Statement Option:
save the defined output data sets and then termi-
nate PROC LP

QUIT / SAVE

174 � Chapter 3. The LP Procedure

PROC LP Statement

PROC LP options ;

This statement invokes the procedure. The following options can appear in the PROC
LP statement.

Data Set Options

ACTIVEIN=SAS-data-set
names the SAS data set containing the active nodes in a branch-and-bound tree that
is to be used to restart an integer program.

ACTIVEOUT=SAS-data-set
names the SAS data set in which to save the current branch-and-bound tree of active
nodes.

DATA=SAS-data-set
names the SAS data set containing the problem data. If the DATA= option is not
specified, PROC LP uses the most recently created SAS data set.

DUALOUT=SAS-data-set
names the SAS data set that contains the current dual solution (shadow prices) on ter-
mination of PROC LP. This data set contains the current dual solution only if PROC
LP terminates successfully.

MPSOUT=SAS-data-set
names the SAS data set that contains converted sparse or dense format input data in
MPS format. Invoking this option directs the LP procedure to halt before attempting
optimization. For more information about the MPS-format SAS data set, see Chapter
14, “The MPS-Format SAS Data Set.”

PRIMALIN=SAS-data-set
names the SAS data set that contains a feasible solution to the problem defined by
the DATA= data set. The data set specified in the PRIMALIN= option should have
the same format as a data set saved using the PRIMALOUT= option. Specifying the
PRIMALIN= option is particularly useful for continuing iteration on a problem pre-
viously attempted. It is also useful for performing sensitivity analysis on a previously
solved problem.

PRIMALOUT=SAS-data-set
names the SAS data set that contains the current primal solution when PROC LP
terminates.

SPARSEDATA
tells PROC LP that the data are in the sparse input format. If this option is not
specified, PROC LP assumes that the data are in the dense input format. See the
section “Sparse Data Input Format” on page 194 for information about the sparse
input format.

TABLEAUOUT=SAS-data-set
names the SAS data set in which to save the final tableau.

PROC LP Statement � 175

Display Control Options

FLOW
requests that a journal of pivot information (the Iteration Log) be displayed after
every PRINTFREQ= iterations. This includes the names of the variables entering and
leaving the basis, the reduced cost of the entering variable, and the current objective
value.

FUZZ=e
displays all numbers within e of zero as zeros. The default value is 1.0E−10.

NOFLOW
is the inverse of the FLOW option.

NOPARAPRINT
is the inverse of the PARAPRINT option.

NOPRINT
suppresses the display of the Variable, Constraint, and Sensitivity Analysis sum-
maries. This option is equivalent to the PRINTLEVEL=0 option.

NOTABLEAUPRINT
is the inverse of the TABLEAUPRINT option.

PARAPRINT
indicates that the solution be displayed at each pivot when performing parametric
programming.

PRINT
is the inverse of the NOPRINT option.

PRINTFREQ=m
indicates that after every mth iteration, a line in the (Integer) Iteration Log be dis-
played. The default value is 1.

PRINTLEVEL=i
indicates the amount of displaying that the procedure should perform.

PRINTLEVEL=-2 only messages to the SAS log are displayed

PRINTLEVEL=-1 is equivalent to NOPRINT unless the problem is infeasi-
ble. If it is infeasible, the infeasible rows are displayed
in the Constraint Summary along with the Infeasible
Information Summary.

PRINTLEVEL=0 is identical to NOPRINT

PRINTLEVEL=1 all output is displayed

The default value is 1.

TABLEAUPRINT
indicates that the final tableau be displayed.

176 � Chapter 3. The LP Procedure

Interactive Control Options

ENDPAUSE
requests that PROC LP pause before displaying the solution. When this pause occurs,
you can enter the RESET, SHOW, PRINT, RUN, and QUIT statements.

FEASIBLEPAUSE
requests that PROC LP pause after a feasible (not necessarily integer feasible) solu-
tion has been found. At a pause, you can enter the RESET, SHOW, PRINT, PIVOT,
RUN, and QUIT statements.

IFEASIBLEPAUSE=n
requests that PROC LP pause after every n integer feasible solutions. At a pause, you
can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements.
The default value is 99999999.

IPAUSE=n
requests that PROC LP pause after every n integer iterations. At a pause, you can
enter RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The
default value is 99999999.

NOENDPAUSE
is the inverse of the ENDPAUSE option.

NOFEASIBLEPAUSE
is the inverse of the FEASIBLEPAUSE option.

PAUSE=n
requests that PROC LP pause after every n iterations. At a pause, you can enter the
RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default
value is 99999999.

PROXIMITYPAUSE=r
causes the procedure to pause if at least one integer feasible solution has been found
and the objective value of the current best integer solution can be determined to be
within r units of the optimal integer solution. This distance, called proximity, is also
displayed on the Integer Iteration Log. Note that the proximity is calculated using
the minimum (maximum if the problem is maximization) objective value among the
nodes that remain to be explored in the branch-and-bound tree as a bound on the value
of the optimal integer solution. Following the first PROXIMITYPAUSE= pause, in
order to avoid a pause at every iteration thereafter, it is recommended that you reduce
this measure through the use of a RESET statement. Otherwise, if any other option or
statement that causes the procedure to pause is used while the PROXIMITYPAUSE=
option is in effect, pause interferences may occur. When this pause occurs, you can
enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The
default value is 0.

READPAUSE
requests that PROC LP pause after the data have been read and the initial basis in-
verted. When this pause occurs, you can enter the RESET, SHOW, PRINT, IPIVOT,
PIVOT, RUN, and QUIT statements.

PROC LP Statement � 177

Preprocessing Control Options

NOPREPROCESS
is the inverse of the PREPROCESS option.

PEPSILON=e
specifies a positive number close to zero. This value is an error tolerance in the
preprocessing. If the value is too small, any marginal changes may cause the prepro-
cessing to repeat itself. However, if the value is too large, it may alter the optimal
solution or falsely claim that the problem is infeasible. The default value is 1.0E−8.

PMAXIT=n
performs at most n preprocessings. Preprocessing repeats itself if it improves some
bounds or fixes some variables. However when a problem is large and dense, each
preprocessing may take a significant amount of CPU time. This option limits the
number of preprocessings PROC LP performs. It can also reduce the build-up of
round-off errors. The default value is 100.

PREPROCESS
performs preprocessing techniques. See the section “Preprocessing” on page 203 for
further discussion.

Branch-and-Bound Algorithm Control Options

AUTO, AUTO(m,n)
automatically sets and adjusts the value of the CONTROL= option. Initially, it sets
CONTROL=0.70, concentrating on finding an integer feasible solution or an upper
bound. When an upper bound is found, it sets CONTROL=0.5, concentrating on
efficiency and lower bound improvement. When the number of active problems ex-
ceeds m, it starts to gradually increase the value of the CONTROL= option to keep
the size of active problems under control. When total active problems exceed n,
CONTROL=1 will keep the active problems from growing further. You can alter the
automatic process by resetting the value of the CONTROL= option interactively.

The default values of m and n are 20000 and 250000, respectively. You can change
the two values according to your computer’s space and memory capacities.

BACKTRACK=rule
specifies the rule used to choose the next active problem when backtracking is re-
quired. One of the following can be specified:

• BACKTRACK=LIFO

• BACKTRACK=FIFO

• BACKTRACK=OBJ

• BACKTRACK=PROJECT

• BACKTRACK=PSEUDOC

• BACKTRACK=ERROR

The default value is OBJ. See the section “Integer Programming” on page 203 for
further discussion.

178 � Chapter 3. The LP Procedure

BINFST
requests that PROC LP branch on binary variables first when integer and binary vari-
ables are present. The reasoning behind this is that a subproblem will usually be fath-
omed or found integer feasible after less than 20% of its variables have been fixed.
Considering binary variables first attempts to reduce the size of the branch-and-bound
tree. It is a heuristic technique.

CANSELECT=rule
specifies the rule used to choose the next active problem when backtracking is not
required or used. One of the following can be specified:

• CANSELECT=LIFO

• CANSELECT=FIFO

• CANSELECT=OBJ

• CANSELECT=PROJECT

• CANSELECT=PSEUDOC

• CANSELECT=ERROR

The default value is LIFO. See the section “Integer Programming” on page 203 for
further discussion.

CONTROL=r
specifies a number between 0 and 1. This option combines CANSELECT= and other
rules to choose the next active problem. It takes into consideration three factors:
efficiency, improving lower bounds, and improving upper bounds. When r is close
to 0, PROC LP concentrates on improving lower bounds (upper bounds for maxi-
mization). However, the efficiency per integer iteration is usually the worst. When
r is close to 1, PROC LP concentrates on improving upper bounds (lower bounds
for maximization). In addition, the growth of active problems will be controlled and
stopped at r = 1. When its value is around 0.5, PROC LP will be in the most efficient
state in terms of CPU time and integer number of iterations. The CONTROL= option
will be automatically adjusted when the AUTO option is applied.

DELTAIT=r
is used to modify the exploration of the branch-and-bound tree. If more than r integer
iterations have occurred since the last integer solution was found, then the procedure
uses the backtrack strategy in choosing the next node to be explored. The default
value is 3 times the number of integer variables.

DOBJECTIVE=r
specifies that PROC LP should discard active nodes that cannot lead to an integer
solution with the objective at least as small (or as large for maximizations) as the
objective of the relaxed problem plus (minus) r. The default value is +∞.

IEPSILON=e
requests that PROC LP consider an integer variable as having an integer value if its
value is within e units of an integer. The default value is 1.0E−7.

PROC LP Statement � 179

IMAXIT=n
performs at most n integer iterations. The default value is 100.

IOBJECTIVE=r
specifies that PROC LP should discard active nodes unless the node could lead to an
integer solution with the objective smaller (or larger for maximizations) than r. The
default value is +∞ for minimization (−∞ for maximization).

LIFOTYPE=c
specifies the order in which to add the two newly branched active nodes to the LIFO
list.

LIFOTYPE=0 add the node with minimum penalty first

LIFOTYPE=1 add the node with maximum penalty first

LIFOTYPE=2 add the node resulting from adding xi ≥ dxopt(k)ie first

LIFOTYPE=3 add the node resulting from adding xi ≤ bxopt(k)ic first

The default value is 0.

NOAUTO
is the inverse of the AUTO option.

NOBINFST
is the inverse of the BINFST option.

NOPOSTPROCESS
is the inverse of the POSTPROCESS option.

PENALTYDEPTH=m
requests that PROC LP examine m variables as branching candidates when
VARSELECT=PENALTY. If the PENALTYDEPTH= option is not specified when
VARSELECT=PENALTY, then all of the variables are considered branching
candidates. The default value is the number of integer variables. See the section
“Integer Programming” on page 203 for further discussion.

POBJECTIVE=r
specifies that PROC LP should discard active nodes that cannot lead to an integer
solution with objective at least as small as o+ | o |×r (at least as large as o− | o | × r
for maximizations) where o is the objective of the relaxed noninteger constrained
problem. The default value is +∞.

POSTPROCESS
attempts to fix binary variables globally based on the relationships among the reduced
cost and objective value of the relaxed problem and the objective value of the current
best integer feasible solution.

PWOBJECTIVE=r
specifies a percentage for use in the automatic update of the WOBJECTIVE= option.
If the WOBJECTIVE= option is not specified in PROC LP, then when an integer
feasible solution is found, the value of the option is updated to be b + q× r where

180 � Chapter 3. The LP Procedure

b is the best bound on the value of the optimal integer solution and q is the current
proximity. Note that for maximizations, b - q× r is used. The default value is 0.95.

TREETYPE=i
specifies a data compression algorithm.

TREETYPE=0 no data compression

TREETYPE=1 Huffman coding compression routines

TREETYPE=2 adaptive Huffman coding compression routines

TREETYPE=3 adaptive arithmetic coding compression routines

For IP or MIP problems, the basis and bounds information of each active node is
saved to a utility file. When the number of active nodes increases, the size of the
utility file becomes larger and larger. If PROC LP runs into a disk problem, like “disk
full ...” or “writing failure ...”, you can use this option to compress the utility file.
For more information on the data compression routines, refer to Nelson (1992). The
default value is 0.

VARSELECT=rule
specifies the rule used to choose the branching variable on an integer iteration.

• VARSELECT=CLOSE

• VARSELECT=PRIOR

• VARSELECT=PSEUDOC

• VARSELECT=FAR

• VARSELECT=PRICE

• VARSELECT=PENALTY

The default value is FAR. See the section “Integer Programming” on page 203 for
further discussion.

WOBJECTIVE=r
specifies that PROC LP should delay examination of active nodes that cannot lead
to an integer solution with objective at least as small (as large for maximizations)
as r, until all other active nodes have been explored. The default value is +∞ for
minimization (−∞ for maximization).

Sensitivity/Parametric/Ranging Control Options

NORANGEPRICE
is the inverse of the RANGEPRICE option.

NORANGERHS
is the inverse of the RANGERHS option.

PRICEPHI=Φ
specifies the limit for parametric programming when perturbing the price vector.

PROC LP Statement � 181

See the section “Parametric Programming” on page 215 for further discussion. See
Example 3.5 for an illustration of this option.

RANGEPRICE
indicates that range analysis is to be performed on the price coefficients. See the
section “Range Analysis” on page 214 for further discussion.

RANGERHS
indicates that range analysis is to be performed on the right-hand-side vector. See the
section “Range Analysis” on page 214 for further discussion.

RHSPHI=Φ
specifies the limit for parametric programming when perturbing the right-hand-side
vector. See the section “Parametric Programming” on page 215 for further discussion.

Simplex Algorithm Control Options

DEVEX
indicates that the devex method of weighting the reduced costs be used in pricing
(Harris 1975).

EPSILON=e
specifies a positive number close to zero. It is used in the following instances:

During phase 1, if the sum of the basic artificial variables is within e of zero, the
current solution is considered feasible. If this sum is not exactly zero, then there
are artificial variables within e of zero in the current solution. In this case, a note is
displayed on the SAS log.

During phase 1, if all reduced costs are ≤ e for nonbasic variables at their lower
bounds and ≥ e for nonbasic variables at their upper bounds and the sum of infeasi-
bilities is greater than e, then the problem is considered infeasible. If the maximum
reduced cost is within e of zero, a note is displayed on the SAS log.

During phase 2, if all reduced costs are ≤ e for nonbasic variables at their lower
bounds and≥ e for nonbasic variables at their upper bounds, then the current solution
is considered optimal.

During phases 1, 2, and 3, the EPSILON= option is also used to test if the denomi-
nator is different from zero before performing the ratio test to determine which basic
variable should leave the basis.

The default value is 1.0E−8.

GOALPROGRAM
specifies that multiple objectives in the input data set are to be treated as sequential
objectives in a goal-programming model. The value of the right-hand-side variable
in the objective row gives the priority of the objective. Lower numbers have higher
priority.

INFINITY=r
specifies the largest number PROC LP uses in computation. The INFINITY= option

182 � Chapter 3. The LP Procedure

is used to determine when a problem has an unbounded variable value. The default
value is the largest double precision number. ∗

INVFREQ=m
reinverts the current basis matrix after m major and minor iterations. The default
value is 100.

INVTOL=r
reinverts the current basis matrix if the largest element in absolute value in the de-
composed basis matrix is greater than r. If after reinversion this condition still holds,
then the value of the INVTOL= option is increased by a factor of 10 and a note indi-
cating this modification is displayed on the SAS log. When r is frequently exceeded,
this may be an indication of a numerically unstable problem. The default value is
1000.

MAXIT=n
simultaneously sets the values of the MAXIT1=, MAXIT2=, MAXIT3=, and
IMAXIT= options.

MAXIT1=n
performs at most n ≥ 0 phase 1 iterations. The default value is 100.

MAXIT2=n
performs at most n ≥ 0 phase 2 iterations. If MAXIT2=0, then only phase 1 is
entered so that on successful termination PROC LP will have found a feasible, but
not necessarily optimal, solution. The default value is 100.

MAXIT3=n
performs at most n ≥ 0 phase 3 iterations. All dual pivots are counted as phase 3
pivots. The default value is 99999999.

NODEVEX
is the inverse of the DEVEX option.

PARARESTORE
indicates that following a parametric programming analysis, PROC LP should restore
the basis.

PHASEMIX=r
specifies a number between 0 and 1. When the number is positive, PROC LP tries to
improve the objective function of phase 2 during phase 1. The PHASEMIX= option
is a weight factor of the phase 2 objective function in phase 1. The default value is 0.

PRICE=m
specifies the number of columns to subset when multiple pricing is used in selecting
the column to enter the basis (Greenberg 1978). The type of suboptimization used is
determined by the PRICETYPE= option. See the section “Pricing” on page 201 for a
description of this process.

PRICETYPE=pricetype
specifies the type of multiple pricing to be performed. If this option is specified and

∗This value is system dependent.

PROC LP Statement � 183

the PRICE= option is not specified, then PRICE= is assumed to be 10. Valid values
for the PRICETYPE= option are

• PRICETYPE=COMPLETE

• PRICETYPE=DYNAMIC

• PRICETYPE=NONE

• PRICETYPE=PARTIAL

The default value is PARTIAL. See the section “Pricing” on page 201 for a descrip-
tion of this process.

RANDOMPRICEMULT=r
specifies a number between 0 and 1. This option sets a limit, in phase 1, on the
number of iterations when PROC LP will randomly pick the entering variables. The
limit equals r times the number of nonbasic variables, or the number of basic vari-
ables, whichever is smaller. The default value of the RANDOMPRICEMULT= op-
tion is 0.01.

REPSILON=e
specifies a positive number close to zero. The REPSILON= option is used in the
ratio test to determine which basic variable is to leave the basis. The default value is
1.0E−10.

SCALE=scale
specifies the type of scaling to be used. Valid values for the SCALE= option are

• SCALE=BOTH

• SCALE=COLUMN

• SCALE=NONE

• SCALE=ROW

The default value is BOTH. See the section “Scaling” on page 202 for further discus-
sion.

SMALL=e
specifies a positive number close to zero. Any element in a matrix with a value less
than e is set to zero. The default value is machine dependent.

TIME=t
checks at each iteration to see if t seconds have elapsed since PROC LP began. If more
than t seconds have elapsed, the procedure pauses and displays the current solution.
The default value is 120 seconds.

U=r
enables PROC LP to control the choice of pivots during LU decomposition and up-
dating the basis matrix. The variable r should take values between EPSILON and
1.0 because small values of r bias the algorithm toward maintaining sparsity at the
expense of numerical stability and vice versa. The more sparse the decomposed basis
is, the less time each iteration takes. The default value is 0.1.

184 � Chapter 3. The LP Procedure

COEF Statement

COEF variables ;

For the sparse input format, the COEF statement specifies the numeric variables in
the problem data set that contain the coefficients in the model. The value of the
coefficient variable in a given observation is the value of the coefficient in the column
and row specified in the COLUMN and ROW variables in that observation. For
multiple ROW variables, the LP procedure maps the ROW variables to the COEF
variables on the basis of their order in the COEF and ROW statements. There must
be the same number of COEF variables as ROW variables. If the COEF statement
is omitted, the procedure looks for the default variable names that have the prefix
–COEF.

COL Statement

COL variable ;

For the sparse input format, the COL statement specifies a character variable in the
problem data set that contains the names of the columns in the model. Columns in the
model are either structural variables, right-hand-side vectors, right-hand-side change
vectors, or a range vector. The COL variable must be a character variable. If the COL
statement is omitted, the LP procedure looks for the default variable name –COL– .

ID Statement

ID variable(s) ;

For the dense input format, the ID statement specifies a character variable in the
problem data set that contains a name for each constraint coefficients row, objective
coefficients row, and variable definition row. If the ID statement is omitted, the LP
procedure looks for the default variable name, –ID– . If this variable is not in the
problem data set, the procedure assigns the default name –OBSxx– to each row,
where xx specifies the observation number in the problem data set.

For the sparse input format, the ID statement specifies the character variables in the
problem data set that contain the names of the rows in the model. Rows in the model
are one of the following types: constraints, objective functions, bounding rows, or
variable describing rows. The ID variables must be character variables. There must
be the same number of ID variables as variables specified in the COEF statement. If
the ID statement is omitted, the LP procedure looks for the default variable names
having the prefix –ID.

Note: The ID statement is an alias for the ROW statement.

PRINT Statement � 185

IPIVOT Statement

IPIVOT ;

The IPIVOT statement causes the LP procedure to execute one integer branch-
and-bound pivot and pause. If you use the IPIVOT statement while the
PROXIMITYPAUSE= option is in effect, pause interferences may occur. To
avoid such interferences, you must either reset the PROXIMITYPAUSE value or
submit IPIVOT; RUN; instead of IPIVOT;.

PIVOT Statement

PIVOT ;

The PIVOT statement causes the LP procedure to execute one simplex pivot and
pause.

PRINT Statement

PRINT options ;

The PRINT statement is useful for displaying part of a solution summary, examining
intermediate tableaus, performing sensitivity analysis, and using parametric program-
ming. In the options, the colnames and rownames lists can be empty, in which case
the LP procedure displays tables with all columns or rows, or both. If a column name
or a row name has spaces or other special characters in it, the name must be enclosed
in single or double quotes when it appears in the argument. The options that can be
used with this statement are as follows.

BEST
displays a Solution, Variable, and Constraint Summary for the best integer solution
found.

COLUMN(colnames) / SENSITIVITY
displays a Variable Summary containing the logical and structural variables listed in
the colnames list. If the / SENSITIVITY option is included, then sensitivity analysis
is performed on the price coefficients for the listed colnames structural variables.

INTEGER
displays a Variable Summary containing only the integer variables.

INTEGER–NONZEROS
displays a Variable Summary containing only the integer variables with nonzero ac-
tivity.

INTEGER–ZEROS
displays a Variable Summary containing only the integer variables with zero activity.

MATRIX(rownames,colnames) / PICTURE
displays the submatrix of the matrix of constraint coefficients defined by the row-
names and colnames lists. If the / PICTURE option is included, then the formatted
submatrix is displayed. The format used is summarized in Table 3.2.

186 � Chapter 3. The LP Procedure

Table 3.2. Format Summary
Condition on the Coefficient x Symbols Printed

abs(x) = 0 “ ”
0 < abs(x) < .000001 sgn(x) “Z”

.000001 ≤ abs(x) < .00001 sgn(x) “Y”

.00001 ≤ abs(x) < .0001 sgn(x) “X”

.0001 ≤ abs(x) < .001 sgn(x) “W”

.001 ≤ abs(x) < .01 sgn(x) “V”

.01 ≤ abs(x) < .1 sgn(x) “U”

.1 ≤ abs(x) < 1 sgn(x) “T”
abs(x) = 1 sgn(x) “1”

1 < abs(x) < 10 sgn(x) “A”
10 ≤ abs(x) < 100 sgn(x) “B”

100 ≤ abs(x) < 1000 sgn(x) “C”
1000 ≤ abs(x) < 10000 sgn(x) “D”

10000 ≤ abs(x) < 100000 sgn(x) “E”
100000 ≤ abs(x) < 1.0E06 sgn(x) “F”

NONINTEGER
displays a Variable Summary containing only the continuous variables.

NONINTEGER–NONZEROS
displays a Variable Summary containing only the continuous variables with nonzero
activity.

NONZEROS
displays a Variable Summary containing only the variables with nonzero activity.

PRICESEN
displays the results of parametric programming for the current value of the
PRICEPHI= option, the price coefficients, and all of the price change vectors.

RANGEPRICE
performs range analysis on the price coefficients.

RANGERHS
performs range analysis on the right-hand-side vector.

RHSSEN
displays the results of parametric programming for the current value of the RHSPHI=
option, the right-hand-side coefficients, and all of the right-hand-side change vectors.

ROW(rownames) / SENSITIVITY
displays a constraint summary containing the rows listed in the rowname list. If
the / SENSITIVITY option is included, then sensitivity analysis is performed on the
right-hand-side coefficients for the listed rownames.

SOLUTION
displays the Solution Summary, including the Variable Summary and the Constraint
Summary.

RANGE Statement � 187

TABLEAU
displays the current tableau.

ZEROS
displays a Variable Summary containing only the variables with zero activity. This
may be useful in the analysis of ON/OFF, ZERO/ONE, scheduling, and assignment
applications.

QUIT Statement

QUIT options ;

The QUIT statement causes the LP procedure to terminate processing immediately.
No further displaying is performed and no output data sets are created.

The QUIT/SAVE statement causes the LP procedure to save the output data sets,
defined in the PROC LP statement or in the RESET statement, and then terminate the
procedure.

RANGE Statement

RANGE variable ;

For the dense input format, the RANGE statement identifies the variable in the prob-
lem data set that contains the range coefficients. These coefficients enable you to
specify the feasible range of a row. For example, if the ith row is

aT x ≤ bi

and the range coefficient for this row is ri > 0, then all values of x that satisfy

bi − ri ≤ aT x ≤ bi

are feasible for this row. Table 3.3 shows the bounds on a row as a function of the
row type and the sign on a nonmissing range coefficient r.

Table 3.3. Interpretation of the Range Coefficient

Bounds
r –TYPE– Lower Upper
6= 0 LE b− |r| b
6= 0 GE b b + |r|
> 0 EQ b b + r
< 0 EQ b + r b

If you include a range variable in the model and have a missing value or zero for it
in a constraint row, then that constraint is treated as if no range variable had been
included.

188 � Chapter 3. The LP Procedure

If the RANGE statement is omitted, the LP procedure assumes that the variable
named –RANGE– contains the range coefficients.

For the sparse input format, the RANGE statement gives the name of a column in
the problem data set that contains the range constants. If the RANGE statement
is omitted, then the LP procedure assumes that the column named –RANGE– or
the column with the ‘RANGE’ keyword in the problem data set contains the range
constants.

RESET Statement

RESET options ;

The RESET statement is used to change options after the LP procedure has started
execution. All of the options that can be set in the PROC LP statement can also
be reset with the RESET statement, except for the DATA=, the PRIMALIN=, and
the ACTIVEIN= options. In addition to the options available with the PROC LP
statement, the following two options can be used.

LOWER(colnames)=n;
During phase 3, this sets the lower bound on all of the structural variables listed in
the colnames list to an integer value n. This may contaminate the branch-and-bound
tree. All nodes that descend from the current problem have lower bounds that may be
different from those input in the problem data set.

UPPER(colnames)=n;
During phase 3, this sets the upper bound on all of the structural variables listed in
the colnames list to an integer value n. This may contaminate the branch-and-bound
tree. All nodes that descend from the current problem have upper bounds that may
be different from those input in the problem data set.

Note that the LOWER= and UPPER= options only apply to phase 3 for integer prob-
lems. Therefore, they should only be applied once the integer iterations have started;
if they are applied before then, they will be ignored.

RHS Statement

RHS variables ;

For the dense input format, the RHS statement identifies variables in the problem data
set that contain the right-hand-side constants of the linear program. Only numeric
variables can be specified. If more than one variable is included in the RHS statement,
the LP procedure assumes that problems for several linear programs are defined in the
problem data set. A new linear program is defined for each variable in the RHS list. If
the RHS statement is omitted, the procedure assumes that a variable named –RHS–
contains the right-hand-side constants.

For the sparse input format, the RHS statement gives the names of one or more
columns in the problem data set that are to be considered as right-hand-side con-
stants. If the RHS statement is omitted, then the LP procedure assumes that the
column named –RHS– or columns with the ‘RHS’ keyword in the problem data set

ROW Statement � 189

contain the right-hand-side constants. See the section “Sparse Data Input Format” on
page 194 for further discussion.

As default, the LP procedure assumes that the RHS constant is a zero vector for the
dense and sparse input formats.

RHSSEN Statement

RHSSEN variables ;

For the dense input format, the RHSSEN statement identifies variables in the problem
data set that define change vectors for examining the sensitivity of the optimal solu-
tion to changes in the RHS constants. If the RHSSEN statement is omitted, then the
LP procedure assumes that a variable named –RHSSEN– contains a right-hand-side
change vector.

For the sparse input format, the RHSSEN statement gives the names of one or more
columns in the problem data set that are to be considered as change vectors. If
the RHSSEN statement is omitted, then the LP procedure assumes that the column
named –RHSSEN– or columns with the ‘RHSSEN’ keyword in the problem data set
contain the right-hand-side change vectors. For further information, see the section
“Sparse Data Input Format” on page 194, the section “Right-Hand-Side Sensitivity
Analysis” on page 212, and the section “Right-Hand-Side Parametric Programming”
on page 215.

ROW Statement

ROW variable(s) ;

For the dense input format, the ROW statement specifies a character variable in the
problem data set that contains a name for each row of constraint coefficients, each
row of objective coefficients and each variable describing row. If the ROW statement
is omitted, the LP procedure looks for the default variable name, –ROW– . If there
is no such variable in the problem data set, the procedure assigns the default name
–OBSxx– to each row, where xx specifies the observation number in the problem
data set.

For the sparse input format, the ROW statement specifies the character variables
in the problem data set that contain the names of the rows in the model. Rows in
the model are one of the following types: constraints, objective functions, bounding
rows, or variable describing rows. The ROW variables must be character variables.
There must be the same number of ROW variables as variables specified in the COEF
statement. If the ROW statement is omitted, the LP procedure looks for the default
variable names having the prefix –ROW.

190 � Chapter 3. The LP Procedure

RUN Statement

RUN ;

The RUN statement causes optimization to be started or resumed. The TITLE or
OPTIONS statement should not appear between PROC LP and RUN statements.

SHOW Statement

SHOW options ;

The SHOW statement specifies that the LP procedure display either the current op-
tions or the current solution status on the SAS log.

OPTIONS
requests that the current options be displayed on the SAS log.

STATUS
requests that the status of the current solution be displayed on the SAS log.

TYPE Statement

TYPE variable ;

The TYPE statement specifies a character variable in the problem data set that con-
tains the type identifier for each observation. This variable has keyword values that
specify how the LP procedure should interpret the observation. If the TYPE state-
ment is omitted, the procedure assumes that a variable named –TYPE– contains the
type keywords.

For the dense input format, the type variable identifies the constraint and objective
rows and rows that contain information about the variables. The type variable should
have nonmissing values in all observations.

For the sparse input format, the type variable identifies a model’s rows and columns.
In an observation, a nonmissing type is associated with either a row or a column. If
there are many columns sharing the same type, you can define a row of that type.
Then, any nonmissing values in that row set the types of the corresponding columns.

The following are valid values for the TYPE variable in an observation:

MIN contains the price coefficients of an objective row, for example,
c in the problem (MIP), to be minimized.

MAX contains the price coefficients of an objective row, for example,
c, to be maximized.

EQ (=) contains coefficients of an equality constrained row.
LE (≤) contains coefficients of an inequality, less than or equal to, con-

strained row.
GE (≥) contains coefficients of an inequality, greater than or equal to,

constrained row.

TYPE Statement � 191

SOSEQ identifies the row as specifying a special ordered set. The vari-
ables flagged in this row are members of a set exactly one of
which must be above its lower bound in the optimal solution.
Note that variables in this type of special ordered set must be
integer.

SOSLE identifies the row as specifying a special ordered set. The vari-
ables flagged in this row are members of a set in which only one
can be above its lower bound in the optimal solution.

UNRSTRT
UNRSTRCT

identifies those structural variables to be considered as unre-
stricted variables. These are variables for which `i = −∞ and
ui = +∞. Any variable that has a 1 in this observation is con-
sidered an unrestricted variable.

LOWERBD identifies lower bounds on the structural variables. If all struc-
tural variables are to be nonnegative, that is, `i = 0, then you do
not need to include an observation with the ‘LOWERBD’ key-
word in a variable specified in the TYPE statement. Missing val-
ues for variables in a lower-bound row indicate that the variable
has lower bound equal to zero.
Note: A variable with lower or upper bounds cannot be identified
as unrestricted.

UPPERBD identifies upper bounds ui on the structural variables. For each
structural variable that is to have an upper bound ui = +∞, the
observation must contain a missing value or the current value
of INFINITY. All other values are interpreted as upper bounds,
including 0.

FIXED identifies variables that have fixed values. A nonmissing value
in a row with ‘FIXED’ type keyword gives the constant value of
that variable.

INTEGER identifies variables that are integer-constrained. In a feasible so-
lution, these variables must have integer values. A missing value
in a row with ‘INTEGER’ type keyword indicates that the vari-
able is not integer-constrained. The value of variables in the
‘INTEGER’ row gives an ordering to the integer-constrained
variables that is used when the VARSELECT= option equals
PRIOR.
Note: Every integer-constrained variable must have an upper
bound defined in a row with type ‘UPPERBD’. See the section
“Controlling the Branch-and-Bound Search” on page 206 for fur-
ther discussion.

BINARY identifies variables that are constrained to be either 0 or 1. This
is equivalent to specifying that the variable is an integer vari-
able and has a lower bound of 0 and an upper bound of 1. A
missing value in a row with ‘BINARY’ type keyword indicates
that the variable is not constrained to be 0 or 1. The value of
variables in the ‘BINARY’ row gives an ordering to the integer-
constrained variables that is used when the VARSELECT= op-
tion equals PRIOR. See the section “Controlling the Branch-and-
Bound Search” on page 206 for further discussion.

192 � Chapter 3. The LP Procedure

BASIC identifies variables that form an initial basic feasible solution.
A missing value in a row with ‘BASIC’ type indicates that the
variable is not basic.

PRICESEN identifies a vector that is used to evaluate the sensitivity of the
optimal solution to changes in the objective function. See the
section “Price Sensitivity Analysis” on page 213 and the section
“Price Parametric Programming” on page 216 for further discus-
sion.

FREE identifies a nonbinding constraint. Any number of FREE con-
straints can appear in a problem data set.

RHS identifies a right-hand-side column in the sparse input format.
This replaces the RHS statement. It is useful when converting the
MPS format into the sparse format of PROC LP. See the section
“Converting Standard MPS Format to Sparse Format” on page
196 for more information.

RHSSEN identifies a right-hand-side sensitivity analysis vector in the
sparse input format. This replaces the RHSSEN statement. It
is useful when converting the MPS format into the sparse format
of PROC LP. See the section “Converting Standard MPS Format
to Sparse Format” on page 196 for more information.

RANGE identifies a range vector in the sparse input format. This re-
places the RANGE statement. It is useful when converting the
MPS format into the sparse format of PROC LP. See the section
“Converting Standard MPS Format to Sparse Format” on page
196 for more information.

VAR Statement

VAR variables ;

For the dense input format, the VAR statement identifies variables in the problem data
set that are to be interpreted as structural variables in the linear program. Only nu-
meric variables can be specified. If no VAR statement is specified, the LP procedure
uses all numeric variables not included in an RHS or RHSSEN statement as structural
variables.

Dense Data Input Format � 193

Details: LP Procedure

Missing Values

The LP procedure treats missing values as missing in all rows except those that iden-
tify either upper or lower bounds on structural variables. If the row is an upper-bound
row, then the type identifier is ‘UPPERBD’ and the LP procedure treats missing val-
ues as +∞. If the row is a lower-bound row, then the type identifier is ‘LOWERBD’
and the LP procedure treats missing values as 0, except for the variables that are
identified as ‘UNRSTRT’.

Dense Data Input Format

In the dense format, a model is expressed in a similar way as it is formulated. Each
SAS variable corresponds to a model’s column and each SAS observation corre-
sponds to a model’s row. A SAS variable in the input data set is one of the following:

• a type variable

• an id variable

• a structural variable

• a right-hand-side variable

• a right-hand-side sensitivity analysis variable

• a range variable

The type variable tells PROC LP how to interpret the observation as a part of the
mathematical programming problem. It identifies and classifies objectives, con-
straints, and the rows that contain information of variables like types, bounds, and
so on. PROC LP recognizes the following keywords as values for the type variable:
MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRT, LOWERBD, UPPERBD,
FIXED, INTEGER, BINARY, BASIC, PRICESEN, and FREE. The values of the id
variable are the names of the rows in the model. The other variables identify and
classify the columns with numerical values.

The TYPE, ID (or ROW), and RHS statements can be omitted if the input data set
contains variables –TYPE– , –ID– (or –ROW–), and –RHS– ; otherwise, they must
be used. The VAR statement is optional. When it is not specified, PROC LP uses
as structural variables all numeric variables not explicitly or implicitly included in
statement lists. The RHSSEN and RANGE statements are optional statements for
sensitivity and range analyses. They can be omitted if the input data set contains the
–RHSSEN– and –RANGE– variables.

194 � Chapter 3. The LP Procedure

Sparse Data Input Format

The sparse format to PROC LP is designed to enable you to specify only the nonzero
coefficients in the description of linear programs, integer programs, and mixed-
integer programs. The SAS data set that describes the sparse model must contain
at least four SAS variables:

• a type variable

• a column variable

• a row variable

• a coefficient variable

Each observation in the data set associates a type with a row or column, and defines
a coefficient or numerical value in the model. The value of the type variable is a
keyword that tells PROC LP how to interpret the observation. In addition to the key-
words in the dense format, PROC LP also recognizes the keywords RHS, RHSSEN,
and RANGE as values of the type variable. Table 3.4 shows the keywords that are
recognized by PROC LP and in which variables can appear in the problem data set.

The values of the row and column variables are the names of the rows and columns
in the model. The values of the coefficient variables define basic coefficients and
lower and upper bounds, and identify model variables with types BASIC, FIXED,
BINARY, and INTEGER. All character values in the sparse data input format are
case insensitive.

The SAS data set can contain multiple pairs of rows and coefficient variables. In this
way, more information about the model can be specified in each observation in the
data set. See Example 3.2 for details.

Sparse Data Input Format � 195

Table 3.4. Variable Keywords Used in the Problem Data Set

TYPE (–TYPE–) COL (–COL–)
MIN
MAX
EQ
LE
GE
SOSEQ
SOSLE
UNRSTRT
LOWERBD
UPPERBD
FIXED
INTEGER
BINARY
BASIC
PRICESEN
FREE
RHS –RHS–
RHSSEN –RHSSEN–
RANGE –RANGE–
∗xxxxxxx

Follow these rules for sparse data input:

• The order of the observations is unimportant.

• Each unique column name appearing in the COL variable defines a unique
column in the model.

• Each unique row name appearing in the ROW variable defines a unique row in
the model.

• The type of the row is identified when an observation in which the row name ap-
pears (in a ROW variable) has type MIN, MAX, LE, GE, EQ, SOSLE, SOSEQ,
LOWERBD, UPPERBD, UNRSTRT, FIXED, BINARY, INTEGER, BASIC,
FREE, or PRICESEN.

• The type of each row must be identified at least once. If a row is given a type
more than once, the multiple definitions must be identical.

• When there are multiple rows named in an observation (that is, when there are
multiple ROW variables), the TYPE variable applies to each row named in the
observation.

• The type of a column is identified when an observation in which the column
name but no row name appears has the type LOWERBD, UPPERBD,
UNRSTRT, FIXED, BINARY, INTEGER, BASIC, RHS, RHSSEN, or
RANGE. A column type can also be identified in an observation in which both

196 � Chapter 3. The LP Procedure

column and row names appear and the row name has one of the preceding
types.

• Each column is assumed to be a structural column in the model unless the col-
umn is identified as a right-hand-side vector, a right-hand-side change vector,
or a range vector. A column can be identified as one of these types using either
the keywords RHS, RHSSEN, or RANGE in the TYPE variable, the special
column names –RHS– , –RHSSEN– , or –RANGE– , or the RHS, RHSSEN,
or RANGE statements following the PROC LP statement.

• A TYPE variable beginning with the character ∗ causes the observation to be
interpreted as a comment.

When the column names appear in the Variable Summary in the PROC LP output,
they are listed in alphabetical order. The row names appear in the order in which they
appear in the problem data set.

Converting Any PROC LP Format to an MPS-Format SAS
Data Set

The MPSOUT= option enables you to convert an input data set for the LP procedure
into an MPS-format SAS data set. The converted data set is readable by the OPTLP
and OPTMILP procedures.

The conversion can handle both linear and mixed integer linear programs. The
–TYPE– values for sensitivity analysis (PRICESEN), parametric programming
(RHSSEN), and input basis (BASIS) are dropped. When multiple objective rows
are present, only the first row is marked as the objective row. The remaining rows
are marked as free rows. When multiple right-hand side (RHS) columns are present,
only the first RHS column is processed. Constraints with a –TYPE– value of SOSEQ
or SOSLE are ignored. The MPSOUT= option does not output branching priorities
specified for the VARSELECT=PRIOR option to a BRANCH section in the MPS-
format SAS data set.

For information about how the contents of the MPS-format SAS data set are inter-
preted, see Chapter 14, “The MPS-Format SAS Data Set.”

For an example demonstrating the use of the MPSOUT= option, see Example 3.15.

Converting Standard MPS Format to Sparse Format

The MPS input format was introduced by IBM as a way of specifying data for linear
and integer programs. Before you can solve a linear program specified in the MPS
input format by using the LP procedure, the data must be converted to the sparse
format of the LP procedure. If you want to solve a linear program specified in the
sparse LP format by using the OPTLP procedure, you must convert the data into an
MPS-format SAS data set. This section describes how to perform both conversions.

SASMPSXS is a SAS macro function that converts the standard MPS format to the
sparse format of the LP procedure. The following is an example of the MPS format:

Converting Standard MPS Format to Sparse Format � 197

NAME EXAMPLE
* THIS IS DATA FOR THE PRODUCT MIX PROBLEM.
ROWS
N PROFIT
L STAMP
L ASSEMB
L FINISH
N CHNROW
N PRICE
COLUMNS

DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT 95.00000
DESK PRICE 175.00000
CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT 41.00000
CHAIR PRICE 95.00000
CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT 84.00000
CABINET PRICE 145.00000
BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT 76.00000
BOOKCSE PRICE 130.00000 CHNROW 1.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS
UP CHAIR 75.00000
LO BOOKCSE 50.00000

ENDATA

In this example, the company tries to find an optimal product mix of four items:
a DESK, a CHAIR, a CABINET, and a BOOKCASE. Each item is processed in a
stamping department (STAMP), an assembly department (ASSEMB), and a finishing
department (FINISH). The time each item requires in each department is given in
the input data. Because of resource limitations, each department has an upper limit
on the time available for processing. Furthermore, because of labor constraints, the
assembly department must work at least 300 hours. Finally, marketing tells you not
to make more than 75 chairs, to make at least 50 bookcases, and to find the range over
which the selling price of a bookcase can vary without changing the optimal product
mix.

The SASMPSXS macro function uses MPSFILE=‘FILENAME’ as an argument to
read an MPS input file. It then converts the file and saves the conversion to a default
SAS data set, PROB. The FILENAME should include the path.

Running the following statements on the preceding example

%sasmpsxs(mpsfile=’filename’);

proc print data=prob;
run;

198 � Chapter 3. The LP Procedure

produces the sparse input form of the LP procedure:

OBS _TYPE_ _COL_ _ROW1_ _COEF1_ _ROW2_ _COEF2_

1 *OW . .
2 FREE PROFIT . .
3 LE STAMP . .
4 LE ASSEMB . .
5 LE FINISH . .
6 FREE CHNROW . .
7 FREE PRICE . .
8 *OL MNS . .
9 DESK STAMP 3.0 ASSEMB 10
10 DESK FINISH 10.0 PROFIT 95
11 DESK PRICE 175.0 .
12 CHAIR STAMP 1.5 ASSEMB 6
13 CHAIR FINISH 8.0 PROFIT 41
14 CHAIR PRICE 95.0 .
15 CABINET STAMP 2.0 ASSEMB 8
16 CABINET FINISH 8.0 PROFIT 84
17 CABINET PRICE 145.0 .
18 BOOKCSE STAMP 2 ASSEMB 7
19 BOOKCSE FINISH 7 PROFIT 76
20 BOOKCSE PRICE 130 CHNROW 1
21 *HS . .
22 RHS TIME STAMP 800 ASSEMB 1200
23 RHS TIME FINISH 800 .
24 *AN ES . .
25 RANGE T1 ASSEMB 900 .
26 *OU DS . .
27 UPPERBDD CHAIR UP 75 .
28 LOWERBDD BOOKCSE LO 50 .

SASMPSXS recognizes four MPS row types: E, L, G, and N. It converts them into
types EQ, LE, GE, and FREE. Since objective rows, price change rows and free rows
all share the same type N in the MPS format, you need a DATA step to assign proper
types to the objective rows and price change rows.

data;
set prob;
if _type_=’free’ and _row1_=’profit’ then _type_=’max’;
if _type_=’free’ and _row1_=’chnrow’ then _type_=’pricesen’;

run;

proc lp sparsedata;
run;

In the MPS format, the variable types include LO, UP, FX, FR, MI, and BV.
The SASMPSXS macro converts them into types LOWERBD, UPPERBD, FIXED,
UNRESTRICTED, -INFINITY, and BINARY, respectively. Occasionally, you may
need to define your own variable types, in which case, you must add corresponding

The Reduced Costs, Dual Activities, and Current Tableau � 199

type handling entries in the SASMPSXS.SAS program and use the SAS %INCLUDE
macro to include the file at the beginning of your program. The SASMPSXS macro
function can be found in the SAS sample library. Information on the MPS format can
be obtained from Murtagh (1981).

SASMPSXS can take no arguments, or it can take one or two arguments. If no argu-
ments are present, SASMPSXS assumes that the MPS input file has been saved to a
SAS data set named RAW. The macro then takes information from that data set and
converts it into the sparse form of the LP procedure. The RAW data set should have
the following six variables:

data RAW;
infile ...;
input field1 $ 2-3 field2 $ 5-12

field3 $ 15-22 field4 25-36
field5 $ 40-47 field6 50-61;

...
run;

If the preceding MPS input data set has a name other than RAW, you can use
MPSDATA=SAS-data-set as an argument in the SASMPSXS macro function. If
you want the converted sparse form data set to have a name other than PROB, you
can use LPDATA=SAS-data-set as an argument. The order of the arguments in the
SASMPSXS macro function is not important.

The Reduced Costs, Dual Activities, and Current Tableau
The evaluation of reduced costs and the dual activities is independent of problem
structure. For a basic solution, let B be the matrix composed of the basic columns of
A and let N be the matrix composed of the nonbasic columns of A. The reduced cost
associated with the ith variable is

(cT − cT
BB−1A)i

and the dual activity of the jth row is

(cT
BB−1)j

The Current Tableau is a section displayed when you specify either the
TABLEAUPRINT option in the PROC LP statement or the TABLEAU option
in the PRINT statement. The output contains a row for each basic variable and a
column for each nonbasic variable. In addition, there is a row for the reduced costs
and a column for the product

B−1b

This column is labeled INV(B)*R. The body of the tableau contains the matrix

B−1N

200 � Chapter 3. The LP Procedure

Macro Variable –ORLP–
The LP procedure defines a macro variable named –ORLP–. This variable con-
tains a character string that indicates the status of the procedure. It is set when-
ever the user gets control, at breakpoints, and at procedure termination. The form
of the –ORLP– character string is STATUS= PHASE= OBJECTIVE= P–FEAS=
D–FEAS= INT–ITER= INT–FEAS= ACTIVE= INT–BEST= PHASE1–ITER=
PHASE2–ITER= PHASE3–ITER=. The terms are interpreted as follows:

STATUS= the status of the current solution

PHASE= the phase the procedure is in (1, 2, or 3)

OBJECTIVE= the current objective value

P–FEAS= whether the current solution is primal feasible

D–FEAS= whether the current solution is dual feasible

INT–ITER= the number of integer iterations performed

INT–FEAS= the number of integer feasible solutions found

ACTIVE= the number of active nodes in the current branch-and-bound
tree

INT–BEST= the best integer objective value found

PHASE1–ITER= the number of iterations performed in phase 1

PHASE2–ITER= the number of iterations performed in phase 2

PHASE3–ITER= the number of iterations performed in phase 3

Pricing � 201

Table 3.5 shows the possible values for the nonnumeric terms in the string.

Table 3.5. Possible Values for Nonnumeric Terms

STATUS= P–FEAS= D–FEAS=
SUCCESSFUL YES YES
UNBOUNDED NO NO
INFEASIBLE
MAX–TIME
MAX–ITER
PIVOT
BREAK
INT–FEASIBLE
INT–INFEASIBLE
INT–MAX–ITER
PAUSE
FEASIBLEPAUSE
IPAUSE
PROXIMITYPAUSE
ACTIVE
RELAXED
FATHOMED
IPIVOT
UNSTABLE
SINGULAR
MEMORY–ERROR
IO–ERROR
SYNTAX–ERROR
SEMANTIC–ERROR
BADDATA–ERROR
UNKNOWN–ERROR

This information can be used when PROC LP is one step in a larger program that
needs to identify how the LP procedure terminated. Because –ORLP– is a standard
SAS macro variable, it can be used in the ways that all macro variables can be used
(see the SAS Guide to Macro Processing).

Pricing

PROC LP performs multiple pricing when determining which variable will enter the
basis at each pivot (Greenberg 1978). This heuristic can shorten execution time in
many problems. The specifics of the multiple pricing algorithm depend on the value
of the PRICETYPE= option. However, in general, when some form of multiple pric-
ing is used, during the first iteration PROC LP places the PRICE= nonbasic columns
yielding the greatest marginal improvement to the objective function in a candidate
list. This list identifies a subproblem of the original. On subsequent iterations, only
the reduced costs for the nonbasic variables in the candidate list are calculated. This

202 � Chapter 3. The LP Procedure

accounts for the potential time savings. When either the candidate list is empty or the
subproblem is optimal, a new candidate list must be identified and the process repeats.
Because identification of the subproblem requires pricing the complete problem, an
iteration in which this occurs is called a major iteration. A minor iteration is an
iteration in which only the subproblem is to be priced.

The value of the PRICETYPE= option determines the type of multiple pricing
that is to be used. The types of multiple pricing include partial suboptimization
(PRICETYPE=PARTIAL), complete suboptimization (PRICETYPE=COMPLETE),
and complete suboptimization with dynamically varying the value of the PRICE=
option (PRICETYPE=DYNAMIC).

When partial suboptimization is used, in each minor iteration the nonbasic column
in the subproblem yielding the greatest marginal improvement to the objective is
brought into the basis and removed from the candidate list. The candidate list now
has one less entry. At each subsequent iteration, another column from the subproblem
is brought into the basis and removed from the candidate list. When there are either
no remaining candidates or the remaining candidates do not improve the objective,
the subproblem is abandoned and a major iteration is performed. If the objective
cannot be improved on a major iteration, the current solution is optimal and PROC
LP terminates.

Complete suboptimization is identical to partial suboptimization with one exception.
When a nonbasic column from the subproblem is brought into the basis, it is replaced
in the candidate list by the basic column that is leaving the basis. As a result, the
candidate list does not diminish at each iteration.

When PRICETYPE=DYNAMIC, complete suboptimization is performed, but the
value of the PRICE= option changes so that the ratio of minor to major iterations
is within two units of the PRICE= option.

These heuristics can shorten execution time for small values of the PRICE= option.
Care should be exercised in choosing a value from the PRICE= option because too
large a value can use more time than if pricing were not used.

Scaling

Based on the SCALE= option specified, the procedure scales the coefficients
of both the constraints and objective rows before iterating. This technique can
improve the numerical stability of an ill-conditioned problem. If you want
to modify the default matrix scaling used, which is SCALE=BOTH, use the
SCALE=COLUMN, SCALE=ROW, or SCALE=NONE option in the PROC LP
statement. If SCALE=BOTH, the matrix coefficients are scaled so that the largest el-
ement in absolute value in each row or column equals 1. They are scaled by columns
first and then by rows. If SCALE=COLUMN (ROW), the matrix coefficients are
scaled so that the largest element in absolute value in each column (row) equals 1. If
SCALE=NONE, no scaling is performed.

Integer Programming � 203

Preprocessing

With the preprocessing option, you can identify redundant and infeasible constraints,
improve lower and upper bounds of variables, fix variable values and improve coeffi-
cients and RHS values before solving a problem. Preprocessing can be applied to LP,
IP and MIP problems. For an LP problem, it may significantly reduce the problem
size. For an IP or MIP problem, it can often reduce the gap between the optimal so-
lution and the solution of the relaxed problem, which could lead to a smaller search
tree in the branch-and-bound algorithm. As a result, the CPU time may be reduced
on many problems. Although there is no guarantee that preprocessing will always
yield a faster solution, it does provide a highly effective approach to solving large
and difficult problems.

Preprocessing is especially useful when the original problem causes numerical dif-
ficulties to PROC LP. Since preprocessing could identify redundant constraints and
tighten lower and upper bounds of variables, the reformulated problem may eliminate
the numerical difficulties in practice.

When a constraint is identified as redundant, its type is marked as ‘FREE’ in the
Constraint Summary. If a variable is fixed, its type is marked as ‘FIXED’ in the
Variables Summary. If a constraint is identified as infeasible, PROC LP stops imme-
diately and displays the constraint name in the SAS log file. This capability some-
times gives valuable insight into the model or the formulation and helps establish if
the model is reasonable and the formulation is correct.

For a large and dense problem, preprocessing may take a longer time for each itera-
tion. To limit the number of preprocessings, use the PMAXIT= option. To stop any
further preprocessings during the preprocessing stage, press the CTRL-BREAK key.
PROC LP will enter phase 1 at the end of the current iteration.

Integer Programming

Formulations of mathematical programs often require that some of the decision vari-
ables take only integer values. Consider the formulation

minimize cT x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u
xi is integer, i ∈ S

The set of indices S identifies those variables that must take only integer values.
When S does not contain all of the integers between 1 and n, inclusive, this problem is
called a mixed-integer program (MIP). Otherwise, it is known as an integer program.
Let xopt(MIP) denote an optimal solution to (MIP). An integer variable with bounds
between 0 and 1 is also called a binary variable.

204 � Chapter 3. The LP Procedure

Specifying the Problem

An integer or mixed-integer problem can be solved with PROC LP. To solve this
problem, you must identify the integer variables. You can do this with a row in the
input data set that has the keyword ‘INTEGER’ for the type variable. Any variable
that has a nonmissing and nonzero value for this row is interpreted as an integer vari-
able. It is important to note that integer variables must have upper bounds explicitly
defined using the ‘UPPERBD’ keyword. The values in the ‘INTEGER’ row not only
identify those variables that must be integers, but they also give an ordering to the
integer variables that can be used in the solution technique.

You can follow the same steps to identify binary variables. For the binary variables,
there is no need to supply any upper bounds.

Following the rules of sparse data input format, you can also identify individual inte-
ger or binary variables.

The Branch-and-Bound Technique

The branch-and-bound approach is used to solve integer and mixed-integer problems.
The following discussion outlines the approach and explains how to use several op-
tions to control the procedure.

The branch-and-bound technique solves an integer program by solving a sequence of
linear programs. The sequence can be represented by a tree, with each node in the
tree being identified with a linear program that is derived from the problems on the
path leading to the root of the tree. The root of the tree is identified with a linear
program that is identical to (MIP), except that S is empty. This relaxed version of
(MIP), called (LP(0)), can be written as

xopt(0) = min cT x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u

The branch-and-bound approach generates linear programs along the nodes of the
tree using the following scheme. Consider xopt(0), the optimal solution to (LP(0)). If
xopt(0)i is integer for all i ∈ S, then xopt(0) is optimal in (MIP). Suppose for some
i ∈ S, xopt(0)i is nonintegral. In that case, define two new problems (LP(1)) and
(LP(2)), descendants of the parent problem (LP(0)). The problem (LP(1)) is identical
to (LP(0)) except for the additional constraint

xi ≤ bxopt(0)ic

and the problem (LP(2)) is identical to (LP(0)) except for the additional constraint

xi ≥ dxopt(0)ie

The notation dye means the smallest integer greater than or equal to y, and the no-
tation byc means the largest integer less than or equal to y. Note that the two new

Integer Programming � 205

problems do not have xopt(0) as a feasible solution, but because the solution to (MIP)
must satisfy one of the preceding constraints, xopt

i (MIP) must satisfy one of the new
constraints. The two problems thus defined are called active nodes in the branch-and-
bound tree, and the variable xi is called the branching variable.

Next, the algorithm chooses one of the problems associated with an active node and
attempts to solve it using the dual simplex algorithm. The problem may be infeasible,
in which case the problem is dropped. If it can be solved, and it in turn does not have
an integer solution (that is, a solution for which xi is integer for all i ∈ S), then it
defines two new problems. These new problems each contain all of the constraints of
the parent problems plus the appropriate additional one.

Branching continues in this manner until either there are no active nodes or an integer
solution is found. When an integer solution is found, its objective value provides a
bound for the objective of (MIP). In particular, if z is the objective value of the current
best integer solution, then any active problems whose parent problem has objective
value ≥ z can be discarded (assuming that the problem is a minimization). This can
be done because all problems that descend from this parent will also have objective
value ≥ z. This technique is known as fathoming. When there are no active nodes
remaining to be solved, the current integer solution is optimal in (MIP). If no integer
solution has been found, then (MIP) is (integer) infeasible.

It is important to realize that integer programs are NP-complete. Roughly speaking,
this means that the effort required to solve them grows exponentially with the size
of the problem. For example, a problem with 10 binary variables can, in the worst
case, generate 210 = 1024 nodes in the branch-and-bound tree. A problem with 20
binary variables can, in the worst case, generate 220 = 1048576 nodes in the branch-
and-bound tree. Although the algorithm is unlikely to have to generate every single
possible node, the need to explore even a small fraction of the potential number of
nodes for a large problem can be resource intensive.

The Integer Iteration Log

To help monitor the growth of the branch-and-bound tree, the LP procedure reports
on the status of each problem that is solved. The report, displayed in the Integer
Iteration Log, can be used to reconstruct the branch-and-bound tree. Each row in the
report describes the results of the attempted solution of the linear program at a node
in the tree. In the following discussion, a problem on a given line in the log is called
the current problem. The following columns are displayed in the report:

Iter identifies the number of the branch-and-bound iteration.

Problem identifies how the current problem fits in the branch-and-
bound tree.

206 � Chapter 3. The LP Procedure

Condition reports the result of the attempted solution of the current
problem. Values for Condition are:

• ACTIVE: The current problem was solved success-
fully.

• INFEASIBLE: The current problem is infeasible.

• FATHOMED: The current problem cannot lead to an
improved integer solution and therefore it is dropped.

• SINGULAR: A singular basis was encountered in at-
tempting to solve the current problem. Solution of this
relaxed problem is suspended and will be attempted
later if necessary.

• SUBOPTIMAL: The current problem has an integer
feasible solution.

Objective reports the objective value of the current problem.

Branched names the variable that is branched in subtrees defined by the
descendants of this problem.

Value gives the current value of the variable named in the column
labeled Branched.

Sinfeas gives the sum of the integer infeasibilities in the optimal so-
lution to the current problem.

Active reports the total number of nodes currently active in the
branch-and-bound tree.

Proximity reports the gap between the best integer solution and the
current lower (upper for maximizations) bound of all active
nodes.

To reconstruct the branch-and-bound tree from this report, consider the interpretation
of iteration j. If Iter=j and Problem=k, then the problem solved on iteration j is
identical to the problem solved on iteration | k | with an additional constraint. If
k > 0, then the constraint is an upper bound on the variable named in the Branched
column on iteration | k |. If k < 0, then the constraint is a lower bound on that
variable. The value of the bound can be obtained from the value of Value in iteration
| k | as described in the previous section.

Example 3.8 in the section “Examples: LP Procedure” on page 228 shows an Integer
Iteration Log in its output.

Controlling the Branch-and-Bound Search

There are several options you can use to control branching. This is accomplished
by controlling the program’s choice of the branching variable and of the next active

Integer Programming � 207

node. In the discussion that follows, let

fi(k) = xopt(k)i − bxopt(k)ic

where xopt(k) is the optimal solution to the problem solved in iteration k.

The CANSELECT= option directs the choice of the next active node. Valid keywords
for this option include LIFO, FIFO, OBJ, PROJECT, PSEUDOC, and ERROR. The
following list describes the action that each of these causes when the procedure must
choose for solution a problem from the list of active nodes.

LIFO chooses the last problem added to the tree of active nodes. This
search has the effect of a depth-first search of the branch-and-
bound tree.

FIFO chooses the first node added to the tree of active nodes. This search
has the effect of a breadth-first search of the branch-and-bound tree.

OBJ chooses the problem whose parent has the smallest (largest if the
problem is a maximization) objective value.

PROJECT chooses the problem with the largest (smallest if the problem is a
maximization) projected objective value. The projected objective
value is evaluated using the sum of integer infeasibilities, s(k),
associated with an active node (LP(k)), defined by

s(k) =
∑
i∈S

min{fi(k), 1− fi(k)}

An empirical measure of the rate of increase (decrease) in the ob-
jective value is defined as

λ = (z∗ − z(0))/s(0)

where

• z(k) is the optimal objective value for (LP(k))
• z∗ is the objective value of the current best integer solution

The projected objective value for problems (LP(k + 1)) and
(LP(k + 2)) is defined as

z(k) + λs(k)

PSEUDOC chooses the problem with the largest (least if the problem is a max-
imization) projected pseudocost. The projected pseudocost is eval-
uated using the weighted sum of infeasibilities sw(k) associated
with an active problem (LP(k)), defined by

sw(k) =
∑
i∈S

min{di(k)fi(k), ui(k)(1− fi(k))}

208 � Chapter 3. The LP Procedure

The weights ui and di are initially equal to the absolute value of the
ith objective coefficient and are updated at each integer iteration.
They are modified by examining the empirical marginal change in
the objective as additional constraints are placed on the variables
in S along the path from (LP(0)) to a node associated with an in-
teger feasible solution. In particular, if the definition of problems
(LP(k+1)) and (LP(k+2)) from parent (LP(k)) involve the addition
of constraints xi ≤ bxopt(k)ic and xi ≥ dxopt(k)ie, respectively,
and one of them is on a path to an integer feasible solution, then
only one of the following is true:

di(k) = (z(k + 1)− z(k))/fi(k)

ui(k) = (z(k + 2)− z(k))/(1− fi(k))

Note the similarity between sw(k) and s(k). The weighted quantity
sw(k) accounts to some extent for the influence of the objective
function. The projected pseudocost for problems (LP(k + 1)) and
(LP(k + 2)) is defined as

zw(k) ≡ z(k) + sw(k)

ERROR chooses the problem with the largest error. The error associated
with problems (LP(k + 1)) and (LP(k + 2)) is defined as

(z∗ − zw(k))/(z∗ − z(k))

The BACKTRACK= option controls the search for the next problem. This option
can take the same values as the CANSELECT= option. In addition to the case out-
lined under the DELTAIT= option, backtracking is required as follows based on the
CANSELECT= option in effect:

• If CANSELECT=LIFO and there is no active node in the portion of the ac-
tive tree currently under exploration with a bound better than the value of
WOBJECTIVE=, then the procedure must backtrack.

• If CANSELECT=FIFO, PROJECT, PSEUDOC, or ERROR and the bound
corresponding to the node under consideration is not better than the value of
WOBJECTIVE=, then the procedure must backtrack.

The default value is OBJ.

The VARSELECT= option directs the choice of branching variable. Valid keywords
for this option include CLOSE, FAR, PRIOR, PSEUDOC, PRICE, and PENALTY.
The following list describes the action that each of these causes when xopt(k), an
optimal solution of problem (LP(k)), is used to define active problems (LP(k + 1))
and (LP(k + 2)).

Integer Programming � 209

CLOSE chooses as branching variable the variable xi such that i minimizes

{min{fi(k), 1− fi(k)} | i ∈ S and

IEPSILON ≤ fi(k) ≤ 1− IEPSILON}

FAR chooses as branching variable the variable xi such that i maximizes

{min{fi(k), 1− fi(k)} | i ∈ S and

IEPSILON ≤ fi(k) ≤ 1− IEPSILON}

PRIOR chooses as branching variable xi such that i ∈ S, xopt(k)i is non-
integral, and variable xi has the minimum value in the INTEGER
row in the input data set. This choice for the VARSELECT= option
is recommended when you have enough insight into the model to
identify those integer variables that have the most significant effect
on the objective value.

PENALTY chooses as branching variable xi such that i ∈ S and a bound on
the increase in the objective of (LP(k)) (penalty) resulting from
adding the constraint

xi ≤ bxopt(k)ic or xi ≥ dxopt(k)ie

is maximized. The bound is calculated without pivoting using
techniques of sensitivity analysis (Garfinkel and Nemhauser 1972).
Because the cost of calculating the maximum penalty can be large
if S is large, you may want to limit the number of variables in S
for which the penalty is calculated. The penalty is calculated for
PENALTYDEPTH= variables in S.

PRICE chooses as branching variable xi such that i ∈ S, xopt(k)i is non-
integral, and variable xi has the minimum price coefficient (maxi-
mum for maximization).

PSEUDOC chooses as branching variable the variable xi such that i maximizes

{min{difi(k), ui(1− fi(k))} | i ∈ S and

IEPSILON ≤ fi(k) ≤ 1− IEPSILON}

The weights ui and di are initially equal to the absolute value
of the ith objective coefficient and are updated whenever an in-
teger feasible solution is encountered. See the discussion on the
CANSELECT= option for details on the method of updating the
weights.

210 � Chapter 3. The LP Procedure

Customizing Search Heuristics

Often a good heuristic for searching the branch-and-bound tree of a problem can
be found. You are tempted to continue using this heuristic when the problem data
changes but the problem structure remains constant. The ability to reset procedure
options interactively enables you to experiment with search techniques in an attempt
to identify approaches that perform well. Then you can easily reapply these tech-
niques to subsequent problems.

For example, the PIP branch-and-bound strategy (Crowder, Johnson, and Padberg
1983) describes one such heuristic. The following program uses a similar strategy.
Here, the OBJ rule (choose the active node with least parent objective function in the
case of a minimization problem) is used for selecting the next active node to be solved
until an integer feasible solution is found. Once such a solution is found, the search
procedure is changed to the LIFO rule: choose the problem most recently placed in
the list of active nodes.

proc lp canselect=obj ifeasiblepause=1;
run;

reset canselect=lifo ifeasiblepause=9999999;
run;

Further Discussion on AUTO and CONTROL= options

Consider a minimization problem. At each integer iteration, PROC LP will se-
lect a node to solve from a pool of active nodes. The best bound strategy
(CANSELECT=OBJ) will pick the node with the smallest projected objective value.
This strategy improves the lower bound of the integer program and usually takes
fewer integer iterations. One disadvantage is that PROC LP must recalculate the
inverse of the basis matrix at almost every integer iteration; such recalculation is rel-
atively expensive. Another disadvantage is that this strategy does not pay attention to
improving the upper bound of the integer program. Thus the number of active nodes
tends to grow rapidly if PROC LP cannot quickly find an optimal integer solution.

On the other hand, the LIFO strategy is very efficient and does not need to calculate
the inverse of the basis matrix unless the previous node is fathomed. It is a depth-first
strategy so it tends to find an integer feasible solution quickly. However, this strategy
will pick nodes locally and usually will take longer integer iterations than the best
bound strategy.

There is another strategy that is often overlooked. Here it is called the best upper
bound strategy. With this strategy, each time you select an active node, instead of
picking the node with the smallest projected objective value, you select the one with
the largest projected objective value. This strategy is as efficient as the LIFO strategy.
Moreover, it selects active nodes globally. This strategy tries to improve the upper
bound of the integer program by searching for new integer feasible solutions. It also
fathoms active nodes quickly and keeps the total number of active nodes below the
current level. A disadvantage is that this strategy may evaluate more nodes that do
not have any potential in finding an optimal integer solution.

Integer Programming � 211

The best bound strategy has the advantage of improving the lower bound. The LIFO
strategy has the advantages of efficiency and finding a local integer feasible solution.
The best upper bound strategy has the advantages of keeping the size of active nodes
under control and at the same time trying to identify any potential integer feasible
solution globally.

Although the best bound strategy is generally preferred, in some instances other
strategies may be more effective. For example, if you have found an integer opti-
mal solution but you do not know it, you still have to enumerate all possible active
nodes. Then the three strategies will basically take the same number of integer itera-
tions after an optimal solution is found but not yet identified. Since the LIFO and best
upper bound strategies are very efficient per integer iteration, both will outperform
the best bound strategy.

Since no one strategy suits all situations, a hybrid strategy has been developed to
increase applicability. The CONTROL= option combines the above three strategies
naturally and provides a simple control parameter in [0, 1] dealing with different
integer programming problems and different solution situations. The AUTO option
automatically sets and adjusts the CONTROL= parameter so that you do not need to
know any problem structure or decide a node selection strategy in advance.

Since the LIFO strategy is less costly, you should use it as much as possible in the
combinations. The following process is called a diving process. Starting from an
active node, apply the LIFO strategy as much as you can until the current node be-
comes feasible or is fathomed, or exceeds a preset limit. During this process, there
is no inverse matrix calculation involved except for the first node. When the diving
process is over, apply one of the three strategies to select the next starting node. One
set of combinations is called a cycle.

The control parameter r controls the frequency of the three strategies being applied
and the depth of the diving process in a cycle. It starts with a pure best bound strategy
at r = 0, and then gradually increases the frequency of the diving processes and their
depths as r increases. At r = 0.5, one cycle contains a best bound strategy plus a
full diving process. After r = 0.5, the number of the diving processes will gradually
increase in a cycle. In addition, the best upper bound strategy will join the cycle. As
r continues to increase, the frequency of the best upper bound strategy will increase.
At r = 1, it becomes a pure best upper bound strategy.

The AUTO option will automatically adjust the value of the CONTROL= option. At
the start, it sets CONTROL=0.7, which emphasizes finding an upper bound. After
an integer feasible solution is found, it sets CONTROL=0.5, which emphasizes effi-
ciency and lower bound improvement. When the number of active nodes grows over
the default or user defined limit m, the number indicates that a better upper bound is
needed. The AUTO option will start to increase the value of CONTROL= from 0.5.
If the size of the active nodes continues to grow, so will the value of the CONTROL=
option. When the size of active nodes reaches to the default or user-defined limit n,
CONTROL= will be set to 1. At this moment, the growth of active nodes is stopped.
When the size of active nodes reduces, AUTO will decrease the value of CONTROL=
option.

212 � Chapter 3. The LP Procedure

You can use other strategies to improve the lower bound by setting CANSELECT=
to other options.

Saving and Restoring the List of Active Nodes

The list of active nodes can be saved in a SAS data set for use at a subsequent in-
vocation of PROC LP. The ACTIVEOUT= option in the PROC LP statement names
the data set into which the current list of active nodes is saved when the procedure
terminates due to an error termination condition. Examples of such conditions are
time limit exceeded, integer iterations exceeded, and phase 3 iterations exceeded.
The ACTIVEIN= option in the PROC LP statement names a data set that can be used
to initialize the list of active nodes. To achieve the greatest benefit when restart-
ing PROC LP, use the PRIMALOUT= and PRIMALIN= options in conjunction
with the ACTIVEOUT= and ACTIVEIN= options. See Example 3.10 in the section
“Examples: LP Procedure” on page 228 for an illustration.

Sensitivity Analysis

Sensitivity analysis is a technique for examining the effects of changes in model
parameters on the optimal solution. The analysis enables you to examine the size of
a perturbation to the right-hand-side or objective vector by an arbitrary change vector
for which the basis of the current optimal solution remains optimal.

Note: When sensitivity analysis is performed on integer-constrained problems, the
integer variables are fixed at the value they obtained in the integer optimal solution.
Therefore, care must be used when interpreting the results of such analyses. Care
must also be taken when preprocessing is enabled, because preprocessing usually
alters the original formulation.

Right-Hand-Side Sensitivity Analysis

Consider the problem (lpr(φ)):

xopt(φ) = min cT x

subject to Ax {≥,=,≤} b + φr
` ≤ x ≤ u

where r is a right-hand-side change vector.

Let xopt(φ) denote an optimal basic feasible solution to (lpr(φ)). PROC LP can
be used to examine the effects of changes in φ on the solution xopt(0) of problem
(lpr(0)) . For the basic solution xopt(0), let B be the matrix composed of the basic
columns of A and let N be the matrix composed of the nonbasic columns of A. For
the basis matrix B, the basic components of xopt(0), written as xopt(0)B , can be
expressed as

xopt(0)B = B−1(b−Nxopt(0)N)

Sensitivity Analysis � 213

Furthermore, because xopt(0) is feasible,

`B ≤ B−1(b−Nxopt(0)N) ≤ uB

where `B is a column vector of the lower bounds on the structural basic variables,
and uB is a column vector of the upper bounds on the structural basic variables. For
each right-hand-side change vector r identified in the RHSSEN statement, PROC LP
finds an interval [φmin, φmax] such that

`B ≤ B−1(b + φr −Nxopt(0)N) ≤ uB

for φ ∈ [φmin, φmax]. Furthermore, because changes in the right-hand side do not
affect the reduced costs, for φ ∈ [φmin, φmax],

xopt(φ)T = ((B−1(b + φr −Nxopt(0)N))T , xopt(0)T
N)

is optimal in (lpr(φ)).

For φ = φmin and φ = φmax, PROC LP reports the following:

• the names of the leaving variables

• the value of the optimal objective in the modified problems

• the RHS values in the modified problems

• the solution status, reduced costs and activities in the modified problems

The leaving variable identifies the basic variable xi that first reaches either the lower
bound `i or the upper bound ui as φ reaches φmin or φmax. This is the basic variable
that would leave the basis to maintain primal feasibility. Multiple RHSSEN variables
can appear in a problem data set.

Price Sensitivity Analysis

Consider the problem (lpp(φ)):

xopt(φ) = min(c + φr)T x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u

where r is a price change vector.

Let xopt(φ) denote an optimal basic feasible solution to (lpp(φ)). PROC LP can
be used to examine the effects of changes in φ on the solution xopt(0) of problem
(lpp(0)). For the basic solution xopt(0), let B be the matrix composed of the basic
columns of A and let N be the matrix composed of the nonbasic columns of A. For
basis matrix B, the reduced cost associated with the ith variable can be written as

rci(φ) = ((c + φr)T
N − (c + φr)T

BB−1N)i

214 � Chapter 3. The LP Procedure

where (c + φr)N and (c + φr)B is a partition of the vector of price coefficients into
nonbasic and basic components. Because xopt(0) is optimal in (lpp(0)), the reduced
costs satisfy

rci(φ) ≥ 0

if the nonbasic variable in column i is at its lower bound, and

rci(φ) ≤ 0

if the nonbasic variable in column i is at its upper bound.

For each price coefficient change vector r identified with the keyword PRICESEN
in the TYPE variable, PROC LP finds an interval [φmin, φmax] such that for
φ ∈ [φmin, φmax],

rci(φ) ≥ 0

if the nonbasic variable in column i is at its lower bound, and

rci(φ) ≤ 0

if the nonbasic variable in column i is at its upper bound. Because changes in the
price coefficients do not affect feasibility, for φ ∈ [φmin, φmax], xopt(φ) is optimal in
(lpp(φ)). For φ = φmin and φ = φmax, PROC LP reports the following:

• the names of entering variables

• the value of the optimal objective in the modified problems

• the price coefficients in the modified problems

• the solution status, reduced costs, and activities in the modified problems

The entering variable identifies the variable whose reduced cost first goes to zero as
φ reaches φmin or φmax. This is the nonbasic variable that would enter the basis to
maintain optimality (dual feasibility). Multiple PRICESEN variables may appear in
a problem data set.

Range Analysis

Range analysis is sensitivity analysis for specific change vectors. As with the sen-
sitivity analysis case, care must be used in interpreting the results of range analysis
when the problem has integers or the preprocessing option is enabled.

Parametric Programming � 215

Right-Hand-Side Range Analysis

The effects on the optimal solution of changes in each right-hand-side value can be
studied using the RANGERHS option in the PROC LP or RESET statement. This op-
tion results in sensitivity analysis for the m right-hand-side change vectors specified
by the columns of the m×m identity matrix.

Price Range Analysis

The effects on the optimal solution of changes in each price coefficient can be studied
using the RANGEPRICE option in the PROC LP or RESET statement. This option
results in sensitivity analysis for the n price change vectors specified by the rows of
the n× n identity matrix.

Parametric Programming
Sensitivity analysis and range analysis examine how the optimal solution behaves
with respect to perturbations of model parameter values. These approaches assume
that the basis at optimality is not allowed to change. When greater flexibility is de-
sired and a change of basis is acceptable, parametric programming can be used.

As with the sensitivity analysis case, care must be used in interpreting the results of
parametric programming when the problem has integers or the preprocessing option
is enabled.

Right-Hand-Side Parametric Programming

As discussed in the section “Right-Hand-Side Sensitivity Analysis” on page 212, for
each right-hand-side change vector r, PROC LP finds an interval [φmin, φmax] such
that for φ ∈ [φmin, φmax],

xopt(φ)T = ((B−1(b + φr −Nxopt(0)N))T , xopt(0)T
N)

is optimal in (lpr(φ)) for the fixed basis B. Leaving variables that inhibit further
changes in φ without a change in the basis B are associated with the quantities φmin

and φmax. By specifying RHSPHI=Φ in either the PROC LP statement or the RESET
statement, you can examine the solution xopt(φ) as φ increases or decreases from 0
to Φ.

When RHSPHI=Φ is specified, the procedure first finds the interval [φmin, φmax] as
described previously. Then, if Φ ∈ [φmin, φmax], no further investigation is needed.
However, if Φ > φmax or Φ < φmin, then the procedure attempts to solve the new
problem (lpr(Φ)). To accomplish this, it pivots the leaving variable out of the basis
while maintaining dual feasibility. If this new solution is primal feasible in (lpr(Φ)),
no further investigation is needed; otherwise, the procedure identifies the new leaving
variable and pivots it out of the basis, again maintaining dual feasibility. Dual piv-
oting continues in this manner until a solution that is primal feasible in (lpr(Φ)) is
identified. Because dual feasibility is maintained at each pivot, the (lpr(Φ)) primal
feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the
current range of φ , and the objective value. When xopt(Φ) is found, it is displayed.

216 � Chapter 3. The LP Procedure

If you want the solution xopt(φ) at each pivot, then specify the PARAPRINT option
in either the PROC LP or the RESET statement.

Price Parametric Programming

As discussed in the section “Price Sensitivity Analysis” on page 213, for each
price change vector r, PROC LP finds an interval [φmin, φmax] such that for each
φ ∈ [φmin, φmax],

rci(φ) = ((c + φr)T
N − (c + φr)T

BB−1N)i

satisfies the conditions for optimality in (lpp(φ)) for the fixed basis B. Entering vari-
ables that inhibit further changes in φ without a change in the basis B are associated
with the quantities φmin and φmax. By specifying PRICEPHI=Φ in either the PROC
LP statement or the RESET statement, you can examine the solution xopt(φ) as φ
increases or decreases from 0 to Φ.

When PRICEPHI=Φ is specified, the procedure first finds the interval [φmin, φmax],
as described previously. Then, if Φ ∈ [φmin, φmax], no further investigation is
needed. However, if Φ > φmax or Φ < φmin, the procedure attempts to solve
the new problem (lpp(Φ)). To accomplish this, it pivots the entering variable into
the basis while maintaining primal feasibility. If this new solution is dual feasible in
(lpp(Φ)), no further investigation is needed; otherwise, the procedure identifies the
new entering variable and pivots it into the basis, again maintaining primal feasibility.
Pivoting continues in this manner until a solution that is dual feasible in (lpp(Φ)) is
identified. Because primal feasibility is maintained at each pivot, the (lpp(Φ)) dual
feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the
current range of φ , and the objective value. When xopt(Φ) is found, it is displayed.
If you want the solution xopt(φ) at each pivot, then specify the PARAPRINT option
in either the PROC LP or the RESET statement.

Interactive Facilities

The interactive features of the LP procedure enable you to examine intermediate re-
sults, perform sensitivity analysis, parametric programming, and range analysis, and
control the solution process.

Controlling Interactive Features

You can gain control of the LP procedure for interactive processing by setting a break-
point or pressing the CTRL-BREAK key combination, or when certain error condi-
tions are encountered:

• when a feasible solution is found

• at each pivot of the simplex algorithm

• when an integer feasible solution is found

• at each integer pivot of the branch-and-bound algorithm

Interactive Facilities � 217

• after the data are read but before iteration begins

• after at least one integer feasible solution has been found which is within de-
sirable proximity of optimality

• after the problem has been solved but before results are displayed

When the LP procedure pauses, you can enter any of the interactive statements
RESET, PIVOT, IPIVOT, PRINT, SHOW, QUIT, and RUN.

Breakpoints are set using the FEASIBLEPAUSE, PAUSE=, IFEASIBLEPAUSE=,
IPAUSE=, PROXIMITYPAUSE=, READPAUSE, and ENDPAUSE options. The LP
procedure displays a message on the SAS log when it gives you control because of
encountering one of these breakpoints.

During phase 1, 2, or 3, the CTRL-BREAK key pauses the LP procedure and releases
the control at the beginning of the next iteration.

The error conditions, which usually cause the LP procedure to pause, include time
limit exceeded, phase 1 iterations exceeded, phase 2 iterations exceeded, phase 3 it-
erations exceeded, and integer iterations exceeded. You can use the RESET statement
to reset the option that caused the error condition.

The PIVOT and IPIVOT statements result in control being returned to you after a sin-
gle simplex algorithm pivot and an integer pivot. The PRINT and SHOW statements
display current solution information and return control to you. On the other hand, the
QUIT statement requests that you leave the LP procedure immediately. If you want
to quit but save output data sets, then type QUIT/SAVE. The RUN statement requests
the LP procedure to continue its execution immediately.

Displaying Intermediate Results

Once you have control of the procedure, you can examine the current values of the
options and the status of the problem being solved using the SHOW statement. All
displaying done by the SHOW statement goes to the SAS log.

Details about the current status of the solution are obtained using the PRINT state-
ment. The various display options enable you to examine parts of the variable and
constraint summaries, display the current tableau, perform sensitivity analysis on the
current solution, and perform range analysis.

Interactive Facilities in Batch Mode

All of the interactive statements can be used when processing in batch mode. This is
particularly convenient when the interactive facilities are used to combine different
search strategies in solving integer problems.

Sensitivity Analysis

Two features that enhance the ability to perform sensitivity analysis need further
explanation. When you specify /SENSITIVITY in a PRINT COLUMN(colnames)
statement, the LP procedure defines a new change row to use in sensitivity analysis
and parametric programming. This new change row has a +1 entry for each variable

218 � Chapter 3. The LP Procedure

listed in the PRINT statement. This enables you to define new change rows interac-
tively.

When you specify /SENSITIVITY in a PRINT ROW (rownames) statement, the LP
procedure defines a new change column to use in sensitivity analysis and parametric
programming. This new change column has a +1 entry for each right-hand-side coef-
ficient listed in the PRINT statement. This enables you to define new change columns
interactively.

In addition, you can interactively change the RHSPHI= and PRICEPHI= options us-
ing the RESET statement. This enables you to perform parametric programming
interactively.

Memory Management

There are no restrictions on the problem size in the LP procedure. The number of
constraints and variables in a problem that PROC LP can solve depends on the host
platform, the available memory, and the available disk space for utility data sets.

Memory usage is affected by a great many factors including the density of the tech-
nological coefficient matrix, the model structure, and the density of the decomposed
basis matrix. The algorithm requires that the decomposed basis fit completely in
memory. Any additional memory is used for nonbasic columns. The partition be-
tween the decomposed basis and the nonbasic columns is dynamic so that as the
inverse grows, which typically happens as iterations proceed, more memory is avail-
able to it and less is available for the nonbasic columns.

The LP procedure determines the initial size of the decomposed basis matrix. If the
area used is too small, PROC LP must spend time compressing this matrix, which de-
grades performance. If PROC LP must compress the decomposed basis matrix on the
average more than 15 times per iteration, then the size of the memory devoted to the
basis is increased. If the work area cannot be made large enough to invert the basis,
an error return occurs. On the other hand, if PROC LP compresses the decomposed
basis matrix on the average once every other iteration, then memory devoted to the
decomposed basis is decreased, freeing memory for the nonbasic columns.

For many models, memory constraints are not a problem because both the decom-
posed basis and all the nonbasic columns will have no problem fitting. However,
when the models become large relative to the available memory, the algorithm tries
to adjust memory distribution in order to solve the problem. In the worst cases, only
one nonbasic column fits in memory with the decomposed basis matrix.

Problems involving memory use can occur when solving mixed-integer problems.
Data associated with each node in the branch-and-bound tree must be kept in mem-
ory. As the tree grows, competition for memory by the decomposed basis, the non-
basic columns, and the branch-and-bound tree may become critical. If the situation
becomes critical, the procedure automatically switches to branching strategies that
use less memory. However, it is possible to reach a point where no further processing
is possible. In this case, PROC LP terminates on a memory error.

Output Data Sets � 219

Output Data Sets
The LP procedure can optionally produce five output data sets. These are the
ACTIVEOUT=, PRIMALOUT=, DUALOUT=, TABLEAUOUT=, and MPSOUT=
data sets. Each contains two variables that identify the particular problem in the input
data set. These variables are

–OBJ–ID– identifies the objective function ID.

–RHS–ID– identifies the right-hand-side variable.

Additionally, each data set contains other variables, which are discussed below.

ACTIVEOUT= Data Set

The ACTIVEOUT= data set contains a representation of the current active branch-
and-bound tree. You can use this data set to initialize the branch-and-bound tree to
continue iterations on an incompletely solved problem. Each active node in the tree
generates two observations in this data set. The first is a ‘LOWERBD’ observation
that is used to reconstruct the lower-bound constraints on the currently described
active node. The second is an ‘UPPERBD’ observation that is used to reconstruct the
upper-bound constraints on the currently described active node. In addition to these,
an observation that describes the current best integer solution is included. The data
set contains the following variables:

–STATUS– contains the keywords LOWERBD, UPPERBD, and INTBEST for
identifying the type of observation.

–PROB– contains the problem number for the current observation.

–OBJECT– contains the objective value of the parent problem that generated
the current observation’s problem.

–SINFEA– contains the sum of the integer infeasibilities of the current obser-
vation’s problem.

–PROJEC– contains the data needed for CANSELECT=PROJECT when the
branch-and-bound tree is read using the ACTIVEIN= option.

–PSEUDO– contains the data needed for CANSELECT=PSEUDOC when the
branch-and-bound tree is read using the ACTIVEIN= option.

INTEGER VARIABLES Integer-constrained structural variables are also included
in the ACTIVEOUT= data set. For each observation, these vari-
ables contain values for defining the active node in the branch-and-
bound tree.

PRIMALOUT= Data Set

The PRIMALOUT= data set contains the current primal solution. If the problem
has integer-constrained variables, the PRIMALOUT= data set contains the current
best integer feasible solution. If none have been found, the PRIMALOUT= data set
contains the relaxed solution. In addition to –OBJ–ID– and –RHS–ID– , the data
set contains the following variables:

220 � Chapter 3. The LP Procedure

–VAR– identifies the variable name.

–TYPE– identifies the type of the variable as specified in the input data set.
Artificial variables are labeled as type ‘ARTIFCL’.

–STATUS– identifies whether the variable is basic, nonbasic, or at an upper
bound in the current solution.

–LBOUND– contains the input lower bound on the variable unless the variable
is integer-constrained and an integer solution is given. In this case,
–LBOUND– contains the lower bound on the variable needed to
realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

–VALUE– identifies the value of the variable in the current solution or the
current best integer feasible solution.

–UBOUND– contains the input upper bound on the variable unless the variable
is integer-constrained and an integer solution is given. In this case,
–UBOUND– contains the upper bound on the variable needed to
realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

–PRICE– contains the input price coefficient of the variable.

–R–COST– identifies the value of the reduced cost in the current solution.
Example 3.3 in the section “Examples: LP Procedure” on page 228
shows a typical PRIMALOUT= data set. Note that it is necessary
to include the information on objective function and right-hand side
in order to distinguish problems in multiple problem data sets.

DUALOUT= Data Set

The DUALOUT= data set contains the dual solution for the current solution. If the
problem has integer-constrained variables, the DUALOUT= data set contains the dual
for the current best integer solution, if any. Otherwise it contains the dual for the re-
laxed solution. In addition to –OBJ–ID– and –RHS–ID– , it contains the following
variables:

–ROW–ID– identifies the row or constraint name.

–TYPE– identifies the type of the row as specified in the input data set.

–RHS– gives the value of the right-hand side on input.

–L–RHS– gives the lower bound for the row evaluated from the input right-
hand-side value, the TYPE of the row, and the value of the RANGE
variable for the row.

–VALUE– gives the value of the row, at optimality, excluding logical vari-
ables.

–U–RHS– gives the upper bound for the row evaluated from the input right-
hand-side value, the TYPE of the row, and the value of the RANGE
variable for the row.

–DUAL– gives the value of the dual variable associated with the row.

Displayed Output � 221

TABLEAUOUT= Data Set

The TABLEAUOUT= data set contains the current tableau. Each observation, except
for the first, corresponds to a basic variable in the solution. The observation labeled
R–COSTS contains the reduced costs cT

N − cT
BB−1N . In addition to –OBJ–ID–

and –RHS–ID– , it contains the following variables:

–BASIC– gives the names of the basic variables in the solution.

INVB–R gives the values of B−1r , where r is the right-hand-side
vector.

STRUCTURAL VARIABLES give the values in the tableau, namely B−1A .

MPSOUT= Data Set

The MPSOUT= data set contains problem data converted from a PROC LP for-
mat into an MPS-format SAS data set. The six fields, FIELD1 to FIELD6, in the
MPSOUT= data set correspond to the six columns in MPS standard. For more infor-
mation about the MPS-format SAS data set, see Chapter 14, “The MPS-Format SAS
Data Set.”

Input Data Sets

In addition to the DATA= input data set, PROC LP recognizes the ACTIVEIN= and
the PRIMALIN= data sets.

ACTIVEIN= Data Set

The ACTIVEIN= data set contains a representation of the current active tree. The
format is identical to that of the ACTIVEOUT= data set.

PRIMALIN= Data Set

The format of the PRIMALIN= data set is identical to the PRIMALOUT= data set.
PROC LP uses the PRIMALIN= data set to identify variables at their upper bounds
in the current solution and variables that are basic in the current solution.

You can add observations to the end of the problem data set if they define cost (right-
hand-side) sensitivity change vectors and have PRICESEN (RHSSEN) types. This
enables you to solve a problem, save the solution in a SAS data set, and perform sen-
sitivity analysis later. You can also use the PRIMALIN= data set to restart problems
that have not been completely solved or to which new variables have been added.

Displayed Output

The output from the LP procedure is discussed in the following six sections:

• Problem Summary

• Solution Summary including a Variable Summary and a Constraint Summary

• Infeasible Information Summary

222 � Chapter 3. The LP Procedure

• RHS Sensitivity Analysis Summary (the RHS Range Analysis Summary is not
discussed)

• Price Sensitivity Analysis Summary (the Price Range Analysis Summary is not
discussed)

• Iteration Log

For integer-constrained problems, the procedure also displays an Integer Iteration
Log. The description of this Log can be found in the section “Integer Programming”
on page 203. When you request that the tableau be displayed, the procedure displays
the Current Tableau. The description of this can be found in the section “The Reduced
Costs, Dual Activities, and Current Tableau” on page 199.

A problem data set can contain a set of constraints with several right-hand sides and
several objective functions. PROC LP considers each combination of right-hand side
and objective function as defining a new linear programming problem and solves
each, performing all specified sensitivity analysis on each problem. For each problem
defined, PROC LP displays a new sequence of output sections. Example 3.1 in the
section “Examples: LP Procedure” on page 228 discusses each of these elements.

The LP procedure produces the following displayed output by default.

The Problem Summary

The problem summary includes the

• type of optimization and the name of the objective row (as identified by the ID
or ROW variable)

• name of the SAS variable that contains the right-hand-side constants

• name of the SAS variable that contains the type keywords

• density of the coefficient matrix (the ratio of the number of nonzero elements
to the number of total elements) after the slack and surplus variables have been
appended

• number of each type of variable in the mathematical program

• number of each type of constraint in the mathematical program

The Solution Summary

The solution summary includes the

• termination status of the procedure

• objective value of the current solution

• number of phase 1 iterations that were completed

• number of phase 2 iterations that were completed

• number of phase 3 iterations that were completed

• number of integer iterations that were completed

Displayed Output � 223

• number of integer feasible solutions that were found

• number of initial basic feasible variables identified

• time used in solving the problem excluding reading the data and displaying the
solution

• number of inversions of the basis matrix

• current value of several of the options

The Variable Summary

The variable summary includes the

• column number associated with each structural or logical variable in the prob-
lem

• name of each structural or logical variable in the problem. (PROC LP gives the
logical variables the name of the constraint ID. If no ID variable is specified,
the procedure names the logical variable –OBSn– , where n is the observation
that describes the constraint.)

• variable’s status in the current solution. The status can be BASIC, DEGEN,
ALTER, blank, LOWBD, or UPPBD, depending upon whether the variable is
a basic variable, a degenerate variable (that is, a basic variable whose activity
is at its input lower bound), a nonbasic variable that can be brought into the
basis to define an alternate optimal solution, a nonbasic variable at its default
lower bound 0, a nonbasic variable at its lower bound, or a nonbasic variable at
its upper bound.

• type of variable (whether it is logical or structural, and, if structural, its bound
type, or other value restriction). See Example 3.1 for a list of possible types in
the variable summary.

• value of the objective coefficient associated with each variable

• activity of the variable in the current solution

• variable’s reduced cost in the current solution

The Constraint Summary

The constraint summary includes the

• constraint row number and its ID

• kind of constraint (whether it is an OBJECTIVE, LE, EQ, GE, RANGELE,
RANGEEQ, RANGEGE, or FREE row)

• number of the slack or surplus variable associated with the constraint row

• value of the right-hand-side constant associated with the constraint row

• current activity of the row (excluding logical variables)

• current activity of the dual variable (shadow price) associated with the con-
straint row

224 � Chapter 3. The LP Procedure

The Infeasible Information Summary

The infeasible information summary includes the

• name of the infeasible row or variable

• current activity for the row or variable

• type of the row or variable

• value of right-hand-side constant

• name of each nonzero and nonmissing variable in the row

• activity and upper and lower bounds for the variable

The RHS Sensitivity Analysis Summary

The RHS sensitivity analysis summary includes the

• value of φmin

• leaving variable when φ = φmin

• objective value when φ = φmin

• value of φmax

• leaving variable when φ = φmax

• objective value when φ = φmax

• column number and name of each logical and structural variable

• variable’s status when φ ∈ [φmin, φmax]

• variable’s reduced cost when φ ∈ [φmin, φmax]

• value of right-hand-side constant when φ = φmin

• activity of the variable when φ = φmin

• value of right-hand-side constant when φ = φmax

• activity of the variable when φ = φmax

The Price Sensitivity Analysis Summary

The price sensitivity analysis summary includes the

• value of φmin

• entering variable when φ = φmin

• objective value when φ = φmin

• value of φmax

• entering variable when φ = φmax

• objective value when φ = φmax

• column number and name of each logical and structural variable

• variable’s status when φ ∈ [φmin, φmax]

ODS Table and Variable Names � 225

• activity of the variable when φ ∈ [φmin, φmax]

• price of the variable when φ = φmin

• variable’s reduced cost when φ = φmin

• price of the variable when φ = φmax

• variable’s reduced cost when φ = φmax

The Iteration Log

The iteration log includes the

• phase number

• iteration number in each phase

• name of the leaving variable

• name of the entering variable

• variable’s reduced cost

• objective value

ODS Table and Variable Names

PROC LP assigns a name to each table it creates. You can use these names to select
output tables when using the Output Delivery System (ODS).

Table 3.6. ODS Tables Produced in PROC LP

Table Name Description Statement/Option
ProblemSummary Problem summary default
SolutionSummary Solution summary default
VariableSummary Variable summary default
ConstraintSummary Constraint summary default
IterationLog Iteration log FLOW
IntegerIterationLog Integer iteration log default
PriceSensitivitySummary Price sensitivity analysis

summary
default, PRINT PRICESEN, or PRINT
COLUMN/SENSITIVITY

PriceActivities Price activities at φmin and
φmax

default, PRINT PRICESEN, or PRINT
COLUMN/SENSITIVITY

PriceActivity Price activity at φmin or φmax PRICEPHI= and PARAPRINT
PriceParametricLog Price parametric program-

ming log
PRICEPHI=

PriceRangeSummary Price range analysis RANGEPRICE or PRINT RANGEPRICE
RhsSensitivitySummary RHS sensitivity analysis sum-

mary
default, PRINT RHSSEN, or PRINT
ROW/SENSITIVITY

RhsActivities RHS activities at φmin and
φmax

default, PRINT RHSSEN, or PRINT
ROW/SENSITIVITY

RhsActivity RHS activity at φmin or φmax RHSPHI= and PARAPRINT
RhsParametricLog RHS parametric program-

ming log
RHSPHI=

226 � Chapter 3. The LP Procedure

Table 3.6. (continued)

Table Name Description Statement/Option
RhsRangeSummary RHS range analysis RANGERHS or PRINT RANGERHS
InfeasibilitySummary Infeasible row or variable

summary
default

InfeasibilityActivity Variable activity in an infeasi-
ble row

default

CurrentTableau Current tableau TABLEAUPRINT or PRINT TABLEAU
Matrix Technological matrix PRINT MATRIX
MatrixPicture Technological matrix picture PRINT MATRIX/PICTURE
MatrixPictureLegend Technological matrix picture

legend
PRINT MATRIX/PICTURE

The following table lists the variable names of the preceding tables used in the ODS
template of the LP procedure.

Table 3.7. Variable Names for the ODS Tables Produced in PROC LP

Table Name Variables
VariableSummary VarName, Status, Type, Price, Activity, ReducedCost
ConstraintSummary Row, RowName, Type, SSCol, Rhs, Activity, Dual
IterationLog Phase, Iteration, EnterVar, EnterCol, LeaveVar, LeaveCol, ReducedCost,

ObjValue
IntegerIterationLog Iteration, Problem, Condition, Objective, Branch, Value, SumOfInfeas, Active,

Proximity
PriceActivities Col, VarName, Status, Activity, MinPrice, MinReducedCost, MaxPrice,

MaxReducedCost
PriceActivity Col, VarName, Status, Activity, Price, ReducedCost
PriceParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
PriceRangeSummary Col, VarName, MinPrice, MinEnterVar, MinObj, MaxPrice, MaxEnterVar,

MaxObj
RhsActivities Col, VarName, Status, ReducedCost, MinRhs, MinActivity, MaxRhs,

MaxActivity
RhsActivity Col, VarName, Status, ReducedCost, Rhs, Activity,
RhsParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
RhsRangeSummary RowName, MinRhs, MinLeaveVar, MinObj, MaxRhs, MaxLeaveVar, MaxObj
InfeasibilityActivity VarName, Coefficient, Activity, Lower, Upper

Memory Limit � 227

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the SAS
System. If you do not specify a value for this option, then the SAS System sets a
default memory limit. Your operating environment determines the actual size of the
default memory limit, which is sufficient for many applications. However, to solve
most realistic optimization problems, the LP procedure might require more memory.
Increasing the memory limit can reduce the chance of an out-of-memory condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-
ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For
example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient
to allow the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion book
for your operating system.

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion book for your operating system.

228 � Chapter 3. The LP Procedure

Examples: LP Procedure
The following fifteen examples illustrate some of the capabilities of PROC LP. These
examples, together with the other SAS/OR examples, can be found in the SAS sample
library. A description of the features of PROC LP as shown in the examples are

Example 3.1 dense input format

Example 3.2 sparse input format

Example 3.3 the RANGEPRICE option to show you the range over which each
objective coefficient can vary without changing the variables in the
basis

Example 3.4 more sensitivity analysis and restarting a problem

Example 3.5 parametric programming

Example 3.6 special ordered sets

Example 3.7 goal programming

Example 3.8 integer programming

Example 3.9 an infeasible problem

Example 3.10 restarting integer programs

Example 3.11 controlling the search of the branch-and-bound tree

Example 3.12 matrix generation and report writing for an assignment problem

Example 3.13 matrix generation and report writing for a scheduling problem

Example 3.14 a multicommodity transshipment problem

Example 3.15 the MPS-format SAS data set

Example 3.1. An Oil Blending Problem

The blending problem presented in the introduction is a good example for demon-
strating some of the features of the LP procedure. Recall that a step in refining crude
oil into finished oil products involves a distillation process that splits crude into var-
ious streams. Suppose that there are three types of crude available: Arabian light,
Arabian heavy, and Brega. These are distilled into light naphtha, intermediate naph-
tha, and heating oil. Using one of two recipes, these in turn are blended into jet
fuel.

Assume that you can sell as much fuel as is produced. What production strategy
maximizes the profit from jet fuel sales? The following SAS code demonstrates a
way of answering this question using linear programming. The SAS data set is a
representation of the formulation for this model given in the introductory section.

Example 3.1. An Oil Blending Problem � 229

data;
input _row_ $17.

a_light a_heavy brega naphthal naphthai heatingo jet_1
jet_2 _type_ $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

proc lp;
run;

The –ROW– variable contains the names of the rows in the model; the variables
A–LIGHT to JET–2 are the names of the structural variables in the model; the
–TYPE– variable contains the keywords that tell the LP procedure how to interpret
each row in the model; and the –RHS– variable gives the value of the right-hand-side
constants.

The structural variables are interpreted as the quantity of each type of constituent
or finished product. For example, the value of A–HEAVY in the solution is the
amount of Arabian heavy crude to buy while the value of JET–1 in the solution is
the amount of recipe 1 jet fuel that is produced. As discussed previously, the values
given in the model data set are the technological coefficients whose interpretation
depends on the model. In this example, the coefficient -175 in the PROFIT row for the
variable A–LIGHT gives a cost coefficient (because the row with –ROW–=PROFIT
has –TYPE–=MAX) for the structural variable A–LIGHT. This means that for each
unit of Arabian heavy crude purchased, a cost of 175 units is incurred.

The coefficients 0.035, 0.100, and 0.390 for the A–LIGHT variable give the per-
centages of each unit of Arabian light crude that is distilled into the light naph-
tha, intermediate naphtha, and heating oil components. The 110 value in the row
–ROW–=AVAILABLE gives the quantity of Arabian light that is available.

PROC LP produces the following Problem Summary output. Included in the sum-
mary is an identification of the objective, defined by the first observation of the
problem data set; the right-hand-side variable, defined by the variable –RHS– ;
and the type identifier, defined by the variable –TYPE– . See Output 3.1.1.

230 � Chapter 3. The LP Procedure

Output 3.1.1. Problem Summary for the Oil Blending Problem
The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

The next section of output (Output 3.1.2) contains the Solution Summary, which in-
dicates whether or not an optimal solution was found. In this example, the procedure
terminates successfully (with an optimal solution), with 1544 as the value of the ob-
jective function. Also included in this section of output is the number of phase 1 and
phase 2 iterations, the number of variables used in the initial basic feasible solution,
and the time used to solve the problem. For several options specified in the PROC LP
statement, the current option values are also displayed.

Output 3.1.2. Solution Summary for the Oil Blending Problem
The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0
Phase 2 Iterations 4
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Example 3.1. An Oil Blending Problem � 231

The next section of output (Output 3.1.3) contains the Variable Summary. A line
is displayed for each variable in the mathematical program with the variable name,
the status of the variable in the solution, the type of variable, the variable’s price
coefficient, the activity of the variable in the solution, and the reduced cost for the
variable. The status of a variable can be

BASIC if the variable is a basic variable in the solution.

DEGEN if the variable is a basic variable whose activity is at its input
lower bound.

ALTER if the variable is nonbasic and is basic in an alternate optimal
solution.

LOWBD if the variable is nonbasic and is at its lower bound.

UPPBD if the variable is nonbasic and is at its upper bound.

The TYPE column shows how PROC LP interprets the variable in the problem data
set. Types include the following:

NON-NEG if the variable is a nonnegative variable with lower bound 0
and upper bound +∞.

LOWERBD if the variable has a lower bound specified in a LOWERBD
observation and upper bound +∞.

UPPERBD if the variable has an upper bound that is less than +∞
and lower bound 0. This upper bound is specified in an
UPPERBD observation.

UPLOWBD if the variable has a lower bound specified in a LOWERBD
observation and an upper bound specified in an UPPERBD
observation.

INTEGER if the variable is constrained to take integer values. If this is
the case, then it must also be upper and lower bounded.

BINARY if the variable is constrained to take value 0 or 1.

UNRSTRT if the variable is an unrestricted variable having bounds of
−∞ and +∞.

SLACK if the variable is a slack variable that PROC LP has appended
to a LE constraint. For variables of this type, the variable
name is the same as the name of the constraint (given in
the ROW variable) for which this variable is the slack. A
nonzero slack variable indicates that the constraint is not
tight. The slack is the amount by which the right-hand side
of the constraint exceeds the left-hand side.

232 � Chapter 3. The LP Procedure

SURPLUS if the variable is a surplus variable that PROC LP has ap-
pended to a GE constraint. For variables of this type, the
variable name is the same as the name of the constraint
(given in the ROW variable) for which this variable is the
surplus. A nonzero surplus variable indicates that the con-
straint is not tight. The surplus is the amount by which the
left-hand side of the constraint exceeds the right-hand side.

The Variable Summary gives the value of the structural variables at optimality. In
this example, it tells you how to produce the jet fuel to maximize your profit. You
should buy 110 units of A–LIGHT and 80 units of BREGA. These are used to make
7.45 units of NAPHTHAL, 21.8 units of NAPHTHAI, and 77.3 units of HEATINGO.
These in turn are used to make 60.65 units of JET–1 using recipe 1 and 63.33 units
of JET–2 using recipe 2.

Output 3.1.3. Variable Summary for the Oil Blending Problem
The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 a_light UPPBD UPPERBD -175 110 11.6
2 a_heavy UPPERBD -165 0 -21.45
3 brega UPPBD UPPERBD -205 80 3.35
4 naphthal BASIC NON-NEG 0 7.45 0
5 naphthai BASIC NON-NEG 0 21.8 0
6 heatingo BASIC NON-NEG 0 77.3 0
7 jet_1 BASIC NON-NEG 300 60.65 0
8 jet_2 BASIC NON-NEG 300 63.33 0

The reduced cost associated with each nonbasic variable is the marginal value of
that variable if it is brought into the basis. In other words, the objective function
value would (assuming no constraints were violated) increase by the reduced cost of
a nonbasic variable if that variable’s value increased by one. Similarly, the objective
function value would (assuming no constraints were violated) decrease by the reduced
cost of a nonbasic variable if that variable’s value were decreased by one. Basic
variables always have a zero reduced cost. At optimality, for a maximization problem,
nonbasic variables that are not at an upper bound have nonpositive reduced costs (for
example, A–HEAVY has a reduced cost of -21.45). The objective would decrease
if they were to increase beyond their optimal values. Nonbasic variables at upper
bounds have nonnegative reduced costs, showing that increasing the upper bound (if
the reduced cost is not zero) does not decrease the objective. For a nonbasic variable
at its upper bound, the reduced cost is the marginal value of increasing its upper
bound, often called its shadow price.

For minimization problems, the definition of reduced costs remains the same but the
conditions for optimality change. For example, at optimality the reduced costs of
all non-upper-bounded variables are nonnegative, and the reduced costs of upper-
bounded variables at their upper bound are nonpositive.

Example 3.2. A Sparse View of the Oil Blending Problem � 233

The next section of output (Output 3.1.4) contains the Constraint Summary. For
each constraint row, free row, and objective row, a line is displayed in the Constraint
Summary. Included on the line are the constraint name, the row type, the slack or
surplus variable associated with the row, the right-hand-side constant associated with
the row, the activity of the row (not including the activity of the slack and surplus
variables), and the dual activity (shadow prices).

A dual variable is associated with each constraint row. At optimality, the value of this
variable, the dual activity, tells you the marginal value of the right-hand-side constant.
For each unit increase in the right-hand-side constant, the objective changes by this
amount. This quantity is also known as the shadow price. For example, the marginal
value for the right-hand-side constant of constraint HEATING–O–CONV is -450.

Output 3.1.4. Constraint Summary for the Oil Blending Problem
The LP Procedure

Constraint Summary

S/S Dual
Row Constraint Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1544 .
2 naphtha_l_conv EQ . 0 0 -60
3 naphtha_i_conv EQ . 0 0 -90
4 heating_o_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

Example 3.2. A Sparse View of the Oil Blending Problem

Typically, mathematical programming models are very sparse. This means that only
a small percentage of the coefficients are nonzero. The sparse problem input is ideal
for these models. The oil blending problem in the section “An Introductory Example”
on page 162 has a sparse form. This example shows the same problem in a sparse
form with the data given in a different order. In addition to representing the problem
in a concise form, the sparse format

• allows long column names

• enables easy matrix generation (see Example 3.12, Example 3.13, and Example
3.14)

• is compatible with MPS sparse format

234 � Chapter 3. The LP Procedure

The model in the sparse format is solved by invoking PROC LP with the
SPARSEDATA option as follows.

data oil;
format _type_ $8. _col_ $14. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_ ;
datalines;

max . profit .
. arabian_light profit -175
. arabian_heavy profit -165
. brega profit -205
. jet_1 profit 300
. jet_2 profit 300
eq . napha_l_conv .
. arabian_light napha_l_conv .035
. arabian_heavy napha_l_conv .030
. brega napha_l_conv .045
. naphtha_light napha_l_conv -1
eq . napha_i_conv .
. arabian_light napha_i_conv .100
. arabian_heavy napha_i_conv .075
. brega napha_i_conv .135
. naphtha_inter napha_i_conv -1
eq . heating_oil_conv .
. arabian_light heating_oil_conv .390
. arabian_heavy heating_oil_conv .300
. brega heating_oil_conv .430
. heating_oil heating_oil_conv -1
eq . recipe_1 .
. naphtha_inter recipe_1 .3
. heating_oil recipe_1 .7
eq . recipe_2 .
. jet_1 recipe_1 -1
. naphtha_light recipe_2 .2
. heating_oil recipe_2 .8
. jet_2 recipe_2 -1
upperbd . available .
. arabian_light available 110
. arabian_heavy available 165
. brega available 80
;

proc lp data=oil sparsedata;
run;

The output from PROC LP follows.

Example 3.2. A Sparse View of the Oil Blending Problem � 235

Output 3.2.1. Output for the Sparse Oil Blending Problem
The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0
Phase 2 Iterations 5
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

236 � Chapter 3. The LP Procedure

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 arabian_heavy UPPERBD -165 0 -21.45
2 arabian_light UPPBD UPPERBD -175 110 11.6
3 brega UPPBD UPPERBD -205 80 3.35
4 heating_oil BASIC NON-NEG 0 77.3 0
5 jet_1 BASIC NON-NEG 300 60.65 0
6 jet_2 BASIC NON-NEG 300 63.33 0
7 naphtha_inter BASIC NON-NEG 0 21.8 0
8 naphtha_light BASIC NON-NEG 0 7.45 0

The LP Procedure

Constraint Summary

S/S Dual
Row Constraint Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1544 .
2 napha_l_conv EQ . 0 0 -60
3 napha_i_conv EQ . 0 0 -90
4 heating_oil_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

Example 3.3. Sensitivity Analysis: Changes in Objective
Coefficients

Simple solution of a linear program is often not enough. A manager needs to evaluate
how sensitive the solution is to changing assumptions. The LP procedure provides
several tools that are useful for “what if,” or sensitivity, analysis. One tool studies the
effects of changes in the objective coefficients.

For example, in the oil blending problem, the cost of crude and the selling price
of jet fuel can be highly variable. If you want to know the range over which each
objective coefficient can vary without changing the variables in the basis, you can
use the RANGEPRICE option in the PROC LP statement.

proc lp data=oil sparsedata
rangeprice primalout=solution;

run;

In addition to the Problem and Solution summaries, the LP procedure produces a
Price Range Summary, shown in Output 3.3.1.

For each structural variable, the upper and lower ranges of the price (objective func-
tion coefficient) and the objective value are shown. The blocking variables, those
variables that would enter the basis if the objective coefficient were perturbed further,
are also given. For example, the output shows that if the cost of ARABIAN–LIGHT

Example 3.3. Sensitivity Analysis: Changes in Objective Coefficients � 237

crude were to increase from 175 to 186.6 per unit (remember that you are maximiz-
ing profit so the ARABIAN–LIGHT objective coefficient would decrease from -175
to -186.6), then it would become optimal to use less of this crude for any fractional
increase in its cost. Increasing the unit cost to 186.6 would drive its reduced cost
to zero. Any additional increase would drive its reduced cost negative and would
destroy the optimality conditions; thus, you would want to use less of it in your pro-
cessing. The output shows that, at the point where the reduced cost is zero, you would
only be realizing a profit of 268 = 1544 - (110 × 11.6) and that ARABIAN–LIGHT
enters the basis, that is, leaves its upper bound. On the other hand, if the cost of
ARABIAN–HEAVY were to decrease to 143.55, you would want to stop using the
formulation of 110 units of ARABIAN–LIGHT and 80 units of BREGA and switch
to a production scheme that included ARABIAN–HEAVY, in which case the profit
would increase from the 1544 level.

Output 3.3.1. Price Range Summary for the Oil Blending Problem
The LP Procedure

Price Range Analysis

-------------Minimum Phi-------------
Col Variable Name Price Entering Objective

1 arabian_heavy -INFINITY . 1544
2 arabian_light -186.6 arabian_light 268
3 brega -208.35 brega 1276
4 heating_oil -7.790698 brega 941.77907
5 jet_1 290.19034 brega 949.04392
6 jet_2 290.50992 brega 942.99292
7 naphtha_inter -24.81481 brega 1003.037
8 naphtha_light -74.44444 brega 989.38889

Price Range Analysis

-------------Maximum Phi-------------
Col Price Entering Objective

1 -143.55 arabian_heavy 1544
2 INFINITY . INFINITY
3 INFINITY . INFINITY
4 71.5 arabian_heavy 7070.95
5 392.25806 arabian_heavy 7139.4516
6 387.19512 arabian_heavy 7066.0671
7 286 arabian_heavy 7778.8
8 715 arabian_heavy 6870.75

Note that in the PROC LP statement, the PRIMALOUT=SOLUTION option was
given. This caused the procedure to save the optimal solution in a SAS data set
named SOLUTION. This data set can be used to perform further analysis on the
problem without having to restart the solution process. Example 3.4 shows how this
is done. A display of the data follows in Output 3.3.2.

238 � Chapter 3. The LP Procedure

Output 3.3.2. The PRIMALOUT= Data Set for the Oil Blending Problem
_ _ _ _ _ _
O R S L _ U _ R
B H _ T B V B P _
J S _ T A O A O R C
_ _ V Y T U L U I O

O I I A P U N U N C S
b D D R E S D E D E T
s _ _ _ _ _ _ _ _ _ _

1 profit _rhs_ arabian_heavy UPPERBD 0 0.00 165 -165 -21.45
2 profit _rhs_ arabian_light UPPERBD _UPPER_ 0 110.00 110 -175 11.60
3 profit _rhs_ brega UPPERBD _UPPER_ 0 80.00 80 -205 3.35
4 profit _rhs_ heating_oil NON-NEG _BASIC_ 0 77.30 1.7977E308 0 0.00
5 profit _rhs_ jet_1 NON-NEG _BASIC_ 0 60.65 1.7977E308 300 0.00
6 profit _rhs_ jet_2 NON-NEG _BASIC_ 0 63.33 1.7977E308 300 0.00
7 profit _rhs_ naphtha_inter NON-NEG _BASIC_ 0 21.80 1.7977E308 0 -0.00
8 profit _rhs_ naphtha_light NON-NEG _BASIC_ 0 7.45 1.7977E308 0 0.00
9 profit _rhs_ PHASE_1_OBJECTIVE OBJECT _DEGEN_ 0 0.00 0 0 0.00
10 profit _rhs_ profit OBJECT _BASIC_ 0 1544.00 1.7977E308 0 0.00

Example 3.4. Additional Sensitivity Analysis

The objective coefficient ranging analysis, discussed in the last example, is useful for
assessing the effects of changing costs and returns on the optimal solution if each
objective function coefficient is modified in isolation. However, this is often not the
case.

Suppose you anticipate that the cost of crude will be increasing and you want to
examine how that will affect your optimal production plans. Furthermore, you es-
timate that if the price of ARABIAN–LIGHT goes up by 1 unit, then the price of
ARABIAN–HEAVY will rise by 1.2 units and the price of BREGA will increase by
1.5 units. However, you plan on passing some of your increased overhead on to your
jet fuel customers, and you decide to increase the price of jet fuel 1 unit for each unit
of increased cost of ARABIAN–LIGHT.

An examination of the solution sensitivity to changes in the cost of crude is a two-
step process. First, add the information on the proportional rates of change in the
crude costs and the jet fuel price to the problem data set. Then, invoke the LP pro-
cedure. The following program accomplishes this. First, it adds a new row, named
CHANGE, to the model. It gives this row a type of PRICESEN. That tells PROC LP
to perform objective function coefficient sensitivity analysis using the given rates of
change. The program then invokes PROC LP to perform the analysis. Notice that
the PRIMALIN=SOLUTION option is used in the PROC LP statement. This tells
the LP procedure to use the saved solution. Although it is not necessary to do this, it
will eliminate the need for PROC LP to re-solve the problem and can save computing
time.

Example 3.4. Additional Sensitivity Analysis � 239

data sen;
format _type_ $8. _col_ $14. _row_ $6.;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

pricesen . change .
. arabian_light change 1
. arabian_heavy change 1.2
. brega change 1.5
. jet_1 change -1
. jet_2 change -1
;

data;
set oil sen;

run;

proc lp sparsedata primalin=solution;
run;

Output 3.4.1 shows the range over which the current basic solution remains opti-
mal so that the current production plan need not change. The objective coefficients
are modified by adding φ times the change vector given in the SEN data set, where
φ ranges from a minimum of -4.15891 to a maximum of 29.72973. At the mini-
mum value of φ, the profit decreases to 1103.073. This value of φ corresponds to
an increase in the cost of ARABIAN–HEAVY to 169.99 (namely, −175 + φ× 1.2),
ARABIAN–LIGHT to 179.16 (= −175 + φ× 1), and BREGA to 211.24 (= −205 +
φ× 1.5), and corresponds to an increase in the price of JET–1 and JET–2 to 304.16
(= 300 + φ× (-1)). These values can be found in the Price column under the section
labeled Minimum Phi.

240 � Chapter 3. The LP Procedure

Output 3.4.1. The Price Sensitivity Analysis Summary for the Oil Blending
Problem

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -4.158907511
Entering Variable brega
Optimal Objective 1103.0726257

Maximum Phi 29.72972973
Entering Variable arabian_heavy
Optimal Objective 4695.9459459

----Minimum Phi---- ----Maximum Phi----
Reduced Reduced

Col Variable Name Status Activity Price Cost Price Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0
2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838
3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297
4 heating_oil BASIC 77.3 0 0 0 0
5 jet_1 BASIC 60.65 304.15891 0 270.27027 0
6 jet_2 BASIC 63.33 304.15891 0 270.27027 0
7 naphtha_inter BASIC 21.8 0 0 0 0
8 naphtha_light BASIC 7.45 0 0 0 0

The Price Sensitivity Analysis Summary also shows the effects of lowering the cost of
crude and lowering the price of jet fuel. In particular, at the maximum φ of 29.72973,
the current optimal production plan yields a profit of 4695.95. Any increase or de-
crease in φ beyond the limits given results in a change in the production plan. More
precisely, the columns that constitute the basis change.

Example 3.5. Price Parametric Programming for the Oil
Blending Problem

This example continues to examine the effects of a change in the cost of crude and
the selling price of jet fuel. Suppose that you know the cost of ARABIAN–LIGHT
crude is likely to increase 30 units, with the effects on oil and fuel prices as described
in Example 3.4. The analysis in the last example only accounted for an increase of
a little over 4 units (because the minimum φ was -4.15891). Because an increase
in the cost of ARABIAN–LIGHT beyond 4.15891 units requires a change in the
optimal basis, it may require a change in the optimal production strategy as well.
This type of analysis, where you want to find how the solution changes with changes
in the objective function coefficients or right-hand-side vector, is called parametric
programming.

You can answer this question by using the PRICEPHI= option in the PROC LP state-
ment. The following program instructs PROC LP to continually increase the cost of
the crudes and the return from jet fuel using the ratios given previously, until the cost
of ARABIAN–LIGHT increases at least 30 units.

Example 3.5. Price Parametric Programming for the Oil Blending Problem � 241

proc lp sparsedata primalin=solution pricephi=-30;
run;

The PRICEPHI= option in the PROC LP statement tells PROC LP to perform para-
metric programming on any price change vectors specified in the problem data set.
The value of the PRICEPHI= option tells PROC LP how far to change the value of φ
and in what direction. A specification of PRICEPHI=-30 tells PROC LP to continue
pivoting until the problem has objective function equal to (original objective function
value) − 30 × (change vector).

Output 3.5.1 shows the result of this analysis. The first page is the Price Sensitivity
Analysis Summary, as discussed in Example 3.4. The next page is an accounting
for the change in basis as a result of decreasing φ beyond -4.1589. It shows that
BREGA left the basis at an upper bound and entered the basis at a lower bound. The
interpretation of these basis changes can be difficult (Hadley 1962; Dantzig 1963).

The last page of output shows the optimal solution at the displayed value of φ, namely
-30.6878. At an increase of 30.6878 units in the cost of ARABIAN–LIGHT and
the related changes to the other crudes and the jet fuel, it is optimal to modify the
production of jet fuel as shown in the activity column. Although this plan is optimal,
it results in a profit of 0. This may suggest that the ratio of a unit increase in the price
of jet fuel per unit increase in the cost of ARABIAN–LIGHT is lower than desirable.

Output 3.5.1. Price Parametric Programming for the Oil Blending Problem
The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -4.158907511
Entering Variable brega
Optimal Objective 1103.0726257

Maximum Phi 29.72972973
Entering Variable arabian_heavy
Optimal Objective 4695.9459459

----Minimum Phi---- ----Maximum Phi----
Reduced Reduced

Col Variable Name Status Activity Price Cost Price Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0
2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838
3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297
4 heating_oil BASIC 77.3 0 0 0 0
5 jet_1 BASIC 60.65 304.15891 0 270.27027 0
6 jet_2 BASIC 63.33 304.15891 0 270.27027 0
7 naphtha_inter BASIC 21.8 0 0 0 0
8 naphtha_light BASIC 7.45 0 0 0 0

242 � Chapter 3. The LP Procedure

The LP Procedure

Price Parametric Programming Log
Sensitivity Vector change

Current
Leaving Variable Entering Variable Objective Phi

brega brega 1103.0726 -4.158908

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -30.68783069
Entering Variable arabian_light
Optimal Objective 0

----Minimum Phi----
Reduced

Col Variable Name Status Activity Price Cost

1 arabian_heavy 0 -201.8254 -43.59127
2 arabian_light ALTER 110 -205.6878 0
3 brega 0 -251.0317 -21.36905
4 heating_oil BASIC 42.9 0 0
5 jet_1 BASIC 33.33 330.68783 0
6 jet_2 BASIC 35.09 330.68783 0
7 naphtha_inter BASIC 11 0 0
8 naphtha_light BASIC 3.85 0 0

What is the optimal return if φ is exactly -30? Because the change in the objective is
linear as a function of φ, you can calculate the objective for any value of φ between
those given by linear interpolation. For example, for any φ between -4.1589 and
-30.6878, the optimal objective value is

φ× (1103.0726− 0)/(−4.1589− 30.6878) + b

where

b = 30.6878× (1103.0726− 0)/(−4.1589− 30.6878)

For φ =-30, this is 28.5988.

Example 3.6. Special Ordered Sets and the Oil Blending
Problem

Often managers want to evaluate the cost of making a choice among alternatives.
In particular, they want to make the most profitable choice. Suppose that only one
oil crude can be used in the production process. This identifies a set of variables
of which only one can be above its lower bound. This additional restriction could
be included in the model by adding a binary integer variable for each of the three

Example 3.6. Special Ordered Sets and the Oil Blending Problem � 243

crudes. Constraints would be needed that would drive the appropriate binary variable
to 1 whenever the corresponding crude is used in the production process. Then a
constraint limiting the total of these variables to only one would be added. A similar
formulation for a fixed charge problem is shown in Example 3.8.

The SOSLE type implicitly does this. The following DATA step adds a row to the
model that identifies which variables are in the set. The SOSLE type tells the LP
procedure that only one of the variables in this set can be above its lower bound. If
you use the SOSEQ type, it tells PROC LP that exactly one of the variables in the set
must be above its lower bound. Only integer variables can be in an SOSEQ set.

data special;
format _type_ $6. _col_ $14. _row_ $8. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

SOSLE . special .
. arabian_light special 1
. arabian_heavy special 1
. brega special 1
;

data;
set oil special;

run;

proc lp sparsedata;
run;

Output 3.6.1 includes an Integer Iteration Log. This log shows the progress that
PROC LP is making in solving the problem. This is discussed in some detail in
Example 3.8.

Output 3.6.1. The Oil Blending Problem with a Special Ordered Set
The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

244 � Chapter 3. The LP Procedure

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 1544 arabian_light 110 0 2 .
2 -1 SUBOPTIMAL 1276 . . . 1 268
3 1 FATHOMED 268 . . . 0 .

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 1276

Phase 1 Iterations 0
Phase 2 Iterations 5
Phase 3 Iterations 0
Integer Iterations 3
Integer Solutions 1
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 5

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 arabian_heavy UPPERBD -165 0 -21.45
2 arabian_light UPPBD UPPERBD -175 110 11.6
3 brega UPPERBD -205 0 3.35
4 heating_oil BASIC NON-NEG 0 42.9 0
5 jet_1 BASIC NON-NEG 300 33.33 0
6 jet_2 BASIC NON-NEG 300 35.09 0
7 naphtha_inter BASIC NON-NEG 0 11 0
8 naphtha_light BASIC NON-NEG 0 3.85 0

Example 3.7. Goal-Programming a Product Mix Problem � 245

The LP Procedure

Constraint Summary

S/S Dual
Row Constraint Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1276 .
2 napha_l_conv EQ . 0 0 -60
3 napha_i_conv EQ . 0 0 -90
4 heating_oil_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

The solution shows that only the ARABIAN–LIGHT crude is purchased. The re-
quirement that only one crude be used in the production is met, and the profit is 1276.
This tells you that the value of purchasing crude from an additional source, namely
BREGA, is worth 1544 − 1276 = 268.

Example 3.7. Goal-Programming a Product Mix Problem

This example shows how to use PROC LP to solve a linear goal-programming prob-
lem. PROC LP has the ability to solve a series of linear programs, each with a new
objective function. These objective functions are ordered by priority. The first step is
to solve a linear program with the highest priority objective function constrained only
by the formal constraints in the model. Then, the problem with the next highest pri-
ority objective function is solved, constrained by the formal constraints in the model
and by the value that the highest priority objective function realized. That is, the
second problem optimizes the second highest priority objective function among the
alternate optimal solutions to the first optimization problem. The process continues
until a linear program is solved for each of the objectives.

This technique is useful for differentiating among alternate optimal solutions to a
linear program. It also fits into the formal paradigm presented in goal programming.
In goal programming, the objective functions typically take on the role of driving a
linear function of the structural variables to meet a target level as closely as possible.
The details of this can be found in many books on the subject, including Ignizio
(1976).

Consider the following problem taken from Ignizio (1976). A small paint company
manufactures two types of paint, latex and enamel. In production, the company uses
10 hours of labor to produce 100 gallons of latex and 15 hours of labor to produce 100
gallons of enamel. Without hiring outside help or requiring overtime, the company
has 40 hours of labor available each week. Furthermore, each paint generates a profit
at the rate of $1.00 per gallon. The company has the following objectives listed in
decreasing priority:

• avoid the use of overtime

• achieve a weekly profit of $1000

• produce at least 700 gallons of enamel paint each week

246 � Chapter 3. The LP Procedure

The program to solve this problem follows.

data object;
input _row_ $ latex enamel n1 n2 n3 p1 p2 p3 _type_ $ _rhs_;
datalines;

overtime 1 . . min 1
profit . . . 1 min 2
enamel 1 . . . min 3
overtime 10 15 1 . . -1 . . eq 40
profit 100 100 . 1 . . -1 . eq 1000
enamel . 1 . . 1 . . -1 eq 7
;

proc lp data=object goalprogram;
run;

The data set called OBJECT contains the model. Its first three observations are the
objective rows, and the next three observations are the constraints. The values in the
right-hand-side variable –RHS– in the objective rows give the priority of the ob-
jectives. The objective in the first observation with –ROW–=‘OVERTIME’ has the
highest priority, the objective named PROFIT has the next highest, and the objective
named ENAMEL has the lowest. Note that the value of the right-hand-side variable
determines the priority, not the order, in the data set.

Because this example is set in the formal goal-programming scheme, the model has
structural variables representing negative (n1, n2, and n3) and positive (p1, p2, and
p3) deviations from target levels. For example, n1+p1 is the deviation from the ob-
jective of avoiding the use of overtime and underusing the normal work time, namely
using exactly 40 work hours. The other objectives are handled similarly.

Notice that the PROC LP statement includes the GOALPROGRAM option. Without
this option, the procedure would solve three separate problems: one for each of the
three objective functions. In that case, however, the procedure would not constrain
the second and third programs using the results of the preceding programs; also, the
values 1, 2, and 3 for –RHS– in the objective rows would have no effect.

Output 3.7.1 shows the solution of the goal program, apparently as three linear pro-
gram outputs. However, examination of the constraint summaries in the second and
third problems shows that the constraints labeled by the objectives OVERTIME and
PROFIT have type FIXEDOBJ. This indicates that these objective rows have become
constraints in the subsequent problems.

Example 3.7. Goal-Programming a Product Mix Problem � 247

Output 3.7.1. Goal Programming
The LP Procedure

Problem Summary

Objective Function Min overtime
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 0

Phase 1 Iterations 2
Phase 2 Iterations 0
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 7
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

248 � Chapter 3. The LP Procedure

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex ALTER NON-NEG 0 0 0
2 enamel ALTER NON-NEG 0 0 0
3 n1 BASIC NON-NEG 0 40 0
4 n2 BASIC NON-NEG 0 1000 0
5 n3 BASIC NON-NEG 0 7 0
6 p1 NON-NEG 1 0 1
7 p2 ALTER NON-NEG 0 0 0
8 p3 ALTER NON-NEG 0 0 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime OBJECTVE . 0 0 .
2 profit FREE_OBJ . 0 1000 .
3 enamel FREE_OBJ . 0 7 .
4 overtime EQ . 40 40 0
5 profit EQ . 1000 1000 0
6 enamel EQ . 7 7 0

The LP Procedure

Problem Summary

Objective Function Min profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

Example 3.7. Goal-Programming a Product Mix Problem � 249

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 600

Phase 1 Iterations 0
Phase 2 Iterations 3
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 7
Time Used (seconds) 0
Number of Inversions 5

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex BASIC NON-NEG 0 4 0
2 enamel NON-NEG 0 0 50
3 n1 NON-NEG 0 0 10
4 n2 BASIC NON-NEG 1 600 0
5 n3 BASIC NON-NEG 0 7 0
6 p1 DEGEN NON-NEG 0 0 0
7 p2 NON-NEG 0 0 1
8 p3 ALTER NON-NEG 0 0 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime FIXEDOBJ . 0 0 .
2 profit OBJECTVE . 0 600 .
3 enamel FREE_OBJ . 0 7 .
4 overtime EQ . 40 40 -10
5 profit EQ . 1000 1000 1
6 enamel EQ . 7 7 0

250 � Chapter 3. The LP Procedure

The LP Procedure

Problem Summary

Objective Function Min enamel
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 7

Phase 1 Iterations 0
Phase 2 Iterations 1
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 7
Time Used (seconds) 0
Number of Inversions 8

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Example 3.8. A Simple Integer Program � 251

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex BASIC NON-NEG 0 4 0
2 enamel DEGEN NON-NEG 0 0 0
3 n1 NON-NEG 0 0 0.2
4 n2 BASIC NON-NEG 0 600 0
5 n3 BASIC NON-NEG 1 7 0
6 p1 DEGEN NON-NEG 0 0 0
7 p2 NON-NEG 0 0 0.02
8 p3 NON-NEG 0 0 1

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime FIXEDOBJ . 0 0 .
2 profit FIXEDOBJ . 0 600 .
3 enamel OBJECTVE . 0 7 .
4 overtime EQ . 40 40 -0.2
5 profit EQ . 1000 1000 0.02
6 enamel EQ . 7 7 1

The solution to the last linear program shows a value of 4 for the variable LATEX and
a value of 0 for the variable ENAMEL. This tells you that the solution to the linear
goal program is to produce 400 gallons of latex and no enamel paint.

The values of the objective functions in the three linear programs tell you whether you
can achieve the three objectives. The activities of the constraints labeled OVERTIME,
PROFIT, and ENAMEL tell you values of the three linear program objectives.
Because the first linear programming objective OVERTIME is 0, the highest pri-
ority objective, which is to avoid using additional labor, is accomplished. However,
because the second and third objectives are nonzero, the second and third priority
objectives are not satisfied completely. The PROFIT objective is 600. Because the
PROFIT objective is to minimize the negative deviation from the profit constraint, this
means that a profit of only 400 = 1000 − 600 is realized. Similarly, the ENAMEL
objective is 7, indicating that there is a negative deviation from the ENAMEL target
of 7 units.

Example 3.8. A Simple Integer Program

Recall the linear programming problem presented in Chapter 1, “Introduction to
Optimization.” In that problem, a firm produces two products, chocolates and gum-
drops, that are processed by four processes: cooking, color/flavor, condiments, and
packaging. The objective is to determine the product mix that maximizes the profit
to the firm while not exceeding manufacturing capacities. The problem is extended
to demonstrate a use of integer-constrained variables.

252 � Chapter 3. The LP Procedure

Suppose that you must manufacture only one of the two products. In addition, there
is a setup cost of 100 if you make the chocolates and 75 if you make the gum-
drops. To identify which product will maximize profit, you define two zero-one in-
teger variables, ICHOCO and IGUMDR, and you also define two new constraints,
CHOCOLATE and GUM. The constraint labeled CHOCOLATE forces ICHOCO
to equal one when chocolates are manufactured. Similarly, the constraint labeled
GUM forces IGUMDR to equal 1 when gumdrops are manufactured. Also, you
should include a constraint labeled ONLY–ONE that requires the sum of ICHOCO
and IGUMDR to equal 1. (Note that this could be accomplished more simply by
including ICHOCO and IGUMDR in a SOSEQ set.) Since ICHOCO and IGUMDR
are integer variables, this constraint eliminates the possibility of both products being
manufactured. Notice the coefficients -10000, which are used to force ICHOCO or
IGUMDR to 1 whenever CHOCO and GUMDR are nonzero. This technique, which
is often used in integer programming, can cause severe numerical problems. If this
driving coefficient is too large, then arithmetic overflows and underflow may result.
If the driving coefficient is too small, then the integer variable may not be driven to 1
as desired by the modeler.

The objective coefficients of the integer variables ICHOCO and IGUMDR are the
negatives of the setup costs for the two products. The following is the data set that
describes this problem and the call to PROC LP to solve it:

data;
format _row_ $10. ;
input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0
gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

proc lp;
run;

The solution shows that gumdrops are produced. See Output 3.8.1.

Example 3.8. A Simple Integer Program � 253

Output 3.8.1. Summaries and an Integer Programming Iteration Log
The LP Procedure

Problem Summary

Objective Function Max object
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 25.71

Variables Number

Non-negative 2
Binary 2
Slack 6

Total 10

Constraints Number

LE 6
EQ 1
Objective 1

Total 8

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 397.5 ichoco 0.1 0.2 2 .
2 -1 SUBOPTIMAL 260 . . . 1 70
3 1 SUBOPTIMAL 285 . . . 0 .

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 285

Phase 1 Iterations 0
Phase 2 Iterations 5
Phase 3 Iterations 5
Integer Iterations 3
Integer Solutions 2
Initial Basic Feasible Variables 9
Time Used (seconds) 0
Number of Inversions 5

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

254 � Chapter 3. The LP Procedure

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 choco DEGEN NON-NEG 0.25 0 0
2 gumdr BASIC NON-NEG 0.75 480 0
3 ichoco BINARY -100 0 2475
4 igumdr BASIC BINARY -75 1 0
5 cooking BASIC SLACK 0 7800 0
6 color SLACK 0 0 -0.013333
7 package BASIC SLACK 0 27000 0
8 condiments BASIC SLACK 0 3000 0
9 chocolate SLACK 0 0 -0.25

10 gum BASIC SLACK 0 9520 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 object OBJECTVE . 0 285 .
2 cooking LE 5 27000 19200 0
3 color LE 6 27000 27000 0.0133333
4 package LE 7 27000 0 0
5 condiments LE 8 27000 24000 0
6 chocolate LE 9 0 0 0.25
7 gum LE 10 0 -9520 0
8 only_one EQ . 1 1 -75

The branch-and-bound tree can be reconstructed from the information contained in
the integer iteration log. The column labeled Iter numbers the integer iterations. The
column labeled Problem identifies the Iter number of the parent problem from which
the current problem is defined. For example, Iter=2 has Problem=-1. This means
that problem 2 is a direct descendant of problem 1. Furthermore, because problem
1 branched on ICHOCO, you know that problem 2 is identical to problem 1 with
an additional constraint on variable ICHOCO. The minus sign in the Problem=-1
in Iter=2 tells you that the new constraint on variable ICHOCO is a lower bound.
Moreover, because Value=0.1 in Iter=1, you know that ICHOCO=0.1 in Iter=1 so
that the added constraint in Iter=2 is ICHOCO ≥ d0.1e. In this way, the information
in the log can be used to reconstruct the branch-and-bound tree. In fact, when you
save an ACTIVEOUT= data set, it contains information in this format that is used to
reconstruct the tree when you restart a problem using the ACTIVEIN= data set. See
Example 3.10.

Note that if you defined a SOSEQ special ordered set containing the variables
CHOCO and GUMDR, the integer variables ICHOCO and IGUMDR and the three
associated constraints would not have been needed.

Example 3.9. An Infeasible Problem � 255

Example 3.9. An Infeasible Problem

This is an example of the Infeasible Information Summary that is displayed when an
infeasible problem is encountered. Consider the following problem:

max x + y + z + w
subject to x + 3y + 2z + 4w ≤ 5

3x + y + 2z + w ≤ 4
5x + 3y + 3z + 3w = 9
x, y, z, w ≥ 0

Examination of this problem reveals that it is unsolvable. Consequently, PROC LP
identifies it as infeasible. The following program attempts to solve it.

data infeas;
format _id_ $6.;
input _id_ $ x1-x4 _type_ $ _rhs_;
datalines;

profit 1 1 1 1 max .
const1 1 3 2 4 le 5
const2 3 1 2 1 le 4
const3 5 3 3 3 eq 9
;

proc lp;
run;

The results are shown in Output 3.9.1.

Output 3.9.1. The Solution of an Infeasible Problem
The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 77.78

Variables Number

Non-negative 4
Slack 2

Total 6

Constraints Number

LE 2
EQ 1
Objective 1

Total 4

256 � Chapter 3. The LP Procedure

ERROR: Infeasible problem. Note the constraints in the constraint summary
that are identified as infeasible. If none of the constraints are
flagged then check the implicit bounds on the variables.

The LP Procedure

Solution Summary

Infeasible Problem

Objective Value 2.5

Phase 1 Iterations 2
Phase 2 Iterations 0
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 x1 BASIC NON-NEG 1 0.75 0
2 x2 BASIC NON-NEG 1 1.75 0
3 x3 NON-NEG 1 0 0.5
4 x4 NON-NEG 1 0 0

INF const1 BASIC SLACK 0 -1 0
6 const2 SLACK 0 0 0.5

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 2.5 .
INF const1 LE 5 5 6 0

3 const2 LE 6 4 4 -0.5
4 const3 EQ . 9 9 0.5

Example 3.10. Restarting an Integer Program � 257

The LP Procedure

Infeasible Information Summary

Infeasible Row const1
Constraint Activity 6
Row Type LE
Rhs Data 5

Lower Upper
Variable Coefficient Activity Bound Bound

x1 1 0.75 0 INFINITY
x2 3 1.75 0 INFINITY
x3 2 0 0 INFINITY
x4 4 0 0 INFINITY

Note the information given in the Infeasible Information Summary for the infeasible
row CONST1. It shows that the inequality row CONST1 with right-hand side 5 was
found to be infeasible with activity 6. The summary also shows each variable that has
a nonzero coefficient in that row and its activity level at the infeasibility. Examination
of these model parameters might give you a clue as to the cause of infeasibility, such
as an incorrectly entered coefficient or right-hand-side value.

Example 3.10. Restarting an Integer Program
The following example is attributed to Haldi (Garfinkel and Nemhauser 1972) and
is used in the literature as a test problem. Notice that the ACTIVEOUT= and the
PRIMALOUT= options are used when invoking PROC LP. These cause the LP pro-
cedure to save the primal solution in the data set named P and the active tree in the
data set named A. If the procedure fails to find an optimal integer solution on the
initial call, it can be called later using the A and P data sets as starting information.

data haldi10;
input x1-x12 _type_ $ _rhs_;
datalines;
0 0 0 0 0 0 1 1 1 1 1 1 MAX .
9 7 16 8 24 5 3 7 8 4 6 5 LE 110

12 6 6 2 20 8 4 6 3 1 5 8 LE 95
15 5 12 4 4 5 5 5 6 2 1 5 LE 80
18 4 4 18 28 1 6 4 2 9 7 1 LE 100
-12 0 0 0 0 0 1 0 0 0 0 0 LE 0
0 -15 0 0 0 0 0 1 0 0 0 0 LE 0
0 0 -12 0 0 0 0 0 1 0 0 0 LE 0
0 0 0 -10 0 0 0 0 0 1 0 0 LE 0
0 0 0 0 -11 0 0 0 0 0 1 0 LE 0
0 0 0 0 0 -11 0 0 0 0 0 1 LE 0
1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 UPPERBD .
1 2 3 4 5 6 7 8 9 10 11 12 INTEGER .
;

proc lp data=haldi10 activeout=a primalout=p;
run;

258 � Chapter 3. The LP Procedure

The ACTIVEOUT= data set contains a representation of the current active problems
in the branch-and-bound tree. The PRIMALOUT= data set contains a representation
of the solution to the current problem. These two can be used to restore the procedure
to an equivalent state to the one it was in when it stopped.

The results from the call to PROC LP is shown in Output 3.10.1. Notice that the pro-
cedure performed 100 iterations and then terminated on maximum integer iterations.
This is because, by default, IMAXIT=100. The procedure reports the current best
integer solution.

Output 3.10.1. Output from the HALDI10 Problem
The LP Procedure

Problem Summary

Objective Function Max _OBS1_
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 31.82

Variables Number

Integer 6
Binary 6
Slack 10

Total 22

Constraints Number

LE 10
Objective 1

Total 11

Example 3.10. Restarting an Integer Program � 259

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 x9 1.543 1.11905 2 .
2 1 ACTIVE 18.467723 x12 9.371 0.88948 3 .
3 2 ACTIVE 18.460133 x8 0.539 1.04883 4 .
4 -3 ACTIVE 18.453638 x12 8.683 1.12993 5 .
5 4 ACTIVE 18.439678 x10 7.448 1.20125 6 .
6 5 ACTIVE 18.403728 x6 0.645 1.3643 7 .
7 -6 ACTIVE 18.048289 x4 0.7 1.18395 8 .
8 -7 ACTIVE 17.679087 x8 1.833 0.52644 9 .
9 8 ACTIVE 17.52 x10 6.667 0.70111 10 .
10 9 ACTIVE 17.190085 x12 7.551 1.37615 11 .
11 -10 ACTIVE 17.02 x1 0.085 0.255 12 .
12 11 ACTIVE 16.748 x11 0.748 0.47 13 .
13 -12 ACTIVE 16.509091 x9 0.509 0.69091 14 .
14 13 ACTIVE 16.261333 x11 1.261 0.44267 15 .
15 14 ACTIVE 16 x3 0.297 0.45455 16 .
16 15 ACTIVE 16 x5 0.091 0.15758 16 .
17 -16 INFEASIBLE -0.4 . . . 15 .
18 -15 ACTIVE 11.781818 x10 1.782 0.37576 15 .
19 18 ACTIVE 11 x5 0.091 0.15758 15 .
20 -19 INFEASIBLE -6.4 . . . 14 .
21 -14 ACTIVE 11.963636 x5 0.182 0.28485 14 .
22 -21 INFEASIBLE -4.4 . . . 13 .
23 -13 ACTIVE 15.281818 x10 4.282 0.52273 13 .
24 23 ACTIVE 15.041333 x5 0.095 0.286 14 .
25 -24 INFEASIBLE -2.9 . . . 13 .
26 24 INFEASIBLE 14 . . . 12 .
27 12 ACTIVE 16 x3 0.083 0.15 13 .
28 -27 ACTIVE 15.277778 x9 0.278 0.34444 14 .
29 -28 ACTIVE 13.833333 x10 3.833 0.23333 14 .
30 29 ACTIVE 13 x2 0.4 0.4 15 .
31 30 INFEASIBLE 12 . . . 14 .
32 -30 SUBOPTIMAL 10 . . . 13 8
33 28 ACTIVE 15 x2 0.067 0.06667 13 8
34 -33 SUBOPTIMAL 12 . . . 12 6
35 27 ACTIVE 15 x2 0.067 0.06667 12 6
36 -35 SUBOPTIMAL 15 . . . 11 3
37 -11 FATHOMED 14.275 . . . 10 3
38 10 ACTIVE 16.804848 x1 0.158 0.50313 11 3
39 -38 FATHOMED 14.784 . . . 10 3
40 38 ACTIVE 16.40381 x11 1.404 0.68143 11 3
41 -40 ACTIVE 16.367677 x10 5.368 0.69949 12 3
42 41 ACTIVE 16.113203 x11 2.374 1.00059 12 3
43 42 ACTIVE 16 x5 0.182 0.33182 12 3
44 -43 FATHOMED 13.822222 . . . 11 3
45 -41 FATHOMED 12.642424 . . . 10 3
46 40 ACTIVE 16 x5 0.229 0.37857 10 3
47 46 FATHOMED 15 . . . 9 3
48 -9 ACTIVE 17.453333 x7 0.453 0.64111 10 3
49 48 ACTIVE 17.35619 x11 0.356 0.53857 11 3
50 49 ACTIVE 17 x5 0.121 0.27143 12 3

260 � Chapter 3. The LP Procedure

51 50 ACTIVE 17 x3 0.083 0.15 13 3
52 -51 FATHOMED 15.933333 . . . 12 3
53 51 ACTIVE 16 x2 0.067 0.06667 12 3
54 -53 SUBOPTIMAL 16 . . . 8 2
55 -8 ACTIVE 17.655399 x12 7.721 0.56127 9 2
56 55 ACTIVE 17.519375 x10 6.56 0.76125 10 2
57 56 ACTIVE 17.256874 x2 0.265 0.67388 11 2
58 57 INFEASIBLE 17.167622 . . . 10 2
59 -57 FATHOMED 16.521755 . . . 9 2
60 -56 FATHOMED 17.03125 . . . 8 2
61 -55 ACTIVE 17.342857 x9 0.343 0.50476 8 2
62 61 ACTIVE 17.2225 x7 0.16 0.37333 9 2
63 62 ACTIVE 17.1875 x8 2.188 0.33333 9 2
64 63 ACTIVE 17.153651 x11 0.154 0.30095 10 2
65 -64 FATHOMED 12.381818 . . . 9 2
66 64 ACTIVE 17 x2 0.133 0.18571 9 2
67 -66 FATHOMED 13 . . . 8 2
68 -62 FATHOMED 14.2 . . . 7 2
69 7 FATHOMED 15.428583 . . . 6 2
70 6 FATHOMED 16.75599 . . . 5 2
71 -5 ACTIVE 17.25974 x6 0.727 0.82078 5 2
72 -71 FATHOMED 17.142857 . . . 4 2
73 -4 ACTIVE 18.078095 x4 0.792 0.70511 5 2
74 -73 ACTIVE 17.662338 x10 7.505 0.91299 5 2
75 74 ACTIVE 17.301299 x9 0.301 0.57489 5 2
76 75 ACTIVE 17.210909 x7 0.211 0.47697 5 2
77 76 FATHOMED 17.164773 . . . 4 2
78 73 FATHOMED 12.872727 . . . 3 2
79 3 ACTIVE 18.368316 x10 7.602 1.20052 4 2
80 79 ACTIVE 18.198323 x7 1.506 1.85351 5 2
81 80 ACTIVE 18.069847 x12 8.517 1.67277 6 2
82 -81 ACTIVE 17.910909 x4 0.7 0.73015 7 2
83 -82 ACTIVE 17.790909 x7 0.791 0.54015 8 2
84 -83 ACTIVE 17.701299 x9 0.701 0.62229 8 2
85 84 ACTIVE 17.17619 x6 0.818 0.45736 8 2
86 -85 ACTIVE 17.146667 x11 0.147 0.24333 8 2
87 86 ACTIVE 17 x1 0.167 0.16667 8 2
88 87 INFEASIBLE 16 . . . 7 2
89 83 ACTIVE 17.58 x11 0.58 0.73788 8 2
90 -89 FATHOMED 17.114286 . . . 7 2
91 -80 ACTIVE 18.044048 x12 8.542 1.71158 8 2
92 91 ACTIVE 17.954536 x11 0.477 1.90457 9 2
93 92 ACTIVE 17.875084 x4 0.678 1.16624 10 2
94 93 FATHOMED 13.818182 . . . 9 2
95 -93 ACTIVE 17.231221 x6 0.727 0.76182 9 2
96 -95 FATHOMED 17.085714 . . . 8 2
97 -92 FATHOMED 17.723058 . . . 7 2
98 -91 FATHOMED 16.378788 . . . 6 2
99 89 ACTIVE 17 x6 0.818 0.26515 6 2
100 -99 ACTIVE 17 x3 0.083 0.08333 6 2

WARNING: The maximum number of integer iterations has been exceeded. Increase
this limit with the ’IMAXIT=’ option on the RESET statement.

Example 3.10. Restarting an Integer Program � 261

The LP Procedure

Solution Summary

Terminated on Maximum Integer Iterations
Integer Feasible Solution

Objective Value 16

Phase 1 Iterations 0
Phase 2 Iterations 13
Phase 3 Iterations 161
Integer Iterations 100
Integer Solutions 4
Initial Basic Feasible Variables 12
Time Used (seconds) 0
Number of Inversions 37

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 x1 DEGEN BINARY 0 0 0
2 x2 ALTER BINARY 0 1 0
3 x3 BINARY 0 0 12
4 x4 ALTER BINARY 0 1 0
5 x5 ALTER BINARY 0 0 0
6 x6 ALTER BINARY 0 1 0
7 x7 INTEGER 1 0 1
8 x8 INTEGER 1 1 1
9 x9 DEGEN INTEGER 1 0 0
10 x10 INTEGER 1 7 1
11 x11 INTEGER 1 0 1
12 x12 INTEGER 1 8 1
13 _OBS2_ BASIC SLACK 0 15 0
14 _OBS3_ BASIC SLACK 0 2 0
15 _OBS4_ BASIC SLACK 0 7 0
16 _OBS5_ BASIC SLACK 0 2 0
17 _OBS6_ ALTER SLACK 0 0 0
18 _OBS7_ BASIC SLACK 0 14 0
19 _OBS8_ SLACK 0 0 -1
20 _OBS9_ BASIC SLACK 0 3 0
21 _OBS10_ DEGEN SLACK 0 0 0
22 _OBS11_ BASIC SLACK 0 3 0

262 � Chapter 3. The LP Procedure

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 _OBS1_ OBJECTVE . 0 16 .
2 _OBS2_ LE 13 110 95 0
3 _OBS3_ LE 14 95 93 0
4 _OBS4_ LE 15 80 73 0
5 _OBS5_ LE 16 100 98 0
6 _OBS6_ LE 17 0 0 0
7 _OBS7_ LE 18 0 -14 0
8 _OBS8_ LE 19 0 0 1
9 _OBS9_ LE 20 0 -3 0

10 _OBS10_ LE 21 0 0 0
11 _OBS11_ LE 22 0 -3 0

To continue with the solution of this problem, invoke PROC LP with the ACTIVEIN=
and PRIMALIN= options and reset the IMAXIT= option. This restores the branch-
and-bound tree and simplifies calculating a basic feasible solution from which to start
processing.

proc lp data=haldi10 activein=a primalin=p imaxit=250;
run;

The procedure picks up iterating from a equivalent state to where it left off. The
problem will still not be solved when IMAXIT=250 occurs.

Example 3.11. Alternative Search of the Branch-and-Bound Tree � 263

Example 3.11. Alternative Search of the Branch-and-Bound
Tree

In this example, the HALDI10 problem from Example 3.10 is solved. However,
here the default strategy for searching the branch-and-bound tree is modified. By
default, the search strategy has VARSELECT=FAR. This means that when searching
for an integer variable on which to branch, the procedure uses the one that has a value
farthest from an integer value. An alternative strategy has VARSELECT=PENALTY.
This strategy causes PROC LP to look at the cost, in terms of the objective function,
of branching on an integer variable. The procedure looks at PENALTYDEPTH=
integer variables before choosing the one with the largest cost. This is a much more
expensive strategy (in terms of execution time) than the VARSELECT=FAR strategy,
but it can be beneficial if fewer integer iterations must be done to find an optimal
solution.

proc lp data=haldi10 varselect=penalty;
run;

Compare the number of integer iterations needed to solve the problem using this
heuristic with the default strategy used in Example 3.10. In this example, the dif-
ference is profound; in general, solution times can vary significantly with the search
technique. See Output 3.11.1.

Output 3.11.1. Summaries and an Integer Programming Iteration Log: Using
VARSELECT=PENALTY

The LP Procedure

Problem Summary

Objective Function Max _OBS1_
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 31.82

Variables Number

Integer 6
Binary 6
Slack 10

Total 22

Constraints Number

LE 10
Objective 1

Total 11

264 � Chapter 3. The LP Procedure

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 x4 0.8 1.11905 2 .
2 1 ACTIVE 16.585187 x1 0.447 2.33824 3 .
3 2 ACTIVE 14.86157 x5 0.221 2.09584 4 .
4 3 ACTIVE 14.807195 x2 0.897 1.31729 5 .
5 -4 ACTIVE 14.753205 x8 14.58 0.61538 6 .
6 5 ACTIVE 14.730078 x6 0.043 0.79446 7 .
7 -6 ACTIVE 13.755102 x3 0.051 0.58163 8 .
8 -7 ACTIVE 11.6 x8 11.6 0.4 9 .
9 8 ACTIVE 11.6 x12 0.6 0.4 10 .

10 -9 ACTIVE 11.6 x8 10.6 0.4 11 .
11 10 ACTIVE 11.6 x12 1.6 0.4 12 .
12 -11 ACTIVE 11.6 x8 9.6 0.4 13 .
13 12 ACTIVE 11.6 x12 2.6 0.4 14 .
14 -13 ACTIVE 11.571429 x9 0.143 0.57143 15 .
15 14 ACTIVE 11.5 x8 8.5 0.5 16 .
16 -15 INFEASIBLE 9 . . . 15 .
17 15 ACTIVE 11.375 x12 3.375 0.375 16 .
18 -17 ACTIVE 11.166667 x8 7.167 0.16667 17 .
19 18 ACTIVE 11.125 x12 4.125 0.125 18 .
20 19 SUBOPTIMAL 11 . . . 7 7
21 7 ACTIVE 13.5 x8 13.5 0.5 8 7
22 -21 INFEASIBLE 11 . . . 7 7
23 21 ACTIVE 13.375 x12 0.375 0.375 8 7
24 -23 ACTIVE 13.166667 x8 12.17 0.16667 9 7
25 24 ACTIVE 13.125 x12 1.125 0.125 10 7
26 25 SUBOPTIMAL 13 . . . 4 5
27 6 ACTIVE 14.535714 x3 0.045 0.50893 5 5
28 -27 FATHOMED 12.625 . . . 4 5
29 27 SUBOPTIMAL 14 . . . 1 4
30 -1 ACTIVE 18.309524 x3 0.129 1.31905 2 4
31 30 ACTIVE 17.67723 x6 0.886 0.43662 3 4
32 31 ACTIVE 15.485156 x2 0.777 1.50833 4 4
33 -32 ACTIVE 15.2625 x1 0.121 1.38333 4 4
34 33 ACTIVE 15.085106 x10 3.532 0.91489 4 4
35 34 FATHOMED 14.857143 . . . 3 4
36 32 FATHOMED 11.212121 . . . 2 4
37 -31 ACTIVE 17.56338 x10 7.93 0.43662 3 4
38 37 ACTIVE 17.225962 x8 2.38 0.69231 4 4
39 38 ACTIVE 17.221818 x1 0.016 0.37111 5 4
40 -39 FATHOMED 14.43662 . . . 4 4
41 39 ACTIVE 17.172375 x2 0.133 0.31948 5 4
42 41 ACTIVE 16.890196 x5 0.086 0.19608 6 4
43 42 ACTIVE 16.75 x12 9.75 0.25 7 4
44 -43 SUBOPTIMAL 15 . . . 6 3
45 43 SUBOPTIMAL 16 . . . 3 2
46 -38 FATHOMED 17.138028 . . . 2 2
47 -37 SUBOPTIMAL 17 . . . 1 1
48 -30 FATHOMED 16.566667 . . . 0 .

Example 3.11. Alternative Search of the Branch-and-Bound Tree � 265

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 17

Phase 1 Iterations 0
Phase 2 Iterations 13
Phase 3 Iterations 79
Integer Iterations 48
Integer Solutions 6
Initial Basic Feasible Variables 12
Time Used (seconds) 0
Number of Inversions 17

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 x1 DEGEN BINARY 0 0 0
2 x2 BINARY 0 0 -4
3 x3 BINARY 0 0 -4
4 x4 BINARY 0 1 -18
5 x5 DEGEN BINARY 0 0 0
6 x6 BINARY 0 1 -1
7 x7 INTEGER 1 0 -6.5
8 x8 INTEGER 1 0 -3
9 x9 INTEGER 1 0 -1
10 x10 INTEGER 1 8 -8
11 x11 INTEGER 1 0 -8.545455
12 x12 BASIC INTEGER 1 9 0
13 _OBS2_ BASIC SLACK 0 20 0
14 _OBS3_ BASIC SLACK 0 5 0
15 _OBS4_ BASIC SLACK 0 10 0
16 _OBS5_ SLACK 0 0 -1
17 _OBS6_ SLACK 0 0 -1.5
18 _OBS7_ DEGEN SLACK 0 0 0
19 _OBS8_ DEGEN SLACK 0 0 0
20 _OBS9_ BASIC SLACK 0 2 0
21 _OBS10_ SLACK 0 0 -2.545455
22 _OBS11_ BASIC SLACK 0 2 0

266 � Chapter 3. The LP Procedure

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 _OBS1_ OBJECTVE . 0 17 .
2 _OBS2_ LE 13 110 90 0
3 _OBS3_ LE 14 95 90 0
4 _OBS4_ LE 15 80 70 0
5 _OBS5_ LE 16 100 100 1
6 _OBS6_ LE 17 0 0 1.5
7 _OBS7_ LE 18 0 0 0
8 _OBS8_ LE 19 0 0 0
9 _OBS9_ LE 20 0 -2 0

10 _OBS10_ LE 21 0 0 2.5454545
11 _OBS11_ LE 22 0 -2 0

Although the VARSELECT=PENALTY strategy works well in this example, there is
no guarantee that it will work well with your model. Experimentation with various
strategies is necessary to find the one that works well with your model and data,
particularly if a model is solved repeatedly with few changes to either the structure
or the data.

Example 3.12. An Assignment Problem

This example departs somewhat from the emphasis of previous ones. Typically, linear
programming models are large, have considerable structure, and are solved with some
regularity. Some form of automatic model building, or matrix generation as it is
commonly called, is a useful aid. The sparse input format provides a great deal of
flexibility in model specification so that, in many cases, the DATA step can be used
to generate the matrix.

The following assignment problem illustrates some techniques in matrix generation.
In this example, you have four machines that can produce any of six grades of cloth,
and you have five customers that demand various amounts of each grade of cloth. The
return from supplying a customer with a demanded grade depends on the machine on
which the cloth was made. In addition, the machine capacity depends both upon the
specific machine used and the grade of cloth made.

To formulate this problem, let i denote customer, j denote grade, and k denote ma-
chine. Then let xijk denote the amount of cloth of grade j made on machine k for
customer i; let rijk denote the return from selling one unit of grade j cloth made on
machine k to customer i; let dij denote the demand for grade j cloth by customer i;
let cjk denote the number of units of machine k required to produce one unit of grade
j cloth; and let ak denote the number of units of machine k available. Then, you get

max
∑

ijk rijkxijk

subject to
∑

k xijk = dij for all i and j∑
ij cjkxijk ≤ ak for all k

xijk ≥ 0 for all i, j and k

Example 3.12. An Assignment Problem � 267

The data are saved in three data sets. The OBJECT data set contains the returns for
satisfying demand, the DEMAND data set contains the amounts demanded, and the
RESOURCE data set contains the conversion factors for each grade and the total
amounts of machine resources available.

title ’An Assignment Problem’;

data object;
input machine customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 100 100 150 150 175 250
2 300 125 300 275 310 325
3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine

grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;

1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;

268 � Chapter 3. The LP Procedure

The linear program is built using the DATA step. The model is saved in a SAS data
set in the sparse input format for PROC LP. Each section of the following DATA step
generates a piece of the linear program. The first section generates the objective func-
tion; the next section generates the demand constraints; and the last section generates
the machine resource availability constraints.

/* build the linear programming model */

data model;
array grade{6} grade1-grade6;
length _type_ $ 8 _row_ $ 8 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

ncust=5;
nmach=4;
ngrade=6;

/* generate the objective function */

type=’MAX’;
row=’OBJ’;
do k=1 to nmach;

do i=1 to ncust;
link readobj; /* read the objective coefficient data */
do j=1 to ngrade;

if grade{j}^=. then do;
col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=grade{j};
output;

end;
end;

end;
end;

/* generate the demand constraints */

do i=1 to ncust;
link readdmd; /* read the demand data */
do j=1 to ngrade;

if grade{j}^=. then do;
type=’EQ’;
row=’DEMAND’||put(i,1.)||put(j,1.);
col=’_RHS_’;
coef=grade{j};
output;
type=’ ’;
do k=1 to nmach;

col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=1.0;
output;

end;
end;

Example 3.12. An Assignment Problem � 269

end;
end;

/* generate the machine constraints */

do k=1 to nmach;
link readres; /* read the machine data */
type=’LE’;
row=’MACHINE’||put(k,1.);
col=’_RHS_’;
coef=avail;
output;
type=’ ’;
do i=1 to ncust;

do j=1 to ngrade;
if grade{j}^=. then do;

col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=grade{j};
output;
end;

end;
end;

end;

readobj: set object;
return;
readdmd: set demand;
return;
readres: set resource;
return;
run;

With the model built and saved in a data set, it is ready for solution using PROC LP.
The following program solves the model and saves the solution in the data set called
PRIMAL:

/* solve the linear program */

proc lp data=model sparsedata noprint primalout=primal;
run;

270 � Chapter 3. The LP Procedure

The following output is produced by PROC LP.

Output 3.12.1. An Assignment Problem
An Assignment Problem

The LP Procedure

Problem Summary

Objective Function Max OBJ
Rhs Variable _RHS_
Type Variable _type_
Problem Density (%) 5.31

Variables Number

Non-negative 120
Slack 4

Total 124

Constraints Number

LE 4
EQ 30
Objective 1

Total 35

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 871426.03763

Phase 1 Iterations 0
Phase 2 Iterations 40
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 36
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Example 3.12. An Assignment Problem � 271

The solution is prepared for reporting using the DATA step, and a report is written
using PROC TABULATE.

/* report the solution */

data solution;
set primal;
keep customer grade machine amount;
if substr(_var_,1,1)=’X’ then do;
if _value_^=0 then do;
customer = substr(_var_,2,1);
grade = substr(_var_,3,1);
machine = substr(_var_,4,1);
amount = _value_;
output;

end;
end;

run;

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount);

run;

The report shown in Output 3.12.2 gives the assignment of customer, grade of cloth,
and machine that maximizes the return and does not violate the machine resource
availability.

272 � Chapter 3. The LP Procedure

Output 3.12.2. An Assignment Problem

	grade			

	1	2	3	4
	------------+------------+------------+------------			
	amount	amount	amount	amount
	------------+------------+------------+------------			
	Sum	Sum	Sum	Sum
-------------------+------------+------------+------------+------------				
machine	customer			
---------+---------				
1	1	.	100.00	150.00
	---------+------------+------------+------------+------------			
	2	.	.	300.00
	---------+------------+------------+------------+------------			
	3	.	.	256.72
	---------+------------+------------+------------+------------			
	4	.	.	750.00
	---------+------------+------------+------------+------------			
	5	.	92.27	.
---------+---------+------------+------------+------------+------------				
2	3	.	.	143.28
	---------+------------+------------+------------+------------			
	5	.	.	300.00
---------+---------+------------+------------+------------+------------				
3	2	.	.	.
	---------+------------+------------+------------+------------			
	3	.	.	.
	---------+------------+------------+------------+------------			
	4	.	.	.
	---------+------------+------------+------------+------------			
	5	.	.	.
---------+---------+------------+------------+------------+------------				
4	1	100.00	.	.
	---------+------------+------------+------------+------------			
	2	300.00	125.00	.
	---------+------------+------------+------------+------------			
	3	400.00	.	.
	---------+------------+------------+------------+------------			
	4	250.00	.	.
	---------+------------+------------+------------+------------			
	5	.	507.73	.

(Continued)

Example 3.13. A Scheduling Problem � 273

	grade	

	5	6
	------------+------------	
	amount	amount
	------------+------------	
	Sum	Sum
-------------------+------------+------------		
machine	customer	
---------+---------		
1	1	175.00
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
2	3	340.00
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
3	2	310.00
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	210.00
---------+---------+------------+------------		
4	1	.
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.

Example 3.13. A Scheduling Problem

Scheduling is an application area where techniques in model generation can be valu-
able. Problems involving scheduling are often solved with integer programming and
are similar to assignment problems. In this example, you have eight one-hour time
slots in each of five days. You have to assign four people to these time slots so that
each slot is covered on every day. You allow the people to specify preference data for
each slot on each day. In addition, there are constraints that must be satisfied:

• Each person has some slots for which they are unavailable.

• Each person must have either slot 4 or 5 off for lunch.

• Each person can work only two time slots in a row.

• Each person can work only a specified number of hours in the week.

To formulate this problem, let i denote person, j denote time slot, and k denote day.
Then, let xijk = 1 if person i is assigned to time slot j on day k, and 0 otherwise;

274 � Chapter 3. The LP Procedure

let pijk denote the preference of person i for slot j on day k; and let hi denote the
number of hours in a week that person i will work. Then, you get

max
∑

ijk pijkxijk

subject to
∑

i xijk = 1 for all j and k
xi4k + xi5k ≤ 1 for all i and k
xi,`,k + xi,`+1,k + xi,`+2,k ≤ 2 for all i and k, and ` = 1, . . . , 6∑

jk xijk ≤ hi for all i

xijk = 0 or 1 for all i and k such that pijk > 0,
otherwise xijk = 0

To solve this problem, create a data set that has the hours and preference data for each
individual, time slot, and day. A 10 represents the most desirable time slot, and a 1
represents the least desirable time slot. In addition, a 0 indicates that the time slot is
not available.

data raw;
input name $ hour slot mon tue wed thu fri;
datalines;

marc 20 1 10 10 10 10 10
marc 20 2 9 9 9 9 9
marc 20 3 8 8 8 8 8
marc 20 4 1 1 1 1 1
marc 20 5 1 1 1 1 1
marc 20 6 1 1 1 1 1
marc 20 7 1 1 1 1 1
marc 20 8 1 1 1 1 1
mike 20 1 10 9 8 7 6
mike 20 2 10 9 8 7 6
mike 20 3 10 9 8 7 6
mike 20 4 10 3 3 3 3
mike 20 5 1 1 1 1 1
mike 20 6 1 2 3 4 5
mike 20 7 1 2 3 4 5
mike 20 8 1 2 3 4 5
bill 20 1 10 10 10 10 10
bill 20 2 9 9 9 9 9
bill 20 3 8 8 8 8 8
bill 20 4 0 0 0 0 0
bill 20 5 1 1 1 1 1
bill 20 6 1 1 1 1 1
bill 20 7 1 1 1 1 1
bill 20 8 1 1 1 1 1
bob 20 1 10 9 8 7 6
bob 20 2 10 9 8 7 6
bob 20 3 10 9 8 7 6
bob 20 4 10 3 3 3 3
bob 20 5 1 1 1 1 1
bob 20 6 1 2 3 4 5
bob 20 7 1 2 3 4 5
bob 20 8 1 2 3 4 5
;

Example 3.13. A Scheduling Problem � 275

These data are read by the following DATA step, and an integer program is built
to solve the problem. The model is saved in the data set named MODEL. First,
the objective function is built using the data saved in the RAW data set. Then, the
constraints requiring a person to be working in each time slot are built. Next, the
constraints allowing each person time for lunch are added. Then, the constraints
restricting people to only two consecutive hours are added. Next, the constraints lim-
iting the time that any one person works in a week are added. Finally, the constraints
allowing a person to be assigned only to a time slot for which he is available are
added. The code to build each of these constraints follows the formulation closely.

data model;
array workweek{5} mon tue wed thu fri;
array hours{4} hours1 hours2 hours3 hours4;
retain hours1-hours4;

set raw end=eof;

length _row_ $ 8 _col_ $ 8 _type_ $ 8;
keep _type_ _col_ _row_ _coef_;

if name=’marc’ then i=1;
else if name=’mike’ then i=2;
else if name=’bill’ then i=3;
else if name=’bob’ then i=4;

hours{i}=hour;

/* build the objective function */

do k=1 to 5;
col=’x’||put(i,1.)||put(slot,1.)||put(k,1.);

row=’object’;
coef=workweek{k} * 1000;
output;
row=’upper’;
if workweek{k}^=0 then _coef_=1;
output;
row=’integer’;
coef=1;
output;

end;

/* build the rest of the model */

if eof then do;
coef=.;
col=’ ’;
type=’upper’;
row=’upper’;
output;

276 � Chapter 3. The LP Procedure

type=’max’;
row=’object’;
output;
type=’int’;
row=’integer’;
output;

/* every hour 1 person working */

do j=1 to 8;
do k=1 to 5;

row=’work’||put(j,1.)||put(k,1.);
type=’eq’;
col=’_RHS_’;
coef=1;
output;
coef=1;
type=’ ’;
do i=1 to 4;

col=’x’||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;

/* each person has a lunch */

do i=1 to 4;
do k=1 to 5;

row=’lunch’||put(i,1.)||put(k,1.);
type=’le’;
col=’_RHS_’;
coef=1;
output;
coef=1;
type=’ ’;
col=’x’||put(i,1.)||’4’||put(k,1.);
output;
col=’x’||put(i,1.)||’5’||put(k,1.);
output;

end;
end;

/* work at most 2 slots in a row */

do i=1 to 4;
do k=1 to 5;

do l=1 to 6;
row=’seq’||put(i,1.)||put(k,1.)||put(l,1.);
type=’le’;
col=’_RHS_’;
coef=2;
output;

Example 3.13. A Scheduling Problem � 277

coef=1;
type=’ ’;

do j=0 to 2;
col=’x’||put(i,1.)||put(l+j,1.)||put(k,1.);
output;

end;
end;

end;
end;

/* work at most n hours in a week */

do i=1 to 4;
row=’capacit’||put(i,1.);
type=’le’;
col=’_RHS_’;
coef=hours{i};
output;
coef=1;
type=’ ’;
do j=1 to 8;

do k=1 to 5;
col=’x’||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;
end;

run;

The model saved in the data set named MODEL is in the sparse format. The con-
straint that requires one person to work in time slot 1 on day 2 is named WORK12; it
is
∑

i xi12 = 1.

The following model is saved in the MODEL data set (which has 1387 observations).

TYPE _COL_ _ROW_ _COEF_

eq _RHS_ work12 1
x112 work12 1
x212 work12 1
x312 work12 1
x412 work12 1

The model is solved using the LP procedure. The option PRIMALOUT=SOLUTION
causes PROC LP to save the primal solution in the data set named SOLUTION.

/* solve the linear program */

proc lp sparsedata noprint primalout=solution
time=1000 maxit1=1000 maxit2=1000;

run;

278 � Chapter 3. The LP Procedure

The following DATA step below takes the solution data set SOLUTION and gener-
ates a report data set named REPORT. It translates the variable names xijk so that
a more meaningful report can be written. Then, the PROC TABULATE procedure is
used to display a schedule showing how the eight time slots are covered for the week.

/* report the solution */
title ’Reported Solution’;

data report;
set solution;
keep name slot mon tue wed thu fri;
if substr(_var_,1,1)=’x’ then do;
if _value_>0 then do;

n=substr(_var_,2,1);
slot=substr(_var_,3,1);
d=substr(_var_,4,1);
if n=’1’ then name=’marc’;
else if n=’2’ then name=’mike’;
else if n=’3’ then name=’bill’;
else name=’bob’;
if d=’1’ then mon=1;
else if d=’2’ then tue=1;
else if d=’3’ then wed=1;
else if d=’4’ then thu=1;
else fri=1;
output;

end;
end;

run;

proc format;
value xfmt 1=’ xxx ’;

run;

proc tabulate data=report;
class name slot;
var mon--fri;
table (slot * name), (mon tue wed thu fri)*sum=’ ’*f=xfmt.

/misstext=’ ’;
run;

Output 3.13.1 from PROC TABULATE summarizes the schedule. Notice that the
constraint requiring that a person be assigned to each possible time slot on each day
is satisfied.

Example 3.14. A Scheduling Problem � 279

Output 3.13.1. A Scheduling Problem
Reported Solution

--
| | mon | tue | wed | thu | fri |
|-------------------+--------+--------+--------+--------+--------|
slot	name					
---------+---------						
1	bill	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
2	bob	xxx				
	---------+--------+--------+--------+--------+--------					
	marc		xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
3	bob		xxx			
	---------+--------+--------+--------+--------+--------					
	marc			xxx	xxx	xxx
	---------+--------+--------+--------+--------+--------					
	mike	xxx				
---------+---------+--------+--------+--------+--------+--------						
4	mike	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
5	bob	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
6	bob		xxx		xxx	
	---------+--------+--------+--------+--------+--------					
	marc	xxx				
	---------+--------+--------+--------+--------+--------					
	mike			xxx		xxx
---------+---------+--------+--------+--------+--------+--------						
7	bill	xxx				
	---------+--------+--------+--------+--------+--------					
	bob			xxx		
	---------+--------+--------+--------+--------+--------					
	mike		xxx		xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
8	bill	xxx				
	---------+--------+--------+--------+--------+--------					
	bob					xxx
	---------+--------+--------+--------+--------+--------					
	mike		xxx	xxx	xxx	
--

Recall that PROC LP puts a character string in the macro variable –ORLP– that
describes the characteristics of the solution on termination. This string can be parsed
using macro functions and the information obtained can be used in report writing.
The variable can be written to the log with the command

%put &_orlp_;

which produces Output 3.13.2.

Output 3.13.2. –ORLP– Macro Variable

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=211000 P_FEAS=YES D_FEAS=YES
INT_ITER=0 INT_FEAS=1 ACTIVE=0 INT_BEST=211000 PHASE1_ITER=34
PHASE2_ITER=49 PHASE3_ITER=0

From this you learn, for example, that at termination the solution is integer optimal
and has an objective value of 211000.

280 � Chapter 3. The LP Procedure

Example 3.14. A Multicommodity Transshipment Problem
with Fixed Charges

The following example illustrates a DATA step program for generating a linear pro-
gram to solve a multicommodity network flow model that has fixed charges. Consider
a network consisting of the following nodes: farm-a, farm-b, farm-c, Chicago, St.
Louis, and New York. You can ship four commodities from each farm to Chicago or
St. Louis and from Chicago or St. Louis to New York. The following table shows
the unit shipping cost for each of the four commodities across each of the arcs. The
table also shows the supply (positive numbers) at each of the from nodes and the de-
mand (negative numbers) at each of the to nodes. The fixed charge is a fixed cost for
shipping any nonzero amount across an arc. For example, if any amount of any of the
four commodities is sent from farm-c to St. Louis, then a fixed charge of 75 units is
added to the shipping cost.

Table 3.8. Farms to Cities Network Problem

Unit Shipping Supply and Demand Fixed
From To Cost Charge
Node Node 1 2 3 4 1 2 3 4

farm-a Chicago 20 15 17 22 100 100 40 . 100
farm-b Chicago 15 15 15 30 100 200 50 50 75
farm-c Chicago 30 30 10 10 40 100 75 100 100
farm-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75
Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLouis NY 80 80 80 80 200

The following program is designed to take the data in the form given in the preceding
table. It builds the node arc incidence matrix for a network given in this form and adds
integer variables to capture the fixed charge using the type of constraints discussed
in Example 3.8. The program solves the model using PROC LP, saves the solution
in the PRIMALOUT= data set named SOLUTION, and displays the solution. The
DATA step can be easily modified to handle larger problems with similar structure.

title ’Multi-commodity Transshipment Problem with Fixed Charges’;

data network;
retain M 1.0e6;
length _col_ $ 22 _row_ $ 22;
keep _type_ _col_ _row_ _coef_;
array sd sd1-sd4;
array c c1-c4;
format arc $10.;
input arc $ from $ to $ c1 c2 c3 c4 sd1 sd2 sd3 sd4 fx;

/* for the first observation define some of the rows */

if _n_=1 then do;
type=’upperbd’;

Example 3.14. A Multicommodity Transshipment Problem with Fixed Charges �

281

row=’upper’;
output;
type=’lowerbd’;
row=’lower’;
output;
type=’min’;
row=’obj’;
output;
type=’integer’;
row=’int’;
output;
end;

col=’_rhs_’;
type=’le’;

do over sd; /* loop for each commodity */
coef=sd;
if sd>0 then do; /* the node is a supply node */

row=from||’ commodity’||put(_i_,2.);
if from^=’ ’ then output;

end;
else if sd<0 then do; /* the node is a demand node */

row=to||’ commodity’||put(_i_,2.);
if to^=’ ’ then output;

end;
else if from^=’ ’ & to^=’ ’ then do; /* a transshipment node */

coef=0;
row=from||’ commodity’||put(_i_,2.);
output;
row=to ||’ commodity’||put(_i_,2.);
output;

end;
end;

do over c; /* loop for each commodity */
col=arc||’ commodity’||put(_i_,2.);
if from^=’ ’ & to^=’ ’ then do;

/* add node arc incidence matrix*/
type=’le’;
row=from||’ commodity’||put(_i_,2.);
coef=1;
output;
row=to ||’ commodity’||put(_i_,2.);
coef=-1;
output;
type=’ ’;
row=’obj’;
coef=c;
output;

/* add fixed charge variables */
type=’le’;
row=arc;
coef=1;output;

282 � Chapter 3. The LP Procedure

col=’_rhs_’;
type=’ ’;
coef=0;
output;
col=arc||’fx’;
coef=-M;
output;
row=’int’;
coef=1;
output;
row=’obj’;
coef=fx;
output;
row=’upper’;
coef=1;
output;

end;
end;

datalines;
a-Chicago farm-a Chicago 20 15 17 22 100 100 40 . 100
b-Chicago farm-b Chicago 15 15 15 30 100 200 50 50 75
c-Chicago farm-c Chicago 30 30 10 10 40 100 75 100 100
a-StLouis farm-a StLouis 30 25 27 22 150
c-StLouis farm-c StLouis 10 9 11 10 75
Chicago-NY Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLous-NY StLouis NY 80 80 80 80 200
;

/* solve the model */

proc lp sparsedata pout=solution noprint;
run;

/* print the solution */

data;
set solution;
rename _var_=arc _value_=amount;
if _value_^=0 & _type_=’NON-NEG’;

run;

proc print;
id arc;
var amount;

run;

The results from this example are shown in Output 3.14.1. The NOPRINT option in
the PROC LP statement suppresses the Variable and Constraint Summary sections.
This is useful when solving large models for which a report program is available.
Here, the solution is saved in data set SOLUTION and reported using PROC PRINT.
The solution shows the amount that is shipped over each arc.

Example 3.15. Converting to an MPS-Format SAS Data Set � 283

Output 3.14.1. Multicommodity Transshipment Problem with Fixed Charges
Multi-commodity Transshipment Problem with Fixed Charges

arc amount

a-Chicago commodity 1 10
b-Chicago commodity 1 100
b-Chicago commodity 2 100
c-Chicago commodity 3 50
c-Chicago commodity 4 75
c-StLouis commodity 1 40
c-StLouis commodity 2 100
Chicago-NY commodity 1 110
Chicago-NY commodity 2 100
Chicago-NY commodity 3 50
Chicago-NY commodity 4 75
StLous-NY commodity 1 40
StLous-NY commodity 2 100

Example 3.15. Converting to an MPS-Format SAS Data Set

This example demonstrates the use of the MPSOUT= option to convert problem data
in PROC LP input format into an MPS-format SAS data set for use with the OPTLP
procedure.

Consider the oil blending problem introduced in the section “An Introductory
Example” on page 162. Suppose you have saved the problem data in dense format by
using the following DATA step:

data exdata;
input _id_ $17. a_light a_heavy brega naphthal naphthai

heatingo jet_1 jet_2 _type_ $ _rhs_;
datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

If you decide to solve the problem by using the OPTLP procedure, you will need to
convert the data set exdata from dense format to MPS format. You can accomplish
this by using the following statements:

proc lp data=exdata mpsout=mpsdata;
run;

The MPS-format SAS data set mpsdata is shown in Output 3.15.1.

284 � Chapter 3. The LP Procedure

Output 3.15.1. Data Set mpsdata
Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME PROBLEM . .
2 ROWS . .
3 MAX profit . .
4 E naphtha_l_conv . .
5 E naphtha_i_conv . .
6 E heating_o_conv . .
7 E recipe_1 . .
8 E recipe_2 . .
9 COLUMNS . .
10 a_light profit -175.000 naphtha_l_conv 0.035
11 a_light naphtha_i_conv 0.100 heating_o_conv 0.390
12 a_heavy profit -165.000 naphtha_l_conv 0.030
13 a_heavy naphtha_i_conv 0.075 heating_o_conv 0.300
14 brega profit -205.000 naphtha_l_conv 0.045
15 brega naphtha_i_conv 0.135 heating_o_conv 0.430
16 naphthal naphtha_l_conv -1.000 recipe_2 0.200
17 naphthai naphtha_i_conv -1.000 recipe_1 0.300
18 heatingo heating_o_conv -1.000 recipe_1 0.700
19 heatingo recipe_2 0.800 .
20 jet_1 profit 300.000 recipe_1 -1.000
21 jet_2 profit 300.000 recipe_2 -1.000
22 BOUNDS . .
23 UP .BOUNDS. a_light 110.000 .
24 UP .BOUNDS. a_heavy 165.000 .
25 UP .BOUNDS. brega 80.000 .
26 ENDATA . .

Now that the problem data is in MPS format, you can solve the problem by using the
OPTLP procedure. For more information, see Chapter 15, “The OPTLP Procedure.”

References
Bartels, R. (1971), “A Stabilization of the Simplex Method,” Numerical Mathematics,

16, 414–434.

Bland, R. G. (1977), “New Finite Pivoting Rules for the Simplex Method,”
Mathematics of Operations Research, 2, 103–107.

Breau, R. and Burdet, C. A. (1974), “Branch and Bound Experiments in Zero-One
Programming,” Mathematical Programming Study, 2, 1–50.

Crowder, H., Johnson, E. L., and Padberg, M. W. (1983), “Solving Large-Scale Zero-
One Linear Programming Problems,” Operations Research, 31, 803–834.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton, NJ: Princeton
University Press.

Garfinkel, R. S. and Nemhauser, G. L. (1972), Integer Programming, New York: John
Wiley & Sons.

Greenberg, H. J. (1978), “Pivot Selection Tactics,” in H. J. Greenberg, ed., Design
and Implementation of Optimization Software, 143–174, Netherlands: Sijthoff &
Noordhoff.

References � 285

Hadley, G. (1962), Linear Programming, Reading, MA: Addison-Wesley.

Harris, P. (1975), “Pivot Selection Methods of the Devex LP Code,” Mathematical
Programming Study, 4, 30–57.

Ignizio, J. P. (1976), Goal Programming and Extensions, Lexington, MA: D.C. Heath
and Company.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice,
New York: McGraw-Hill.

Nelson, M. (1992), The Data Compression Book, M&T Books.

Reid, J. K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases,” Harwell Report CSS 20.

Reid, J. K. (1976), “Fortran Subroutines for Handling Sparse Linear Programming
Bases,” Harwell Report R 8269.

Savelsbergh, M. W. P. (1994), “Preprocessing and Probing Techniques for Mixed
Integer Programming Problems,” ORSA J. on Computing, 6, 445–454.

Taha, H. A. (1975), Integer Programming, New York: Academic Press.

286

Chapter 4
The NLP Procedure

Chapter Contents

OVERVIEW: NLP PROCEDURE . 289

GETTING STARTED: NLP PROCEDURE 291
Introductory Examples . 291

SYNTAX: NLP PROCEDURE . 302
Functional Summary . 302
PROC NLP Statement . 305
ARRAY Statement . 324
BOUNDS Statement . 325
BY Statement . 325
CRPJAC Statement . 326
DECVAR Statement . 327
GRADIENT Statement . 327
HESSIAN Statement . 328
INCLUDE Statement . 329
JACNLC Statement . 329
JACOBIAN Statement . 330
LABEL Statement . 331
LINCON Statement . 331
MATRIX Statement . 332
MIN, MAX, and LSQ Statements . 334
MINQUAD and MAXQUAD Statements 334
NLINCON Statement . 336
PROFILE Statement . 337
Program Statements . 338

DETAILS: NLP PROCEDURE . 343
Criteria for Optimality . 343
Optimization Algorithms . 346
Finite-Difference Approximations of Derivatives 357
Hessian and CRP Jacobian Scaling . 360
Testing the Gradient Specification . 360
Termination Criteria . 361
Active Set Methods . 362
Feasible Starting Point . 365
Line-Search Methods . 365

Restricting the Step Length . 366
Computational Problems . 367
Covariance Matrix . 370
Input and Output Data Sets . 374
Displayed Output . 382
Missing Values . 385
Computational Resources . 386
Memory Limit . 388

EXAMPLES: NLP PROCEDURE . 389
Example 4.1. Using the DATA= Option . 389
Example 4.2. Using the INQUAD= Option 391
Example 4.3. Using the INEST=Option . 393
Example 4.4. Restarting an Optimization 395
Example 4.5. Approximate Standard Errors 396
Example 4.6. Maximum Likelihood Weibull Estimation 403
Example 4.7. Simple Pooling Problem . 410
Example 4.8. Chemical Equilibrium . 418
Example 4.9. Minimize Total Delay in a Network 423

REFERENCES . 428

Chapter 4
The NLP Procedure
Overview: NLP Procedure

The NLP procedure (NonLinear Programming) offers a set of optimization tech-
niques for minimizing or maximizing a continuous nonlinear function f(x) of n deci-
sion variables, x = (x1, . . . , xn)T with lower and upper bound, linear and nonlinear,
equality and inequality constraints. This can be expressed as solving

minx∈Rn f(x)
subject to ci(x) = 0, i = 1, . . . ,me

ci(x) ≥ 0, i = me + 1, . . . ,m
li ≤ xi ≤ ui, i = 1, . . . , n

where f is the objective function, the ci’s are the nonlinear functions, and the li’s and
ui’s are the lower and upper bounds. Problems of this type are found in many settings
ranging from optimal control to maximum likelihood estimation.

The NLP procedure provides a number of algorithms for solving this problem that
take advantage of special structure on the objective function and constraints. One
example is the quadratic programming problem:

min (max) f(x) = 1
2xT Gx + gT x + b

subject to ci(x) = 0, i = 1, . . . ,me

where G is an n × n symmetric matrix, g = (g1, . . . , gn)T is a vector, b is a scalar,
and the ci(x)’s are linear functions.

Another example is the least squares problem:

min f(x) = 1
2{f

2
1 (x) + · · ·+ f2

l (x)}
subject to ci(x) = 0, i = 1, . . . ,me

where the ci(x)’s are linear functions, and f1(x), ..., fl(x) are nonlinear functions of
x.

The following problems are handled by PROC NLP:

• quadratic programming with an option for sparse problems

• unconstrained minimization/maximization

• constrained minimization/maximization

• linear complementarity problem

290 � Chapter 4. The NLP Procedure

The following optimization techniques are supported in PROC NLP:

• Quadratic Active Set Technique

• Trust Region Method

• Newton-Raphson Method with Line Search

• Newton-Raphson Method with Ridging

• Quasi-Newton Methods

• Double Dogleg Method

• Conjugate Gradient Methods

• Nelder-Mead Simplex Method

• Levenberg-Marquardt Method

• Hybrid Quasi-Newton Methods

These optimization techniques require a continuous objective function f , and all but
one (NMSIMP) require continuous first-order derivatives of the objective function f .
Some of the techniques also require continuous second-order derivatives. There are
three ways to compute derivatives in PROC NLP:

• analytically (using a special derivative compiler), the default method

• via finite-difference approximations

• via user-supplied exact or approximate numerical functions

Nonlinear programs can be input into the procedure in various ways. The objective,
constraint, and derivative functions are specified using the programming statements
of PROC NLP. In addition, information in SAS data sets can be used to define the
structure of objectives and constraints as well as specify constants used in objectives,
constraints and derivatives.

PROC NLP uses data sets to input various pieces of information:

• The DATA= data set enables you to specify data shared by all functions in-
volved in a least squares problem.

• The INQUAD= data set contains the arrays appearing in a quadratic program-
ming problem.

• The INEST= data set specifies initial values for the decision variables, the val-
ues of constants that are referred to in the program statements, and simple
boundary and general linear constraints.

• The MODEL= data set specifies a model (functions, constraints, derivatives)
saved at a previous execution of the NLP procedure.

Introductory Examples � 291

PROC NLP uses data sets to output various results:

• The OUTEST= data set saves the values of the decision variables, the deriva-
tives, the solution, and the covariance matrix at the solution.

• The OUT= output data set contains variables generated in the program state-
ments defining the objective function as well as selected variables of the
DATA= input data set, if available.

• The OUTMODEL= data set saves the programming statements. It can be used
to input a model in the MODEL= input data set.

Getting Started: NLP Procedure
The NLP procedure solves general nonlinear programs. It has several optimizers that
are tuned to best perform on a particular class of problems. Guidelines for choos-
ing a particular optimizer for a problem can be found in the section “Optimization
Algorithms” on page 346.

Regardless of the selected optimizer, it is necessary to specify an objective function
and constraints that the optimal solution must satisfy. In PROC NLP, the objective
function and the constraints are specified using SAS programming statements that
are similar to those used in the SAS DATA step. Some of the differences are dis-
cussed in the section “Program Statements” on page 338 and in the section “ARRAY
Statement” on page 324. As with any programming language, there are many differ-
ent ways to specify the same problem. Some are more economical than others.

Introductory Examples

The following introductory examples illustrate how to get started using the NLP pro-
cedure.

An Unconstrained Problem

Consider the simple example of minimizing the Rosenbrock function (Rosenbrock
1960):

f(x) =
1
2
{100(x2 − x2

1)
2 + (1− x1)2}

=
1
2
{f2

1 (x) + f2
2 (x)}, x = (x1, x2)

The minimum function value is f(x∗) = 0 at x∗ = (1, 1). This problem does not
have any constraints.

292 � Chapter 4. The NLP Procedure

The following statements can be used to solve this problem:

proc nlp;
min f;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
f = .5 * (f1 * f1 + f2 * f2);

run;

The MIN statement identifies the symbol f that characterizes the objective function
in terms of f1 and f2, and the DECVAR statement names the decision variables x1
and x2. Because there is no explicit optimizing algorithm option specified (TECH=),
PROC NLP uses the Newton-Raphson method with ridging, the default algorithm
when there are no constraints.

A better way to solve this problem is to take advantage of the fact that f is a sum
of squares of f1 and f2 and to treat it as a least squares problem. Using the LSQ
statement instead of the MIN statement tells the procedure that this is a least squares
problem, which results in the use of one of the specialized algorithms for solving
least squares problems (for example, Levenberg-Marquardt).

proc nlp;
lsq f1 f2;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The LSQ statement results in the minimization of a function that is the sum of squares
of functions that appear in the LSQ statement. The least squares specification is
preferred because it enables the procedure to exploit the structure in the problem for
numerical stability and performance.

PROC NLP displays the iteration history and the solution to this least squares problem
as shown in Figure 4.1. It shows that the solution has x1 = 1 and x2 = 1. As expected
in an unconstrained problem, the gradient at the solution is very close to 0.

Introductory Examples � 293

PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Objective Function 0.8046925827
Max Abs Gradient Element 9.3700799757 Radius 94.336306213

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Lambda Change

1 0 3 0 0.44143 0.3633 7.4070 0.253 0.570
2 0 4 0 0.15159 0.2898 0.6027 0.0535 0.998
3 0 7 0 0.10794 0.0436 2.3715 0.0166 0.621
4 0 10 0 0.05200 0.0559 1.3795 0.00931 0.888
5 0 12 0 0.02748 0.0245 0.7380 0.00742 0.928
6 0 13 0 0.02257 0.00491 3.4397 0.00131 0.208
7 0 14 0 0.00300 0.0196 1.5486 0 0.867
8 0 15 0 9.8608E-32 0.00300 4.44E-16 0 1.000

Optimization Results

Iterations 8 Function Calls 16
Jacobian Calls 9 Active Constraints 0
Objective Function 9.860761E-32 Max Abs Gradient Element 4.440892E-16
Lambda 0 Actual Over Pred Change 1
Radius 0.1548641224

ABSGCONV convergence criterion satisfied.

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 1.000000 4.440892E-16
2 x2 1.000000 0

Value of Objective Function = 9.860761E-32

Figure 4.1. Least Squares Minimization

Boundary Constraints on the Decision Variables

Bounds on the decision variables can be used. Suppose, for example, that it is nec-
essary to constrain the decision variables in the previous example to be less than 0.5.
That can be done by adding a BOUNDS statement.

294 � Chapter 4. The NLP Procedure

proc nlp;
lsq f1 f2;
decvar x1 x2;
bounds x1-x2 <= .5;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The solution in Figure 4.2 shows that the decision variables meet the constraint
bounds.

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x1 0.500000 -0.500000 Upper BC
2 x2 0.250000 0

Value of Objective Function = 0.125

Figure 4.2. Least Squares with Bounds Solution

Linear Constraints on the Decision Variables

More general linear equality or inequality constraints of the form

n∑
j=1

aijxj {≤ | = | ≥} bi for i = 1, . . . ,m

can be specified in a LINCON statement. For example, suppose that in addition to
the bounds constraints on the decision variables it is necessary to guarantee that the
sum x1 + x2 is less than or equal to 0.6. That can be achieved by adding a LINCON
statement:

proc nlp;
lsq f1 f2;
decvar x1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The output in Figure 4.3 displays the iteration history and the convergence criterion.

Introductory Examples � 295

PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates 2
Functions (Observations) 2
Lower Bounds 0
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function 0.253373098
Max Abs Gradient Element 2.3979413805 Radius 24.73760934

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Lambda Change

1 0 2 1 0.20859 0.0448 3.8588 0 0.177
2 0 3 1 0.16658 0.0420 0.0244 0 0.998
3 0 4 1 0.16658 1.734E-6 0.000043 0 0.998
4 0 5 1 0.16658 5.42E-12 7.862E-8 0 0.998

Optimization Results

Iterations 4 Function Calls 6
Jacobian Calls 5 Active Constraints 1
Objective Function 0.1665792899 Max Abs Gradient Element 7.862265E-8
Lambda 0 Actual Over Pred Change 0.998190938
Radius 6.7030595E-6

GCONV convergence criterion satisfied.

Figure 4.3. Least Squares with Bounds and Linear Constraints Iteration History

Figure 4.4 shows that the solution satisfies the linear constraint. Note that the proce-
dure displays the active constraints (the constraints that are tight) at optimality.

296 � Chapter 4. The NLP Procedure

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 0.423645 -0.312000
2 x2 0.176355 -0.312000

Value of Objective Function = 0.1665792899

Linear Constraints Evaluated at Solution

1 ACT 2.7756E-17 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Figure 4.4. Least Squares with Bounds and Linear Constraints Solution

Nonlinear Constraints on the Decision Variables

More general nonlinear equality or inequality constraints can be specified using an
NLINCON statement. Consider the least squares problem with the additional con-
straint

x2
1 − 2x2 ≥ 0

This constraint is specified by a new function c1 constrained to be greater than or
equal to 0 in the NLINCON statement. The function c1 is defined in the programming
statements.

proc nlp tech=QUANEW;
min f;
decvar x1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
nlincon c1 >= 0;

c1 = x1 * x1 - 2 * x2;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

f = .5 * (f1 * f1 + f2 * f2);
run;

Figure 4.5 shows the iteration history, and Figure 4.6 shows the solution to this prob-
lem.

Introductory Examples � 297

PROC NLP: Nonlinear Minimization

Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Parameter Estimates 2
Lower Bounds 0
Upper Bounds 2
Linear Constraints 1
Nonlinear Constraints 1

Optimization Start

Objective Function 29.25 Maximum Constraint 0
Violation

Maximum Gradient of the 76.5
Lagran Func

Maximum
Gradient
Element

Maximum Predicted of the
Function Objective Constraint Function Step Lagrange

Iter Restarts Calls Function Violation Reduction Size Function

1 0 4 2.88501 0 2.9362 1.000 20.961
2 0 5 0.91110 0 0.5601 1.000 6.777
3 0 6 0.61803 0 0.00743 1.000 1.148
4’ 0 7 0.61090 0 0.0709 1.000 1.194
5’ 0 8 0.54427 0 0.6015 1.000 0.988
6 0 10 0.49223 0 0.3369 0.100 0.970
7 0 12 0.45728 0 0.1848 0.114 1.332
8 0 14 0.40785 0 0.0749 0.355 2.390
9 0 15 0.36175 0 0.0556 1.000 1.128
10 0 16 0.33086 0 0.00178 1.000 0.138
11 0 17 0.33017 0 0.000290 1.000 0.0522
12 0 18 0.33004 0 0.000012 1.000 0.00221
13 0 19 0.33003 0 2.96E-8 1.000 0.00004

Optimization Results

Iterations 13 Function Calls 20
Gradient Calls 16 Active Constraints 1
Objective Function 0.3300307303 Maximum Constraint 0

Violation
Maximum Projected Gradient 0.00001427 Value Lagrange Function 0.3300307155
Maximum Gradient of the 0.0000138538 Slope of Search Direction -2.959812E-8
Lagran Func

Figure 4.5. Least Squares with Bounds, Linear and Nonlinear Constraints,
Iteration History

298 � Chapter 4. The NLP Procedure

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 x1 0.246953 0.753017 -0.000013854
2 x2 0.030493 -3.049292 -0.000003421

Value of Objective Function = 0.3300307303

Value of Lagrange Function = 0.3300307155

Linear Constraints Evaluated at Solution

1 0.32255 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[2] c1_G 9.699E-9 9.699E-9 1.5246 Active NLIC

Figure 4.6. Least Squares with Bounds, Linear and Nonlinear Constraints,
Solution

Not all of the optimization methods support nonlinear constraints. In particular
the Levenberg-Marquardt method, the default for LSQ, does not support nonlinear
constraints. (For more information about the particular algorithms, see the sec-
tion “Optimization Algorithms” on page 346.) The Quasi-Newton method is the
prime choice for solving nonlinear programs with nonlinear constraints. The option
TECH=QUANEW in the PROC NLP statement causes the Quasi-Newton method to
be used.

A Simple Maximum Likelihood Example

The following is a very simple example of a maximum likelihood estimation problem
with the log likelihood function:

l(µ, σ) = − log(σ)− 1
2

(
x− µ

σ

)2

The maximum likelihood estimates of the parameters µ and σ form the solution to

max
µ,σ>0

∑
i

li(µ, σ)

Introductory Examples � 299

where

li(µ, σ) = − log(σ)− 1
2

(
xi − µ

σ

)2

In the following DATA step, values for x are input into SAS data set X; this data set
provides the values of xi.

data x;
input x @@;

datalines;
1 3 4 5 7
;

In the following statements, the DATA=X specification drives the building of the ob-
jective function. When each observation in the DATA=X data set is read, a new term
li(µ, σ) using the value of xi is added to the objective function LOGLIK specified in
the MAX statement.

proc nlp data=x vardef=n covariance=h pcov phes;
profile mean sigma / alpha=.5 .1 .05 .01;
max loglik;
parms mean=0, sigma=1;
bounds sigma > 1e-12;
loglik=-0.5*((x-mean)/sigma)**2-log(sigma);

run;

After a few iterations of the default Newton-Raphson optimization algorithm, PROC
NLP produces the results shown in Figure 4.7.

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.632456 3.162278 0.025031

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 mean -1.33149E-10
2 sigma 5.6064147E-9

Value of Objective Function = -5.965735903

Figure 4.7. Maximum Likelihood Estimates

300 � Chapter 4. The NLP Procedure

In unconstrained maximization, the gradient (that is, the vector of first derivatives) at
the solution must be very close to zero and the Hessian matrix at the solution (that
is, the matrix of second derivatives) must have nonpositive eigenvalues. The Hessian
matrix is displayed in Figure 4.8.

Hessian Matrix

mean sigma

mean -1.250000003 1.331489E-10
sigma 1.331489E-10 -2.500000014

Determinant = 3.1250000245

Matrix has Only Negative Eigenvalues

Figure 4.8. Hessian Matrix

Under reasonable assumptions, the approximate standard errors of the estimates are
the square roots of the diagonal elements of the covariance matrix of the parameter
estimates, which (because of the COV=H specification) is the same as the inverse of
the Hessian matrix. The covariance matrix is shown in Figure 4.9.

Covariance Matrix 2: H = (NOBS/d) inv(G)

mean sigma

mean 0.7999999982 4.260766E-11
sigma 4.260766E-11 0.3999999978

Factor sigm = 1

Determinant = 0.3199999975

Matrix has 2 Positive Eigenvalue(s)

Figure 4.9. Covariance Matrix

The PROFILE statement computes the values of the profile likelihood confidence
limits on SIGMA and MEAN, as shown in Figure 4.10.

Introductory Examples � 301

Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 mean 4.000000 0.500000 3.384431 4.615569
1 mean . 0.100000 2.305716 5.694284
1 mean . 0.050000 1.849538 6.150462
1 mean . 0.010000 0.670351 7.329649
2 sigma 2.000000 0.500000 1.638972 2.516078
2 sigma . 0.100000 1.283506 3.748633
2 sigma . 0.050000 1.195936 4.358321
2 sigma . 0.010000 1.052584 6.064107

Wald and PL Confidence Limits

Wald Confidence Limits

3.396718 4.603282
2.528798 5.471202
2.246955 5.753045
1.696108 6.303892
1.573415 2.426585
0.959703 3.040297
0.760410 3.239590
0.370903 3.629097

Figure 4.10. Confidence Limits

302 � Chapter 4. The NLP Procedure

Syntax: NLP Procedure
Below are statements used in PROC NLP, listed in alphabetical order as they appear
in the text that follows.

PROC NLP options ;
ARRAY function names ;
BOUNDS boundary constraints ;
BY variables ;
CRPJAC variables ;
DECVAR function names ;
GRADIENT variables ;
HESSIAN variables ;
INCLUDE model files ;
JACNLC variables ;
JACOBIAN function names ;
LABEL decision variable labels ;
LINCON linear constraints ;
MATRIX matrix specification ;
MIN, MAX, or LSQ function names ;
MINQUAD or MAXQUAD matrix, vector, or number ;
NLINCON nonlinear constraints ;
PROFILE profile specification ;
Program Statements ;

Functional Summary

The following table outlines the options in PROC NLP classified by function.

Table 4.1. Functional Summary

Description Statement Option

Input Data Set Options:
input data set PROC NLP DATA=
initial values and constraints PROC NLP INEST=
quadratic objective function PROC NLP INQUAD=
program statements PROC NLP MODEL=
skip missing value observations PROC NLP NOMISS

Output Data Set Options:
variables and derivatives PROC NLP OUT=
result parameter values PROC NLP OUTEST=
program statements PROC NLP OUTMODEL=
combine various OUT... statements PROC NLP OUTALL
CRP Jacobian in the OUTEST= data set PROC NLP OUTCRPJAC
derivatives in the OUT= data set PROC NLP OUTDER=

Functional Summary � 303

Description Statement Option

grid in the OUTEST= data set PROC NLP OUTGRID
Hessian in the OUTEST= data set PROC NLP OUTHESSIAN
iterative output in the OUTEST= data set PROC NLP OUTITER
Jacobian in the OUTEST= data set PROC NLP OUTJAC
NLC Jacobian in the OUTEST= data set PROC NLP OUTNLCJAC
time in the OUTEST= data set PROC NLP OUTTIME

Optimization Options:
minimization method PROC NLP TECH=
update technique PROC NLP UPDATE=
version of optimization technique PROC NLP VERSION=
line-search method PROC NLP LINESEARCH=
line-search precision PROC NLP LSPRECISION=
type of Hessian scaling PROC NLP HESCAL=
start for approximated Hessian PROC NLP INHESSIAN=
iteration number for update restart PROC NLP RESTART=

Initial Value Options:
produce best grid points PROC NLP BEST=
infeasible points in grid search PROC NLP INFEASIBLE
pseudorandom initial values PROC NLP RANDOM=
constant initial values PROC NLP INITIAL=

Derivative Options:
finite-difference derivatives PROC NLP FD=
finite-difference derivatives PROC NLP FDHESSIAN=
compute finite-difference interval PROC NLP FDINT=
use only diagonal of Hessian PROC NLP DIAHES
test gradient specification PROC NLP GRADCHECK=

Constraint Options:
range for active constraints PROC NLP LCEPSILON=
LM tolerance for deactivating PROC NLP LCDEACT=
tolerance for dependent constraints PROC NLP LCSINGULAR=
sum all observations for continuous functions NLINCON / SUMOBS
evaluate each observation for continuous func-
tions

NLINCON / EVERYOBS

Termination Criteria Options:
maximum number of function calls PROC NLP MAXFUNC=
maximum number of iterations PROC NLP MAXITER=
minimum number of iterations PROC NLP MINITER=
upper limit on real time PROC NLP MAXTIME=
absolute function convergence criterion PROC NLP ABSCONV=
absolute function convergence criterion PROC NLP ABSFCONV=

304 � Chapter 4. The NLP Procedure

Description Statement Option

absolute gradient convergence criterion PROC NLP ABSGCONV=
absolute parameter convergence criterion PROC NLP ABSXCONV=
relative function convergence criterion PROC NLP FCONV=
relative function convergence criterion PROC NLP FCONV2=
relative gradient convergence criterion PROC NLP GCONV=
relative gradient convergence criterion PROC NLP GCONV2=
relative parameter convergence criterion PROC NLP XCONV=
used in FCONV, GCONV criterion PROC NLP FSIZE=
used in XCONV criterion PROC NLP XSIZE=

Covariance Matrix Options:
type of covariance matrix PROC NLP COV=
σ2 factor of COV matrix PROC NLP SIGSQ=
determine factor of COV matrix PROC NLP VARDEF=
absolute singularity for inertia PROC NLP ASINGULAR=
relative M singularity for inertia PROC NLP MSINGULAR=
relative V singularity for inertia PROC NLP VSINGULAR=
threshold for Moore-Penrose inverse PROC NLP G4=
tolerance for singular COV matrix PROC NLP COVSING=
profile confidence limits PROC NLP CLPARM=

Printed Output Options:
display (almost) all printed output PROC NLP PALL
suppress all printed output PROC NLP NOPRINT
reduce some default output PROC NLP PSHORT
reduce most default output PROC NLP PSUMMARY
display initial values and gradients PROC NLP PINIT
display optimization history PROC NLP PHISTORY
display Jacobian matrix PROC NLP PJACOBI
display crossproduct Jacobian matrix PROC NLP PCRPJAC
display Hessian matrix PROC NLP PHESSIAN
display Jacobian of nonlinear constraints PROC NLP PNLCJAC
display values of grid points PROC NLP PGRID
display values of functions in LSQ, MIN, MAX PROC NLP PFUNCTION
display approximate standard errors PROC NLP PSTDERR
display covariance matrix PROC NLP PCOV
display eigenvalues for covariance matrix PROC NLP PEIGVAL
print code evaluation problems PROC NLP PERROR
print measures of real time PROC NLP PTIME
display model program, variables PROC NLP LIST
display compiled model program PROC NLP LISTCODE

Step Length Options:
damped steps in line search PROC NLP DAMPSTEP=
maximum trust region radius PROC NLP MAXSTEP=

PROC NLP Statement � 305

Description Statement Option

initial trust region radius PROC NLP INSTEP=

Profile Point and Confidence Interval Options:
factor relating discrepancy function to χ2 quantile PROFILE FFACTOR=
scale for y values written to OUTEST= data set PROFILE FORCHI=
upper bound for confidence limit search PROFILE FEASRATIO=
write all confidence limit parameter estimates to
OUTEST= data set

PROFILE OUTTABLE

Miscellaneous Options:
number of accurate digits in objective function PROC NLP FDIGITS=
number of accurate digits in nonlinear constraints PROC NLP CDIGITS=
general singularity criterion PROC NLP SINGULAR=
do not compute inertia of matrices PROC NLP NOEIGNUM
check optimality in neighborhood PROC NLP OPTCHECK=

PROC NLP Statement

PROC NLP options ;

This statement invokes the NLP procedure. The following options are used with the
PROC NLP statement.

ABSCONV=r
ABSTOL=r

specifies an absolute function convergence criterion. For minimization (maximiza-
tion), termination requires f(x(k)) ≤ (≥) r. The default value of ABSCONV is the
negative (positive) square root of the largest double precision value.

ABSFCONV=r[n]
ABSFTOL=r[n]

specifies an absolute function convergence criterion. For all techniques except
NMSIMP, termination requires a small change of the function value in successive
iterations:

|f(x(k−1))− f(x(k))| ≤ r

For the NMSIMP technique the same formula is used, but x(k) is defined as the vertex
with the lowest function value, and x(k−1) is defined as the vertex with the highest
function value in the simplex. The default value is r = 0. The optional integer
value n specifies the number of successive iterations for which the criterion must be
satisfied before the process can be terminated.

306 � Chapter 4. The NLP Procedure

ABSGCONV=r[n]
ABSGTOL=r[n]

specifies the absolute gradient convergence criterion. Termination requires the maxi-
mum absolute gradient element to be small:

max
j
|gj(x(k))| ≤ r

This criterion is not used by the NMSIMP technique. The default value is r = 1E−5.
The optional integer value n specifies the number of successive iterations for which
the criterion must be satisfied before the process can be terminated.

ABSXCONV=r[n]
ABSXTOL=r[n]

specifies the absolute parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small Euclidean distance between successive pa-
rameter vectors:

‖ x(k) − x(k−1) ‖2≤ r

For the NMSIMP technique, termination requires either a small length α(k) of the
vertices of a restart simplex

α(k) ≤ r

or a small simplex size
δ(k) ≤ r

where the simplex size δ(k) is defined as the L1 distance of the simplex vertex y(k)

with the smallest function value to the other n simplex points x
(k)
l 6= y(k):

δ(k) =
∑
xl 6=y

‖ x
(k)
l − y(k) ‖1

The default value is r = 1E−4 for the COBYLA NMSIMP technique, r = 1E−8 for
the standard NMSIMP technique, and r = 0 otherwise. The optional integer value n
specifies the number of successive iterations for which the criterion must be satisfied
before the process can be terminated.

ASINGULAR=r
ASING=r

specifies an absolute singularity criterion for measuring singularity of Hessian and
crossproduct Jacobian and their projected forms, which may have to be converted to
compute the covariance matrix. The default is the square root of the smallest positive
double precision value. For more information, see the section “Covariance Matrix”
on page 370.

BEST=i
produces the i best grid points only. This option not only restricts the output, it
also can significantly reduce the computation time needed for sorting the grid point
information.

CDIGITS=r
specifies the number of accurate digits in nonlinear constraint evaluations. Fractional
values such as CDIGITS=4.7 are allowed. The default value is r = − log10(ε), where

PROC NLP Statement � 307

ε is the machine precision. The value of r is used to compute the interval length h
for the computation of finite-difference approximations of the Jacobian matrix of
nonlinear constraints.

CLPARM= PL | WALD | BOTH
is similar to but not the same as that used by other SAS procedures. Using
CLPARM=BOTH is equivalent to specifying

PROFILE / ALPHA=0.5 0.1 0.05 0.01 OUTTABLE;

The CLPARM=BOTH option specifies that profile confidence limits (PL CLs) for all
parameters and for α = .5, .1, .05, .01 are computed and displayed or written to the
OUTEST= data set. Computing the profile confidence limits for all parameters can
be very expensive and should be avoided when a difficult optimization problem or
one with many parameters is solved. The OUTTABLE option is valid only when an
OUTEST= data set is specified in the PROC NLP statement. For CLPARM=BOTH,
the table of displayed output contains the Wald confidence limits computed from the
standard errors as well as the PL CLs. The Wald confidence limits are not computed
(displayed or written to the OUTEST= data set) unless the approximate covariance
matrix of parameters is computed.

COV= 1 | 2 | 3 | 4 | 5 | 6 | M | H | J | B | E | U
COVARIANCE= 1 | 2 | 3 | 4 | 5 | 6 | M | H | J | B | E | U

specifies one of six formulas for computing the covariance matrix. For more infor-
mation, see the section “Covariance Matrix” on page 370.

COVSING=r
specifies a threshold r > 0 that determines whether the eigenvalues of a singular
Hessian matrix or crossproduct Jacobian matrix are considered to be zero. For more
information, see the section “Covariance Matrix” on page 370.

DAMPSTEP[=r]
DS[=r]

specifies that the initial step length value α(0) for each line search (used by the
QUANEW, HYQUAN, CONGRA, or NEWRAP technique) cannot be larger than
r times the step length value used in the former iteration. If the DAMPSTEP option
is specified but r is not specified, the default is r = 2. The DAMPSTEP=r option can
prevent the line-search algorithm from repeatedly stepping into regions where some
objective functions are difficult to compute or where they could lead to floating point
overflows during the computation of objective functions and their derivatives. The
DAMPSTEP=r option can save time-costly function calls during the line searches
of objective functions that result in very small steps. For more information, see the
section “Restricting the Step Length” on page 366.

DATA=SAS-data-set
allows variables from the specified data set to be used in the specification of the
objective function f . For more information, see the section “DATA= Input Data Set”
on page 374.

DIAHES
specifies that only the diagonal of the Hessian or crossproduct Jacobian is used. This

308 � Chapter 4. The NLP Procedure

saves function evaluations but may slow the convergence process considerably. Note
that the DIAHES option refers to both the Hessian and the crossproduct Jacobian
when using the LSQ statement. When derivatives are specified using the HESSIAN
or CRPJAC statement, these statements must refer only to the n diagonal derivative
elements (otherwise, the n(n + 1)/2 derivatives of the lower triangle must be spec-
ified). The DIAHES option is ignored if a quadratic programming with a constant
Hessian is specified by TECH=QUADAS or TECH=LICOMP.

FCONV=r[n]
FTOL=r[n]

specifies the relative function convergence criterion. For all techniques except
NMSIMP, termination requires a small relative change of the function value in suc-
cessive iterations:

|f(x(k))− f(x(k−1))|
max(|f(x(k−1))|,FSIZE)

≤ r

where FSIZE is defined by the FSIZE= option. For the NMSIMP technique, the same
formula is used, but x(k) is defined as the vertex with the lowest function value, and
x(k−1) is defined as the vertex with the highest function value in the simplex. The
default value is r = 10−FDIGITS where FDIGITS is the value of the FDIGITS=
option. The optional integer value n specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

FCONV2=r[n]
FTOL2=r[n]

specifies another function convergence criterion. For least squares problems and all
techniques except NMSIMP, termination requires a small predicted reduction

df (k) ≈ f(x(k))− f(x(k) + s(k))

of the objective function. The predicted reduction

df (k) = −g(k)T s(k) − 1
2
s(k)T G(k)s(k)

= −1
2
s(k)T g(k)

≤ r

is based on approximating the objective function f by the first two terms of the Taylor
series and substituting the Newton step

s(k) = −G(k)−1g(k)

For the NMSIMP technique, termination requires a small standard deviation of the
function values of the n + 1 simplex vertices x

(k)
l , l = 0, . . . , n,√

1
n + 1

∑
l

(f(x(k)
l)− f(x(k)))2 ≤ r

PROC NLP Statement � 309

where f(x(k)) = 1
n+1

∑
l f(x(k)

l). If there are nact boundary constraints active at
x(k), the mean and standard deviation are computed only for the n + 1−nact uncon-
strained vertices. The default value is r = 1E−6 for the NMSIMP technique and the
QUANEW technique with nonlinear constraints, and r = 0 otherwise. The optional
integer value n specifies the number of successive iterations for which the criterion
must be satisfied before the process can be terminated.

FD[=FORWARD | CENTRAL | number]
specifies that all derivatives be computed using finite-difference approximations. The
following specifications are permitted:

FD=FORWARD uses forward differences.

FD=CENTRAL uses central differences.

FD=number uses central differences for the initial and final evaluations of the
gradient, Jacobian, and Hessian. During iteration, start with for-
ward differences and switch to a corresponding central-difference
formula during the iteration process when one of the following two
criteria is satisfied:

• The absolute maximum gradient element is less than or equal
to number times the ABSGCONV threshold.

• The term left of the GCONV criterion is less than or equal to
max(1.0E − 6,number× GCONV threshold). The 1.0E−6
ensures that the switch is done, even if you set the GCONV
threshold to zero.

FD is equivalent to FD=100.

Note that the FD and FDHESSIAN options cannot apply at the same time. The
FDHESSIAN option is ignored when only first-order derivatives are used, for ex-
ample, when the LSQ statement is used and the HESSIAN is not explicitly needed
(displayed or written to a data set). For more information, see the section “Finite-
Difference Approximations of Derivatives” on page 357.

FDHESSIAN[=FORWARD | CENTRAL]
FDHES[=FORWARD | CENTRAL]
FDH[=FORWARD | CENTRAL]

specifies that second-order derivatives be computed using finite-difference approxi-
mations based on evaluations of the gradients.

FDHESSIAN=FORWARD uses forward differences.
FDHESSIAN=CENTRAL uses central differences.
FDHESSIAN uses forward differences for the Hessian except

for the initial and final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. For more
information, see the section “Finite-Difference Approximations of Derivatives” on
page 357

310 � Chapter 4. The NLP Procedure

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective func-
tion. Fractional values such as FDIGITS=4.7 are allowed. The default value is
r = − log10(ε), where ε is the machine precision. The value of r is used to compute
the interval length h for the computation of finite-difference approximations of the
derivatives of the objective function and for the default value of the FCONV= option.

FDINT= OBJ | CON | ALL
specifies how the finite-difference intervals h should be computed. For FDINT=OBJ,
the interval h is based on the behavior of the objective function; for FDINT=CON,
the interval h is based on the behavior of the nonlinear constraints functions; and for
FDINT=ALL, the interval h is based on the behavior of the objective function and
the nonlinear constraints functions. For more information, see the section “Finite-
Difference Approximations of Derivatives” on page 357.

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termina-
tion criteria. The default value is r = 0. For more details, refer to the FCONV= and
GCONV= options.

G4=n
is used when the covariance matrix is singular. The value n > 0 determines which
generalized inverse is computed. The default value of n is 60. For more information,
see the section “Covariance Matrix” on page 370.

GCONV=r[n]
GTOL=r[n]

specifies the relative gradient convergence criterion. For all techniques except the
CONGRA and NMSIMP techniques, termination requires that the normalized pre-
dicted function reduction is small:

g(x(k))T [G(k)]−1g(x(k))
max(|f(x(k))|,FSIZE)

≤ r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where
a reliable Hessian estimate G is not available),

‖ g(x(k)) ‖2
2 ‖ s(x(k)) ‖2

‖ g(x(k))− g(x(k−1)) ‖2 max(|f(x(k))|, FSIZE)
≤ r

is used. This criterion is not used by the NMSIMP technique. The default value is r
= 1E−8. The optional integer value n specifies the number of successive iterations
for which the criterion must be satisfied before the process can be terminated.

GCONV2=r[n]
GTOL2=r[n]

specifies another relative gradient convergence criterion,

max
j

|gj(x(k))|√
f(x(k))G(k)

j,j

≤ r

PROC NLP Statement � 311

This option is valid only when using the TRUREG, LEVMAR, NRRIDG, and
NEWRAP techniques on least squares problems. The default value is r = 0. The
optional integer value n specifies the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.

GRADCHECK[= NONE | FAST | DETAIL]
GC[= NONE | FAST | DETAIL]

Specifying GRADCHECK=DETAIL computes a test vector and test matrix to check
whether the gradient g specified by a GRADIENT statement (or indirectly by a
JACOBIAN statement) is appropriate for the function f computed by the program
statements. If the specification of the first derivatives is correct, the elements of the
test vector and test matrix should be relatively small. For very large optimization
problems, the algorithm can be too expensive in terms of computer time and mem-
ory. If the GRADCHECK option is not specified, a fast derivative test identical to
the GRADCHECK=FAST specification is performed by default. It is possible to
suppress the default derivative test by specifying GRADCHECK=NONE. For more
information, see the section “Testing the Gradient Specification” on page 360.

HESCAL= 0 | 1 | 2 | 3
HS= 0 | 1 | 2 | 3

specifies the scaling version of the Hessian or crossproduct Jacobian matrix used
in NRRIDG, TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization. If the
value of the HESCAL= option is not equal to zero, the first iteration and each restart
iteration sets the diagonal scaling matrix D(0) = diag(d(0)

i):

d
(0)
i =

√
max(|G(0)

i,i |, ε)

where G
(0)
i,i are the diagonal elements of the Hessian or crossproduct Jacobian ma-

trix. In all other iterations, the diagonal scaling matrix D(0) = diag(d(0)
i) is updated

depending on the HESCAL= option:

HESCAL=0 specifies that no scaling is done

HESCAL=1 specifies the Moré (1978) scaling update:

d
(k+1)
i = max

(
d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

HESCAL=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

d
(k+1)
i = max

(
0.6d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

HESCAL=3 specifies that di is reset in each iteration:

d
(k+1)
i =

√
max(|G(k)

i,i |, ε)

where ε is the relative machine precision. The default value is HESCAL=1 for
LEVMAR minimization and HESCAL=0 otherwise. Scaling of the Hessian or

312 � Chapter 4. The NLP Procedure

crossproduct Jacobian matrix can be time-consuming in the case where general linear
constraints are active.

INEST=SAS-data-set
INVAR=SAS-data-set
ESTDATA=SAS-data-set

can be used to specify the initial values of the parameters defined in a DECVAR
statement as well as simple boundary constraints and general linear constraints. The
INEST= data set can contain additional variables with names corresponding to con-
stants used in the program statements. At the beginning of each run of PROC NLP,
the values of the constants are read from the PARMS observation, initializing the
constants in the program statements. For more information, see the section “INEST=
Input Data Set” on page 374.

INFEASIBLE
IFP

specifies that the function values of both feasible and infeasible grid points are to be
computed, displayed, and written to the OUTEST= data set, although only the feasi-
ble grid points are candidates for the starting point x(0). This option enables you to
explore the shape of the objective function of points surrounding the feasible region.
For the output, the grid points are sorted first with decreasing values of the maximum
constraint violation. Points with the same value of the maximum constraint violation
are then sorted with increasing (minimization) or decreasing (maximization) value
of the objective function. Using the BEST= option restricts only the number of best
grid points in the displayed output, not those in the data set. The INFEASIBLE op-
tion affects both the displayed output and the output saved to the OUTEST= data set.
The OUTGRID option can be used to write the grid points and their function values
to an OUTEST= data set. After small modifications (deleting unneeded informa-
tion), this data set can be used with the G3D procedure of SAS/GRAPH to generate
a three-dimensional surface plot of the objective function depending on two selected
parameters. For more information on grids, see the section “DECVAR Statement” on
page 327.

INHESSIAN[=r]
INHESS[=r]

specifies how the initial estimate of the approximate Hessian is defined for the quasi-
Newton techniques QUANEW, DBLDOG, and HYQUAN. There are two alterna-
tives:

• The = r specification is not used: the initial estimate of the approximate
Hessian is set to the true Hessian or crossproduct Jacobian at x(0).

• The = r specification is used: the initial estimate of the approximate Hessian
is set to the multiple of the identity matrix rI .

By default, if INHESSIAN=r is not specified, the initial estimate of the approximate
Hessian is set to the multiple of the identity matrix rI , where the scalar r is computed
from the magnitude of the initial gradient. For most applications, this is a sufficiently
good first approximation.

PROC NLP Statement � 313

INITIAL=r
specifies a value r as the common initial value for all parameters for which no other
initial value assignments by the DECVAR statement or an INEST= data set are made.

INQUAD=SAS-data-set
can be used to specify (the nonzero elements of) the matrix H , the vector g, and the
scalar c of a quadratic programming problem, f(x) = 1

2xT Hx + gT x + c. This
option cannot be used together with the NLINCON statement. Two forms (dense and
sparse) of the INQUAD= data set can be used. For more information, see the section
“INQUAD= Input Data Set” on page 375.

INSTEP=r
For highly nonlinear objective functions, such as the EXP function, the default ini-
tial radius of the trust region algorithms TRUREG, DBLDOG, or LEVMAR or
the default step length of the line-search algorithms can result in arithmetic over-
flows. If this occurs, decreasing values of 0 < r < 1 should be specified, such as
INSTEP=1E−1, INSTEP=1E−2, INSTEP=1E−4, and so on, until the iteration starts
successfully.

• For trust region algorithms (TRUREG, DBLDOG, LEVMAR), the INSTEP=
option specifies a factor r > 0 for the initial radius ∆(0) of the trust region.
The default initial trust region radius is the length of the scaled gradient. This
step corresponds to the default radius factor of r = 1.

• For line-search algorithms (NEWRAP, CONGRA, QUANEW, HYQUAN), the
INSTEP= option specifies an upper bound for the initial step length for the line
search during the first five iterations. The default initial step length is r = 1.

• For the Nelder-Mead simplex algorithm (NMSIMP), the INSTEP=r option de-
fines the size of the initial simplex.

For more details, see the section “Computational Problems” on page 367.

LCDEACT=r
LCD=r

specifies a threshold r for the Lagrange multiplier that decides whether an active
inequality constraint remains active or can be deactivated. For a maximization (min-
imization), an active inequality constraint can be deactivated only if its Lagrange
multiplier is greater (less) than the threshold value r. For maximization, r must be
greater than zero; for minimization, r must be smaller than zero. The default value is

r = ±min(0.01,max(0.1×ABSGCONV , 0.001× gmax(k)))

where the + stands for maximization, the − for minimization, ABSGCONV is the
value of the absolute gradient criterion, and gmax(k) is the maximum absolute ele-
ment of the (projected) gradient g(k) or ZT g(k).

LCEPSILON=r
LCEPS=r
LCE=r

specifies the range r > 0 for active and violated boundary and linear constraints.

314 � Chapter 4. The NLP Procedure

During the optimization process, the introduction of rounding errors can force PROC
NLP to increase the value of r by a factor of 10, 100, If this happens it is indi-
cated by a message written to the log. For more information, see the section “Linear
Complementarity (LICOMP)” on page 350.

LCSINGULAR=r
LCSING=r
LCS=r

specifies a criterion r > 0 used in the update of the QR decomposition that decides
whether an active constraint is linearly dependent on a set of other active constraints.
The default value is r = 1E−8. The larger r becomes, the more the active constraints
are recognized as being linearly dependent. If the value of r is larger than 0.1, it is
reset to 0.1.

LINESEARCH=i
LIS=i

specifies the line-search method for the CONGRA, QUANEW, HYQUAN, and
NEWRAP optimization techniques. Refer to Fletcher (1987) for an introduction to
line-search techniques. The value of i can be 1, . . . , 8. For CONGRA, QUANEW,
and NEWRAP, the default value is i = 2. A special line-search method is the default
for the least squares technique HYQUAN that is based on an algorithm developed
by Lindström and Wedin (1984). Although it needs more memory, this default line-
search method sometimes works better with large least squares problems. However,
by specifying LIS=i, i = 1, . . . , 8, it is possible to use one of the standard techniques
with HYQUAN.

LIS=1 specifies a line-search method that needs the same number of func-
tion and gradient calls for cubic interpolation and cubic extrapola-
tion.

LIS=2 specifies a line-search method that needs more function than gra-
dient calls for quadratic and cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of
function and gradient calls for cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of func-
tion and gradient calls for stepwise extrapolation and cubic inter-
polation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only
function values for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only func-
tion values for linear approximation.

PROC NLP Statement � 315

LIS=8 specifies the Armijo line-search technique (Polak 1971), which
uses only function values for linear approximation.

LIST
displays the model program and variable lists. The LIST option is a debugging feature
and is not normally needed. This output is not included in either the default output or
the output specified by the PALL option.

LISTCODE
displays the derivative tables and the compiled program code. The LISTCODE option
is a debugging feature and is not normally needed. This output is not included in
either the default output or the output specified by the PALL option. The option is
similar to that used in MODEL procedure in SAS/ETS software.

LSPRECISION=r
LSP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3. Usually an imprecise line search is inexpensive and sufficient for
convergence to the optimum. For difficult optimization problems, a more precise
and expensive line search may be necessary (Fletcher 1987). The second (default for
NEWRAP, QUANEW, and CONGRA) and third line-search methods approach exact
line search for small LSPRECISION= values. In the presence of numerical problems,
it is advised to decrease the LSPRECISION= value to obtain a more precise line
search. The default values are as follows:

TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
HYQUAN DBFGS r = 0.1
HYQUAN DDFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, refer to Fletcher (1987).

MAXFUNC=i
MAXFU=i

specifies the maximum number i of function calls in the optimization process. The
default values are

• TRUREG, LEVMAR, NRRIDG, NEWRAP: 125

• QUANEW, HYQUAN, DBLDOG: 500

• CONGRA, QUADAS: 1000

• NMSIMP: 3000

316 � Chapter 4. The NLP Procedure

Note that the optimization can be terminated only after completing a full iteration.
Therefore, the number of function calls that are actually performed can exceed the
number that is specified by the MAXFUNC= option.

MAXITER=i[n]
MAXIT=i[n]

specifies the maximum number i of iterations in the optimization process. The default
values are:

• TRUREG, LEVMAR, NRRIDG, NEWRAP: 50

• QUANEW, HYQUAN, DBLDOG: 200

• CONGRA, QUADAS: 400

• NMSIMP: 1000

This default value is valid also when i is specified as a missing value. The optional
second value n is valid only for TECH=QUANEW with nonlinear constraints. It
specifies an upper bound n for the number of iterations of an algorithm used to reduce
the violation of nonlinear constraints at a starting point. The default value is n = 20.

MAXSTEP=r[n]
specifies an upper bound for the step length of the line-search algorithms during the
first n iterations. By default, r is the largest double precision value and n is the
largest integer available. Setting this option can increase the speed of convergence for
TECH=CONGRA, TECH=QUANEW, TECH=HYQUAN, and TECH=NEWRAP.

MAXTIME=r
specifies an upper limit of r seconds of real time for the optimization process. The
default value is the largest floating point double representation of the computer. Note
that the time specified by the MAXTIME= option is checked only once at the end
of each iteration. Therefore, the actual running time of the PROC NLP job may
be longer than that specified by the MAXTIME= option. The actual running time
includes the rest of the time needed to finish the iteration, time for the output of the
(temporary) results, and (if required) the time for saving the results in an OUTEST=
data set. Using the MAXTIME= option with a permanent OUTEST= data set enables
you to separate large optimization problems into a series of smaller problems that
need smaller amounts of real time.

MINITER=i
MINIT=i

specifies the minimum number of iterations. The default value is zero. If more itera-
tions than are actually needed are requested for convergence to a stationary point, the
optimization algorithms can behave strangely. For example, the effect of rounding er-
rors can prevent the algorithm from continuing for the required number of iterations.

MODEL=model-name, model-list
MOD=model-name, model-list
MODFILE=model-name, model-list

reads the program statements from one or more input model files created by previous
PROC NLP steps using the OUTMODEL= option. If it is necessary to include the

PROC NLP Statement � 317

program code at a special location in newly written code, the INCLUDE statement
can be used instead of using the MODEL= option. Using both the MODEL= option
and the INCLUDE statement with the same model file will include the same model
twice, which can produce different results than including it once. The MODEL=
option is similar to the option used in PROC MODEL in SAS/ETS software.

MSINGULAR=r
MSING=r

specifies a relative singularity criterion r > 0 for measuring singularity of Hessian
and crossproduct Jacobian and their projected forms. The default value is 1E−12 if
the SINGULAR= option is not specified and max(10 × ε, 1E − 4 × SINGULAR)
otherwise. For more information, see the section “Covariance Matrix” on page 370.

NOEIGNUM
suppresses the computation and output of the determinant and the inertia of the
Hessian, crossproduct Jacobian, and covariance matrices. The inertia of a symmetric
matrix are the numbers of negative, positive, and zero eigenvalues. For large applica-
tions, the NOEIGNUM option can save computer time.

NOMISS
is valid only for those variables of the DATA= data set that are referred to in program
statements. If the NOMISS option is specified, observations with any missing value
for those variables are skipped. If the NOMISS option is not specified, the miss-
ing value may result in a missing value of the objective function, implying that the
corresponding BY group of data is not processed.

NOPRINT
NOP

suppresses the output.

OPTCHECK[=r]
computes the function values f(xl) of a grid of points xl in a small neighborhood of
x∗. The xl are located in a ball of radius r about x∗. If the OPTCHECK option is
specified without r, the default value is r = 0.1 at the starting point and r = 0.01 at
the terminating point. If a point x∗l is found with a better function value than f(x∗),
then optimization is restarted at x∗l . For more information on grids, see the section
“DECVAR Statement” on page 327.

OUT=SAS-data-set
creates an output data set that contains those variables of a DATA= input data set
referred to in the program statements plus additional variables computed by perform-
ing the program statements of the objective function, derivatives, and nonlinear con-
straints. The OUT= data set can also contain first- and second-order derivatives of
these variables if the OUTDER= option is specified. The variables and derivatives
are evaluated at x∗; for TECH=NONE, they are evaluated at x0.

OUTALL
If an OUTEST= data set is specified, this option sets the OUTHESSIAN option if
the MIN or MAX statement is used. If the LSQ statement is used, the OUTALL
option sets the OUTCRPJAC option. If nonlinear constraints are specified using the
NLINCON statement, the OUTALL option sets the OUTNLCJAC option.

318 � Chapter 4. The NLP Procedure

OUTCRPJAC
If an OUTEST= data set is specified, the crossproduct Jacobian matrix of the m
functions composing the least squares function is written to the OUTEST= data set.

OUTDER= 0 | 1 | 2
specifies whether or not derivatives are written to the OUT= data set. For
OUTDER=2, first- and second-order derivatives are written to the data set; for
OUTDER=1, only first-order derivatives are written; for OUTDER=0, no deriva-
tives are written to the data set. The default value is OUTDER=0. Derivatives are
evaluated at x∗.

OUTEST=SAS-data-set
OUTVAR=SAS-data-set

creates an output data set that contains the results of the optimization. This is useful
for reporting and for restarting the optimization in a subsequent execution of the pro-
cedure. Information in the data set can include parameter estimates, gradient values,
constraint information, Lagrangian values, Hessian values, Jacobian values, covari-
ance, standard errors, and confidence intervals.

OUTGRID
writes the grid points and their function values to the OUTEST= data set. By de-
fault, only the feasible grid points are saved; however, if the INFEASIBLE option
is specified, all feasible and infeasible grid points are saved. Note that the BEST=
option does not affect the output of grid points to the OUTEST= data set. For more
information on grids, see the section “DECVAR Statement” on page 327.

OUTHESSIAN
OUTHES

writes the Hessian matrix of the objective function to the OUTEST= data set. If the
Hessian matrix is computed for some other reason (if, for example, the PHESSIAN
option is specified), the OUTHESSIAN option is set by default.

OUTITER
writes during each iteration the parameter estimates, the value of the objective func-
tion, the gradient (if available), and (if OUTTIME is specified) the time in seconds
from the start of the optimization to the OUTEST= data set.

OUTJAC
writes the Jacobian matrix of the m functions composing the least squares function
to the OUTEST= data set. If the PJACOBI option is specified, the OUTJAC option is
set by default.

OUTMODEL=model-name
OUTMOD=model-name
OUTM=model-name

specifies the name of an output model file to which the program statements are to be
written. The program statements of this file can be included into the program state-
ments of a succeeding PROC NLP run using the MODEL= option or the INCLUDE
program statement. The OUTMODEL= option is similar to the option used in PROC
MODEL in SAS/ETS software. Note that the following statements are not part
of the program code that is written to an OUTMODEL= data set: MIN, MAX,

PROC NLP Statement � 319

LSQ, MINQUAD, MAXQUAD, DECVAR, BOUNDS, BY, CRPJAC, GRADIENT,
HESSIAN, JACNLC, JACOBIAN, LABEL, LINCON, MATRIX, and NLINCON.

OUTNLCJAC
If an OUTEST= data set is specified, the Jacobian matrix of the nonlinear constraint
functions specified by the NLINCON statement is written to the OUTEST= data set.
If the Jacobian matrix of the nonlinear constraint functions is computed for some
other reason (if, for example, the PNLCJAC option is specified), the OUTNLCJAC
option is set by default.

OUTTIME
is used if an OUTEST= data set is specified and if the OUTITER option is specified.
If OUTTIME is specified, the time in seconds from the start of the optimization to
the start of each iteration is written to the OUTEST= data set.

PALL
ALL

displays all optional output except the output generated by the PSTDERR, PCOV,
LIST, or LISTCODE option.

PCOV
displays the covariance matrix specified by the COV= option. The PCOV option is
set automatically if the PALL and COV= options are set.

PCRPJAC
PJTJ

displays the n×n crossproduct Jacobian matrix JT J . If the PALL option is specified
and the LSQ statement is used, this option is set automatically. If general linear
constraints are active at the solution, the projected crossproduct Jacobian matrix is
also displayed.

PEIGVAL
displays the distribution of eigenvalues if a G4 inverse is computed for the covariance
matrix. The PEIGVAL option is useful for observing which eigenvalues of the matrix
are recognized as zero eigenvalues when the generalized inverse is computed, and it
is the basis for setting the COVSING= option in a subsequent execution of PROC
NLP. For more information, see the section “Covariance Matrix” on page 370.

PERROR
specifies additional output for such applications where the program code for objective
function or nonlinear constraints cannot be evaluated during the iteration process.
The PERROR option is set by default during the evaluations at the starting point but
not during the optimization process.

PFUNCTION
displays the values of all functions specified in a LSQ, MIN, or MAX statement for
each observation read fom the DATA= input data set. The PALL option sets the
PFUNCTION option automatically.

PGRID
displays the function values from the grid search. For more information on grids, see
the section “DECVAR Statement” on page 327.

320 � Chapter 4. The NLP Procedure

PHESSIAN
PHES

displays the n× n Hessian matrix G. If the PALL option is specified and the MIN or
MAX statement is used, this option is set automatically. If general linear constraints
are active at the solution, the projected Hessian matrix is also displayed.

PHISTORY
PHIS

displays the optimization history. No optimization history is displayed for
TECH=LICOMP. This output is included in both the default output and the output
specified by the PALL option.

PINIT
PIN

displays the initial values and derivatives (if available). This output is included in
both the default output and the output specified by the PALL option.

PJACOBI
PJAC

displays the m× n Jacobian matrix J . Because of the memory requirement for large
least squares problems, this option is not invoked when using the PALL option.

PNLCJAC
displays the Jacobian matrix of nonlinear constraints specified by the NLINCON
statement. The PNLCJAC option is set automatically if the PALL option is specified.

PSHORT
SHORT
PSH

restricts the amount of default output. If PSHORT is specified, then

• The initial values are not displayed.

• The listing of constraints is not displayed.

• If there is more than one function in the MIN, MAX, or LSQ statement, their
values are not displayed.

• If the GRADCHECK[=DETAIL] option is used, only the test vector is dis-
played.

PSTDERR
STDERR
SE

computes standard errors that are defined as square roots of the diagonal elements
of the covariance matrix. The t values and probabilities > |t| are displayed together
with the approximate standard errors. The type of covariance matrix must be specified
using the COV= option. The SIGSQ= option, the VARDEF= option, and the special
variables –NOBS– and –DF– defined in the program statements can be used to define
a scalar factor σ2 of the covariance matrix and the approximate standard errors. For
more information, see the section “Covariance Matrix” on page 370.

PROC NLP Statement � 321

PSUMMARY
SUMMARY
SUM

restricts the amount of default displayed output to a short form of iteration history
and notes, warnings, and errors.

PTIME
specifies the output of four different but partially overlapping differences of real time:

• total running time

• total time for the evaluation of objective function, nonlinear constraints, and
derivatives: shows the total time spent executing the programming statements
specifying the objective function, derivatives, and nonlinear constraints, and
(if necessary) their first- and second-order derivatives. This is the total time
needed for code evaluation before, during, and after iterating.

• total time for optimization: shows the total time spent iterating.

• time for some CMP parsing: shows the time needed for parsing the program
statements and its derivatives. In most applications this is a negligible num-
ber, but for applications that contain ARRAY statements or DO loops or use an
optimization technique with analytic second-order derivatives, it can be con-
siderable.

RANDOM=i
specifies a positive integer as a seed value for the pseudorandom number generator.
Pseudorandom numbers are used as the initial value x(0).

RESTART=i
REST=i

specifies that the QUANEW, HYQUAN, or CONGRA algorithm is restarted with a
steepest descent/ascent search direction after at most i > 0 iterations. Default values
are as follows:

• CONGRA with UPDATE=PB: restart is done automatically so specification of
i is not used

• CONGRA with UPDATE 6=PB: i = min(10n, 80), where n is the number of
parameters

• QUANEW, HYQUAN: i is the largest integer available

SIGSQ=sq
specifies a scalar factor sq > 0 for computing the covariance matrix. If the SIGSQ=
option is specified, VARDEF=N is the default. For more information, see the section
“Covariance Matrix” on page 370.

SINGULAR=r
SING=r

specifies the singularity criterion r > 0 for the inversion of the Hessian matrix and

322 � Chapter 4. The NLP Procedure

crossproduct Jacobian. The default value is 1E−8. For more information, refer to the
MSINGULAR= and VSINGULAR= options.

TECH=name
TECHNIQUE=name

specifies the optimization technique. Valid values for it are as follows:

• CONGRA
chooses one of four different conjugate gradient optimization algorithms,
which can be more precisely specified with the UPDATE= option and modified
with the LINESEARCH= option. When this option is selected, UPDATE=PB
by default. For n ≥ 400, CONGRA is the default optimization technique.

• DBLDOG
performs a version of double dogleg optimization, which can be more pre-
cisely specified with the UPDATE= option. When this option is selected,
UPDATE=DBFGS by default.

• HYQUAN
chooses one of three different hybrid quasi-Newton optimization algorithms
which can be more precisely defined with the VERSION= option and
modified with the LINESEARCH= option. By default, VERSION=2 and
UPDATE=DBFGS.

• LEVMAR
performs the Levenberg-Marquardt minimization. For n < 40, this is the de-
fault minimization technique for least squares problems.

• LICOMP
solves a quadratic program as a linear complementarity problem.

• NMSIMP
performs the Nelder-Mead simplex optimization method.

• NONE
does not perform any optimization. This option can be used

– to do grid search without optimization
– to compute and display derivatives and covariance matrices which cannot

be obtained efficiently with any of the optimization techniques

• NEWRAP
performs the Newton-Raphson optimization technique. The algorithm
combines a line-search algorithm with ridging. The line-search algorithm
LINESEARCH=2 is the default.

• NRRIDG
performs the Newton-Raphson optimization technique. For n ≤ 40 and non-
linear least squares, this is the default.

• QUADAS
performs a special quadratic version of the active set strategy.

• QUANEW
chooses one of four quasi-Newton optimization algorithms which can be

PROC NLP Statement � 323

defined more precisely with the UPDATE= option and modified with the
LINESEARCH= option. This is the default for 40 < n < 400 or if there
are nonlinear constraints.

• TRUREG
performs the trust region optimization technique.

UPDATE=method
UPD=method

specifies the update method for the (dual) quasi-Newton, double dogleg, hybrid quasi-
Newton, or conjugate gradient optimization technique. Not every update method can
be used with each optimizer. For more information, see the section “Optimization
Algorithms” on page 346. Valid values for method are as follows:

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the inverse Hessian matrix.

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update
of the Cholesky factor of the Hessian matrix.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update of the
inverse Hessian matrix.

PB performs the automatic restart update method of Powell (1977) and Beale
(1972).

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

VARDEF= DF | N
specifies the divisor d used in the calculation of the covariance matrix and approx-
imate standard errors. If the SIGSQ= option is not specified, the default value is
VARDEF=DF; otherwise, VARDEF=N is the default. For more information, see the
section “Covariance Matrix” on page 370.

VERSION= 1 | 2 | 3
VS= 1 | 2 | 3

specifies the version of the hybrid quasi-Newton optimization technique or the ver-
sion of the quasi-Newton optimization technique with nonlinear constraints.

For the hybrid quasi-Newton optimization technique,

VS=1 specifies version HY1 of Fletcher and Xu (1987).

VS=2 specifies version HY2 of Fletcher and Xu (1987).

VS=3 specifies version HY3 of Fletcher and Xu (1987).

324 � Chapter 4. The NLP Procedure

For the quasi-Newton optimization technique with nonlinear constraints,

VS=1 specifies update of the µ vector like Powell (1978a, b) (update like VF02AD).

VS=2 specifies update of the µ vector like Powell (1982b) (update like VMCWD).

In both cases, the default value is VS=2.

VSINGULAR=r
VSING=r

specifies a relative singularity criterion r > 0 for measuring singularity of Hessian
and crossproduct Jacobian and their projected forms, which may have to be converted
to compute the covariance matrix. The default value is 1E−8 if the SINGULAR=
option is not specified and the value of SINGULAR otherwise. For more information,
see the section “Covariance Matrix” on page 370.

XCONV=r[n]
XTOL=r[n]

specifies the relative parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small relative parameter change in subsequent it-
erations:

maxj |x(k)
j − x

(k−1)
j |

max(|x(k)
j |, |x(k−1)

j |, XSIZE)
≤ r

For the NMSIMP technique, the same formula is used, but x(k)
j is defined as the vertex

with the lowest function value and x
(k−1)
j is defined as the vertex with the highest

function value in the simplex. The default value is r = 1E−8 for the NMSIMP
technique and r = 0 otherwise. The optional integer value n specifies the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

XSIZE=r
specifies the parameter r > 0 of the relative parameter termination criterion. The
default value is r = 0. For more details, see the XCONV= option.

ARRAY Statement

ARRAY arrayname [{ dimensions }] [$] [variables and constants] ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in
the SAS DATA step. The ARRAY statement is used to associate a name (of no more
than eight characters) with a list of variables and constants. The array name is used
with subscripts in the program to refer to the array elements. The following code
illustrates this:

array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;
end;

BY Statement � 325

The ARRAY statement does not support all the features of the DATA step ARRAY
statement. It cannot be used to give initial values to array elements. Implicit indexing
of variables cannot be used; all array references must have explicit subscript expres-
sions. Only exact array dimensions are allowed; lower-bound specifications are not
supported and a maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to
be used as array elements. (Constant array elements cannot have values assigned to
them.) Both dimension specification and the list of elements are optional, but at least
one must be given. When the list of elements is not given or fewer elements than the
size of the array are listed, array variables are created by suffixing element numbers
to the array name to complete the element list.

BOUNDS Statement

BOUNDS b–con [, b–con...] ;

where b–con is given in one of the following formats:

• number operator parameter–list operator number

• number operator parameter–list

• parameter–list operator number

and operator is ≤, <,≥, >, or =.

Boundary constraints are specified with a BOUNDS statement. One- or two-sided
boundary constraints are allowed. The list of boundary constraints are separated by
commas. For example,

bounds 0 <= a1-a9 X <= 1, -1 <= c2-c5;
bounds b1-b10 y >= 0;

More than one BOUNDS statement can be used. If more than one lower (upper)
bound for the same parameter is specified, the maximum (minimum) of these is
taken. If the maximum lj of all lower bounds is larger than the minimum of all
upper bounds uj for the same variable xj , the boundary constraint is replaced by
xj = lj = min(uj) defined by the minimum of all upper bounds specified for xj .

BY Statement

BY variables ;

A BY statement can be used with PROC NLP to obtain separate analyses on DATA=
data set observations in groups defined by the BY variables. That means, for values
of the TECH= option other than NONE, an optimization problem is solved for each
BY group separately. When a BY statement appears, the procedure expects the input
DATA= data set to be sorted in order of the BY variables. If the input data set is not
sorted in ascending order, it is necessary to use one of the following alternatives:

326 � Chapter 4. The NLP Procedure

• Use the SORT procedure with a similar BY statement to sort the data.

• Use the BY statement option NOTSORTED or DESCENDING in the BY state-
ment for the NLP procedure. As a cautionary note, the NOTSORTED option
does not mean that the data are unsorted but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Use the DATASETS procedure (in Base SAS software) to create an index on
the BY variables.

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the SAS Procedures Guide.

CRPJAC Statement

CRPJAC variables ;

The CRPJAC statement defines the crossproduct Jacobian matrix JT J used in solving
least squares problems. For more information, see the section “Derivatives” on page
344. If the DIAHES option is not specified, the CRPJAC statement lists n(n + 1)/2
variable names, which correspond to the elements (JT J)j,k, j ≥ k of the lower
triangle of the symmetric crossproduct Jacobian matrix listed by rows. For example,
the statements

lsq f1-f3;
decvar x1-x3;
crpjac jj1-jj6;

correspond to the crossproduct Jacobian matrix

JT J =

 JJ1 JJ2 JJ4
JJ2 JJ3 JJ5
JJ4 JJ5 JJ6


If the DIAHES option is specified, only the n diagonal elements must be listed in
the CRPJAC statement. The n rows and n columns of the crossproduct Jacobian
matrix must be in the same order as the n corresponding parameter names listed in
the DECVAR statement. To specify the values of nonzero derivatives, the variables
specified in the CRPJAC statement have to be defined at the left-hand side of alge-
braic expressions in programming statements. For example, consider the Rosenbrock
function:

proc nlp tech=levmar;
lsq f1 f2;
decvar x1 x2;
gradient g1 g2;
crpjac cpj1-cpj3;

f1 = 10 * (x2 - x1 * x1);

GRADIENT Statement � 327

f2 = 1 - x1;
g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

cpj1 = 400 * x1 * x1 + 1 ;
cpj2 = -200 * x1;
cpj3 = 100;

run;

DECVAR Statement

DECVAR name–list [=numbers] [, name–list [=numbers] ...] ;

VAR name–list [=numbers] [, name–list [=numbers] ...] ;

PARMS name–list [=numbers] [, name–list [=numbers] ...] ;

PARAMETERS name–list [=numbers] [, name–list [=numbers] ...] ;

The DECVAR statement lists the names of the n > 0 decision variables and speci-
fies grid search and initial values for an iterative optimization process. The decision
variables listed in the DECVAR statement cannot also be used in the MIN, MAX,
MINQUAD, MAXQUAD, LSQ, GRADIENT, HESSIAN, JACOBIAN, CRPJAC, or
NLINCON statement.

The DECVAR statement contains a list of decision variable names (not separated
by commas) optionally followed by an equals sign and a list of numbers. If the
number list consists of only one number, this number defines the initial value for all
the decision variables listed to the left of the equals sign.

If the number list consists of more than one number, these numbers specify the grid
locations for each of the decision variables listed left of the equals sign. The TO
and BY keywords can be used to specify a number list for a grid search. When
a grid of points is specified with a DECVAR statement, PROC NLP computes the
objective function value at each grid point and chooses the best (feasible) grid point
as a starting point for the optimization process. The use of the BEST= option is
recommended to save computing time and memory for the storing and sorting of all
grid point information. Usually only feasible grid points are included in the grid
search. If the specified grid contains points located outside the feasible region and
you are interested in the function values at those points, it is possible to use the
INFEASIBLE option to compute (and display) their function values as well.

GRADIENT Statement

GRADIENT variables ;

The GRADIENT statement defines the gradient vector which contains the first-order
derivatives of the objective function f with respect to x1, . . . , xn. For more infor-
mation, see the section “Derivatives” on page 344. To specify the values of nonzero
derivatives, the variables specified in the GRADIENT statement must be defined on
the left-hand side of algebraic expressions in programming statements. For example,
consider the Rosenbrock function:

328 � Chapter 4. The NLP Procedure

proc nlp tech=congra;
min y;
decvar x1 x2;
gradient g1 g2;

y1 = 10 * (x2 - x1 * x1);
y2 = 1 - x1;

y = .5 * (y1 * y1 + y2 * y2);

g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

run;

HESSIAN Statement

HESSIAN variables ;

The HESSIAN statement defines the Hessian matrix G containing the second-order
derivatives of the objective function f with respect to x1, . . . , xn. For more informa-
tion, see the section “Derivatives” on page 344.

If the DIAHES option is not specified, the HESSIAN statement lists n(n + 1)/2
variable names which correspond to the elements Gj,k, j ≥ k, of the lower triangle
of the symmetric Hessian matrix listed by rows. For example, the statements

min f;
decvar x1 - x3;
hessian g1-g6;

correspond to the Hessian matrix

G =

 G1 G2 G4
G2 G3 G5
G4 G5 G6

 =

 ∂2f/∂x2
1 ∂2f/∂x1∂x2 ∂2f/∂x1∂x3

∂2f/∂x2∂x1 ∂2f/∂x2
2 ∂2f/∂x2∂x3

∂2f/∂x3∂x1 ∂2f/∂x3∂x2 ∂2f/∂x2
3


If the DIAHES option is specified, only the n diagonal elements must be listed in
the HESSIAN statement. The n rows and n columns of the Hessian matrix G must
correspond to the order of the n parameter names listed in the DECVAR statement.
To specify the values of nonzero derivatives, the variables specified in the HESSIAN
statement must be defined on the left-hand side of algebraic expressions in the pro-
gramming statements. For example, consider the Rosenbrock function:

proc nlp tech=nrridg;
min f;
decvar x1 x2;
gradient g1 g2;
hessian h1-h3;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

JACNLC Statement � 329

f = .5 * (f1 * f1 + f2 * f2);

g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

h1 = -200 * (x2 - 3 * x1 * x1) + 1;
h2 = -200 * x1;
h3 = 100;

run;

INCLUDE Statement

INCLUDE model files ;

The INCLUDE statement can be used to append model code to the current model
code. The contents of included model files, created using the OUTMODEL= option,
are inserted into the model program at the position in which the INCLUDE statement
appears.

JACNLC Statement

JACNLC variables ;

The JACNLC statement defines the Jacobian matrix for the system of constraint func-
tions c1(x), . . . , cmc(x). The statements list the mc ×n variable names which corre-
spond to the elements CJi,j , i = 1, . . . ,mc; j = 1, . . . , n, of the Jacobian matrix by
rows.

For example, the statements

nlincon c1-c3;
decvar x1-x2;
jacnlc cj1-cj6;

correspond to the Jacobian matrix

CJ =

 CJ1 CJ2
CJ3 CJ4
CJ5 CJ6

 =

 ∂c1/∂x1 ∂c1/∂x2

∂c2/∂x1 ∂c2/∂x2

∂c3/∂x1 ∂c3/∂x2


The mc rows of the Jacobian matrix must be in the same order as the mc correspond-
ing names of nonlinear constraints listed in the NLINCON statement. The n columns
of the Jacobian matrix must be in the same order as the n corresponding parameter
names listed in the DECVAR statement. To specify the values of nonzero derivatives,
the variables specified in the JACNLC statement must be defined on the left-hand
side of algebraic expressions in programming statements.

330 � Chapter 4. The NLP Procedure

For example,

array cd[3,4] cd1-cd12;
nlincon c1-c3 >= 0;
jacnlc cd1-cd12;

c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;

c2 = 10 - x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;

c3 = 5 - 2 * x1 * x2 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;

cd[1,1]= -1 - 2 * x1; cd[1,2]= 1 - 2 * x2;
cd[1,3]= -1 - 2 * x3; cd[1,4]= 1 - 2 * x4;
cd[2,1]= 1 - 2 * x1; cd[2,2]= -4 * x2;
cd[2,3]= -2 * x3; cd[2,4]= 1 - 4 * x4;
cd[3,1]= -2 - 4 * x1; cd[3,2]= 1 - 2 * x2;
cd[3,3]= -2 * x3; cd[3,4]= 1;

JACOBIAN Statement

JACOBIAN variables ;

The JACOBIAN statement defines the JACOBIAN matrix J for a system of objective
functions. For more information, see the section “Derivatives” on page 344.

The JACOBIAN statement lists m×n variable names that correspond to the elements
Ji,j , i = 1, . . . ,m; j = 1, . . . , n, of the Jacobian matrix listed by rows.

For example, the statements

lsq f1-f3;
decvar x1 x2;
jacobian j1-j6;

correspond to the Jacobian matrix

J =

 J1 J2
J3 J4
J5 J6

 =

 ∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

∂f3/∂x1 ∂f3/∂x2


The m rows of the Jacobian matrix must correspond to the order of the m function
names listed in the MIN, MAX, or LSQ statement. The n columns of the Jacobian
matrix must correspond to the order of the n decision variables listed in the DECVAR
statement. To specify the values of nonzero derivatives, the variables specified in the
JACOBIAN statement must be defined on the left-hand side of algebraic expressions
in programming statements.

For example, consider the Rosenbrock function:

proc nlp tech=levmar;
array j[2,2] j1-j4;

LINCON Statement � 331

lsq f1 f2;
decvar x1 x2;
jacobian j1-j4;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

j[1,1] = -20 * x1;
j[1,2] = 10;
j[2,1] = -1;
j[2,2] = 0; /* is not needed */

run;

The JACOBIAN statement is useful only if more than one objective function is given
in the MIN, MAX, or LSQ statement, or if a DATA= input data set specifies more
than one function. If the MIN, MAX, or LSQ statement contains only one objective
function and no DATA= input data set is used, the JACOBIAN and GRADIENT
statements are equivalent. In the case of least squares minimization, the crossproduct
Jacobian is used as an approximate Hessian matrix.

LABEL Statement

LABEL variable=‘label’ [,variable=‘label’...] ;

The LABEL statement can be used to assign labels (up to 40 chararcters) to the deci-
sion variables listed in the DECVAR statement. The INEST= data set can also be used
to assign labels. The labels are attached to the output and are used in an OUTEST=
data set.

LINCON Statement

LINCON l–con [, l–con ...] ;

where l–con is given in one of the following formats:

• linear–term operator number

• number operator linear–term

and linear–term is of the following form:

< +|− >< number∗ > variable < +|− < number∗ > variable . . . >

The value of operator can be one of the following: ≤, <,≥, >, or =.

The LINCON statement specifies equality or inequality constraints

n∑
j=1

aijxj {≤ | = | ≥} bi for i = 1, . . . ,m

separated by commas. For example, the constraint 4x1 − 3x2 = 0 is expressed as

332 � Chapter 4. The NLP Procedure

decvar x1 x2;
lincon 4 * x1 - 3 * x2 = 0;

and the constraints
10x1 − x2 ≥ 10

x1 + 5x2 ≥ 15

are expressed as

decvar x1 x2;
lincon 10 <= 10 * x1 - x2,

x1 + 5 * x2 >= 15;

MATRIX Statement

MATRIX M–name pattern–definitions ;

The MATRIX statement defines a matrix H and the vector g, which can be given in
the MINQUAD or MAXQUAD statement. The matrix H and vector g are initialized
to zero, so that only the nonzero elements are given. The five different forms of the
MATRIX statement are illustrated with the following example:

H =


100 10 1 0
10 100 10 1
1 10 100 10
0 1 10 100

 g =


1
2
3
4

 c = 0

Each MATRIX statement first names the matrix or vector and then lists its elements.
If more than one MATRIX statement is given for the same matrix, the later definitions
override the earlier ones.

The rows and columns in matrix H and vector g correspond to the order of decision
variables in the DECVAR statement.

• Full Matrix Definition: The MATRIX statement consists of H–name or
g–name followed by an equals sign and all (nonredundant) numerical values
of the matrix H or vector g. Assuming symmetry, only the elements of the
lower triangular part of the matrix H must be listed. This specification should
be used mainly for small problems with almost dense H matrices.

MATRIX H= 100
10 100
1 10 100
0 1 10 100;

MATRIX G= 1 2 3 4;

• Band-diagonal Matrix Definition: This form of pattern definition is useful
if the H matrix has (almost) constant band-diagonal structure. The MATRIX
statement consists of H–name followed by empty brackets [,], an equals sign,
and a list of numbers to be assigned to the diagonal and successive subdiago-
nals.

MATRIX Statement � 333

MATRIX H[,]= 100 10 1;
MATRIX G= 1 2 3 4;

• Sparse Matrix Definitions: In each of the following three specification types,
the H–name or g–name is followed by a list of pattern definitions separated by
commas. Each pattern definition consists of a location specification in brackets
on the left side of an equals sign that is followed by a list of numbers.

– (Sub)Diagonalwise: This form of pattern definition is useful if the H
matrix contains nonzero elements along diagonals or subdiagonals. The
starting location is specified by an index pair in brackets [i, j]. The ex-
pression k ∗num on the right-hand side specifies that num is assigned to
the elements [i, j], . . . , [i+k−1, j +k−1] in a diagonal direction of the
H matrix. The special case k = 1 can be used to assign values to single
nonzero element locations in H .

MATRIX H [1,1]= 4 * 100,
[2,1]= 3 * 10,
[3,1]= 2 * 1;

MATRIX G [1,1]= 1 2 3 4;

– Columnwise Starting in Diagonal: This form of pattern definition is
useful if the H matrix contains nonzero elements columnwise starting in
the diagonal. The starting location is specified by only one index j in
brackets [, j]. The k numbers at the right-hand side are assigned to the
elements [j, j], . . . , [min(j + k − 1, n), j].

MATRIX H [,1]= 100 10 1,
[,2]= 100 10 1,
[,3]= 100 10,
[,4]= 100;

MATRIX G [,1]= 1 2 3 4;

– Rowwise Starting in First Column: This form of pattern definition is
useful if the H matrix contains nonzero elements rowwise ending in the
diagonal. The starting location is specified by only one index i in brackets
[i,]. The k numbers at the right-hand side are assigned to the elements
[i, 1], . . . , [i,min(k, i)].

MATRIX H [1,]= 100,
[2,]= 10 100,
[3,]= 1 10 100,
[4,]= 0 1 10 100;

MATRIX G [1,]= 1 2 3 4;

334 � Chapter 4. The NLP Procedure

MIN, MAX, and LSQ Statements
MIN variables ;

MAX variables ;

LSQ variables ;

The MIN, MAX, or LSQ statement specifies the objective functions. Only one of the
three statements can be used at a time and at least one must be given. The MIN and
LSQ statements are for minimizing the objective function, and the MAX statement is
for maximizing the objective function. The MIN, MAX, or LSQ statement lists one
or more variables naming the objective functions fi, i = 1, . . . ,m (later defined by
SAS program code).

• If the MIN or MAX statement lists m function names f1, . . . , fm, the objective
function f is

f(x) =
m∑

i=1

fi

• If the LSQ statement lists m function names f1, . . . , fm, the objective function
f is

f(x) =
1
2

m∑
i=1

f2
i (x)

Note that the LSQ statement can be used only if TECH=LEVMAR or
TECH=HYQUAN.

MINQUAD and MAXQUAD Statements
MINQUAD H–name [, g–name [, c–number]] ;

MAXQUAD H–name [, g–name [, c–number]] ;

The MINQUAD and MAXQUAD statements specify the matrix H , vector g, and
scalar c that define a quadratic objective function. The MINQUAD statement is for
minimizing the objective function and the MAXQUAD statement is for maximizing
the objective function.

The rows and columns in H and g correspond to the order of decision variables given
in the DECVAR statement. Specifying the objective function with a MINQUAD or
MAXQUAD statement indirectly defines the analytic derivatives for the objective
function. Therefore, statements specifying derivatives are not valid in these cases.
Also, only use these statements when TECH=LICOMP or TECH=QUADAS and no
nonlinear constraints are imposed.

There are three ways of using the MINQUAD or MAXQUAD statement:

• Using ARRAY Statements:
The names H–name and g–name specified in the MINQUAD or MAXQUAD
statement can be used in ARRAY statements. This specification is mainly for
small problems with almost dense H matrices.

MINQUAD and MAXQUAD Statements � 335

proc nlp pall;
array h[2,2] .4 0

0 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

• Using Elementwise Setting:
The names H–name and g–name specified in the MINQUAD or MAXQUAD
statement can be followed directly by one-dimensional indices specifying the
corresponding elements of the matrix H and vector g. These element names
can be used on the left side of numerical assignments. The one-dimensional
index value l following H–name, which corresponds to the element Hij , is
computed by l = (i−1)n+ j, i ≥ j. The matrix H and vector g are initialized
to zero, so that only the nonzero elements must be given. This specification is
efficient for small problems with sparse H matrices.

proc nlp pall;
minquad h, -100;
decvar x1 x2;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
h1 = .4; h4 = 4;

run;

• Using MATRIX Statements:
The names H–name and g–name specified in the MINQUAD or MAXQUAD
statement can be used in MATRIX statements. There are different ways to
specify the nonzero elements of the matrix H and vector g by MATRIX state-
ments. The following example illustrates one way to use the MATRIX state-
ment.

proc nlp all;
matrix h[1,1] = .4 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50;

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

336 � Chapter 4. The NLP Procedure

NLINCON Statement
NLINCON nlcon [, nlcon ...] [/ option] ;

NLC nlcon [, nlcon ...] [/ option] ;

where nlcon is given in one of the following formats:

• number operator variable–list operator number

• -number operator variable–list

• variable–list operator number

and operator is ≤, <,≥, >, or =. The value of option can be SUMOBS or
EVERYOBS.

General nonlinear equality and inequality constraints are specified with the
NLINCON statement. The syntax of the NLINCON statement is similar to that of
the BOUNDS statement with two small additions:

• The BOUNDS statement can contain only the names of decision variables.
The NLINCON statement can also contain the names of continuous functions
of the decision variables. These functions must be computed in the program
statements, and since they can depend on the values of some of the variables in
the DATA= data set, there are two possibilities:

– If the continuous functions should be summed across all observations
read from the DATA= data set, the NLINCON statement must be termi-
nated by the / SUMOBS option.

– If the continuous functions should be evaluated separately for each obser-
vation in the data set, the NLINCON statement must be terminated by the
/ EVERYOBS option. One constraint is generated for each observation
in the data set.

• If the continuous function should be evaluated only once for the entire data set,
the NLINCON statement has the same form as the BOUNDS statement. If this
constraint does depend on the values of variables in the DATA= data set, it is
evaluated using the data of the first observation.

One- or two-sided constraints can be specified in the NLINCON statement. However,
equality constraints must be one-sided. The pairs of operators (<,<=) and (>,>=)
are treated in the same way.

These three statements require the values of the three functions v1, v2, v3 to be be-
tween zero and ten, and they are equivalent:

nlincon 0 <= v1-v3,
v1-v3 <= 10;

nlincon 0 <= v1-v3 <= 10;

nlincon 10 >= v1-v3 >= 0;

PROFILE Statement � 337

Also, consider the Rosen-Suzuki problem. It has three nonlinear inequality con-
straints:

8− x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 ≥ 0
10− x2

1 − 2x2
2 − x2

3 − 2x2
4 + x1 + x4 ≥ 0

5− 2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 ≥ 0

These are specified as

nlincon c1-c3 >= 0;

c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;

c2 = 10 - x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;

c3 = 5 - 2 * x1 * x1 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;

Note: QUANEW and NMSIMP are the only optimization subroutines that support
the NLINCON statement.

PROFILE Statement

PROFILE parms [/ [ALPHA= values] [options]] ;

where parms is given in the format pnam–1 pnam–2 ... pnam–n, and values is the
list of α values in (0,1).

The PROFILE statement

• writes the (x, y) coordinates of profile points for each of the listed parameters
to the OUTEST= data set

• displays, or writes to the OUTEST= data set, the profile likelihood confidence
limits (PL CLs) for the listed parameters for the specified α values. If the
approximate standard errors are available, the corresponding Wald confidence
limits can be computed.

When computing the profile points or likelihood profile confidence intervals, PROC
NLP assumes that a maximization of the log likelihood function is desired. Each point
of the profile and each endpoint of the confidence interval is computed by solving
corresponding nonlinear optimization problems.

The keyword PROFILE must be followed by the names of parameters for which the
profile or the PL CLs should be computed. If the parameter name list is empty, the
profiles and PL CLs for all parameters are computed. Then, optionally, the α values
follow. The list of α values may contain TO and BY keywords. Each element must
satisfy 0 < α < 1. The following is an example:

profile l11-l15 u1-u5 c /
alpha= .9 to .1 by -.1 .09 to .01 by -.01;

338 � Chapter 4. The NLP Procedure

Duplicate α values or values outside (0, 1) are automatically eliminated from the list.

A number of additional options can be specified.

FFACTOR=r specifies the factor relating the discrepancy function f(θ) to the
χ2 quantile. The default value is r = 2.

FORCHI= F | CHI defines the scale for the y values written to the OUTEST= data
set. For FORCHI=F, the y values are scaled to the values of the
log likelihood function f = f(θ); for FORCHI=CHI, the y val-
ues are scaled so that ŷ = χ2. The default value is FORCHI=F.

FEASRATIO=r specifies a factor of the Wald confidence limit (or an approx-
imation of it if standard errors are not computed) defining an
upper bound for the search for confidence limits. In general,
the range of x values in the profile graph is between r = 1 and
r = 2 times the length of the corresponding Wald interval. For
many examples, the χ2 quantiles corresponding to small α val-
ues define a y level ŷ− 1

2q1(1−α), which is too far away from
ŷ to be reached by y(x) for x within the range of twice the Wald
confidence limit. The search for an intersection with such a y
level at a practically infinite value of x can be computationally
expensive. A smaller value for r can speed up computation time
by restricting the search for confidence limits to a region closer
to x̂. The default value of r = 1000 practically disables the
FEASRATIO= option.

OUTTABLE specifies that the complete set θ of parameter estimates rather
than only x = θj for each confidence limit is written to the
OUTEST= data set. This output can be helpful for further anal-
yses on how small changes in x = θj affect the changes in the
θi, i 6= j.

For some applications, it may be computationally less expensive to compute the
PL confidence limits for a few parameters than to compute the approximate covari-
ance matrix of many parameters, which is the basis for the Wald confidence limits.
However, the computation of the profile of the discrepancy function and the corre-
sponding CLs in general will be much more time-consuming than that of the Wald
CLs.

Program Statements

This section lists the program statements used to code the objective function and
nonlinear constraints and their derivatives, and it documents the differences between
program statements in the NLP procedure and program statements in the DATA step.
The syntax of program statements used in PROC NLP is identical to that used in the
CALIS, GENMOD, and MODEL procedures (refer to the SAS/ETS User’s Guide).

Most of the program statements which can be used in the SAS DATA step can also be
used in the NLP procedure. See the SAS Language Guide or base SAS documentation
for a description of the SAS program statements.

Program Statements � 339

ABORT;
CALL name [(expression [, expression ...])];
DELETE;
DO [variable = expression

[TO expression] [BY expression]
[, expression [TO expression] [BY expression] ...]

]
[WHILE expression] [UNTIL expression];

END;
GOTO statement–label;
IF expression;
IF expression THEN program–statement;

ELSE program–statement;
variable = expression;
variable + expression;
LINK statement–label;
PUT [variable] [=] [...] ;
RETURN;
SELECT [(expression)];
STOP;
SUBSTR(variable, index, length) = expression;
WHEN (expression) program–statement;

OTHERWISE program–statement;

For the most part, the SAS program statements work as they do in the SAS DATA step
as documented in the SAS Language Guide. However, there are several differences
that should be noted.

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however,

do i = ’A’,’B’,’C’;

is not.

• The PUT statement, used mostly for program debugging in PROC NLP, sup-
ports only some of the features of the DATA step PUT statement, and has some
new features that the DATA step PUT statement does not:

– The PROC NLP PUT statement does not support line pointers, factored
lists, iteration factors, overprinting, –INFILE–, the colon (:) format mod-
ifier, or “$”.

– The PROC NLP PUT statement does support expressions, but the expres-
sion must be enclosed inside of parentheses. For example, the following
statement displays the square root of x: put (sqrt(x));

340 � Chapter 4. The NLP Procedure

– The PROC NLP PUT statement supports the print item –PDV– to print a
formatted listing of all variables in the program. For example, the follow-
ing statement displays a more readable listing of the variables than the
–all– print item: put -pdv-;

• The WHEN and OTHERWISE statements allow more than one target state-
ment. That is, DO/END groups are not necessary for multiple statement
WHENs. For example, the following syntax is valid:

SELECT;
WHEN (exp1) stmt1;

stmt2;
WHEN (exp2) stmt3;

stmt4;
END;

It is recommended to keep some kind of order in the input of NLP, that is, between
the statements that define decision variables and constraints and the program code
used to specify objective functions and derivatives.

Use of Special Variables in Program Code

Except for the quadratic programming techniques (QUADAS and LICOMP) that do
not execute program statements during the iteration process, several special variables
in the program code can be used to communicate with PROC NLP in special situa-
tions:

• –OBS– If a DATA= input data set is used, it is possible to access a variable
–OBS– which contains the number of the observation processed from the
data set. You should not change the content of the –OBS– variable. This
variable enables you to modify the programming statements depending on the
observation number processed in the DATA= input data set. For example, to
set variable A to 1 when observation 10 is processed, and otherwise to 2, it is
possible to specify

IF _OBS_ = 10 THEN A=1; ELSE A=2;

• –ITER– This variable is set by PROC NLP, and it contains the number of
the current iteration of the optimization technique as it is displayed in the
optimization history. You should not change the content of the –ITER–
variable. It is possible to read the value of this variable in order to modify the
programming statements depending on the iteration number processed. For
example, to display the content of the variables A, B, and C when there are
more than 100 iterations processed, it is possible to use

IF _ITER_ > 100 THEN PUT A B C;

Program Statements � 341

• –DPROC– This variable is set by PROC NLP to indicate whether the code is
called only to obtain the values of the m objective functions fi (–DPROC–=0)
or whether specified derivatives (defined by the GRADIENT, JACOBIAN,
CRPJAC, or HESSIAN statement) also have to be computed (–DPROC–=1).
You should not change the content of the –DPROC– variable. Checking the
–DPROC– variable makes it possible to save computer time by not perform-
ing derivative code that is not needed by the current call. In particular, when
a DATA= input data set is used, the code is processed many times to compute
only the function values. If the programming statements in the program contain
the specification of computationally expensive first- and second-order deriva-
tives, you can put the derivative code in an IF statement that is processed only
if –DPROC– is not zero.

• –INDF– The –INDF– variable is set by PROC NLP to inform you of the
source of calls to the function or derivative programming.

–INDF–=0 indicates the first function call in a grid search. This is also the
first call evaluating the programming statements if there is a grid search
defined by grid values in the DECVAR statement.

–INDF–=1 indicates further function calls in a grid search.

–INDF–=2 indicates the call for the feasible starting point. This is also the
first call evaluating the programming statements if there is no grid search
defined.

–INDF–=3 indicates calls from a gradient-checking algorithm.

–INDF–=4 indicates calls from the minimization algorithm. The –ITER–
variable contains the iteration number.

–INDF–=5 If the active set algorithm leaves the feasible region (due to
rounding errors), an algorithm tries to return it into the feasible region;
–INDF–=5 indicates a call that is done when such a step is successful.

–INDF–=6 indicates calls from a factorial test subroutine that tests the neigh-
borhood of a point x for optimality.

–INDF–=7, 8 indicates calls from subroutines needed to compute finite-
difference derivatives using only values of the objective function. No
nonlinear constraints are evaluated.

–INDF–=9 indicates calls from subroutines needed to compute second-order
finite-difference derivatives using analytic (specified) first-order deriva-
tives. No nonlinear constraints are evaluated.

–INDF–=10 indicates calls where only the nonlinear constraints but no objec-
tive function are needed. The analytic derivatives of the nonlinear con-
straints are computed.

–INDF–=11 indicates calls where only the nonlinear constraints but no objec-
tive function are needed. The analytic derivatives of the nonlinear con-
straints are not computed.

–INDF–=-1 indicates the last call at the final solution.

You should not change the content of the –INDF– variable.

342 � Chapter 4. The NLP Procedure

• –LIST– You can set the –LIST– variable to control the output during the iter-
ation process:

–LIST–=0 is equivalent to the NOPRINT option. It suppresses all output.

–LIST–=1 is equivalent to the PSUMMARY but not the PHISTORY option.
The optimization start and termination messages are displayed. However,
the PSUMMARY option suppresses the output of the iteration history.

–LIST–=2 is equivalent to the PSHORT option or to a combination of the
PSUMMARY and PHISTORY options. The optimization start informa-
tion, the iteration history, and termination message are displayed.

–LIST–=3 is equivalent to not PSUMMARY, not PSHORT, and not PALL.
The optimization start information, the iteration history, and the termina-
tion message are displayed.

–LIST–=4 is equivalent to the PALL option. The extended optimization start
information (also containing settings of termination criteria and other
control parameters) is displayed.

–LIST–=5 In addition to the iteration history, the vector x(k) of parameter
estimates is displayed for each iteration k.

–LIST–=6 In addition to the iteration history, the vector x(k) of parameter
estimates and the gradient g(k) (if available) of the objective function are
displayed for each iteration k.

It is possible to set the –LIST– variable in the program code to obtain more or
less output in each iteration of the optimization process. For example,

IF _ITER_ = 11 THEN _LIST_=5;
ELSE IF _ITER_ > 11 THEN _LIST_=1;

ELSE _LIST_=3;

• –TOOBIG– The value of –TOOBIG– is initialized to 0 by PROC NLP, but
you can set it to 1 during the iteration, indicating problems evaluating the pro-
gram statements. The objective function and derivatives must be computable
at the starting point. However, during the iteration it is possible to set the
–TOOBIG– variable to 1, indicating that the programming statements (com-
puting the value of the objective function or the specified derivatives) cannot
be performed for the current value of xk. Some of the optimization techniques
check the value of –TOOBIG– and try to modify the parameter estimates so
that the objective function (or derivatives) can be computed in a following trial.

• –NOBS– The value of the –NOBS– variable is initialized by PROC NLP to
the product of the number of functions mfun specified in the MIN, MAX or
LSQ statement and the number of valid observations nobs in the current BY
group of the DATA= input data set. The value of the –NOBS– variable is
used for computing the scalar factor of the covariance matrix (see the COV=,
VARDEF=, and SIGSQ= options). If you reset the value of the –NOBS– vari-
able, the value that is available at the end of the iteration is used by PROC NLP
to compute the scalar factor of the covariance matrix.

Criteria for Optimality � 343

• –DF– The value of the –DF– variable is initialized by PROC NLP to the num-
ber n of parameters specified in the DECVAR statement. The value of the
–DF– variable is used for computing the scalar factor d of the covariance ma-
trix (see the COV=, VARDEF=, and SIGSQ= options). If you reset the value
of the –DF– variable, the value that is available at the end of the iteration is
used by PROC NLP to compute the scalar factor of the covariance matrix.

• –LASTF– In each iteration (except the first one), the value of the –LASTF–
variable is set by PROC NLP to the final value of the objective function that
was achieved during the last iteration. This value should agree with the value
that is displayed in the iteration history and that is written in the OUTEST=
data set when the OUTITER option is specified.

Details: NLP Procedure

Criteria for Optimality
PROC NLP solves

minx∈Rn f(x)
subject to ci(x) = 0, i = 1, . . . ,me

ci(x) ≥ 0, i = me + 1, . . . ,m

where f is the objective function and the ci’s are the constraint functions.

A point x is feasible if it satisfies all the constraints. The feasible region G is the set
of all the feasible points. A feasible point x∗ is a global solution of the preceding
problem if no point in G has a smaller function value than f(x∗). A feasible point x∗

is a local solution of the problem if there exists some open neighborhood surrounding
x∗ in that no point has a smaller function value than f(x∗). Nonlinear programming
algorithms cannot consistently find global minima. All the algorithms in PROC NLP
find a local minimum for this problem. If you need to check whether the obtained
solution is a global minimum, you may have to run PROC NLP with different starting
points obtained either at random or by selecting a point on a grid that contains G.

Every local minimizer x∗ of this problem satisfies the following local optimality con-
ditions:

• The gradient (vector of first derivatives) g(x∗) = ∇f(x∗) of the objective
function f (projected toward the feasible region if the problem is constrained)
at the point x∗ is zero.

• The Hessian (matrix of second derivatives) G(x∗) = ∇2f(x∗) of the objective
function f (projected toward the feasible region G in the constrained case) at
the point x∗ is positive definite.

Most of the optimization algorithms in PROC NLP use iterative techniques that result
in a sequence of points x0, ..., xn, ..., that converges to a local solution x∗. At the
solution, PROC NLP performs tests to confirm that the (projected) gradient is close
to zero and that the (projected) Hessian matrix is positive definite.

344 � Chapter 4. The NLP Procedure

Karush-Kuhn-Tucker Conditions

An important tool in the analysis and design of algorithms in constrained optimization
is the Lagrangian function, a linear combination of the objective function and the
constraints:

L(x, λ) = f(x)−
m∑

i=1

λici(x)

The coefficients λi are called Lagrange multipliers. This tool makes it possible to
state necessary and sufficient conditions for a local minimum. The various algorithms
in PROC NLP create sequences of points, each of which is closer than the previous
one to satisfying these conditions.

Assuming that the functions f and ci are twice continuously differentiable, the point
x∗ is a local minimum of the nonlinear programming problem, if there exists a vector
λ∗ = (λ∗1, . . . , λ

∗
m) that meets the following conditions.

1. First-order Karush-Kuhn-Tucker conditions:

ci(x∗) = 0, i = 1, . . . ,me

ci(x∗) ≥ 0, λ∗i ≥ 0, λ∗i ci(x∗) = 0, i = me + 1, . . . ,m
∇xL(x∗, λ∗) = 0

2. Second-order conditions: Each nonzero vector y ∈ Rn that satisfies

yT∇xci(x∗) = 0
{

i = 1, . . . ,me

∀i ∈ {me + 1, . . . ,m : λ∗i > 0}

also satisfies

yT∇2
xL(x∗, λ∗)y > 0

Most of the algorithms to solve this problem attempt to find a combination of vectors
x and λ for which the gradient of the Lagrangian function with respect to x is zero.

Derivatives

The first- and second-order conditions of optimality are based on first and second
derivatives of the objective function f and the constraints ci.

The gradient vector contains the first derivatives of the objective function f with
respect to the parameters x1, . . . , xn, as follows:

g(x) = ∇f(x) =
(

∂f

∂xj

)

Criteria for Optimality � 345

The n×n symmetric Hessian matrix contains the second derivatives of the objective
function f with respect to the parameters x1, . . . , xn, as follows:

G(x) = ∇2f(x) =
(

∂2f

∂xj∂xk

)
For least squares problems, the m×n Jacobian matrix contains the first-order deriva-
tives of the m objective functions fi(x) with respect to the parameters x1, . . . , xn, as
follows:

J(x) = (∇f1, . . . ,∇fm) =
(

∂fi

∂xj

)
In the case of least squares problems, the crossproduct Jacobian

JT J =

(
m∑

i=1

∂fi

∂xj

∂fi

∂xk

)

is used as an approximate Hessian matrix. It is a very good approximation of the
Hessian if the residuals at the solution are “small.” (If the residuals are not suffi-
ciently small at the solution, this approach may result in slow convergence.) The
fact that it is possible to obtain Hessian approximations for this problem that do not
require any computation of second derivatives means that least squares algorithms
are more efficient than unconstrained optimization algorithms. Using the vector
f(x) = (f1(x), . . . , fm(x))T of function values, PROC NLP computes the gradi-
ent g(x) by

g(x) = JT (x)f(x)

The mc × n Jacobian matrix contains the first-order derivatives of the mc nonlinear
constraint functions ci(x), i = 1, . . . ,mc, with respect to the parameters x1, . . . , xn,
as follows:

CJ(x) = (∇c1, . . . ,∇cmc) =
(

∂ci

∂xj

)
PROC NLP provides three ways to compute derivatives:

• It computes analytical first- and second-order derivatives of the objective func-
tion f with respect to the n variables xj .

• It computes first- and second-order finite-difference approximations to
the derivatives. For more information, see the section “Finite-Difference
Approximations of Derivatives” on page 357.

• The user supplies formulas for analytical or numerical first- and second-order
derivatives of the objective function in the GRADIENT, JACOBIAN, CRPJAC,
and HESSIAN statements. The JACNLC statement can be used to specify the
derivatives for the nonlinear constraints.

346 � Chapter 4. The NLP Procedure

Optimization Algorithms

There are three groups of optimization techniques available in PROC NLP. A partic-
ular optimizer can be selected with the TECH= option in the PROC NLP statement.

Algorithm TECH=
Linear Complementarity Problem LICOMP
Quadratic Active Set Technique QUADAS
Trust-Region Method TRUREG
Newton-Raphson Method with Line Search NEWRAP
Newton-Raphson Method with Ridging NRRIDG
Quasi-Newton Methods (DBFGS, DDFP, BFGS, DFP) QUANEW
Double Dogleg Method (DBFGS, DDFP) DBLDOG
Conjugate Gradient Methods (PB, FR, PR, CD) CONGRA
Nelder-Mead Simplex Method NMSIMP
Levenberg-Marquardt Method LEVMAR
Hybrid Quasi-Newton Methods (DBFGS, DDFP) HYQUAN

Since no single optimization technique is invariably superior to others, PROC NLP
provides a variety of optimization techniques that work well in various circumstances.
However, it is possible to devise problems for which none of the techniques in PROC
NLP can find the correct solution. Moreover, nonlinear optimization can be com-
putationally expensive in terms of time and memory, so care must be taken when
matching an algorithm to a problem.

All optimization techniques in PROC NLP use O(n2) memory except the conjugate
gradient methods, which use only O(n) memory and are designed to optimize prob-
lems with many variables. Since the techniques are iterative, they require the repeated
computation of

• the function value (optimization criterion)

• the gradient vector (first-order partial derivatives)

• for some techniques, the (approximate) Hessian matrix (second-order partial
derivatives)

• values of linear and nonlinear constraints

• the first-order partial derivatives (Jacobian) of nonlinear constraints

However, since each of the optimizers requires different derivatives and supports dif-
ferent types of constraints, some computational efficiencies can be gained. The fol-
lowing table shows, for each optimization technique, which derivatives are needed
(FOD: first-order derivatives; SOD: second-order derivatives) and what kinds of con-
straints (BC: boundary constraints; LIC: linear constraints; NLC: nonlinear con-
straints) are supported.

Optimization Algorithms � 347

Algorithm FOD SOD BC LIC NLC
LICOMP - - x x -
QUADAS - - x x -
TRUREG x x x x -
NEWRAP x x x x -
NRRIDG x x x x -

QUANEW x - x x x
DBLDOG x - x x -
CONGRA x - x x -
NMSIMP - - x x x
LEVMAR x - x x -
HYQUAN x - x x -

Preparation for Using Optimization Algorithms

It is rare that a problem is submitted to an optimization algorithm “as is.” By making
a few changes in your problem, you can reduce its complexity, which would increase
the chance of convergence and save execution time.

• Whenever possible, use linear functions instead of nonlinear functions. PROC
NLP will reward you with faster and more accurate solutions.

• Most optimization algorithms are based on quadratic approximations to non-
linear functions. You should try to avoid the use of functions that cannot be
properly approximated by quadratic functions. Try to avoid the use of rational
functions.

For example, the constraint

sin(x)
x + 1

> 0

should be replaced by the equivalent constraint

sin(x)(x + 1) > 0

and the constraint

sin(x)
x + 1

= 1

should be replaced by the equivalent constraint

sin(x)− (x + 1) = 0

• Try to avoid the use of exponential functions, if possible.

• If you can reduce the complexity of your function by the addition of a small
number of variables, it may help the algorithm avoid stationary points.

348 � Chapter 4. The NLP Procedure

• Provide the best starting point you can. A good starting point leads to better
quadratic approximations and faster convergence.

Choosing an Optimization Algorithm

The factors that go into choosing a particular optimizer for a particular problem are
complex and may involve trial and error. Several things must be taken into account.
First, the structure of the problem has to be considered: Is it quadratic? least squares?
Does it have linear or nonlinear constraints? Next, it is important to consider the
type of derivatives of the objective function and the constraints that are needed and
whether these are analytically tractable or not. This section provides some guidelines
for making the right choices.

For many optimization problems, computing the gradient takes more computer time
than computing the function value, and computing the Hessian sometimes takes much
more computer time and memory than computing the gradient, especially when there
are many decision variables. Optimization techniques that do not use the Hessian
usually require more iterations than techniques that do use Hessian approximations
(such as finite differences or BFGS update) and so are often slower. Techniques that
do not use Hessians at all tend to be slow and less reliable.

The derivative compiler is not efficient in the computation of second-order deriva-
tives. For large problems, memory and computer time can be saved by programming
your own derivatives using the GRADIENT, JACOBIAN, CRPJAC, HESSIAN, and
JACNLC statements. If you are not able to specify first- and second-order derivatives
of the objective function, you can rely on finite-difference gradients and Hessian up-
date formulas. This combination is frequently used and works very well for small and
medium problems. For large problems, you are advised not to use an optimization
technique that requires the computation of second derivatives.

The following provides some guidance for matching an algorithm to a particular prob-
lem.

• Quadratic Programming

– QUADAS
– LICOMP

• General Nonlinear Optimization

– Nonlinear Constraints

∗ Small Problems: NMSIMP
Not suitable for highly nonlinear problems or for problems with
n > 20.

∗ Medium Problems: QUANEW

– Only Linear Constraints

∗ Small Problems: TRUREG (NEWRAP, NRRIDG)
(n ≤ 40) where the Hessian matrix is not expensive to compute.

Optimization Algorithms � 349

Sometimes NRRIDG can be faster than TRUREG, but TRUREG can
be more stable. NRRIDG needs only one matrix with n(n + 1)/2
double words; TRUREG and NEWRAP need two such matrices.

∗ Medium Problems: QUANEW (DBLDOG)
(n ≤ 200) where the objective function and the gradient are much
faster to evaluate than the Hessian. QUANEW and DBLDOG
in general need more iterations than TRUREG, NRRIDG, and
NEWRAP, but each iteration can be much faster. QUANEW and
DBLDOG need only the gradient to update an approximate Hessian.
QUANEW and DBLDOG need slightly less memory than TRUREG
or NEWRAP (essentially one matrix with n(n+1)/2 double words).

∗ Large Problems: CONGRA
(n > 200) where the objective function and the gradient can be com-
puted much faster than the Hessian and where too much memory
is needed to store the (approximate) Hessian. CONGRA in general
needs more iterations than QUANEW or DBLDOG, but each itera-
tion can be much faster. Since CONGRA needs only a factor of n
double-word memory, many large applications of PROC NLP can be
solved only by CONGRA.

∗ No Derivatives: NMSIMP
(n ≤ 20) where derivatives are not continuous or are very difficult to
compute.

• Least Squares Minimization

– Small Problems: LEVMAR (HYQUAN)
(n ≤ 60) where the crossproduct Jacobian matrix is inexpensive to com-
pute. In general, LEVMAR is more reliable, but there are problems with
high residuals where HYQUAN can be faster than LEVMAR.

– Medium Problems: QUANEW (DBLDOG)
(n ≤ 200) where the objective function and the gradient are much faster
to evaluate than the crossproduct Jacobian. QUANEW and DBLDOG
in general need more iterations than LEVMAR or HYQUAN, but each
iteration can be much faster.

– Large Problems: CONGRA
– No Derivatives: NMSIMP

Quadratic Programming Method

The QUADAS and LICOMP algorithms can be used to minimize or maximize a
quadratic objective function,

f(x) =
1
2
xT Gx + gT x + c, with GT = G

subject to linear or boundary constraints

Ax ≥ b or lj ≤ xj ≤ uj

350 � Chapter 4. The NLP Procedure

where x = (x1, . . . , xn)T , g = (g1, . . . , gn)T , G is an n × n symmetric matrix, A
is an m × n matrix of general linear constraints, and b = (b1, . . . , bm)T . The value
of c modifies only the value of the objective function, not its derivatives, and the
location of the optimizer x∗ does not depend on the value of the constant term c. For
QUADAS or LICOMP, the objective function must be specified using the MINQUAD
or MAXQUAD statement or using an INQUAD= data set. In this case, derivatives do
not need to be specified because the gradient vector

∇f(x) = Gx + g

and the n× n Hessian matrix

∇2f(x) = G

are easily obtained from the data input.

Simple boundary and general linear constraints can be specified using the BOUNDS
or LINCON statement or an INQUAD= or INEST= data set.

General Quadratic Programming (QUADAS)

The QUADAS algorithm is an active set method that iteratively updates the QT de-
composition of the matrix Ak of active linear constraints and the Cholesky factor
of the projected Hessian ZT

k GZk simultaneously. The update of active boundary
and linear constraints is done separately; refer to Gill et al. (1984). Here Q is an
nfree ×nfree orthogonal matrix composed of vectors spanning the null space Z of Ak

in its first nfree − nalc columns and range space Y in its last nalc columns; T is an
nalc ×nalc triangular matrix of special form, tij = 0 for i < n− j, where nfree is the
number of free parameters (n minus the number of active boundary constraints), and
nalc is the number of active linear constraints. The Cholesky factor of the projected
Hessian matrix ZT

k GZk and the QT decomposition are updated simultaneously when
the active set changes.

Linear Complementarity (LICOMP)

The LICOMP technique solves a quadratic problem as a linear complementarity prob-
lem. It can be used only if G is positive (negative) semidefinite for minimization
(maximization) and if the parameters are restricted to be positive.

This technique finds a point that meets the Karush-Kuhn-Tucker conditions by solv-
ing the linear complementary problem

w = Mz + q

with constraints

wT z ≥ 0, w ≥ 0, z ≥ 0,

where

z =
[

x
λ

]
M =

[
G −AT

A 0

]
q =

[
g
−b

]

Optimization Algorithms � 351

Only the LCEPSILON= option can be used to specify a tolerance used in computa-
tions.

General Nonlinear Optimization

Trust-Region Optimization (TRUREG)

The trust region method uses the gradient g(x(k)) and Hessian matrix G(x(k)) and
thus requires that the objective function f(x) have continuous first- and second-order
derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlin-
ear objective function within a hyperelliptic trust region with radius ∆ that constrains
the step length corresponding to the quality of the quadratic approximation. The trust
region method is implemented using Dennis, Gay, and Welsch (1981), Gay (1983).

The trust region method performs well for small to medium problems and does not
require many function, gradient, and Hessian calls. If the computation of the Hessian
matrix is computationally expensive, use the UPDATE= option for update formulas
(that gradually build the second-order information in the Hessian). For larger prob-
lems, the conjugate gradient algorithm may be more appropriate.

Newton-Raphson Optimization With Line-Search (NEWRAP)

The NEWRAP technique uses the gradient g(x(k)) and Hessian matrix G(x(k)) and
thus requires that the objective function have continuous first- and second-order
derivatives inside the feasible region. If second-order derivatives are computed ef-
ficiently and precisely, the NEWRAP method may perform well for medium to large
problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully.
Otherwise, a combination of ridging and line search is done to compute success-
ful steps. If the Hessian is not positive definite, a multiple of the identity matrix is
added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is done along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation (LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)

The NRRIDG technique uses the gradient g(x(k)) and Hessian matrix G(x(k)) and
thus requires that the objective function have continuous first- and second-order
derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully. If at
least one of these two conditions is not satisfied, a multiple of the identity matrix is
added to the Hessian matrix. If this algorithm is used for least squares problems, it
performs a ridged Gauss-Newton minimization.

The NRRIDG method performs well for small to medium problems and does not
need many function, gradient, and Hessian calls. However, if the computation of

352 � Chapter 4. The NLP Procedure

the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or
conjugate gradient algorithms may be more efficient.

Since NRRIDG uses an orthogonal decomposition of the approximate Hessian, each
iteration of NRRIDG can be slower than that of NEWRAP, which works with
Cholesky decomposition. However, usually NRRIDG needs fewer iterations than
NEWRAP.

Quasi-Newton Optimization (QUANEW)

The (dual) quasi-Newton method uses the gradient g(x(k)) and does not need to com-
pute second-order derivatives since they are approximated. It works well for medium
to moderately large optimization problems where the objective function and the gra-
dient are much faster to compute than the Hessian, but in general it requires more
iterations than the techniques TRUREG, NEWRAP, and NRRIDG, which compute
second-order derivatives.

The QUANEW algorithm depends on whether or not there are nonlinear constraints.

Unconstrained or Linearly Constrained Problems

If there are no nonlinear constraints, QUANEW is either

• the original quasi-Newton algorithm that updates an approximation of the in-
verse Hessian, or

• the dual quasi-Newton algorithm that updates the Cholesky factor of an ap-
proximate Hessian (default),

depending on the value of the UPDATE= option. For problems with general linear
inequality constraints, the dual quasi-Newton methods can be more efficient than the
original ones.

Four update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the Cholesky factor of the Hessian matrix. This is the
default.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, &
Shanno) update of the inverse Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update
of the inverse Hessian matrix.

In each iteration, a line search is done along the search direction to find an approxi-
mate optimum. The default line-search method uses quadratic interpolation and cubic
extrapolation to obtain a step length α satisfying the Goldstein conditions. One of the
Goldstein conditions can be violated if the feasible region defines an upper limit of
the step length. Violating the left-side Goldstein condition can affect the positive

Optimization Algorithms � 353

definiteness of the quasi-Newton update. In those cases, either the update is skipped
or the iterations are restarted with an identity matrix resulting in the steepest descent
or ascent search direction. Line-search algorithms other than the default one can be
specified with the LINESEARCH= option.

Nonlinearly Constrained Problems

The algorithm used for nonlinearly constrained quasi-Newton optimization is an
efficient modification of Powell’s (1978a, 1982b) Variable Metric Constrained
WatchDog (VMCWD) algorithm. A similar but older algorithm (VF02AD) is part
of the Harwell library. Both VMCWD and VF02AD use Fletcher’s VE02AD algo-
rithm (part of the Harwell library) for positive-definite quadratic programming. The
PROC NLP QUANEW implementation uses a quadratic programming subroutine
that updates and downdates the approximation of the Cholesky factor when the active
set changes. The nonlinear QUANEW algorithm is not a feasible-point algorithm,
and the value of the objective function need not decrease (minimization) or increase
(maximization) monotonically. Instead, the algorithm tries to reduce a linear combi-
nation of the objective function and constraint violations, called the merit function.

The following are similarities and differences between this algorithm and the
VMCWD algorithm:

• A modification of this algorithm can be performed by specifying VERSION=1,
which replaces the update of the Lagrange vector µ with the original update
of Powell (1978a, b) that is used in VF02AD. This can be helpful for some
applications with linearly dependent active constraints.

• If the VERSION option is not specified or if VERSION=2 is specified, the
evaluation of the Lagrange vector µ is performed in the same way as Powell
(1982b) describes.

• Instead of updating an approximate Hessian matrix, this algorithm uses the
dual BFGS (or DFP) update that updates the Cholesky factor of an approximate
Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

• The Cholesky factor is loaded into the quadratic programming subroutine,
automatically ensuring positive definiteness of the problem. During the
quadratic programming step, the Cholesky factor of the projected Hessian ma-
trix ZT

k GZk and the QT decomposition are updated simultaneously when the
active set changes. Refer to Gill et al. (1984) for more information.

• The line-search strategy is very similar to that of Powell (1982b). However,
this algorithm does not call for derivatives during the line search, so the al-
gorithm generally needs fewer derivative calls than function calls. VMCWD
always requires the same number of derivative and function calls. Sometimes
Powell’s line-search method uses steps that are too long. In these cases, use the
INSTEP= option to restrict the step length α.

• The watchdog strategy is similar to that of Powell (1982b); however, it doesn’t
return automatically after a fixed number of iterations to a former better point.

354 � Chapter 4. The NLP Procedure

A return here is further delayed if the observed function reduction is close to
the expected function reduction of the quadratic model.

• The Powell termination criterion still is used (as FCONV2) but the QUANEW
implementation uses two additional termination criteria (GCONV and
ABSGCONV).

The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order
derivatives (constraints normals) of the constraints CJ(x).

You can specify two update formulas with the UPDATE= option:

DBFGS performs the dual BFGS update of the Cholesky factor of the
Hessian matrix. This is the default.

DDFP performs the dual DFP update of the Cholesky factor of the Hessian
matrix.

This algorithm uses its own line-search technique. No options or parameters (ex-
cept the INSTEP= option) controlling the line search in the other algorithms apply
here. In several applications, large steps in the first iterations were troublesome. You
can use the INSTEP= option to impose an upper bound for the step length α dur-
ing the first five iterations. You may also use the INHESSIAN= option to specify a
different starting approximation for the Hessian. Choosing simply the INHESSIAN
option will use the Cholesky factor of a (possibly ridged) finite-difference approxi-
mation of the Hessian to initialize the quasi-Newton update process. The values of
the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which control the
processing of linear and boundary constraints, are valid only for the quadratic pro-
gramming subroutine used in each iteration of the nonlinear constraints QUANEW
algorithm.

Double Dogleg Optimization (DBLDOG)

The double dogleg optimization method combines the ideas of the quasi-Newton and
trust region methods. The double dogleg algorithm computes in each iteration the
step s(k) as a linear combination of the steepest descent or ascent search direction
s
(k)
1 and a quasi-Newton search direction s

(k)
2 :

s(k) = α1s
(k)
1 + α2s

(k)
2

The step is requested to remain within a prespecified trust region radius; refer to
Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton
update but does not perform a line search. Two update formulas can be specified with
the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the Cholesky factor of the Hessian matrix. This is the
default.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

Optimization Algorithms � 355

The double dogleg optimization technique works well for medium to moderately
large optimization problems where the objective function and the gradient are much
faster to compute than the Hessian. The implementation is based on Dennis and Mei
(1979) and Gay (1983) but is extended for dealing with boundary and linear con-
straints. DBLDOG generally needs more iterations than the techniques TRUREG,
NEWRAP, or NRRIDG that need second-order derivatives, but each of the DBLDOG
iterations is computationally cheap. Furthermore, DBLDOG needs only gradient
calls for the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)

Second-order derivatives are not used by CONGRA. The CONGRA algorithm can
be expensive in function and gradient calls but needs only O(n) memory for un-
constrained optimization. In general, many iterations are needed to obtain a precise
solution, but each of the CONGRA iterations is computationally cheap. Four differ-
ent update formulas for generating the conjugate directions can be specified using the
UPDATE= option:

PB performs the automatic restart update method of Powell (1977) and
Beale (1972). This is the default.

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

The default value is UPDATE=PB, since it behaved best in most test examples. You
are advised to avoid the option UPDATE=CD, a it behaved worst in most test exam-
ples.

The CONGRA subroutine should be used for optimization problems with large n. For
the unconstrained or boundary constrained case, CONGRA needs only O(n) bytes
of working memory, whereas all other optimization methods require order O(n2)
bytes of working memory. During n successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle of
n conjugate search directions. In each iteration, a line search is done along the search
direction to find an approximate optimum of the objective function. The default line-
search method uses quadratic interpolation and cubic extrapolation to obtain a step
length α satisfying the Goldstein conditions. One of the Goldstein conditions can
be violated if the feasible region defines an upper limit for the step length. Other
line-search algorithms can be specified with the LINESEARCH= option.

Nelder-Mead Simplex Optimization (NMSIMP)

The Nelder-Mead simplex method does not use any derivatives and does not assume
that the objective function has continuous derivatives. The objective function itself
needs to be continuous. This technique requires a large number of function evalua-
tions. It is unlikely to give accurate results for n � 40.

356 � Chapter 4. The NLP Procedure

Depending on the kind of constraints, one of the following Nelder-Mead simplex
algorithms is used:

• unconstrained or only boundary constrained problems

The original Nelder-Mead simplex algorithm is implemented and extended to
boundary constraints. This algorithm does not compute the objective for in-
feasible points. This algorithm is automatically invoked if the LINCON or
NLINCON statement is not specified.

• general linearly constrained or nonlinearly constrained problems

A slightly modified version of Powell’s (1992) COBYLA (Constrained
Optimization BY Linear Approximations) implementation is used. This
algorithm is automatically invoked if either the LINCON or the NLINCON
statement is specified.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear
constraints but can be faster for the unconstrained or boundary constrained case. The
original Nelder-Mead algorithm changes the shape of the simplex adapting the non-
linearities of the objective function which contributes to an increased speed of con-
vergence. The two NMSIMP subroutines use special sets of termination criteria. For
more details, refer to the section “Termination Criteria” on page 361.

Powell’s COBYLA Algorithm (COBYLA)

Powell’s COBYLA algorithm is a sequential trust region algorithm (originally with
a monotonically decreasing radius ρ of a spheric trust region) that tries to maintain
a regular-shaped simplex over the iterations. A small modification was made to the
original algorithm that permits an increase of the trust region radius ρ in special situa-
tions. A sequence of iterations is performed with a constant trust region radius ρ until
the computed objective function reduction is much less than the predicted reduction.
Then, the trust region radius ρ is reduced. The trust region radius is increased only if
the computed function reduction is relatively close to the predicted reduction and the
simplex is well-shaped. The start radius ρbeg and the final radius ρend can be specified
using ρbeg=INSTEP and ρend=ABSXTOL. The convergence to small values of ρend

(high precision) may take many calls of the function and constraint modules and may
result in numerical problems. There are two main reasons for the slow convergence
of the COBYLA algorithm:

• Only linear approximations of the objective and constraint functions are used
locally.

• Maintaining the regular-shaped simplex and not adapting its shape to nonlin-
earities yields very small simplices for highly nonlinear functions (for example,
fourth-order polynomials).

Nonlinear Least Squares Optimization

Levenberg-Marquardt Least Squares Method (LEVMAR)

The Levenberg-Marquardt method is a modification of the trust region method for
nonlinear least squares problems and is implemented as in Moré (1978).

Finite-Difference Approximations of Derivatives � 357

This is the recommended algorithm for small to medium least squares problems.
Large least squares problems can be transformed into minimization problems, which
can be processed with conjugate gradient or (dual) quasi-Newton techniques. In each
iteration, LEVMAR solves a quadratically constrained quadratic minimization prob-
lem that restricts the step to stay at the surface of or inside an n- dimensional ellip-
tical (or spherical) trust region. In each iteration, LEVMAR uses the crossproduct
Jacobian matrix JT J as an approximate Hessian matrix.

Hybrid Quasi-Newton Least Squares Methods (HYQUAN)

In each iteration of one of the Fletcher and Xu (1987) (refer also to Al-Baali and
Fletcher (1985,1986)) hybrid quasi-Newton methods, a criterion is used to decide
whether a Gauss-Newton or a dual quasi-Newton search direction is appropriate. The
VERSION= option can be used to choose one of three criteria (HY1, HY2, HY3)
proposed by Fletcher and Xu (1987). The default is VERSION=2; that is, HY2. In
each iteration, HYQUAN computes the crossproduct Jacobian (used for the Gauss-
Newton step), updates the Cholesky factor of an approximate Hessian (used for the
quasi-Newton step), and does a line search to compute an approximate minimum
along the search direction. The default line-search technique used by HYQUAN is
especially designed for least squares problems (refer to Lindström and Wedin (1984)
and Al-Baali and Fletcher (1986)). Using the LINESEARCH= option you can choose
a different line-search algorithm than the default one.

Two update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, and
Shanno) update of the Cholesky factor of the Hessian matrix. This
is the default.

DDFP performs the dual DFP (Davidon, Fletcher, and Powell) update of
the Cholesky factor of the Hessian matrix.

The HYQUAN subroutine needs about the same amount of working memory as
the LEVMAR algorithm. In most applications, LEVMAR seems to be superior to
HYQUAN, and using HYQUAN is recommended only when problems are experi-
enced with the performance of LEVMAR.

Finite-Difference Approximations of Derivatives

The FD= and FDHESSIAN= options specify the use of finite-difference approxi-
mations of the derivatives. The FD= option specifies that all derivatives are ap-
proximated using function evaluations, and the FDHESSIAN= option specifies that
second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite-difference approximations can be very time-
consuming, especially for second-order derivatives based only on values of the
objective function (FD= option). If analytical derivatives are difficult to obtain (for
example, if a function is computed by an iterative process), you might consider one of
the optimization techniques that uses first-order derivatives only (TECH=QUANEW,
TECH=DBLDOG, or TECH=CONGRA).

358 � Chapter 4. The NLP Procedure

Forward-Difference Approximations

The forward-difference derivative approximations consume less computer time but
are usually not as precise as those using central-difference formulas.

• First-order derivatives: n additional function calls are needed:

gi =
∂f

∂xi
=

f(x + hiei)− f(x)
hi

• Second-order derivatives based on function calls only (Dennis and Schnabel
1983, p. 80, 104): for dense Hessian, n(n + 3)/2 additional function calls are
needed:

∂2f

∂xi∂xj
=

f(x + hiei + hjej)− f(x + hiei)− f(x + hjej) + f(x)
hj

• Second-order derivatives based on gradient calls (Dennis and Schnabel 1983,
p. 103): n additional gradient calls are needed:

∂2f

∂xi∂xj
=

gi(x + hjej)− gi(x)
2hj

+
gj(x + hiei)− gj(x)

2hi

Central-Difference Approximations

• First-order derivatives: 2n additional function calls are needed:

gi =
∂f

∂xi
=

f(x + hiei)− f(x− hiei)
2hi

• Second-order derivatives based on function calls only (Abramowitz and Stegun
1972, p. 884): for dense Hessian, 2n(n + 1) additional function calls are
needed:

∂2f

∂x2
i

=
−f(x + 2hiei) + 16f(x + hiei)− 30f(x) + 16f(x− hiei)− f(x− 2hiei)

12h2
i

∂2f

∂xi∂xj
=

f(x + hiei + hjej)− f(x + hiei − hjej)− f(x− hiei + hjej) + f(x− hiei − hjej)
4hihj

• Second-order derivatives based on gradient: 2n additional gradient calls are
needed:

∂2f

∂xi∂xj
=

gi(x + hjej)− gi(x− hjej)
4hj

+
gj(x + hiei)− gj(x− hiei)

4hi

Finite-Difference Approximations of Derivatives � 359

The FDIGITS= and CDIGITS= options can be used for specifying the number of ac-
curate digits in the evaluation of objective function and nonlinear constraints. These
specifications are helpful in determining an appropriate interval length h to be used
in the finite-difference formulas.

The FDINT= option specifies whether the finite-difference intervals h should be com-
puted using an algorithm of Gill, Murray, Saunders, and Wright (1983) or based only
on the information of the FDIGITS= and CDIGITS= options. For FDINT=OBJ, the
interval h is based on the behavior of the objective function; for FDINT=CON, the
interval h is based on the behavior of the nonlinear constraints functions; and for
FDINT=ALL, the interval h is based on the behaviors of both the objective func-
tion and the nonlinear constraints functions. Note that the algorithm of Gill, Murray,
Saunders, and Wright (1983) to compute the finite-difference intervals hj can be very
expensive in the number of function calls. If the FDINT= option is specified, it is cur-
rently performed twice, the first time before the optimization process starts and the
second time after the optimization terminates.

If FDINT= is not specified, the step lengths hj , j = 1, . . . , n, are defined as follows:

• for the forward-difference approximation of first-order derivatives us-
ing function calls and second-order derivatives using gradient calls:
hj = 2

√
ηj(1 + |xj |),

• for the forward-difference approximation of second-order derivatives that use
only function calls and all central-difference formulas: hj = 3

√
ηj(1 + |xj |),

where η is defined using the FDIGITS= option:

• If the number of accurate digits is specified with FDIGITS=r, η is set to 10−r.

• If FDIGITS= is not specified, η is set to the machine precision ε.

For FDINT=OBJ and FDINT=ALL, the FDIGITS= specification is used in comput-
ing the forward and central finite-difference intervals.

If the problem has nonlinear constraints and the FD= option is specified, the first-
order formulas are used to compute finite-difference approximations of the Jacobian
matrix JC(x). You can use the CDIGITS= option to specify the number of accurate
digits in the constraint evaluations to define the step lengths hj , j = 1, . . . , n. For
FDINT=CON and FDINT=ALL, the CDIGITS= specification is used in computing
the forward and central finite-difference intervals.

Note: If you are unable to specify analytic derivatives and the finite-difference ap-
proximations provided by PROC NLP are not good enough to solve your problem,
you may program better finite-difference approximations using the GRADIENT,
JACOBIAN, CRPJAC, or HESSIAN statement and the program statements.

360 � Chapter 4. The NLP Procedure

Hessian and CRP Jacobian Scaling

The rows and columns of the Hessian and crossproduct Jacobian matrix can be
scaled when using the trust region, Newton-Raphson, double dogleg, and Levenberg-
Marquardt optimization techniques. Each element Gi,j , i, j = 1, . . . , n, is divided
by the scaling factor di × dj , where the scaling vector d = (d1, . . . , dn) is iteratively
updated in a way specified by the HESCAL=i option, as follows:

i = 0 No scaling is done (equivalent to di = 1).

i 6= 0 First iteration and each restart iteration:

d
(0)
i =

√
max(|G(0)

i,i |, ε)

i = 1 refer to Moré (1978):

d
(k+1)
i = max

(
d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

i = 2 refer to Dennis, Gay, and Welsch (1981):

d
(k+1)
i = max

(
0.6d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

i = 3 di is reset in each iteration:

d
(k+1)
i =

√
max(|G(k)

i,i |, ε)

where ε is the relative machine precision or, equivalently, the largest double precision
value that when added to 1 results in 1.

Testing the Gradient Specification

There are three main ways to check the correctness of derivative specifications:

• Specify the FD= or FDHESSIAN= option in the PROC NLP statement to com-
pute finite-difference approximations of first- and second-order derivatives.
In many applications, the finite-difference approximations are computed with
high precision and do not differ too much from the derivatives that are com-
puted by specified formulas.

• Specify the GRADCHECK[=DETAIL] option in the PROC NLP statement
to compute and display a test vector and a test matrix of the gradient val-
ues at the starting point x(0) by the method of Wolfe (1982). If you do
not specify the GRADCHECK option, a fast derivative test identical to the
GRADCHECK=FAST specification is done by default.

Termination Criteria � 361

• If the default analytical derivative compiler is used or if derivatives are speci-
fied using the GRADIENT or JACOBIAN statement, the gradient or Jacobian
computed at the initial point x(0) is tested by default using finite-difference
approximations. In some examples, the relative test can show significant dif-
ferences between the two forms of derivatives, resulting in a warning message
indicating that the specified derivatives could be wrong, even if they are cor-
rect. This happens especially in cases where the magnitude of the gradient at
the starting point x(0) is small.

The algorithm of Wolfe (1982) is used to check whether the gradient g(x) specified
by a GRADIENT statement (or indirectly by a JACOBIAN statement) is appropriate
for the objective function f(x) specified by the program statements.

Using function and gradient evaluations in the neighborhood of the starting point
x(0), second derivatives are approximated by finite-difference formulas. Forward
differences of gradient values are used to approximate the Hessian element Gjk,

Gjk ≈ Hjk =
gj(x + δek)− gj(x)

δ

where δ is a small step length and ek = (0, . . . , 0, 1, 0, . . . , 0)T is the unit vector
along the kth coordinate axis. The test vector s, with

sj = Hjj −
2
δ

{
f(x + δej)− f(x)

δ
− gj(x)

}
contains the differences between two sets of finite-difference approximations for the
diagonal elements of the Hessian matrix

Gjj = ∂2f(x(0))/∂x2
j , j = 1, . . . , n

The test matrix ∆H contains the absolute differences of symmetric elements in the
approximate Hessian |Hjk −Hkj |, j, k = 1, . . . , n, generated by forward differences
of the gradient elements.

If the specification of the first derivatives is correct, the elements of the test vector
and test matrix should be relatively small. The location of large elements in the test
matrix points to erroneous coordinates in the gradient specification. For very large
optimization problems, this algorithm can be too expensive in terms of computer time
and memory.

Termination Criteria

All optimization techniques stop iterating at x(k) if at least one of a set of termination
criteria is satisfied. PROC NLP also terminates if the point x(k) is fully constrained
by n linearly independent active linear or boundary constraints, and all Lagrange
multiplier estimates of active inequality constraints are greater than a small negative
tolerance.

362 � Chapter 4. The NLP Procedure

Since the Nelder-Mead simplex algorithm does not use derivatives, no termina-
tion criterion is available based on the gradient of the objective function. Powell’s
COBYLA algorithm uses only one more termination criterion. COBYLA is a trust
region algorithm that sequentially reduces the radius ρ of a spherical trust region
from a start radius ρbeg = INSTEP to the final radius ρend = ABSXTOL. The default
value is ρend = 1e−4. The convergence to small values of ρend (high precision) may
take many calls of the function and constraint modules and may result in numerical
problems.

In some applications, the small default value of the ABSGCONV= criterion is too
difficult to satisfy for some of the optimization techniques. This occurs most often
when finite-difference approximations of derivatives are used.

The default setting for the GCONV= option sometimes leads to early termination far
from the location of the optimum. This is especially true for the special form of this
criterion used in the CONGRA optimization.

The QUANEW algorithm for nonlinearly constrained optimization does not mono-
tonically reduce the value of either the objective function or some kind of merit func-
tion which combines objective and constraint functions. Furthermore, the algorithm
uses the watchdog technique with backtracking (Chamberlain et al. 1982). Therefore,
no termination criteria were implemented that are based on the values (x or f) of suc-
cessive iterations. In addition to the criteria used by all optimization techniques,
three more termination criteria are currently available. They are based on satisfying
the Karush-Kuhn-Tucker conditions, which require that the gradient of the Lagrange
function is zero at the optimal point (x∗, λ∗):

∇xL(x∗, λ∗) = 0

For more information, refer to the section “Criteria for Optimality” on page 343.

Active Set Methods

The parameter vector x ∈ Rn may be subject to a set of m linear equality and
inequality constraints:

n∑
j=1

aijxj = bi, i = 1, . . . ,me

n∑
j=1

aijxj ≥ bi, i = me + 1, . . . ,m

The coefficients aij and right-hand sides bi of the equality and inequality constraints
are collected in the m× n matrix A and the m−vector b.

The m linear constraints define a feasible region G in Rn that must contain the point
x∗ that minimizes the problem. If the feasible region G is empty, no solution to the
optimization problem exists.

All optimization techniques in PROC NLP (except those processing nonlinear con-
straints) are active set methods. The iteration starts with a feasible point x(0), which

Active Set Methods � 363

either is provided by the user or can be computed by the Schittkowski and Stoer
(1979) algorithm implemented in PROC NLP. The algorithm then moves from one
feasible point x(k−1) to a better feasible point x(k) along a feasible search direction
s(k):

x(k) = x(k−1) + α(k)s(k) , α(k) > 0

Theoretically, the path of points x(k) never leaves the feasible region G of the opti-
mization problem, but it can hit its boundaries. The active set A(k) of point x(k) is
defined as the index set of all linear equality constraints and those inequality con-
straints that are satisfied at x(k). If no constraint is active for x(k), the point is located
in the interior of G, and the active set A(k) is empty. If the point x(k) in iteration k
hits the boundary of inequality constraint i, this constraint i becomes active and is
added to A(k). Each equality or active inequality constraint reduces the dimension
(degrees of freedom) of the optimization problem.

In practice, the active constraints can be satisfied only with finite precision. The
LCEPSILON=r option specifies the range for active and violated linear constraints.
If the point x(k) satisfies the condition∣∣∣∣∣∣

n∑
j=1

aijx
(k)
j − bi

∣∣∣∣∣∣ ≤ t

where t = r × (|bi| + 1), the constraint i is recognized as an active constraint.
Otherwise, the constraint i is either an inactive inequality or a violated inequality
or equality constraint. Due to rounding errors in computing the projected search
direction, error can be accumulated so that an iterate x(k) steps out of the feasible
region. In those cases, PROC NLP may try to pull the iterate x(k) into the feasible
region. However, in some cases the algorithm needs to increase the feasible region
by increasing the LCEPSILON=r value. If this happens it is indicated by a message
displayed in the log output.

If you cannot expect an improvement in the value of the objective function by moving
from an active constraint back into the interior of the feasible region, you use this
inequality constraint as an equality constraint in the next iteration. That means the
active set A(k+1) still contains the constraint i. Otherwise you release the active
inequality constraint and increase the dimension of the optimization problem in the
next iteration.

A serious numerical problem can arise when some of the active constraints become
(nearly) linearly dependent. Linearly dependent equality constraints are removed
before entering the optimization. You can use the LCSINGULAR= option to specify
a criterion r used in the update of the QR decomposition that decides whether an
active constraint is linearly dependent relative to a set of other active constraints.

If the final parameter set x∗ is subjected to nact linear equality or active inequality
constraints, the QR decomposition of the n×nact matrix ÂT of the linear constraints
is computed by ÂT = QR, where Q is an n × n orthogonal matrix and R is an
n × nact upper triangular matrix. The n columns of matrix Q can be separated into
two matrices, Q = [Y, Z], where Y contains the first nact orthogonal columns of

364 � Chapter 4. The NLP Procedure

Q and Z contains the last n − nact orthogonal columns of Q. The n × (n − nact)
column-orthogonal matrix Z is also called the nullspace matrix of the active linear
constraints ÂT . The n − nact columns of the n × (n − nact) matrix Z form a basis
orthogonal to the rows of the nact × n matrix Â.

At the end of the iteration process, the PROC NLP can display the projected gradient

gZ = ZT g

In the case of boundary constrained optimization, the elements of the projected gradi-
ent correspond to the gradient elements of the free parameters. A necessary condition
for x∗ to be a local minimum of the optimization problem is

gZ(x∗) = ZT g(x∗) = 0

The symmetric nact × nact matrix

GZ = ZT GZ

is called a projected Hessian matrix. A second-order necessary condition for x∗ to be
a local minimizer requires that the projected Hessian matrix is positive semidefinite.
If available, the projected gradient and projected Hessian matrix can be displayed and
written in an OUTEST= data set.

Those elements of the nact vector of first-order estimates of Lagrange multipliers

λ = (ÂÂT)−1ÂZZT g

which correspond to active inequality constraints indicate whether an improvement
of the objective function can be obtained by releasing this active constraint. For min-
imization (maximization), a significant negative (positive) Lagrange multiplier indi-
cates that a possible reduction (increase) of the objective function can be obtained
by releasing this active linear constraint. The LCDEACT=r option can be used to
specify a threshold r for the Lagrange multiplier that decides whether an active in-
equality constraint remains active or can be deactivated. The Lagrange multipliers are
displayed (and written in an OUTEST= data set) only if linear constraints are active
at the solution x∗. (In the case of boundary-constrained optimization, the Lagrange
multipliers for active lower (upper) constraints are the negative (positive) gradient
elements corresponding to the active parameters.)

Line-Search Methods � 365

Feasible Starting Point

Two algorithms are used to obtain a feasible starting point.

• When only boundary constraints are specified:

– If the parameter xj , 1 ≤ j ≤ n, violates a two-sided boundary constraint
(or an equality constraint) lj ≤ xj ≤ uj , the parameter is given a new
value inside the feasible interval, as follows:

xj =


lj , if uj ≤ lj

lj + 1
2(uj − lj), if uj − lj < 4

lj + 1
10(uj − lj), if uj − lj ≥ 4

– If the parameter xj , 1 ≤ j ≤ n, violates a one-sided boundary constraint
lj ≤ xj or xj ≤ uj , the parameter is given a new value near the violated
boundary, as follows:

xj =

{
lj + max(1, 1

10 lj), if xj < lj

uj −max(1, 1
10uj), if xj > uj

• When general linear constraints are specified, the algorithm of Schittkowski
and Stoer (1979) computes a feasible point, which may be quite far from a
user-specified infeasible point.

Line-Search Methods

In each iteration k, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gra-
dient, and Newton-Raphson minimization techniques use iterative line-search algo-
rithms that try to optimize a linear, quadratic, or cubic approximation of f along a
feasible descent search direction s(k)

x(k+1) = x(k) + α(k)s(k), α(k) > 0

by computing an approximately optimal scalar α(k).

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear
function f = f(α) of one parameter (α) within each iteration k of the optimization
technique, which itself tries to optimize a linear or quadratic approximation of the
nonlinear objective function f = f(x) of n parameters x. Since the outside iteration
process is based only on the approximation of the objective function, the inside it-
eration of the line-search algorithm does not have to be perfect. Usually, the choice
of α significantly reduces (in a minimization) the objective function. Criteria often
used for termination of line-search algorithms are the Goldstein conditions (refer to
Fletcher (1987)).

Various line-search algorithms can be selected using the LINESEARCH= option. The
line-search method LINESEARCH=2 seems to be superior when function evaluation
consumes significantly less computation time than gradient evaluation. Therefore,

366 � Chapter 4. The NLP Procedure

LINESEARCH=2 is the default value for Newton-Raphson, (dual) quasi-Newton,
and conjugate gradient optimizations.

A special default line-search algorithm for TECH=HYQUAN is useful only for least
squares problems and cannot be chosen by the LINESEARCH= option. This method
uses three columns of the m × n Jacobian matrix, which for large m can require
more memory than using the algorithms designated by LINESEARCH=1 through
LINESEARCH=8.

The line-search methods LINESEARCH=2 and LINESEARCH=3 can be modified
to exact line search by using the LSPRECISION= option (specifying the σ parameter
in Fletcher (1987)). The line-search methods LINESEARCH=1, LINESEARCH=2,
and LINESEARCH=3 satisfy the left-hand-side and right-hand-side Goldstein condi-
tions (refer to Fletcher (1987)). When derivatives are available, the line-search meth-
ods LINESEARCH=6, LINESEARCH=7, and LINESEARCH=8 try to satisfy the
right-hand-side Goldstein condition; if derivatives are not available, these line-search
algorithms use only function calls.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques which can
easily lead them to (feasible) points where the objective function f is no longer de-
fined. (e.g., resulting in indefinite matrices for ML estimation) or difficult to compute
(e.g., resulting in floating point overflows). Therefore, PROC NLP provides options
restricting the step length α or trust region radius ∆, especially during the first main
iterations.

The inner product gT s of the gradient g and the search direction s is the slope
of f(α) = f(x + αs) along the search direction s. The default starting value
α(0) = α(k,0) in each line-search algorithm (minα>0 f(x + αs)) during the main
iteration k is computed in three steps:

1. The first step uses either the difference df = |f (k) − f (k−1)| of the function
values during the last two consecutive iterations or the final step length value
α– of the last iteration k − 1 to compute a first value of α

(0)
1 .

• Not using the DAMPSTEP=r option:

α
(0)
1 =


step, if 0.1 ≤ step ≤ 10

10, if step > 10

0.1, if step < 0.1

with

step =

{
df/|gT s|, if |gT s| ≥ ε max(100df , 1)

1, otherwise

This value of α
(0)
1 can be too large and lead to a difficult or impossible

function evaluation, especially for highly nonlinear functions such as the
EXP function.

Computational Problems � 367

• Using the DAMPSTEP=r option:

α
(0)
1 = min(1, rα–)

The initial value for the new step length can be no larger than r times the
final step length α– of the previous iteration. The default value is r = 2.

2. During the first five iterations, the second step enables you to reduce α
(0)
1 to a

smaller starting value α
(0)
2 using the INSTEP=r option:

α
(0)
2 = min(α(0)

1 , r)

After more than five iterations, α
(0)
2 is set to α

(0)
1 .

3. The third step can further reduce the step length by

α
(0)
3 = min(α(0)

2 ,min(10, u))

where u is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius ∆ of the trust region
used in the first iteration of the trust region, double dogleg, and Levenberg-Marquardt
algorithms. The default initial trust region radius ∆(0) is the length of the scaled gra-
dient (Moré 1978). This step corresponds to the default radius factor of r = 1. In
most practical applications of the TRUREG, DBLDOG, and LEVMAR algorithms,
this choice is successful. However, for bad initial values and highly nonlinear ob-
jective functions (such as the EXP function), the default start radius can result in
arithmetic overflows. If this happens, you may try decreasing values of INSTEP=r,
0 < r < 1, until the iteration starts successfully. A small factor r also affects the
trust region radius ∆(k+1) of the next steps because the radius is changed in each
iteration by a factor 0 < c ≤ 4, depending on the ratio ρ expressing the goodness
of quadratic function approximation. Reducing the radius ∆ corresponds to increas-
ing the ridge parameter λ, producing smaller steps directed more closely toward the
(negative) gradient direction.

Computational Problems
First Iteration Overflows

If you use bad initial values for the parameters, the computation of the value of the
objective function (and its derivatives) can lead to arithmetic overflows in the first
iteration. The line-search algorithms that work with cubic extrapolation are espe-
cially sensitive to arithmetic overflows. If an overflow occurs with an optimiza-
tion technique that uses line search, you can use the INSTEP= option to reduce
the length of the first trial step during the line search of the first five iterations or
use the DAMPSTEP or MAXSTEP= option to restrict the step length of the initial
α in subsequent iterations. If an arithmetic overflow occurs in the first iteration of
the trust region, double dogleg, or Levenberg-Marquardt algorithm, you can use the
INSTEP= option to reduce the default trust region radius of the first iteration. You
can also change the minimization technique or the line-search method. If none of
these methods helps, consider the following actions:

368 � Chapter 4. The NLP Procedure

• scale the parameters

• provide better initial values

• use boundary constraints to avoid the region where overflows may happen

• change the algorithm (specified in program statements) which computes the
objective function

Problems in Evaluating the Objective Function

The starting point x(0) must be a point that can be evaluated by all the functions
involved in your problem. However, during optimization the optimizer may iterate to
a point x(k) where the objective function or nonlinear constraint functions and their
derivatives cannot be evaluated. If you can identify the problematic region, you can
prevent the algorithm from reaching it by adding another constraint to the problem.
Another possibility is a modification of the objective function that will produce a
large, undesired function value. As a result, the optimization algorithm reduces the
step length and stays closer to the point that has been evaluated successfully in the
previous iteration. For more information, refer to the section “Missing Values in
Program Statements” on page 385.

Problems with Quasi-Newton Methods for Nonlinear Constraints

The sequential quadratic programming algorithm in QUANEW, which is used for
solving nonlinearly constrained problems, can have problems updating the Lagrange
multiplier vector µ. This usually results in very high values of the Lagrangian func-
tion and in watchdog restarts indicated in the iteration history. If this happens, there
are three actions you can try:

• By default, the Lagrange vector µ is evaluated in the same way as Powell
(1982b) describes. This corresponds to VERSION=2. By specifying
VERSION=1, a modification of this algorithm replaces the update of the
Lagrange vector µ with the original update of Powell (1978a, b), which is used
in VF02AD.

• You can use the INSTEP= option to impose an upper bound for the step length
α during the first five iterations.

• You can use the INHESSIAN= option to specify a different starting approxi-
mation for the Hessian. Choosing only the INHESSIAN option will use the
Cholesky factor of a (possibly ridged) finite-difference approximation of the
Hessian to initialize the quasi-Newton update process.

Other Convergence Difficulties

There are a number of things to try if the optimizer fails to converge.

• Check the derivative specification:
If derivatives are specified by using the GRADIENT, HESSIAN, JACOBIAN,
CRPJAC, or JACNLC statement, you can compare the specified derivatives
with those computed by finite-difference approximations (specifying the FD

Computational Problems � 369

and FDHESSIAN option). Use the GRADCHECK option to check if the gradi-
ent g is correct. For more information, refer to the section “Testing the Gradient
Specification” on page 360.

• Forward-difference derivatives specified with the FD= or FDHESSIAN= op-
tion may not be precise enough to satisfy strong gradient termination criteria.
You may need to specify the more expensive central-difference formulas or use
analytical derivatives. The finite-difference intervals may be too small or too
big and the finite-difference derivatives may be erroneous. You can specify the
FDINT= option to compute better finite-difference intervals.

• Change the optimization technique:
For example, if you use the default TECH=LEVMAR, you can

– change to TECH=QUANEW or to TECH=NRRIDG
– run some iterations with TECH=CONGRA, write the results in an

OUTEST= data set, and use them as initial values specified by an INEST=
data set in a second run with a different TECH= technique

• Change or modify the update technique and the line-search algorithm:
This method applies only to TECH=QUANEW, TECH=HYQUAN, or
TECH=CONGRA. For example, if you use the default update formula and the
default line-search algorithm, you can

– change the update formula with the UPDATE= option
– change the line-search algorithm with the LINESEARCH= option
– specify a more precise line search with the LSPRECISION= option, if

you use LINESEARCH=2 or LINESEARCH=3

• Change the initial values by using a grid search specification to obtain a set of
good feasible starting values.

Convergence to Stationary Point

The (projected) gradient at a stationary point is zero and that results in a zero step
length. The stopping criteria are satisfied.

There are two ways to avoid this situation:

• Use the DECVAR statement to specify a grid of feasible starting points.

• Use the OPTCHECK= option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain information
regarding a stationary point:

• If all eigenvalues are positive, the Hessian matrix is positive definite and the
point is a minimum point.

• If some of the eigenvalues are positive and all remaining eigenvalues are zero,
the Hessian matrix is positive semidefinite and the point is a minimum or saddle
point.

370 � Chapter 4. The NLP Procedure

• If all eigenvalues are negative, the Hessian matrix is negative definite and the
point is a maximum point.

• If some of the eigenvalues are negative and all remaining eigenvalues are zero,
the Hessian matrix is negative semidefinite and the point is a maximum or
saddle point.

• If all eigenvalues are zero, the point can be a minimum, maximum, or saddle
point.

Precision of Solution

In some applications, PROC NLP may result in parameter estimates that are not pre-
cise enough. Usually this means that the procedure terminated too early at a point too
far from the optimal point. The termination criteria define the size of the termination
region around the optimal point. Any point inside this region can be accepted for ter-
minating the optimization process. The default values of the termination criteria are
set to satisfy a reasonable compromise between the computational effort (computer
time) and the precision of the computed estimates for the most common applications.
However, there are a number of circumstances where the default values of the termi-
nation criteria specify a region that is either too large or too small. If the termination
region is too large, it can contain points with low precision. In such cases, you should
inspect the log or list output to find the message stating which termination criterion
terminated the optimization process. In many applications, you can obtain a solution
with higher precision by simply using the old parameter estimates as starting values
in a subsequent run where you specify a smaller value for the termination criterion
that was satisfied at the previous run.

If the termination region is too small, the optimization process may take longer to find
a point inside such a region or may not even find such a point due to rounding errors in
function values and derivatives. This can easily happen in applications where finite-
difference approximations of derivatives are used and the GCONV and ABSGCONV
termination criteria are too small to respect rounding errors in the gradient values.

Covariance Matrix

The COV= option must be specified to compute an approximate covariance matrix
for the parameter estimates under asymptotic theory for least squares, maximum-
likelihood, or Bayesian estimation, with or without corrections for degrees of freedom
as specified by the VARDEF= option.

Two groups of six different forms of covariance matrices (and therefore approximate
standard errors) can be computed corresponding to the following two situations:

• The LSQ statement is specified, which means that least squares estimates are
being computed:

min f(x) =
m∑

i=1

f2
i (x)

Covariance Matrix � 371

• The MIN or MAX statement is specified, which means that maximum-
likelihood or Bayesian estimates are being computed:

opt f(x) =
m∑

i=1

fi(x)

where opt is either min or max.

In either case, the following matrices are used:

G = ∇2f(x)

J(f) = (∇f1, . . . ,∇fm) =
(

∂fi

∂xj

)
JJ(f) = J(f)T J(f)

V = J(f)T diag(f2
i)J(f)

W = J(f)T diag(f †i)J(f)

where

f †i =
{

0, if fi = 0
1/fi, otherwise

For unconstrained minimization, or when none of the final parameter estimates are
subjected to linear equality or active inequality constraints, the formulas of the six
types of covariance matrices are as follows:

COV MIN or MAX Statement LSQ Statement

1 M (–NOBS–/d)G−1JJ(f)G−1 (–NOBS–/d)G−1V G−1

2 H (–NOBS–/d)G−1 σ2G−1

3 J (1/d)W−1 σ2JJ(f)−1

4 B (1/d)G−1WG−1 σ2G−1JJ(f)G−1

5 E (–NOBS–/d)JJ(f)−1 (1/d)V −1

6 U (–NOBS–/d)W−1JJ(f)W−1 (–NOBS–/d)JJ(f)−1V JJ(f)−1

The value of d depends on the VARDEF= option and on the value of the –NOBS–
variable:

d =
{

max(1, –NOBS– − –DF–), for VARDEF=DF
–NOBS– , for VARDEF=N

where –DF– is either set in the program statements or set by default to n (the number
of parameters) and –NOBS– is either set in the program statements or set by default
to nobs × mfun, where nobs is the number of observations in the data set and mfun is
the number of functions listed in the LSQ, MIN, or MAX statement.

372 � Chapter 4. The NLP Procedure

The value σ2 depends on the specification of the SIGSQ= option and on the value of
d:

σ2 =
{

sq × –NOBS–/d, if SIGSQ=sq is specified
2f(x∗)/d, if SIGSQ= is not specified

where f(x∗) is the value of the objective function at the optimal parameter estimates
x∗.

The two groups of formulas distinguish between two situations:

• For least squares estimates, the error variance can be estimated from the objec-
tive function value and is used in three of the six different forms of covariance
matrices. If you have an independent estimate of the error variance, you can
specify it with the SIGSQ= option.

• For maximum-likelihood or Bayesian estimates, the objective function should
be the logarithm of the likelihood or of the posterior density when using the
MAX statement.

For minimization, the inversion of the matrices in these formulas is done so that
negative eigenvalues are considered zero, resulting always in a positive semidefinite
covariance matrix.

In small samples, estimates of the covariance matrix based on asymptotic theory are
often too small and should be used with caution.

If the final parameter estimates are subjected to nact > 0 linear equality or active
linear inequality constraints, the formulas of the covariance matrices are modified
similar to Gallant (1987) and Cramer (1986, p. 38) and additionally generalized for
applications with singular matrices. In the constrained case, the value of d used in
the scalar factor σ2 is defined by

d =
{

max(1, –NOBS– − –DF– + nact), for VARDEF=DF
–NOBS– , for VARDEF=N

where nact is the number of active constraints and –NOBS– is set as in the uncon-
strained case.

For minimization, the covariance matrix should be positive definite; for maximization
it should be negative definite. There are several options available to check for a rank
deficiency of the covariance matrix:

• The ASINGULAR=, MSINGULAR=, and VSINGULAR= options can be
used to set three singularity criteria for the inversion of the matrix A needed
to compute the covariance matrix, when A is either the Hessian or one of the
crossproduct Jacobian matrices. The singularity criterion used for the inversion
is

|dj,j | ≤ max(ASING ,VSING × |Aj,j |,MSING ×max(|A1,1|, . . . , |An,n|))

Covariance Matrix � 373

where dj,j is the diagonal pivot of the matrix A, and ASING, VSING and
MSING are the specified values of the ASINGULAR=, VSINGULAR=, and
MSINGULAR= options. The default values are

– ASING: the square root of the smallest positive double precision value
– MSING: 1E−12 if the SINGULAR= option is not specified and

max(10× ε, 1E− 4× SINGULAR) otherwise, where ε is the machine
precision

– VSING: 1E−8 if the SINGULAR= option is not specified and the value
of SINGULAR otherwise

Note: In many cases, a normalized matrix D−1AD−1 is decomposed and the
singularity criteria are modified correspondingly.

• If the matrix A is found singular in the first step, a generalized inverse is com-
puted. Depending on the G4= option, a generalized inverse is computed that
satisfies either all four or only two Moore-Penrose conditions. If the number
of parameters n of the application is less than or equal to G4=i, a G4 inverse is
computed; otherwise only a G2 inverse is computed. The G4 inverse is com-
puted by (the computationally very expensive but numerically stable) eigen-
value decomposition; the G2 inverse is computed by Gauss transformation.
The G4 inverse is computed using the eigenvalue decomposition A = ZΛZT ,
where Z is the orthogonal matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues, Λ = diag(λ1, ..., λn). If the PEIGVAL option is specified, the
eigenvalues λi are displayed. The G4 inverse of A is set to

A− = ZΛ−ZT

where the diagonal matrix Λ− = diag(λ−1 , ..., λ−n) is defined using the
COVSING= option:

λ−i =
{

1/λi, if |λi| > COVSING
0, if |λi| ≤ COVSING

If the COVSING= option is not specified, the nr smallest eigenvalues are set
to zero, where nr is the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance
matrix is usually computed using finite-difference approximations of the derivatives.
By specifying TECH=NONE, any of the covariance matrices can be computed using
analytical derivatives. The covariance matrix specified by the COV= option can be
displayed (using the PCOV option) and is written to the OUTEST= data set.

374 � Chapter 4. The NLP Procedure

Input and Output Data Sets

DATA= Input Data Set

The DATA= data set is used only to specify an objective function f that is a combi-
nation of m other functions fi. For each function fi, i = 1, . . . ,m, listed in a MAX,
MIN, or LSQ statement, each observation l, l = 1, . . . ,nobs , in the DATA= data set
defines a specific function fil that is evaluated by substituting the values of the vari-
ables of this observation into the program statements. If the MAX or MIN statement
is used, the m×nobs specific functions fil are added to a single objective function f .
If the LSQ statement is used, the sum-of-squares f of the m×nobs specific functions
fil is minimized. The NOMISS option causes observations with missing values to be
skipped.

INEST= Input Data Set

The INEST= (or INVAR=, or ESTDATA=) input data set can be used to specify the
initial values of the parameters defined in a DECVAR statement as well as boundary
constraints and the more general linear constraints which could be imposed on these
parameters. This form of input is similar to the dense format input used in PROC LP.

The variables of the INEST= data set are

• a character variable –TYPE– that indicates the type of the observation

• n numeric variables with the parameter names used in the DECVAR statement

• the BY variables that are used in a DATA= input data set

• a numeric variable –RHS– specifying the right-hand-side constants (needed
only if linear constraints are used)

• additional variables with names corresponding to constants used in the program
statements

The content of the –TYPE– variable defines the meaning of the observation of the
INEST= data set. PROC NLP recognizes the following –TYPE– values:

• PARMS, which specifies initial values for parameters. Additional variables can
contain the values of constants that are referred to in program statements. The
values of the constants in the PARMS observation initialize the constants in the
program statements.

• UPPERBD | UB, which specifies upper bounds. A missing value indicates that
no upper bound is specified for the parameter.

• LOWERBD | LB, which specifies lower bounds. A missing value indicates that
no lower bound is specified for the parameter.

• LE | <= | <, which specifies linear constraint
∑

j aijxj ≤ bi. The n parameter
values contain the coefficients aij , and the –RHS– variable contains the right-
hand side bi. Missing values indicate zeros.

Input and Output Data Sets � 375

• GE | >= | >, which specifies linear constraint
∑

j aijxj ≥ bi. The n parameter
values contain the coefficients aij , and the –RHS– variable contains the right-
hand side bi. Missing values indicate zeros.

• EQ | =, which specifies linear constraint
∑

j aijxj = bi. The n parameter
values contain the coefficients aij , and the –RHS– variable contains the right-
hand side bi. Missing values indicate zeros.

The constraints specified in an INEST= data set are added to the constraints specified
in the BOUNDS and LINCON statements. You can use an OUTEST= data set as
an INEST= data set in a subsequent run of PROC NLP. However, be aware that the
OUTEST= data set also contains the boundary and general linear constraints spec-
ified in the previous run of PROC NLP. When you are using this OUTEST= data
set without changes as an INEST= data set, PROC NLP adds the constraints from the
data set to the constraints specified by a BOUNDS and LINCON statement. Although
PROC NLP automatically eliminates multiple identical constraints you should avoid
specifying the same constraint twice.

INQUAD= Input Data Set

Two types of INQUAD= data sets can be used to specify the objective function of a
quadratic programming problem for TECH=QUADAS or TECH=LICOMP,

f(x) =
1
2
xT Gx + gT x + c, with GT = G

The dense INQUAD= data set must contain all numerical values of the symmetric
matrix G, the vector g, and the scalar c. Using the sparse INQUAD= data set allows
you to specify only the nonzero positions in matrix G and vector g. Those locations
that are not set by the sparse INQUAD= data set are assumed to be zero.

Dense INQUAD= Data Set

A dense INQUAD= data set must contain two character variables, –TYPE– and
–NAME–, and at least n numeric variables whose names are the parameter names.
The –TYPE– variable takes the following values:

• QUAD lists the n values of the row of the G matrix that is defined by the
parameter name used in the –NAME– variable.

• LINEAR lists the n values of the g vector.

• CONST sets the value of the scalar c and cannot contain different numerical
values; however, it could contain up to n− 1 missing values.

• PARMS specifies initial values for parameters.

• UPPERBD | UB specifies upper bounds. A missing value indicates that no
upper bound is specified.

• LOWERBD | LB specifies lower bounds. A missing value indicates that no
lower bound is specified.

376 � Chapter 4. The NLP Procedure

• LE | <= | < specifies linear constraint
∑

j aijxj ≤ bi. The n parameter values
contain the coefficients aij , and the –RHS– variable contains the right-hand
side bi. Missing values indicate zeros.

• GE | >= | > specifies linear constraint
∑

j aijxj ≥ bi. The n parameter values
contain the coefficients aij , and the –RHS– variable contains the right-hand
side bi. Missing values indicate zeros.

• EQ | = specifies linear constraint
∑

j aijxj = bi. The n parameter values
contain the coefficients aij , and the –RHS– variable contains the right-hand
side bi. Missing values indicate zeros.

Constraints specified in a dense INQUAD= data set are added to the constraints spec-
ified in BOUNDS and LINCON statements.

Sparse INQUAD= Data Set

A sparse INQUAD= data set must contain three character variables –TYPE–,
–ROW–, and –COL–, and one numeric variable –VALUE–. The –TYPE– variable
can assume two values:

• QUAD specifies that the –ROW– and –COL– variables define the row and
column locations of the values in the G matrix.

• LINEAR specifies that the –ROW– variable defines the row locations of the
values in the g vector. The –COL– variable is not used.

Using both the MODEL= option and the INCLUDE statement with the same model
file will include the file twice (erroneous in most cases).

OUT= Output Data Set

The OUT= data set contains those variables of a DATA= input data set that are re-
ferred to in the program statements and additional variables computed by the program
statements for the objective function. Specifying the NOMISS option enables you to
skip observations with missing values in variables used in the program statements.
The OUT= data set can also contain first- and second-order derivatives of these vari-
ables if the OUTDER= option is specified. The variables and derivatives are the final
parameter estimates x∗ or (for TECH=NONE) the initial value x0.

The variables of the OUT= data set are

• the BY variables and all other variables that are used in a DATA= input data set
and referred to in the program code

• a variable –OBS– containing the number of observations read from a DATA=
input data set, where the counting is restarted with the start of each BY group.
If there is no DATA= input data set, then –OBS–=1.

• a character variable –TYPE– naming the type of the observation

• the parameter variables listed in the DECVAR statement

• the function variables listed in the MIN, MAX, or LSQ statement

Input and Output Data Sets � 377

• all other variables computed in the program statements

• the character variable –WRT– (if OUTDER=1) containing the with respect to
variable for which the first-order derivatives are written in the function vari-
ables

• the two character variables –WRT1– and –WRT2– (if OUTDER=2) contain-
ing the two with respect to variables for which the first- and second-order
derivatives are written in the function variables

OUTEST= Output Data Set

The OUTEST= or OUTVAR= output data set saves the optimization solution of
PROC NLP. You can use the OUTEST= or OUTVAR= data set as follows:

• to save the values of the objective function on grid points to examine, for ex-
ample, surface plots using PROC G3D (use the OUTGRID option)

• to avoid any costly computation of analytical (first- or second-order) derivatives
during optimization when they are needed only upon termination. In this case
a two-step approach is recommended:

1. In a first execution, the optimization is done; that is, optimal parameter
estimates are computed, and the results are saved in an OUTEST= data
set.

2. In a subsequent execution, the optimal parameter estimates in the pre-
vious OUTEST= data set are read in an INEST= data set and used with
TECH=NONE to compute further results, such as analytical second-order
derivatives or some kind of covariance matrix.

• to restart the procedure using parameter estimates as initial values

• to split a time-consuming optimization problem into a series of smaller prob-
lems using intermediate results as initial values in subsequent runs. (Refer to
the MAXTIME=, MAXIT=, and MAXFUNC= options to trigger stopping.)

• to write the value of the objective function, the parameter estimates, the time in
seconds starting at the beginning of the optimization process and (if available)
the gradient to the OUTEST= data set during the iterations. After the PROC
NLP run is completed, the convergence progress can be inspected by graphi-
cally displaying the iterative information. (Refer to the OUTITER option.)

The variables of the OUTEST= data set are

• the BY variables that are used in a DATA= input data set

• a character variable –TECH– naming the optimization technique used

• a character variable –TYPE– specifying the type of the observation

• a character variable –NAME– naming the observation. For a linear constraint,
the –NAME– variable indicates whether the constraint is active at the solution.
For the initial observations, the –NAME– variable indicates if the number in
the –RHS– variable corresponds to the number of positive, negative, or zero
eigenvalues.

378 � Chapter 4. The NLP Procedure

• n numeric variables with the parameter names used in the DECVAR statement.
These variables contain a point x of the parameter space, lower or upper bound
constraints, or the coefficients of linear constraints.

• a numeric variable –RHS– (right-hand side) that is used for the right-hand-
side value bi of a linear constraint or for the value f = f(x) of the objective
function at a point x of the parameter space

• a numeric variable –ITER– that is zero for initial values, equal to the iteration
number for the OUTITER output, and missing for the result output

The –TYPE– variable identifies how to interpret the observation. If –TYPE– is

• PARMS then parameter-named variables contain the coordinates of the result-
ing point x∗. The –RHS– variable contains f(x∗).

• INITIAL then parameter-named variables contain the feasible starting point
x(0). The –RHS– variable contains f(x(0)).

• GRIDPNT then (if the OUTGRID option is specified) parameter-named vari-
ables contain the coordinates of any point x(k) used in the grid search. The
–RHS– variable contains f(x(k)).

• GRAD then parameter-named variables contain the gradient at the initial or
final estimates.

• STDERR then parameter-named variables contain the approximate standard
errors (square roots of the diagonal elements of the covariance matrix) if the
COV= option is specified.

• –NOBS– then (if the COV= option is specified) all parameter variables contain
the value of –NOBS– used in computing the σ2 value in the formula of the
covariance matrix.

• UPPERBD | UB then (if there are boundary constraints) the parameter variables
contain the upper bounds.

• LOWERBD | LB then (if there are boundary constraints) the parameter vari-
ables contain the lower bounds.

• NACTBC then all parameter variables contain the number nabc of active
boundary constraints at the solution x∗.

• ACTBC then (if there are active boundary constraints) the observation indicate
which parameters are actively constrained, as follows:

–NAME–=GE the active lower bounds

–NAME–=LE the active upper bounds

–NAME–=EQ the active equality constraints

• NACTLC then all parameter variables contain the number nalc of active linear
constraints that are recognized as linearly independent.

• NLDACTLC then all parameter variables contain the number of active linear
constraints that are recognized as linearly dependent.

Input and Output Data Sets � 379

• LE then (if there are linear constraints) the observation contains the ith linear
constraint

∑
j aijxj ≤ bi. The parameter variables contain the coefficients aij ,

j = 1, . . . , n, and the –RHS– variable contains bi. If the constraint i is active
at the solution x∗, then –NAME–=ACTLC or –NAME–=LDACTLC.

• GE then (if there are linear constraints) the observation contains the ith linear
constraint

∑
j aijxj ≥ bi. The parameter variables contain the coefficients aij ,

j = 1, . . . , n, and the –RHS– variable contains bi. If the constraint i is active
at the solution x∗, then –NAME–=ACTLC or –NAME–=LDACTLC.

• EQ then (if there are linear constraints) the observation contains the ith linear
constraint

∑
j aijxj = bi. The parameter variables contain the coefficients

aij , j = 1, . . . , n, the –RHS– variable contains bi, and –NAME–=ACTLC or
–NAME–=LDACTLC.

• LAGRANGE then (if at least one of the linear constraints is an equality con-
straint or an active inequality constraint) the observation contains the vector of
Lagrange multipliers. The Lagrange multipliers of active boundary constraints
are listed first followed by those of active linear constraints and those of active
nonlinear constraints. Lagrange multipliers are available only for the set of
linearly independent active constraints.

• PROJGRAD then (if there are linear constraints) the observation contains the
n − nact values of the projected gradient gZ = ZT g in the variables corre-
sponding to the first n− nact parameters.

• JACOBIAN then (if the PJACOBI or OUTJAC option is specified) the m ob-
servations contain the m rows of the m × n Jacobian matrix. The –RHS–
variable contains the row number l, l = 1, . . . ,m.

• HESSIAN then the first n observations contain the n rows of the (symmetric)
Hessian matrix. The –RHS– variable contains the row number j, j = 1, . . . , n,
and the –NAME– variable contains the corresponding parameter name.

• PROJHESS then the first n − nact observations contain the n − nact rows of
the projected Hessian matrix ZT GZ. The –RHS– variable contains the row
number j, j = 1, . . . , n− nact , and the –NAME– variable is blank.

• CRPJAC then the first n observations contain the n rows of the (symmetric)
crossproduct Jacobian matrix at the solution. The –RHS– variable contains
the row number j, j = 1, . . . , n, and the –NAME– variable contains the cor-
responding parameter name.

• PROJCRPJ then the first n − nact observations contain the n − nact rows of
the projected crossproduct Jacobian matrix ZT (JT J)Z. The –RHS– variable
contains the row number j, j = 1, . . . , n− nact, and the –NAME– variable is
blank.

• COV1, COV2, COV3, COV4, COV5, or COV6 then (depending on the COV=
option) the first n observations contain the n rows of the (symmetric) covari-
ance matrix of the parameter estimates. The –RHS– variable contains the row
number j, j = 1, . . . , n, and the –NAME– variable contains the corresponding
parameter name.

380 � Chapter 4. The NLP Procedure

• DETERMIN contains the determinant det = a × 10b of the matrix specified
by the value of the –NAME– variable where a is the value of the first variable
in the DECVAR statement and b is in –RHS–.

• NEIGPOS, NEIGNEG, or NEIGZER then the –RHS– variable contains the
number of positive, negative, or zero eigenvalues of the matrix specified by the
value of the –NAME– variable.

• COVRANK then the –RHS– variable contains the rank of the covariance ma-
trix.

• SIGSQ then the –RHS– variable contains the scalar factor of the covariance
matrix.

• –TIME– then (if the OUTITER option is specified) the –RHS– variable con-
tains the number of seconds passed since the start of the optimization.

• TERMINAT then if optimization terminated at a point satisfying one of the
termination criteria, an abbreviation of the corresponding criteria is given to
the –NAME– variable. Otherwise –NAME–=PROBLEMS.

If for some reason the procedure does not terminate successfully (for example, no
feasible initial values can be computed or the function value or derivatives at the
starting point cannot be computed), the OUTEST= data set may contain only part of
the observations (usually only the PARMS and GRAD observation).

Note: Generally you can use an OUTEST= data set as an INEST= data set in a further
run of PROC NLP. However, be aware that the OUTEST= data set also contains the
boundary and general linear constraints specified in the previous run of PROC NLP.
When you are using this OUTEST= data set without changes as an INEST= data
set, PROC NLP adds the constraints from the data set to the constraints specified by
a BOUNDS or LINCON statement. Although PROC NLP automatically eliminates
multiple identical constraints you should avoid specifying the same constraint twice.

Output of Profiles

The following observations are written to the OUTEST= data set only when the
PROFILE statement or CLPARM option is specified.

–TYPE– –NAME– –RHS– Meaning of Observation
PLC–LOW parname y value coordinates of lower CL for α
PLC–UPP parname y value coordinates of upper CL for α

WALD–CL LOWER y value lower Wald CL for α in –ALPHA–
WALD–CL UPPER y value upper Wald CL for α in –ALPHA–

PL–CL LOWER y value lower PL CL for α in –ALPHA–
PL–CL UPPER y value upper PL CL for α in –ALPHA–

PROFILE L(THETA) missing y value corresponding to x
in following –NAME–=THETA

PROFILE THETA missing x value corresponding to y
in previous –NAME–=L(THETA)

Input and Output Data Sets � 381

Assume that the PROFILE statement specifies np parameters and nα confidence lev-
els. For CLPARM, np = n and nα = 4.

• –TYPE–=PLC–LOW and –TYPE–=PLC–UPP:
If the CLPARM= option or the PROFILE statement with the OUTTABLE op-
tion is specified, then the complete set θ of parameter estimates (rather than
only the confidence limit x = θj) is written to the OUTEST= data set for each
side of the confidence interval. This output may be helpful for further analyses
on how small changes in x = θj affect the changes in the other θi, i 6= j. The
–ALPHA– variable contains the corresponding value of α. There should be
no more than 2nαnp observations. If the confidence limit cannot be computed,
the corresponding observation is not available.

• –TYPE–=WALD–CL:
If CLPARM=WALD, CLPARM=BOTH, or the PROFILE statement with
α values is specified, then the Wald confidence limits are written to the
OUTEST= data set for each of the default or specified values of α. The
–ALPHA– variable contains the corresponding value of α. There should be
2nα observations.

• –TYPE–=PL–CL:
If CLPARM=PL, CLPARM=BOTH, or the PROFILE statement with α values
is specified, then the PL confidence limits are written to the OUTEST= data
set for each of the default or specified values of α. The –ALPHA– variable
contains the corresponding values of α. There should be 2nα observations;
some observations may have missing values.

• –TYPE–=PROFILE:
If CLPARM=PL, CLPARM=BOTH, or the CLPARM= statement with or with-
out α values is specified, then a set of (x, y) point coordinates in two adjacent
observations with –NAME–=L(THETA) (y value) and –NAME–=THETA (x
value) is written to the OUTEST= data set. The –RHS– and –ALPHA– vari-
ables are not used (are set to missing). The number of observations depends on
the difficulty of the optimization problems.

OUTMODEL= Output Data Set

The program statements for objective functions, nonlinear constraints, and derivatives
can be saved into an OUTMODEL= output data set. This data set can be used in an
INCLUDE program statement or as a MODEL= input data set in subsequent calls
of PROC NLP. The OUTMODEL= option is similar to the option used in PROC
MODEL in SAS/ETS software.

Storing Programs in Model Files

Models can be saved to and recalled from SAS catalog files. SAS catalogs are special
files which can store many kinds of data structures as separate units in one SAS file.
Each separate unit is called an entry, and each entry has an entry type that identifies
its structure to the SAS system.

In general, to save a model, use the OUTMODEL=name option in the PROC NLP
statement, where name is specified as libref.catalog.entry, libref.entry, or entry. The

382 � Chapter 4. The NLP Procedure

libref, catalog, and entry names must be valid SAS names no more than 8 characters
long. The catalog name is restricted to 7 characters on the CMS operating system. If
not given, the catalog name defaults to MODELS, and the libref defaults to WORK.
The entry type is always MODEL. Thus, OUTMODEL=X writes the model to the
file WORK.MODELS.X.MODEL.

The MODEL= option is used to read in a model. A list of model files can be specified
in the MODEL= option, and a range of names with numeric suffixes can be given, as
in MODEL=(MODEL1-MODEL10). When more than one model file is given, the
list must be placed in parentheses, as in MODEL=(A B C). If more than one model
file is specified, the files are combined in the order listed in the MODEL= option.

When the MODEL= option is specified in the PROC NLP statement and model defi-
nition statements are also given later in the PROC NLP step, the model files are read
in first, in the order listed, and the model program specified in the PROC NLP step is
appended after the model program read from the MODEL= files.

The INCLUDE statement can be used to append model code to the current model
code. The contents of the model files are inserted into the current model at the posi-
tion where the INCLUDE statement appears.

Note that the following statements are not part of the program code that is written to
an OUTMODEL= data set: MIN, MAX, LSQ, MINQUAD, MAXQUAD, DECVAR,
BOUNDS, BY, CRPJAC, GRADIENT, HESSIAN, JACNLC, JACOBIAN, LABEL,
LINCON, MATRIX, and NLINCON.

Displayed Output

Procedure Initialization

After the procedure has processed the problem, it displays summary information
about the problem and the options that you have selected. It may also display a
list of linearly dependent constraints and other information about the constraints and
parameters.

Optimization Start

At the start of optimization the procedure displays

• the number of constraints that are active at the starting point, or more precisely,
the number of constraints that are currently members of the working set. If
this number is followed by a plus sign, there are more active constraints, of
which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

• the value of the objective function at the starting point

• if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

• for the TRUREG and LEVMAR subroutines, the initial radius of the trust re-
gion around the starting point

Displayed Output � 383

Iteration History

In general, the iteration history consists of one line of output containing the most im-
portant information for each iteration. The iteration-extensive Nelder-Mead simplex
method, however, displays only one line for several internal iterations. This technique
skips the output for some iterations because

• some of the termination tests (size and standard deviation) are rather time-
consuming compared to the simplex operations and are done once every five
simplex operations

• the resulting history output is smaller

The –LIST– variable (refer to the section “Program Statements” on page 338) also
enables you to display the parameter estimates x(k) and the gradient g(k) in all or
some selected iterations k.

The iteration history always includes the following (the words in parentheses indicate
the column header output):

• the iteration number (iter)

• the number of iteration restarts (nrest)

• the number of function calls (nfun)

• the number of active constraints (act)

• the value of the optimization criterion (optcrit)

• the difference between adjacent function values (difcrit)

• the maximum of the absolute (projected) gradient components (maxgrad)

An apostrophe trailing the number of active constraints indicates that at least one of
the active constraints was released from the active set due to a significant Lagrange
multiplier.

The optimization history is displayed by default because it is important to check for
possible convergence problems.

Optimization Termination

The output of the optimization history ends with a short output of information con-
cerning the optimization result:

• the number of constraints that are active at the final point, or more precisely,
the number of constraints that are currently members of the working set. When
this number is followed by a plus sign, it indicates that there are more active
constraints of which at least one is temporarily released from the working set
due to negative Lagrange multipliers.

• the value of the objective function at the final point

384 � Chapter 4. The NLP Procedure

• if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

• other information that is specific for the optimization technique

The NOPRINT option suppresses all output to the list file and only errors, warnings,
and notes are displayed to the log file. The PALL option sets a large group of some
of the commonly used specific displaying options, the PSHORT option suppresses
some, and the PSUMMARY option suppresses almost all of the default output. The
following table summarizes the correspondence between the general and the specific
print options.

Output Options PALL default PSHORT PSUMMARY Output
y y y y summary of optimization
y y y n parameter estimates
y y y n gradient of objective func

PHISTORY y y y n iteration history
PINIT y y n n setting of initial values

y y n n listing of constraints
PGRID y n n n results of grid search
PNLCJAC y n n n Jacobian nonlin. constr.
PFUNCTION y n n n values of functions
PEIGVAL y n n n eigenvalue distribution
PCRPJAC y n n n crossproduct Jacobian
PHESSIAN y n n n Hessian matrix
PSTDERR y n n n approx. standard errors
PCOV y n n n covariance matrices
PJACOBI n n n n Jacobian
LIST n n n n model program, variables
LISTCODE n n n n compiled model program

Convergence Status

Upon termination, the NLP procedure creates an ODS table called
“ConvergenceStatus.” You can use this name to reference the table when us-
ing the Output Delivery System (ODS) to select tables and create output data
sets. Within the “ConvergenceStatus” table there are two variables, “Status” and
“Reason,” which contain the status of the optimization run. For the “Status” variable,
a value of zero indicates that one of the convergence criteria is satisfied; a nonzero
value indicates otherwise. In all cases, an explicit interpretation of the status code is
displayed as a string stored in the “Reason” variable. For more information about
ODS, see SAS Output Delivery System: User’s Guide.

Missing Values � 385

Missing Values

Missing Values in Program Statements

There is one very important reason for using missing values in program statements
specifying the values of the objective functions and derivatives: it may not be pos-
sible to evaluate the program statements for a particular point x. For example, the
extrapolation formula of one of the line-search algorithms may generate large x val-
ues for which the EXP function cannot be evaluated without floating point overflow.
The compiler of the program statements may check for such situations automatically,
but it would be safer if you check the feasibility of your program statements. In some
cases, the specification of boundary or linear constraints for parameters can avoid
such situations. In many other cases, you can indicate that x is a bad point simply by
returning a missing value for the objective function. In such cases the optimization
algorithms in PROC NLP shorten the step length α or reduce the trust region radius
so that the next point will be closer to the point that was already successfully evalu-
ated at the last iteration. Note that the starting point x(0) must be a point for which
the program statements can be evaluated.

Missing Values in Input Data Sets

Observations with missing values in the DATA= data set for variables used in the
objective function can lead to a missing value of the objective function implying that
the corresponding BY group of data is not processed. The NOMISS option can be
used to skip those observations of the DATA= data set for which relevant variables
have missing values. Relevant variables are those that are referred to in program
statements.

There can be different reasons to include observations with missing values in the
INEST= data set. The value of the –RHS– variable is not used in some cases and
can be missing. Missing values for the variables corresponding to parameters in the
–TYPE– variable are as follows:

• PARMS observations cause those parameters to have initial values assigned by
the DECVAR statement or by the RANDOM= or INITIAL= option.

• UPPERBD or LOWERBD observations cause those parameters to be uncon-
strained by upper or lower bounds.

• LE, GE, or EQ observations cause those parameters to have zero values in the
constraint.

In general, missing values are treated as zeros.

386 � Chapter 4. The NLP Procedure

Computational Resources

Since nonlinear optimization is an iterative process that depends on many factors, it
is difficult to estimate how much computer time is necessary to compute an optimal
solution satisfying one of the termination criteria. The MAXTIME=, MAXITER=,
and MAXFUNC= options can be used to restrict the amount of real time, the number
of iterations, and the number of function calls in a single run of PROC NLP.

In each iteration k, the NRRIDG and LEVMAR techniques use symmetric
Householder transformations to decompose the n × n Hessian (crossproduct
Jacobian) matrix G,

G = V T TV , V orthogonal, T tridiagonal

to compute the (Newton) search direction s:

s(k) = −G(k−1)g(k) , k = 1, 2, 3, . . .

The QUADAS, TRUREG, NEWRAP, and HYQUAN techniques use the Cholesky
decomposition to solve the same linear system while computing the search direction.
The QUANEW, DBLDOG, CONGRA, and NMSIMP techniques do not need to in-
vert or decompose a Hessian or crossproduct Jacobian matrix and thus require fewer
computational resources then the first group of techniques.

The larger the problem, the more time is spent computing function values and deriva-
tives. Therefore, many researchers compare optimization techniques by counting and
comparing the respective numbers of function, gradient, and Hessian (crossproduct
Jacobian) evaluations. You can save computer time and memory by specifying deriva-
tives (using the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement) since
you will typically produce a more efficient representation than the internal derivative
compiler.

Finite-difference approximations of the derivatives are expensive since they require
additional function or gradient calls.

• Forward-difference formulas:

– First-order derivatives: n additional function calls are needed.
– Second-order derivatives based on function calls only: for a dense

Hessian, n(n + 3)/2 additional function calls are needed.
– Second-order derivatives based on gradient calls: n additional gradient

calls are needed.

• Central-difference formulas:

– First-order derivatives: 2n additional function calls are needed.
– Second-order derivatives based on function calls only: for a dense

Hessian, 2n(n + 1) additional function calls are needed.

Computational Resources � 387

– Second-order derivatives based on gradient: 2n additional gradient calls
are needed.

Many applications need considerably more time for computing second-order deriva-
tives (Hessian matrix) than for first-order derivatives (gradient). In such cases, a
(dual) quasi-Newton or conjugate gradient technique is recommended, which does
not require second-order derivatives.

The following table shows for each optimization technique which derivatives are
needed (FOD: first-order derivatives; SOD: second-order derivatives), what kinds of
constraints are supported (BC: boundary constraints; LIC: linear constraints), and the
minimal memory (number of double floating point numbers) required. For various
reasons, there are additionally about 7n + m double floating point numbers needed.

Quadratic Programming FOD SOD BC LIC Memory
LICOMP - - x x 18n + 3nn
QUADAS - - x x 1n + 2nn/2
General Optimization FOD SOD BC LIC Memory
TRUREG x x x x 4n + 2nn/2
NEWRAP x x x x 2n + 2nn/2
NRRIDG x x x x 6n + nn/2
QUANEW x - x x 1n + nn/2
DBLDOG x - x x 7n + nn/2
CONGRA x - x x 3n
NMSIMP - - x x 4n + nn

Least Squares FOD SOD BC LIC Memory
LEVMAR x - x x 6n + nn/2
HYQUAN x - x x 2n + nn/2 + 3m

Notes:

• Here, n denotes the number of parameters, nn the squared number of parame-
ters, and nn/2 := n(n + 1)/2.

• The value of m is the product of the number of functions specified in the MIN,
MAX, or LSQ statement and the maximum number of observations in each BY
group of a DATA= input data set. The following table also contains the number
v of variables in the DATA= data set that are used in the program statements.

• For a diagonal Hessian matrix, the nn/2 term in QUADAS, TRUREG,
NEWRAP, and NRRIDG is replaced by n.

• If the TRUREG, NRRIDG, or NEWRAP method is used to minimize a least
squares problem, the second derivatives are replaced by the crossproduct
Jacobian matrix.

• The memory needed by the TECH=NONE specification depends on the output
specifications (typically, it needs 3n+nn/2 double floating point numbers and
an additional mn if the Jacobian matrix is required).

388 � Chapter 4. The NLP Procedure

The total amount of memory needed to run an optimization technique consists of
the technique-specific memory listed in the preceding table, plus additional blocks of
memory as shown in the following table.

double int long 8byte
Basic Requirement 7n + m n 3n n + m
DATA= data set v - - v
JACOBIAN statement m(n + 2) - - -
CRPJAC statement nn/2 - - -
HESSIAN statement nn/2 - - -
COV= option (2∗)nn/2 + n - - -
Scaling vector n - - -
BOUNDS statement 2n n - -
Bounds in INEST= 2n - - -
LINCON and TRUREG c(n + 1) + nn + nn/2 + 4n 3c - -
LINCON and other c(n + 1) + nn + 2nn/2 + 4n 3c - -

Notes:

• For TECH=LICOMP, the total amount of memory needed for the linear or
boundary constrained case is 18(n + c) + 3(n + c)(n + c), where c is the
number of constraints.

• The amount of memory needed to specify derivatives with a GRADIENT,
JACOBIAN, CRPJAC, or HESSIAN statement (shown in this table) is small
compared to that needed for using the internal function compiler to compute
the derivatives. This is especially so for second-order derivatives.

• If the CONGRA technique is used, specifying the GRADCHECK=DETAIL
option requires an additional nn/2 double floating point numbers to store the
finite-difference Hessian matrix.

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the
SAS System. If you do not specify a value for this option, then the SAS System
sets a default memory limit. Your operating environment determines the actual size
of the default memory limit, which is sufficient for many applications. However, to
solve most realistic optimization problems, the NLP procedure might require more
memory. Increasing the memory limit can reduce the chance of an out-of-memory
condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-
ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For

Example 4.1. Using the DATA= Option � 389

example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to
enable the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion for
your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion for your operating environment.

Examples: NLP Procedure

Example 4.1. Using the DATA= Option

This example illustrates the use of the DATA= option. The Bard function (refer to
Moré, Garbow, and Hillstrom (1981)) is a least squares problem with n = 3 parame-
ters and m = 15 functions fk:

f(x) =
1
2

15∑
k=1

f2
k (x), x = (x1, x2, x3)

where

fk(x) = yk −
(

x1 +
uk

vkx2 + wkx3

)

with uk = k, vk = 16− k, wk = min(uk, vk), and

y = (.14, .18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96, 1.34, 2.10, 4.39)

The minimum function value f(x∗) = 4.107E−3 is at the point (0.08, 1.13, 2.34).
The starting point x0 = (1, 1, 1) is used.

390 � Chapter 4. The NLP Procedure

The following is the naive way of specifying the objective function.

proc nlp tech=levmar;
lsq y1-y15;
parms x1-x3 = 1;
tmp1 = 15 * x2 + min(1,15) * x3;
y1 = 0.14 - (x1 + 1 / tmp1);
tmp1 = 14 * x2 + min(2,14) * x3;
y2 = 0.18 - (x1 + 2 / tmp1);
tmp1 = 13 * x2 + min(3,13) * x3;
y3 = 0.22 - (x1 + 3 / tmp1);
tmp1 = 12 * x2 + min(4,12) * x3;
y4 = 0.25 - (x1 + 4 / tmp1);
tmp1 = 11 * x2 + min(5,11) * x3;
y5 = 0.29 - (x1 + 5 / tmp1);
tmp1 = 10 * x2 + min(6,10) * x3;
y6 = 0.32 - (x1 + 6 / tmp1);
tmp1 = 9 * x2 + min(7,9) * x3;
y7 = 0.35 - (x1 + 7 / tmp1);
tmp1 = 8 * x2 + min(8,8) * x3;
y8 = 0.39 - (x1 + 8 / tmp1);
tmp1 = 7 * x2 + min(9,7) * x3;
y9 = 0.37 - (x1 + 9 / tmp1);
tmp1 = 6 * x2 + min(10,6) * x3;
y10 = 0.58 - (x1 + 10 / tmp1);
tmp1 = 5 * x2 + min(11,5) * x3;
y11 = 0.73 - (x1 + 11 / tmp1);
tmp1 = 4 * x2 + min(12,4) * x3;
y12 = 0.96 - (x1 + 12 / tmp1);
tmp1 = 3 * x2 + min(13,3) * x3;
y13 = 1.34 - (x1 + 13 / tmp1);
tmp1 = 2 * x2 + min(14,2) * x3;
y14 = 2.10 - (x1 + 14 / tmp1);
tmp1 = 1 * x2 + min(15,1) * x3;
y15 = 4.39 - (x1 + 15 / tmp1);

run;

A more economical way to program this problem uses the DATA= option to input the
15 terms in f(x).

data bard;
input r @@;

w1 = 16. - _n_;
w2 = min(_n_ , 16. - _n_);
datalines;

.14 .18 .22 .25 .29 .32 .35 .39

.37 .58 .73 .96 1.34 2.10 4.39
;

proc nlp data=bard tech=levmar;
lsq y;
parms x1-x3 = 1.;

Example 4.2. Using the INQUAD= Option � 391

y = r - (x1 + _obs_ / (w1 * x2 + w2 * x3));
run;

Another way you can specify the objective function uses the ARRAY statement and
an explicit do loop, as in the following code.

proc nlp tech=levmar;
array r[15] .14 .18 .22 .25 .29 .32 .35 .39 .37 .58

.73 .96 1.34 2.10 4.39 ;
array y[15] y1-y15;
lsq y1-y15;
parms x1-x3 = 1.;
do i = 1 to 15;

w1 = 16. - i;
w2 = min(i , w1);
w3 = w1 * x2 + w2 * x3;
y[i] = r[i] - (x1 + i / w3);

end;
run;

Example 4.2. Using the INQUAD= Option

This example illustrates the INQUAD= option for specifying a quadratic program-
ming problem:

min f(x) =
1
2
xT Gx + gT x + c, with GT = G

Suppose that c = −100, G = diag(.4, 4) and 2 ≤ x1 ≤ 50, −50 ≤ x2 ≤ 50, and
10 ≤ 10x1 − x2.

You specify the constant c and the Hessian G in the data set QUAD1. Notice that
the –TYPE– variable contains the keywords that identify how the procedure should
interpret the observations.

392 � Chapter 4. The NLP Procedure

data quad1;
input _type_ $ _name_ $ x1 x2;
datalines;

const . -100 -100
quad x1 0.4 0
quad x2 0 4
;

You specify the QUAD1 data set with the INQUAD= option. Notice that the names
of the variables in the QUAD1 data set and the –NAME– variable match the names
of the parameters in the PARMS statement.

proc nlp inquad=quad1 all;
min ;
parms x1 x2 = -1;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

Alternatively, you can use a sparse format for specifying the G matrix, eliminating
the zeros. You use the special variables –ROW–, –COL–, and –VALUE– to give the
nonzero row and column names and value.

data quad2;
input _type_ $ _row_ $ _col_ $ _value_;
datalines;

const . . -100
quad x1 x1 0.4
quad x2 x2 4
;

You can also include the constraints in the QUAD data set. Notice how the –TYPE–
variable contains keywords that identify how the procedure is to interpret the values
in each observation.

Example 4.3. Using the INEST=Option � 393

data quad3;
input _type_ $ _name_ $ x1 x2 _rhs_;
datalines;

const . -100 -100 .
quad x1 0.02 0 .
quad x2 0.00 2 .
parms . -1 -1 .
lowerbd . 2 -50 .
upperbd . 50 50 .
ge . 10 -1 10
;

proc nlp inquad=quad3;
min ;
parms x1 x2;

run;

Example 4.3. Using the INEST=Option
This example illustrates the use of the INEST= option for specifying a starting point
and linear constraints. You name a data set with the INEST= option. The format of
this data set is similar to the format of the QUAD data set described in the previous
example.

Consider the Hock and Schittkowski (1981) Problem # 24:

min f(x) =
((x1 − 3)2 − 9)x3

2

27
√

3

subject to:

0 ≤ x1, x2

0 ≤ .57735x1 − x2

0 ≤ x1 + 1.732x2

6 ≥ x1 + 1.732x2

with minimum function value f(x∗) = −1 at x∗ = (3,
√

3). The feasible starting
point is x0 = (1, .5).

You can specify this model in PROC NLP as follows:

proc nlp tech=trureg outest=res;
min y;
parms x1 = 1,

x2 = .5;
bounds 0 <= x1-x2;
lincon .57735 * x1 - x2 >= 0,

x1 + 1.732 * x2 >= 0,
-x1 - 1.732 * x2 >= -6;

y = (((x1 - 3)**2 - 9.) * x2**3) / (27 * sqrt(3));
run;

394 � Chapter 4. The NLP Procedure

Note that none of the data for this model are in a data set. Alternatively, you can
save the starting point (1, .5) and the linear constraints in a data set. Notice that the
–TYPE– variable contains keywords that identify how the procedure is to interpret
each of the observations and that the parameters in the problems X1 and X2 are
variables in the data set. The observation with –TYPE–=LOWERBD gives the lower
bounds on the parameters. The observation with –TYPE–=GE gives the coefficients
for the first constraint. Similarly, the subsequent observations contain specifications
for the other constraints. Also notice that the special variable –RHS– contains the
right-hand-side values.

data betts1(type=est);
input _type_ $ x1 x2 _rhs_;
datalines;

parms 1 .5 .
lowerbd 0 0 .
ge .57735 -1 .
ge 1 1.732 .
le 1 1.732 6
;

Now you can solve this problem with the following code. Notice that you specify the
objective function and the parameters.

proc nlp inest=betts1 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - 3)**2 - 9) * x2**3) / (27 * sqrt(3));

run;

You can even include any constants used in the program statements in the INEST=
data set. In the following code the variables A, B, C, and D contain some of the
constants used in calculating the objective function Y.

data betts2(type=est);
input _type_ $ x1 x2 _rhs_ a b c d;
datalines;

parms 1 .5 . 3 9 27 3
lowerbd 0 0
ge .57735 -1 0
ge 1 1.732 0
le 1 1.732 6
;

Notice that in the program statement for calculating Y, the constants are replaced by
the A, B, C, and D variables.

proc nlp inest=betts2 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - a)**2 - b) * x2**3) / (c * sqrt(d));

run;

Example 4.4. Restarting an Optimization � 395

Example 4.4. Restarting an Optimization

This example shows how you can restart an optimization problem using the
OUTEST=, INEST=, OUTMODEL=, and MODEL= options and how to save out-
put into an OUT= data set. The least squares solution of the Rosenbrock function
using the trust region method is used.

The following code solves the problem and saves the model in the MODEL data set
and the solution in the EST and OUT1 data sets.

proc nlp tech=trureg outmodel=model outest=est out=out1;
lsq y1 y2;
parms x1 = -1.2 ,

x2 = 1.;
y1 = 10. * (x2 - x1 * x1);
y2 = 1. - x1;

run;

proc print data=out1;
run;

The final parameter estimates x∗ = (1, 1) and the values of the functions f1 =Y1 and
f2 =Y2 are written into an OUT= data set, shown in Output 4.4.1. Since OUTDER=0
is the default, the OUT= data set does not contain the Jacobian matrix.

Output 4.4.1. Solution in an OUT= Data Set

Obs _OBS_ _TYPE_ y1 y2 x2 x1

1 1 -1.1102E-15 0 1 1

Next, the procedure reads the optimal parameter estimates from the EST data
set and the model from the MODEL data set. It does not do any optimization
(TECH=NONE), but it saves the Jacobian matrix to the OUT=OUT2 data set be-
cause of the option OUTDER=1. It also displays the Jacobian matrix because of the
option PJAC; the Jacobian matrix is shown in Output 4.4.2. Output 4.4.3 shows the
contents of the OUT2 data set, which also contains the Jacobian matrix.

proc nlp tech=none model=model inest=est out=out2 outder=1 pjac;
lsq y1 y2;
parms x1 x2;

run;

proc print data=out2;
run;

396 � Chapter 4. The NLP Procedure

Output 4.4.2. Jacobian Matrix Output

PROC NLP: Least Squares Minimization

Jacobian Matrix

x1 x2

-20 10
-1 0

Output 4.4.3. Jacobian Matrix in an OUT= Data Set

Obs _OBS_ _TYPE_ y1 y2 _WRT_ x2 x1

1 1 -0 0 1 1
2 1 ANALYTIC 10 0 x2 1 1
3 1 ANALYTIC -20 -1 x1 1 1

Example 4.5. Approximate Standard Errors

The NLP procedure provides a variety of ways for estimating parameters in nonlin-
ear statistical models and for obtaining approximate standard errors and covariance
matrices for the estimators. These methods are illustrated by estimating the mean
of a random sample from a normal distribution with mean µ and standard deviation
σ. The simplicity of the example makes it easy to compare the results of different
methods in NLP with the usual estimator, the sample mean.

The following data step is used:

data x;
input x @@;

datalines;
1 3 4 5 7
;

The standard error of the mean, computed with n − 1 degrees of freedom, is 1. The
usual maximum-likelihood approximation to the standard error of the mean, using a
variance divisor of n rather than n− 1, is 0.894427.

The sample mean is a least squares estimator, so it can be computed using an LSQ
statement. Moreover, since this model is linear, the Hessian matrix and crossprod-
uct Jacobian matrix are identical, and all three versions of the COV= option yield
the same variance and standard error of the mean. Note that COV=j means that the
crossproduct Jacobian is used. This is chosen because it requires the least computa-
tion.

Example 4.5. Approximate Standard Errors � 397

proc nlp data=x cov=j pstderr pshort;
lsq resid;
parms mean=0;
resid=x-mean;

run;

The results are the same as the usual estimates.
Output 4.5.1. Parameter Estimates

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 1.000000 4.000000 0.016130

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 mean 0

Value of Objective Function = 10

PROC NLP can also compute maximum-likelihood estimates of µ and σ. In this case
it is convenient to minimize the negative log likelihood. To get correct standard errors
for maximum-likelihood estimators, the SIGSQ=1 option is required. The following
program shows COV=1 but the output that follows has COV=2 and COV=3.

proc nlp data=x cov=1 sigsq=1 pstderr phes pcov pshort;
min nloglik;
parms mean=0, sigma=1;
bounds 1e-12 < sigma;
nloglik=.5*((x-mean)/sigma)**2 + log(sigma);

run;

The variance divisor is n instead of n − 1, so the standard error of the mean is
0.894427 instead of 1. The standard error of the mean is the same with all six types
of covariance matrix, but the standard error of the standard deviation varies. The
sampling distribution of the standard deviation depends on the higher moments of
the population distribution, so different methods of estimation can produce markedly
different estimates of the standard error of the standard deviation.

Output 4.5.2 shows the output when COV=1, Output 4.5.3 shows the output when
COV=2, and Output 4.5.4 shows the output when COV=3.

398 � Chapter 4. The NLP Procedure

Output 4.5.2. Solution for COV=1
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.458258 4.364358 0.007260

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 mean 1.33149E-10
2 sigma -5.606415E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 1: M = (NOBS/d)
inv(G) JJ(f) inv(G)

mean sigma

mean 0.8 1.980107E-11
sigma 1.980107E-11 0.2099999991

Factor sigm = 1

Determinant = 0.1679999993

Matrix has Only Positive Eigenvalues

Example 4.5. Approximate Standard Errors � 399

Output 4.5.3. Solution for COV=2
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.632456 3.162278 0.025031

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 mean 1.33149E-10
2 sigma -5.606415E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 2: H = (NOBS/d) inv(G)

mean sigma

mean 0.7999999982 4.260766E-11
sigma 4.260766E-11 0.3999999978

Factor sigm = 1

Determinant = 0.3199999975

Matrix has Only Positive Eigenvalues

400 � Chapter 4. The NLP Procedure

Output 4.5.4. Solution for COV=3
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.509136 7.856442 0.000537
2 sigma 2.000000 0.419936 4.762634 0.005048

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 mean 1.301733E-10
2 sigma -5.940302E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 3: J = (1/d) inv(W)

mean sigma

mean 0.2592197879 1.062283E-11
sigma 1.062283E-11 0.1763460041

Factor sigm = 0.2

Determinant = 0.0457123738

Matrix has Only Positive Eigenvalues

Under normality, the maximum-likelihood estimators of µ and σ are independent,
as indicated by the diagonal Hessian matrix in the previous example. Hence, the
maximum-likelihood estimate of µ can be obtained by using any fixed value for
σ, such as 1. However, if the fixed value of σ differs from the actual maximum-
likelihood estimate (in this case 2), the model is misspecified and the standard er-
rors obtained with COV=2 or COV=3 are incorrect. It is therefore necessary to use
COV=1, which yields consistent estimates of the standard errors under a variety of
forms of misspecification of the error distribution.

Example 4.5. Approximate Standard Errors � 401

proc nlp data=x cov=1 sigsq=1 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean)**2;

run;

This formulation produces the same standard error of the mean, 0.894427 (see Output
4.5.5).

Output 4.5.5. Solution for Fixed σ and COV=1
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 mean 0

Value of Objective Function = 10

Covariance Matrix
1: M = (NOBS/d) inv(G)

JJ(f) inv(G)

mean

mean 0.8

Factor sigm = 1

The maximum-likelihood formulation with fixed σ is actually a least squares prob-
lem. The objective function, parameter estimates, and Hessian matrix are the same
as those in the first example in this section using the LSQ statement. However, the
Jacobian matrix is different, each row being multiplied by twice the residual. To treat
this formulation as a least squares problem, the SIGSQ=1 option can be omitted. But
since the Jacobian is not the same as in the formulation using the LSQ statement,
the COV=1 | M and COV=3 | J options, which use the Jacobian, do not yield correct
standard errors. The correct standard error is obtained with COV=2 | H, which uses
only the Hessian matrix:

proc nlp data=x cov=2 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean)**2;

run;

The results are the same as in the first example.

402 � Chapter 4. The NLP Procedure

Output 4.5.6. Solution for Fixed σ and COV=2
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.500000 8.000000 0.001324

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 mean 0

Value of Objective Function = 10

Covariance Matrix 2:
H = (NOBS/d) inv(G)

mean

mean 0.25

Factor sigm = 1.25

In summary, to obtain appropriate standard errors for least squares estimates, you can
use the LSQ statement with any of the COV= options, or you can use the MIN state-
ment with COV=2. To obtain appropriate standard errors for maximum-likelihood es-
timates, you can use the MIN statement with the negative log likelihood or the MAX
statement with the log likelihood, and in either case you can use any of the COV=
options provided that you specify SIGSQ=1. You can also use a log-likelihood func-
tion with a misspecified scale parameter provided that you use SIGSQ=1 and COV=1.
For nonlinear models, all of these methods yield approximations based on asymptotic
theory, and should therefore be interpreted cautiously.

Example 4.6. Maximum Likelihood Weibull Estimation � 403

Example 4.6. Maximum Likelihood Weibull Estimation

Two-Parameter Weibull Estimation

The following data are taken from Lawless (1982, p. 193) and represent the number
of days it took rats painted with a carcinogen to develop carcinoma. The last two
observations are censored data from a group of 19 rats:

data pike;
input days cens @@;
datalines;

143 0 164 0 188 0 188 0
190 0 192 0 206 0 209 0
213 0 216 0 220 0 227 0
230 0 234 0 246 0 265 0
304 0 216 1 244 1
;

Suppose that you want to show how to compute the maximum likelihood estimates
of the scale parameter σ (α in Lawless), the shape parameter c (β in Lawless), and
the location parameter θ (µ in Lawless). The observed likelihood function of the
three-parameter Weibull transformation (Lawless 1982, p. 191) is

L(θ, σ, c) =
cm

σm

∏
i∈D

(
ti − θ

σ

)c−1 p∏
i=1

exp
(
−
(

ti − θ

σ

)c)

and the log likelihood is

l(θ, σ, c) = m log c−mc log σ + (c− 1)
∑
i∈D

log(ti − θ)−
p∑

i=1

(
ti − θ

σ

)c

The log likelihood function can be evaluated only for σ > 0, c > 0, and θ < mini ti.
In the estimation process, you must enforce these conditions using lower and upper
boundary constraints. The three-parameter Weibull estimation can be numerically
difficult, and it usually pays off to provide good initial estimates. Therefore, you first
estimate σ and c of the two-parameter Weibull distribution for constant θ = 0. You
then use the optimal parameters σ̂ and ĉ as starting values for the three-parameter
Weibull estimation.

Although the use of an INEST= data set is not really necessary for this simple ex-
ample, it illustrates how it is used to specify starting values and lower boundary con-
straints:

404 � Chapter 4. The NLP Procedure

data par1(type=est);
keep _type_ sig c theta;
type=’parms’; sig = .5;

c = .5; theta = 0; output;
type=’lb’; sig = 1.0e-6;

c = 1.0e-6; theta = .; output;
run;

The following PROC NLP call specifies the maximization of the log likelihood func-
tion for the two-parameter Weibull estimation for constant θ = 0:

proc nlp data=pike tech=tr inest=par1 outest=opar1
outmodel=model cov=2 vardef=n pcov phes;

max logf;
parms sig c;
profile sig c / alpha = .9 to .1 by -.1 .09 to .01 by -.01;

x_th = days - theta;
s = - (x_th / sig)**c;
if cens=0 then s + log(c) - c*log(sig) + (c-1)*log(x_th);
logf = s;

run;

After a few iterations you obtain the solution given in Output 4.6.1.

Output 4.6.1. Optimization Results
PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 sig 234.318611 9.645908 24.292021 9.050475E-16
2 c 6.083147 1.068229 5.694611 0.000017269

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 sig 1.3372183E-9
2 c -7.859276E-9

Value of Objective Function = -88.23273515

Since the gradient has only small elements and the Hessian (shown in Output 4.6.2)
is negative definite (has only negative eigenvalues), the solution defines an isolated
maximum point.

Example 4.6. Maximum Likelihood Weibull Estimation � 405

Output 4.6.2. Hessian Matrix at x∗

Hessian Matrix

sig c

sig -0.011457556 0.0257527577
c 0.0257527577 -0.934221388

Determinant = 0.0100406894

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of
parameter estimates are the approximate standard errors (ASE’s). The covariance
matrix is given in Output 4.6.3.

Output 4.6.3. Covariance Matrix
Covariance Matrix 2:
H = (NOBS/d) inv(G)

sig c

sig 93.043549863 2.5648395794
c 2.5648395794 1.141112488

Factor sigm = 1

Determinant = 99.594754608

Matrix has 2 Positive Eigenvalue(s)

The confidence limits in Output 4.6.4 correspond to the α values in the PROFILE
statement.

406 � Chapter 4. The NLP Procedure

Output 4.6.4. Confidence Limits
Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 sig 234.318611 0.900000 233.111324 235.532695
1 sig . 0.800000 231.886549 236.772876
1 sig . 0.700000 230.623280 238.063824
1 sig . 0.600000 229.292797 239.436639
1 sig . 0.500000 227.855829 240.935290
1 sig . 0.400000 226.251597 242.629201
1 sig . 0.300000 224.372260 244.643392
1 sig . 0.200000 221.984557 247.278423
1 sig . 0.100000 218.390824 251.394102
1 sig . 0.090000 217.884162 251.987489
1 sig . 0.080000 217.326988 252.645278
1 sig . 0.070000 216.708814 253.383546
1 sig . 0.060000 216.008815 254.228034
1 sig . 0.050000 215.199301 255.215496
1 sig . 0.040000 214.230116 256.411041
1 sig . 0.030000 213.020874 257.935686
1 sig . 0.020000 211.369067 260.066128
1 sig . 0.010000 208.671091 263.687174
2 c 6.083147 0.900000 5.950029 6.217752
2 c . 0.800000 5.815559 6.355576
2 c . 0.700000 5.677909 6.499187
2 c . 0.600000 5.534275 6.651789
2 c . 0.500000 5.380952 6.817880
2 c . 0.400000 5.212344 7.004485
2 c . 0.300000 5.018784 7.225733
2 c . 0.200000 4.776379 7.506166
2 c . 0.100000 4.431310 7.931669
2 c . 0.090000 4.382687 7.991457
2 c . 0.080000 4.327815 8.056628
2 c . 0.070000 4.270773 8.129238
2 c . 0.060000 4.207130 8.211221
2 c . 0.050000 4.134675 8.306218
2 c . 0.040000 4.049531 8.418782
2 c . 0.030000 3.945037 8.559677
2 c . 0.020000 3.805759 8.749130
2 c . 0.010000 3.588814 9.056751

Three-Parameter Weibull Estimation

You now prepare for the three-parameter Weibull estimation by using PROC
UNIVARIATE to obtain the smallest data value for the upper boundary constraint
for θ. For this small problem, you can do this much more simply by just using a
value slightly smaller than the minimum data value 143.

/* Calculate upper bound for theta parameter */
proc univariate data=pike noprint;

var days;
output out=stats n=nobs min=minx range=range;

run;

Example 4.6. Maximum Likelihood Weibull Estimation � 407

data stats;
set stats;
keep _type_ theta;

/* 1. write parms observation */
theta = minx - .1 * range;
if theta < 0 then theta = 0;
type = ’parms’;
output;

/* 2. write ub observation */
theta = minx * (1 - 1e-4);
type = ’ub’;
output;

run;

The data set PAR2 specifies the starting values and the lower and upper bounds for
the three-parameter Weibull problem:

proc sort data=opar1;
by _type_;

run;

data par2(type=est);
merge opar1(drop=theta) stats;
by _type_;
keep _type_ sig c theta;
if _type_ in (’parms’ ’lowerbd’ ’ub’);

run;

The following PROC NLP call uses the MODEL= input data set containing the log
likelihood function that was saved during the two-parameter Weibull estimation:

proc nlp data=pike tech=tr inest=par2 outest=opar2
model=model cov=2 vardef=n pcov phes;

max logf;
parms sig c theta;
profile sig c theta / alpha = .5 .1 .05 .01;

run;

After a few iterations, you obtain the solution given in Output 4.6.5.

408 � Chapter 4. The NLP Procedure

Output 4.6.5. Optimization Results
PROC NLP: Nonlinear Maximization

Optimization Results

Parameter Estimates
Approx Approx

N Parameter Estimate Std Err t Value Pr > |t|

1 sig 108.382722 32.573379 3.327340 0.003540
2 c 2.711477 1.058759 2.560996 0.019108
3 theta 122.025951 28.692422 4.252898 0.000430

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Function

1 sig -7.1092E-10
2 c -0.000000111
3 theta -1.536828E-8

Value of Objective Function = -87.32424712

From inspecting the first- and second-order derivatives at the optimal solution, you
can verify that you have obtained an isolated maximum point. The Hessian matrix is
shown in Output 4.6.6.

Output 4.6.6. Hessian Matrix
Hessian Matrix

sig c theta

sig -0.010639974 0.0453887868 -0.010033749
c 0.0453887868 -4.078688624 -0.083026366
theta -0.010033749 -0.083026366 -0.014752094

Determinant = 0.0000502117

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of
parameter estimates are the approximate standard errors. The covariance matrix is
given in Output 4.6.7.

Example 4.6. Maximum Likelihood Weibull Estimation � 409

Output 4.6.7. Covariance Matrix
Covariance Matrix 2: H = (NOBS/d) inv(G)

sig c theta

sig 1061.0250306 29.926228928 -890.0923222
c 29.926228928 1.120970156 -26.66349396
theta -890.0923222 -26.66349396 823.25509903

Factor sigm = 1

Determinant = 19915.696446

Matrix has 3 Positive Eigenvalue(s)

The difference between the Wald and profile CLs for parameter PHI2 are remarkable,
especially for the upper 95% and 99% limits, as shown in Output 4.6.8.

Output 4.6.8. Confidence Limits
Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 sig 108.382722 0.500000 91.811562 141.564605
1 sig . 0.100000 76.502373 .
1 sig . 0.050000 72.215846 .
1 sig . 0.010000 64.262384 .
2 c 2.711477 0.500000 2.139297 3.704052
2 c . 0.100000 1.574162 9.250072
2 c . 0.050000 1.424853 19.516417
2 c . 0.010000 1.163096 19.540931
3 theta 122.025951 0.500000 91.027145 135.095454
3 theta . 0.100000 . 141.833769
3 theta . 0.050000 . 142.512603
3 theta . 0.010000 . 142.967407

Wald and PL Confidence Limits

Wald Confidence Limits

86.412312 130.353133
54.804282 161.961163
44.540072 172.225372
24.479258 192.286187
1.997355 3.425599
0.969973 4.452980
0.636348 4.786606
-0.015705 5.438659
102.673206 141.378696
74.831116 142.985700
65.789837 142.985700
48.119169 142.985700

410 � Chapter 4. The NLP Procedure

Example 4.7. Simple Pooling Problem

The following optimization problem is discussed in Haverly (1978) and in Liebman
et al. (1986, pp. 127–128). Two liquid chemicals, X and Y , are produced by the
pooling and blending of three input liquid chemicals, A, B, and C. You know the
sulfur impurity amounts of the input chemicals, and you have to respect upper limits
of the sulfur impurity amounts of the output chemicals. The sulfur concentrations
and the prices of the input and output chemicals are:

• Chemical A: Concentration = 3%, Price= $6

• Chemical B: Concentration = 1%, Price= $16

• Chemical C: Concentration = 2%, Price= $10

• Chemical X: Concentration ≤ 2.5%, Price= $9

• Chemical Y : Concentration ≤ 1.5%, Price= $15

The problem is complicated by the fact that the two input chemicals A and B are
available only as a mixture (they are either shipped together or stored together).
Because the amounts of A and B are unknown, the sulfur concentration of the mix-
ture is also unknown.

C

B

A -3% S
for $ 6

-1% S
for $ 16

Pool Blend X -≤ 2.5 % S
for $ 9
X ≤ 100

-Pool to X

Pool to Y

-

Blend Y -≤ 1.5 % S
for $ 15
Y ≤ 200-2% S

for $ 10
-C to Y

-
C to X

You know customers will buy no more than 100 units of X and 200 units of Y. The
problem is determining how to operate the pooling and blending of the chemicals to
maximize the profit. The objective function for the profit is

profit = cost(x)× amount(x) + cost(y)× amount(y)
− cost(a)× amount(a)− cost(b)× amount(b)− cost(c)× amount(c)

Example 4.7. Simple Pooling Problem � 411

There are three groups of constraints:

1. The first group of constraint functions is the mass balance restrictions illus-
trated by the graph. These are four linear equality constraints:

• amount(a) + amount(b) = pool–to–x + pool–to–y
• pool–to–x + c–to–x = amount(x)
• pool–to–y + c–to–y = amount(y)
• amount(c) = c–to–x + c–to–y

2. You introduce a new variable, pool–s, that represents the sulfur concentration
of the pool. Using pool–s and the sulfur concentration of C (2%), you obtain
two nonlinear inequality constraints for the sulfur concentrations of X and
Y , one linear equality constraint for the sulfur balance, and lower and upper
boundary restrictions for pool–s:

• pool–s × pool–to–x + 2 c–to–x ≤ 2.5 amount(x)
• pool–s × pool–to–y + 2 c–to–y ≤ 1.5 amount(y)
• 3 amount(a) + 1 amount(b) = pool–s × (amount(a) + amount(b))
• 1 ≤ pool–s ≤ 3

3. The last group assembles the remaining boundary constraints. First, you do
not want to produce more than you can sell; and finally, all variables must be
nonnegative:

• amount(x) ≤ 100, amount(y) ≤ 200
• amount(a), amount(b), amount(c), amount(x), amount(y) ≥ 0
• pool–to–x , pool–to–y , c–to–x , c–to–y ≥ 0

There exist several local optima to this problem that can be found by specifying dif-
ferent starting points. Using the starting point with all variables equal to 1 (specified
with a PARMS statement), PROC NLP finds a solution with profit = 400:

proc nlp all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;

412 � Chapter 4. The NLP Procedure

f = costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;

nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

The specified starting point was not feasible with respect to the linear equality con-
straints; therefore, a starting point is generated that satisfies linear and boundary con-
straints. Output 4.7.1 gives the starting parameter estimates.

Output 4.7.1. Starting Estimates
PROC NLP: Nonlinear Maximization

Optimization Start
Parameter Estimates

Gradient Gradient Lower
Objective Lagrange Bound

N Parameter Estimate Function Function Constraint

1 amountx 1.363636 9.000000 -0.843698 0
2 amounty 1.363636 15.000000 -0.111882 0
3 amounta 0.818182 -6.000000 -0.430733 0
4 amountb 0.818182 -16.000000 -0.542615 0
5 amountc 1.090909 -10.000000 0.017768 0
6 pooltox 0.818182 0 -0.669628 0
7 pooltoy 0.818182 0 -0.303720 0
8 ctox 0.545455 0 -0.174070 0
9 ctoy 0.545455 0 0.191838 0
10 pools 2.000000 0 0.068372 1.000000

Optimization Start
Parameter Estimates

Upper
Bound

N Parameter Constraint

1 amountx 100.000000
2 amounty 200.000000
3 amounta .
4 amountb .
5 amountc .
6 pooltox .
7 pooltoy .
8 ctox .
9 ctoy .
10 pools 3.000000

Value of Objective Function = 3.8181818182

Value of Lagrange Function = -2.866739915

The starting point satisfies the four equality constraints, as shown in Output 4.7.2.
The nonlinear constraints are given in Output 4.7.3.

Example 4.7. Simple Pooling Problem � 413

Output 4.7.2. Linear Constraints
Linear Constraints

1 2.2204E-16 : ACT 0 == + 1.0000 * amounta + 1.0000 * amountb
- 1.0000 * pooltox - 1.0000 * pooltoy

2 0 : ACT 0 == - 1.0000 * amountx + 1.0000 * pooltox
+ 1.0000 * ctox

3 -1.11E-16 : ACT 0 == - 1.0000 * amounty + 1.0000 * pooltoy
+ 1.0000 * ctoy

4 -1.11E-16 : ACT 0 == - 1.0000 * amountc + 1.0000 * ctox
+ 1.0000 * ctoy

Output 4.7.3. Nonlinear Constraints
PROC NLP: Nonlinear Maximization

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[5] nlc3 0 0 4.9441 Active NLEC
[6] nlc1_G 0.6818 0.6818 .
[7] nlc2_G -0.6818 -0.6818 -9.8046 Violat. NLIC

Output 4.7.4 shows the settings of some important PROC NLP options.

Output 4.7.4. Options
PROC NLP: Nonlinear Maximization

Minimum Iterations 0
Maximum Iterations 200
Maximum Function Calls 500
Iterations Reducing Constraint Violation 20
ABSGCONV Gradient Criterion 0.00001
GCONV Gradient Criterion 1E-8
ABSFCONV Function Criterion 0
FCONV Function Criterion 2.220446E-16
FCONV2 Function Criterion 1E-6
FSIZE Parameter 0
ABSXCONV Parameter Change Criterion 0
XCONV Parameter Change Criterion 0
XSIZE Parameter 0
ABSCONV Function Criterion 1.340781E154
Line Search Method 2
Starting Alpha for Line Search 1
Line Search Precision LSPRECISION 0.4
DAMPSTEP Parameter for Line Search .
FD Derivatives: Accurate Digits in Obj.F 15.653559775
FD Derivatives: Accurate Digits in NLCon 15.653559775
Singularity Tolerance (SINGULAR) 1E-8
Constraint Precision (LCEPS) 1E-8
Linearly Dependent Constraints (LCSING) 1E-8
Releasing Active Constraints (LCDEACT) .

The iteration history, given in Output 4.7.5, does not show any problems.

414 � Chapter 4. The NLP Procedure

Output 4.7.5. Iteration History
PROC NLP: Nonlinear Maximization

Dual Quasi-Newton Optimization
Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Maximum
Gradient
Element

Maximum Predicted of the
Function Objective Constraint Function Step Lagrange

Iter Restarts Calls Function Violation Reduction Size Function

1 0 19 -1.42400 0.00962 6.9131 1.000 0.783
2’ 0 20 2.77026 0.0166 5.3770 1.000 2.629
3 0 21 7.08706 0.1409 7.1965 1.000 9.452
4’ 0 22 11.41264 0.0583 15.5769 1.000 23.390
5’ 0 23 24.84613 1.78E-15 496.1 1.000 147.6
6 0 24 378.22825 147.4 3316.7 1.000 840.4
7’ 0 25 307.56810 50.9339 607.9 1.000 27.143
8’ 0 26 347.24468 1.8329 21.9883 1.000 28.482
9’ 0 27 349.49255 0.00915 7.1833 1.000 28.289

10’ 0 28 356.58341 0.1083 50.2566 1.000 27.479
11’ 0 29 388.70731 2.4280 24.7996 1.000 21.114
12’ 0 30 389.30118 0.0157 10.0475 1.000 18.647
13’ 0 31 399.19240 0.7997 11.1862 1.000 0.416
14’ 0 32 400.00000 0.0128 0.1533 1.000 0.00087
15’ 0 33 400.00000 7.38E-11 2.43E-10 1.000 365E-12

Optimization Results

Iterations 15 Function Calls 34
Gradient Calls 18 Active Constraints 10
Objective Function 400 Maximum Constraint 7.381118E-11

Violation
Maximum Projected Gradient 0 Value Lagrange Function -400
Maximum Gradient of the 4.973799E-14 Slope of Search Direction -2.43338E-10
Lagran Func

FCONV2 convergence criterion satisfied.

The optimal solution in Output 4.7.6 shows that to obtain the maximum profit of
$400, you need only to produce the maximum 200 units of blending Y and no units
of blending X .

Example 4.7. Simple Pooling Problem � 415

Output 4.7.6. Optimization Solution
Optimization Results
Parameter Estimates

Gradient Gradient Active
Objective Lagrange Bound

N Parameter Estimate Function Function Constraint

1 amountx -1.40478E-11 9.000000 0 Lower BC
2 amounty 200.000000 15.000000 -8.88178E-16 Upper BC
3 amounta 5.763446E-16 -6.000000 0 Lower BC
4 amountb 100.000000 -16.000000 1.065814E-14
5 amountc 100.000000 -10.000000 -1.77636E-15
6 pooltox 7.024487E-12 0 0 Lower BC
7 pooltoy 100.000000 0 1.776357E-15
8 ctox -2.10722E-11 0 1.776357E-15 Lower BC LinDep
9 ctoy 100.000000 0 5.329071E-15
10 pools 1.000000 0 4.973799E-14 Lower BC LinDep

Value of Objective Function = 400

Value of Lagrange Function = 400

The constraints are satisfied at the solution, as shown in Output 4.7.7

Output 4.7.7. Linear and Nonlinear Constraints at the Solution
Linear Constraints Evaluated at Solution

1 ACT 0 = 0 + 1.0000 * amounta + 1.0000 * amountb
- 1.0000 * pooltox - 1.0000 * pooltoy

2 ACT 6.582E-17 = 0 - 1.0000 * amountx + 1.0000 * pooltox
+ 1.0000 * ctox

3 ACT 0 = 0 - 1.0000 * amounty + 1.0000 * pooltoy
+ 1.0000 * ctoy

4 ACT 0 = 0 - 1.0000 * amountc + 1.0000 * ctox
+ 1.0000 * ctoy

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[5] nlc3 1.15E-15 1.15E-15 6.0000 Active NLEC
[6] nlc1_G 4.57E-16 4.57E-16 . Active NLIC LinDep
[7] nlc2_G 0 0 -6.0000 Active NLIC

Linearly Dependent Active Boundary Constraints

Parameter N Kind

ctox 8 Lower BC
pools 10 Lower BC

Linearly Dependent Gradients of Active Nonlinear Constraints

Parameter N

nlc3 6

416 � Chapter 4. The NLP Procedure

The same problem can be specified in many different ways. For example, the follow-
ing specification uses an INEST= data set containing the values of the starting point
and of the constants COST, COSTB, COSTC, COSTX, COSTY, CA, CB, CC, and
CD:

data init1(type=est);
input _type_ $ amountx amounty amounta amountb

amountc pooltox pooltoy ctox ctoy pools
rhs costa costb costc costx costy
ca cb cc cd;

datalines;
parms 1 1 1 1 1 1 1 1 1 1

. 6 16 10 9 15 2.5 1.5 2. 3.
;

proc nlp inest=init1 all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = ca * amountx - pools * pooltox - cc * ctox;
nlc2 = cb * amounty - pools * pooltoy - cc * ctoy;
nlc3 = cd * amounta + amountb - pools * (amounta + amountb);

run;

The third specification uses an INEST= data set containing the boundary and linear
constraints in addition to the values of the starting point and of the constants. This
specification also writes the model specification into an OUTMOD= data set:

data init2(type=est);
input _type_ $ amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools
rhs costa costb costc costx costy;

datalines;
parms 1 1 1 1 1 1 1 1 1 1

. 6 16 10 9 15 2.5 1.5 2 3
lowerbd 0 0 0 0 0 0 0 0 0 1

.
upperbd 100 200 3

.

Example 4.7. Simple Pooling Problem � 417

eq . . 1 1 . -1 -1 . . .
0

eq 1 -1 . -1 . .
0

eq . 1 -1 . -1 .
0

eq 1 . . -1 -1 .
0

;

proc nlp inest=init2 outmod=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,

nlc3 = 0.;
max f;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

The fourth specification not only reads the INEST=INIT2 data set, it also uses the
model specification from the MODEL data set that was generated in the last specifi-
cation. The PROC NLP call now contains only the defining variable statements:

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,

nlc3 = 0.;
max f;

run;

All four specifications start with the same starting point of all variables equal to 1 and
generate the same results. However, there exist several local optima to this problem,
as is pointed out in Liebman et al. (1986, p. 130).

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy = 0,
pools = 2;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
run;

This starting point with all variables equal to 0 is accepted as a local solution with
profit = 0, which minimizes rather than maximizes the profit.

418 � Chapter 4. The NLP Procedure

Example 4.8. Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming and
was taken originally from Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals sat-
isfying its chemical equilibrium state. The second law of thermodynamics implies
that a mixture of chemicals satisfies its chemical equilibrium state (at a constant tem-
perature and pressure) when the free energy of the mixture is reduced to a minimum.
Therefore the composition of the chemicals satisfying its chemical equilibrium state
can be found by minimizing the function of the free energy of the mixture.

Notation:

m number of chemical elements in the mixture
n number of compounds in the mixture
xj number of moles for compound j, j = 1, . . . , n
s total number of moles in the mixture (s =

∑n
i=1 xj)

aij number of atoms of element i in a molecule of compound j
bi atomic weight of element i in the mixture

Constraints for the Mixture:

• The number of moles must be positive:

xj > 0, j = 1, . . . , n

• There are m mass balance relationships,

n∑
j=1

aijxj = bi, i = 1, . . . ,m

Objective Function: Total Free Energy of Mixture

f(x) =
n∑

j=1

xj

[
cj + ln

(xj

s

)]
with

cj =
(

F ◦

RT

)
j

+ lnP

where F ◦/RT is the model standard free energy function for the jth compound
(found in tables) and P is the total pressure in atmospheres.

Example 4.8. Chemical Equilibrium � 419

Minimization Problem:

Determine the parameters xj that minimize the objective function f(x) subject to the
nonnegativity and linear balance constraints.

Numeric Example:

Determine the equilibrium composition of compound 1
2N2H4 + 1

2O2 at temperature
T = 3500◦K and pressure P = 750psi.

aij

i = 1 i = 2 i = 3
j Compound (F ◦/RT)j cj H N O

1 H -10.021 -6.089 1
2 H2 -21.096 -17.164 2
3 H2O -37.986 -34.054 2 1
4 N -9.846 -5.914 1
5 N2 -28.653 -24.721 2
6 NH -18.918 -14.986 1 1
7 NO -28.032 -24.100 1 1
8 O -14.640 -10.708 1
9 O2 -30.594 -26.662 2

10 OH -26.111 -22.179 1 1

Example Specification:

proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
end;

run;

Displayed Output:

The iteration history given in Output 4.8.1 does not show any problems.

420 � Chapter 4. The NLP Procedure

Output 4.8.1. Iteration History
Trust Region Optimization

Without Parameter Scaling 1

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 3’ -47.33412 2.2790 6.0765 2.456 1.000
2 0 3 3’ -47.70043 0.3663 8.5592 0.908 0.418
3 0 4 3 -47.73074 0.0303 6.4942 0 0.359
4 0 5 3 -47.73275 0.00201 4.7606 0 0.118
5 0 6 3 -47.73554 0.00279 3.2125 0 0.0168
6 0 7 3 -47.74223 0.00669 1.9552 110.6 0.00271
7 0 8 3 -47.75048 0.00825 1.1157 102.9 0.00563
8 0 9 3 -47.75876 0.00828 0.4165 3.787 0.0116
9 0 10 3 -47.76101 0.00224 0.0716 0 0.0121
10 0 11 3 -47.76109 0.000083 0.00238 0 0.0111
11 0 12 3 -47.76109 9.609E-8 2.733E-6 0 0.00248

Optimization Results

Iterations 11 Function Calls 13
Hessian Calls 12 Active Constraints 3
Objective Function -47.76109086 Max Abs Gradient Element 1.8637498E-6
Lambda 0 Actual Over Pred Change 0
Radius 0.0024776027

GCONV convergence criterion satisfied.

Output 4.8.2 lists the optimal parameters with the gradient.

Output 4.8.2. Optimization Results
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 0.040668 -9.785055
2 x2 0.147730 -19.570110
3 x3 0.783153 -34.792170
4 x4 0.001414 -12.968921
5 x5 0.485247 -25.937841
6 x6 0.000693 -22.753976
7 x7 0.027399 -28.190984
8 x8 0.017947 -15.222060
9 x9 0.037314 -30.444120
10 x10 0.096871 -25.007115

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution, as shown in Output 4.8.3.

Example 4.8. Chemical Equilibrium � 421

Output 4.8.3. Linear Constraints at Solution
PROC NLP: Nonlinear Minimization

Linear Constraints Evaluated at Solution

1 ACT -1.527E-16 = 2.0000 - 1.0000 * x1 - 2.0000 * x2 -
2.0000 * x3 - 1.0000 * x6 - 1.0000 * x10

2 ACT 5.1695E-16 = 1.0000 - 1.0000 * x4 - 2.0000 * x5 -
1.0000 * x6 - 1.0000 * x7

3 ACT -6.939E-17 = 1.0000 - 1.0000 * x3 - 1.0000 * x7 -
1.0000 * x8 - 2.0000 * x9 - 1.0000 * x10

The Lagrange multipliers are given in Output 4.8.4.

Output 4.8.4. Lagrange Multipliers
PROC NLP: Nonlinear Minimization

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Linear EC [1] 9.785055
Linear EC [2] 12.968921
Linear EC [3] 15.222060

The elements of the projected gradient must be small to satisfy a necessary first-order
optimality condition. The projected gradient is given in Output 4.8.5.

Output 4.8.5. Projected Gradient
PROC NLP: Nonlinear Minimization

Projected Gradient

Free Projected
Dimension Gradient

1 4.5770129E-9
2 6.86835E-10
3 -7.28302E-9
4 -0.000001864
5 -0.000001434
6 -0.000001361
7 -0.000000294

The projected Hessian matrix shown in Output 4.8.6 is positive definite, satisfying
the second-order optimality condition.

422 � Chapter 4. The NLP Procedure

Output 4.8.6. Projected Hessian Matrix
Projected Hessian Matrix

X1 X2 X3 X4

X1 20.903196985 -0.122067474 2.6480263467 3.3439156526
X2 -0.122067474 565.97299938 106.54631863 -83.7084843
X3 2.6480263467 106.54631863 1052.3567179 -115.230587
X4 3.3439156526 -83.7084843 -115.230587 37.529977667
X5 -1.373829641 -37.43971036 182.89278895 -4.621642366
X6 -1.491808185 -36.20703737 175.97949593 -4.574152161
X7 1.1462413516 -16.635529 -57.04158208 10.306551561

Projected Hessian Matrix

X5 X6 X7

X1 -1.373829641 -1.491808185 1.1462413516
X2 -37.43971036 -36.20703737 -16.635529
X3 182.89278895 175.97949593 -57.04158208
X4 -4.621642366 -4.574152161 10.306551561
X5 79.326057844 22.960487404 -12.69831637
X6 22.960487404 66.669897023 -8.121228758
X7 -12.69831637 -8.121228758 14.690478023

The following PROC NLP call uses a specified analytical gradient and the Hessian
matrix is computed by finite-difference approximations based on the analytic gradi-
ent:

proc nlp tech=tr fdhessian all;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
array g[10] g1-g10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
g[j] = c[j] + log(x[j] / s);

end;
run;

The results are almost identical to those of the previous run.

Example 4.9. Minimize Total Delay in a Network � 423

Example 4.9. Minimize Total Delay in a Network

The following example is taken from the user’s guide of GINO (Liebman et al. 1986).
A simple network of five roads (arcs) can be illustrated by the path diagram:

i1
i2

i3
i4F - �

�
���

@
@

@@R

6

�
�

���

@
@

@@R - F

Figure 4.11. Simple Road Network

The five roads connect four intersections illustrated by numbered nodes. Each minute
F vehicles enter and leave the network. Arc (i, j) refers to the road from intersection
i to intersection j, and the parameter xij refers to the flow from i to j. The law that
traffic flowing into each intersection j must also flow out is described by the linear
equality constraint ∑

i

xij =
∑

i

xji , j = 1, . . . , n

In general, roads also have an upper capacity, which is the number of vehicles which
can be handled per minute. The upper limits cij can be enforced by boundary con-
straints

0 ≤ xij ≤ cij , i, j = 1, . . . , n

Finding the maximum flow through a network is equivalent to solving a simple linear
optimization problem, and for large problems, PROC LP or PROC NETFLOW can
be used. The objective function is

max f = x24 + x34

and the constraints are

x13 = x32 + x34

x12 + x32 = x24

x12 + x13 = x24 + x34

0 ≤ x12, x32, x34 ≤ 10
0 ≤ x13, x24 ≤ 30

424 � Chapter 4. The NLP Procedure

The three linear equality constraints are linearly dependent. One of them is deleted
automatically by the PROC NLP subroutines. Even though the default technique is
used for this small example, any optimization subroutine can be used.

proc nlp all initial=.5;
max y;
parms x12 x13 x32 x24 x34;
bounds x12 <= 10,

x13 <= 30,
x32 <= 10,
x24 <= 30,
x34 <= 10;

/* what flows into an intersection must flow out */
lincon x13 = x32 + x34,

x12 + x32 = x24,
x24 + x34 = x12 + x13;

y = x24 + x34 + 0*x12 + 0*x13 + 0*x32;
run;

The iteration history is given in Output 4.9.1, and the optimal solution is given in
Output 4.9.2.

Output 4.9.1. Iteration History
Newton-Raphson Ridge Optimization

Without Parameter Scaling

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Ridge Change

1* 0 2 4 20.25000 19.2500 0.5774 0.0313 0.860
2* 0 3 5 30.00000 9.7500 0 0.0313 1.683

Optimization Results

Iterations 2 Function Calls 4
Hessian Calls 3 Active Constraints 5
Objective Function 30 Max Abs Gradient Element 0
Ridge 0 Actual Over Pred Change 1.6834532374

All parameters are actively constrained. Optimization cannot proceed.

Example 4.9. Minimize Total Delay in a Network � 425

Output 4.9.2. Optimization Results
PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x12 10.000000 0 Upper BC
2 x13 20.000000 0
3 x32 10.000000 0 Upper BC
4 x24 20.000000 1.000000
5 x34 10.000000 1.000000 Upper BC

Value of Objective Function = 30

Finding a traffic pattern that minimizes the total delay to move F vehicles per minute
from node 1 to node 4 introduces nonlinearities that, in turn, demand nonlinear op-
timization techniques. As traffic volume increases, speed decreases. Let tij be the
travel time on arc (i, j) and assume that the following formulas describe the travel
time as decreasing functions of the amount of traffic:

t12 = 5 + 0.1x12/(1− x12/10)
t13 = x13/(1− x13/30)
t32 = 1 + x32/(1− x32/10)
t24 = x24/(1− x24/30)
t34 = 5 + 0.1x34/(1− x34/10)

These formulas use the road capacities (upper bounds), assuming F = 5 vehicles per
minute have to be moved through the network. The objective function is now

min f = t12x12 + t13x13 + t32x32 + t24x24 + t34x34

and the constraints are

x13 = x32 + x34

x12 + x32 = x24

x24 + x34 = F = 5
0 ≤ x12, x32, x34 ≤ 10

0 ≤ x13, x24 ≤ 30

Again, the default algorithm is used:

proc nlp all initial=.5;
min y;
parms x12 x13 x32 x24 x34;
bounds x12 x13 x32 x24 x34 >= 0;
lincon x13 = x32 + x34, /* flow in = flow out */

x12 + x32 = x24,

426 � Chapter 4. The NLP Procedure

x24 + x34 = 5; /* = f = desired flow */
t12 = 5 + .1 * x12 / (1 - x12 / 10);
t13 = x13 / (1 - x13 / 30);
t32 = 1 + x32 / (1 - x32 / 10);
t24 = x24 / (1 - x24 / 30);
t34 = 5 + .1 * x34 / (1 - x34 / 10);
y = t12*x12 + t13*x13 + t32*x32 + t24*x24 + t34*x34;

run;

The iteration history is given in Output 4.9.3, and the optimal solution is given in
Output 4.9.4.

Output 4.9.3. Iteration History
Newton-Raphson Ridge Optimization

Without Parameter Scaling

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Ridge Change

1 0 2 4 40.30303 0.3433 4.44E-16 0 0.508

Optimization Results

Iterations 1 Function Calls 3
Hessian Calls 2 Active Constraints 4
Objective Function 40.303030303 Max Abs Gradient Element 4.440892E-16
Ridge 0 Actual Over Pred Change 0.5083585587

ABSGCONV convergence criterion satisfied.

Output 4.9.4. Optimization Results
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x12 2.500000 5.777778
2 x13 2.500000 5.702479
3 x32 1.114018E-17 1.000000 Lower BC
4 x24 2.500000 5.702479
5 x34 2.500000 5.777778

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are
given in Output 4.9.5 and Output 4.9.6, respectively.

Example 4.9. Minimize Total Delay in a Network � 427

Output 4.9.5. Linear Constraints at Solution
PROC NLP: Nonlinear Minimization

Linear Constraints Evaluated at Solution

1 ACT 4.4409E-16 = 0 + 1.0000 * x13 - 1.0000 * x32 -
1.0000 * x34

2 ACT 4.4409E-16 = 0 + 1.0000 * x12 + 1.0000 * x32 -
1.0000 * x24

3 ACT 0 = -5.0000 + 1.0000 * x24 + 1.0000 * x34

Output 4.9.6. Lagrange Multipliers at Solution
First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Lower BC x32 0.924702
Linear EC [1] 5.702479
Linear EC [2] 5.777778
Linear EC [3] 11.480257

Output 4.9.7 shows that the projected gradient is very small, satisfying the first-order
optimality criterion.

Output 4.9.7. Projected Gradient at Solution
Projected Gradient

Free Projected
Dimension Gradient

1 4.440892E-16

The projected Hessian matrix (shown in Output 4.9.8) is positive definite, satisfying
the second-order optimality criterion.

Output 4.9.8. Projected Hessian at Solution
Projected Hessian

Matrix

X1

X1 1.535309013

428 � Chapter 4. The NLP Procedure

References
Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions,

New York: Dover Publications.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least
Squares,” Journal of the Operations Research Society, 36, 405–421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least
Squares,” Journal of Optimization Theory and Applications, 48, 359–377.

Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press.

Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” in F. A. Lootsma, ed.,
Numerical Methods for Nonlinear Optimization, London: Academic Press.

Betts, J. T. (1977), “An Accelerated Multiplier Method for Nonlinear Programming,”
Journal of Optimization Theory and Applications, 21, 137–174.

Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear
Programming, New York: John Wiley & Sons.

Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., and Pedersen, H. C. (1982),
“The Watchdog Technique for Forcing Convergence in Algorithms for Constrained
Optimization,” Mathematical Programming, 16, 1–17.

Cramer, J. S. (1986), Econometric Applications of Maximum Likelihood Methods,
Cambridge, England: Cambridge University Press.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-
Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.

Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization
Algorithms Which Use Function and Gradient Values,” Journal of Optimization
Theory Applications, 28, 453–482.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood, NJ: Prentice-Hall.

Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified
Cholesky Factorization,” ACM Transactions on Mathematical Software, 17, 306–
312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester,
UK: John Wiley & Sons.

Fletcher, R. and Powell, M. J. D. (1963), “A Rapidly Convergent Descent Method for
Minimization,” Computer Journal, 6, 163–168.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,”
Journal of Numerical Analysis, 7, 371–389.

Gallant, A. R. (1987), Nonlinear Statistical Models, New York: John Wiley & Sons.

References � 429

Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM
Transactions on Mathematical Software, 9, 503–524.

George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive
Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1983), “Computing
Forward-Difference Intervals for Numerical Optimization,” SIAM J. Sci. Stat.
Comput., 4, 310–321.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1984), “Procedures for
Optimization Problems with a Mixture of Bounds and General Linear Constraints,”
ACM Transactions on Mathematical Software, 10, 282–298.

Gill, E. P., Murray, W., and Wright, M. H. (1981), Practical Optimization, New York:
Academic Press Inc.

Goldfeld, S. M., Quandt, R. E., and Trotter, H. F. (1966), “Maximisation by Quadratic
Hill-Climbing,” Econometrica, 34, 541–551.

Hambleton, R. K., Swaminathan, H., and Rogers, H. J. (1991), Fundamentals of Item
Response Theory, Newbury Park, CA: Sage Publications.

Hartmann, W. (1992a), Applications of Nonlinear Optimization with PROC NLP and
SAS/IML Software, Technical report, SAS Institute Inc, Cary, NC.

Hartmann, W. (1992b), Nonlinear Optimization in IML, Releases 6.08, 6.09, 6.10,
Technical report, SAS Institute Inc., Cary, NC.

Haverly, C. A. (1978), “Studies of the Behavior of Recursion for the Pooling
Problem,” SIGMAP Bulletin, Association for Computing Machinery.

Hock, W. and Schittkowski, K. (1981), Test Examples for Nonlinear Programming
Codes, volume 187 of Lecture Notes in Economics and Mathematical Systems,
Berlin-Heidelberg-New York: Springer-Verlag.

Jennrich, R. I. and Sampson, P. F. (1968), “Application of Stepwise Regression to
Nonlinear Estimation,” Technometrics, 10, 63–72.

Lawless, J. F. (1982), Statistical Methods and Methods for Lifetime Data, New York:
John Wiley & Sons.

Liebman, J., Lasdon, L., Schrage, L., and Waren, A. (1986), Modeling and
Optimization with GINO, California: The Scientific Press.

Lindström, P. and Wedin, P. A. (1984), “A New Line-Search Algorithm for Nonlinear
Least-Squares Problems,” Mathematical Programming, 29, 268–296.

Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” in G. A. Watson, ed., Lecture Notes in Mathematics, volume 30, 105–
116, Berlin-Heidelberg-New York: Springer-Verlag.

Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1981), “Testing Unconstrained
Optimization Software,” ACM Transactions on Mathematical Software, 7, 17–41.

430 � Chapter 4. The NLP Procedure

Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM
Journal on Scientific and Statistical Computing, 4, 553–572.

Moré, J. J. and Wright, S. J. (1993), Optimization Software Guide, Philadelphia:
SIAM.

Murtagh, B. A. and Saunders, M. A. (1983), MINOS 5.0 User’s Guide, Technical
Report SOL 83-20, Stanford University.

Nelder, J. A. and Mead, R. (1965), “A Simplex Method for Function Minimization,”
Computer Journal, 7, 308–313.

Polak, E. (1971), Computational Methods in Optimization, New York - San Francisco
- London: Academic Press.

Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, 12, 241–254.

Powell, M. J. D. (1978a), “Algorithms for Nonlinear Constraints That Use Lagrangian
Functions,” Mathematical Programming, 14, 224–248.

Powell, M. J. D. (1978b), “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” in G. A. Watson, ed., Lecture Notes in Mathematics,
volume 630, 144–175, Berlin-Heidelberg-New York: Springer-Verlag.

Powell, M. J. D. (1982a), “Extensions to Subroutine VF02AD,” in R. F. Drenick
and F. Kozin, eds., Systems Modeling and Optimization, Lecture Notes in Control
and Information Sciences, volume 38, 529–538, Berlin-Heidelberg-New York:
Springer-Verlag.

Powell, M. J. D. (1982b), “VMCWD: A Fortran Subroutine for Constrained
Optimization,” DAMTP 1982/NA4, cambridge, England.

Powell, M. J. D. (1992), “A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation,” DAMTP/NA5, cam-
bridge, England.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function,” Computer Journal, 3, 175–184.

Schittkowski, K. (1980), “Nonlinear Programming Codes - Information, Tests,
Performance,” Lecture Notes in Economics and Mathematical Systems, 183,
Berlin–Heidelberg–New York: Springer Verlag.

Schittkowski, K. (1987), More Test Examples for Nonlinear Programming Codes,
volume 282 of Lecture Notes in Economics and Mathematical Systems, Berlin-
Heidelberg-New York: Springer-Verlag.

Schittkowski, K. and Stoer, J. (1979), “A Factorization Method for the Solution of
Constrained Linear Least Squares Problems Allowing Subsequent Data Changes,”
Numerische Mathematik, 31, 431–463.

Stewart, G. W. (1967), “A Modification of Davidon’s Minimization Method to Accept
Difference Approximations of Derivatives,” J. Assoc. Comput. Mach., 14, 72–83.

References � 431

Wedin, P. A. and Lindström, P. (1987), Methods and Software for Nonlinear Least
Squares Problems, University of Umea, Report No. UMINF 133.87.

Whitaker, D., Triggs, C. M., and John, J. A. (1990), “Construction of Block Designs
Using Mathematical Programming,” J. R. Statist. Soc. B, 52, 497–503.

Wolfe, P. (1982), “Checking the Calculation of Gradients,” ACM Transactions on
Mathematical Software, 8, 337–343.

432

Chapter 5
The NETFLOW Procedure

Chapter Contents

OVERVIEW: NETFLOW PROCEDURE 437
Introduction . 437
Network Models . 437
Side Constraints . 439
Advantages of Network Models over LP Models 444
Mathematical Description of NPSC . 445
Flow Conservation Constraints . 446
Nonarc Variables . 446
Warm Starts . 447

GETTING STARTED: NETFLOW PROCEDURE 448
Introductory Example . 449

SYNTAX: NETFLOW PROCEDURE . 454
Functional Summary . 455
Interactivity . 460
PROC NETFLOW Statement . 461
CAPACITY Statement . 475
COEF Statement . 476
COLUMN Statement . 476
CONOPT Statement . 476
COST Statement . 477
DEMAND Statement . 477
HEADNODE Statement . 477
ID Statement . 478
LO Statement . 478
MULT Statement . 478
NAME Statement . 479
NODE Statement . 479
PIVOT Statement . 479
PRINT Statement . 479
QUIT Statement . 486
RESET Statement . 486
RHS Statement . 507
ROW Statement . 507
RUN Statement . 508

434 � Chapter 5. The NETFLOW Procedure

SAVE Statement . 508
SHOW Statement . 510
SUPDEM Statement . 514
SUPPLY Statement . 514
TAILNODE Statement . 514
TYPE Statement . 515
VAR Statement . 516

DETAILS: NETFLOW PROCEDURE . 517
Input Data Sets . 517
Output Data Sets . 526
Converting Any PROC NETFLOW Format to an MPS-Format SAS Data Set 529
Case Sensitivity . 529
Loop Arcs . 530
Multiple Arcs . 530
Pricing Strategies . 530
Dual Variables, Reduced Costs, and Status 534
The Working Basis Matrix . 536
Flow and Value Bounds . 537
Tightening Bounds and Side Constraints 537
Reasons for Infeasibility . 538
Missing S Supply and Missing D Demand Values 539
Balancing Total Supply and Total Demand 544
Warm Starts . 545
How to Make the Data Read of PROC NETFLOW More Efficient 549
Macro Variable –ORNETFL . 555
Memory Limit . 557

THE INTERIOR POINT ALGORITHM: NETFLOW PROCEDURE . . . 558
Introduction . 558
Network Models: Interior Point Algorithm 559
Linear Programming Models: Interior Point Algorithm 571

GENERALIZED NETWORKS: NETFLOW PROCEDURE 593
What Is a Generalized Network? . 593
How to Specify Data for Arc Multipliers 595

USING THE NEW EXCESS= OPTION IN PURE NETWORKS: NETFLOW
PROCEDURE . 599

Handling Excess Supply or Demand . 599
Handling Missing Supply and Demand Simultaneously 600
Maximum Flow Problems . 601
Handling Supply and Demand Ranges . 604

USING THE NEW EXCESS= OPTION IN GENERALIZED NETWORKS:
NETFLOW PROCEDURE . 605

How Generalized Networks Differ from Pure Networks 605
The EXCESS=SUPPLY Option . 606
The EXCESS=DEMAND Option . 607

EXAMPLES: NETFLOW PROCEDURE 609

Example 5.1. Shortest Path Problem . 609
Example 5.2. Minimum Cost Flow Problem 611
Example 5.3. Using a Warm Start . 614
Example 5.4. Production, Inventory, Distribution Problem 615
Example 5.5. Using an Unconstrained Solution Warm Start 622
Example 5.6. Adding Side Constraints, Using a Warm Start 626
Example 5.7. Using a Constrained Solution Warm Start 633
Example 5.8. Nonarc Variables in the Side Constraints 637
Example 5.9. Pure Networks: Using the EXCESS= Option 644
Example 5.10. Maximum Flow Problem 648
Example 5.11. Generalized Networks: Using the EXCESS= Option 651
Example 5.12. Generalized Networks: Maximum Flow Problem 655
Example 5.13. Machine Loading Problem 656
Example 5.14. Generalized Networks: Distribution Problem 659
Example 5.15. Converting to an MPS-Format SAS Data Set 662

REFERENCES . 663

436

Chapter 5
The NETFLOW Procedure
Overview: NETFLOW Procedure

Introduction

Constrained network models can be used to describe a wide variety of real-world ap-
plications ranging from production, inventory, and distribution problems to financial
applications. These problems can be solved with the NETFLOW procedure.

These models are conceptually easy since they are based on network diagrams that
represent the problem pictorially. PROC NETFLOW accepts the network specifi-
cation in a format that is particularly suited to networks. This not only simplifies
problem description but also aids in the interpretation of the solution.

Certain algebraic features of networks are exploited by a specialized version of the
simplex method so that solution times are reduced. Another optimization algorithm,
the interior point algorithm, has been implemented in PROC NETFLOW and can be
used as an alternative to the simplex algorithm to solve network problems.

Should PROC NETFLOW detect there are no arcs and nodes in the model’s data, (that
is, there is no network component), it assumes it is dealing with a linear programming
(LP) problem. The interior point algorithm is automatically selected to perform the
optimization.

You can also solve LP problems by using the OPTLP procedure. The OPTLP proce-
dure requires a linear program to be specified by using a SAS data set that adheres
to the MPS format, a widely accepted format in the optimization community. You
can use the MPSOUT= option in the NETFLOW procedure to convert typical PROC
NETFLOW format data sets into MPS-format SAS data sets.

Network Models

A network consists of a collection of nodes joined by a collection of arcs. The arcs
connect nodes and convey flow of one or more commodities that are supplied at
supply nodes and demanded at demand nodes in the network. Each arc has a cost
per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling is conservation of flow. Conservation of flow
means that the total flow in arcs directed toward a node, plus the supply at the node,
minus the demand at the node, equals the total flow in arcs directed away from the
node.

A network and its associated data can be described in SAS data sets. PROC
NETFLOW uses this description and finds the flow through each arc in the network
that minimizes the total cost of flow, meets the demand at demand nodes using the

438 � Chapter 5. The NETFLOW Procedure

supply at supply nodes so that the flow through each arc is on or between the arc’s
lower flow bound and its capacity, and satisfies the conservation of flow.

One class of network models is the production-inventory-distribution problem. The
diagram in Figure 5.1 illustrates this problem. The subscripts on the Production,
Inventory, and Sales nodes indicate the time period. Notice that if you replicate
sections of the model, the notion of time can be included.

�

	
�

Salesi−1

�

	
�

Salesi

�

	
�

Salesi+1

�

	
�

Inventoryi−1

�

	
�

Inventoryi

�

	
�

Inventoryi+1

�

	
�

Productioni−1

�

	
�

Productioni

�

	
�

Productioni+1

�

	
�

Stock on hand

�

	
�

Stock at end
- - - -

� �

? ? ?

6 6 6

Figure 5.1. Production-Inventory-Distribution Problem

In this type of model, the nodes can represent a wide variety of facilities. Several
examples are suppliers, spot markets, importers, farmers, manufacturers, factories,
parts of a plant, production lines, waste disposal facilities, workstations, warehouses,
coolstores, depots, wholesalers, export markets, ports, rail junctions, airports, road
intersections, cities, regions, shops, customers, and consumers. The diversity of this
selection demonstrates the richness of potential applications of this model.

Depending upon the interpretation of the nodes, the objectives of the modeling exer-
cise can vary widely. Some common types of objectives are

• to reduce collection or purchase costs of raw materials

• to reduce inventory holding or backorder costs. Warehouses and other storage
facilities sometimes have capacities, and there can be limits on the amount of
goods that can be placed on backorder.

• to decide where facilities should be located and what the capacity of these
should be. Network models have been used to help decide where factories,
hospitals, ambulance and fire stations, oil and water wells, and schools should
be sited.

• to determine the assignment of resources (machines, production capability,
workforce) to tasks, schedules, classes, or files

• to determine the optimal distribution of goods or services. This usually means
minimizing transportation costs, and reducing time in transit or distances cov-
ered.

Side Constraints � 439

• to find the shortest path from one location to another

• to ensure that demands (for example, production requirements, market de-
mands, contractual obligations) are met

• to maximize profits from the sale of products or the charge for services

• to maximize production by identifying bottlenecks

Some specific applications are

• car distribution models. These help determine which models and numbers of
cars should be manufactured in which factories and where to distribute cars
from these factories to zones in the United States in order to meet customer
demand at least cost.

• models in the timber industry. These help determine when to plant and mill
forests, schedule production of pulp, paper and wood products, and distribute
products for sale or export.

• military applications. The nodes can be theatres, bases, ammunition dumps,
logistical suppliers, or radar installations. Some models are used to find the
best ways to mobilize personnel and supplies and to evacuate the wounded in
the least amount of time.

• communications applications. The nodes can be telephone exchanges, trans-
mission lines, satellite links, and consumers. In a model of an electrical grid,
the nodes can be transformers, powerstations, watersheds, reservoirs, dams,
and consumers. Of concern might be the effect of high loads or outages.

Side Constraints
Often all the details of a problem cannot be specified in a network model alone. In
many of these cases, these details can be represented by the addition of side con-
straints to the model. Side constraints are a linear function of arc variables (variables
containing flow through an arc) and nonarc variables (variables that are not part of
the network). This enhancement to the basic network model allows for very general
problems. In fact, any linear program can be represented with network models having
these types of side constraints. The examples that follow help to clarify the notion
of side constraints.

PROC NETFLOW enables you to specify side constraints. The data for a side con-
straint consist of coefficients of arcs and coefficients of nonarc variables, a constraint
type (that is, ≤, =, or ≥) and a right-hand-side value (rhs). A nonarc variable has a
name, an objective function coefficient analogous to an arc cost, an upper bound anal-
ogous to an arc capacity, and a lower bound analogous to an arc lower flow bound.
PROC NETFLOW finds the flow through the network and the values of any nonarc
variables that minimize the total cost of the solution. Flow conservation is met, flow
through each arc is on or between the arc’s lower flow bound and capacity, the value
of each nonarc variable is on or between the nonarc’s lower and upper bounds, and the
side constraints are satisfied. Note that, since many linear programs have large em-
bedded networks, PROC NETFLOW is an attractive alternative to the LP procedure
in many cases.

440 � Chapter 5. The NETFLOW Procedure

In order for arcs to be specified in side constraints, they must be named. By default,
PROC NETFLOW names arcs using the names of the nodes at the head and tail of
the arc. An arc is named with its tail node name followed by an underscore and its
head node name. For example, an arc from node from to node to is called from–to.

Proportionality Constraints

Side constraints in network models fall into several categories that have special struc-
ture. They are frequently used when the flow through an arc must be proportional to
the flow through another arc. Such constraints are called proportionality constraints
and are useful in models where production is subject to refining or modification into
different materials. The amount of each output, or any waste, evaporation, or reduc-
tion can be specified as a proportion of input.

Typically the arcs near the supply nodes carry raw materials and the arcs near the
demand nodes carry refined products. For example, in a model of the milling industry,
the flow through some arcs may represent quantities of wheat. After the wheat is
processed, the flow through other arcs might be flour. For others it might be bran. The
side constraints model the relationship between the amount of flour or bran produced
as a proportion of the amount of wheat milled. Some of the wheat can end up as
neither flour, bran, nor any useful product, so this waste is drained away via arcs to a
waste node.

�

	
�

Wheat

�

	
�

Mill

�

	
�

Flour

�

	
�

Bran

�

	
�

Other

- �
�

�
�

�
�

�
�

�
�3

-
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qs

1.0 0.2

0.3

0.5

Figure 5.2. Proportionality Constraints

Consider the network fragment in Figure 5.2. The arc Wheat–Mill conveys the wheat
milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the
capacity of the mill. The lower flow bound on this arc is the minimum quantity that
must be milled for the mill to operate economically. The constraints

0.3 Wheat–Mill − Mill–Flour = 0.0
0.2 Wheat–Mill − Mill–Bran = 0.0

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of
bran. Note that it is not necessary to specify the constraint

Side Constraints � 441

0.5 Wheat–Mill − Mill–Other = 0.0

since flow conservation implies that any flow that does not traverse through
Mill–Flour or Mill–Bran must be conveyed through Mill–Other. And, computation-
ally, it is better if this constraint is not specified, since there is one less side constraint
and fewer problems with numerical precision. Notice that the sum of the proportions
must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of in-
gredients that are mixed. For example, different raw materials can have different
properties. In an application of the oil industry, the amount of products that are ob-
tained could be different for each type of crude oil. Furthermore, fuel might have a
minimum octane requirement or limited sulphur or lead content, so that a blending of
crudes is needed to produce the product.

The network fragment in Figure 5.3 shows an example of this.

�

	
�

USA

�

	
�

MidEast

�

	
�

Port

�

	
�

Refinery

�

	
�

Gasoline

�

	
�

Diesel

�

	
�

Other�
�

�
�

��

@
@

@
@

@R

- �
�

�
�

�
�
��

-
@

@
@

@
@

@
@R

5 units/
liter

4 units/
liter

4.75 units/
liter

Figure 5.3. Blending Constraints

The arcs MidEast–Port and USA–Port convey crude oil from the two sources.
The arc Port–Refinery represents refining while the arcs Refinery–Gasoline and
Refinery–Diesel carry the gas and diesel produced. The proportionality constraints

0.4 Port–Refinery − Refinery–Gasoline = 0.0
0.2 Port–Refinery − Refinery–Diesel = 0.0

capture the restrictions for producing gasoline and diesel from crude. Suppose that,
if only crude from the Middle East is used, the resulting diesel would contain 5 units
of sulphur per liter. If only crude from the USA is used, the resulting diesel would
contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of sulphur per
liter. Some crude from the USA must be used if Middle East crude is used in order to
meet the 4.75 sulphur per liter limit. The side constraint to model this requirement is

442 � Chapter 5. The NETFLOW Procedure

5 MidEast–Port +4 USA–Port −4.75 Port–Refinery ≤ 0.0

Since Port–Refinery = MidEast–Port + USA–Port, flow conservation allows this
constraint to be simplified to

1 MidEast–Port −3 USA–Port ≤ 0.0

If, for example, 120 units of crude from the Middle East is used, then at least 40 units
of crude from the USA must be used. The preceding constraint is simplified because
you assume that the sulphur concentration of diesel is proportional to the sulphur
concentration of the crude mix. If this is not the case, the relation

0.2 Port–Refinery = Refinery–Diesel

is used to obtain

5 MidEast–Port +4 USA–Port −4.75 (1.0/0.2 Refinery–Diesel) ≤ 0.0

which equals

5 MidEast–Port +4 USA–Port −23.75 Refinery–Diesel ≤ 0.0

An example similar to this Oil Industry problem is solved in the section “Introductory
Example” on page 449.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transporta-
tion or some other shared resource, or there are limits on overall production or de-
mand in multicommodity, multidivisional or multiperiod problems. Each commod-
ity, division or period can have a separate network coupled to one main system by the
side constraints. Side constraints are used to combine the outputs of subdivisions of
a problem (either commodities, outputs in distinct time periods, or different process
streams) to meet overall demands or to limit overall production or expenditures. This
method is more desirable than doing separate local optimizations for individual com-
modity, process, or time networks and then trying to establish relationships between
each when determining an overall policy if the global constraint is not satisfied. Of
course, to make models more realistic, side constraints may be necessary in the local
problems.

Side Constraints � 443

�

	
�

Factorycom2

�

	
�

Factorycom1

�

	
�

City2com2

�

	
�

City1com2

�

	
�

City2com1

�

	
�

City1com1

XXXXXXXXXXXXXXz

��������������:

XXXXXXXXXXXXXXz

��������������:

Commodity 1

Commodity 2

Figure 5.4. Multicommodity Problem

Figure 5.4 shows two network fragments. They represent identical production and
distribution sites of two different commodities. Suffix com1 represents commod-
ity 1 and suffix com2 represents commodity 2. The nodes Factorycom1 and
Factorycom2 model the same factory, and nodes City1com1 and City1com2 model
the same location, city 1. Similarly, City2com1 and City2com2 are the same loca-
tion, city 2. Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occu-
pies 3 cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters,
and the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of
each commodity can be loaded onto each truck? The side constraints for this case are

2 Factorycom1–City1com1 +3 Factorycom2–City1com2 ≤ 200
2 Factorycom1–City2com1 +3 Factorycom2–City2com2 ≤ 250

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement
of a commodity from place to place or from time period to time period. However,
sometimes an arc is included in the network as a method of capturing some aspect of
the problem that you would not normally think of as part of a network model. For
example, in a multiprocess, multiproduct model (Figure 5.5), there might be subnet-
works for each process and each product. The subnetworks can be joined together by
a set of arcs that have flows that represent the amount of product j produced by pro-
cess i. To model an upper limit constraint on the total amount of product j that can be
produced, direct all arcs carrying product j to a single node and from there through
a single arc. The capacity of this arc is the upper limit of product j production. It is
preferable to model this structure in the network rather than to include it in the side
constraints because the efficiency of the optimizer is affected less by a reasonable
increase in the size of the network.

444 � Chapter 5. The NETFLOW Procedure

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 2

Process 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 1

Process 1 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 2 production

Product 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 1 production

Product 1 subnetwork

-

-

�
�

�
�

��>Z
Z

Z
Z

ZZ~

Figure 5.5. Multiprocess, Multiproduct Example

It is often a good strategy when starting a project to use a small network formulation
and then use that model as a framework upon which to add detail. For example, in
the multiprocess, multiproduct model, you might start with the network depicted in
Figure 5.5. Then, for example, the process subnetwork can be enhanced to include
the distribution of products. Other phases of the operation could be included by
adding more subnetworks. Initially, these subnetworks can be single nodes, but in
subsequent studies they can be expanded to include greater detail.

The NETFLOW procedure accepts the side constraints in the same dense and sparse
formats that the LP procedure provides. Although PROC LP can solve network prob-
lems, the NETFLOW procedure generally solves network flow problems more effi-
ciently than PROC LP.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such
problems often result when modeling manufacturing processes, transportation or dis-
tribution networks, or resource allocation, or when deciding where to locate facilities.
Often, some commodity is to be moved from place to place, so the more natural for-
mulation in many applications is that of a constrained network rather than a linear
program.

Using a network diagram to visualize a problem makes it possible to capture the
important relationships in an easily understood picture form. The network diagram
aids the communication between model builder and model user, making it easier to
comprehend how the model is structured, how it can be changed, and how results can
be interpreted.

If a network structure is embedded in a linear program, the problem is a network
programming problem with side constraints (NPSC). When the network part of the
problem is large compared to the nonnetwork part, especially if the number of side
constraints is small, it is worthwhile to exploit this structure in the solution process.
This is what PROC NETFLOW does. It uses a variant of the revised primal simplex
algorithm that exploits the network structure to reduce solution time.

Mathematical Description of NPSC � 445

Mathematical Description of NPSC

If a network programming problem with side constraints has n nodes, a arcs, g nonarc
variables, and k side constraints, then the formal statement of the problem solved by
PROC NETFLOW is

minimize cT x + dT z
subject to Fx = b

Hx + Qz ≥,=,≤ r
l ≤ x ≤ u
m ≤ z ≤ v

where

• c is the a× 1 arc variable objective function coefficient vector (the cost vector)

• x is the a× 1 arc variable value vector (the flow vector)

• d is the g × 1 nonarc variable objective function coefficient vector

• z is the g × 1 nonarc variable value vector

• F is the n× a node-arc incidence matrix of the network, where

Fi,j =


−1, if arc j is directed from node i

1, if arc j is directed toward node i
0, otherwise

• b is the n× 1 node supply/demand vector, where

bi =


s, if node i has supply capability of s units of flow

−d, if node i has demand of d units of flow
0, if node i is a trans-shipment node

• H is the k × a side constraint coefficient matrix for arc variables, where Hi,j

is the coefficient of arc j in the ith side constraint

• Q is the k × g side constraint coefficient matrix for nonarc variables, where
Qi,j is the coefficient of nonarc j in the ith side constraint

• r is the k × 1 side constraint right-hand-side vector

• l is the a× 1 arc lower flow bound vector

• u is the a× 1 arc capacity vector

• m is the g × 1 nonarc variable lower bound vector

• v is the g × 1 nonarc variable upper bound vector

446 � Chapter 5. The NETFLOW Procedure

Flow Conservation Constraints

The constraints Fx = b are referred to as the nodal flow conservation constraints.
These constraints algebraically state that the sum of the flow through arcs directed
toward a node plus that node’s supply, if any, equals the sum of the flow through arcs
directed away from that node plus that node’s demand, if any. The flow conservation
constraints are implicit in the network model and should not be specified explic-
itly in side constraint data when using PROC NETFLOW. The constrained problems
most amenable to being solved by the NETFLOW procedure are those that, after
the removal of the flow conservation constraints, have very few constraints. PROC
NETFLOW is superior to linear programming optimizers when the network part of
the problem is significantly larger than the nonnetwork part.

The NETFLOW procedure can also be used to solve an unconstrained network prob-
lem, that is, one in which H , Q, d, r, and z do not exist.

Nonarc Variables

If the constrained problem to be solved has no nonarc variables, then Q, d, and z do
not exist. However, nonarc variables can be used to simplify side constraints. For
example, if a sum of flows appears in many constraints, it may be worthwhile to
equate this expression with a nonarc variable and use this in the other constraints. By
assigning a nonarc variable a nonzero objective function, it is then possible to incur
a cost for using resources above some lowest feasible limit. Similarly, a profit (a
negative objective function coefficient value) can be made if all available resources
are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or
supply needed resources. Then, either the excess resource can be used or the needed
resource can be supplied to another component of the model.

For example, consider a multicommodity problem of making television sets that have
either 19- or 25-inch screens. In their manufacture, 3 and 4 chips, respectively, are
used. Production occurs at 2 factories during March and April. The supplier of chips
can supply only 2600 chips to factory 1 and 3750 chips to factory 2 each month. The
names of arcs are in the form Prodn–s–m , where n is the factory number, s is the
screen size, and m is the month. For example, Prod1–25–Apr is the arc that conveys
the number of 25-inch TVs produced in factory 1 during April. You might have to
determine similar systematic naming schemes for your application.

As described, the constraints are

3 Prod1–19–Mar +4 Prod1–25–Mar ≤ 2600
3 Prod2–19–Mar +4 Prod2–25–Mar ≤ 3750
3 Prod1–19–Apr +4 Prod1–25–Apr ≤ 2600
3 Prod2–19–Apr +4 Prod2–25–Apr ≤ 3750

If there are chips that could be obtained for use in March but not used for production
in March, why not keep these unused chips until April? Furthermore, if the March

Warm Starts � 447

excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the
model becomes

3 Prod1–19–Mar +4 Prod1–25–Mar + F1–Unused–Mar = 2600
3 Prod2–19–Mar +4 Prod2–25–Mar + F2–Unused–Mar = 3750

3 Prod1–19–Apr +4 Prod1–25–Apr − F1–Kept–Since–Mar = 2600
3 Prod2–19–Apr +4 Prod2–25–Apr − F2–Kept–Since–Mar = 3750

F1–Unused–Mar + F2–Unused–Mar (continued)
− F1–Kept–Since–Mar − F2–Kept–Since–Mar ≥ 0.0

where F1–Kept–Since–Mar is the number of chips used during April at
factory 1 that were obtained in March at either factory 1 or factory 2 and
F2–Kept–Since–Mar is the number of chips used during April at factory 2 that
were obtained in March. The last constraint ensures that the number of chips used
during April that were obtained in March does not exceed the number of chips
not used in March. There may be a cost to hold chips in inventory. This can be
modeled having a positive objective function coefficient for the nonarc variables
F1–Kept–Since–Mar and F2–Kept–Since–Mar. Moreover, nonarc variable
upper bounds represent an upper limit on the number of chips that can be held in
inventory between March and April.

See Example 5.4 through Example 5.8 for a series of examples that use this TV
problem. The use of nonarc variables as described previously is illustrated.

Warm Starts

If you have a problem that has already been partially solved and is to be solved further
to obtain a better, optimal solution, information describing the solution now available
may be used as an initial solution. This is called warm starting the optimization, and
the supplied solution data are called the warm start.

Some data can be changed between the time when a warm start is created and when
it is used as a warm start for a subsequent PROC NETFLOW run. Elements in the
arc variable cost vector, the nonarc variable objective function coefficient vector, and
sometimes capacities, upper value bounds, and side constraint data can be changed
between PROC NETFLOW calls. See the section “Warm Starts” on page 545. Also,
see Example 5.4 through Example 5.8 (the TV problem) for a series of examples that
show the use of warm starts.

448 � Chapter 5. The NETFLOW Procedure

Getting Started: NETFLOW Procedure
To solve network programming problems with side constraints using PROC
NETFLOW, you save a representation of the network and the side constraints in three
SAS data sets. These data sets are then passed to PROC NETFLOW for solution.
There are various forms that a problem’s data can take. You can use any one or a
combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vector b in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem.
Usually these are arcs, but there can be data related to nonarc variables in the
ARCDATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s capacity, lower flow
bound, and name. These data are associated with the matrix F and the vectors c, l,
and u in problem (NPSC).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectors d, m, and v in problem (NPSC).
Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides.
These data are elements of the matrices H and Q and the vector r. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that arc. Each arc also has a default name that is the name of the tail and
head node of the arc concatenated together and separated by an underscore character;
tail–head, for example.

If you use the dense side constraint input format (described in the section
“CONDATA= Data Set” on page 517) and want to use the default arc names, these
arc names are names of SAS variables in the VAR list of the CONDATA= data set.

Introductory Example � 449

If you use the sparse side constraint input format (see the section “CONDATA= Data
Set” on page 517) and want to use the default arc names, these arc names are values
of the COLUMN list SAS variable of the CONDATA= data set.

The execution of PROC NETFLOW has three stages. In the preliminary (zeroth)
stage, the data are read from the NODEDATA= data set, the ARCDATA= data set, and
the CONDATA= data set. Error checking is performed, and an initial basic feasible
solution is found. If an unconstrained solution warm start is being used, then an
initial basic feasible solution is obtained by reading additional data containing that
information in the NODEDATA= data set and the ARCDATA= data set. In this case,
only constraint data and nonarc variable data are read from the CONDATA= data set.

In the first stage, an optimal solution to the network flow problem neglecting any side
constraints is found. The primal and dual solutions for this relaxed problem can be
saved in the ARCOUT= data set and the NODEOUT= data set, respectively. These
data sets are named in the PROC NETFLOW, RESET, and SAVE statements.

In the second stage, an optimal solution to the network flow problem with side con-
straints is found. The primal and dual solutions for this side constrained problem are
saved in the CONOUT= data set and the DUALOUT= data set, respectively. These
data sets are also named in the PROC NETFLOW, RESET, and SAVE statements.

If a constrained solution warm start is being used, PROC NETFLOW does not per-
form the zeroth and first stages. This warm start can be obtained by reading basis
data containing additional information in the NODEDATA= data set (also called the
DUALIN= data set) and the ARCDATA= data set.

If warm starts are to be used in future optimizations, the FUTURE1 and FUTURE2
options must be used in addition to specifying names for the data sets that contain
the primal and dual solutions in stages one and two. Then, most of the information
necessary for restarting problems is available in the output data sets containing the
primal and dual solutions of both the relaxed and side constrained network programs.

Introductory Example

Consider the following trans-shipment problem for an oil company. Crude oil is
shipped to refineries where it is processed into gasoline and diesel fuel. The gaso-
line and diesel fuel are then distributed to service stations. At each stage, there are
shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the
crude from the Middle East cannot exceed the throughput of a refinery plus 15 units.
(The phrase “plus 15 units” that finishes the last sentence is used to enable some side
constraints in this example to have a nonzero rhs.) The second set of constraints are
necessary to model the situation that one unit of crude mix processed at a refinery
yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they
flow through the network, a network programming problem with side constraints is
an appropriate model for this example (see Figure 5.6). The side constraints are used

450 � Chapter 5. The NETFLOW Procedure

to model the limitations on the amount of Middle Eastern crude that can be processed
by each refinery and the conversion proportions of crude to gasoline and diesel fuel.

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 5.6. Oil Industry Example

To solve this problem with PROC NETFLOW, save a representation of the model in
three SAS data sets. In the NODEDATA= data set, you name the supply and demand
nodes and give the associated supplies and demands. To distinguish demand nodes
from supply nodes, specify demands as negative quantities. For the oil example, the
NODEDATA= data set can be saved as follows:

title ’Oil Industry Example’;
title3 ’Setting Up Nodedata = Noded For Proc Netflow’;
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The ARCDATA= data set contains the rest of the information about the network.
Each observation in the data set identifies an arc in the network and gives the cost per

Introductory Example � 451

flow unit across the arc, the capacities of the arc, the lower bound on flow across the
arc, and the name of the arc.

title3 ’Setting Up Arcdata = Arcd1 For Proc Netflow’;
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

Finally, the CONDATA= data set contains the side constraints for the model.

title3 ’Setting Up Condata = Cond1 For Proc Netflow’;
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

Note that the SAS variable names in the CONDATA= data set are the names of arcs
given in the ARCDATA= data set. These are the arcs that have nonzero constraint
coefficients in side constraints. For example, the proportionality constraint that spec-
ifies that one unit of crude at each refinery yields three-fourths of a unit of gasoline
and one-fourth of a unit of diesel fuel is given for REFINERY 1 in the third obser-
vation and for REFINERY 2 in the last observation. The third observation requires
that each unit of flow on arc THRUPUT1 equals three-fourths of a unit of flow on arc
R1–GAS. Because all crude processed at REFINERY 1 flows through THRUPUT1
and all gasoline produced at REFINERY 1 flows through R1–GAS, the constraint
models the situation. It proceeds similarly for REFINERY 2 in the last observation.

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC NETFLOW as follows:

452 � Chapter 5. The NETFLOW Procedure

proc netflow
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 8 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50600 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 8 .
NOTE: Number of iterations, optimizing with constraints= 4 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50875 .
NOTE: The data set WORK.SOLUTION has 18 observations and 14

variables.

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets that you specify. For this
example, the solution is saved in the SOLUTION data set. It can be displayed with
the PRINT procedure as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ _rcost_;
sum _fcost_;
title3 ’Constrained Optimum’;
run;

Introductory Example � 453

Constrained Optimum

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_

1 refinery 1 r1 200 175 50 thruput1
2 refinery 2 r2 220 100 35 thruput2
3 r1 ref1 diesel 0 75 0
4 r1 ref1 gas 0 140 0 r1_gas
5 r2 ref2 diesel 0 75 0
6 r2 ref2 gas 0 100 0 r2_gas
7 middle east refinery 1 63 95 20 m_e_ref1
8 u.s.a. refinery 1 55 99999999 0
9 middle east refinery 2 81 80 10 m_e_ref2
10 u.s.a. refinery 2 49 99999999 0
11 ref1 diesel servstn1 diesel 18 99999999 0
12 ref2 diesel servstn1 diesel 36 99999999 0
13 ref1 gas servstn1 gas 15 70 0
14 ref2 gas servstn1 gas 17 35 5
15 ref1 diesel servstn2 diesel 17 99999999 0
16 ref2 diesel servstn2 diesel 23 99999999 0
17 ref1 gas servstn2 gas 22 60 0
18 ref2 gas servstn2 gas 31 99999999 0

Obs _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_ _RCOST_

1 . . 145.00 29000.00 .
2 . . 35.00 7700.00 29
3 . . 36.25 0.00 .
4 . . 108.75 0.00 .
5 . . 8.75 0.00 .
6 . . 26.25 0.00 .
7 100 . 80.00 5040.00 .
8 80 . 65.00 3575.00 .
9 100 . 20.00 1620.00 .
10 80 . 15.00 735.00 .
11 . 30 30.00 540.00 .
12 . 30 0.00 0.00 12
13 . 95 68.75 1031.25 .
14 . 95 26.25 446.25 .
15 . 15 6.25 106.25 .
16 . 15 8.75 201.25 .
17 . 40 40.00 880.00 .
18 . 40 0.00 0.00 7

========
50875.00

Figure 5.7. CONOUT=SOLUTION

Notice that, in CONOUT=SOLUTION (Figure 5.7), the optimal flow through each
arc in the network is given in the variable named –FLOW– , and the cost of flow
through each arc is given in the variable –FCOST– .

454 � Chapter 5. The NETFLOW Procedure

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

80

100

15

80

20

65

35

145

8.75

26.25

36.25

108.75
68.75

8.75

30

40 26.25

6.25

−95

−30

−40

−15

Figure 5.8. Oil Industry Solution

Syntax: NETFLOW Procedure
Below are statements used in PROC NETFLOW, listed in alphabetical order as they
appear in the text that follows.

PROC NETFLOW options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
CONOPT;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
PIVOT;
PRINT options ;
QUIT;
RESET options ;
RHS variables ;

Functional Summary � 455

ROW variables ;
RUN;
SAVE options ;
SHOW options ;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

Functional Summary

The following table outlines the options available for the NETFLOW procedure clas-
sified by function.

Table 5.1. Functional Summary

Description Statement Option

Input Data Set Options:
arcs input data set PROC NETFLOW ARCDATA=
nodes input data set PROC NETFLOW NODEDATA=
constraint input data set PROC NETFLOW CONDATA=

Output Data Set Options:
unconstrained primal solution data set PROC NETFLOW ARCOUT=
unconstrained dual solution data set PROC NETFLOW NODEOUT=
constrained primal solution data set PROC NETFLOW CONOUT=
constrained dual solution data set PROC NETFLOW DUALOUT=
convert sparse or dense format input data set into
MPS format output data set

PROC NETFLOW MPSOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
default constraint type PROC NETFLOW DEFCONTYPE=
special COLUMN variable value PROC NETFLOW TYPEOBS=
special COLUMN variable value PROC NETFLOW RHSOBS=
used to interpret arc and nonarc variable names PROC NETFLOW NAMECTRL=
no new nonarc variables PROC NETFLOW SAME–NONARC–DATA
no nonarc data in ARCDATA PROC NETFLOW ARCS–ONLY–ARCDATA
data for an arc found once in ARCDATA PROC NETFLOW ARC–SINGLE–OBS
data for a constraint found once in CONDATA PROC NETFLOW CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC NETFLOW NON–REPLIC=
data is grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
approximate number of nodes PROC NETFLOW NNODES=
approximate number of arcs PROC NETFLOW NARCS=

456 � Chapter 5. The NETFLOW Procedure

Description Statement Option

approximate number of nonarc variables PROC NETFLOW NNAS=
approximate number of coefficients PROC NETFLOW NCOEFS=
approximate number of constraints PROC NETFLOW NCONS=

Network Options:
default arc cost PROC NETFLOW DEFCOST=
default arc capacity PROC NETFLOW DEFCAPACITY=
default arc lower flow bound PROC NETFLOW DEFMINFLOW=
network’s only supply node PROC NETFLOW SOURCE=
SOURCE’s supply capability PROC NETFLOW SUPPLY=
network’s only demand node PROC NETFLOW SINK=
SINK’s demand PROC NETFLOW DEMAND=
convey excess supply/demand through network PROC NETFLOW THRUNET
find maximal flow between SOURCE and SINK PROC NETFLOW MAXFLOW
cost of bypass arc for MAXFLOW problem PROC NETFLOW BYPASSDIVIDE=
find shortest path from SOURCE to SINK PROC NETFLOW SHORTPATH
specify generalized networks PROC NETFLOW GENNET
specify excess demand or supply PROC NETFLOW EXCESS=

Memory Control Options:
issue memory usage messages to SAS log PROC NETFLOW MEMREP
number of bytes to use for main memory PROC NETFLOW BYTES=
proportion of memory for arrays PROC NETFLOW COREFACTOR=
memory allocated for LU factors PROC NETFLOW DWIA=
linked list for updated column PROC NETFLOW SPARSEP2
use 2-dimensional array for basis matrix PROC NETFLOW INVD–2D
maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Simplex Options:
use big-M instead of two-phase method, stage 1 RESET BIGM1
use Big-M instead of two-phase method, stage 2 RESET BIGM2
anti-cycling option RESET CYCLEMULT1=
interchange first nonkey with leaving key arc RESET INTFIRST
controls working basis matrix inversions RESET INVFREQ=
maximum number of L row operations allowed
before refactorization

RESET MAXL=

maximum number of LU factor column updates RESET MAXLUUPDATES=
anti-cycling option RESET MINBLOCK1=
use first eligible leaving variable, stage 1 RESET LRATIO1
use first eligible leaving variable, stage 2 RESET LRATIO2
negates INTFIRST RESET NOINTFIRST
negates LRATIO1 RESET NOLRATIO1
negates LRATIO2 RESET NOLRATIO2
negates PERTURB1 RESET NOPERTURB1
anti-cycling option RESET PERTURB1

Functional Summary � 457

Description Statement Option

controls working basis matrix refactorization RESET REFACTFREQ=
use two-phase instead of big-M method, stage 1 RESET TWOPHASE1
use two-phase instead of big-M method, stage 2 RESET TWOPHASE2
pivot element selection parameter RESET U=
zero tolerance, stage 1 RESET ZERO1=
zero tolerance, stage 2 RESET ZERO2=
zero tolerance, real number comparisons RESET ZEROTOL=

Pricing Options:
frequency of dual value calculation RESET DUALFREQ=
pricing strategy, stage 1 RESET PRICETYPE1=
pricing strategy, stage 2 RESET PRICETYPE2=
used when P1SCAN=PARTIAL RESET P1NPARTIAL=
controls search for entering candidate, stage 1 RESET P1SCAN=
used when P2SCAN=PARTIAL RESET P2NPARTIAL=
controls search for entering candidate, stage 2 RESET P2SCAN=
initial queue size, stage 1 RESET QSIZE1=
initial queue size, stage 2 RESET QSIZE2=
used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
controls scan when filling queue, stage 1 RESET Q1FILLSCAN=
used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
controls scan when filling queue, stage 2 RESET Q2FILLSCAN=
queue size reduction factor, stage 1 RESET REDUCEQSIZE1=
queue size reduction factor, stage 2 RESET REDUCEQSIZE2=
frequency of refreshing queue, stage 1 RESET REFRESHQ1=
frequency of refreshing queue, stage 2 RESET REFRESHQ2=

Optimization Termination Options:
pause after stage 1; don’t start stage 2 RESET ENDPAUSE1
pause when feasible, stage 1 RESET FEASIBLEPAUSE1
pause when feasible, stage 2 RESET FEASIBLEPAUSE2
maximum number of iterations, stage 1 RESET MAXIT1=
maximum number of iterations, stage 2 RESET MAXIT2=
negates ENDPAUSE1 RESET NOENDPAUSE1
negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
pause every PAUSE1 iterations, stage 1 RESET PAUSE1=
pause every PAUSE2 iterations, stage 2 RESET PAUSE2=

Interior Point Algorithm Options:
use interior point algorithm PROC NETFLOW INTPOINT
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=

458 � Chapter 5. The NETFLOW Procedure

Description Statement Option

allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=
stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=
stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=
stop because of infeasd RESET AND–KEEPGOING–ID=

PRINT Statement Options:
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variable information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variables PRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints associ-
ated with some arcs

PRINT CON–ARCS

display information for some constraints associ-
ated with some nonarc variables

PRINT CON–NONARCS

Functional Summary � 459

Description Statement Option

display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO
display basic arcs/variables PRINT / BASIC
display nonbasic arcs/variables PRINT / NONBASIC

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS
show options that pause optimization SHOW PAUSE
show simplex algorithm options SHOW SIMPLEX
show pricing strategy options SHOW PRICING
show miscellaneous options SHOW MISC

SHOW Statement Qualifiers:
display information only on relevant options SHOW / RELEVANT
display options for current stage only SHOW / STAGE

Miscellaneous Options:
infinity value PROC NETFLOW INFINITY=
scale constraint row, nonarc variable column co-
efficients, or both

PROC NETFLOW SCALE=

maximization instead of minimization PROC NETFLOW MAXIMIZE
use warm start solution PROC NETFLOW WARM
all-artificial starting solution PROC NETFLOW ALLART
output complete basis information to ARCOUT=
and NODEOUT= data sets

RESET FUTURE1

output complete basis information to CONOUT=
and DUALOUT= data sets

RESET FUTURE2

turn off infeasibility or optimality flags RESET MOREOPT
negates FUTURE1 RESET NOFUTURE1
negates FUTURE2 RESET NOFUTURE2
negates SCRATCH RESET NOSCRATCH
negates ZTOL1 RESET NOZTOL1
negates ZTOL2 RESET NOZTOL2
write optimization time to SAS log RESET OPTIM–TIMER
no stage 1 optimization; do stage 2 optimization RESET SCRATCH
suppress similar SAS log messages RESET VERBOSE=
use zero tolerance, stage 1 RESET ZTOL1

460 � Chapter 5. The NETFLOW Procedure

Description Statement Option

use zero tolerance, stage 2 RESET ZTOL2

Interactivity
PROC NETFLOW can be used interactively. You begin by giving the PROC
NETFLOW statement, and you must specify the ARCDATA= data set. The
CONDATA= data set must also be specified if the problem has side constraints. If
necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named
–TAIL– that has tail nodes of arcs as values), it may not be necessary to have many
or any variable lists.

The CONOPT, PIVOT, PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements
follow and can be listed in any order. The CONOPT and QUIT statements can be
used only once. The others can be used as many times as needed.

Use the RESET or SAVE statement to change the names of the output data sets.
With RESET, you can also indicate the reasons why optimization should stop (for
example, you can indicate the maximum number of stage 1 or stage 2 iterations that
can be performed). PROC NETFLOW then has a chance to either execute the next
statement, or, if the next statement is one that PROC NETFLOW does not recognize
(the next PROC or DATA step in the SAS session), do any allowed optimization and
finish. If no new statement has been submitted, you are prompted for one. Some
options of the RESET statement enable you to control aspects of the primal simplex
algorithm. Specifying certain values for these options can reduce the time it takes to
solve a problem. Note that any of the RESET options can be specified in the PROC
NETFLOW statement.

The RUN statement starts or resumes optimization. The PIVOT statement makes
PROC NETFLOW perform one simplex iteration. The QUIT statement immediately
stops PROC NETFLOW. The CONOPT statement forces PROC NETFLOW to con-
sider constraints when it next performs optimization. The SAVE statement has op-
tions that enable you to name output data sets; information about the current solution
is put in these output data sets. Use the SHOW statement if you want to examine the
values of options of other statements. Information about the amount of optimization
that has been done and the STATUS of the current solution can also be displayed
using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem.
PRINT ARCS produces information on all arcs. PRINT SOME–ARCS limits this
output to a subset of arcs. There are similar PRINT statements for nonarc variables
and constraints:

print nonarcs;
print some_nonarcs;

PROC NETFLOW Statement � 461

print constraints;
print some_cons;

PRINT CON–ARCS enables you to limit constraint information that is obtained to
members of a set of arcs that have nonzero constraint coefficients in a set of con-
straints. PRINT CON–NONARCS is the corresponding statement for nonarc vari-
ables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */
run; /* do some optimization */
/* suppose that optimization stopped for */
/* some reason or you manually stopped it */
print options; /* look at the current solution */
save options; /* keep current solution */
show options; /* look at settings */
reset options; /* change some settings, those that */

/* caused optimization to stop */
run; /* do more optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default settings for
everything, then the following statement is all you need:

PROC NETFLOW ARCDATA= data set ;

PROC NETFLOW Statement

PROC NETFLOW options ;

This statement invokes the procedure. The following options and the options listed
with the RESET statement can appear in the PROC NETFLOW statement.

Data Set Options

This section briefly describes all the input and output data sets used by PROC
NETFLOW. The ARCDATA= data set, NODEDATA= data set, and CONDATA=
data set can contain SAS variables that have special names, for instance –CAPAC– ,
–COST– , and –HEAD– . PROC NETFLOW looks for such variables if you do
not give explicit variable list specifications. If a SAS variable with a special name
is found and that SAS variable is not in another variable list specification, PROC
NETFLOW determines that values of the SAS variable are to be interpreted in a spe-
cial way. By using SAS variables that have special names, you may not need to have
any variable list specifications.

462 � Chapter 5. The NETFLOW Procedure

ARCDATA=SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and
nodal supply/demand data. The ARCDATA= data set must be specified in all PROC
NETFLOW statements.

ARCOUT=SAS-data-set
AOUT=SAS-data-set

names the output data set that receives all arc and nonarc variable data, including
flows or values, and other information concerning the unconstrained optimal solu-
tion. The supply and demand information can also be found in the ARCOUT= data
set. Once optimization that considers side constraints starts, you are not able to ob-
tain an ARCOUT= data set. Instead, use the CONOUT= data set to get the current
solution. See the section “ARCOUT= and CONOUT= Data Sets” on page 526 for
more information.

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also con-
tain other data such as arc costs, capacities, lower flow bounds, nonarc variable upper
and lower bounds, and objective function coefficients. PROC NETFLOW needs a
CONDATA= data set to solve a constrained problem or a linear programming prob-
lem. See the section “CONDATA= Data Set” on page 517 for more information.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that receives an optimal primal solution to the problem ob-
tained by performing optimization that considers the side constraints. See the section
“ARCOUT= and CONOUT= Data Sets” on page 526 for more information.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

names the output data set that receives an optimal dual solution to the problem ob-
tained by performing optimization that considers the side constraints. See the section
“NODEOUT= and DUALOUT= Data Sets” on page 527 for more information.

NODEDATA=SAS-data-set
DUALIN=SAS-data-set

names the data set that contains the node supply and demand specifications. You do
not need observations in the NODEDATA= data set for trans-shipment nodes. (Trans-
shipment nodes neither supply nor demand flow.) All nodes are assumed to be trans-
shipment nodes unless supply or demand data indicate otherwise. It is acceptable for
some arcs to be directed toward supply nodes or away from demand nodes.

The use of the NODEDATA= data set is optional in the PROC NETFLOW state-
ment provided that, if the NODEDATA= data set is not used, supply and demand
details are specified by other means. Other means include using the MAXFLOW
or SHORTPATH option, SUPPLY or DEMAND list variables (or both) in the
ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= op-
tion in the PROC NETFLOW statement.

NODEOUT=SAS-data-set
names the output data set that receives all information about nodes (supply and de-

PROC NETFLOW Statement � 463

mand and nodal dual variable values) and other information concerning the optimal
solution found by the optimizer when neglecting side constraints. Once optimization
that considers side constraints starts, you are not able to obtain a NODEOUT= data
set. Instead, use the DUALOUT= data set to get the current solution dual informa-
tion. See the section “NODEOUT= and DUALOUT= Data Sets” on page 527 for a
more complete description.

MPSOUT=SAS-data-set
names the SAS data set that contains converted sparse or dense format input data in
MPS format. Invoking this option directs the NETFLOW procedure to halt before
attempting optimization. For more information about the MPSOUT= option, see
the “Converting Any PROC NETFLOW Format to an MPS-Format SAS Data Set”
section on page 529. For more information about the MPS-format SAS data set, see
Chapter 14.

General Options

The following is a list of options you can use with PROC NETFLOW. The options
are listed in alphabetical order.

ALLART
indicates that PROC NETFLOW uses an all artificial initial solution (Kennington
and Helgason 1980, p. 68) instead of the default good path method for determining
an initial solution (Kennington and Helgason 1980, p. 245). The ALLART initial
solution is generally not as good; more iterations are usually required before the
optimal solution is obtained. However, because less time is used when setting up an
ALLART start, it can offset the added expenditure of CPU time in later computations.

ARCS–ONLY–ARCDATA
indicates that data for only arcs are in the ARCDATA= data set. When PROC
NETFLOW reads the data in ARCDATA= data set, memory would not be wasted
to receive data for nonarc variables. The read might then be performed faster. See the
section “How to Make the Data Read of PROC NETFLOW More Efficient” on page
549.

ARC–SINGLE–OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is
found in only one observation of the ARCDATA= data set. When reading the data in
the ARCDATA= data set, PROC NETFLOW knows that the data in an observation is
for an arc or a nonarc variable that has not had data previously read that needs to be
checked for consistency. The read might then be performed faster.

If you specify ARC–SINGLE–OBS, PROC NETFLOW automatically works as if
GROUPED=ARCDATA is also specified.

See the section “How to Make the Data Read of PROC NETFLOW More Efficient”
on page 549.

BYPASSDIVIDE=b
BYPASSDIV=b
BPD=b

should be used only when the MAXFLOW option has been specified; that is, PROC

464 � Chapter 5. The NETFLOW Procedure

NETFLOW is solving a maximal flow problem. PROC NETFLOW prepares to solve
maximal flow problems by setting up a bypass arc. This arc is directed from the
SOURCE to the SINK and will eventually convey flow equal to INFINITY minus
the maximal flow through the network. The cost of the bypass arc must be expen-
sive enough to drive flow through the network, rather than through the bypass arc.
However, the cost of the bypass arc must be less than the cost of artificial variables
(otherwise these might have nonzero optimal value and a false infeasibility error will
result). Also, the cost of the bypass arc must be greater than the eventual total cost
of the maximal flow, which can be nonzero if some network arcs have nonzero costs.
The cost of the bypass is set to the value of the INFINITY= option. Valid values for
the BYPASSDIVIDE= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the by-
pass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE=
option. The reduced costs in the ARCOUT= data set and the CONOUT= data set will
correctly reflect the value that would be added to the maximal flow if the capacity of
the arc is increased by one unit. If there are nonzero costs, or if you specify the
BYPASSDIVIDE= option, the reduced costs may be contaminated by the cost of the
bypass arc and no economic interpretation can be given to reduced cost values. The
default value for the BYPASSDIVIDE= option (in the presence of nonzero arc costs)
is 100.0.

BYTES=b
indicates the size of the main working memory (in bytes) that PROC NETFLOW will
allocate. The default value for the BYTES= option is near to the number of bytes of
the largest contiguous memory that can be allocated for this purpose. The working
memory is used to store all the arrays and buffers used by PROC NETFLOW. If this
memory has a size smaller than what is required to store all arrays and buffers, PROC
NETFLOW uses various schemes that page information between memory and disk.

PROC NETFLOW uses more memory than the main working memory. The addi-
tional memory requirements cannot be determined at the time when the main work-
ing memory is allocated. For example, every time an output data set is created, some
additional memory is required. Do not specify a value for the BYTES= option equal
to the size of available memory.

CON–SINGLE–OBS
improves how the CONDATA= data set is read. How it works depends on whether
the CONDATA has a dense or sparse format.

If CONDATA has the dense format, specifying CON–SINGLE–OBS indicates that,
for each constraint, data can be found in only one observation of CONDATA.

If CONDATA has a sparse format, and data for each arc and nonarc variable can be
found in only one observation of CONDATA, then specify the CON–SINGLE–OBS
option. If there are n SAS variables in the ROW and COEF list, then each arc or
nonarc can have at most n constraint coefficients in the model. See the section “How
to Make the Data Read of PROC NETFLOW More Efficient” on page 549.

PROC NETFLOW Statement � 465

COREFACTOR=c
CF=c

enables you to specify the maximum proportion of memory to be used by the arrays
frequently accessed by PROC NETFLOW. PROC NETFLOW strives to maintain all
information required during optimization in core. If the amount of available mem-
ory is not great enough to store the arrays completely in core, either initially or as
memory requirements grow, PROC NETFLOW can change the memory manage-
ment scheme it uses. Large problems can still be solved. When necessary, PROC
NETFLOW transfers data from random access memory (RAM) or core that can be
accessed quickly but is of limited size to slower access large capacity disk memory.
This is called paging.

Some of the arrays and buffers used during constrained optimization either vary in
size, are not required as frequently as other arrays, or are not required throughout
the simplex iteration. Let a be the amount of memory in bytes required to store
frequently accessed arrays of nonvarying size. Specify the MEMREP option in the
PROC NETFLOW statement to get the value for a and a report of memory usage. If
the size of the main working memory BYTES=b multiplied by COREFACTOR=c is
greater than a, PROC NETFLOW keeps the frequently accessed arrays of nonvarying
size resident in core throughout the optimization. If the other arrays cannot fit into
core, they are paged in and out of the remaining part of the main working memory.

If b multiplied by c is less than a, PROC NETFLOW uses a different memory scheme.
The working memory is used to store only the arrays needed in the part of the algo-
rithm being executed. If necessary, these arrays are read from disk into the main
working area. Paging, if required, is done for all these arrays, and sometimes infor-
mation is written back to disk at the end of that part of the algorithm. This memory
scheme is not as fast as the other memory schemes. However, problems can be solved
with memory that is too small to store every array.

PROC NETFLOW is capable of solving very large problems in a modest amount of
available memory. However, as more time is spent doing input/output operations,
the speed of PROC NETFLOW decreases. It is important to choose the value of the
COREFACTOR= option carefully. If the value is too small, the memory scheme that
needs to be used might not be as efficient as another that could have been used had a
larger value been specified. If the value is too large, too much of the main working
memory is occupied by the frequently accessed, nonvarying sized arrays, leaving too
little for the other arrays. The amount of input/output operations for these other arrays
can be so high that another memory scheme might have been used more beneficially.

The valid values of COREFACTOR=c are between 0.0 and 0.95, inclusive. The de-
fault value for c is 0.75 when there are over 200 side constraints, and 0.9 when there
is only one side constraint. When the problem has between 2 and 200 constraints, the
value of c lies between the two points (1, 0.9) and (201, 0.75).

DEFCAPACITY=c
DC=c

requests that the default arc capacity and the default nonarc variable value upper
bound be c. If this option is not specified, then DEFCAPACITY= INFINITY.

466 � Chapter 5. The NETFLOW Procedure

DEFCONTYPE=c
DEFTYPE=c
DCT=c

specifies the default constraint type. This default constraint type is either less than or
equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option
are

LE, le, <= for less than or equal to

EQ, eq, = for equal to

GE, ge, >= for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function
coefficient be c. If this option is not specified, then DEFCOST=0.0.

DEFMINFLOW=m
DMF=m

requests that the default lower flow bound through arcs and the default lower value
bound of nonarc variables be m. If a value is not specified, then DEFMINFLOW=0.0.

DEMAND=d
specifies the demand at the SINK node specified by the SINK= option. The
DEMAND= option should be used only if the SINK= option is given in the PROC
NETFLOW statement and neither the SHORTPATH option nor the MAXFLOW op-
tion is specified. If you are solving a minimum cost network problem and the SINK=
option is used to identify the sink node, but the DEMAND= option is not specified,
then the demand at the sink node is made equal to the network’s total supply.

DWIA=i
controls the initial amount of memory to be allocated to store the LU factors of the
working basis matrix. DWIA stands for DW initial allocation and i is the number
of nonzeros and matrix row operations in the LU factors that can be stored in this
memory. Due to fill-in in the U factor and the growth in the number of row operations,
it is often necessary to move information about elements of a particular row or column
to another location in the memory allocated for the LU factors. This process leaves
some memory temporarily unoccupied. Therefore, DWIA=i must be greater than the
memory required to store only the LU factors.

Occasionally, it is necessary to compress the U factor so that it again occupies con-
tiguous memory. Specifying too large a value for DWIA means that more memory
is required by PROC NETFLOW. This might cause more expensive memory mecha-
nisms to be used than if a smaller but adequate value had been specified for DWIA=.
Specifying too small a value for the DWIA= option can make time-consuming com-
pressions more numerous. The default value for the DWIA= option is eight times the
number of side constraints.

PROC NETFLOW Statement � 467

EXCESS=option
enables you to specify how to handle excess supply or demand in a network, if it
exists.

For pure networks EXCESS=ARCS and EXCESS=SLACKS are valid options. By
default EXCESS=ARCS is used. Note that if you specify EXCESS=SLACKS, then
the interior point solver is used and you need to specify the output data set using the
CONOUT= data set. For more details see the section “Using the New EXCESS=
Option in Pure Networks: NETFLOW Procedure” on page 599.

For generalized networks you can either specify EXCESS=DEMAND or
EXCESS=SUPPLY to indicate that the network has excess demand or excess
supply, respectively. For more details see the section “Using the New EXCESS=
Option in Generalized Networks: NETFLOW Procedure” on page 605.

GENNET
This option is necessary if you need to solve a generalized network flow problem and
there are no arc multipliers specified in the ARCDATA= data set.

GROUPED=grouped
PROC NETFLOW can take a much shorter time to read data if the data have been
grouped prior to the PROC NETFLOW call. This enables PROC NETFLOW to
conclude that, for instance, a new NAME list variable value seen in an ARCDATA=
data set grouped by the values of the NAME list variable before PROC NETFLOW
was called is new. PROC NETFLOW does not need to check that the NAME has
been read in a previous observation. See the section “How to Make the Data Read of
PROC NETFLOW More Efficient” on page 549.

• GROUPED=ARCDATA indicates that the ARCDATA= data set has been
grouped by values of the NAME list variable. If –NAME– is the name of
the NAME list variable, you could use PROC SORT DATA=ARCDATA; BY
–NAME–; prior to calling PROC NETFLOW. Technically, you do not have
to sort the data, only ensure that all similar values of the NAME list variable
are grouped together. If you specify the ARCS–ONLY–ARCDATA option,
PROC NETFLOW automatically works as if GROUPED=ARCDATA is also
specified.

• GROUPED=CONDATA indicates that the CONDATA= data set has been
grouped.

If the CONDATA= data set has a dense format, GROUPED=CONDATA indi-
cates that the CONDATA= data set has been grouped by values of the ROW
list variable. If –ROW– is the name of the ROW list variable, you could
use PROC SORT DATA=CONDATA; BY –ROW–; prior to calling PROC
NETFLOW. Technically, you do not have to sort the data, only ensure that
all similar values of the ROW list variable are grouped together. If you specify
the CON–SINGLE–OBS option, or if there is no ROW list variable, PROC
NETFLOW automatically works as if GROUPED=CONDATA has been spec-
ified.

If the CONDATA= data set has the sparse format, GROUPED=CONDATA
indicates that the CONDATA= data set has been grouped by values of the

468 � Chapter 5. The NETFLOW Procedure

COLUMN list variable. If –COL– is the name of the COLUMN list variable,
you could use PROC SORT DATA=CONDATA; BY –COL–; prior to calling
PROC NETFLOW. Technically, you do not have to sort the data, only ensure
that all similar values of the COLUMN list variable are grouped together.

• GROUPED=BOTH indicates that both GROUPED=ARCDATA and
GROUPED=CONDATA are TRUE.

• GROUPED=NONE indicates that the data sets have not been grouped, that
is, neither GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE.
This is the default, but it is much better if GROUPED=ARCDATA, or
GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb
bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When
PROC NETFLOW is reading the ith observation, either the value of the –XXXXX–
variable is the same as the (i − 1)st (that is, the previous observation’s) –XXXXX–
value, or it is a new –XXXXX– value not seen in any previous observation. This also
means that if the ith –XXXXX– value is different from the (i−1)st –XXXXX– value,
the value of the (i − 1)st –XXXXX– variable will not be seen in any observations
i, i + 1,

INFINITY=i
INF=i

is the largest number used by PROC NETFLOW in computations. A number too
small can adversely affect the solution process. You should avoid specifying an enor-
mous value for the INFINITY= option because numerical roundoff errors can result.
If a value is not specified, then INFINITY=99999999. The INFINITY= option cannot
be assigned a value less than 9999.

INTPOINT
indicates that the interior point algorithm is to be used. The INTPOINT option must
be specified if you want the interior point algorithm to be used for solving network
problems, otherwise the simplex algorithm is used instead. For linear programming
problems (problems with no network component), PROC NETFLOW must use the
interior point algorithm, so you need not specify the INTPOINT option.

INVD–2D
controls the way in which the inverse of the working basis matrix is stored. How this
matrix is stored affects computations as well as how the working basis or its inverse
is updated. The working basis matrix is defined in the section “Details: NETFLOW
Procedure” on page 517. If INVD–2D is specified, the working basis matrix inverse

PROC NETFLOW Statement � 469

is stored as a matrix. Typically, this memory scheme is best when there are few side
constraints or when the working basis is dense.

If INVD–2D is not specified, lower (L) and upper (U) factors of the working basis
matrix are used. U is an upper triangular matrix and L is a lower triangular ma-
trix corresponding to a sequence of elementary matrix row operations. The sparsity-
exploiting variant of the Bartels-Golub decomposition is used to update the LU fac-
tors. This scheme works well when the side constraint coefficient matrix is sparse or
when many side constraints are nonbinding.

MAXARRAYBYTES=m
specifies the maximum number of bytes an individual array can occupy. This option
is of most use when solving large problems and the amount of available memory is
insufficient to store all arrays at once. Specifying the MAXARRAYBYTES= option
ensures that arrays that need a large amount of memory do not consume too much
memory at the expense of other arrays.

There is one array that contains information about nodes and the network basis
spanning tree description. This tree description enables computations involving
the network part of the basis to be performed very quickly and is the reason why
PROC NETFLOW is more suited to solving constrained network problems than
PROC LP. It is beneficial that this array be stored in core when possible, other-
wise this array must be paged, slowing down the computations. Try not to specify a
MAXARRAYBYTES=m value smaller than the amount of memory needed to store
the main node array. You are told what this memory amount is on the SAS log if you
specify the MEMREP option in the PROC NETFLOW statement.

MAXFLOW
MF

specifies that PROC NETFLOW solve a maximum flow problem. In this case, the
PROC NETFLOW procedure finds the maximum flow from the node specified by the
SOURCE= option to the node specified by the SINK= option. PROC NETFLOW
automatically assigns an INFINITY= option supply to the SOURCE= option node
and the SINK= option is assigned the INFINITY= option demand. In this way, the
MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost
problem.
You can use the MAXFLOW option when solving any flow problem (not necessar-
ily a maximum flow problem) when the network has one supply node (with infinite
supply) and one demand node (with infinite demand). The MAXFLOW option can
be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and
DEMAND=) and capabilities of PROC NETFLOW.

MAXIMIZE
MAX

specifies that PROC NETFLOW find the maximum cost flow through the network.
If both the MAXIMIZE and the SHORTPATH options are specified, the solution
obtained is the longest path between the SOURCE= and SINK= nodes. Similarly,
MAXIMIZE and MAXFLOW together cause PROC NETFLOW to find the mini-
mum flow between these two nodes; this is zero if there are no nonzero lower flow
bounds.

470 � Chapter 5. The NETFLOW Procedure

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is
reported by PROC NETFLOW on the SAS log. As optimization proceeds, you are
informed of any changes in the memory requirements and schemes used by PROC
NETFLOW.

NAMECTRL=i
is used to interpret arc and nonarc variable names in the CONDATA= data set.

In the ARCDATA= data set, an arc is identified by its tail and head node. In the
CONDATA= data set, arcs are identified by names. You can give a name to an arc by
having a NAME list specification that indicates a SAS variable in the ARCDATA=
data set that has names of arcs as values.

PROC NETFLOW requires arcs that have information about them in the CONDATA=
data set to have names, but arcs that do not have information about them in the
CONDATA= data set can also have names. Unlike a nonarc variable whose name
uniquely identifies it, an arc can have several different names. An arc has a default
name in the form tail–head, that is, the name of the arc’s tail node followed by an
underscore and the name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used, (described in the section
“CONDATA= Data Set” on page 517) a name of an arc or a nonarc variable is the
name of a SAS variable listed in the VAR list specification. If the sparse data format
of the CONDATA= data set is used, a name of an arc or a nonarc variable is a value
of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or nonarc variable in the
CONDATA= data set (either a VAR list SAS variable name or value of the COLUMN
list SAS variable) is in the form tail–head and there exists an arc with these end
nodes. If tail–head has not already been tagged as belonging to an arc or nonarc vari-
able in the ARCDATA= data set, PROC NETFLOW needs to know whether tail–head
is the name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set
is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail–head as
the name of the arc with these endnodes, provided no other name is used to associate
data in the CONDATA= data set with this arc. If the arc does have other names that
appear in the CONDATA= data set, tail–head is assumed to be the name of a nonarc
variable. If you specify NAMECTRL=3, tail–head is assumed to be a name of the
arc with these end nodes, whether the arc has other names or not. The default value
of NAMECTRL is 3. Note that if you use the dense side constraint input format, the
default arc name tail–head is not recognized (regardless of the NAMECTRL value)
unless the head node and tail node names contain no lowercase letters.

If the dense format is used for the CONDATA= data set, the SAS System converts
SAS variable names in a SAS program to uppercase. The VAR list variable names are
uppercased. Because of this, PROC NETFLOW automatically uppercases names of
arcs and nonarc variables (the values of the NAME list variable) in the ARCDATA=
data set. The names of arcs and nonarc variables (the values of the NAME list vari-

PROC NETFLOW Statement � 471

able) appear uppercased in the ARCOUT= data set and the CONOUT= data set, and
in the PRINT statement output.

Also, if the dense format is used for the CONDATA= data set, be careful with default
arc names (names in the form tailnode–headnode). Node names (values in the
TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not
uppercased by PROC NETFLOW. Consider the following code:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;

data densecon;
input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 3 5
;

proc netflow
arcdata=arcdata condata=densecon;
run;

The SAS System does not uppercase character string values. PROC NETFLOW
never uppercases node names, so the arcs in observations 1, 2, and 3 in the pre-
ceding ARCDATA= data set have the default names “from–to1”, “from–to2”, and
“TAIL–TO3”, respectively. When the dense format of the CONDATA= data set is
used, PROC NETFLOW does uppercase values of the NAME list variable, so the
name of the arc in the second observation of the ARCDATA= data set is “ARC2”.
Thus, the second arc has two names: its default “from–to2” and the other that was
specified “ARC2”.

As the SAS System does uppercase program code, you must think of the input state-
ment

input from_to1 from_to2 arc2 tail_to3;

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

The SAS variables named “FROM–TO1” and “FROM–TO2” are not associated with
any of the arcs in the preceding ARCDATA= data set. The values “FROM–TO1”
and “FROM–TO2” are different from all of the arc names “from–to1”, “from–to2”,
“TAIL–TO3”, and “ARC2”. “FROM–TO1” and “FROM–TO2” could end up be-
ing the names of two nonarc variables. It is sometimes useful to specify PRINT
NONARCS; before commencing optimization to ensure that the model is correct
(has the right set of nonarc variables).

472 � Chapter 5. The NETFLOW Procedure

The SAS variable named “ARC2” is the name of the second arc in the ARCDATA=
data set, even though the name specified in the ARCDATA= data set looks like “arc2”.
The SAS variable named “TAIL–TO3” is the default name of the third arc in the
ARCDATA= data set.

NARCS=n
specifies the approximate number of arcs. See the section “How to Make the Data
Read of PROC NETFLOW More Efficient” on page 549.

NCOEFS=n
specifies the approximate number of constraint coefficients. See the section “How to
Make the Data Read of PROC NETFLOW More Efficient” on page 549.

NCONS=n
specifies the approximate number of constraints. See the section “How to Make the
Data Read of PROC NETFLOW More Efficient” on page 549.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make
the Data Read of PROC NETFLOW More Efficient” on page 549.

NNODES=n
specifies the approximate number of nodes. See the section “How to Make the Data
Read of PROC NETFLOW More Efficient” on page 549.

NON–REPLIC=non–replic
prevents PROC NETFLOW from doing unnecessary checks of data previously read.

• NON–REPLIC=COEFS indicates that each constraint coefficient is specified
once in the CONDATA= data set.

• NON–REPLIC=NONE indicates that constraint coefficients can be specified
more than once in the CONDATA= data set. NON–REPLIC=NONE is the
default.

See the section “How to Make the Data Read of PROC NETFLOW More Efficient”
on page 549.

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the
sparse format for data in the CONDATA= data set. The keyword is expected as a
value of the SAS variable in the CONDATA= data set named in the COLUMN list
specification. The default value of the RHSOBS= option is –RHS– or –rhs–. If
charstr is not a valid SAS variable name, enclose it in single quotes.

SAME–NONARC–DATA
SND

If all nonarc variable data are given in the ARCDATA= data set, or if the problem has
no nonarc variables, the unconstrained warm start can be read more quickly if the op-
tion SAME–NONARC–DATA is specified. SAME–NONARC–DATA indicates that
any nonconstraint nonarc variable data in the CONDATA= data set is to be ignored.
Only side constraint data in the CONDATA= data set are read.

PROC NETFLOW Statement � 473

If you use an unconstrained warm start and SAME–NONARC–DATA is not speci-
fied, any nonarc variable objective function coefficient, upper bound, or lower bound
can be changed. Any nonarc variable data in the CONDATA= data set overrides
(without warning messages) corresponding data in the ARCDATA= data set. You
can possibly introduce new nonarc variables to the problem, that is, nonarc variables
that were not in the problem when the warm start was generated.

SAME–NONARC–DATA should be specified if nonarc variable data in the
CONDATA= data set are to be deliberately ignored. Consider

proc netflow options arcdata=arc0 nodedata=node0
condata=con0

/* this data set has nonarc variable */
/* objective function coefficient data */

future1 arcout=arc1 nodeout=node1;
run;

data arc2;
reset arc1; /* this data set has nonarc variable obs */
if _cost_<50.0 then _cost_=_cost_*1.25;

/* some objective coefficients of nonarc */
/* variable might be changed */

proc netflow options
warm arcdata=arc2 nodedata=node1
condata=con0 same_nonarc_data

/* This data set has old nonarc variable */
/* obj, fn. coefficients. same_nonarc_data */
/* indicates that the "new" coefs in the */
/* arcdata=arc2 are to be used. */

run;

SCALE=scale
indicates that the side constraints are to be scaled. Scaling is useful when some coef-
ficients of a constraint or nonarc variable are either much larger or much smaller than
other coefficients. Scaling might make all coefficients have values that have a smaller
range, and this can make computations more stable numerically. Try the SCALE=
option if PROC NETFLOW is unable to solve a problem because of numerical insta-
bility. Specify

• SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if the largest abso-
lute value of coefficients in each constraint is about 1.0

• SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if nonarc variable
columns are scaled so that the absolute value of the largest constraint coefficient
of a nonarc variable is near to 1

• SCALE=BOTH if the largest absolute value of coefficients in each constraint,
and the absolute value of the largest constraint coefficient of a nonarc variable
is near to 1. This is the default.

• SCALE=NONE if no scaling should be done

474 � Chapter 5. The NETFLOW Procedure

SHORTPATH
SP

specifies that PROC NETFLOW solve a shortest path problem. The NETFLOW pro-
cedure finds the shortest path between the nodes specified in the SOURCE= option
and the SINK= option. The costs of arcs are their lengths. PROC NETFLOW auto-
matically assigns a supply of one flow unit to the SOURCE= node, and the SINK=
node is assigned to have a one flow unit demand. In this way, the SHORTPATH
option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node
(with demand of one unit), you could specify the SHORTPATH option, with the
SOURCE= and SINK= nodes, even if the problem is not a shortest path problem.
You then should not provide any supply or demand data in the NODEDATA= data set
or the ARCDATA= data set.

SINK=sinkname
SINKNODE=sinkname

identifies the demand node. The SINK= option is useful when you specify the
MAXFLOW option or the SHORTPATH option and need to specify toward which
node the shortest path or maximum flow is directed. The SINK= option also can be
used when a minimum cost problem has only one demand node. Rather than having
this information in the ARCDATA= data set or the NODEDATA= data set, use the
SINK= option with an accompanying DEMAND= specification for this node. The
SINK= option must be the name of a head node of at least one arc; thus, it must
have a character value. If the value of the SINK= option is not a valid SAS character
variable name, it must be enclosed in single quotes and can contain embedded blanks.

SOURCE=sourcename
SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the
MAXFLOW or the SHORTPATH option and need to specify from which node the
shortest path or maximum flow originates. The SOURCE= option also can be used
when a minimum cost problem has only one supply node. Rather than having
this information in the ARCDATA= data set or the NODEDATA= data set, use the
SOURCE= option with an accompanying SUPPLY= amount of supply at this node.
The SOURCE= option must be the name of a tail node of at least one arc; thus, it must
have a character value. If the value of the SOURCE= option is not a valid SAS char-
acter variable name, it must be enclosed in single quotes and can contain embedded
blanks.

SPARSECONDATA
SCDATA

indicates that the CONDATA= data set has data in the sparse data format. Otherwise,
it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you are running SAS
software Version 6 or you have specified options validvarname=v6;, all NAME list
variable values in the ARCDATA= data set are uppercased. See the section “Case
Sensitivity” on page 529.

CAPACITY Statement � 475

SPARSEP2
SP2

indicates that the new column of the working basis matrix that replaces another
column be held in a linked list. If the SPARSEP2 option is not specified, a one-
dimensional array is used to store this column’s information, that can contain ele-
ments that are 0.0 and use more memory than the linked list. The linked list mech-
anism requires more work if the column has numerous nonzero elements in many
iterations. Otherwise, it is superior. Sometimes, specifying SPARSEP2 is beneficial
when the side constrained coefficient matrix is very sparse or when some paging is
necessary.

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The
SUPPLY= option should be used only if the SOURCE= option is given in the PROC
NETFLOW statement and neither the SHORTPATH option nor the MAXFLOW
option is specified. If you are solving a minimum cost network problem and the
SOURCE= option is used to identify the source node and the SUPPLY= option is not
specified, then by default the supply at the source node is made equal to the network’s
total demand.

THRUNET
tells PROC NETFLOW to force through the network any excess supply (the amount
by which total supply exceeds total demand) or any excess demand (the amount by
which total demand exceeds total supply) as is required. If a network problem has
unequal total supply and total demand and the THRUNET option is not specified,
PROC NETFLOW drains away the excess supply or excess demand in an optimal
manner. The consequences of specifying or not specifying THRUNET are discussed
in the section “Balancing Total Supply and Total Demand” on page 544.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format
for data in the CONDATA= data set. The keyword is expected as a value of the SAS
variable in the CONDATA= data set named in the COLUMN list specification. The
default value of the TYPEOBS= option is –TYPE– or –type–. If charstr is not a
valid SAS variable name, enclose it in single quotes.

WARM
indicates that the NODEDATA= data set or the DUALIN= data set and the
ARCDATA= data set contain extra information of a warm start to be used by PROC
NETFLOW. See the section “Warm Starts” on page 545.

CAPACITY Statement

CAPACITY variable ;

CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set
that contains the maximum feasible flow or capacity of the network arcs. If an ob-
servation contains nonarc variable information, the CAPACITY list variable is the

476 � Chapter 5. The NETFLOW Procedure

upper value bound for the nonarc variable named in the NAME list variable in that
observation. The CAPACITY list variable must have numeric values. It is not neces-
sary to have a CAPACITY statement if the name of the SAS variable is –CAPAC– ,
–UPPER– , –UPPERBD, or –HI– .

COEF Statement

COEF variables ;

The COEF list is used with the sparse input format of the CONDATA= data set. The
COEF list can contain more than one SAS variable, each of which must have numeric
values. If the COEF statement is not specified, the CONDATA= data set is searched
and SAS variables with names beginning with –COE are used. The number of SAS
variables in the COEF list must be no greater than the number of SAS variables in
the ROW list.

The values of the COEF list variables in an observation can be interpreted differently
than these variables’ values in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, bound data, constraint
type data, or rhs data. If the COLUMN list variable has a value that is a name of
an arc or nonarc variable, the ith COEF list variable is associated with the constraint
or special row name named in the ith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

COLUMN Statement

COLUMN variable ;

The COLUMN list is used with the sparse input format of side constraints. This
list consists of one SAS variable in the CONDATA= data set that has as values
the names of arc variables, nonarc variables, or missing values. Some, if not all
of these values, also can be values of the NAME list variables of the ARCDATA=
data set. The COLUMN list variable can have other special values (refer to the
TYPEOBS= and RHSOBS= options). If the COLUMN list is not specified after the
PROC NETFLOW statement, the CONDATA= data set is searched and a SAS vari-
able named –COLUMN– is used. The COLUMN list variable must have character
values.

CONOPT Statement

CONOPT ;

The CONOPT statement has no options. It is equivalent to specifying RESET
SCRATCH;. The CONOPT statement should be used before stage 2 optimization
commences. It indicates that the optimization performed next should consider the
side constraints.

Usually, the optimal unconstrained network solution is used as a starting solution for
constrained optimization. Finding the unconstrained optimum usually reduces the
amount of stage 2 optimization. Furthermore, the unconstrained optimum is almost
always “closer” to the constrained optimum than the initial basic solution determined

HEADNODE Statement � 477

before any optimization is performed. However, as the optimum is approached during
stage 1 optimization, the flow change candidates become scarcer and a solution good
enough to start stage 2 optimization may already be at hand. You should then specify
the CONOPT statement.

COST Statement

COST variable ;

OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that
contains the per unit flow cost through an arc. If an observation contains nonarc
variable information, the value of the COST list variable is the objective function
coefficient of the nonarc variable named in the NAME list variable in that observation.
The COST list variable must have numeric values. It is not necessary to specify a
COST statement if the name of the SAS variable is –COST– or –LENGTH– .

DEMAND Statement

DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set
that contains the demand at the node named in the corresponding HEADNODE list
variable. The DEMAND list variable must have numeric values. It is not necessary
to have a DEMAND statement if the name of this SAS variable is –DEMAND– .

HEADNODE Statement

HEADNODE variable ;

HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that contains the names of nodes toward which arcs are directed.
It is not necessary to have a HEADNODE statement if the name of the SAS variable
is –HEAD– or –TO– . The HEADNODE variable must have character values.

478 � Chapter 5. The NETFLOW Procedure

ID Statement

ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal
processing and analysis. These variables are not processed by PROC NETFLOW but
are read by the procedure and written in the ARCOUT= and CONOUT= data sets
and the output of PRINT statements. For example, imagine a network used to model
a distribution system. The SAS variables listed on the ID statement can contain infor-
mation on type of vehicle, transportation mode, condition of road, time to complete
journey, name of driver, or other ancillary information useful for report writing or
describing facets of the operation that do not have bearing on the optimization. The
ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not
included in any other implicit or explicit list specification. If the ID list is specified,
any SAS variables in the ARCDATA= data set not in any list are dropped and do not
appear in the ARCOUT= or CONOUT= data sets, or in the PRINT statement output.

LO Statement

LO variable ;

LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that con-
tains the minimum feasible flow or lower flow bound for arcs in the network. If an
observation contains nonarc variable information, the LO list variable has the value of
the lower bound for the nonarc variable named in the NAME list variable. The LO list
variables must have numeric values. It is not necessary to have a LO statement if the
name of this SAS variable is –LOWER– , –LO– , –LOWERBD, or –MINFLOW.

MULT Statement

MULT variables ;

MULTIPLIER variables ;

The MULT statement identifies the SAS variable in the ARCDATA= data set associ-
ated with the values of arc multipliers in the network. These values must be positive
real numbers. It is not necessary to have a MULT statement if the name of this SAS
variable is –MULT–.

PRINT Statement � 479

NAME Statement

NAME variable ;

ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable that has data in the CONDATA= data set must have a
unique name. This variable is identified in the ARCDATA= data set. The NAME
list variable must have character values (see the NAMECTRL= option in the PROC
NETFLOW statement for more information). It is not necessary to have a NAME
statement if the name of this SAS variable is –NAME– .

NODE Statement

NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has
names of nodes as values. These values must also be values of the TAILNODE list
variable, the HEADNODE list variable, or both. If this list is not explicitly specified,
the NODEDATA= data set is searched for a SAS variable with the name –NODE– .
The NODE list variable must have character values.

PIVOT Statement

PIVOT ;

The PIVOT statement has no options. It indicates that one simplex iteration is to
be performed. The PIVOT statement forces a simplex iteration to be performed in
spite of the continued presence of any reasons or solution conditions that caused
optimization to be halted. For example, if the number of iterations performed exceeds
the value of the MAXIT1= or MAXIT2= option and you issue a PIVOT statement,
the iteration is performed even though the MAXIT1= or MAXIT2= value has not yet
been changed using a RESET statement.

PRINT Statement

PRINT options / qualifiers ;

The options available with the PRINT statement of PROC NETFLOW are summa-
rized by purpose in the following table.

Table 5.2. Functional Summary, PRINT Statement

Description Statement Option

PRINT Statement Options:
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variable information PRINT VARIABLES

480 � Chapter 5. The NETFLOW Procedure

Description Statement Option

display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variables PRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints associ-
ated with some arcs

PRINT CON–ARCS

display information for some constraints associ-
ated with some nonarc variables

PRINT CON–NONARCS

display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO
display basic arcs/variables PRINT / BASIC
display nonbasic arcs/variables PRINT / NONBASIC

The PRINT statement enables you to examine part or all of the problem. You can
limit the amount of information displayed when a PRINT statement is processed
by specifying PRINT statement options. The name of the PRINT option indicates
what part of the problem is to be examined. If no options are specified, or PRINT
PROBLEM is specified, information about the entire problem is produced.

The amount of displayed information can be limited further by following any PRINT
statement options with a slash (/) and one or more of the qualifiers SHORT or LONG,
ZERO or NONZERO, BASIC or NONBASIC.

Some of the PRINT statement options require you to specify a list of some type of
entity, thereby enabling you to indicate what entities are of interest. The entities of
interest are the ones you want to display. These entities might be tail node names,
head node names, nonarc variable names, or constraint names. The entity list is made
up of one or more of the following constructs. Each construct can add none, one, or
more entities to the set of entities to be displayed.

• –ALL–
Display all entities in the required list.

• entity
Display the named entity that is interesting.

• entity1 - entity2 (one hyphen)
entity1 -- entity2 (two hyphens)

PRINT Statement � 481

entity1 - CHARACTER - entity2 or
entity1 - CHAR - entity2
Both entity1 and entity2 have names made up of the same character string pre-
fix followed by a numeric suffix. The suffixes of both entity1 and entity2 have
the same number of numerals but can have different values. A specification
of entity1 - entity2 indicates that all entities with the same prefix and suffixes
with values on or between the suffixes of entity1 and entity2 are to be put in the
set of entities to be displayed. The numeric suffix of both entity1 and entity2
can be followed by a character string. For example, –OBS07– - –OBS13– is a
valid construct of the forms entity1 - entity2.

• part–of–entity–name:
Display all entities in the required list that have names beginning with the char-
acter string preceding the colon.

The following options can appear in the PRINT statement:

ARCS
indicates that you want to have displayed information about all arcs.

SOME–ARCS (taillist,headlist)
is similar to the statement PRINT ARCS except that, instead of displaying informa-
tion about all arcs, only arcs directed from nodes in a specified set of tail nodes to
nodes in a specified set of head nodes are included. The nodes or node constructs
belonging to the taillist list are separated by blanks. The nodes or node constructs
belonging to the headlist list are also separated by blanks. The lists are separated by
a comma.

NONARCS
VARIABLES

indicates that information is to be displayed about all nonarc variables.

SOME–NONARCS (nonarclist)
SOME–VARIABLES (variablelist)

is similar to the PRINT NONARCS statement except that, instead of displaying in-
formation about all nonarc variables, only those belonging to a specified set of nonarc
variables have information displayed. The nonarc variables or nonarc variable con-
structs belonging to the nonarclist list are separated by blanks.

CONSTRAINTS
indicates that you want to have displayed information about all constraint coefficients.

SOME–CONS (conlist)
displays information for coefficients in a specified set of constraints. The constraints
or constraint constructs belonging to the conlist list are separated by blanks.

CON–ARCS (taillist, headlist)
is similar to the PRINT SOME–CONS (conlist) statement except that, instead of dis-
playing information about all coefficients in specified constraints, information about
only those coefficients that are associated with arcs directed from a set of specified
tail nodes toward a set of specified head nodes is displayed. The constraints or con-
straint constructs belonging to the conlist list are separated by blanks; so too are the

482 � Chapter 5. The NETFLOW Procedure

nodes or node constructs belonging to the taillist list and the nodes or node constructs
belonging to the headlist list. The lists are separated by commas.

CON–NONARCS (conlist, nonarclist)
CON–VARIABLES (conlist, variablelist)

is similar to the PRINT SOME–CONS (conlist) statement except that, instead of dis-
playing information about all coefficients in specified constraints, information about
only those coefficients that are associated with nonarc variables in a specified set is
displayed. The constraints or constraint constructs belonging to the conlist list are
separated by blanks. The nonarc variables or nonarc variable constructs belonging to
the nonarclist list are separated by blanks. The lists are separated by a comma.

PROBLEM
is equivalent to the statement PRINT ARCS NONARCS CONSTRAINTS.

Following a slash (/), the qualifiers SHORT or LONG, ZERO or NONZERO, BASIC
or NONBASIC can appear in any PRINT statement. These qualifiers are described
below.

• BASIC
Only rows that are associated with arcs or nonarc variables that are basic
are displayed. The –STATUS– column values are KEY–ARC BASIC or
NONKEY ARC BASIC for arcs, and NONKEY–BASIC for nonarc variables.

• LONG
All table columns are displayed (the default when no qualifier is used).

• NONBASIC
Only rows that are associated with arcs or nonarc variables that are nonbasic
are displayed. The –STATUS– column values are LOWERBD NONBASIC
or UPPERBD NONBASIC.

• NONZERO
Only rows that have nonzero –FLOW– column values (nonzero arc flows,
nonzero nonarc variable values) are displayed.

• SHORT
The table columns are –N– , –FROM– , –TO– , –COST– , –CAPAC– ,
–LO– , –NAME– , and –FLOW– , or the names of the SAS variables spec-
ified in the corresponding variable lists (TAILNODE, HEADNODE, COST,
CAPACITY, LO, and NAME lists). –COEF– or the name of the SAS vari-
able in the COEF list specification will head a column when the SHORT
qualifier is used in PRINT CONSTRAINTS, SOME–CONS, CON–ARCS, or
CON–NONARCS.

• ZERO
Only rows that have zero –FLOW– column values (zero arc flows, zero nonarc
variable values) are displayed.

The default qualifiers are BASIC, NONBASIC, ZERO, NONZERO, and LONG.

PRINT Statement � 483

Displaying Information On All Constraints

In the oil refinery problem, if you had entered

print constraints;

after the RUN statement, the output in Figure 5.9 would have been produced.

Displaying Information About Selected Arcs

In the oil refinery problem, if you had entered

print some_arcs(refin:,_all_)/short;

after the RUN statement, the output in Figure 5.10 would have been produced.

Oil Industry Example

Setting Up Condata = Cond1 For Proc Netflow

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS1_ GE -15 m_e_ref1 middle east refinery 1
2 _OBS1_ GE -15 thruput1 refinery 1 r1
3 _OBS2_ GE -15 m_e_ref2 middle east refinery 2
4 _OBS2_ GE -15 thruput2 refinery 2 r2
5 _OBS3_ EQ 0 thruput1 refinery 1 r1
6 _OBS3_ EQ 0 r1_gas r1 ref1 gas
7 _OBS4_ EQ 0 thruput2 refinery 2 r2
8 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _FLOW_ _COEF_

1 63 95 20 100 . 80 -2
2 200 175 50 . . 145 1
3 81 80 10 100 . 20 -2
4 220 100 35 . . 35 1
5 200 175 50 . . 145 -3
6 0 140 0 . . 108.75 4
7 220 100 35 . . 35 -3
8 0 100 0 . . 26.25 4

N _FCOST_ _RCOST_ _STATUS_

1 5040 . KEY_ARC BASIC
2 29000 . KEY_ARC BASIC
3 1620 . NONKEY ARC BASIC
4 7700 29 LOWERBD NONBASIC
5 29000 . KEY_ARC BASIC
6 0 . KEY_ARC BASIC
7 7700 29 LOWERBD NONBASIC
8 0 . KEY_ARC BASIC

Figure 5.9. PRINT CONSTRAINTS

484 � Chapter 5. The NETFLOW Procedure

The NETFLOW Procedure

N _from_ _to_ _cost_ _capac_ _lo_ _name_

1 refinery 1 r1 200 175 50 thruput1
2 refinery 2 r2 220 100 35 thruput2

N _FLOW_

1 145
2 35

Figure 5.10. PRINT SOME–ARCS

Displaying Information About Selected Constraints

In the oil refinery problem, if you had entered

print some_cons(_obs3_-_obs4_)/nonzero short;

after the RUN statement, the output in Figure 5.11 would have been produced.

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS3_ EQ 0 thruput1 refinery 1 r1
2 _OBS3_ EQ 0 r1_gas r1 ref1 gas
3 _OBS4_ EQ 0 thruput2 refinery 2 r2
4 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 200 175 50 145 -3
2 0 140 0 108.75 4
3 220 100 35 35 -3
4 0 100 0 26.25 4

Figure 5.11. PRINT SOME–CONS

If you had entered

print con_arcs(_all_,r1 r2,_all_)/short;

after the RUN statement, the output in Figure 5.12 would have been produced.
Constraint information about arcs directed from selected tail nodes is displayed.

PRINT Statement � 485

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS3_ EQ 0 r1_gas r1 ref1 gas
2 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 0 140 0 108.75 4
2 0 100 0 26.25 4

Figure 5.12. PRINT CON–ARCS

Cautions

This subsection has two parts; the first part is applicable if you are running Version
7 or later of the SAS System, and the second part is applicable if you are running
Version 6. You can get later versions to “act” like Version 6 by specifying

options validvarname=v6;

For Version 7 onward, PROC NETFLOW strictly respects case sensitivity. The
PRINT statements of PROC NETFLOW that require lists of entities will work prop-
erly only if the entities have the same case as in the input data sets. Entities that
contain blanks must be enclosed in single or double quotes. For example,

print some_arcs (_all_,"Ref1 Gas");

In this example, a head node of an arc in the model is “Ref1 Gas” (without the quotes).
If you omit the quotes, PROC NETFLOW issues a message on the SAS log:

WARNING: The node Ref1 in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

If you had specified

print some_arcs (_all_,"ref1 Gas");

(note the small r), you would have been warned

WARNING: The node ref1 Gas in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

If you are running Version 6, or if you are running a later version and you have
specified

options validvarname=v6;

486 � Chapter 5. The NETFLOW Procedure

when information is parsed to procedures, the SAS System converts the text that
makes up statements into uppercase. The PRINT statements of PROC NETFLOW
that require lists of entities will work properly only if the entities are uppercase in the
input data sets. If you do not want this uppercasing to occur, you must enclose the
entity in single or double quotes.

print some_arcs(’lowercase tail’,’lowercase head’);
print some_cons(’factory07’-’factory12’);
print some_cons(’_factory07_’-’_factory12_’);
print some_nonarcs("CO2 content":);

Entities that contain blanks must be enclosed in single or double quotes.

QUIT Statement

QUIT ;

The QUIT statement indicates that PROC NETFLOW is to be terminated immedi-
ately. The solution is not saved in the current output data sets. The QUIT statement
has no options.

RESET Statement

RESET options ;

SET options ;

The RESET statement is used to change options after PROC NETFLOW has started
execution. Any of the following options can appear in the PROC NETFLOW state-
ment.

Another name for the RESET statement is SET. You can use RESET when you are
resetting options and SET when you are setting options for the first time.

The following options fall roughly into five categories:

• output data set specifications

• options that indicate conditions under which optimization is to be halted tem-
porarily, giving you an opportunity to use PROC NETFLOW interactively

• options that control aspects of the operation of the network primal simplex
optimization

• options that control the pricing strategies of the network simplex optimizer

• miscellaneous options

If you want to examine the setting of any options, use the SHOW statement. If you
are interested in looking at only those options that fall into a particular category, the
SHOW statement has options that enable you to do this.

The execution of PROC NETFLOW has three stages. In stage zero the problem data
are read from the NODEDATA=, ARCDATA=, and CONDATA= data sets. If a warm

RESET Statement � 487

start is not available, an initial basic feasible solution is found. Some options of the
PROC NETFLOW statement control what occurs in stage zero. By the time the first
RESET statement is processed, stage zero has already been completed.

In the first stage, an optimal solution to the network flow problem neglecting any side
constraints is found. The primal and dual solutions for this relaxed problem can be
saved in the ARCOUT= data set and the NODEOUT= data set, respectively.

In the second stage, the side constraints are examined and some initializations occur.
Some preliminary work is also needed to commence optimization that considers the
constraints. An optimal solution to the network flow problem with side constraints is
found. The primal and dual solutions for this side-constrained problem are saved in
the CONOUT= data set and the DUALOUT= data set, respectively.

Many options in the RESET statement have the same name except that they have as
a suffix the numeral 1 or 2. Such options have much the same purpose, but option1
controls what occurs during the first stage when optimizing the network neglecting
any side constraints and option2 controls what occurs in the second stage when PROC
NETFLOW is performing constrained optimization.

Some options can be turned off by the option prefixed by the word NO. For exam-
ple, FEASIBLEPAUSE1 may have been specified in a RESET statement and in a
later RESET statement, you can specify NOFEASIBLEPAUSE1. In a later RESET
statement, you can respecify FEASIBLEPAUSE1 and, in this way, toggle this option.

The options available with the RESET statement are summarized by purpose in the
following table.

Table 5.3. Functional Summary, RESET Statement

Description Statement Option

Output Data Set Options:
unconstrained primal solution data set RESET ARCOUT=
unconstrained dual solution data set RESET NODEOUT=
constrained primal solution data set RESET CONOUT=
constrained dual solution data set RESET DUALOUT=

Simplex Options:
use big-M instead of two-phase method, stage 1 RESET BIGM1
use Big-M instead of two-phase method, stage 2 RESET BIGM2
anti-cycling option RESET CYCLEMULT1=
interchange first nonkey with leaving key arc RESET INTFIRST
controls working basis matrix inversions RESET INVFREQ=
maximum number of L row operations allowed
before refactorization

RESET MAXL=

maximum number of LU factor column updates RESET MAXLUUPDATES=
anti-cycling option RESET MINBLOCK1=
use first eligible leaving variable, stage 1 RESET LRATIO1
use first eligible leaving variable, stage 2 RESET LRATIO2

488 � Chapter 5. The NETFLOW Procedure

Description Statement Option

negates INTFIRST RESET NOINTFIRST
negates LRATIO1 RESET NOLRATIO1
negates LRATIO2 RESET NOLRATIO2
negates PERTURB1 RESET NOPERTURB1
anti-cycling option RESET PERTURB1
controls working basis matrix refactorization RESET REFACTFREQ=
use two-phase instead of big-M method, stage 1 RESET TWOPHASE1
use two-phase instead of big-M method, stage 2 RESET TWOPHASE2
pivot element selection parameter RESET U=
zero tolerance, stage 1 RESET ZERO1=
zero tolerance, stage 2 RESET ZERO2=
zero tolerance, real number comparisons RESET ZEROTOL=

Pricing Options:
frequency of dual value calculation RESET DUALFREQ=
pricing strategy, stage 1 RESET PRICETYPE1=
pricing strategy, stage 2 RESET PRICETYPE2=
used when P1SCAN=PARTIAL RESET P1NPARTIAL=
controls search for entering candidate, stage 1 RESET P1SCAN=
used when P2SCAN=PARTIAL RESET P2NPARTIAL=
controls search for entering candidate, stage 2 RESET P2SCAN=
initial queue size, stage 1 RESET QSIZE1=
initial queue size, stage 2 RESET QSIZE2=
used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
controls scan when filling queue, stage 1 RESET Q1FILLSCAN=
used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
controls scan when filling queue, stage 2 RESET Q2FILLSCAN=
queue size reduction factor, stage 1 RESET REDUCEQSIZE1=
queue size reduction factor, stage 2 RESET REDUCEQSIZE2=
frequency of refreshing queue, stage 1 RESET REFRESHQ1=
frequency of refreshing queue, stage 2 RESET REFRESHQ2=

Optimization Termination Options:
pause after stage 1; don’t start stage 2 RESET ENDPAUSE1
pause when feasible, stage 1 RESET FEASIBLEPAUSE1
pause when feasible, stage 2 RESET FEASIBLEPAUSE2
maximum number of iterations, stage 1 RESET MAXIT1=
maximum number of iterations, stage 2 RESET MAXIT2=
negates ENDPAUSE1 RESET NOENDPAUSE1
negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
pause every PAUSE1 iterations, stage 1 RESET PAUSE1=
pause every PAUSE2 iterations, stage 2 RESET PAUSE2=

RESET Statement � 489

Description Statement Option

Interior Point Algorithm Options:
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=
allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=
stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=
stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=
stop because of infeasd RESET AND–KEEPGOING–ID=

Miscellaneous Options:
output complete basis information to ARCOUT=
and NODEOUT= data sets

RESET FUTURE1

output complete basis information to CONOUT=
and DUALOUT= data sets

RESET FUTURE2

turn off infeasibility or optimality flags RESET MOREOPT
negates FUTURE1 RESET NOFUTURE1
negates FUTURE2 RESET NOFUTURE2
negates SCRATCH RESET NOSCRATCH

490 � Chapter 5. The NETFLOW Procedure

Description Statement Option

negates ZTOL1 RESET NOZTOL1
negates ZTOL2 RESET NOZTOL2
write optimization time to SAS log RESET OPTIM–TIMER
no stage 1 optimization; do stage 2 optimization RESET SCRATCH
suppress similar SAS log messages RESET VERBOSE=
use zero tolerance, stage 1 RESET ZTOL1
use zero tolerance, stage 2 RESET ZTOL2

Output Data Set Specifications

In a RESET statement, you can specify an ARCOUT= data set, a NODEOUT= data
set, a CONOUT= data set, or a DUALOUT= data set. You are advised to specify
these output data sets early because if you make a syntax error when using PROC
NETFLOW interactively or, for some other reason, PROC NETFLOW encounters
or does something unexpected, these data sets will contain information about the
solution that was reached. If you had specified the FUTURE1 or FUTURE2 option
in a RESET statement, PROC NETFLOW may be able to resume optimization in a
subsequent run.

You can turn off these current output data set specifications by specifying
ARCOUT=NULL, NODEOUT=NULL, CONOUT=NULL, or DUALOUT=NULL.

If PROC NETFLOW is outputting observations to an output data set and you want
this to stop, press the keys used to stop SAS procedures. PROC NETFLOW waits, if
necessary, and then executes the next statement.

ARCOUT=SAS-data-set
AOUT=SAS-data-set

names the output data set that receives all information concerning arc and nonarc
variables, including flows and other information concerning the current solution and
the supply and demand information. The current solution is the latest solution found
by the optimizer when the optimization neglecting side constraints is halted or the
unconstrained optimum is reached.

You can specify an ARCOUT= data set in any RESET statement before the un-
constrained optimum is found (even at commencement). Once the unconstrained
optimum has been reached, use the SAVE statement to produce observations in an
ARCOUT= data set. Once optimization that considers constraints starts, you will be
unable to obtain an ARCOUT= data set. Instead, use a CONOUT= data set to get the
current solution. See the section “ARCOUT= and CONOUT= Data Sets” on page
526 for more information.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that contains the primal solution obtained after optimiza-
tion considering side constraints reaches the optimal solution. You can specify a

RESET Statement � 491

CONOUT= data set in any RESET statement before the constrained optimum is
found (even at commencement or while optimizing neglecting constraints). Once
the constrained optimum has been reached, or during stage 2 optimization, use the
SAVE statement to produce observations in a CONOUT= data set. See the section
“ARCOUT= and CONOUT= Data Sets” on page 526 for more information.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

names the output data set that contains the dual solution obtained after doing opti-
mization that considers side constraints reaches the optimal solution. You can spec-
ify a DUALOUT= data set in any RESET statement before the constrained optimum
is found (even at commencement or while optimizing neglecting constraints). Once
the constrained optimum has been reached, or during stage 2 optimization, use the
SAVE statement to produce observations in a DUALOUT= data set. See the section
“NODEOUT= and DUALOUT= Data Sets” on page 527 for more information.

NODEOUT=SAS-data-set
NOUT=SAS-data-set

names the output data set that receives all information about nodes (supply/demand
and nodal dual variable values) and other information concerning the unconstrained
optimal solution.

You can specify a NODEOUT= data set in any RESET statement before the uncon-
strained optimum is found (even at commencement). Once the unconstrained opti-
mum has been reached, or during stage 1 optimization, use the SAVE statement to
produce observations in a NODEOUT= data set. Once optimization that considers
constraints starts, you will not be able to obtain a NODEOUT= data set. Instead use
a DUALOUT= data set to get the current solution. See the section “NODEOUT= and
DUALOUT= Data Sets” on page 527 for more information.

Options to Halt Optimization

The following options indicate conditions when optimization is to be halted. You then
have a chance to use PROC NETFLOW interactively. If the NETFLOW procedure is
optimizing and you want optimization to halt immediately, press the CTRL-BREAK
key combination used to stop SAS procedures. Doing this is equivalent to PROC
NETFLOW finding that some prespecified condition of the current solution under
which optimization should stop has occurred.

If optimization does halt, you may need to change the conditions for when optimiza-
tion should stop again. For example, if the number of iterations exceeded MAXIT2,
use the RESET statement to specify a larger value for the MAXIT2= option before
the next RUN statement. Otherwise, PROC NETFLOW will immediately find that
the number of iterations still exceeds MAXIT2 and halt without doing any additional
optimization.

ENDPAUSE1
indicates that PROC NETFLOW will pause after the unconstrained optimal solution
has been obtained and information about this solution has been output to the current
ARCOUT= data set, NODEOUT= data set, or both. The procedure then executes the
next statement, or waits if no subsequent statement has been specified.

492 � Chapter 5. The NETFLOW Procedure

FEASIBLEPAUSE1
FP1

indicates that unconstrained optimization should stop once a feasible solution is
reached. PROC NETFLOW checks for feasibility every 10 iterations. A solution
is feasible if there are no artificial arcs having nonzero flow assigned to be conveyed
through them. The presence of artificial arcs with nonzero flows means that the cur-
rent solution does not satisfy all the nodal flow conservation constraints implicit in
network problems.

MAXIT1=m
specifies the maximum number of primal simplex iterations PROC NETFLOW is
to perform in stage 1. The default value for the MAXIT1= option is 1000. If
MAXIT1=m iterations are performed and you want to continue unconstrained op-
timization, reset MAXIT1= to a number larger than the number of iterations already
performed and issue another RUN statement.

NOENDPAUSE1
NOEP1

negates the ENDPAUSE1 option.

NOFEASIBLEPAUSE1
NOFP1

negates the FEASIBLEPAUSE1 option.

PAUSE1=p
indicates that PROC NETFLOW will halt unconstrained optimization and pause
when the remainder of the number of stage 1 iterations divided by the value of the
PAUSE1= option is zero. If present, the next statement is executed; if not, the proce-
dure waits for the next statement to be specified. The default value for PAUSE1= is
999999.

FEASIBLEPAUSE2
FP2
NOFEASIBLEPAUSE2
NOFP2
PAUSE2=p
MAXIT2=m

are the stage 2 constrained optimization counterparts of the options described previ-
ously and having as a suffix the numeral 1.

Options Controlling the Network Simplex Optimization

BIGM1
NOTWOPHASE1
TWOPHASE1
NOBIGM1

BIGM1 indicates that the “big-M” approach to optimization is used. Artificial vari-
ables are treated like real arcs, slacks, surpluses and nonarc variables. Artificials have
very expensive costs. BIGM1 is the default.

RESET Statement � 493

TWOPHASE1 indicates that the two-phase approach is used instead of the big-M
approach. At first, artificial variables are the only variables to have nonzero objective
function coefficients. An artificial variable’s objective function coefficient is tem-
porarily set to 1 and PROC NETFLOW minimizes. When all artificial variables have
zero value, PROC NETFLOW has found a feasible solution, and phase 2 commences.
Arcs and nonarc variables have their real costs and objective function coefficients.

Before all artificial variables are driven to have zero value, you can toggle between
the big-M and the two-phase approaches by specifying BIGM1 or TWOPHASE1 in
a RESET statement. The option NOTWOPHASE1 is synonymous with BIGM1, and
NOBIGM1 is synonymous with TWOPHASE1.

CYCLEMULT1=c
MINBLOCK1=m
NOPERTURB1
PERTURB1

In an effort to reduce the number of iterations performed when the problem is highly
degenerate, PROC NETFLOW has in stage 1 optimization adopted an algorithm out-
lined in Ryan and Osborne (1988).

If the number of consecutive degenerate pivots (those with no progress toward the
optimum) performed equals the value of the CYCLEMULT1= option times the num-
ber of nodes, the arcs that were “blocking” (can leave the basis) are added to a list.
In subsequent iterations, of the arcs that now can leave the basis, the one chosen to
leave is an arc on the list of arcs that could have left in the previous iteration. In
other words, perference is given to arcs that “block” many iterations. After several
iterations, the list is cleared.

If the number of blocking arcs is less than the value of the MINBLOCK1= option, a
list is not kept. Otherwise, if PERTURB1 is specified, the arc flows are perturbed by a
random quantity, so that arcs on the list that block subsequent iterations are chosen to
leave the basis randomly. Although perturbation often pays off, it is computationally
expensive. Periodically, PROC NETFLOW has to clear out the lists and un-perturb
the solution. You can specify NOPERTURB1 to prevent perturbation.

Defaults are CYCLEMULT1=0.15, MINBLOCK1=2, and NOPERTURB1.

LRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in stage
1. In some iterations, more than one arc is eligible to leave the basis. Of those arcs
that can leave the basis, the leaving arc is the first encountered by the algorithm if
the LRATIO1 option is specified. Specifying the LRATIO1 option can decrease the
chance of cycling but can increase solution times. The alternative to the LRATIO1
option is the NOLRATIO1 option, which is the default.

LRATIO2
specifies the type of ratio test to use in determining what leaves the basis in stage 2.
In some iterations, more than one arc, constraint slack, surplus, or nonarc variable
is eligible to leave the basis. If the LRATIO2 option is specified, the leaving arc,
constraint slack, surplus, or nonarc variable is the one that is eligible to leave the basis
first encountered by the algorithm. Specifying the LRATIO2 option can decrease the

494 � Chapter 5. The NETFLOW Procedure

chance of cycling but can increase solution times. The alternative to the LRATIO2
option is the NOLRATIO2 option, which is the default.

NOLRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in
stage 1. If the NOLRATIO1 option is specified, of those arcs that can leave the
basis, the leaving arc has the minimum (maximum) cost if the leaving arc is to be
nonbasic with flow capacity equal to its capacity (lower flow bound). If more than one
possible leaving arc has the minimum (maximum) cost, the first such arc encountered
is chosen. Specifying the NOLRATIO1 option can decrease solution times, but can
increase the chance of cycling. The alternative to the NOLRATIO1 option is the
LRATIO1 option. The NOLRATIO1 option is the default.

NOLRATIO2
specifies the type of ratio test to use in determining which arc leaves the basis in
stage 2. If the NOLRATIO2 option is specified, the leaving arc, constraint slack,
surplus, or nonarc variable is the one eligible to leave the basis with the minimum
(maximum) cost or objective function coefficient if the leaving arc, constraint slack
or nonarc variable is to be nonbasic with flow or value equal to its capacity or upper
value bound (lower flow or value bound), respectively. If several possible leaving
arcs, constraint slacks, surpluses, or nonarc variables have the minimum (maximum)
cost or objective function coefficient, then the first encountered is chosen. Specifying
the NOLRATIO2 option can decrease solution times, but can increase the chance of
cycling. The alternative to the NOLRATIO2 option is the LRATIO2 option. The
NOLRATIO2 option is the default.

Options Applicable to Constrained Optimization

The INVFREQ= option is relevant only if INVD–2D is specified in the PROC
NETFLOW statement; that is, the inverse of the working basis matrix is be-
ing stored and processed as a two-dimensional array. The REFACTFREQ=, U=,
MAXLUUPDATES=, and MAXL= options are relevant if the INVD–2D option is
not specified in the PROC NETFLOW statement; that is, if the working basis matrix
is LU factored.

BIGM2
NOTWOPHASE2
TWOPHASE2
NOBIGM2

are the stage 2 constrained optimization counterparts of the options BIGM1,
NOTWOPHASE1, TWOPHASE1, and NOBIGM1.

The TWOPHASE2 option is often better than the BIGM2 option when the problem
has many side constraints.

INVFREQ=n
recalculates the working basis matrix inverse whenever n iterations have been per-
formed where n is the value of the INVFREQ= option. Although a relatively expen-
sive task, it is prudent to do as roundoff errors accumulate, especially affecting the
elements of this matrix inverse. The default is INVFREQ=50. The INVFREQ= op-

RESET Statement � 495

tion should be used only if the INVD–2D option is specified in the PROC NETFLOW
statement.

INTFIRST
In some iterations, it is found that what must leave the basis is an arc that is part
of the spanning tree representation of the network part of the basis (called a key
arc). It is necessary to interchange another basic arc not part of the tree (called a
nonkey arc) with the tree arc that leaves to permit the basis update to be performed
efficiently. Specifying the INTFIRST option indicates that of the nonkey arcs eligible
to be swapped with the leaving key arc, the one chosen to do so is the first encountered
by the algorithm. If the INTFIRST option is not specified, all such arcs are examined
and the one with the best cost is chosen.

The terms key and nonkey are used because the algorithm used by PROC NETFLOW
for network optimization considering side constraints (GUB-based, Primal
Partitioning, or Factorization) is a variant of an algorithm originally developed to
solve linear programming problems with generalized upper bounding constraints.
The terms key and nonkey were coined then. The STATUS SAS variable in the
ARCOUT= and CONOUT= data sets and the STATUS column in tables produced
when PRINT statements are processed indicate whether basic arcs are key or nonkey.
Basic nonarc variables are always nonkey.

MAXL=m
If the working basis matrix is LU factored, U is an upper triangular matrix and L
is a lower triangular matrix corresponding to a sequence of elementary matrix row
operations required to change the working basis matrix into U. L and U enable sub-
stitution techniques to be used to solve the linear systems of the simplex algorithm.
Among other things, the LU processing strives to keep the number of L elementary
matrix row operation matrices small. A buildup in the number of these could indicate
that fill-in is becoming excessive and the computations involving L and U will be
hampered. Refactorization should be performed to restore U sparsity and reduce L
information. When the number of L matrix row operations exceeds the value of the
MAXL= option, a refactorization is done rather than one or more updates. The default
value for MAXL= is 10 times the number of side constraints. The MAXL= option
should not be used if INVD–2D is specified in the PROC NETFLOW statement.

MAXLUUPDATES=m
MLUU=m

In some iterations, PROC NETFLOW must either perform a series of single column
updates or a complete refactorization of the working basis matrix. More than one
column of the working basis matrix must change before the next simplex iteration
can begin. The single column updates can often be done faster than a complete refac-
torization, especially if few updates are necessary, the working basis matrix is sparse,
or a refactorization has been performed recently. If the number of columns that must
change is less than the value specified in the MAXLUUPDATES= option, the up-
dates are attempted; otherwise, a refactorization is done. Refactorization also occurs
if the sum of the number of columns that must be changed and the number of LU
updates done since the last refactorization exceeds the value of the REFACTFREQ=
option. The MAXLUUPDATES= option should not be used if the INVD–2D option
is specified in the PROC NETFLOW statement.

496 � Chapter 5. The NETFLOW Procedure

In some iterations, a series of single column updates are not able to complete the
changes required for a working basis matrix because, ideally, all columns should
change at once. If the update cannot be completed, PROC NETFLOW performs a
refactorization. The default value is 5.

NOINTFIRST
indicates that of the arcs eligible to be swapped with the leaving arc, the one chosen
to do so has the best cost. See the INTFIRST option.

REFACTFREQ=r
RFF=r

specifies the maximum number of L and U updates between refactorization of the
working basis matrix to reinitialize LU factors. In most iterations, one or several
Bartels-Golub updates can be performed. An update is performed more quickly than
a complete refactorization. However, after a series of updates, the sparsity of the
U factor is degraded. A refactorization is necessary to regain sparsity and to make
subsequent computations and updates more efficient. The default value is 50. The
REFACTFREQ= option should not be used if INVD–2D is specified in the PROC
NETFLOW statement.

U=u
controls the choice of pivot during LU decomposition or Bartels-Golub update. When
searching for a pivot, any element less than the value of the U= option times the
largest element in its matrix row is excluded, or matrix rows are interchanged to im-
prove numerical stability. The U= option should have values on or between ZERO2
and 1.0. Decreasing the value of the U= option biases the algorithm toward main-
taining sparsity at the expense of numerical stability and vice-versa. Reid (1975)
suggests that the value of 0.01 is acceptable and this is the default for the U= option.
This option should not be used if INVD–2D is specified in the PROC NETFLOW
statement.

Pricing Strategy Options

There are three main types of pricing strategies:

• PRICETYPEx=NOQ

• PRICETYPEx=BLAND

• PRICETYPEx=Q

The one that usually performs better than the others is PRICETYPEx=Q, so this is
the default.

Because the pricing strategy takes a lot of computational time, you should experiment
with the following options to find the optimum specification. These options influence
how the pricing step of the simplex iteration is performed. See the section “Pricing
Strategies” on page 530 for further information.

PRICETYPEx=BLAND or PTYPEx=BLAND

PRICETYPEx=NOQ or PTYPEx=NOQ

RESET Statement � 497

• PxSCAN=BEST
• PxSCAN=FIRST
• PxSCAN=PARTIAL and PxNPARTIAL=p

PRICETYPEx=Q or PTYPEx=Q
QSIZEx=q or Qx=q
REFRESHQx=r
REDUCEQSIZEx=r
REDUCEQx=r

• PxSCAN=BEST
• PxSCAN=FIRST
• PxSCAN=PARTIAL and PxNPARTIAL=p

• QxFILLSCAN=BEST
• QxFILLSCAN=FIRST
• QxFILLSCAN=PARTIAL and QxFILLNPARTIAL=q

For stage 2 optimization, you can specify P2SCAN=ANY, which is used in conjunc-
tion with the DUALFREQ= option.

Miscellaneous Options

FUTURE1
signals that PROC NETFLOW must output extra observations to the NODEOUT=
and ARCOUT= data sets. These observations contain information about the solution
found by doing optimization neglecting any side constraints. These two data sets
then can be used as the NODEDATA= and ARCDATA= data sets, respectively, in
subsequent PROC NETFLOW runs with the WARM option specified. See the section
“Warm Starts” on page 545.

FUTURE2
signals that PROC NETFLOW must output extra observations to the DUALOUT=
and CONOUT= data sets. These observations contain information about the solution
found by optimization that considers side constraints. These two data sets can then
be used as the NODEDATA= data set (also called the DUALIN= data set) and the
ARCDATA= data sets, respectively, in subsequent PROC NETFLOW runs with the
WARM option specified. See the section “Warm Starts” on page 545.

MOREOPT
The MOREOPT option turns off all optimality and infeasibility flags that may have
been raised. Unless this is done, PROC NETFLOW will not do any optimization
when a RUN statement is specified.

If PROC NETFLOW determines that the problem is infeasible, it will not do any
more optimization unless you specify MOREOPT in a RESET statement. At the
same time, you can try resetting options (particularly zero tolerances) in the hope
that the infeasibility was raised incorrectly.

Consider the following example:

498 � Chapter 5. The NETFLOW Procedure

proc netflow
nodedata=noded /* supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* output the solution */
run;

/* Netflow states that the problem is infeasible. */
/* You suspect that the zero tolerance is too large */

reset zero2=1.0e-10 moreopt;
run;

/* Netflow will attempt more optimization. */
/* After this, if it reports that the problem is */
/* infeasible, the problem really might be infeasible */

If PROC NETFLOW finds an optimal solution, you might want to do additional opti-
mization to confirm that an optimum has really been reached. Specify the MOREOPT
option in a RESET statement. Reset options, but in this case tighten zero tolerances.

NOFUTURE1
negates the FUTURE1 option.

NOFUTURE2
negates the FUTURE2 option.

NOSCRATCH
negates the SCRATCH option.

NOZTOL1
indicates that the majority of tests for roundoff error should not be done. Specifying
the NOZTOL1 option and obtaining the same optimal solution as when the
NOZTOL1 option is not specified in the PROC NETFLOW statement (or the ZTOL1
option is specified), verifies that the zero tolerances were not too high. Roundoff
error checks that are critical to the successful functioning of PROC NETFLOW and
any related readjustments are always done.

NOZTOL2
indicates that the majority of tests for roundoff error are not to be done during an op-
timization that considers side constraints. The reasons for specifying the NOZTOL2
option are the same as those for specifying the NOZTOL1 option for stage 1 opti-
mization (see the NOZTOL1 option).

OPTIM–TIMER
indicates that the procedure is to issue a message to the SAS log giving the CPU time
spent doing optimization. This includes the time spent preprocessing, performing
optimization, and postprocessing. Not counted in that time is the rest of the procedure
execution, which includes reading the data and creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the
procedure. This is especially true when the problem is quite small (e.g., fewer than
10,000 variables).

SCRATCH
specifies that you do not want PROC NETFLOW to enter or continue stage 1 of

RESET Statement � 499

the algorithm. Rather than specify RESET SCRATCH, you can use the CONOPT
statement.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the ARCDATA= data set, PROC NETFLOW might have
cause to issue the following message many times:

ERROR: The HEAD list variable value in obs i in ARCDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are many observations that have this fault, messages that are similar are issued
for only the first VERBOSE= such observations. After the ARCDATA= data set has
been read, PROC NETFLOW will issue the message

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

If observations in the ARCDATA= data set have this error, PROC NETFLOW stops
and you have to fix the data. Imagine that this error is only a warning and PROC
NETFLOW proceeded to other operations such as reading the CONDATA= data set.
If PROC NETFLOW finds there are numerous errors when reading that data set, the
number of messages issued to the SAS log are also limited by the VERBOSE= option.

If you have a problem with a large number of side constraints and for some reason
you stop stage 2 optimization early, PROC NETFLOW indicates that constraints are
violated by the current solution. Specifying VERBOSE=v allows at most v violated
constraints to be written to the log. If there are more, these are not displayed.

When PROC NETFLOW finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=vmin.

is issued. The value of vmin is the smallest value that should be specified for the
VERBOSE= option so that all messages are displayed if PROC NETFLOW is run
again with the same data and everything else (except the VERBOSE= option) un-
changed. No messages are suppressed.

The default value for the VERBOSE= option is 12.

ZERO1=z
Z1=z

specifies the zero tolerance level in stage 1. If the NOZTOL1 option is not specified,
values within z of zero are set to 0.0, where z is the value of the ZERO1= option.
Flows close to the lower flow bound or capacity of arcs are reassigned those exact
values. Two values are deemed to be close if one is within z of the other. The default
value for the ZERO1= option is 0.000001. Any value specified for the ZERO1=
option that is < 0.0 or > 0.0001 is invalid.

500 � Chapter 5. The NETFLOW Procedure

ZERO2=z
Z2=z

specifies the zero tolerance level in stage 2. If the NOZTOL2 option is not specified,
values within z of zero are set to 0.0, where z is the value of the ZERO2= option.
Flows close to the lower flow bound or capacity of arcs are reassigned those exact
values. If there are nonarc variables, values close to the lower or upper value bound
of nonarc variables are reassigned those exact values. Two values are deemed to be
close if one is within z of the other. The default value for the ZERO2= option is
0.000001. Any value specified for the ZERO2= option that is < 0.0 or > 0.0001 is
invalid.

ZEROTOL=z
specifies the zero tolerance used when PROC NETFLOW must compare any real
number with another real number, or zero. For example, if x and y are real numbers,
then for x to be considered greater than y, x must be at least y + z. The ZEROTOL=
option is used throughout any PROC NETFLOW run.

ZEROTOL=z controls the way PROC NETFLOW performs all double precision
comparisons; that is, whether a double precision number is equal to, not equal to,
greater than (or equal to), or less than (or equal to) zero or some other double preci-
sion number. A double precision number is deemed to be the same as another such
value if the absolute difference between them is less than or equal to the value of the
ZEROTOL= option.

The default value for the ZEROTOL= option is 1.0E−14. You can specify the
ZEROTOL= option in the NETFLOW or RESET statement. Valid values for the
ZEROTOL= option must be > 0.0 and < 0.0001. Do not specify a value too close to
zero as this defeats the purpose of the ZEROTOL= option. Neither should the value
be too large, as comparisons might be incorrectly performed.

The ZEROTOL= option is different from the ZERO1= and ZERO2= options in that
ZERO1= and ZERO2= options work when determining whether optimality has been
reached, whether an entry in the updated column in the ratio test of the simplex
method is zero, whether a flow is the same as the arc’s capacity or lower bound,
or whether the value of a nonarc variable is at a bound. The ZEROTOL= option is
used in all other general double precision number comparisons.

ZTOL1
indicates that all tests for roundoff error are performed during stage 1 optimization.
Any alterations are carried out. The opposite of the ZTOL1 option is the NOZTOL1
option.

ZTOL2
indicates that all tests for roundoff error are performed during stage 2 optimization.
Any alterations are carried out. The opposite of the ZTOL2 option is the NOZTOL2
option.

RESET Statement � 501

Interior Point Algorithm Options

FACT–METHOD=f
enables you to choose the type of algorithm used to factorize and solve the main
linear systems at each iteration of the interior point algorithm.

FACT–METHOD=LEFT–LOOKING is new for SAS 9.1.2. It uses algorithms de-
scribed in George, Liu, and Ng (2001). Left looking is one of the main methods used
to perform Cholesky optimization and, along with some recently developed imple-
mentation approaches, can be faster and require less memory than other algorithms.

Specify FACT–METHOD=USE–OLD if you want the procedure to use the only
factorization available prior to SAS 9.1.2.

TOLDINF=t
RTOLDINF=t

specifies the allowed amount of dual infeasibility. In the section “Interior Point
Algorithmic Details” on page 571, the vector infeasd is defined. If all elements of
this vector are ≤ t, the solution is deemed feasible. infeasd is replaced by a zero vec-
tor, making computations faster. This option is the dual equivalent to the TOLPINF=
option. Valid values for t are greater than 1.0E−12. The default is 1.0E−7.

TOLPINF=t
RTOLPINF=t

specifies the allowed amount of primal infeasibility. This option is the primal equiva-
lent to the TOLDINF= option. In the section “Interior Point: Upper Bounds” on page
579, the vector infeasb is defined. In the section “Interior Point Algorithmic Details”
on page 571, the vector infeasc is defined. If all elements in these vectors are ≤ t,
the solution is deemed feasible. infeasb and infeasc are replaced by zero vectors,
making computations faster. Increasing the value of the TOLPINF= option too much
can lead to instability, but a modest increase can give the algorithm added flexibility
and decrease the iteration count. Valid values for t are greater than 1.0E−12. The
default is 1.0E−7.

TOLTOTDINF=t
RTOLTOTDINF=t

specifies the allowed total amount of dual infeasibility. In the section “Interior Point
Algorithmic Details” on page 571, the vector infeasd is defined. If

∑n
i=1 infeasdi ≤

t, the solution is deemed feasible. infeasd is replaced by a zero vector, making com-
putations faster. This option is the dual equivalent to the TOLTOTPINF= option.
Valid values for t are greater than 1.0E−12. The default is 1.0E−7.

TOLTOTPINF=t
RTOLTOTPINF=t

specifies the allowed total amount of primal infeasibility. This option is the pri-
mal equivalent to the TOLTOTDINF= option. In the section “Interior Point: Upper
Bounds” on page 579, the vector infeasb is defined. In the section “Interior Point
Algorithmic Details” on page 571, the vector infeasc is defined. If

∑n
i=1 infeasbi ≤ t

and
∑m

i=1 infeasci ≤ t, the solution is deemed feasible. infeasb and infeasc are
replaced by zero vectors, making computations faster. Increasing the value of the
TOLTOTPINF= option too much can lead to instability, but a modest increase can

502 � Chapter 5. The NETFLOW Procedure

give the algorithm added flexibility and decrease the iteration count. Valid values for
t are greater than 1.0E−12. The default is 1.0E−7.

CHOLTINYTOL=c
RCHOLTINYTOL=c

specifies the cut-off tolerance for Cholesky factorization of the AΘA−1. If a diagonal
value drops below c, the row is essentially treated as dependent and is ignored in the
factorization. Valid values for c are between 1.0E−30 and 1.0E−6. The default value
is 1.0E−8.

DENSETHR=d
RDENSETHR=d

specifies the density threshold for Cholesky processing. When the symbolic factor-
ization encounters a column of L that has DENSETHR= proportion of nonzeros and
the remaining part of L is at least 12× 12, the remainder of L is treated as dense. In
practice, the lower right part of the Cholesky triangular factor L is quite dense and it
can be computationally more efficient to treat it as 100% dense. The default value for
d is 0.7. A specification of d ≤ 0.0 causes all dense processing; d ≥ 1.0 causes all
sparse processing.

PDSTEPMULT=p
RPDSTEPMULT=p

specifies the step-length multiplier. The maximum feasible step-length chosen by
the Primal-Dual with Predictor-Corrector algorithm is multiplied by the value of the
PDSTEPMULT= option. This number must be less than 1 to avoid moving beyond
the barrier. An actual step length greater than 1 indicates numerical difficulties. Valid
values for p are between 0.01 and 0.999999. The default value is 0.99995.

In the section “Interior Point Algorithmic Details” on page 571, the solution of the
next iteration is obtained by moving along a direction from the current iteration’s
solution:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the maximum feasible step-length chosen by the interior point algorithm.
If α ≤ 1, then α is reduced slightly by multiplying it by p. α is a value as large as
possible but ≤ 1.0 and not so large that an xk+1

i or sk+1
i of some variable i is “too

close” to zero.

PRSLTYPE=p
IPRSLTYPE=p

Preprocessing the linear programming problem often succeeds in allowing some vari-
ables and constraints to be temporarily eliminated from the LP that must be solved.
This reduces the solution time and possibly also the chance that the optimizer will
run into numerical difficulties. The task of preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE=p, where p
can be –1, 0, 1, 2, or 3.

RESET Statement � 503

–1 Do not perform preprocessing. For most problems, specifying
PRSLTYPE= –1 is not recommended.

0 Given upper and lower bounds on each variable, the greatest and least con-
tribution to the row activity of each variable is computed. If these are
within the limits set by the upper and lower bounds on the row activity,
then the row is redundant and can be discarded. Try to tighten the bounds
on any of the variables it can. For example, if all coefficients in a con-
straint are positive and all variables have zero lower bounds, then the row’s
smallest contribution is zero. If the rhs value of this constraint is zero, then
if the constraint type is = or ≤, all the variables in that constraint can be
fixed to zero. These variables and the constraint can be removed. If the
constraint type is ≥, the constraint is redundant. If the rhs is negative and
the constraint is ≤, the problem is infeasible. If just one variable in a row
is not fixed, use the row to impose an implicit upper or lower bound on the
variable and then eliminate the row. The preprocessor also tries to tighten
the bounds on constraint right-hand sides.

1 When there are exactly two unfixed variables with coefficients in an equal-
ity constraint, solve for one in terms of the other. The problem will have
one less variable. The new matrix will have at least two fewer coefficients
and one less constraint. In other constraints where both variables appear,
two coefs are combined into one. PRSLTYPE=0 reductions are also done.

2 It may be possible to determine that an equality constraint is not constrain-
ing a variable. That is, if all variables are nonnegative, then x−

∑
i yi = 0

does not constrain x, since it must be nonnegative if all the yi’s are non-
negative. In this case, eliminate x by subtracting this equation from all
others containing x. This is useful when the only other entry for x is in
the objective function. Perform this reduction if there is at most one other
nonobjective coefficient. PRSLTYPE=0 reductions are also done.

3 All possible reductions are performed. PRSLTYPE=3 is the default.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are
found to be redundant and they too are eliminated, and as variable bounds and con-
straint right-hand sides are tightened, the LP to be optimized is modified to reflect
these changes. Another iteration of preprocessing of the modified LP may reveal
more variables and constraints that can be eliminated.

PRINTLEVEL2=p
is used when you want to see PROC NETFLOW’s progress to the optimum. PROC
NETFLOW will produce a table on the SAS log. A row of the table is generated
during each iteration and may consist of values of

• the affine step complementarity

• the complementarity of the solution for the next iteration

• the total bound infeasibility
∑n

i=1 infeasbi (see the infeasb array in the section
“Interior Point: Upper Bounds” on page 579)

• the total constraint infeasibility
∑m

i=1 infeasci (see the infeasc array in the
section “Interior Point Algorithmic Details” on page 571)

504 � Chapter 5. The NETFLOW Procedure

• the total dual infeasibility
∑n

i=1 infeasdi (see the infeasd array in the section
“Interior Point Algorithmic Details” on page 571)

As optimization progresses, the values in all columns should converge to zero.
If you specify PRINTLEVEL2=2, all columns will appear in the table. If
PRINTLEVEL2=1 is specified, only the affine step complementarity and the com-
plementarity of the solution for the next iteration will appear. Some time is saved by
not calculating the infeasibility values.

Interior Point Algorithm Options: Stopping Criteria

MAXITERB=m
IMAXITERB=m

specifies the maximum number of iterations of the interior point algorithm that can
be performed. The default value for m is 100. One of the most remarkable aspects of
the interior point algorithm is that for most problems, it usually needs to do a small
number of iterations, no matter the size of the problem.

PDGAPTOL=p
RPDGAPTOL=p

specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in
the section “Interior Point Algorithmic Details” on page 571. If the relative gap
(duality gap/(cT x)) between the primal and dual objectives is smaller than the value
of the PDGAPTOL= option and both the primal and dual problems are feasible, then
PROC NETFLOW stops optimization with a solution that is deemed optimal. Valid
values for p are between 1.0E−12 and 1.0E−1. The default is 1.0E−7.

STOP–C=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is≤ s, optimization will
stop. This option is discussed in the section “Stopping Criteria” on page 575.

STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is≤ s, optimization will
stop. This option is discussed in the section “Stopping Criteria” on page 575.

STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

section “Interior Point: Upper Bounds” on page 579; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is ≤ s, optimization will stop. This option is discussed in the
section “Stopping Criteria” on page 575.

STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the

section “Interior Point Algorithmic Details” on page 571; this value appears in the

RESET Statement � 505

Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is ≤ s, optimization will stop. This option is discussed in the section “Stopping
Criteria” on page 575.

STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the sec-

tion “Interior Point Algorithmic Details” on page 571; this value appears in the
Tot–infeasd column in the table produced when you specify PRINTLEVEL2=2) is≤
s, optimization will stop. This option is discussed in the section “Stopping Criteria”
on page 575.

AND–STOP–C=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if complementarity (the value of the Complem-ity column in the table pro-
duced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is ≤ s, and the
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the section “Stopping Criteria” on page 575.

AND–STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table pro-
duced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is ≤ s, and the
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the section “Stopping Criteria” on page 575.

AND–STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

section “Interior Point: Upper Bounds” on page 579; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is ≤ s, and the conditions related to other AND–STOP parame-
ters are also satisfied, optimization will stop. This option is discussed in the section
“Stopping Criteria” on page 575.

AND–STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the

section “Interior Point Algorithmic Details” on page 571; this value appears in the
Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is ≤ s, and the conditions related to other AND–STOP parameters are also satisfied,
optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 575.

AND–STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the sec-

tion “Interior Point Algorithmic Details” on page 571; this value appears in the
Tot–infeasd column in the table produced when you specify PRINTLEVEL2=2) is
≤ s, and the conditions related to other AND–STOP parameters are also satisfied,

506 � Chapter 5. The NETFLOW Procedure

optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 575.

KEEPGOING–C=s
is used to determine whether optimization should stop. If a stopping condition is
met, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 575.

KEEPGOING–DG=s
is used to determine whether optimization should stop. If a stopping condition is
met, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 575.

KEEPGOING–IB=s
is used to determine whether optimization should stop. If a stopping condition
is met, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

section “Interior Point: Upper Bounds” on page 579; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in
the section “Stopping Criteria” on page 575.

KEEPGOING–IC=s
is used to determine whether optimization should stop. If a stopping condition is
met, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the sec-

tion “Interior Point Algorithmic Details” on page 571; this value appears in the
Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2) is
> s, optimization will continue. This option is discussed in the section “Stopping
Criteria” on page 575.

KEEPGOING–ID=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the section “Interior

Point Algorithmic Details” on page 571; this value appears in the Tot–infeasd column
in the table produced when you specify PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 575.

AND–KEEPGOING–C=s
is used to determine whether optimization should stop. If a stopping condition is met,
if complementarity (the value of the Complem-ity column in the table produced when
you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the conditions
related to other AND–KEEPGOING parameters are also satisfied, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 575.

AND–KEEPGOING–DG=s
is used to determine whether optimization should stop. If a stopping condition is met,
if the duality gap (the value of the Duality–gap column in the table produced when
you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the conditions
related to other AND–KEEPGOING parameters are also satisfied, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 575.

ROW Statement � 507

AND–KEEPGOING–IB=s
is used to determine whether optimization should stop. If a stopping condition is
met, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the section

“Interior Point: Upper Bounds” on page 579; this value appears in the Tot–infeasb
column in the table produced when you specify PRINTLEVEL2=2) is > s, and the
conditions related to other AND–KEEPGOING parameters are also satisfied, opti-
mization will continue. This option is discussed in the section “Stopping Criteria” on
page 575.

AND–KEEPGOING–IC=s
is used to determine whether optimization should stop. If a stopping condition is
met, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the sec-

tion “Interior Point Algorithmic Details” on page 571; this value appears in the
Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2) is
> s, and the conditions related to other AND–KEEPGOING parameters are also sat-
isfied, optimization will continue. This option is discussed in the section “Stopping
Criteria” on page 575.

AND–KEEPGOING–ID=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the section “Interior

Point Algorithmic Details” on page 571; this value appears in the Tot–infeasd column
in the table produced when you specify PRINTLEVEL2=2) is > s, and the conditions
related to other AND–KEEPGOING parameters are also satisfied, optimization will
continue. This option is discussed in the section “Stopping Criteria” on page 575.

RHS Statement

RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is
used. The values of the SAS variable specified in the RHS list are constraint right-
hand-side values. If the RHS list is not specified, the CONDATA= data set is searched
and a SAS variable with the name –RHS– is used. If there is no RHS list and no
SAS variable named –RHS– , all constraints are assumed to have zero right-hand-
side values. The RHS list variable must have numeric values.

ROW Statement

ROW variables ;

The ROW list is used when either the sparse or the dense format of side constraints is
being used. SAS variables in the ROW list have values that are constraint or special
row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In
this case, if a ROW list is not specified, the CONDATA= data set is searched and the
SAS variable with the name –ROW– or –CON– is used.

If the sparse data format is used and the ROW statement is not specified, the
CONDATA= data set is searched and SAS variables with names beginning with

508 � Chapter 5. The NETFLOW Procedure

–ROW or –CON are used. The number of SAS variables in the ROW list must
not be less than the number of SAS variables in the COEF list. The ith ROW list
variable is paired with the ith COEF list variable. If the number of ROW list vari-
ables is greater than the number of COEF list variables, the last ROW list variables
have no COEF partner. These ROW list variables that have no corresponding COEF
list variable are used in observations that have a TYPE list variable value. All ROW
list variable values are tagged as having the type indicated. If there is no TYPE list
variable, all ROW list variable values are constraint names.

RUN Statement

RUN ;

The RUN statement causes optimization to be started or resumed. The RUN statement
has no options. If PROC NETFLOW is called and is not terminated because of an
error or a QUIT statement, and you have not used a RUN statement, a RUN statement
is assumed implicitly as the last statement of PROC NETFLOW. Therefore, PROC
NETFLOW always performs optimization and saves the obtained (optimal) solution
in the current output data sets.

SAVE Statement

SAVE options ;

The options available with the SAVE statement of PROC NETFLOW are summarized
by purpose in the following table.

Table 5.4. Functional Summary, SAVE Statement

Description Statement Option

Output Data Set Options:
unconstrained primal solution data set SAVE ARCOUT=
unconstrained dual solution data set SAVE NODEOUT=
constrained primal solution data set SAVE CONOUT=
constrained dual solution data set SAVE DUALOUT=

The SAVE statement can be used to specify output data sets and create observations
in these data sets. Use the SAVE statement if no optimization is to be performed
before these output data sets are created.

The SAVE statement must be used to save solutions in data sets if there is no more
optimization to do. If more optimization is to be performed, after which you want to
save the solution, then do one of the following:

• Submit a RUN statement followed by a SAVE statement.

• Use the PROC NETFLOW or RESET statement to specify current output data
sets. After optimization, output data sets are created and observations are au-
tomatically sent to the current output data sets.

SAVE Statement � 509

Consider the following example:

proc netflow options; lists;
reset maxit1=10 maxit2=25

arcout=arcout0 nodeout=nodeout0
conout=conout0 dualout=dualout0;

run;
/* Stage 1 optimization stops after iteration 10. */
/* No output data sets are created yet. */
save arcout=arcout1 nodeout=nodeout1;
/* arcout1 and nodeout1 are created. */
reset arcout=arcout2 maxit1=999999;
run;
/* The stage 1 optimum is reached. */
/* Arcout2 and nodeout0 are created. */
/* Arcout0 is not created as arcout=arcout2 over- */
/* rides the arcout=arcout0 specified earlier. */
/* Stage 2 optimization stops after 25 iterations */
/* as MAXIT2=25 was specified. */
save conout=conout1;
/* Conout1 is created. */
reset maxit2=999999 dualout=null;
run;
/* The stage 2 optimum is reached. */
/* Conout0 is created. */
/* No dualout is created as the last NETFLOW or */
/* reset statements dualout=data set specification*/
/* was dualout=null. */

The data sets specified in the PROC NETFLOW and RESET statements are created
when an optimal solution is found. The data sets specified in SAVE statements are
created immediately.

The data sets in the preceding example are all distinct, but this need not be the case.
The only exception to this is that the ARCOUT= data set and the NODEOUT= data
set (or the CONOUT= data set and the DUALOUT= data set) that are being created
at the same time must be distinct. Use the SHOW DATASETS statement to examine
what data sets are current and when they were created.

The following options can appear in the SAVE statement:

ARCOUT= SAS-data-set (or AOUT= SAS-data-set)

NODEOUT= SAS-data-set (or NOUT= SAS-data-set)

CONOUT= SAS-data-set (or COUT= SAS-data-set)

DUALOUT= SAS-data-set (or DOUT= SAS-data-set)

510 � Chapter 5. The NETFLOW Procedure

SHOW Statement

SHOW options / qualifiers ;

The options available with the SHOW statement of PROC NETFLOW are summa-
rized by purpose in the following table.

Table 5.5. Functional Summary, SHOW Statement

Description Statement Option

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS
show options that pause optimization SHOW PAUSE
show simplex algorithm options SHOW SIMPLEX
show pricing strategy options SHOW PRICING
show miscellaneous options SHOW MISC

SHOW Statement Qualifiers:
display information only on relevant options SHOW / RELEVANT
display options for current stage only SHOW / STAGE

The SHOW statement enables you to examine the status of the problem and values of
the RESET statement options. All output of the SHOW statement appears on the SAS
log. The amount of information displayed when a SHOW statement is processed can
be limited if some of the options of the SHOW statement are specified. These options
indicate whether the problem status or a specific category of the RESET options is
of interest. If no options are specified, the problem status and information on all
RESET statement options in every category is displayed. The amount of displayed
information can be limited further by following any SHOW statement options with a
slash (/) and one or both qualifiers, RELEVANT and STAGE.

STATUS
produces one of the following optimization status reports, whichever is applicable.
The warning messages are issued only if the network or entire problem is infeasible.

NOTE: Optimization Status.
Optimization has not started yet.

NOTE: Optimization Status.
Optimizing network (ignoring any side constraints).
Number of iterations=17
Of these, 3 were degenerate

WARNING: This optimization has detected that the network is
infeasible.

SHOW Statement � 511

NOTE: Optimization Status.
Found network optimum (ignoring side constraints)
Number of iterations=23
Of these, 8 were degenerate

NOTE: Optimization Status.
Optimizing side constrained network.
Number of iterations=27
Of these, 9 were degenerate

WARNING: This optimization has detected that the problem is
infeasible.

NOTE: Optimization Status.
Found side constrained network optimum
Number of iterations=6
Of these, 0 were degenerate

DATASETS
produces a report on output data sets.

NOTE: Current output SAS data sets
No output data sets have been specified

NOTE: Current output SAS data sets
ARCOUT=libname.memname
NODEOUT=libname.memname
CONOUT=libname.memname
DUALOUT=libname.memname

NOTE: Other SAS data sets specified in previous ARCOUT=, NODEOUT=,
CONOUT=, or DUALOUT=.
libname.memname

.

.

.

NOTE: Current output SAS data sets (SHOW DATASETS)
libname.memname

.

.

.
NOTE: SAS data sets specified as ARCOUT= NODEOUT= CONOUT= or

DUALOUT= data sets in previous PROC NETFLOW, SET, RESET
and SAVE statements.
The number following the data set specification was the
iteration number when observations were placed into the
data set.
libname.memname iteration_number

. .

. .

. .

512 � Chapter 5. The NETFLOW Procedure

PAUSE
produces a report on the current settings of options used to make optimization pause.

NOTE: Options and parameters that stop optimization for reasons
other than infeasibility or optimality (SHOW PAUSE)
FEASIBLEPAUSE1=FALSE
ENDPAUSE1=FALSE
PAUSE1=999999
MAXIT1=1000
FEASIBLEPAUSE2=FALSE
PAUSE2=999999
MAXIT2=999999

SIMPLEX
produces the following:

NOTE: Options and parameters that control the primal simplex
network algorithm (excluding those that affect the
pricing strategies) (SHOW SIMPLEX)
LRATIO1=FALSE
BIGM1=NOTWOPHASE1=TRUE, TWOPHASE1=NOBIGM1=FALSE
CYCLEMULT1=0.15
PERTURB1=FALSE
MINBLOCK1=2
INTFIRST=TRUE
LRATIO2=FALSE
BIGM2=NOTWOPHASE2=TRUE, TWOPHASE2=NOBIGM2=FALSE
REFACTFREQ=50
U=0.1
MAXLUUPDATES=6
MAXL=40

PRICING
produces the following:

NOTE: Options and parameters that control the primal simplex
network algorithm pricing strategies (SHOW PRICING)
PRICETYPE1=Q
P1SCAN=FIRST
P1NPARTIAL=10
Q1FILLSCAN=FIRST
QSIZE1=24
REFRESHQ1=0.75
REDUCEQSIZE1=1
Q1FILLNPARTIAL=10
PRICETYPE2=Q
P2SCAN=FIRST
P2NPARTIAL=10
DUALFREQ=4
Q2FILLSCAN=FIRST
QSIZE2=24
REFRESHQ2=0.75

SHOW Statement � 513

REDUCEQSIZE2=1
Q2FILLNPARTIAL=10

MISC
produces the following:

NOTE: Miscellaneous options and parameters (SHOW MISC)
VERBOSE=12
ZTOL1=TRUE
ZERO1=1E-6
FUTURE1=FALSE
ZTOL2=TRUE
ZERO2=1E-6
FUTURE2=FALSE

Following a slash (/), the qualifiers below can appear in any SHOW statement.

RELEVANT
indicates that you want information only on relevant options of the RESET statement.
The following will not be displayed if / RELEVANT is specified:

• information on noncurrent data sets

• the options that control the reasons why stage 1 optimization should be halted
and the options that control the simplex algorithm during stage 1 optimization,
if the unconstrained optimum has been reached or constrained optimization has
been performed

• if P1SCAN=BEST or P1SCAN=FIRST, the P1NPARTIAL= option is irrele-
vant

• if PRICETYPE1=BLAND or PRICETYPE1=NOQ, the options QSIZE1=,
Q1FILLSCAN=, REFRESHQ1=, and REDUCEQSIZE1= are irrelevant

• if Q1FILLSCAN=BEST or Q1FILLSCAN=FIRST, the Q1FILLNPARTIAL=
option is irrelevant

• the options that control the reasons stage 2 optimization should be halted, the
options that control the simplex algorithm during stage 2 optimization, if the
constrained optimum has been reached

• if P2SCAN=BEST or P2SCAN=FIRST, the P2NPARTIAL= option is irrele-
vant

• if PRICETYPE2=BLAND or PRICETYPE2=NOQ, the options QSIZE2=,
Q2FILLSCAN=, REFRESHQ2=, and REDUCEQSIZE2= are irrelevant

• if Q2FILLSCAN=BEST or Q2FILLSCAN=FIRST, the Q2FILLNPARTIAL=
option is irrelevant

STAGE
indicates that you want to examine only the options that affect the optimization that
is performed if a RUN statement is executed next. Before any optimization has been
done, only stage 2 options are displayed if the problem has side constraints and the

514 � Chapter 5. The NETFLOW Procedure

SCRATCH option is used, or if the CONOPT statement is specified. Otherwise, stage
1 options are displayed. If still optimizing neglecting constraints, only stage 1 options
will be displayed. If the unconstrained optimum has been reached and optimization
that considers constraints has not been performed, stage 1 options are displayed. If
the problem has constraints, stage 2 options are displayed. If any optimization that
considers constraints has been performed, only stage 2 options are displayed.

SUPDEM Statement

SUPDEM variable ;

The SAS variable in this list, which must be present in the NODEDATA= data set,
contains supply and demand information for the nodes in the NODE list. A positive
SUPDEM list variable value s (s > 0) denotes that the node named in the NODE list
variable can supply s units of flow. A negative SUPDEM list variable value −d (d >
0) means that this node demands d units of flow. If a SAS variable is not explicitly
specified, a SAS variable with the name –SUPDEM– or –SD– in the NODEDATA=
data set is used as the SUPDEM variable. If a node is a transshipment node (neither
a supply nor a demand node), an observation associated with this node need not be
present in the NODEDATA= data set. If present, the SUPDEM list variable value
must be zero or a missing value.

SUPPLY Statement

SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that
contains the supply at the node named in that observation’s TAILNODE list variable.
If a tail node does not supply flow, use zero or a missing value for the observation’s
SUPPLY list variable value. If a tail node has supply capability, a missing value
indicates that the supply quantity is given in another observation. It is not necessary
to have a SUPPLY statement if the name of this SAS variable is –SUPPLY– .

TAILNODE Statement

TAILNODE variable ;

TAIL variable ;

FROMNODE variable ;

FROM variable ;

The TAILNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that has as values the names of tail nodes of arcs. The
TAILNODE variable must have character values. It is not necessary to have a
TAILNODE statement if the name of the SAS variable is –TAIL– or –FROM– .
If the TAILNODE list variable value is missing, it is assumed that the observation of
ARCDATA= data set contains information concerning a nonarc variable.

TYPE Statement � 515

TYPE Statement

TYPE variable ;

CONTYPE variable ;
The TYPE list, which is optional, names the variable that has as values keywords
that indicate either the constraint type for each constraint or the type of special rows
in the CONDATA= data set. The values of the TYPE list variable also indicate, in
each observation of the CONDATA= data set, how values of the VAR or COEF list
variables are to be interpreted and how the type of each constraint or special row
name is determined. If the TYPE list is not specified, the CONDATA= data set is
searched and a SAS variable with the name –TYPE– is used. Valid keywords for the
TYPE variable are given below. If there is no TYPE statement and no other method
is used to furnish type information (see the DEFCONTYPE= option), all constraints
are assumed to be of the type “less than or equal to” and no special rows are used.
The TYPE list variable must have character values and can be used when the data in
the CONDATA= data set is in either the sparse or the dense format. If the TYPE list
variable value has a * as its first character, the observation is ignored because it is a
comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the
characters that PROC NETFLOW uses to determine what type the value suggests.
You need to have at least these characters. In the following list, the minimal TYPE
list variable values have additional characters to aid you in remembering these values.

< less than or equal to (≤)
= equal to (=)
> greater than or equal to (≥)
CAPAC capacity
COST cost
EQ equal to
FREE free row (used only for linear programs solved by interior point)
GAIN gain in arc flow (generalized networks)
GE greater than or equal to
LE less than or equal to
LOSS loss in arc flow (generalized networks)
LOWERBD lower flow or value bound
LOWblank lower flow or value bound
MAXIMIZE maximize (opposite of cost)
MINIMIZE minimize (same as cost)
MULT value of arc multiplier (generalized networks)
OBJECTIVE objective function (same as cost)
RHS rhs of constraint
TYPE type of constraint
UPPCOST reserved for future use
UNREST unrestricted variable (used only for linear programs solved by in-

terior point)
UPPER upper value bound or capacity; second letter must not be N

516 � Chapter 5. The NETFLOW Procedure

The valid TYPE list variable values in function order are

• LE less than or equal to (≤)

• EQ equal to (=)

• GE greater than or equal to (≥)

• COST
MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

• CAPAC
UPPER
capacity or upper value bound

• LOWERBD
LOWblank
lower flow or value bound

• RHS rhs of constraint

• TYPE type of constraint

• MULT
GAIN
LOSS
value of arc multiplier in a generalized network

A TYPE list variable value that has the first character ∗ causes the observation to be
treated as a comment. If the first character is a negative sign, then≤ is the type. If the
first character is a zero, then = is the type. If the first character is a positive number,
then ≥ is the type.

VAR Statement

VAR variables ;

The VAR variable list is used when the dense data format is used. The names of these
SAS variables are also names of the arc and nonarc variables that have data in the
CONDATA= data set. If no explicit VAR list is specified, all numeric variables not
on other lists are put onto the VAR list. The VAR list variables must have numeric
values. The values of the VAR list variables in some observations can be interpreted
differently than in other observations. The values can be coefficients in the side con-
straints, costs and objective function coefficients, or bound data. How these numeric
values are interpreted depends on the value of each observation’s TYPE or ROW list
variable value. If there are no TYPE list variables, the VAR list variable values are
all assumed to be side constraint coefficients.

Input Data Sets � 517

Details: NETFLOW Procedure

Input Data Sets

PROC NETFLOW is designed so that there are as few rules as possible that you
must obey when inputting a problem’s data. Raw data are acceptable. This should
cut the amount of processing required to groom the data before it is input to PROC
NETFLOW. Data formats are so flexible that, due to space restrictions, all possible
forms for a problem’s data are not shown here. Try any reasonable form for your
problem’s data; it should be acceptable. PROC NETFLOW will outline its objections.

There are several ways to supply the same piece of data. You do not have to restrict
yourself to using any particular one. If you use several ways, PROC NETFLOW
checks that the data are consistent each time the data are encountered. After all input
data sets have been read, data are merged so that the problem is described completely.
The order of the observations is not important in any of the input data sets.

ARCDATA= Data Set

See the section “Getting Started: NETFLOW Procedure” on page 448 and the section
“Introductory Example” on page 449 for a description of this input data set.

Note: Information for an arc or nonarc variable can be specified in more than one
observation. For example, consider an arc directed from node A toward node B that
has a cost of 50, capacity of 100, and lower flow bound of 10 flow units. Some
possible observations in the ARCDATA= data set may be

TAIL _HEAD_ _COST_ _CAPAC_ _LO_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable with upperbd=100, lowerbd=10, and objective func-
tion coefficient=50, the –TAIL– and –HEAD– values are missing.

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense
format, you will receive a warning if PROC NETFLOW finds a constraint row that
has no coefficients. You will also be warned if any nonarc variable has no constraint
coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong
to the VAR list and have names of arc and nonarc variables. These names can be
values of the NAME list SAS variables in the ARCDATA= data set, or names of

518 � Chapter 5. The NETFLOW Procedure

nonarc variables, or names in the form tail–head, or any combination of these three
forms. Names in the form tail–head are default arc names, and if you use them, you
must specify node names in the ARCDATA= data set (values of the TAILNODE and
HEADNODE list SAS variables) using no lowercase letters.

There can be three other variables in the CONDATA= data set, belonging, respec-
tively, to the ROW, TYPE, and RHS lists. The CONDATA= data set of the oil
industry example in the section “Introductory Example” on page 449 uses the dense
data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data
for three constraints. This data set was used in the section “Introductory Example”
on page 449.

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

You can use nonconstraint type values to furnish data on costs, capacities, lower flow
bounds (and, if there are nonarc variables, objective function coefficients and upper
and lower bounds). You need not have such (or as much) data in the ARCDATA= data
set. The first three observations in the following data set are examples of observations
that provide cost, capacity and lower bound data.

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

If a ROW list variable is used, the data for a constraint can be spread over more
than one observation. To illustrate, the data for the first constraint, (which is called
con1), and the cost and capacity data (in special rows called costrow and caprow,
respectively) are spread over more than one observation in the following data set.

data cond1c;
input _row_ $

Input Data Sets � 519

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63
costrow . 81 200 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .
con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 -3 4 = 0
;

Using both ROW and TYPE lists, you can use special row names. Examples of
these are “costrow” and “caprow” in the last data set. It should be restated that in
any of the input data sets of PROC NETFLOW, the order of the observations does
not matter. However, the CONDATA= data set can be read more quickly if PROC
NETFLOW knows what type of constraint or special row a ROW list variable value
is. For example, when the first observation is read, PROC NETFLOW does not know
whether costrow is a constraint or special row and how to interpret the value 63 for the
arc with the name m–e–ref1. When PROC NETFLOW reads the second observation,
it learns that costrow has type cost and that the values 81 and 200 are costs. When the
entire CONDATA= data set has been read, PROC NETFLOW knows the type of all
special rows and constraints. Data that PROC NETFLOW had to set aside (such as the
first observation 63 value and the costrow ROW list variable value, which at the time
had unknown type, but is then known to be a cost special row) is reprocessed. During
this second pass, if a ROW list variable value has unassigned constraint or special row
type, it is treated as a constraint with DEFCONTYPE= (or DEFCONTYPE= default)
type. Associated VAR list variable values as coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When
the sparse data format of the CONDATA= data set is used, only nonzero constraint
coefficients must be specified. Remember to specify the SPARSECONDATA option
in the PROC NETFLOW statement. With the sparse method of specifying constraint
information, the names of arc and nonarc variables do not have to be valid SAS
variable names.

A sparse format CONDATA= data set for the oil industry example in the section
“Introductory Example” on page 449 is displayed in the following code.

520 � Chapter 5. The NETFLOW Procedure

title ’Setting Up Condata = Cond2 for PROC NETFLOW’;
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values “–type–” and “–rhs–” are the default
values of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of
constraints (con3 and con4) is zero. The third to last observation has the value
“–type–” for the COLUMN list variable. The –ROW1 variable value is con1, and
the –COEF1– variable has the value 1. This indicates that the constraint con1 is
greater than or equal to type (because the value 1 is greater than zero). Similarly,
the data in the second to last observation’s –ROW2 and –COEF2 variables indicate
that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable is as follows:

title ’Setting Up Condata = Cond3 for PROC NETFLOW’;
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last two ob-
servations in the data set cond3, for instance), the constraints named in the ROW list
variables all have the constraint type indicated by the value in the TYPE list variable.
It is for this type of observation that you are allowed more ROW list variables than
COEF list variables. If corresponding COEF list variables are not missing (for ex-
ample, the last observation in the data set cond3), these values are the rhs values of
those constraints. Therefore, you can specify both constraint type and rhs in the same
observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or
nonarc variable, the COEF list variable values are coefficient values for that arc or

Input Data Sets � 521

nonarc variable in the constraints indicated in the corresponding ROW list variables.
If in this same observation, the TYPE list variable contains a constraint type, all
constraints named in the ROW list variables in that observation have this constraint
type (for example, the first observation in the data set cond3). Therefore, you can
specify both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from hav-
ing to include in the data that CON3 and CON4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are presented
in the ARCDATA= data set. Alternatively, you could have used the following input
data sets.

title3 ’Setting Up Arcdata = Arcd2 for PROC NETFLOW’;
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

title ’Setting Up Condata = Cond4 for PROC NETFLOW’;
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac
middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .

522 � Chapter 5. The NETFLOW Procedure

u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

The first observation in the cond4 data set defines con1 and con2 as greater than or
equal to (≥) constraints that both (by coincidence) have rhs values of -15. The second
observation defines the special row costrow as a cost row. When costrow is a ROW
list variable value, the associated COEF list variable value is interpreted as a cost or
objective function coefficient. PROC NETFLOW has to do less work if constraint
names and special rows are defined in observations near the top of a data set, but
this is not a strict requirement. The fourth to ninth observations contain constraint
coefficient data. Observations 7 and 9 have TYPE list variable values that indicate
that constraints con3 and con4 are equality constraints. The last five observations
contain lower flow bound data. Observations that have an arc or nonarc variable
name in the COLUMN list variable, a nonconstraint type TYPE list variable value,
and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.

title ’Setting Up Condata = Cond5 for PROC NETFLOW’;
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .

Input Data Sets � 523

middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

If you have data for a linear programming program that has an embedded network, the
steps required to change that data into a form that is acceptable by PROC NETFLOW
are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these
constraints (a submatrix of the LP’s constraint coefficient matrix) has only two
nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s sup-
plies and demands. Use this information to create a NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient
matrix. The arc is directed from the node associated with the row that has
the 1 element in it and directed toward to the node associated with the row
that has the −1 element in it. Set up an ARCDATA= data set that has two
SAS variables. This data set could resemble ARCDATA=arcd2. These will
eventually be the TAILNODE and HEADNODE list variables when PROC
NETFLOW is used. Each observation consists of the tail and head node of
each arc.

5. Remove from the data of the linear program all data concerning the nodal flow
conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably
resemble CONDATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse for-
mats. a1, b1, b2, b3 and c1 have as a –COLUMN– variable value either the name of
an arc (possibly in the form tail–head) or the name of a nonarc variable.

524 � Chapter 5. The NETFLOW Procedure

• If there is no TYPE list variable in the CONDATA= data set, the problem must
be constrained and there is no nonconstraint data in the CONDATA= data set.

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed
to make problem generation easier.

• If there are no ROW list variables in the data set, the problem has no constraints
and the information is nonconstraint data. There must be a TYPE list variable
and only one COEF list variable in this case. The COLUMN list variable has as
values the names of arcs or nonarc variables and must not have missing values
or special row names as values.

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

• Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

c1 variable missing +-----+ lhs coef +------------+
c2 _TYPE_ or missing | c | -1 0 1 | |

TYPEOBS= | o | | |
c3 _RHS_ or missing | n | rhs value | constraint |

missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is of the form c4 or c5, and the –COEFx– values are miss-
ing, the constraint is assigned the type data specified in the –TYPE– variable.

Input Data Sets � 525

• Using a TYPE list variable for arc and nonarc variable data implies the follow-
ing:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

+---------+ +---------+ +---------+
d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

Observations with form d1 to d5 can have ROW list variable values.
Observation d4 must have ROW list variable values. The ROW value is put
into the ROW name tree so that when dealing with observation d4 or d5,
the COEF list variable value is interpreted according to the type of ROW
list variable value. For example, the following three observations define the
–ROWx– variable values up–row, lo–row and co–row as being an upper
value bound row, lower value bound row, and cost row, respectively.

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC NETFLOW is now able to correctly interpret the following observation:

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the
COLUMN list variable equals the value of the TYPEOBS= option or the de-
fault value –TYPE– , the TYPE list variable value is ignored.

NODEDATA= Data Set

See the section “Getting Started: NETFLOW Procedure” on page 448 and the section
“Introductory Example” on page 449 for a description of this input data set.

526 � Chapter 5. The NETFLOW Procedure

Output Data Sets

The procedure determines the flow that should pass through each arc as well as the
value assigned to each nonarc variable. The goal is that the minimum flow bounds,
capacities, lower and upper value bounds, and side constraints are not violated. This
goal is reached when total cost incurred by such a flow pattern and value assignment
is feasible and optimal. The solution found must also conserve flow at each node.

The ARCOUT= data set contains a solution obtained when performing optimization
that does not consider any constraints. The NODEOUT= data set contains nodal
dual variable information for this type of solution. You can choose to have PROC
NETFLOW create the ARCOUT= data set and the NODEOUT= data set and save
the optimum of the network or the nodal dual variable values before any optimization
that considers the side constraints is performed.

If there are side constraints, the CONOUT= data set can be produced and contains
a solution obtained after performing optimization that considers constraints. The
DUALOUT= data set contains dual variable information for nodes and side con-
straints from the solution obtained after optimization that considers the constraints.
The CONOUT= data set and DUALOUT= data set can be used to save the constrained
optimal solution.

ARCOUT= and CONOUT= Data Sets

The ARCOUT= and CONOUT= data sets contain the same variables. Furthermore,
the variables in the output data sets depend on whether or not the problem has a
network component.

If the problem has a network component, the variables and their possible values in an
observation are as follows:

–FROM– a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable.

–TO– a head node of an arc. This is a missing value if an observation
has information about a nonarc variable.

–COST– the cost of an arc or the objective function coefficient of a nonarc
variable

–CAPAC– the capacity of an arc or upper value bound of a nonarc variable
–LO– the lower flow bound of an arc or lower value bound of a nonarc

variable
–NAME– a name of an arc or nonarc variable
–SUPPLY– the supply of the tail node of the arc in the observation. This is

a missing value if an observation has information about a nonarc
variable.

–DEMAND– the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable.

–FLOW– the flow through the arc or value of the nonarc variable
–FCOST– flow cost, the product of –COST– and –FLOW–
–RCOST– the reduced cost of the arc or nonarc variable

Output Data Sets � 527

–ANUMB– the number of the arc (positive) or nonarc variable (nonpositive);
used for warm starting PROC NETFLOW

–TNUMB– the number of the tail node in the network basis spanning tree;
used for warm starting PROC NETFLOW

–STATUS– the status of the arc or nonarc variable

If the problem does not have a network component, the variables and their possible
values in an observation are as follows:

–OBJFN– the objective function coefficient of a variable
–UPPERBD the upper value bound of a variable
–LOWERBD the lower value bound of a variable
–NAME– the name of a variable
–VALUE– the value of the variable
–FCOST– objective function value for that variable; the product of

–OBJFN– and –VALUE–

The variables present in the ARCDATA= data set are present in an ARCOUT= data
set or a CONOUT= data set. For example, if there is a variable called tail in the
ARCDATA= data set and you specified the SAS variable list

from tail;

then tail is a variable in the ARCOUT= and CONOUT= data sets instead of
–FROM– . Any ID list variables also appear in the ARCOUT= and CONOUT=
data sets.

NODEOUT= and DUALOUT= Data Sets

There are two types of observations in the NODEOUT= and DUALOUT= data sets.
One type of observation contains information about a node. These are called type N
observations. There is one such observation of this type for each node. The –NODE–
variable has a name of a node, and the –CON– variable values in these observations
are missing values.

The other type of observation contains information about constraints. These are
called the type C observations. There is one such observation for each constraint.
The –CON– variable has a name of a constraint, and the –NODE– variable values
in these observations are missing values.

Many of the variables in the NODEOUT= and DUALOUT= data sets contain in-
formation used to warm start PROC NETFLOW. The variables –NODE– , –SD– ,
–DUAL– , –VALUE– , –RHS– , –TYPE– , and –CON– contain information that
might be of interest to you.

The NODEOUT= and DUALOUT= data sets look similar, as the same variables are
in both. These variables and their values in an observation of each type are

528 � Chapter 5. The NETFLOW Procedure

–NODE– Type N: the node name
Type C: a missing value

–SD– Type N: the supply (positive) or demand (negative) of the node
Type C: a missing value

–DUAL– Type N: the dual variable value of the node in –NODE–
Type C: the dual variable value of the constraint named in
–CON–

–NNUMB– Type N: the number of the node named in –NODE–
Type C: the number of the constraint named in –CON–

–PRED– Type N: the predecessor in the network basis spanning tree of the
node named in –NODE–
Type C: the number of the node toward which the arc with num-
ber in –ARCID– is directed, or the constraint number associated
with the slack, surplus, or artificial variable basic in this row

–TRAV– Type N: the traversal thread label of the node named in
–NODE–
Type C: a missing value

–SCESS– Type N: the number of successors (including itself) in the net-
work basis spanning tree of the node named in –NODE–
Type C: a missing value

–ARCID– Type N: if –ARCID– is nonnegative, –ARCID– is the number
of the network basis spanning tree arc directed from the node
with number –PRED– to the node named in –NODE– . If
–ARCID– is negative, minus –ARCID– is the number of the
network basis spanning tree arc directed from the node named in
–NODE– to the node with number –PRED– .
Type C: if –ARCID– is positive, –ARCID– is the number of the
arc basic in a constraint row. If nonpositive, minus –ARCID– is
the number of the nonarc variable basic in a constraint row.

–FLOW– Type N: the flow minus the lower flow bound of the arc
–ARCID–
Type C: the flow minus lower flow bound of the arc –ARCID– or
value lower bound of the nonarc variable value minus –ARCID–

–FBQ– Type N: If –FBQ– is positive, then –FBQ– is the subscript in
arc length arrays of the first arc directed toward the node named
in –NODE– . PROC NETFLOW’s arc length arrays are sorted
so that data of arcs directed toward the same head node are to-
gether. If –FBQ– is negative, no arcs are directed toward the
node named in –NODE– . Arcs directed toward node i have
subscripts in the arc length arrays between observations FBQ(i)
and (FBQ(i + 1))−1, inclusive.
Type C: a missing value

–VALUE– Type N: a missing value
Type C: the lhs value (the sum of the products of coefficient and
flows or values) of the constraint named in –CON–

–RHS– Type N: a missing value
Type C: the rhs value of the constraint named in –CON–

–TYPE– Type N: a missing value

Case Sensitivity � 529

Type C: the type of the constraint named in –CON–
–CON– Type N: a missing value

Type C: the name of the constraint

If specified in variable lists, the variables in the input data sets are used instead
of some of the previous variables. These variables are specified in the NODE,
SUPDEM, RHS, TYPE, and ROW (if there is only one variable in the ROW list)
lists and are used instead of –NODE– , –SD– , –RHS– , –TYPE– , and –CON– ,
respectively.

MPSOUT= Data Set

The MPSOUT= data set contains problem data converted from a PROC NETFLOW
format into an MPS-format SAS data set. The six fields, FIELD1 to FIELD6, in
the MPSOUT= data set correspond to the six columns in MPS standard. For more
information about the MPS-format SAS data set, see Chapter 14, “The MPS-Format
SAS Data Set.”

Converting Any PROC NETFLOW Format to an MPS-Format
SAS Data Set

The MPSOUT= option enables you to convert an input data set for the NETFLOW
procedure into an MPS-format SAS data set. The converted data set is readable by
the OPTLP procedure.

The conversion can handle linear programs and network flow formulations. If you
specify a network flow formulation, it will be converted into an equivalent linear
program. When multiple objective row names are present, rows with the name en-
countered first are combined into the objective row. The remaining rows are marked
as free rows.

For information about how the contents of the MPS-format SAS data set are inter-
preted, see Chapter 14, “The MPS-Format SAS Data Set.”

For an example demonstrating the use of the MPSOUT= option, see Example 5.15.

Case Sensitivity

Whenever the NETFLOW procedure has to compare character strings, whether they
are node names, arc names, nonarc names, or constraint names, if the two strings
have different lengths, or on a character by character basis the character is different
or has different cases, PROC NETFLOW judges the character strings to be different.

Not only is this rule enforced when one or both character strings are obtained as
values of SAS variables in PROC NETFLOW’s input data sets, it also should be
obeyed if one or both character strings were originally SAS variable names, or were
obtained as the values of options or statements parsed to PROC NETFLOW. For
example, if the network has only one node that has supply capability, or if you are
solving a MAXFLOW or SHORTPATH problem, you can indicate that node using
the SOURCE= option. If you specify

530 � Chapter 5. The NETFLOW Procedure

proc netflow source=NotableNode

then PROC NETFLOW looks for a value of the TAILNODE list variable that is
NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase.
The name of the node searched for would be NOTABLENODE, even if this was your
SAS code:

proc netflow source=NotableNode

If you want PROC NETFLOW to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified, and you are running SAS software
Version 6 or have specified options validvarname=v6; using a later version, all NAME
list variable values in the ARCDATA= data set are uppercased. This is because the
SAS System has uppercased all SAS variable names, particularly those in the VAR
list of the CONDATA= data set.

Entities that contain blanks must be enclosed in single or double quotes.

See the section “Cautions” on page 485 for additional discussion of case sensitivity.

Loop Arcs

When using the primal simplex network algorithm, loop arcs (arcs directed toward
nodes from which they originate) are prohibited. Rather, introduce a dummy inter-
mediate node in loop arcs. For example, replace arc (A,A) with (A,B) and (B,A). B
is the name of a new node, and it must be distinct for each loop arc.

Multiple Arcs

Multiple arcs with the same tail and head nodes are prohibited. PROC NETFLOW
checks to ensure there are no such arcs before proceeding with the optimization.
Introduce a new dummy intermediate node in multiple arcs. This node must be dis-
tinct for each multiple arc. For example, if some network has three arcs directed
from node A toward node B, then replace one of these three with arcs (A,C) and
(C,B) and replace another one with (A,D) and (D,B). C and D are new nodes added
to the network.

Pricing Strategies

The pricing strategy is the part of the simplex iteration that selects the nonbasic arc,
constraint slack, surplus, or nonarc variable that should have a flow or value change,
and perhaps enter the basis so that the total cost incurred is improved.

The pricing mechanism takes a large amount of computational effort, so it is impor-
tant to use the appropriate pricing strategy for the problem under study. As in other

Pricing Strategies � 531

large scale mathematical programming software, network codes can spend more than
half of their execution time performing simplex iterations in the pricing step. Some
compromise must be made between using a fast strategy and improving the quality of
the flow or value change candidate selection, although more simplex iterations may
need to be executed.

The configuration of the problem to be optimized has a great effect on the choice of
strategy. If a problem is to be run repeatedly, experimentation on that problem to
determine which scheme is best may prove worthwhile. The best pricing strategy to
use when there is a large amount of work to do (for example, when a cold start is
used) may not be appropriate when there is little work required to reach the optimum
(such as when a warm start is used). If paging is necessary, then a pricing strategy
that reduces the number of simplex iterations performed might have the advantage.
The proportion of time spent doing the pricing step during stage 1 optimization is
usually less than the same proportion when doing stage 2 optimization. Therefore,
it is more important to choose a stage 2 pricing strategy that causes fewer, but not
necessarily the fewest, iterations to be executed.

There are many similarities between the pricing strategies for optimizing an uncon-
strained problem (or when constraints are temporarily ignored) and the pricing mech-
anisms for optimizing considering constraints. To prevent repetition, options have a
suffix or embedded x . Replace x with 1 for optimization without constraint consid-
eration and 2 for optimization with constraint consideration.

There are three main types of pricing strategies:

• PRICETYPEx=NOQ

• PRICETYPEx=BLAND

• PRICETYPEx=Q

The pricing strategy that usually performs better than the others is PRICETYPEx=Q.
For this reason, PRICETYPEx=Q is the default.

PRICETYPEx=NOQ

PRICETYPEx=NOQ is the least complex pricing strategy, but it is nevertheless quite
efficient. In contrast to the specification of PRICETYPEx=Q, a candidate queue is
not set up.

The PxSCAN= option controls the amount of additional candidate selection work
done to find a better candidate after an eligible candidate has been found.

If PxSCAN=FIRST is specified, the search for candidates finishes when the first
eligible candidate is found, with this exception: if a node has more than one eligible
arc directed toward it, the best such arc is chosen.

If PxSCAN=BEST is specified, everything that is nonbasic is examined, and the best
candidate of all is chosen.

If PxSCAN=PARTIAL is specified, once an eligible candidate is found, the scan
continues for another PxNPARTIAL= cycles in the hope that during the additional

532 � Chapter 5. The NETFLOW Procedure

scan, a better candidate is found. Examining all nonbasic arcs directed toward a
single node is counted as only one cycle.

If PxSCAN=FIRST or PxSCAN=PARTIAL is specified, the scan for entering candi-
dates starts where the last iteration’s search left off. For example, if the last iteration’s
scan terminated after examining arcs that are directed toward the node with internal
number i, the next iteration’s scan starts by examining arcs directed toward the node
with internal number i+1. If i is the largest node number, next iterations scan begins
by scanning arcs directed toward node 1 (during stage 1) or scanning constraint slack
or surplus variables, if any, or nonarc variables, if any, (during stage 2). During stage
2, if the scan terminated after examining the slack or surplus of constraint i, next iter-
ations scan starts by examining the slack or surplus of the constraint with the internal
number greater than i that has such a logical variable. If the scan terminated after ex-
amining the nonarc variable i, the next iterations scan starts by examining the nonarc
variable with internal number i + 1, (or arcs directed to the node with the smallest
internal number if the nonarc variable with the greatest number has been examined).
This is termed a wraparound search.

PRICETYPEx=Q

If PRICETYPEx=Q, a queue is set up. Candidates currently on the queue are tested
at each iteration and either enter the basis or are removed from the queue. The size
of the queue can be specified by using the QSIZEx= option. The default value for
QSIZE1= is

QSIZE1=number of arcs/200
if (QSIZE1<24) QSIZE1=24
else if (QSIZE1>100) QSIZE1=100

The default value for QSIZE2= is

QSIZE2=(number of arcs+number of nonarc variables)/200
if (QSIZE2<24) QSIZE2=24
else if (QSIZE2>100) QSIZE2=100

controls the amount of additional candidate selection work done to find a better can-
didate after an eligible candidate has been found in the queue.

If you specify PxSCAN=BEST, the best eligible candidate found is removed from
the queue. It can sustain a flow or value change and possibly enter the basis.

If you specify PxSCAN=FIRST, the first eligible candidate found is removed from
the queue, and possibly sustains a flow or value change and enters the basis.

If you specify PxSCAN=PARTIAL, PxNPARTIAL= can then be specified as well.
After an eligible candidate has been found, PxNPARTIAL= more queue members are
examined and the best of the eligible candidates found is chosen.

When PxSCAN=FIRST or PxSCAN=PARTIAL, the scan of the queue is
wraparound. When the member last added to the queue has been examined, the scan
continues from the member that was first added to the queue.

Pricing Strategies � 533

When the queue is empty, or after QSIZEx= times REFRESHQx= iterations have
been executed since the queue was last refreshed, new candidates are found and put
onto the queue. Valid values for the REFRESHQx= options are greater than 0.0
and less than or equal to 1.0. The default for REFRESHQx is 0.75. If the scan
cannot find enough candidates to fill the queue, the procedure reduces the value of
QSIZEx=. If qfound is the number of candidates found, the new QSIZEx= value
is qfound + ((old QSIZEx − qfound) × REDUCEQSIZEx). Valid values of
the REDUCEQSIZEx= option are between 0.0 and 1.0, inclusive. The default for
REDUCEQSIZEx= is 1.0.

The QxFILLSCAN= option controls the amount of additional candidate selection
work performed to find better candidates to put into the queue after the queue has
been filled.

If you specify QxFILLSCAN=FIRST, the nonbasic arcs, and during stage 2 opti-
mization, nonbasic constraint slack and surplus variables, and nonbasic nonarc vari-
ables are scanned; the scan stops when the queue is filled. If a node has more
than one eligible arc directed toward it, the best such arc is put onto the queue.
QxFILLSCAN=FIRST is the default.

If QxFILLSCAN=BEST is specified, everything that is nonbasic is scanned and the
best eligible candidates are used to fill the queue.

If QxFILLSCAN=PARTIAL is specified, after the queue is full, the scan contin-
ues for another QxFILLNPARTIAL= cycles in the hope that during the additional
scan, better candidates are found to replace other candidates previously put onto
the queue. QxFILLNPARTIAL=10 is the default. If QxFILLSCAN=FIRST or
QxFILLSCAN=PARTIAL, the scan starts where the previous iteration ended; that
is, it is wraparound.

In the following section, dual variables and reduced costs are explained. These help
PROC NETFLOW determine whether an arc, constraint slack, surplus, or nonarc
variable should have a flow or value change. P2SCAN=ANY and the DUALFREQ=
option can be specified to control stage 2 pricing, and how often dual variables and
reduced costs are calculated.

What usually happens when PRICETYPE2=Q is specified is that before the first it-
eration, the queue is filled with nonbasic variables that are eligible to enter the basis.
At the start of each iteration, a candidate on the queue is examined and its reduced
cost is calculated to ensure that it is still eligible to enter the basis. If it is ineligible
to enter the basis, it is removed from the queue and another candidate on the queue
is examined, until a candidate on the queue is found that can enter the basis. When
this happens, a minor iteration occurs. If there are no candidates left on the queue,
or several iterations have been performed since the queue was refreshed, new non-
basic variables that are eligible to enter the basis are found and are placed on the
queue. When this occurs, the iteration is termed a major iteration. Dual variables are
calculated or maintained every iteration.

During most optimizations, if a variable is put onto the queue during a major itera-
tion, it usually remains eligible to enter the basis in later minor iterations. Specifying
P2SCAN=ANY indicates that PROC NETFLOW should choose any candidate on

534 � Chapter 5. The NETFLOW Procedure

the queue and use that as the entering variable. Reduced costs are not calculated.
It is simply hoped that the chosen candidate is eligible. Sometimes, a candidate on
the queue is chosen that has become ineligible and the optimization takes “a step
backward” rather than “a step forward” toward the optimum. However, the disad-
vantages of incurring an occasional step backwards and the possible danger of never
converging to the optimum are offset by not having to calculate reduced costs and,
more importantly, not having to maintain dual variable values. The calculation of
dual variables is one of two large linear equation systems that must be solved each
iteration in the simplex iteration.

If P2SCAN=ANY is specified, dual variables are calculated after DUALFREQ= it-
erations have been performed since they were last calculated. These are used to cal-
culate the reduced costs of all the candidates currently on the queue. Any candidate
found to be ineligible to enter the basis is removed from the queue. DUALFREQ=4
is the default.

Once again, the practice of not maintaining correct dual variable values is dangerous
because backward steps are allowed, so the optimization is not guaranteed to con-
verge to the optimum. However, if PROC NETFLOW does not run forever, it can
find the optimum much more quickly than when the P2SCAN= option is not ANY.
Before concluding that any solution is optimal, PROC NETFLOW calculates true
dual variable values and reduced costs and uses these to verify that the optimum is
really at hand.

Whether P2SCAN=ANY is specified or not, dual variables are always calculated at
the start of major iterations.

PRICETYPEx=BLAND

PRICETYPEx=BLAND is equivalent to specifying in the PROC NETFLOW or
RESET statement all three options PRICETYPEx=NOQ, PxSCAN=FIRST, and
LRATIOx, and the scans are not wraparound. Bland (1977) proved that this pivot
rule prevents the simplex algorithm from cycling. However, because the pivots con-
centrate on the lower indexed arcs, constraint slack, surplus, and nonarc variables, op-
timization with PRICETYPEx=BLAND can make the optimization execute slowly.

Dual Variables, Reduced Costs, and Status

During optimization, dual variables and reduced costs are used to determine whether
an arc, constraint slack, surplus, or nonarc variable should have a flow or value
change. The ARCOUT= and CONOUT= data sets each have a variable called
–RCOST– that contains reduced cost values. In the CONOUT= data set, this vari-
able also has the reduced costs of nonarc variables. For an arc, the reduced cost is
the amount that would be added to the total cost if that arc were made to convey one
more unit of flow. For a nonarc variable, the reduced cost is the amount that would
be added to the total cost if the value currently assigned to that nonarc variable were
increased by one.

During the optimization of a minimization problem, if an arc has a positive reduced
cost, PROC NETFLOW takes steps to decrease the flow through it. If an arc has a

Dual Variables, Reduced Costs, and Status � 535

negative reduced cost, PROC NETFLOW takes steps to increase the flow through it.
At optimality, the reduced costs of arcs with flow at their respective lower bounds are
nonnegative; otherwise, the optimizer would have tried to increase the flow, thereby
decreasing the total cost. The –STATUS– of each such nonbasic arc is LOWERBD
NONBASIC. The reduced costs of arcs with flow at capacity are nonpositive. The
–STATUS– of each such nonbasic arc is UPPERBD NONBASIC. Even though it
would decrease total cost, the optimizer cannot increase the flows through such arcs
because of the capacity bound. Similar arguments apply for nonarc variables.

The reduced cost is also the amount that would be subtracted from the total cost if
that arc was made to convey one less unit of flow. Similarly, a reduced cost is the
amount subtracted from the total cost if the value currently assigned to that nonarc
variable is decreased by one.

The dual variables and reduced costs can be used to detect whether multiple optimal
solutions exist. A zero reduced cost of a nonbasic arc indicates the existence of
multiple optimal solutions. A zero reduced cost indicates, by definition, that the flow
through such arcs can be changed with zero change to the total cost. (Basic arcs and
basic nonarc variables technically have zero reduced costs. A missing value is used
for these so that reduced costs of nonbasic arcs and nonbasic nonarc variables that
are zero are highlighted.)

The range over which costs can vary before the present solution becomes nonoptimal
can be determined through examination of the reduced costs. For any nonbasic arc
with assigned flow equal to its lower bound, the amount by which the cost must be
decreased before it becomes profitable for this arc to convey additional flow is the
value of its reduced cost. The cost reduction necessary for a nonbasic arc currently
assigned capacity flow to undergo a worthwhile flow decrease is the absolute value
of its reduced cost. In both cases, this minimum cost reduction changes the reduced
cost to zero. Any further reduction promotes a possible basis change.

The reduced cost of an arc (t, h) is rct,h = ct,h − πt + πh where πi is the dual value
for node i and ct,h is the cost of the arc with tail node t and head node h.

If the problem has side constraints and arc (t, h) has nonzero lhs coefficients, then
the following term must be subtracted from rct,h :

∑
i

condual iHi,(t,h)

where condual i is the dual variable of constraint i, and Hi,(t,h) is the coefficient of
arc (t, h) in constraint i.

If dn is the objective function coefficient of nonarc variable n, the reduced cost is
rcn = dn −

∑
i condual iQi,n, where Qi,n is the coefficient of nonarc variable n in

constraint i.

536 � Chapter 5. The NETFLOW Procedure

The Working Basis Matrix

Let T be the basis matrix of NPSC. The following partitioning is done:

T =
[

A B
C D

]

where

• n is the number of nodes.

• k is the number of side constraints.

• A (n × n) is the network component of the basis. Most of the columns of
this matrix are columns of the problem’s node-arc incidence matrix. The arcs
associated with columns of A, called key basic variables or key arcs, form a
spanning tree. The data structures of the spanning tree of this submatrix of the
basis T enable the computations involving T and the manner in which T is
updated to be very efficient, especially those dealing with A (or A−1).

• C (k × n) are the key arcs’ side constraint coefficient columns.

• B (n× k) are the node-arc incidence matrix columns of the nontree arcs. The
columns of B having nonzero elements are associated with basic nonspanning
tree arcs.

• D (k × k) are the constraint coefficient columns of nonkey basic variables.
Nonkey basic variables not only include nontree basic arcs but also basic slack,
surplus, artificial, or nonarc variables.

It is more convenient to factor T by block triangular matrices P and M , such that
P = TM. The matrices P and M are used instead of T because they are less
burdensome to work with. You can perform block substitution when solving the
simplex iteration linear systems of equations

P =
[

A 0
C Dw

]

M =
[

I −A−1B
0 I

]
where Dw = D−CA−1B and is called the working basis matrix.

To perform block substitution, you need the tree data structure of the A matrix, and
also the C, B, and Dw matrices. Because the C matrix consists of columns of the
constraint coefficient matrix, the maintenance of C from iteration to iteration simply
entails changing information specifying which columns of the constraint coefficient
matrix compose C.

The A−1B matrix is usually very sparse. Fortunately, the information in A−1B can
be initialized easily using the tree structures. In most iterations, only one column is

Tightening Bounds and Side Constraints � 537

replaced by a new one. The values of the elements of the new column may already
be known from preceding steps of the simplex iteration.

The working basis matrix is the submatrix that presents the most computational com-
plexity. However, PROC NETFLOW usually can use classical simplex pivot tech-
niques. In many iterations, only one column of Dw changes. Sometimes it is not
necessary to update Dw or its inverse at all.

If INVD–2D is specified in the PROC NETFLOW statement, only one row and one
column may need to be changed in the D−1

w before the next simplex iteration can be-
gin. The new contents of the changed column are already known. The new elements
of the row that changes are influenced by the contents of a row of A−1B that is very
sparse.

If INVD–2D is not specified in the PROC NETFLOW statement, the Bartels-Golub
update can be used to update the LU factors of Dw. The choice must be made
whether to perform a series of updates (how many depends on the number of nonzeros
in a row of A−1B), or refactorization.

Flow and Value Bounds

The capacity and lower flow bound of an arc can be equal. Negative arc capacities
and lower flow bounds are permitted. If both arc capacities and lower flow bounds
are negative, the lower flow bound must be at least as negative as the capacity. An arc
(A,B) that has a negative flow of −f units can be interpreted as an arc that conveys f
units of flow from node B to node A.

The upper and lower value bounds of a nonarc variable can be equal. Negative upper
and lower bounds are permitted. If both are negative, the lower bound must be at least
as negative as the upper bound.

Tightening Bounds and Side Constraints

If any piece of data is furnished to PROC NETFLOW more than once, PROC
NETFLOW checks for consistency so that no conflict exists concerning the data val-
ues. For example, if the cost of some arc is seen to be one value and as more data are
read, the cost of the same arc is seen to be another value, PROC NETFLOW issues
an error message on the SAS log and stops. There are two exceptions:

• The bounds of arcs and nonarc variables are made as tight as possible. If several
different values are given for the lower flow bound of an arc, the greatest value
is used. If several different values are given for the lower bound of a nonarc
variable, the greatest value is used. If several different values are given for the
capacity of an arc, the smallest value is used. If several different values are
given for the upper bound of a nonarc variable, the smallest value is used.

• Several values can be given for inequality constraint right-hand sides. For a
particular constraint, the lowest rhs value is used for the rhs if the constraint is
of less than or equal to type. For a particular constraint, the greatest rhs value
is used for the rhs if the constraint is of greater than or equal to type.

538 � Chapter 5. The NETFLOW Procedure

Reasons for Infeasibility
Before optimization commences, PROC NETFLOW tests to ensure that the problem
is not infeasible by ensuring that, with respect to supplies, demands, and arc flow
bounds, flow conservation can be obeyed at each node.

• Let IN be the sum of lower flow bounds of arcs directed toward a node plus
the node’s supply. Let OUT be the sum of capacities of arcs directed from that
node plus the node’s demand. If IN exceeds OUT, not enough flow can leave
the node.

• Let OUT be the sum of lower flow bounds of arcs directed from a node plus the
node’s demand. Let IN be the total capacity of arcs directed toward the node
plus the node’s supply. If OUT exceeds IN, not enough flow can arrive at the
node.

Reasons why a network problem can be infeasible are similar to those previously
mentioned but apply to a set of nodes rather than for an individual node. Consider
the network illustrated in Figure 5.13.

NODE_1----------------->NODE_2
/ capac=55 \

/ lo=50 \
/ \

/ \
/ \

NODE_3 NODE_4
supply=100 \ / demand=120

\ /
\ /
\ capac=62 /
\ lo=60 /
NODE_5----------------->NODE_6

Figure 5.13. An Infeasible Network

The demand of NODE–4 is 120. That can never be satisfied because the maximal
flow through arcs (NODE–1, NODE–2) and (NODE–5, NODE–6) is 117. More
specifically, the implicit supply of NODE–2 and NODE–6 is only 117, which is
insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE–1, NODE–2) and (NODE–5,
NODE–6) are greater than the flow that can reach the tail nodes of these arcs, that,
by coincidence, is the total supply of the network. The implicit demand of nodes
NODE–1 and NODE–5 is 110, which is greater than the amount of flow that can
reach these nodes.

When PROC NETFLOW detects that the problem is infeasible, it indicates why the
solution, obtained after optimization stopped, is infeasible. It can report that the so-
lution cannot obey flow conservation constraints and which nodes these conservation
constraints are associated with. If applicable, the side constraints that the solution
violates are also output.

Missing S Supply and Missing D Demand Values � 539

If stage 1 optimization obtains a feasible solution to the network, stage 2 optimiza-
tion can determine that the problem is infeasible and note that some flow conservation
constraint is broken while all side constraints are satisfied. The infeasibility messages
issued by PROC NETFLOW pertain to why the current solution is infeasible, not
quite the same as the reasons why the problem is infeasible. However, the messages
highlight areas in the problem where the infeasibility can be tracked down. If the
problem is infeasible, make PROC NETFLOW do a stage 1 unconstrained optimiza-
tion by removing the CONDATA= data set specification in the PROC NETFLOW
statement. If a feasible network solution is found, then the side constraints are the
source of the infeasibility in the problem.

Missing S Supply and Missing D Demand Values

In some models, you may want a node to be either a supply or demand node but you
want the node to supply or demand the optimal number of flow units. To indicate
that a node is such a supply node, use a missing S value in the SUPPLY list variable
in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data
set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in
the NODEDATA= data set.

Suppose the oil example in the section “Introductory Example” on page 449 is
changed so that crude oil can be obtained from either the Middle East or U.S.A.
in any amounts. You should specify that the node “middle east” is a supply node, but
you do not want to stipulate that it supplies 100 units, as before. The node “u.s.a.”
should also remain a supply node, but you do not want to stipulate that it supplies 80
units. You must specify that these nodes have missing S supply capabilities.

title ’Oil Industry Example’;
title3 ’Crude Oil can come from anywhere’;
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

540 � Chapter 5. The NETFLOW Procedure

The following PROC NETFLOW run uses the same ARCDATA= and CONDATA=
data sets used in the section “Introductory Example” on page 449.

proc netflow
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

print some_arcs(’middle east’ ’u.s.a.’,_all_)/short;

proc print;
sum _fcost_;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 9 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side

constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with

constraints= 3 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

Missing S Supply and Missing D Demand Values � 541

The PRINT statement reports the arcs directed away from the supply nodes, shown
in Figure 5.14. The amount of crude obtained from the Middle East and U.S.A. is 30
and 150 units, respectively.

Oil Industry Example

Crude Oil can come from anywhere

The NETFLOW Procedure

N _from_ _to_ _cost_ _capac_ _lo_ _name_

1 middle east refinery 1 63 95 20 m_e_ref1
2 u.s.a. refinery 1 55 99999999 0
3 middle east refinery 2 81 80 10 m_e_ref2
4 u.s.a. refinery 2 49 99999999 0

N _FLOW_

1 20
2 125
3 10
4 25

Figure 5.14. Print Statement, Oil Example, Missing S Supplies

The CONOUT= data set is shown in Figure 5.15.

542 � Chapter 5. The NETFLOW Procedure

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_

1 refinery 1 r1 200 175 50 thruput1 .
2 refinery 2 r2 220 100 35 thruput2 .
3 r1 ref1 diesel 0 75 0 .
4 r1 ref1 gas 0 140 0 r1_gas .
5 r2 ref2 diesel 0 75 0 .
6 r2 ref2 gas 0 100 0 r2_gas .
7 middle east refinery 1 63 95 20 m_e_ref1 S
8 u.s.a. refinery 1 55 99999999 0 S
9 middle east refinery 2 81 80 10 m_e_ref2 S

10 u.s.a. refinery 2 49 99999999 0 S
11 ref1 diesel servstn1 diesel 18 99999999 0 .
12 ref2 diesel servstn1 diesel 36 99999999 0 .
13 ref1 gas servstn1 gas 15 70 0 .
14 ref2 gas servstn1 gas 17 35 5 .
15 ref1 diesel servstn2 diesel 17 99999999 0 .
16 ref2 diesel servstn2 diesel 23 99999999 0 .
17 ref1 gas servstn2 gas 22 60 0 .
18 ref2 gas servstn2 gas 31 99999999 0 .

Obs _DEMAND_ _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 . 145.00 29000.00 . 7 2 KEY_ARC BASIC
2 . 35.00 7700.00 17 8 3 LOWERBD NONBASIC
3 . 36.25 0.00 . 10 5 KEY_ARC BASIC
4 . 108.75 0.00 . 9 5 KEY_ARC BASIC
5 . 8.75 0.00 . 12 6 KEY_ARC BASIC
6 . 26.25 0.00 . 11 6 KEY_ARC BASIC
7 . 20.00 1260.00 8 2 1 LOWERBD NONBASIC
8 . 125.00 6875.00 . 3 4 KEY_ARC BASIC
9 . 10.00 810.00 32 4 1 LOWERBD NONBASIC

10 . 25.00 1225.00 . 5 4 KEY_ARC BASIC
11 30 30.00 540.00 . 17 8 KEY_ARC BASIC
12 30 0.00 0.00 12 18 10 LOWERBD NONBASIC
13 95 68.75 1031.25 . 13 7 KEY_ARC BASIC
14 95 26.25 446.25 . 14 9 NONKEY ARC BASIC
15 15 6.25 106.25 . 19 8 KEY_ARC BASIC
16 15 8.75 201.25 . 20 10 KEY_ARC BASIC
17 40 40.00 880.00 . 15 7 KEY_ARC BASIC
18 40 0.00 0.00 7 16 9 LOWERBD NONBASIC

========
50075.00

Figure 5.15. Missing S SUPDEM Values in NODEDATA

The optimal supplies of nodes “middle east” and “u.s.a.” are 30 and 150 units, re-
spectively. For this example, the same optimal solution is obtained if these nodes had
supplies less than these values (each supplies 1 unit, for example) and the THRUNET
option was specified in the PROC NETFLOW statement. With the THRUNET option
active, when total supply exceeds total demand, the specified nonmissing demand val-
ues are the lowest number of flow units that must be absorbed by the corresponding
node. This is demonstrated in the following PROC NETFLOW run. The missing S is
most useful when nodes are to supply optimal numbers of flow units and it turns out
that for some nodes, the optimal supply is 0.

Missing S Supply and Missing D Demand Values � 543

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

proc netflow
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

print some_arcs(’middle east’ ’u.s.a.’,_all_)/short;

proc print;
sum _fcost_;
run;

The following messages appear on the SAS log. Note that the Total supply= 2, not 0
as in the last run.

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 13 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side

constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with

constraints= 3 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

The PRINT statement and the CONDATA= data set are very similar; the supplies
of the supply nodes are 1, not missing S. Otherwise, the solutions are identical. If

544 � Chapter 5. The NETFLOW Procedure

total supply exceeds total demand, any missing S values are ignored. If total demand
exceeds total supply, any missing D values are ignored.

Balancing Total Supply and Total Demand

When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC NETFLOW
can add an extra node (called the excess node) to the problem and set the demand at
that node equal to the difference between total supply and total demand. There are
three ways that this excess node can be joined to the network. All three ways entail
PROC NETFLOW generating a set of arcs (henceforth referred to as the generated
arcs) that are directed toward the excess node. The total amount of flow in generated
arcs equals the demand of the excess node. The generated arcs originate from one of
three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs origi-
nate from are all demand nodes, even those demand nodes with unspecified demand
capability. You indicate that a node has unspecified demand capability by using a
missing D value instead of an actual value for demand data (discussed in the section
“Missing S Supply and Missing D Demand Values” on page 539). The value speci-
fied as the demand of a demand node is in effect a lower bound of the number of flow
units that node can actually demand. For missing D demand nodes, this lower bound
is zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are demand nodes with unspecified
demand capability (nodes with missing D demand).

If there are missing D demand nodes, these nodes are the set of nodes that generated
arcs originate from. The value specified as the demand of a demand node, if not
missing D, is the number of flow units that node actually demands. For a missing D
demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate
from are the set of supply nodes. The value specified as the supply of a supply node
is in effect an upper bound of the number of flow units that node can actually supply.
For missing S supply nodes (discussed in the section “Missing S Supply and Missing
D Demand Values” on page 539), this upper bound is zero, so missing S nodes when
total supply exceeds total demand are transshipment nodes, nodes that neither supply
nor demand flow.

When Total Supply Is Less Than Total Demand

When total supply of a network problem is less than total demand, PROC NETFLOW
can add an extra node (called the excess node) to the problem and set the supply at
that node equal to the difference between total demand and total supply. There are
three ways that this excess node can be joined to the network. All three ways entail
PROC NETFLOW generating a set of arcs (henceforth referred to as the generated
arcs) that originate from the excess node. The total amount of flow in generated arcs

Warm Starts � 545

equals the supply of the excess node. The generated arcs are directed toward one of
three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are
directed toward are all supply nodes, even those supply nodes with unspecified supply
capability. You indicate that a node has unspecified supply capability by using a
missing S value instead of an actual value for supply data (discussed in the section
“Missing S Supply and Missing D Demand Values” on page 539). The value specified
as the supply of a supply node is in effect a lower bound of the number of flow units
that node can actually supply. For missing S supply nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are supply nodes with unspecified
supply capability (nodes with missing S supply).

If there are missing S supply nodes, these nodes are the set of nodes that generated
arcs are directed toward. The value specified as the supply of a supply node, if not
missing S, is the number of flow units that node actually supplys. For a missing S
supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed
toward are the set of demand nodes. The value specified as the demand of a demand
node is in effect an upper bound of the number of flow units that node can actually
demand. For missing D demand nodes, (discussed in the section “Missing S Supply
and Missing D Demand Values” on page 539), this upper bound is zero, so missing
D nodes when total supply is less than total demand are transshipment nodes, nodes
that neither supply nor demand flow.

Warm Starts

Using a warm start can increase the overall speed of PROC NETFLOW when it is
used repetitively on problems with similar structure. It is most beneficial when a
solution of a previous optimization is close to the optimum of the same network
with some of its parameters, for example, arc costs, changed. Whether a problem is
changed or not, a nonoptimal solution resulting from a previous optimization can be
used to restart optimization, thereby saving PROC NETFLOW from having to repeat
work to reach the warm start already available.

Time also is saved in the data structure initialization part of the NETFLOW proce-
dure’s execution. Information about the previous optimal solution, particularly con-
cerning the size of the problem, a description of the basis spanning tree structure,
and what is basic in constraint rows, is known. Information about which nonbasic
arcs have capacity flow and which nonbasic nonarc variables are at their respective
upper bounds also makes up part of the warm start. The procedure can place arc data
into the internal arc length arrays in precisely defined locations, in order of ascending
head node internal number. It is not necessary to have multiple passes through the
data because literals such as node, nonarc variable, arc, constraint, and special row
names are defined and meaning is attached to each. This saves a considerable amount
of memory as well. None of the pre-optimization feasibility checks need be repeated.

546 � Chapter 5. The NETFLOW Procedure

Warm starts also are useful if you want to determine the effect of arcs being closed
to carrying flow. The costs of these arcs are set high enough to ensure that the next
optimal solution never has flow through them. Similarly, the effect of opening arcs
can be determined by changing the cost of such arcs from an extreme to a reasonable
value.

Specify the FUTURE1 or FUTURE2 option to ensure that additional data about a
solution to be used as a warm start are output to output data sets. If the FUTURE1
option is specified, extra observations with information on what is to be the warm start
are set up for the NODEOUT= and ARCOUT= data sets. The warm start solution
in these data sets is a solution obtained after optimization neglecting side constraints.
Any cost list variable value in the ARCOUT= data set (and, if there are side con-
straints, any constraint data in the CONDATA= data set) can be changed before the
solution is used as a warm start in a subsequent PROC NETFLOW run. Any nonarc
variable data in the CONDATA= data set can be changed at this time as well. New
nonarc variables not present in the original problem when the warm start was gen-
erated can also be added to the CONDATA= data set before the problem is warm
started.

If the FUTURE2 option is specified, extra variables containing information on what
will be the warm start solution are set up for the DUALOUT= and CONOUT= data
sets. The warm start solution in these data sets is obtained after optimization that
considers side constraints has been performed. Part of the warm start is concerned
with the constraint part of the basis. Only cost list variable values in the CONOUT=
data set can be changed before the solution is used as a warm start in a subsequent
PROC NETFLOW run.

If a primal simplex optimization is to use a warm start, the WARM option must be
specified in the PROC NETFLOW statement. Otherwise, the primal simplex network
algorithm processes the data for a cold start and the extra information is not used.

The ARCDATA= data set is either the ARCOUT= data set from a previous run of
PROC NETFLOW with the FUTURE1 option specified (if an unconstrained warm
start is used) or the CONOUT= data set from a previous run of PROC NETFLOW
with the FUTURE2 option specified (if the warm start was obtained after optimization
that considers side constraints was used).
The NODEDATA= data set is the NODEOUT= data set from a previous run of PROC
NETFLOW with FUTURE1 specified if an unconstrained warm start is being used.
Otherwise, the DUALIN= is the DUALOUT= data sets from a previous run of PROC
NETFLOW with FUTURE2 specified, if the warm start was obtained after optimiza-
tion that considers side constraints was used.
You never need to alter the NODEOUT= data set or the DUALOUT= data set between
the time they are generated and when they are used as a warm start. The results
would be unpredictable if incorrect changes were made to these data sets, or if a
NODEDATA= or a DUALIN= data set were used with an ARCDATA= data set of a
different solution.

It is possible, and often useful, to specify WARM and either FUTURE1 or
FUTURE2, or both, in the same PROC NETFLOW statement if a new warm start
is to be generated from the present warm start.

Warm Starts � 547

The extent of the changes allowed to a primal simplex warm start between the time
it is generated and when it is used depends on whether the warm start describes an
unconstrained or constrained solution. The following list describes parts of a con-
strained or an unconstrained warm start that can be altered:

• COST list variable values

• the value of an arc’s capacity, as long as the new capacity value is not less than
the lower flow bound or the flow through the arc

• any nonarc variable information, in an unconstrained warm start

• for an unconstrained warm start, any side constraint data

The changes that can be made in constraint data for a constrained warm start are more
restrictive than those for an unconstrained warm start. The lhs coefficients, type, and
rhs value of a constraint can be changed as long as that constraint’s slack, surplus, or
artificial variable is basic. The constraint name cannot be changed.

Example of a Warm Start

The following sample SAS session demonstrates how the warm start facilities are
used to obtain optimal solutions to an unconstrained network where some arc cost
changes occur or optimization is halted before the optimum is found.

/* data already in data sets node0 and arc0 */
proc netflow

nodedata=node0 /* if supply_demand information */
/* is in this SAS data set */

arcdata=arc0;
/* variable list specifications go here */
/* assume that they are not necessary here */
/* if they are, they must be included in */
/* all the PROC NETFLOW calls that follow */

reset
future1
nodeout=node2 /* nodeout and arcout are necessary */

/* when FUTURE1 is used */
arcout=arc1;

proc print
data=arc1; /* display the optimal solution */

proc fsedit
data=arc1; /* change some arc costs */

data arc2;
reset arc1;

oldflow=_flow_;
oldfc=_fcost_;

/* make duplicates of the flow and flowcost*/
/* variables. If a id list was explicitly */
/* specified, add oldflow and oldfc to this*/
/* list so that they appear in subsequently*/
/* created arcout= data sets */

548 � Chapter 5. The NETFLOW Procedure

The following PROC NETFLOW uses the warm start created previously, performs
250 stage 2 iterations and saves that solution, which (as FUTURE1, ARCOUT=, and
NODEOUT= are specified) can be used as a warm start in another PROC NETFLOW
run.

proc netflow
warm
nodedata=node2
arcdata=arc2;

reset
maxit1=250
future1;

run;
save
nodeout=savelib.node3
arcout=savelib.arc3;

/* optimization halted because 250 iterations */
/* were performed to resume optimization, */
/* possibly in another session (the output */
/* data sets were saved in a SAS library */
/* called savelib) */

Using the latest warm start, PROC NETFLOW is re-invoked to find the optimal so-
lution.

proc netflow
warm
nodedata=savelib.node3
arcdata=savelib.arc3;

reset
future1
nodeout=node4
arcout=arc4;

run;

If this problem has constraints with data in a data set called CON0, then in each of the
previous PROC NETFLOW statements, specify CONDATA=CON0. Between PROC
NETFLOW runs, you can change constraint data. In each of the RESET statements,
you could specify the CONOUT= data set to save the last (possibly optimal) solution
reached by the optimizer if it reaches stage 2. You could specify FUTURE2 and the
DUALOUT= data set to generate a constrained warm start.

How to Make the Data Read of PROC NETFLOW More Efficient � 549

proc netflow
warm
nodedata=node4
arcdata=arc4
condata=con0;

reset
maxit2=125 /* optional, here as a reason why */

/* optimum will not be obtained */
scratch /* optional, but warm start might be good */

/* enough to start stage 2 optimization */
future2

run;
/* optimization halted after 125 stage 2 iterations */

save dualout=dual1 conout=conout1;

Stage 2 optimization halted before optimum was reached. Now you can make cost
and nonarc variable objective function coefficient changes. Then to restart optimiza-
tion, use

proc netflow
warm
condata=con0

/* NB. NETFLOW reads constraint data only */
dualin=dual1
arcdata=con1;

reset
future2
dualout=dual2
conout=con2;

run;

How to Make the Data Read of PROC NETFLOW More
Efficient

This section contains information useful when you want to solve large constrained
network problems. However, much of this information is also useful if you have a
large linear programming problem. All of the options described in this section that
are not directly applicable to networks (options such as ARCS–ONLY–ARCDATA,
ARC–SINGLE–OBS, NNODES=, and NARCS=) can be specified to improve the
speed at which LP data is read.

Large Constrained Network Problems

Many of the models presented to PROC NETFLOW are enormous. They can be con-
sidered large by linear programming standards; problems with thousands of variables
and constraints. When dealing with side constrained network programming prob-
lems, models can have not only a linear programming component of that magnitude,
but also a larger, possibly much larger, network component.

The majority of a network problem’s decision variables are arcs. Like an LP decision
variable, an arc has an objective function coefficient, upper and lower value bounds,

550 � Chapter 5. The NETFLOW Procedure

and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite
similar to an LP variable and places the same memory demands on optimization
software as an LP variable. But a typical network model has many more arcs and
nonarc variables than the typical LP model has variables. And arcs have tail and head
nodes. Storing and processing node names require huge amounts of memory. To
make matters worse, node names occupy memory at times when a large amount of
other data should reside in memory as well.

While memory requirements are lower for a model with embedded network compo-
nent compared with the equivalent LP once optimization starts, the same is usually
not true during the data read. Even though nodal flow conservation constraints in
the LP should not be specified in the constrained network formulation, the memory
requirements to read the latter are greater because each arc (unlike an LP variable)
originates at one node, and is directed toward another.

Paging

PROC NETFLOW has facilities to read data when the available memory is insuffi-
cient to store all the data at once. PROC NETFLOW does this by allocating memory
for different purposes, for example, to store an array or receive data read from an
input SAS data set. After that memory has filled, the information is sent to disk and
PROC NETFLOW can resume filling that memory with new information. Often, in-
formation must be retrieved from disk so that data previously read can be examined or
checked for consistency. Sometimes, to prevent any data from being lost, or to retain
any changes made to the information in memory, the contents of the memory must
be sent to disk before other information can take its place. This process of swapping
information to and from disk is called paging. Paging can be very time-consuming,
so it is crucial to minimize the amount of paging performed.

There are several steps you can take to make PROC NETFLOW read the data of
network and linear programming models more efficiently, particularly when memory
is scarce and the amount of paging must be reduced. PROC NETFLOW will then be
able to tackle large problems in what can be considered reasonable amounts of time.

The Order of Observations

PROC NETFLOW is quite flexible in the ways data can be supplied to it. Data can
be given by any reasonable means. PROC NETFLOW has convenient defaults that
can save you work when generating the data. There can be several ways to supply
the same piece of data, and some pieces of data can be given more than once. PROC
NETFLOW reads everything, then merges it all together. However, this flexibility
and convenience come at a price; PROC NETFLOW may not assume the data has
a characteristic that, if possessed by the data, could save time and memory during
the data read. There are several options that indicate the data has some exploitable
characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= or
CONDATA= data set, or both. Every time it is given in ARCDATA, a check is made
to ensure that the new value is the same as any corresponding value read in a previous
observation of ARCDATA. Every time it is given in CONDATA, a check is made to
ensure that the new value is the same as the value read in a previous observation of

How to Make the Data Read of PROC NETFLOW More Efficient � 551

CONDATA, or previously in ARCDATA. It would save PROC NETFLOW time if it
knew that arc cost data would be encountered only once while reading ARCDATA, so
performing the time-consuming check for consistency would not be necessary. Also,
if you indicate that CONDATA contains data for constraints only, PROC NETFLOW
will not expect any arc information, so memory will not be allocated to receive such
data while reading CONDATA. This memory is used for other purposes and this
might lead to a reduction in paging. If applicable, use the ARC–SINGLE–OBS or the
CON–SINGLE–OBS option, or both, and the NON–REPLIC=COEFS specification
to improve how ARCDATA and CONDATA are read.

PROC NETFLOW allows the observations in input data sets to be in any order.
However, major time savings can result if you are prepared to order observations
in particular ways. Time spent by the SORT procedure to sort the input data sets,
particularly the CONDATA= data set, may be more than made up for when PROC
NETFLOW reads them, because PROC NETFLOW has in memory information pos-
sibly used when the previous observation was read. PROC NETFLOW can assume a
piece of data is either similar to that of the last observation read or is new. In the first
case, valuable information such as an arc or a nonarc variable number or a constraint
number is retained from the previous observation. In the last case, checking the data
with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain
data for the same arc or nonarc variable or the same row pays off. PROC NETFLOW
establishes whether an observation being read is similar to the observation just read.

Practically, several input data sets for PROC NETFLOW might have this character-
istic, because it is natural for data for each constraint to be grouped together (dense
format of CONDATA) or data for each column to be grouped together (sparse format
of CONDATA). If data for each arc or nonarc is spread over more than one observa-
tion of the ARCDATA= data set, it is natural to group these observations together.

Use the GROUPED= option to indicate whether observations of the ARCDATA= data
set, CONDATA= data set, or both are grouped in a way that can be exploited during
data read.

Time is saved if the type data for each row appears near the top of the CONDATA=
data set, especially if it has the sparse format. Otherwise, when reading an observa-
tion, if PROC NETFLOW does not know if a row is a constraint or special row, the
data is set aside. Once the data set has been completely read, PROC NETFLOW must
reprocess the data it set aside. By then, it knows the type of each constraint or row
or, if its type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC NETFLOW to make better utilization of available memory, you
can now specify options that indicate the approximate size of the model. PROC
NETFLOW then knows what to expect. For example, if you indicate that the problem
has no nonarc variables, PROC NETFLOW will not allocate memory to store nonarc
data. That memory is utilized better for other purposes. Memory is often allocated
to receive or store data of some type. If you indicate that the model does not have

552 � Chapter 5. The NETFLOW Procedure

much data of a particular type, the memory that would otherwise have been allocated
to receive or store that data can be used to receive or store data of another type.

• NNODES= approximate number of nodes

• NARCS= approximate number of arcs

• NNAS= approximate number of nonarc variables or LP variables

• NCONS= approximate number of constraints

• NCOEFS= approximate number of constraint coefficients

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these options for the model, but the more you do,
the better. If you do not specify some or all of these options, PROC NETFLOW
guesses the size of the problem by using what it already knows about the model.
Sometimes PROC NETFLOW guesses the size of the model by looking at the number
of observations in the ARCDATA= and CONDATA= data sets. However, PROC
NETFLOW uses rough rules of thumb; that typical models are proportioned in certain
ways (for example, if there are constraints, then arcs and nonarcs usually have 5
constraint coefficients). If your model has an unusual shape or structure, you are
encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overesti-
mate the values. For example, if you specify NARCS=10000 but the model has 10100
arcs, when dealing with the last 100 arcs, PROC NETFLOW might have to page out
data for 10000 arcs each time one of the last arcs must be dealt with. Memory could
have been allocated for all 10100 arcs without affecting (much) the rest of the data
read, so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC
NETFLOW does not know it. When PROC NETFLOW knows the “real” value,
that value is used instead of Nxxxx= .

When PROC NETFLOW is given a constrained solution warm start, PROC
NETFLOW knows from the warm start information all model size parameters, so
Nxxxx= options are not used. When an unconstrained warm start is used and the
SAME–NONARC–DATA is specified, PROC NETFLOW knows the number of
nonarc variables, so that is used instead of the value of the NNAS= option.

ARCS–ONLY–ARCDATA indicates that data for only arcs are in the ARCDATA=
data set. Memory would not be wasted to receive data for nonarc and LP variables.

Use the memory usage parameters:

• The BYTES= option specifies the size of PROC NETFLOW main working
memory in number of bytes.

• The MAXARRAYBYTES= option specifies the maximum number of bytes
that an array can occupy.

How to Make the Data Read of PROC NETFLOW More Efficient � 553

• The MEMREP option indicates that memory usage report is to be displayed on
the SAS log.

Specifying the BYTES= parameter is particularly important. Specify as large a
number as possible, but not such a large number of bytes that will cause PROC
NETFLOW (rather, the SAS System running underneath PROC NETFLOW) to run
out of memory. Use the MAXARRAYBYTES= option if the model is very large or
“disproportionate.” Try increasing or decreasing the MAXARRAYBYTES= option.
Limiting the amount of memory for use by big arrays is good if they would take
up too much memory to the detriment of smaller arrays, buffers, and other things
that require memory. However, too small a value of the MAXARRAYBYTES= op-
tion might cause PROC NETFLOW to page a big array excessively. Never specify a
value for the MAXARRAYBYTES= option that is smaller than the main node length
array. PROC NETFLOW reports the size of this array on the SAS log if you spec-
ify the MEMREP option. The MAXARRAYBYTES= option influences paging not
only in the data read, but also during optimization. It is often better if optimization is
performed as fast as possible, even if the read is made slower as a consequence.

Use Defaults to Reduce the Amount of Data

Use as much as possible the parameters that specify default values. For example, if
there are several arcs with the same cost value c, use DEFCOST=c for arcs that have
that cost. Use missing values in the COST variable in ARCDATA instead of c. PROC
NETFLOW ignores missing values, but must read, store, and process nonmissing
values, even if they are equal to a default option or could have been equal to a default
parameter had it been specified. Sometimes, using default parameters makes the need
for some SAS variables in the ARCDATA= and CONDATA= data sets no longer
necessary, or reduces the quantity of data that must be read. The default options are

• DEFCOST= default cost of arcs, objective function of nonarc variables or LP
variables

• DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc
variables or LP variables

• DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or
LP variables

• DEFCONTYPE=LE DEFCONTYPE= <=
DEFCONTYPE=EQ DEFCONTYPE= =
DEFCONTYPE=GE DEFCONTYPE= >= (default constraint type)

The default options themselves have defaults. For example, you do not need to spec-
ify DEFCOST=0 in the PROC NETFLOW statement. You should still have missing
values in the COST variable in ARCDATA for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

• SOURCE= name of single node that has supply capability

• SUPPLY= the amount of supply at SOURCE

554 � Chapter 5. The NETFLOW Procedure

• SINK= name of single node that demands flow

• DEMAND= the amount of flow SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the de-
fault. The only time it might be practical to specify a zero rhs is in observations of
CONDATA read early so that PROC NETFLOW can infer that a row is a constraint.
This could prevent coefficient data from being put aside because PROC NETFLOW
did not know the row was a constraint.

Names of Things

To cut data read time and memory requirements, reduce the number of bytes in the
longest node name, longest arc name, and longest constraint name to 8 bytes or less.
The longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable
in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC NETFLOW can have a default name for each arc. If an arc is directed
from node tailname toward node headname, the default name for that arc is
tailname–headname. If you do not want PROC NETFLOW to use these default arc
names, specify NAMECTRL=1. Otherwise, PROC NETFLOW must use memory
for storing node names and these node names must be searched often.

If you want to use the default tailname–headname name, that is, NAMECTRL=2 or
NAMECTRL=3, do not use underscores in node names. If a CONDATA has a dense
format and has a variable in the VAR list A–B–C–D, or if the value A–B–C–D is
encountered as a value of the COLUMN list variable when reading CONDATA that
has the sparse format, PROC NETFLOW first looks for a node named A. If it finds it,
it looks for a node called B–C–D. It then looks for a node with the name A–B and
possibly a node with name C–D. A search for a node named A–B–C and possibly
a node named D is done. Underscores could have caused PROC NETFLOW to look
unnecessarily for nonexistant nodes. Searching for node names can be expensive,
and the amount of memory to store node names large. It might be better to assign the
arc name A–B–C–D directly to an arc by having that value as a NAME list variable
value for that arc in ARCDATA and specify NAMECTRL=1.

Other Ways to Speed Up Data Reads

Use warm starts as much as possible.

• WARM indicates that the input SAS data sets contain a warm start.

The data read of a warm start is much faster than a cold start data read. The model size
is known before the read starts. The observations of the NODEDATA= or DUALIN=
data sets have observations ordered by node name and constraint name. Information
is stored directly in the data structures used by PROC NETFLOW. For a cold start,
much of preprocessing must be performed before the information can be stored in the
same way. And using a warm start can greatly reduce the time PROC NETFLOW
spends doing optimization.

Macro Variable –ORNETFL � 555

• SAME–NONARC–DATA is an option that excludes data from processing.

This option indicates that the warm start nonarc variable data in ARCDATA is read
and any nonarc variable data in CONDATA is to be ignored. Use this option if it is ap-
plicable, or when CONDATA has no nonarc variable data, or such data is duplicated
in ARCDATA. ARCDATA is always read before CONDATA.

Arcs and nonarc variables can have associated with them values or quantities that
have no bearing with the optimization. This information is given in ARCDATA in the
ID list variables. For example, in a distribution problem, information such as truck
number and driver’s name can be associated with each arc. This is useful when a
solution is saved in an output SAS data set. However, PROC NETFLOW needs to re-
serve memory to process this information when data is being read. For large problems
when memory is scarce, it might be better to remove ancillary data from ARCDATA.
After PROC NETFLOW runs, use SAS software to merge this information into the
output data sets that contain the optimal solution.

Macro Variable –ORNETFL

The NETFLOW procedure creates and initializes a SAS macro variable called
–ORNETFL. After exiting the procedure, you can use %put &-ORNETFL; to view
details about the optimization.

When the network simplex method is used, the value of –ORNETFL consists of the
following parts:

• ERROR–STATUS, indicating the existence or absence of any errors

• OPT–STATUS, the stage of the optimization, or what solution has been found

• OBJECTIVE=objective, the total cost or profit of the current solution.
OBJECTIVE can be followed by or replaced by one of the following:

– MAXFLOW=maxflow, the amount of the current solution’s maximal
flow, follows OBJECTIVE= if PROC NETFLOW is solving a maximal
flow problem (MAXFLOW specified)

– MINFLOW=minflow, the amount of the current solution’s minimal flow,
follows OBJECTIVE= if PROC NETFLOW is solving a minimal flow
problem (MAXFLOW and MAXIMIZE specified at the same time)

– SHORTEST–PATH=shortpath, the length of the shortest path, appears
instead of OBJECTIVE= if PROC NETFLOW is solving a shortest path
problem (SHORTPATH specified)

– LONGEST–PATH=longpath, the length of the longest path, appears in-
stead of OBJECTIVE= if PROC NETFLOW is solving a longest path
problem (SHORTPATH and MAXIMIZE specified at the same time)

• SOLUTION, describing the nature of the current solution

When the interior point algorithm is used, the value of –ORNETFL consists of the
following parts:

556 � Chapter 5. The NETFLOW Procedure

• ERROR–STATUS, indicating the existence or absence of any errors

• SOLUTION, describing the nature of the current solution

• OBJECTIVE=objective, the total cost or profit of the current solution.
OBJECTIVE can be followed by or replaced by one of the following:

– MAXFLOW=maxflow, the amount of the current solution’s maximal
flow, follows OBJECTIVE= if PROC NETFLOW is solving a maximal
flow problem (MAXFLOW specified)

– MINFLOW=minflow, the amount of the current solution’s minimal flow,
follows OBJECTIVE= if PROC NETFLOW is solving a minimal flow
problem (MAXFLOW and MAXIMIZE specified at the same time)

– SHORTEST–PATH=shortpath, the length of the shortest path, appears
instead of OBJECTIVE= if PROC NETFLOW is solving a shortest path
problem (SHORTPATH specified)

– LONGEST–PATH=longpath, the length of the longest path, appears in-
stead of OBJECTIVE= if PROC NETFLOW is solving a longest path
problem (SHORTPATH and MAXIMIZE specified at the same time)

• ITERATIONS=n, the number of iterations required to solve the problem

• ITERATING–TIME=Ti, the time in seconds taken by the interior point algo-
rithm to perform iterations for solving the problem

• SOLUTION–TIME=Ts, the time in seconds taken by the procedure to presolve
the problem, perform interior point iterations, and postsolve the problem

Ideally, at the end of a PROC NETFLOW run in which the network simplex method
is used, –ORNETFL has the following value:

ERROR_STATUS=OK OPT_STATUS=OPTIMAL OBJECTIVE=x
SOLUTION=OPTIMAL

At the end of a PROC NETFLOW run in which the interior point algorithm is used,
–ORNETFL should have the following value:

ERROR_STATUS=OK SOLUTION=OPTIMAL OBJECTIVE=x
ITERATIONS=x ITERATING_TIME=x SOLUTION_TIME=x

Nontrailing blank characters that are unnecessary are removed.

If the preprocessor detects that a problem with a network component is infeasible,
and you specify that the interior point algorithm should be used, –ORNETFL has the
following value:

ERROR_STATUS=OK SOLUTION=INFEASIBLE
ITERATIONS=0 ITERATING_TIME=0 SOLUTION_TIME=0

The same value is assigned to the –ORNETFL macro variable if the preprocessor
detects that an LP problem is infeasible.

Memory Limit � 557

Table 5.6 lists alternate values for the –ORNETFL value parts.

Table 5.6. PROC NETFLOW –ORNETFL Macro Values

Keyword Value Meaning

ERROR–STATUS OK no errors
MEMORY memory request failed
IO input/output error
DATA error in the data
BUG error with PROC NETFLOW
SEMANTIC semantic error
SYNTAX syntax error
UNKNOWN unknown error

OPT–STATUS START no optimization has been done
STAGE–1 performing stage 1 optimization
UNCON–OPT reached unconstrained optimum,

but there are side constraints
STAGE–2 performing stage 2 optimization
OPTIMAL reached the optimum

OBJECTIVE objective total cost or profit
MINFLOW minflow if MAXFLOW and MAXIMIZE

are specified at the same time
MAXFLOW maxflow if MAXFLOW is specified
SHORTEST–PATH shortpath if SHORTPATH is specified
LONGEST–PATH longpath if SHORTPATH and MAXIMIZE

are specified at the same time
SOLUTION NONOPTIMAL more optimization is required

STAGE–2–REQUIRED reached unconstrained optimum,
stage 2 optimization is required

OPTIMAL have determined the optimum
INFEASIBLE infeasible; no solution exists
UNRESOLVED–OPTIMALITY
–OR–FEASIBILITY

the optimization process stops
before optimality or infeasibility
can be proven.

MAXITERB–OPTION
–STOPPED–OPTIMIZATION

the interior point algorithm stops
after performing maximal
number of iterations specified by
the MAXITERB= option

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the SAS
System. If you do not specify a value for this option, then the SAS System sets a
default memory limit. Your operating environment determines the actual size of the
default memory limit, which is sufficient for many applications. However, to solve
most realistic optimization problems, the NETFLOW procedure might require more

558 � Chapter 5. The NETFLOW Procedure

memory. Increasing the memory limit can reduce the chance of an out-of-memory
condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-
ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For
example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to
enable the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion for
your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion for your operating environment.

The Interior Point Algorithm: NETFLOW
Procedure

Introduction

The simplex algorithm, developed shortly after World War II, was the main method
used to solve linear programming problems. Over the last fifteen years, the interior
point algorithm has been developed to also solve linear programming problems. From
the start it showed great theoretical promise, and considerable research in the area
resulted in practical implementations that performed competitively with the simplex
algorithm. More recently, interior point algorithms have evolved to become superior
to the simplex algorithm, in general, especially when the problems are large.

The interior point algorithm has been implemented in PROC NETFLOW. This al-
gorithm can be used to solve linear programs as well as network problems. When
PROC NETFLOW detects that the problem has no network component, it automati-
cally invokes the interior point algorithm to solve the problem. The data required by
PROC NETFLOW for a linear program resembles the data for nonarc variables and
constraints for constrained network problems.

If PROC NETFLOW does detect a network component to the problem (the problem
has arcs), you must specify the option INTPOINT in the PROC NETFLOW state-
ment if you want to use the interior point algorithm. PROC NETFLOW first converts
the constrained network model into an equivalent linear programming formulation,
solves that, then converts the LP back to the network model. These models remain
conceptually easy since they are based on network diagrams that represent the prob-
lem pictorially. This procedure accepts the network specification in a format that is

Network Models: Interior Point Algorithm � 559

particularly suited to networks. This not only simplifies problem description but also
aids in the interpretation of the solution. The conversions to and from the equivalent
LP are done “behind the scenes.”

There are many variations of interior point algorithms. PROC NETFLOW uses the
Primal-Dual with Predictor-Corrector algorithm. This algorithm and related theory
can be found in the texts by Roos, Terlaky, and Vial (1997), Wright (1996), and Ye
(1996).

The remainder of this section is split into two parts. In the first part, how you use
PROC NETFLOW’s interior point algorithm to solve network problems is described.
In the second part, using PROC NETFLOW to solve linear programming problems
(its interior point algorithm must be used) is described. Both parts are organized
similarly:

• The way data are supplied to PROC NETFLOW is outlined in a “Getting
Started” subsection.

• An “Introductory Example” is solved to demonstrate how the data is set up,
how PROC NETFLOW is used to compute the solution, and how the optimum
is saved.

• More sophisticated ways to use PROC NETFLOW interactively are detailed in
an “Interactivity” subsection.

• A “Functional Summary” lists the statements and options that can be used to
control PROC NETFLOW. Of particular interest are the options used to control
the optimizer, and the way the solution is saved into output data sets or is
displayed.

The Linear Programs section has additional subsections:

• “Mathematical Description of LP”

• “Interior Point Algorithmic Details,” a brief theory of the algorithm containing
information about the options that can be specified to control the interior point
algorithm.

• “Syntax” subsection, which is a subset of the syntax when the simplex algo-
rithm is used. Gone are the statements and lists relevant only when the simplex
algorithm is used.

Network Models: Interior Point Algorithm
The data required by PROC NETFLOW for a network problem is identical whether
the simplex algorithm or the interior point algorithm is used as the optimizer. By
default, the simplex algorithm is used for problems with a network component. To
use the interior point algorithm, all you need to do is specify the INTPOINT option
in the PROC NETFLOW statement. You can optionally specify some options that
control the interior point algorithm, of which there are only a few. The interior point
algorithm is remarkably robust when reasonable choices are made during the design
and implementation, so it does not need to be tuned to the same extent as the simplex
algorithm.

560 � Chapter 5. The NETFLOW Procedure

When to Use INTPOINT: Network Models: Interior Point Algorithm

PROC NETFLOW uses the primal simplex network algorithm and the primal parti-
tioning algorithm to solve constrained network problems. These algorithms are fast,
since they take advantage of algebraic properties of the network component of the
problem.

If the network component of the model is large compared to the side constraint com-
ponent, PROC NETFLOW’s optimizer can store what would otherwise be a large
matrix as a spanning tree computer data structure. Computations involving the span-
ning tree data structure can be performed much faster than those using matrices. Only
the nonnetwork part of the problem, hopefully quite small, needs to be manipulated
by PROC NETFLOW as matrices.

In contrast, LP optimizers must contend with matrices that can be large for large
problems. Arithmetic operations on matrices often accumulate rounding errors that
cause difficulties for the algorithm. So in addition to the performance improvements,
network optimization is generally more numerically stable than LP optimization.

The nodal flow conservation constraints do not need to be specified in the network
model. They are implied by the network structure. However, flow conservation con-
straints do make up the data for the equivalent LP model. If you have an LP that is
small after the flow conservation constraints are removed, that problem is a definite
candidate for solution by PROC NETFLOW’s specialized simplex method.

However, some constrained network problems are solved more quickly by the interior
point algorithm than the network optimizer in PROC NETFLOW. Usually, they have
a large number of side constraints or nonarc variables. These models are more like
LPs than network problems. The network component of the problem is so small
that PROC NETFLOW’s network simplex method cannot recoup the effort to exploit
that component rather than treat the whole problem as an LP. If this is the case, it
is worthwhile to get PROC NETFLOW to convert a constrained network problem to
the equivalent LP and use its interior point algorithm. This conversion must be done
before any optimization has been performed (specify the INTPOINT option in the
PROC NETFLOW statement).

Even though some network problems are better solved by converting them to an LP,
the input data and the output solution are more conveniently maintained as networks.
You retain the advantages of casting problems as networks: ease of problem gener-
ation and expansion when more detail is required. The model and optimal solutions
are easy to understand, as a network can be drawn.

Getting Started: Network Models: Interior Point Algorithm

To solve network programming problems with side constraints using PROC
NETFLOW, you save a representation of the network and the side constraints in three
SAS data sets. These data sets are then passed to PROC NETFLOW for solution.
There are various forms that a problem’s data can take. You can use any one or a
combination of several of these forms.

Network Models: Interior Point Algorithm � 561

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vector b in problem (NPSC).

The ARCDATA= data set contains information about the variables of the prob-
lem. Usually these are arcs, but there can be data related to nonarc variables in
the ARCDATA= data set as well. If there are no arcs, this is a linear programming
problem.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s lower flow bound,
capacity, and name. These data are associated with the matrix F and the vectors c, l,
and u in problem (NPSC).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions. Do not explicitly specify these flow conservation con-
straints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectors d, m, and v in problem (NPSC).
Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides.
These data are elements of the matrices H and Q and the vector r. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc or nonarc variable is identified in this data set by its name. If you specify an
arc’s name in the ARCDATA= data set, then this name is used to associate data in
the CONDATA= data set with that arc. Each arc also has a default name that is the
name of the tail and head node of the arc concatenated together and separated by an
underscore character; tail–head, for example.

If you use the dense side constraint input format and want to use the default arc names,
these arc names are names of SAS variables in the VAR list of the CONDATA= data
set.

If you use the sparse side constraint input format (described later as well) and want
to use the default arc names, these arc names are values of the COLUMN list SAS
variable of the CONDATA= data set.

When using the interior point algorithm, the execution of PROC NETFLOW has two
stages. In the preliminary (zeroth) stage, the data are read from the NODEDATA=
data set, the ARCDATA= data set, and the CONDATA= data set. Error checking is
performed. The model is converted into an equivalent linear program.

562 � Chapter 5. The NETFLOW Procedure

In the next stage, the linear program is preprocessed. This is optional but highly
recommended. Preprocessing analyzes the model and tries to determine before opti-
mization whether variables can be “fixed” to their optimal values. Knowing that, the
model can be modified and these variables dropped out. It can be determined that
some constraints are redundant. Sometimes, preprocessing succeeds in reducing the
size of the problem, thereby making the subsequent optimization easier and faster.

The optimal solution to the linear program is then found. The linear program is con-
verted back to the original constrained network problem, and the optimum for this is
derived from the optimum of the equivalent linear program. If the problem was pre-
processed, the model is now post-processed, where fixed variables are reintroduced.
The solution can be saved in the CONOUT= data set. This data set is also named in
the PROC NETFLOW, RESET, and SAVE statements.

The interior point algorithm cannot efficiently be warm started, so options such as
FUTURE1 and FUTURE2 options are irrelevant.

Introductory Example: Network Models: Interior Point Algorithm

Consider the following transshipment problem for an oil company in the section
“Introductory Example” on page 449. Recall that crude oil is shipped to refineries
where it is processed into gasoline and diesel fuel. The gasoline and diesel fuel are
then distributed to service stations. At each stage there are shipping, processing, and
distribution costs. Also, there are lower flow bounds and capacities. In addition,
there are side constraints to model crude mix stipulations, and model the limitations
on the amount of Middle Eastern crude that can be processed by each refinery and
the conversion proportions of crude to gasoline and diesel fuel. The network diagram
is reproduced in Figure 5.16.

Network Models: Interior Point Algorithm � 563

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 5.16. Oil Industry Example

To solve this problem with PROC NETFLOW, a representation of the model is saved
in three SAS data sets that are identical to the data sets supplied to PROC NETFLOW
when the simplex algorithm was used.

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC NETFLOW as follows:

proc netflow
intpoint /* <<<--- Interior Point used */
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .

564 � Chapter 5. The NETFLOW Procedure

NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent Linear

Programming problem solved by the Interior Point
algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .
NOTE: Number of variables= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 5.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 11 constraints from the

problem.
NOTE: The preprocessor eliminated 25 constraint coefficients

from the problem.
NOTE: After preprocessing, number of variables= 8.
NOTE: The preprocessor eliminated 10 variables from the

problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to the

problem to handle unrestricted variables, variables that
are split, and constraint slack or surplus variables.

NOTE: There are 13 nonzero elements in A * A transpose.
NOTE: Of the 7 rows and columns, 2 are sparse.
NOTE: There are 6 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 2 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 7 iterations.
NOTE: Objective= 50875.01279.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.

The first set of messages provide statistics on the size of the equivalent linear pro-
gramming problem. The number of variables may not equal the number of arcs if the
problem has nonarc variables. This example has none. To convert a network to an
equivalent LP problem, a flow conservation constraint must be created for each node
(including an excess or bypass node, if required). This explains why the number of
equality side constraints and the number of constraint coefficients change when the
interior point algorithm is used.

If the preprocessor was successful in decreasing the problem size, some messages
will report how well it did. In this example, the model size was cut in half!

Network Models: Interior Point Algorithm � 565

The following set of messages describe aspects of the interior point algorithm. Of par-
ticular interest are those concerned with the Cholesky factorization of AAT where A
is the coefficient matrix of the final LP. It is crucial to preorder the rows and columns
of this matrix to prevent fill-in and reduce the number of row operations to undertake
the factorization. See the section “Interior Point Algorithmic Details” on page 571
for more explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets you specify. For this example,
the solution is saved in the SOLUTION data set. It can be displayed with PROC
PRINT as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ ;
sum _fcost_;
title3 ’Constrained Optimum’;
run;

Constrained Optimum

_ _
_ S D _

_ _ c _ U E _ F
f c a n P M F C
r _ o p _ a P A L O

O o t s a l m L N O S
b m o t c o e Y D W T
s _ _ _ _ _ _ _ _ _ _

1 refinery 1 r1 200 175 50 thruput1 . . 145.000 29000.00
2 refinery 2 r2 220 100 35 thruput2 . . 35.000 7700.00
3 r1 ref1 diesel 0 75 0 . . 36.250 0.00
4 r1 ref1 gas 0 140 0 r1_gas . . 108.750 0.00
5 r2 ref2 diesel 0 75 0 . . 8.750 0.00
6 r2 ref2 gas 0 100 0 r2_gas . . 26.250 0.00
7 middle east refinery 1 63 95 20 m_e_ref1 100 . 80.000 5040.00
8 u.s.a. refinery 1 55 99999999 0 80 . 65.000 3575.00
9 middle east refinery 2 81 80 10 m_e_ref2 100 . 20.000 1620.00
10 u.s.a. refinery 2 49 99999999 0 80 . 15.000 735.00
11 ref1 diesel servstn1 diesel 18 99999999 0 . 30 30.000 540.00
12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 0.000 0.00
13 ref1 gas servstn1 gas 15 70 0 . 95 68.750 1031.25
14 ref2 gas servstn1 gas 17 35 5 . 95 26.250 446.25
15 ref1 diesel servstn2 diesel 17 99999999 0 . 15 6.250 106.25
16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 8.750 201.25
17 ref1 gas servstn2 gas 22 60 0 . 40 40.000 880.00
18 ref2 gas servstn2 gas 31 99999999 0 . 40 0.000 0.00

========
50875.00

Figure 5.17. CONOUT=SOLUTION

Notice that, in the solution data set (Figure 5.17), the optimal flow through each arc
in the network is given in the variable named –FLOW– , and the cost of flow through
each arc is given in the variable –FCOST– . As expected, the miminal total cost of
the solution found by the interior point algorithm is equal to miminal total cost of the

566 � Chapter 5. The NETFLOW Procedure

solution found by the simplex algorithm. In this example, the solutions are the same
(within several significant digits), but sometimes the solutions can be different.

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

80

100

15

80

20

65

35

145

8.75

26.25

36.25

108.75
68.75

8.75

30

40 26.25

6.25

−95

−30

−40

−15

Figure 5.18. Oil Industry Solution

Interactivity: Network Models: Interior Point Algorithm

PROC NETFLOW can be used interactively. You begin by giving the PROC
NETFLOW statement with INTPOINT specified, and you must specify the
ARCDATA= data set. The CONDATA= data set must also be specified if the
problem has side constraints. If necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named
–TAIL– that has tail nodes of arcs as values), it may not be necessary to have many
or any variable lists.

So far, this is the same as when the simplex algorithm is used, except the INTPOINT
option is specified in the PROC NETFLOW statement. The PRINT, QUIT, SAVE,
SHOW, RESET, and RUN statements follow and can be listed in any order. The
QUIT statements can be used only once. The others can be used as many times as
needed.

The CONOPT and PIVOT statements are not relevant to the interior point algorithm
and should not be used.

Network Models: Interior Point Algorithm � 567

Use the RESET or SAVE statement to change the name of the output data set. There
is only one output data set, the CONOUT= data set. With the RESET statement, you
can also indicate the reasons why optimization should stop (for example, you can in-
dicate the maximum number of iterations that can be performed). PROC NETFLOW
then has a chance to either execute the next statement, or, if the next statement is
one that PROC NETFLOW does not recognize (the next PROC or DATA step in the
SAS session), do any allowed optimization and finish. If no new statement has been
submitted, you are prompted for one. Some options of the RESET statement enable
you to control aspects of the interior point algorithm. Specifying certain values for
these options can reduce the time it takes to solve a problem. Note that any of the
RESET options can be specified in the PROC NETFLOW statement. The RUN state-
ment starts optimization. Once the optimization has started, it runs until the optimum
is reached. The RUN statement should be specified at most once. The QUIT state-
ment immediately stops PROC NETFLOW. The SAVE statement has options that
allow you to name the output data set; information about the current solution is put
in this output data set. Use the SHOW statement if you want to examine the values of
options of other statements. Information about the amount of optimization that has
been done and the STATUS of the current solution can also be displayed using the
SHOW statement. The PRINT statement makes PROC NETFLOW display parts of
the problem. The way the PRINT statements are specified are identical whether the
interior point algorithm or the simplex algorithm is used, however there are minor dif-
ferences in what is displayed for each arc, nonarc variable or constraint coefficient.
PRINT ARCS produces information on all arcs. PRINT SOME–ARCS limits this
output to a subset of arcs. There are similar PRINT statements for nonarc variables
and constraints:

PRINT NONARCS;
PRINT SOME_NONARCS;
PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON–ARCS enables you to limit constraint information that is obtained to
members of a set of arcs and that have nonzero constraint coefficients in a set of con-
straints. PRINT CON–NONARCS is the corresponding statement for nonarc vari-
ables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
intpoint /* use the Interior Point algorithm */
arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do the optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default settings for
everything, then the following statement is all you need.

568 � Chapter 5. The NETFLOW Procedure

proc netflow intpoint arcdata= data set ;

Functional Summary: Network Models, Interior Point Algorithm

The following table outlines the options available for the NETFLOW procedure when
the interior point algorithm is being used, classified by function.

Table 5.7. Functional Summary, Network Models

Description Statement Option

Input Data Set Options:
arcs input data set PROC NETFLOW ARCDATA=
nodes input data set PROC NETFLOW NODEDATA=
constraint input data set PROC NETFLOW CONDATA=

Output Data Set Option:
constrained solution data set PROC NETFLOW CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
default constraint type PROC NETFLOW DEFCONTYPE=
special COLUMN variable value PROC NETFLOW TYPEOBS=
special COLUMN variable value PROC NETFLOW RHSOBS=
used to interpret arc and nonarc variable names PROC NETFLOW NAMECTRL=
no new nonarc variables PROC NETFLOW SAME–NONARC–DATA
no nonarc data in ARCDATA PROC NETFLOW ARCS–ONLY–ARCDATA
data for an arc found once in ARCDATA PROC NETFLOW ARC–SINGLE–OBS
data for a constraint found once in CONDATA PROC NETFLOW CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC NETFLOW NON–REPLIC=
data is grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
approximate number of nodes PROC NETFLOW NNODES=
approximate number of arcs PROC NETFLOW NARCS=
approximate number of nonarc variables PROC NETFLOW NNAS=
approximate number of coefficients PROC NETFLOW NCOEFS=
approximate number of constraints PROC NETFLOW NCONS=

Network Options:
default arc cost PROC NETFLOW DEFCOST=
default arc capacity PROC NETFLOW DEFCAPACITY=
default arc lower flow bound PROC NETFLOW DEFMINFLOW=
network’s only supply node PROC NETFLOW SOURCE=
SOURCE’s supply capability PROC NETFLOW SUPPLY=
network’s only demand node PROC NETFLOW SINK=
SINK’s demand PROC NETFLOW DEMAND=
convey excess supply/demand through network PROC NETFLOW THRUNET
find maximal flow between SOURCE and SINK PROC NETFLOW MAXFLOW

Network Models: Interior Point Algorithm � 569

Description Statement Option

cost of bypass arc for MAXFLOW problem PROC NETFLOW BYPASSDIVIDE=
find shortest path from SOURCE to SINK PROC NETFLOW SHORTPATH

Memory Control Options:
issue memory usage messages to SAS log PROC NETFLOW MEMREP
number of bytes to use for main memory PROC NETFLOW BYTES=
proportion of memory for arrays PROC NETFLOW COREFACTOR=
maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Interior Point Algorithm Options:
use interior point algorithm PROC NETFLOW INTPOINT
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=
allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=
write optimization time to SAS log RESET OPTIM–TIMER

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=
stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=
stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=

570 � Chapter 5. The NETFLOW Procedure

Description Statement Option

stop because of infeasd RESET AND–KEEPGOING–ID=

PRINT Statement Options:
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variable information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variables PRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints associ-
ated with some arcs

PRINT CON–ARCS

display information for some constraints associ-
ated with some nonarc variables

PRINT CON–NONARCS

display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS

Miscellaneous Options:
infinity value PROC NETFLOW INFINITY=
scale constraint row, nonarc variable column co-
efficients, or both

PROC NETFLOW SCALE=

maximization instead of minimization PROC NETFLOW MAXIMIZE

Linear Programming Models: Interior Point Algorithm � 571

Linear Programming Models: Interior Point Algorithm

By default, the interior point algorithm is used for problems without a network com-
ponent, that is, a linear programming problem. You do not need to specify the
INTPOINT option in the PROC NETFLOW statement (although you will do no harm
if you do).

Data for a linear programming problem resembles the data for side constraints and
nonarc variables supplied to PROC NETFLOW when solving a constrained network
problem. It is also very similar to the data required by the LP procedure.

Mathematical Description of LP

If the network component of NPSC is removed, the result is the mathematical descrip-
tion of the linear programming problem. If an LP has g variables, and k constraints,
then the formal statement of the problem solved by PROC NETFLOW is

minimize dT z
subject to Qz {≥,=,≤} r

m ≤ z ≤ v

where

• d is the g × 1 objective function coefficient vector

• z is the g × 1 variable value vector

• Q is the k × g constraint coefficient matrix for variables, where Qi,j is the
coefficient of variable j in the ith constraint

• r is the k × 1 side constraint right-hand-side vector

• m is the g × 1 variable value lower bound vector

• v is the g × 1 variable value upper bound vector

Interior Point Algorithmic Details

After preprocessing, the linear program to be solved is

minimize cT x
subject to Ax = b

x ≥ 0

This is the primal problem. The matrices d, z, and Q of NPSC have been renamed
c, x, and A respectively, as these symbols are by convention used more, the problem
to be solved is different from the original because of preprocessing, and there has
been a change of primal variable to transform the LP into one whose variables have
zero lower bounds. To simplify the algebra here, assume that variables have infinite
bounds, and constraints are equalities. (Interior point algorithms do efficiently handle
finite bounds, and it is easy to introduce primal slack variables to change inequalities
into equalities.) The problem has n variables; i is a variable number, k is an iteration
number, and if used as a subscript or superscript it denotes “of iteration k”.

572 � Chapter 5. The NETFLOW Procedure

There exists an equivalent problem, the dual problem, stated as

maximize bT y
subject to AT y + s = c

s ≥ 0

where y are dual variables, and s are dual constraint slacks.

The interior point algorithm solves the system of equations to satisfy the Karush-
Kuhn-Tucker (KKT) conditions for optimality:

Ax = b

AT y + s = c

xT s = 0

x ≥ 0

s ≥ 0

These are the conditions for feasibility, with the complementarity condition xT s = 0
added. Complementarity forces the optimal objectives of the primal and dual to be
equal, cT xopt = bT yopt, as

0 = xT
optsopt = sT

optxopt = (c−AT yopt)T xopt =

cT xopt − yT
opt(Axopt) = cT xopt − bT yopt

Before the optimum is reached, a solution (x, y, s) may not satisfy the KKT condi-
tions:

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s 6= 0.

• Complementarity may not be satisfied, xT s = cT x − bT y 6= 0. This is called
the duality gap.

The interior point algorithm works by using Newton’s method to find a direction to
move (∆xk,∆yk,∆sk) from the current solution (xk, yk, sk) toward a better solu-
tion:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the step length and is assigned a value as large as possible but ≤ 1.0 and
not so large that an xk+1

i or sk+1
i is “too close” to zero. The direction in which to

move is found using the following:

A∆xk = −infeasc

AT ∆yk + ∆sk = −infeasd

Linear Programming Models: Interior Point Algorithm � 573

Sk∆xk + Xk∆sk = −XkSke

where S = diag(s), X = diag(x), and e is a vector with all elements equal to 1.

To greatly improve performance, the third equation is changed to

Sk∆xk + Xk∆sk = −XkSke + σkµke

where µk = 1/nXkSke, the average complementarity, and 0 ≤ σk ≤ 1.

The effect now is to find a direction in which to move to reduce infeasibilities and
to reduce the complementarity toward zero, but if any xk

i s
k
i is too close to zero, it is

“nudged out” to µ, and any xk
i s

k
i that is larger than µ is “nudged into” µ. A σk close

to or equal to 0.0 biases a direction toward the optimum, and a value for σk close
to or equal to 1.0 “centers” the direction toward a point where all pairwise products
xk

i s
k
i = µ. Such points make up the central path in the interior. Although centering

directions make little, if any, progress in reducing µ and moving the solution closer
to the optimum, substantial progress toward the optimum can usually be made in the
next iteration.

The central path is crucial to why the interior point algorithm is so efficient. This path
“guides” the algorithm to the optimum through the interior of feasible space. Without
centering, the algorithm would find a series of solutions near each other close to the
boundary of feasible space. Step lengths along the direction would be small and many
more iterations would probably be required to reach the optimum.

That in a nutshell is the primal-dual interior point algorithm. Varieties of the algo-
rithm differ in the way α and σk are chosen and the direction adjusted during each
iteration. A wealth of information can be found in the texts by Roos, Terlaky, and
Vial (1997), Wright (1996), and Ye (1996).

The calculation of the direction is the most time-consuming step of the interior point
algorithm. Assume the kth iteration is being performed, so the subscript and super-
script k can be dropped from the algebra:

A∆x = −infeasc

AT ∆y + ∆s = −infeasd

S∆x + X∆s = −XSe + σµe

Rearranging the second equation,

∆s = −infeasd −AT ∆y

574 � Chapter 5. The NETFLOW Procedure

Rearranging the third equation,

∆s = X−1(−S∆x−XSe + σµe)

∆s = −Θ∆x− Se + X−1σµe

where Θ = SX−1.

Equating these two expressions for ∆s and rearranging,

−Θ∆x− Se + X−1σµe = −infeasd −AT ∆y

−Θ∆x = Se−X−1σµe− infeasd −AT ∆y

∆x = Θ−1(−Se + X−1σµe + infeasd + AT ∆y)

∆x = ρ + Θ−1AT ∆y

where ρ = Θ−1(−Se + X−1σµe + infeasd).

Substituting into the first direction equation,

A∆x = −infeasc

A(ρ + Θ−1AT ∆y) = −infeasc

AΘ−1AT ∆y = −infeasc −Aρ

∆y = (AΘ−1AT)−1(−infeasc −Aρ)

Θ, ρ, ∆y, ∆x and ∆s are calculated in that order. The hardest term is the factoriza-
tion of the (AΘ−1AT) matrix to determine ∆y. Fortunately, although the values of
(AΘ−1AT) are different for each iteration, the locations of the nonzeros in this ma-
trix remain fixed; the nonzero locations are the same as those in the matrix (AAT).
This is due to Θ−1 = XS−1 being a diagonal matrix, which has the effect of merely
scaling the columns of (AAT).

The fact that the nonzeros in AΘ−1AT have a constant pattern is exploited by all in-
terior point algorithms, and is a major reason for their excellent performance. Before
iterations begin, AAT is examined and its rows and columns are permuted so that
during Cholesky Factorization, the number of fill-ins created is smaller. A list of
arithmetic operations to perform the factorization is saved in concise computer data
structures (working with memory locations rather than actual numerical values). This
is called symbolic factorization. During iterations, when memory has been initialized
with numerical values, the operations list is performed sequentially. Determining
how the factorization should be performed again and again is unnecessary.

The Primal-Dual Predictor-Corrector Interior Point Algorithm

The variant of the interior point algorithm implemented in PROC NETFLOW is a
Primal-Dual Predictor-Corrector interior point algorithm. At first, Newton’s method
is used to find a direction to move (∆xk

aff ,∆yk
aff ,∆sk

aff), but calculated as if µ is
zero, that is, a step with no centering, known as an affine step:

Linear Programming Models: Interior Point Algorithm � 575

A∆xk
aff = −infeasc

AT ∆yk
aff + ∆sk

aff = −infeasd

Sk∆xk
aff + Xk∆sk

aff = −XkSke

(xk
aff , yk

aff , sk
aff) = (xk, yk, sk) + α(∆xk

aff ,∆yk
aff ,∆sk

aff)

where α is the step length as before.

Complementarity xT s is calculated at (xk
aff , yk

aff , sk
aff) and compared with the com-

plementarity at the starting point (xk, yk, sk), and the success of the affine step is
gauged. If the affine step was successful in reducing the complementarity by a sub-
stantial amount, the need for centering is not great, and the value of σk in the fol-
lowing linear system is assigned a value close to zero. If, however, the affine step
was unsuccessful, centering would be beneficial, and the value of σk in the following
linear system is assigned a value closer to 1.0. The value of σk is therefore adaptively
altered depending on the progress made toward the optimum.

A second linear system is solved to determine a centering vector (∆xk
c ,∆yk

c ,∆sk
c)

from (xk
aff , yk

aff , sk
aff) :

A∆xk
c = 0

AT ∆yk
c + ∆sk

c = 0

Sk∆xk
c + Xk∆sk

c = −XkSke

Sk∆xk + Xk∆sk = −Xk
aff Sk

aff e + σkµke

Then

(∆xk,∆yk,∆sk) = (∆xk
aff ,∆yk

aff ,∆sk
aff) + (∆xk

c ,∆yk
c ,∆sk

c)

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where, as before, α is the step length assigned a value as large as possible but not so
large that an xk+1

i or sk+1
i is “too close” to zero.

Although the Predictor-Corrector variant entails solving two linear system instead
of one, fewer iterations are usually required to reach the optimum. The additional
overhead of calculating the second linear system is small, as the factorization of the
(AΘ−1AT) matrix has already been performed to solve the first linear system.

Stopping Criteria

There are several reasons why PROC NETFLOW stops interior point optimization.
Optimization stops when

• the number of iteration equals MAXITERB=m

576 � Chapter 5. The NETFLOW Procedure

• the relative gap (duality gap/(cT x)) between the primal and dual objectives
is smaller than the value of the PDGAPTOL= option, and both the primal and
dual problems are feasible. Duality gap is defined in the section “Interior Point
Algorithmic Details” on page 571.

PROC NETFLOW may stop optimization when it detects that the rate at which the
complementarity or duality gap is being reduced is too slow, that is, there are consec-
utive iterations when the complementarity or duality gap has stopped getting smaller
and the infeasibilities, if nonzero, have also stalled. Sometimes, this indicates the
problem is infeasible.

The reasons to stop optimization outlined in the previous paragraph will be termed
the usual stopping conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual
stopping criteria are inappropriate. PROC NETFLOW might stop prematurely. If it
were allowed to perform additional optimization, a better solution would be found.
On other occasions, PROC NETFLOW might do too much work. A sufficiently
good solution might be reached several iterations before PROC NETFLOW eventu-
ally stops.

You can see PROC NETFLOW’s progress to the optimum by specifying
PRINTLEVEL2=2. PROC NETFLOW will produce a table on the SAS log.
A row of the table is generated during each iteration and consists of values of
the affine step complementarity, the complementarity of the solution for the next
iteration, the total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in

the section “Interior Point: Upper Bounds” on page 579), the total constraint
infeasibility

∑m
i=1 infeasci (see the infeasc array in the section “Interior Point

Algorithmic Details” on page 571), and the total dual infeasibility
∑n

i=1 infeasdi

(see the infeasd array in the section “Interior Point Algorithmic Details” on page
571). As optimization progresses, the values in all columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parame-
ters: the STOP–x and the KEEPGOING–x parameters. The STOP–x parame-
ters (STOP–C, STOP–DG, STOP–IB, STOP–IC, and STOP–ID) are used to test
for some condition at the beginning of each iteration and if met, to stop imme-
diately. The KEEPGOING–x parameters (KEEPGOING–C, KEEPGOING–DG,
KEEPGOING–IB, KEEPGOING–IC, and KEEPGOING–ID) are used when PROC
NETFLOW would ordinarily stop but does not if some conditions are not met.

For the sake of conciseness, a set of options will be referred to as the part of the
option name they have in common followed by the suffix x. For example, STOP–C,
STOP–DG, STOP–IB, STOP–IC, and STOP–ID will collectively be referred to as
STOP–x.

At the beginning of each iteration, PROC NETFLOW will test whether complemen-
tarity is ≤ STOP–C (provided you have specified a STOP–C parameter) and if it is,
PROC NETFLOW will stop. If the duality gap is ≤ STOP–DG (provided you have
specified a STOP–DG parameter), PROC NETFLOW will stop immediately. This
is true as well for the other STOP–x parameters that are related to infeasibilities,
STOP–IB, STOP–IC, and STOP–ID.

Linear Programming Models: Interior Point Algorithm � 577

For example, if you want PROC NETFLOW to stop optimizing for the usual stopping
conditions, plus the additional condition, complementarity ≤ 100 or duality gap ≤
0.001, then use

proc netflow stop_c=100 stop_dg=0.001

If you want PROC NETFLOW to stop optimizing for the usual stopping conditions,
plus the additional condition, complementarity ≤ 1000 and duality gap ≤ 0.001 and
constraint infeasibility ≤ 0.0001, then use

proc netflow
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Unlike the STOP–x parameters that cause PROC NETFLOW to stop when any one
of them is satisfied, the corresponding AND–STOP–x parameters (AND–STOP–C,
AND–STOP–DG, AND–STOP–IB, AND–STOP–IC, and AND–STOP–ID) cause
PROC NETFLOW to stop only if all (more precisely, all that are specified) options
are satisfied. For example, if PROC NETFLOW should stop when

• complementarity ≤ 100 or duality gap ≤ 0.001 or

• complementarity ≤ 1000 and duality gap ≤ 0.001 and constraint infeasibility
≤ 0.000

then use

proc netflow
stop_c=100 stop_dg=0.001
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Just as the STOP–x parameters have AND–STOP–x partners, the KEEPGOING–x
parameters have AND–KEEPGOING–x partners. The role of the KEEPGOING–x
and AND–KEEPGOING–x parameters is to prevent optimization from stopping too
early, even though a usual stopping criterion is met.

When PROC NETFLOW detects that it should stop for a usual stopping condition, it
performs the following tests:

• It will test whether complementarity is > KEEPGOING–C (provided you have
specified a KEEPGOING–C parameter), and if it is, PROC NETFLOW will
perform more optimization.

• Otherwise, PROC NETFLOW will then test whether the primal-dual gap is >
KEEPGOING–DG (provided you have specified a KEEPGOING–DG param-
eter), and if it is, PROC NETFLOW will perform more optimization.

• Otherwise, PROC NETFLOW will then test whether the total bound infea-
sibility

∑n
i=1 infeasbi > KEEPGOING–IB (provided you have specified a

KEEPGOING–IB parameter), and if it is, PROC NETFLOW will perform
more optimization.

578 � Chapter 5. The NETFLOW Procedure

• Otherwise, PROC NETFLOW will then test whether the total constraint in-
feasibility

∑m
i=1 infeasci > KEEPGOING–IC (provided you have specified

a KEEPGOING–IC parameter), and if it is, PROC NETFLOW will perform
more optimization.

• Otherwise, PROC NETFLOW will then test whether the total dual infea-
sibility

∑n
i=1 infeasdi > KEEPGOING–ID (provided you have specified a

KEEPGOING–ID parameter), and if it is, PROC NETFLOW will perform
more optimization.

• Otherwise it will test whether complementarity is > AND–KEEPGOING–C
(provided you have specified an AND–KEEPGOING–C parameter), and the
primal-dual gap is > AND–KEEPGOING–DG (provided you have speci-
fied an AND–KEEPGOING–DG parameter), and the total bound infeasi-
bility

∑n
i=1 infeasbi > AND–KEEPGOING–IB (provided you have speci-

fied an AND–KEEPGOING–IB parameter), and the total constraint infea-
sibility

∑m
i=1 infeasci > AND–KEEPGOING–IC (provided you have spec-

ified an AND–KEEPGOING–IC parameter) and the total dual infeasibility∑n
i=1 infeasdi > AND–KEEPGOING–ID (provided you have specified an

AND–KEEPGOING–ID parameter), and if it is, PROC NETFLOW will per-
form more optimization.

If all these tests to decide whether more optimization should be performed are false,
optimization is stopped.

For example,

proc netflow
stop_c=1000
and_stop_c=2000 and_stop_dg=0.01
and_stop_ib=1 and_stop_ic=1 and_stop_id=1
keepgoing_c=1500
and_keepgoing_c=2500 and_keepgoing_dg=0.05
and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1

At the beginning of each iteration, PROC NETFLOW will stop if

• complementarity ≤ 1000 or

• complementarity ≤ 2000 and duality gap ≤ 0.01 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

When PROC NETFLOW determines it should stop because a usual stopping condi-
tion is met, it will stop only if

• complementarity ≤ 1500 or

• complementarity ≤ 2500 and duality gap ≤ 0.05 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

Linear Programming Models: Interior Point Algorithm � 579

Interior Point: Upper Bounds

If the LP model had upper bounds (0 ≤ x ≤ u where u is the upper bound vector),
then the primal and dual problems, the duality gap, and the KKT conditions would
have to be expanded.

The primal linear program to be solved is

minimize cT x
subject to Ax = b

0 ≤ x ≤ u

where 0 ≤ x ≤ u is split into x ≥ 0 and x ≤ u. Let z be primal slack so that
x + z = u, and associate dual variables w with these constraints. The interior point
algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT)
conditions for optimality:

Ax = b

x + z = u

AT y + s− w = c

xT s = 0

zT w = 0

x, s, z, w ≥ 0

These are the conditions for feasibility, with the complementarity conditions xT s = 0
and zT w = 0 added. Complementarity forces the optimal objectives of the primal
and dual to be equal, cT xopt = bT yopt − uT wopt, as

0 = zT
optwopt = (u− xopt)T wopt = uT wopt − xT

optwopt

0 = xT
optsopt = sT

optxopt = (c−AT yopt + wopt)T xopt =

cT xopt − yT
opt(Axopt) + wopt)T xopt = cT xopt − bT yopt + uT wopt

Before the optimum is reached, a solution (x, y, s, z, w) might not satisfy the KKT
conditions:

• Primal bound constraints may be violated, infeasb = u− x− z 6= 0.

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s + w 6= 0.

• Complementarity conditions may not be satisfied, xT s 6= 0 and zT w 6= 0.

The calculations of the interior point algorithm can easily be derived in a fashion
similar to calculations for when an LP has no upper bounds. See the paper by Lustig,
Marsten, and Shanno (1992). An important point is that upper bounds can be handled
by specializing the algorithm and not by generating the constraints x + z = u and
adding these to the main primal constraints Ax = b.

580 � Chapter 5. The NETFLOW Procedure

Getting Started: Linear Programming Models: Interior Point Algorithm

To solve linear programming problem using PROC NETFLOW, you save a represen-
tation of the variables and the constraints in one or two SAS data sets. These data
sets are then passed to PROC NETFLOW for solution. There are various forms that
a problem’s data can take. You can use any one or a combination of several of these
forms.

The ARCDATA= data set contains information about the variables of the problem.
Although this data set is called ARCDATA, it contains data for no arcs. Instead, all
data in this data set are related to variables.

The ARCDATA= data set can be used to specify information about variables, in-
cluding objective function coefficients, lower and upper value bounds, and names.
These data are the elements of the vectors d, m, and v in problem (NPSC). Data for
a variable can be given in more than one observation.

When the data for a constrained network problem is being provided, the ARCDATA=
data set always contains information necessary for arcs, their tail and head nodes, and
optionally the supply and demand information of these nodes. When the data for a
linear programming problem is being provided, none of this information is present,
as the model has no arcs. This is the way PROC NETFLOW decides which type of
problem it is to solve.

PROC NETFLOW was originally designed to solve models with networks, so an
ARCDATA= data set is always expected. If an ARCDATA= data set is not specified,
by default the last data set created before PROC NETFLOW is invoked is assumed
to be an ARCDATA= data set. However, these characteristics of PROC NETFLOW
are not helpful when a linear programming problem is being solved and all data is
provided in a single data set specified by the CONDATA= data set, and that data set
is not the last data set created before PROC NETFLOW starts. In this case, you must
specify that an ARCDATA= data set and a CONDATA= data set are both equal to the
input data set. PROC NETFLOW then knows that a linear programming problem is
to be solved, and the data reside in one data set.

The CONDATA= data set describes the constraints and their right-hand sides. These
data are elements of the matrix Q and the vector r.

Constraint types are also specified in the CONDATA= data set. You can include
in this data set variable data such as upper bound values, lower value bounds, and
objective function coefficients. It is possible to give all information about some or all
variables in the CONDATA= data set.

A variable is identified in this data set by its name. If you specify a variable’s name in
the ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that variable.

If you use the dense constraint input format, these variable names are names of SAS
variables in the VAR list of the CONDATA= data set.

If you use the sparse constraint input format, these variable names are values of the
COLUMN list SAS variable of CONDATA= data set.

Linear Programming Models: Interior Point Algorithm � 581

When using the interior point algorithm, the execution of PROC NETFLOW has two
stages. In the preliminary (zeroth) stage, the data are read from the ARCDATA=
data set (if used) and the CONDATA= data set. Error checking is performed. In the
next stage, the linear program is preprocessed, then the optimal solution to the linear
program is found. The solution is saved in the CONOUT= data set. This data set is
also named in the PROC NETFLOW, RESET, and SAVE statements.

See the section “Getting Started: Network Models: Interior Point Algorithm” on page
560 for a fuller description of the stages of the interior point algorithm.

Introductory Example: Linear Programming Models: Interior Point Algorithm

Consider the linear programming problem in the section “An Introductory Example”
on page 162 in the chapter on the LP procedure.

data dcon1;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

To find the minimum cost solution and to examine all or parts of the optimum, you
use PRINT statements.

• print problem/short; outputs information for all variables and all constraint
coefficients. See Figure 5.19 and Figure 5.20.

• print some–variables(j:)/short; is information about a set of variables, (in
this case, those with names that start with the character string preceding the
colon). See Figure 5.21.

• print some–cons(recipe–1)/short; is information about a set of constraints
(here, that set only has one member, the constraint called recipe–1). See Figure
5.22.

• print con–variables(–all–,brega)/short; lists the constraint information for a
set of variables (here, that set only has one member, the variable called brega).
See Figure 5.23.

• print con–variables(recipe:,n: jet–1)/short; coefficient information for
those in a set of constraints belonging to a set of variables. See Figure 5.24.

582 � Chapter 5. The NETFLOW Procedure

proc netflow
condata=dcon1
conout=solutn1;

run;
print problem/short;
print some_variables(j:)/short;
print some_cons(recipe_1)/short;
print con_variables(_all_,brega)/short;
print con_variables(recipe:,n: jet_1)/short;

The following messages, which appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 0.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 5 constraints from the

problem.
NOTE: The preprocessor eliminated 18 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 0.
NOTE: The preprocessor eliminated 8 variables from the

problem.
WARNING: Optimization is unnecessary as the problem no

longer has any variables and rows.
NOTE: Preprocessing could have caused that.
NOTE: Objective= 1544.
NOTE: The data set WORK.SOLUTN1 has 8 observations and

6 variables.

The NETFLOW Procedure

N _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 a_heavy -165 165 0 0
2 a_light -175 110 0 110
3 brega -205 80 0 80
4 heatingo 0 99999999 0 77.3
5 jet_1 300 99999999 0 60.65
6 jet_2 300 99999999 0 63.33
7 naphthai 0 99999999 0 21.8
8 naphthal 0 99999999 0 7.45

Figure 5.19. PRINT PROBLEM/SHORT;

Linear Programming Models: Interior Point Algorithm � 583

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 heating_o_conv EQ 0 a_light -175 110
2 heating_o_conv EQ 0 a_heavy -165 165
3 heating_o_conv EQ 0 brega -205 80
4 heating_o_conv EQ 0 heatingo 0 99999999
5 naphtha_i_conv EQ 0 a_light -175 110
6 naphtha_i_conv EQ 0 a_heavy -165 165
7 naphtha_i_conv EQ 0 brega -205 80
8 naphtha_i_conv EQ 0 naphthai 0 99999999
9 naphtha_l_conv EQ 0 a_light -175 110

10 naphtha_l_conv EQ 0 a_heavy -165 165
11 naphtha_l_conv EQ 0 brega -205 80
12 naphtha_l_conv EQ 0 naphthal 0 99999999
13 recipe_1 EQ 0 naphthai 0 99999999
14 recipe_1 EQ 0 heatingo 0 99999999
15 recipe_1 EQ 0 jet_1 300 99999999
16 recipe_2 EQ 0 naphthal 0 99999999
17 recipe_2 EQ 0 heatingo 0 99999999
18 recipe_2 EQ 0 jet_2 300 99999999

N _LOWERBD _VALUE_ _COEF_

1 0 110 0.39
2 0 0 0.3
3 0 80 0.43
4 0 77.3 -1
5 0 110 0.1
6 0 0 0.075
7 0 80 0.135
8 0 21.8 -1
9 0 110 0.035
10 0 0 0.03
11 0 80 0.045
12 0 7.45 -1
13 0 21.8 0.3
14 0 77.3 0.7
15 0 60.65 -1
16 0 7.45 0.2
17 0 77.3 0.8
18 0 63.33 -1

Figure 5.20. PRINT PROBLEM/SHORT; (continued)

The NETFLOW Procedure

N _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 jet_1 300 99999999 0 60.65
2 jet_2 300 99999999 0 63.33

Figure 5.21. PRINT SOME–VARIABLES(J:)/SHORT;

584 � Chapter 5. The NETFLOW Procedure

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 recipe_1 EQ 0 naphthai 0 99999999
2 recipe_1 EQ 0 heatingo 0 99999999
3 recipe_1 EQ 0 jet_1 300 99999999

N _LOWERBD _VALUE_ _COEF_

1 0 21.8 0.3
2 0 77.3 0.7
3 0 60.65 -1

Figure 5.22. PRINT SOME–CONS(RECIPE–1)/SHORT;

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 heating_o_conv EQ 0 brega -205 80
2 naphtha_i_conv EQ 0 brega -205 80
3 naphtha_l_conv EQ 0 brega -205 80

N _LOWERBD _VALUE_ _COEF_

1 0 80 0.43
2 0 80 0.135
3 0 80 0.045

Figure 5.23. PRINT CON–VARIABLES(–ALL–,BREGA)/SHORT;

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 recipe_1 EQ 0 naphthai 0 99999999
2 recipe_1 EQ 0 jet_1 300 99999999
3 recipe_2 EQ 0 naphthal 0 99999999

N _LOWERBD _VALUE_ _COEF_

1 0 21.8 0.3
2 0 60.65 -1
3 0 7.45 0.2

Figure 5.24. PRINT CON–VARIABLES(RECIPE:,N: JET–1)/SHORT;

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets you specify. For this example,
the solution is saved in the SOLUTN1 data set. It can be displayed with PROC PRINT
as

proc print data=solutn1;
var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
sum _fcost_;

Linear Programming Models: Interior Point Algorithm � 585

title3 ’LP Optimum’;
run;

Notice, in the CONOUT=SOLUTN1 (Figure 5.25), the optimal value through each
variable in the linear program is given in the variable named –VALUE– , and the cost
of value for each variable is given in the variable –FCOST– .

LP Optimum

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _FCOST_

1 a_heavy -165 165 0 0.00 0
2 a_light -175 110 0 110.00 -19250
3 brega -205 80 0 80.00 -16400
4 heatingo 0 99999999 0 77.30 0
5 jet_1 300 99999999 0 60.65 18195
6 jet_2 300 99999999 0 63.33 18999
7 naphthai 0 99999999 0 21.80 0
8 naphthal 0 99999999 0 7.45 0

=======
1544

Figure 5.25. CONOUT=SOLUTN1

The same model can be specified in the sparse format as in the following scon2
dataset. This format enables you to omit the zero coefficients.

data scon2;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165
. brega profit -205
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. brega available 80

586 � Chapter 5. The NETFLOW Procedure

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 profit 300

. jet_1 recipe_1 -1

. jet_2 profit 300

. jet_2 recipe_2 -1
;

To find the minimum cost solution, invoke PROC NETFLOW (note the
SPARSECONDATA option which must be specified) as follows:

proc netflow
sparsecondata
condata=scon2
conout=solutn2;
run;

A data set that is used as an ARCDATA= data set can be initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

The following CONDATA= data set is the original dense format CONDATA= dcon1
data set with the variable information removed. (You could have left some or all of
that information in CONDATA as PROC NETFLOW “merges” data, but doing that
and checking for consistency uses time.)

data dcon3;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0

Linear Programming Models: Interior Point Algorithm � 587

recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

It is important to note that it is now necessary to specify the MAXIMIZE option;
otherwise, PROC NETFLOW will optimize to the minimum (which, incidently, has
a total objective = -3539.25). You must indicate that the SAS variable profit in the
ARCDATA=vars3 data set has values that are objective function coefficients, by spec-
ifying the OBJFN statement. The UPPERBD must be specified as the SAS variable
available that has as values upper bounds.

proc netflow
maximize /* ***** necessary ***** */
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

The ARCDATA=vars3 data set can become more concise by noting that the model
variables heatingo, naphthai, and naphthal have zero objective function coefficients
(the default) and default upper bounds, so those observations need not be present.

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

The CONDATA=dcon3 data set can become more concise by noting that all the con-
straints have the same type (eq) and zero (the default) rhs values. This model is a
good candidate for using the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the
same type as is the case here, but also when most constraints have the same type, or
if you prefer to change the default type from ≤ to = or ≥. The essential constraint
type data in CONDATA= data set is that which overrides the DEFCONTYPE= type
you specified.

data dcon4;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0

588 � Chapter 5. The NETFLOW Procedure

naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;

proc netflow
maximize defcontype=eq
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

Several different ways of using an ARCDATA= data set and a sparse format
CONDATA= data set for this linear program follow. The following CONDATA=
data set is the result of removing the profit and available data from the original sparse
format CONDATA=scon2 data set.

data scon5;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 recipe_1 -1
. jet_2 recipe_2 -1
;

proc netflow
maximize
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */

Linear Programming Models: Interior Point Algorithm � 589

condata=scon5
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can become more concise by noting that all
the constraints have the same type (eq) and zero (the default) rhs values.
Use the DEFCONTYPE= option again. Once the first 5 observations of the
CONDATA=scon5 data set are removed, the –type– SAS variable has values that
are missing in the remaining observations. Therefore, this SAS variable can be
removed.

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

a_light napha_l_conv .035
a_light napha_i_conv .100
a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

proc netflow
maximize
defcontype=eq
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon6
conout=solutn6;

objfn profit;
upperbd available;
run;

Interactivity: Linear Programming Models: Interior Point algorithm

PROC NETFLOW can be used interactively. You begin by giving the PROC
NETFLOW statement, and you must specify the CONDATA= data set. If necessary,
specify the ARCDATA= data set.

590 � Chapter 5. The NETFLOW Procedure

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named
–COST– that has objective function coefficients as values), it may not be necessary
to have many or any variable lists.

The PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be
listed in any order. The QUIT statements can be used only once. The others can be
used as many times as needed.

The CONOPT and PIVOT are not relevant to the interior point algorithm and should
not be used.

Use the RESET or SAVE statement to change the name of the output data set. There
is only one output data set, the CONOUT= data set. With the RESET statement, you
can also indicate the reasons why optimization should stop, (for example, you can in-
dicate the maximum number of iterations that can be performed). PROC NETFLOW
then has a chance to either execute the next statement or, if the next statement is one
that PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS
session), do any allowed optimization and finish. If no new statement has been sub-
mitted, you are prompted for one. Some options of the RESET statement enable you
to control aspects of the interior point algorithm. Specifying certain values for these
options can reduce the time it takes to solve a problem. Note that any of the RESET
options can be specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs
until the optimum is reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has
options that enable you to name the output data set; information about the current
solution is saved in this output data set. Use the SHOW statement if you want to
examine the values of options of other statements. Information about the amount of
optimization that has been done and the STATUS of the current solution can also be
displayed using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem.
The ways the PRINT statements are specified are identical whether the interior point
algorithm or the simplex algorithm is used; however, there are minor differences in
what is displayed for each variable or constraint coefficient.

PRINT VARIABLES produces information on all arcs. PRINT
SOME–VARIABLES limits this output to a subset of variables. There are
similar PRINT statements for constraints:

PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON–VARIABLES enables you to limit constraint information that is ob-
tained to members of a set of variables that have nonzero constraint coefficients in
a set of constraints. For example, an interactive PROC NETFLOW run might look

Linear Programming Models: Interior Point Algorithm � 591

something like this:

proc netflow
condata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do some optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default setting for
everything, then the following statement is all you need:

proc netflow condata= data set ;

Functional Summary: Linear Programming Models: Interior Point Algorithm

The following table outlines the options available for the NETFLOW procedure when
the interior point algorithm is being used to solve a linear programming problem,
classified by function.

Table 5.8. Functional Summary, Linear Programming Models

Description Statement Option

Input Data Set Options:
arcs input data set PROC NETFLOW ARCDATA=
constraint input data set PROC NETFLOW CONDATA=

Output Data Set Option:
solution data set PROC NETFLOW CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
default constraint type PROC NETFLOW DEFCONTYPE=
special COLUMN variable value PROC NETFLOW TYPEOBS=
special COLUMN variable value PROC NETFLOW RHSOBS=
data for a constraint found once in CONDATA PROC NETFLOW CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC NETFLOW NON–REPLIC=
data is grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
approximate number of variables PROC NETFLOW NNAS=
approximate number of coefficients PROC NETFLOW NCOEFS=
approximate number of constraints PROC NETFLOW NCONS=

592 � Chapter 5. The NETFLOW Procedure

Description Statement Option

Network Options:
default variable objective function coefficient PROC NETFLOW DEFCOST=
default variable upper bound PROC NETFLOW DEFCAPACITY=
default variable lower bound PROC NETFLOW DEFMINFLOW=

Memory Control Options:
issue memory usage messages to SAS log PROC NETFLOW MEMREP
number of bytes to use for main memory PROC NETFLOW BYTES=
proportion of memory for arrays PROC NETFLOW COREFACTOR=
maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Interior Point Algorithm Options:
use interior point algorithm PROC NETFLOW INTPOINT
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=
allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=
write optimization time to SAS log RESET OPTIM–TIMER

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=
stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=

What Is a Generalized Network? � 593

Description Statement Option

stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=
stop because of infeasd RESET AND–KEEPGOING–ID=

PRINT Statement Options:
display everything PRINT PROBLEM
display variable information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show LP model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS

Miscellaneous Options:
infinity value PROC NETFLOW INFINITY=
scale constraint row, variable column coefficients,
or both

PROC NETFLOW SCALE=

maximization instead of minimization PROC NETFLOW MAXIMIZE

Generalized Networks: NETFLOW Procedure
In this section we introduce how to use the NETFLOW procedure to solve generalized
network programming problems.

What Is a Generalized Network?

It is well known that in a pure network the sum of flows entering an arc is equal to
the sum of flows leaving it. However, in a generalized network there may be a gain
or a loss as flow traverses an arc. Each arc has a multiplier to represent these gains or
losses.

To illustrate what is meant, consider the network shown in Figure 5.26.

594 � Chapter 5. The NETFLOW Procedure

N �N �
A � (C � � , µ � �)

[lb, ub]

+ s -d

N �

N �

N �

N �

N 	

�

�

A

(1 0 , 0 . 5)

A

� (
1
2
,
2
)

A � (0 , 1)

A � (1 0 , 2)

A�

(7 , 3)

A

� (
5
5
,
0
.9

)

2 2

-3 0

-1 0

A � : Arc name lb : Minimum arc flow
C � � : Arc cos t ub : Arc cap acit y
µ � � : Mult ip lier

Figure 5.26. Generalized Network Example

You can think of this as a network representing a supply node (N1), trans-shipment
nodes (N2, N3), and demand nodes (N4, N5). As indicated by the legend, the number
below a node represents its supdem value. Above each arc is its name, followed by
the arc cost and arc multiplier in parentheses. The lower and upper bounds on flow
allowed to enter an arc are represented in square brackets below it. When no bounds
are specified (as in Figure 5.26), they are assumed to be [0, 99999999].

Now consider the node pair (N1, N2). The information on arc A1 says that it costs 2
per unit of flow to traverse it, and for each unit of flow entering the arc, four units get
accumulated at node N2. The corresponding component in the objective function is
two times the flow through arc A1 leaving node N1, not two times the flow through
arc A1 arriving at node N2.

A commonly encountered example of a generalized network is in power generation:
as electricity is transmitted over wires, there is some unavoidable loss along the way.
This loss is represented by a multiplier less than 1.0.

Arc multipliers need not always be less than 1.0. For instance, in financial models, a
flow through an arc could represent money in a bank account earning interest. In that
case, the arc would have a multiplier greater than 1.0.

Generalized networks offer convenience when flow commodity changes. For a pure
network, care must be taken to ensure the flow commodity is the same throughout
the entire model. For example, in a model to determine how sugar should be grown,
refined, packaged, and sold, the flow commodity might be kilograms of sugar, and
all numerical parameters throughout the model (all supplies, arc costs, capacities,
bounds, demands, etc.) must be in terms of kilograms of sugar. Some arcs might
correspond to the movement of 5-kilogram bags of sugar. If a generalized network
formulation is used, the arc that represents packaging could be given a multiplier of
0.2, so flow through arcs that convey flow corresponding to bags of sugar will have

How to Specify Data for Arc Multipliers � 595

arc costs in terms of dollars per bag, and capacities, bounds, demands, etc. in terms
of number of bags.

In the following sections we describe in detail how to provide data for arc multipliers,
how to deal with excess supply or demand in pure and generalized networks, how to
model maximum flow problems, and how to handle networks with missing supply
and demand nodes, and ranges on supply and demand.

How to Specify Data for Arc Multipliers
If you are familiar with using the NETFLOW procedure to solve pure network prob-
lems, then solving generalized network problems is fairly simple. You just need to
provide the additional data for the arc multipliers. Arcs by default have a multiplier
of 1.0, so you only need to provide arc multipliers that are not equal to 1.0. You can
specify the arc multiplier data in either or both of the ARCDATA= and CONDATA=
data sets. The procedure scans the SAS variables in the ARCDATA= data set, and
if it finds a name –MULT– (or a similar name with letters of different case), then
it assumes that the SAS variable contains data for arc multipliers. CONDATA= is
scanned for special type values that indicates data are arc multipliers.

The rest of this section describes the various ways in which you can specify data for
the arc multipliers. The network in Figure 5.26 is used for illustration.

All Arc Multiplier Data in the ARCDATA= Data Set

You can specify all the arc multiplier data in the ARCDATA= data set. The following
code creates the input SAS data sets:

data nodes;
input _node_ $ _sd_ ;

datalines;
N1 22
N4 -30
N5 -10
;

data arcs;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
N1 N2 2 4
N1 N3 10 0.5
N2 N4 0 1
N2 N5 7 3
N3 N2 12 2
N3 N5 10 2
N5 N4 55 0.9
;

Let us first look at the data for this problem. There is a variable named –mult– in
the ARCDATA= data set, so PROC NETFLOW assumes it represents the arc multi-
pliers. The SAS variable –sd– represents the supdem value of a node. A positive or
missing S value indicates supply, and a negative or missing D value indicates demand.

596 � Chapter 5. The NETFLOW Procedure

The optimal solution can be obtained from the CONOUT= data set. Note that you
need to specify the CONOUT= data set even if the network has no side constraints;
you cannot use the ARCOUT= data set.

You can use the following SAS code to run PROC NETFLOW:

title1 ’The NETFLOW Procedure’;
proc netflow

bytes = 100000
nodedata = nodes
arcdata = arcs
conout = solution;

run;

The optimal solution is displayed in Figure 5.27.

The NETFLOW Procedure

Arc (Nonarc)
Arc capacity lower flow
or Nonarc (value)

Obs _from_ _to_ _cost_ upper bound. bound. _mult_

1 N1 N2 2 99999999 0 4.0
2 N3 N2 12 99999999 0 2.0
3 N1 N3 10 99999999 0 0.5
4 N2 N4 0 99999999 0 1.0
5 N5 N4 55 99999999 0 0.9
6 N2 N5 7 99999999 0 3.0
7 N3 N5 10 99999999 0 2.0

Arc
flow*cost,

Arc flow Nonarc
Supply of Demand of or Nonarc value*objfn

Obs tail node. head node. value. coef.

1 22 . 6.0000 12.000
2 . . 3.0000 36.000
3 22 . 16.0000 160.000
4 . 30 30.0000 0.000
5 . 30 -0.0000 -0.000
6 . 10 0.0000 0.000
7 . 10 5.0000 50.000

Figure 5.27. Output of the Example Problem

All Arc Multiplier Data in CONDATA= Data Set

Let us now solve the same problem, but with all the arc multipliers specified in the
CONDATA= data set. The CONDATA= data set can have either a sparse format or a
dense format. The following code illustrates the dense format representation:

How to Specify Data for Arc Multipliers � 597

data arcs1b;
input _from_ $ _to_ $ _cost_;

datalines;
N1 N2 2
N1 N3 10
N2 N4 0
N2 N5 7
N3 N2 12
N3 N5 10
N5 N4 55
;

data MUdense;
input _type_ $ N1_N2 N1_N3 N2_N4 N2_N5 N3_N2 N3_N5 N5_N4;

datalines;
mult 4.0 0.5 1.0 0.3 2.0 2.0 0.9
;

You can use the following SAS code to obtain the solution:

proc netflow
gennet
nodedata = nodes
arcdata = arcs1b
condata = MUdense
conout = soln1b;

run;

Note that a new option, GENNET, has been specified in the call to PROC NETFLOW.
This option is necessary when the network is generalized and there are no arc multi-
plier data in the ARCDATA= data set. If this option is not specified, then the proce-
dure assumes that the network is pure (without arc multipliers) and sets up the excess
supply node and the excess arcs.

The sparse format representation is as follows:

data MUsparse;
input _type_ $ _col_ $ _coef_;

datalines;
mult N1_N2 4.0
mult N1_N3 0.5
mult N2_N4 1.0
mult N2_N5 0.3
mult N3_N2 2.0
mult N3_N5 2.0
mult N5_N4 0.9
;

598 � Chapter 5. The NETFLOW Procedure

You can use the following SAS code to obtain the solution:

proc netflow
gennet sparsecondata
nodedata = nodes
arcdata = arcs1b
condata = MUsparse
conout = soln1c;

run;

Note that you need to specify the SPARSECONDATA option in the call to PROC
NETFLOW.

Arc Multiplier Data in Both ARCDATA= and CONDATA= Data Sets

You can also provide some multiplier data in the ARCDATA= data set, and the rest
in the CONDATA= data set as follows:

data arcs1c;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
N1 N2 2 4
N1 N3 10 .5
N2 N4 0 .
N2 N5 7 .
N3 N2 12 .
N3 N5 10 .
N5 N4 55 .
;

data MUdense1;
input _type_ $ N2_N4 N2_N5 N3_N2 N3_N5 N5_N4;

datalines;
mult 1.0 0.3 2.0 2.0 0.9
;

The procedure merges the data when all the input data sets have been read.

Specifying Arc Multiplier Data Using a List Statement

You can also specify the name of the multiplier variable in the list statement MULT,
or MULTIPLIER. For example, if the name of the variable is lossrate, then use the
following:

proc netflow
...
;
mult lossrate;
run;

You may also use MULT, GAIN, or LOSS (or similar names with letters of different
case) as a value of the TYPE list SAS variable.

Handling Excess Supply or Demand � 599

Using the New EXCESS= Option in Pure
Networks: NETFLOW Procedure
In this section we describe how to use the new EXCESS= option to solve a wide
variety of problems. These include the following:

• networks with excess supply or demand

• networks containing nodes with unknown supply and demand values

• maximum flow problems

• networks with nodes having supply and demand ranges

Handling Excess Supply or Demand

The supdem value of a node can be specified in the following formats:

• in the NODEDATA= data set, using the –supdem– or –sd– list variable

• in the ARCDATA= data set, using the –SUPPLY– and –DEMAND– list vari-
ables

If there is only one supply (demand) node, then use the SOURCE= (SINK=) option to
refer to it, and use the SUPPLY= (DEMAND=) option to specify its supdem value.

To ensure feasibility, there are different methods by which flow can be added to or
drained from the network. This extra flow can be added to or drained from the net-
work at either the supply or demand nodes. The new EXCESS= option is used to
address such instances.

For pure networks there are two valid values that can be specified for the EXCESS=
option: EXCESS=ARCS and EXCESS=SLACKS.

EXCESS=ARCS is the default value. An extra node, referred to as –EXCESS– , is
added to the network and is connected to the actual network by “excess” arcs.

• If total supply exceeds total demand, then –EXCESS– is an extra demand
node with demand equal to total supply minus total demand.

– If the THRUNET option is specified, the “excess” arcs are directed away
from any actual demand node (even nodes with missing D demand) and
toward –EXCESS– .

– Or else if there are demand nodes with missing D demands, the “excess”
arcs are directed away from these nodes and toward –EXCESS– .

– Or else the “excess” arcs are directed away from the supply nodes and
toward –EXCESS– .

• If the total demand exceeds the total supply, then –EXCESS– is an extra
supply node with supply equal to the total demand minus the total supply.

600 � Chapter 5. The NETFLOW Procedure

– If the THRUNET option is specified, the “excess” arcs are directed away
from –EXCESS– and toward any actual supply node (even nodes with
missing S supply.)

– Or else if there are supply nodes with missing S supplies, the “excess”
arcs are directed away from –EXCESS– and toward these nodes.

– Or else the “excess” arcs are directed away from –EXCESS– and toward
the demand nodes.

The node –EXCESS– and the associated arcs are created to ensure that the problem
presented to the optimizer has a total supply equal to the total demand. They are
neither displayed in the optimal solution nor saved in any output SAS data set.

If EXCESS=SLACKS is specified, then slack variables are created for some flow
conservation constraints instead of having the node –EXCESS– and “excess” arcs.
The flow conservation constraint (which was an inequality) is now converted to an
equality with the addition of the slack variable. Alternatively, you can think of these
slacks as arcs with one of their end nodes missing — they are directed from a node but
not toward any other node (or directed toward a node but not from any other node).
Figure 5.28 presents a clearer picture of this.

+

+ -

-

+

+ -

-

Slacks
created
internally by
the procedure

Figure 5.28. EXCESS=SLACKS, Total Supply Exceeds Total Demand,
THRUNET Not Specified, No Nodes with Missing Demand

Note: When you specify EXCESS=SLACKS, the interior point solver is used. The
output SAS data set needs to be specified by the CONOUT= data set, even if side
constraints are not present. Also, when you specify the EXCESS=SLACKS option,
the size of the model submitted to the optimizer is smaller than with EXCESS=ARCS
since it no longer has the –EXCESS– node and the excess arcs associated with it.

Handling Missing Supply and Demand Simultaneously

Another new feature in the NETFLOW procedure is that it enables you to specify a
network containing both nodes with missing S supply values and nodes with missing
D demand values. This feature is a powerful modeling tool, and we show in the later
sections how to use it to formulate and solve maximum flow problems and network
models with range constraints on supply and demand.

Maximum Flow Problems � 601

Whenever a network is detected to have both nodes with missing S supply values
and nodes with missing D demand values, a special value of the EXCESS= option is
assigned internally by the procedure; any value you specify for the EXCESS= option
is overridden. The procedure solves the problem in the following manner:

• Nodes with positive (negative) supdem values supply (demand) the exact
amount of flow specified.

• Nodes with missing S supply (missing D demand) values supply (demand) flow
quantities that are determined by optimization.

Figure 5.29 displays how the slack variables are set up by the procedure internally.
These variables are neither a part of the input data set nor displayed in any output
SAS data set or printed output.

S

+

S

+ D

-

D

-

Figure 5.29. A Network with Both Missing S Supply and Missing D Demand
Nodes

Maximum Flow Problems
The maximum flow problem (MFP) can be stated as follows: Given a directed graph
G = (N,A) with capacity uij ≥ 0 on each arc (i, j) ∈ A, a source node s and
a sink node t, find the maximum flow that can go from s to t, while obeying the
flow conservation constraints at each node. You can solve such problems using the
MAXFLOW option in the call to PROC NETFLOW.

Ordinarily many, if not all, arcs in an MFP network have capacities, and it is com-
mon that these arcs have zero costs. However, the NETFLOW procedure enables
you to have nonzero costs to influence the optimal solution in cases where multiple
maximum flow patterns are known to exist.

The following two subsections explain the role of the EXCESS= option in solving
pure and generalized maximum flow problems.

The EXCESS=ARCS Option

Consider a maximum flow problem involving a pure network. Assume that you do
not explicitly specify the EXCESS= option (the EXCESS=ARCS option is used by
the procedure by default). The NETFLOW procedure sets up the problem in the
following manner:

602 � Chapter 5. The NETFLOW Procedure

1. The source node is assigned a supdem value equal to INFINITY−1.

2. The sink node is assigned a supdem value equal to −(INFINITY−1).

3. If there is no existing arc between the source node and the sink node, an arc
called the bypass arc directed from the source node to the sink node is added.

4. If there is an existing arc between the source node and the sink node, a dummy
node is used to break up what would have been a single bypass arc: source —>
sink gets transformed into two arcs, source —> dummy —> sink.

5. If you are maximizing, then the cost of the bypass arc(s) is equal to −1 if all
other arcs have zero costs; otherwise the cost of the bypass arc(s) is equal to
−(INFINITY / BYPASSDIV).

6. If you are minimizing, then the cost of the bypass arc(s) is equal to 1 if all
other arcs have zero costs; otherwise the cost of the bypass arc(s) is equal to
INFINITY / BYPASSDIV.

You can specify the value of the INFINITY= option in the procedure statement, or
you can use the default value of 99999999. You can also specify the BYPASSDIV=
option. The default value for the BYPASSDIV= option is 100.

This scenario is depicted in Figure 5.30. Since the cost of the bypass arc is unattrac-
tive, the optimization process minimizes the flow through it, thereby maximizing the
flow through the real network. See the first subsection in Example 5.10 for an illus-
tration.

+

+

+

+ -

-

-

-

SINKSOURCE

Bypass arc with

99999998 -99999998

unattractive cost

Figure 5.30. Pure Maximum Flow Problem, EXCESS=ARCS Option Specified

This method of setting up a maximum flow problem does come with a drawback. It
is likely to produce incorrect results if the following occur:

• the maximum flow is greater than INFINITY−1, or

• the cost of the bypass arc is insufficiently unattractive to ensure that the entire
flow traverses the real network and not through the bypass arc

Additionally, numbers of large magnitude can cause problems during optimization,
including numerical instability and loss of precision. In the next section, we explain
how to overcome these difficulties when solving maximum flow problems.

Maximum Flow Problems � 603

The EXCESS=SLACKS Option

Assume you have a pure maximum flow problem and you specify the
EXCESS=SLACKS option. The NETFLOW procedure sets up the problem in
the following manner:

• The source node is assigned a missing S supply value.

• The sink node is assigned a missing D demand value.

Since this network contains a node with a missing S supply value and a node with
a missing D demand value, we have a situation similar to the one described in the
section “Handling Missing Supply and Demand Simultaneously” on page 600. Both
of these nodes have slack variables. Usually, slack variables have zero objective
function coefficients, but because the MAXFLOW option is specified, one of the
slack variables must be attractive enough to make it worthwhile for flow to traverse
the network. Figure 5.31 presents the scenario clearly.

If you are maximizing, then the objective function coefficient of the slack variable
associated with the sink node is −1 if all other arcs have zero costs. Otherwise it
is −(INFINITY / BYPASSDIV). If you are minimizing, then the objective function
coefficient of the slack variable associated with the sink node is 1 if all arcs have
zero costs. Otherwise it is INFINITY / BYPASSDIV. See the second subsection in
Example 5.10 for an illustration of the EXCESS=SLACKS option in pure maximum
flow problems.

Note: If the MAXFLOW option is not specified, these slack variables assume zero
objective function coefficients, and the MFP may not be solved properly.

+

+

+

+ -

-

-

-

SINKSOURCE

S D

Slack with

attractive

objective

function

coefficient

Figure 5.31. Pure Maximum Flow Problem with EXCESS=SLACKS Option
Specified

When you use the MAXFLOW option, the procedure sets up the problem in such a
way that maximum flow traverses the network. This enables you to transform certain
types of problems into maximum flow problems. One such instance is when you have
a network where the amount of flow that is supplied or demanded falls within a range
of values. The following section describes how to solve such problems.

604 � Chapter 5. The NETFLOW Procedure

Handling Supply and Demand Ranges

Consider the scenario depicted by Figure 5.32, where the supply and demand nodes
have ranges; i.e., the amounts they can supply or demand are constrained to be within
certain lower and upper bounds.

+

+

-

-

[a, b]

[c, d]

[e, f]

[g, h]

.

. .
.

Figure 5.32. Network with Ranges on Supplies and Demands

To model this situation, you first need to add a supply node with missing S supply
value (the Y node in Figure 5.33) and a demand node with missing D demand value
(the Z node in Figure 5.33). The bounds on the supply and demand nodes get trans-
formed into upper/lower bounds on the arcs that connect them to nodes Y and Z,
respectively. It might be necessary to have costs for these arcs to make it worthwhile
for flow to traverse them, and subsequently to traverse the actual network. In practice,
these costs represent procurement costs, profit from sales, etc.

+

+

-

-

[a,
 b]

[c, d]

Y Z

[g,
 h]

[e, f]
S D

Figure 5.33. Network with Ranges of Supplies and Demands: Transformed Model

You could set up all your network models in this fashion, not only in scenarios in
which there are supply and demand ranges. For instance, this modeling technique
could be used under the following conditions:

• if there are no ranges

• if the network is generalized, and you do not know whether to specify
EXCESS=SUPPLY or EXCESS=DEMAND

How Generalized Networks Differ from Pure Networks � 605

• if some of the lower bounds are zero or some capacities are infinite, in which
case you simply do not specify the capacity

Using the New EXCESS= Option in Generalized
Networks: NETFLOW Procedure
In this section we briefly describe how to use the new EXCESS= option in generalized
networks. We provide simple scenarios to enable you to understand what happens
internally in the solver when different values for the EXCESS= option are specified.

Total Supply and Total Demand: How Generalized Networks
Differ from Pure Networks

For a pure network, it is easy to check for excess supply or excess demand. If the
sum of positive supdem values exceeds (is less than) the absolute value of the sum
of negative supdem values, then the network has excess supply (demand).

However, in a generalized network you need to specify whether the network should
have excess supply or excess demand. To do that you can specify the option
EXCESS=SUPPLY or EXCESS=DEMAND, respectively.

Although the total supply and total demand of a generalized network can be deter-
mined, you may not know beforehand if excess flow must be added to, removed from,
or left unused by the network. For example, consider a simple network, one consist-
ing of two nodes, A and B, connected by a single arc, A —> B. Suppose the supply
of node A is 10 and the demand of node B is 30. If this is a pure network, then the
network solved must be either –EXCESS– —> A —> B if the THRUNET option
is not specified and the flow through the arc between A and B is 30 units, or A —> B
<— –EXCESS– if the THRUNET option is specified and the flow through the arc
from A to B is 10 units. –EXCESS– is the name of an extra node that is set up by
the procedure behind the scenes, and in both cases it would have a supply capacity
of 20 units, which is the flow through the excess arc. However, if the network is
generalized, and the arc from A to B has a multiplier of 3.0, then the flow through
the arc from A to B would be 10 units, and the network would be feasible without
any excess node and arcs. Indeed, no excess node and arcs would be created, even
though total supply and total demand are unequal. Therefore, once the NETFLOW
procedure detects that the network has arc multipliers that are not 1.0, it might not set
up the excess node and the excess arcs.

In Example 5.11 we illustrate the use of the EXCESS= option to solve generalized
networks that have total supply equal to total demand, but have arcs with varying
multipliers.

In the section “Handling Missing Supply and Demand Simultaneously” on page 600,
we discuss the case where a network has both nodes with missing S supply values
and nodes with missing D demand values. In the next two subsections we analyze
scenarios where a network has nodes with either missing S supply values or missing
D demand values, but not both.

606 � Chapter 5. The NETFLOW Procedure

The EXCESS=SUPPLY Option

If you specify the EXCESS=SUPPLY option, then there are three possible scenarios
to deal with:

Case 1: No Node with Missing D Demand, THRUNET Not Specified (see Figure 5.34)

Drain the excess supply from all supply nodes.

EXCESS

S

+

+

S -

-

-

-

Figure 5.34. Nodes with Missing S Supply, THRUNET Specified

Case 2: Some Nodes with Missing D Demand, THRUNET Not Specified (see Figure 5.35)

Drain the excess supply from nodes that have missing D demand values.
If a node has a missing D demand value, then the amount it demands is
determined by optimization. For a demand node with negative supdem
value, that value negated is equal to the sum of flows on all actual arcs
directed toward that node.

+

+

+

+ -

D

D

-

EXCESS

Figure 5.35. Nodes with Missing D Demand

Case 3: THRUNET Specified (see Figure 5.36)
Drain the excess supply from all demand nodes. If a node has a negative
supdem value, that value negated is the lower bound on the sum of flows on

The EXCESS=DEMAND Option � 607

all actual arcs directed toward that node. If a node has a missing D demand
value, then the amount it demands is determined by optimization.

+

+

+

+ -

D

D

-

EXCESS

Figure 5.36. Nodes with Missing D Demand, THRUNET Specified

The EXCESS=DEMAND Option

If you specify the EXCESS=DEMAND option, then there are three possible scenarios
to deal with:

Case 1: No Node with Missing S Supply, THRUNET Not Specified (see Figure 5.37)

Supply the excess demand to all demand nodes directly.

+

+

EXCESS

+

+ -

D

D

-

Figure 5.37. Nodes with Missing D Demand

Case 2: Some Nodes with Missing S Supply, THRUNET Not Specified (see Figure 5.38)

Supply the excess demand by the nodes that have a missing S supply value.
If a node has a missing S supply value, then the amount it supplies is
determined by optimization. For a supply node with a positive supdem
value, that value is equal to the sum of flows on all actual arcs directed away
from that node.

608 � Chapter 5. The NETFLOW Procedure

+

S

EXCESS

S

+ -

-

-

-

Figure 5.38. Nodes with Missing S Supply

Case 3: THRUNET Specified (see Figure 5.39)
Supply the excess demand by all supply nodes. If a node has a positive
supdem value, that value is the lower bound on the sum of flows on all
actual arcs directed away from that node. If a node has a missing S supply
value, then the amount it supplies is determined by optimization.

+

S

EXCESS

S

+ -

-

-

-

Figure 5.39. Nodes with Missing S Supply, THRUNET Specified

Example 5.1. Shortest Path Problem � 609

Examples: NETFLOW Procedure
The following examples illustrate some of the capabilities of PROC NETFLOW.
These examples, together with the other SAS/OR examples, can be found in the SAS
sample library.

Example 5.1. Shortest Path Problem

Whole pineapples are served in a restaurant in London. To ensure freshness, the
pineapples are purchased in Hawaii and air freighted from Honolulu to Heathrow in
London. The network diagram in Figure 5.40 outlines the different routes that the
pineapples could take.

The cost to freight a pineapple is known for each arc. You can use PROC NETFLOW
to determine what routes should be used to minimize total shipping cost. The shortest
path is the least cost path that all pineapples should use. The SHORTPATH option
indicates this type of network problem.

�

	
�

Honolulu

�

	
�

Los Angeles

�

	
�

San Francisco

�

	
�

Chicago

�

	
�

Atlanta

�

	
�

New York

�

	
�

Boston

�

	
�

Heathrow
London

-

�

J
J

J
J

J
J

J
J

J
Ĵ

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ-

�

105

75

65

45

56 71

48

63 44

57

88

65

76

Figure 5.40. Pineapple Routes: Shortest Path Problem

The SINK= option value HEATHROW LONDON is not a valid SAS variable name
so it must be enclosed in single quotes. The TAILNODE list variable is FFROM.
Because the name of this variable is not –TAIL– or –FROM– , the TAILNODE list
must be specified in the PROC NETFLOW statement. The HEADNODE list must
also be explicitly specified because the variable that belongs to this list does not have
the name –HEAD– or –TO– , but is TTO.

610 � Chapter 5. The NETFLOW Procedure

title ’Shortest Path Problem’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
data aircost1;

input ffrom&$13. tto&$15. _cost_ ;
datalines;

Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57
Boston Heathrow London 88
New York Heathrow London 65
Atlanta Heathrow London 76
;

proc netflow
shortpath
sourcenode=Honolulu
sinknode=’Heathrow London’ /* Quotes for embedded blank */
ARCDATA=aircost1
arcout=spath;
tail ffrom;
head tto;
run;

proc print data=spath;
sum _fcost_;
run;

The length at optimality is written to the SAS log as

NOTE: Number of nodes= 8 .
NOTE: Number of arcs= 13 .
NOTE: Number of iterations performed (neglecting any

constraints)= 5 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Shortest path= 177 .
NOTE: The data set WORK.SPATH has 13 observations and 13

variables.

The output data set ARCOUT=SPATH in Output 5.1.1 shows that the best route for
the pineapples is from Honolulu to Los Angeles to New York to Heathrow London.

Example 5.2. Minimum Cost Flow Problem � 611

Output 5.1.1. ARCOUT=SPATH

Shortest Path Problem
How to get Hawaiian Pineapples to a London Restaurant

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 99999999 0 . .
2 Los Angeles Atlanta 57 99999999 0 . .
3 Chicago Boston 45 99999999 0 . .
4 San Francisco Boston 71 99999999 0 . .
5 Honolulu Chicago 105 99999999 0 1 .
6 Boston Heathrow London 88 99999999 0 . 1
7 New York Heathrow London 65 99999999 0 . 1
8 Atlanta Heathrow London 76 99999999 0 . 1
9 Honolulu Los Angeles 68 99999999 0 1 .

10 Chicago New York 56 99999999 0 . .
11 San Francisco New York 48 99999999 0 . .
12 Los Angeles New York 44 99999999 0 . .
13 Honolulu San Francisco 75 99999999 0 1 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 37 9 3 LOWERBD NONBASIC
2 0 0 24 10 4 LOWERBD NONBASIC
3 0 0 49 4 2 LOWERBD NONBASIC
4 0 0 45 5 3 LOWERBD NONBASIC
5 0 0 . 1 1 KEY_ARC BASIC
6 0 0 12 11 5 LOWERBD NONBASIC
7 1 65 . 12 6 KEY_ARC BASIC
8 0 0 . 13 7 KEY_ARC BASIC
9 1 68 . 3 1 KEY_ARC BASIC

10 0 0 49 6 2 LOWERBD NONBASIC
11 0 0 11 7 3 LOWERBD NONBASIC
12 1 44 . 8 4 KEY_ARC BASIC
13 0 0 . 2 1 KEY_ARC BASIC

=======
177

Example 5.2. Minimum Cost Flow Problem

You can continue to use the pineapple example in Example 5.1 by supposing that the
airlines now stipulate that no more than 350 pineapples per week can be handled in
any single leg of the journey. The restaurant uses 500 pineapples each week. How
many pineapples should take each route between Hawaii and London?

You will probably have more minimum cost flow problems because they are more
general than maximal flow and shortest path problems. A shortest path formulation
is no longer valid because the sink node does not demand one flow unit.

All arcs have the same capacity of 350 pineapples. Because of this, the
DEFCAPACITY= option can be specified in the PROC NETFLOW statement,
rather than having a CAPACITY list variable in ARCDATA=aircost1. You can
have a CAPACITY list variable, but the value of this variable would be 350 in all
observations, so using the DEFCAPACITY= option is more convenient. You would
have to use the CAPACITY list variable if arcs had differing capacities. You can use
both the DEFCAPACITY= option and a CAPACITY list variable.

There is only one supply node and one demand node. These can be named in the
SOURCE= and SINK= options. DEMAND=500 is specified for the restaurant de-
mand. There is no need to specify SUPPLY=500, as this is assumed.

612 � Chapter 5. The NETFLOW Procedure

title ’Minimum Cost Flow Problem’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
proc netflow

defcapacity=350
sourcenode=’Honolulu’
sinknode=’Heathrow London’ /* Quotes for embedded blank */
demand=500

arcdata=aircost1
arcout=arcout1
nodeout=nodeout1;

tail ffrom;
head tto;

set future1;
proc print data=arcout1; sum _fcost_;
proc print data=nodeout1;
run;

The following notes appear on the SAS log:

NOTE: SOURCENODE was assigned supply of the total
network demand= 500 .

NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500 , total demand= 500 .
NOTE: Number of arcs= 13 .
NOTE: Number of iterations performed (neglecting any

constraints)= 6 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93750 .
NOTE: The data set WORK.ARCOUT1 has 13 observations and

13 variables.
NOTE: The data set WORK.NODEOUT1 has 9 observations and

10 variables.

Example 5.2. Minimum Cost Flow Problem � 613

�

	
�

Honolulu

�

	
�

Los Angeles

�

	
�

San Francisco

�

	
�

Chicago

�

	
�

Atlanta

�

	
�

New York

�

	
�

Boston

�

	
�

Heathrow
London

-

�

J
J

J
J

J
J

J
J

J
Ĵ

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ-

�

150

350

150

200

150

350

150

Figure 5.41. Pineapple Routes: Minimum Cost Flow Solution

The routes and numbers of pineapples in each arc can be seen in the output data set
ARCOUT=arcout1 in Output 5.2.1. NODEOUT=NODEOUT1 is shown in Output
5.2.2.
Output 5.2.1. ARCOUT=ARCOUT1

Minimum Cost Flow Problem
How to get Hawaiian Pineapples to a London Restaurant

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 350 0 . .
2 Los Angeles Atlanta 57 350 0 . .
3 Chicago Boston 45 350 0 . .
4 San Francisco Boston 71 350 0 . .
5 Honolulu Chicago 105 350 0 500 .
6 Boston Heathrow London 88 350 0 . 500
7 New York Heathrow London 65 350 0 . 500
8 Atlanta Heathrow London 76 350 0 . 500
9 Honolulu Los Angeles 68 350 0 500 .
10 Chicago New York 56 350 0 . .
11 San Francisco New York 48 350 0 . .
12 Los Angeles New York 44 350 0 . .
13 Honolulu San Francisco 75 350 0 500 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 2 9 3 LOWERBD NONBASIC
2 150 8550 . 10 4 KEY_ARC BASIC
3 0 0 4 4 2 LOWERBD NONBASIC
4 0 0 . 5 3 KEY_ARC BASIC
5 0 0 . 1 1 KEY_ARC BASIC
6 0 0 22 11 5 LOWERBD NONBASIC
7 350 22750 -24 12 6 UPPERBD NONBASIC
8 150 11400 . 13 7 KEY_ARC BASIC
9 350 23800 -11 3 1 UPPERBD NONBASIC
10 0 0 38 6 2 LOWERBD NONBASIC
11 150 7200 . 7 3 KEY_ARC BASIC
12 200 8800 . 8 4 KEY_ARC BASIC
13 150 11250 . 2 1 KEY_ARC BASIC

=======
93750

614 � Chapter 5. The NETFLOW Procedure

Output 5.2.2. NODEOUT=NODEOUT1

Minimum Cost Flow Problem
How to get Hawaiian Pineapples to a London Restaurant

_
S _ _ _

_ U _ N _ _ S A _
N P D N P T C R F _
O D U U R R E C L F

O D E A M E A S I O B
b E M L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 0 0 9 0 1 0 -1 81 -14
2 Atlanta . -136 7 4 8 2 10 150 9
3 Boston . -146 5 3 2 1 5 0 4
4 Chicago . -105 2 1 9 1 1 0 1
5 Heathrow London -500 -212 8 7 5 1 13 150 11
6 Honolulu 500 0 1 9 3 8 -14 0 -1
7 Los Angeles . -79 4 6 7 3 -8 200 3
8 New York . -123 6 3 4 4 7 150 6
9 San Francisco . -75 3 1 6 6 2 150 2

Example 5.3. Using a Warm Start
Suppose that the airlines state that the freight cost per pineapple in flights that leave
Chicago has been reduced by 30. How many pineapples should take each route be-
tween Hawaii and London? This example illustrates how PROC NETFLOW uses a
warm start.

In Example 5.2, the RESET statement of PROC NETFLOW is used to specify
FUTURE1. A NODEOUT= data set is also specified. The warm start information is
saved in the arcout1 and nodeout1 data sets.

In the following DATA step, the costs, reduced costs, and flows in the arcout1
data set are saved in variables called oldcost, oldflow, and oldfc. These variables
form an implicit ID list in the following PROC NETFLOW run and will appear in
ARCOUT=arcout2. Thus, it is easy to compare the previous optimum and the new
optimum.

title ’Minimum Cost Flow Problem - Warm Start’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
data aircost2;

set arcout1;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if ffrom=’Chicago’ then _cost_=_cost_-30;

proc netflow
warm

arcdata=aircost2
nodedata=nodeout1
arcout=arcout2;

tail ffrom;
head tto;

Example 5.4. Production, Inventory, Distribution Problem � 615

proc print data=arcout2;
var ffrom tto _cost_ oldcost _capac_ _lo_

flow oldflow _fcost_ oldfc;
sum _fcost_ oldfc;

run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500 , total demand= 500 .
NOTE: Number of iterations performed (neglecting any

constraints)= 3 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93150 .
NOTE: The data set WORK.ARCOUT2 has 13 observations

and 16 variables.

ARCOUT=arcout2 is shown in Output 5.3.1.

Output 5.3.1. ARCOUT=ARCOUT2

Minimum Cost Flow Problem - Warm Start
How to get Hawaiian Pineapples to a London Restaurant

o _ o _
_ l C _ l F

f c d A F d C o
f o c P _ L f O l

O r t s o A L O l S d
b o t t s C O W o T f
s m o _ t _ _ _ w _ c

1 San Francisco Atlanta 63 63 350 0 0 0 0 0
2 Los Angeles Atlanta 57 57 350 0 0 150 0 8550
3 Chicago Boston 15 45 350 0 150 0 2250 0
4 San Francisco Boston 71 71 350 0 0 0 0 0
5 Honolulu Chicago 105 105 350 0 150 0 15750 0
6 Boston Heathrow London 88 88 350 0 150 0 13200 0
7 New York Heathrow London 65 65 350 0 350 350 22750 22750
8 Atlanta Heathrow London 76 76 350 0 0 150 0 11400
9 Honolulu Los Angeles 68 68 350 0 350 350 23800 23800
10 Chicago New York 26 56 350 0 0 0 0 0
11 San Francisco New York 48 48 350 0 0 150 0 7200
12 Los Angeles New York 44 44 350 0 350 200 15400 8800
13 Honolulu San Francisco 75 75 350 0 0 150 0 11250

===== =====
93150 93750

Example 5.4. Production, Inventory, Distribution Problem

Example 5.4 through Example 5.8 use data from a company that produces two sizes of
televisions in order to illustrate variations in the use the NETFLOW procedure. The
company makes televisions with a diagonal screen measurement of either 19 inches
or 25 inches. These televisions are made between March and May at both of the
company’s two factories. Each factory has a limit on the total number of televisions
of each screen dimension that can be made during those months.

616 � Chapter 5. The NETFLOW Procedure

The televisions are distributed to one of two shops, stored at the factory where they
were made and sold later, or shipped to the other factory. Some sets can be used to
fill backorders from the previous months. Each shop demands a number of each type
of TV for the months of March through May. The following network in Figure 5.42
illustrates the model. Arc costs can be interpreted as production costs, storage costs,
backorder penalty costs, inter-factory transportation costs, and sales profits. The arcs
can have capacities and lower flow bounds.

Production

Inventory and
Backorders

Inter-factory

Distribution

fact2

f2–may

f2–apl

f2–mar

fact1

f1–may

f1–apl

f1–mar

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

shop2

shop1
�

�
�

�
�7

-

S
S

S
S
Sw

���������������1

-
PPPPPPPPPPPPPPPq �

�
�

���

�
�

�
��

l
l

l
l

ll
�

�
��

T
T
T
T
T
T
T
T
T

�
�
�
�
�
�
�
�
�
�
�
�
��

%
%

%
%

%
%%

�
�
�
�
�
�
�
�
�
�
���

��
����

�
�
�
�
�
�
�
�
�
��

hhhhhh

S
S

S
S

S
S

S
S

S
S

S
Sw

�����������S
S

S
S

S
S

S
S

S
S

S
S

Sw

hhhhhhhhhhh
S

S
S

S
S

S
S

S
S

S
S

S
S

S
Sw

H
HHH

HHH
HHH

Q
Q

Q
Q

Q
Q

Qs

Q
Q

Q
Q

Q
QQs��������������

Q
Q

Q
QQs

"
"

"
"

"
"

"
"

"
"

"
"

"
""

6

?

6

?

6

?

6

?

Figure 5.42. TV Problem

There are two similarly structured networks, one for the 19-inch televisions and the
other for the 25-inch screen TVs. The minimum cost production, inventory, and
distribution plan for both TV types can be determined in the same run of PROC
NETFLOW. To ensure that node names are unambiguous, the names of nodes in the
19-inch network have suffix –1, and the node names in the 25-inch network have
suffix –2.

The FUTURE1 option is specified because further processing could be required.
Information concerning an optimal solution is retained so it can be used to
warm start later optimizations. Warm start information is mostly in variables
named –NNUMB– , –PRED– , –TRAV– , –SCESS– , –ARCID– , and –FBQ–
and in observations for nodes named –EXCESS– and –ROOT–, that are in the
NODEOUT=NODE2 output data set. (PROC NETFLOW uses similar devices to
store warm start information in the DUALOUT= data set when the FUTURE2 op-
tion is specified.) Variables –ANUMB– and –TNUMB– and observations for arcs
directed from or toward a node called –EXCESS– are present in ARCOUT=arc1.
(PROC NETFLOW uses similar devices to store warm start information in the
CONOUT= data set when the FUTURE2 option is specified.)

Example 5.4. Production, Inventory, Distribution Problem � 617

The following code shows how to save the problem data in data sets and solve the
model with PROC NETFLOW.

title ’Minimum Cost Flow problem’;
title2 ’Production Planning/Inventory/Distribution’;
data node0;

input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17. ;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .

618 � Chapter 5. The NETFLOW Procedure

f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

proc netflow
nodedata=node0
arcdata=arc0;

set future1
nodeout=node2
arcout=arc1;

proc print data=arc1; sum _fcost_;
proc print data=node2;
run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of iterations performed (neglecting any

constraints)= 74 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1281110.35 .
NOTE: The data set WORK.ARC1 has 68 observations and

18 variables.
NOTE: The data set WORK.NODE2 has 22 observations and

10 variables.

Example 5.4. Production, Inventory, Distribution Problem � 619

The solution is given in the NODEOUT=node2 and ARCOUT=arc1 data sets. In the
ARCOUT= data set, shown in Output 5.4.1 and Output 5.4.2, the variables diagonal,
factory, key–id, and mth–made form an implicit ID list. The diagonal variable
has one of two values, 19 or 25. factory also has one of two values, 1 or 2, to
denote the factory where either production or storage occurs, from where TVs are
either sold to shops or satisfy backorders. PRODUCTION, STORAGE, SALES, and
BACKORDER are values of the key–id variable.

Other values of this variable, F1–TO–2 and F2–TO–1, are used when flow through
arcs represents the transportation of TVs between factories. The mth–made variable
has values MARCH, APRIL, and MAY, the months when TVs that are modeled as
flow through an arc were made (assuming that no televisions are stored for more than
one month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC NETFLOW run to produce reports and
perform analysis on particular parts of the company’s operation. For example, reports
can be generated for production numbers for each factory; optimal sales figures for
each shop; and how many TVs should be stored, used to fill backorders, sent to the
other factory, or any combination of these, for TVs with a particular screen, those
produced in a particular month, or both.

620 � Chapter 5. The NETFLOW Procedure

Output 5.4.1. ARCOUT=ARC1

Minimum Cost Flow problem
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5 0.00
2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45 0.00
3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 10 0.00
4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 140 0.00
5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 600 47160.00
6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0 0.00
7 f1_may_1 f1_apr_1 28.00 20 0 back f1 19 may . . 0 0.00
8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0 0.00
9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 550 95975.00
10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0 0.00
11 f1_may_2 f1_apr_2 41.00 15 0 back f1 25 may . . 15 615.00
12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0 0.00
13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 345 44125.50
14 f1_apr_1 f1_mar_1 28.00 20 0 back f1 19 apl . . 20 560.00
15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40 400.00
16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400 87160.00
17 f1_apr_2 f1_mar_2 32.00 30 0 back f1 25 apl . . 30 960.00
18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25 500.00
19 fact1_1 f1_may_1 95.10 400 50 1000 . 50 4755.00
20 f1_apr_1 f1_may_1 12.00 50 0 . . 50 600.00
21 f2_may_1 f1_may_1 13.00 40 0 . . 0 0.00
22 fact1_2 f1_may_2 133.30 350 40 1000 . 40 5332.00
23 f1_apr_2 f1_may_2 18.00 40 0 . . 0 0.00
24 f2_may_2 f1_may_2 43.00 25 0 . . 0 0.00
25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 30 330.00
26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480 29952.00
27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0 0.00
28 f2_may_1 f2_apr_1 25.00 15 0 back f2 19 may . . 0 0.00
29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0 0.00
30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 680 133756.00
31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0 0.00
32 f2_may_2 f2_apr_2 54.00 15 0 back f2 25 may . . 15 810.00
33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0 0.00
34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290 25520.00
35 f2_apr_1 f2_mar_1 17.00 15 0 back f2 19 apl . . 0 0.00
36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0 0.00
37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 645 117390.00
38 f2_apr_2 f2_mar_2 31.00 15 0 back f2 25 apl . . 0 0.00
39 f1_may_1 f2_may_1 16.00 99999999 0 . . 100 1600.00
40 fact2_1 f2_may_1 133.80 250 35 850 . 35 4683.00
41 f2_apr_1 f2_may_1 20.00 30 0 . . 15 300.00
42 f1_may_2 f2_may_2 26.00 99999999 0 . . 0 0.00
43 fact2_2 f2_may_2 201.40 550 35 1500 . 35 7049.00
44 f2_apr_2 f2_may_2 38.00 50 0 . . 0 0.00
45 f1_mar_1 shop1_1 -327.65 250 0 . 900 155 -50785.75
46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250 -75000.00
47 f1_may_1 shop1_1 -285.00 250 0 . 900 0 0.00
48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250 -74350.00
49 f2_apr_1 shop1_1 -290.00 250 0 . 900 245 -71050.00
50 f2_may_1 shop1_1 -292.00 250 0 . 900 0 0.00
51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0 0.00
52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0 0.00
53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 25 -11875.50
54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500 -283915.00
55 f2_apr_2 shop1_2 -542.19 500 0 . 900 375 -203321.25
56 f2_may_2 shop1_2 -461.56 500 0 . 900 0 0.00
57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250 -90685.00
58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250 -75000.00
59 f1_may_1 shop2_1 -245.00 250 0 . 900 0 0.00
60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0 0.00
61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250 -78000.00
62 f2_may_1 shop2_1 -299.00 250 0 . 900 150 -44850.00
63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455 -283869.95
64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 535 -294078.80
65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0 0.00
66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 120 -65139.60
67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 320 -178940.80
68 f2_may_2 shop2_2 -489.06 500 0 . 1450 20 -9781.20

===========
-1281110.35

Example 5.4. Production, Inventory, Distribution Problem � 621

Output 5.4.2. ARCOUT=ARC1 (continued)

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 65 1 KEY_ARC BASIC . .
2 . 66 10 KEY_ARC BASIC . .
3 . 67 11 KEY_ARC BASIC . .
4 . 68 20 KEY_ARC BASIC . .
5 -0.650 4 1 UPPERBD NONBASIC 19 1 production April
6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March
7 43.000 6 4 LOWERBD NONBASIC 19 1 backorder May
8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April
9 -14.350 36 11 UPPERBD NONBASIC 25 1 production April
10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March
11 -16.660 38 14 UPPERBD NONBASIC 25 1 backorder May
12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April
13 . 1 1 KEY_ARC BASIC 19 1 production March
14 -20.650 2 3 UPPERBD NONBASIC 19 1 backorder April
15 -29.900 3 5 UPPERBD NONBASIC 19 . f2_to_1 March
16 -45.160 33 11 UPPERBD NONBASIC 25 1 production March
17 -42.210 34 13 UPPERBD NONBASIC 25 1 backorder April
18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March
19 0.850 8 1 LOWERBD NONBASIC 19 1 production May
20 -3.000 9 3 UPPERBD NONBASIC 19 1 storage April
21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May
22 2.110 40 11 LOWERBD NONBASIC 25 1 production May
23 75.660 41 13 LOWERBD NONBASIC 25 1 storage April
24 40.040 42 17 LOWERBD NONBASIC 25 . f2_to_1 May
25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April
26 -27.850 15 10 UPPERBD NONBASIC 19 2 production April
27 15.750 16 5 LOWERBD NONBASIC 19 2 storage March
28 45.000 17 7 LOWERBD NONBASIC 19 2 backorder May
29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April
30 -1.660 47 20 UPPERBD NONBASIC 25 2 production April
31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March
32 -16.130 49 17 UPPERBD NONBASIC 25 2 backorder May
33 50.900 11 2 LOWERBD NONBASIC 19 . f1_to_2 March
34 . 12 10 KEY_ARC BASIC 19 2 production March
35 19.250 13 6 LOWERBD NONBASIC 19 2 backorder April
36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March
37 . 44 20 KEY_ARC BASIC 25 2 production March
38 47.360 45 16 LOWERBD NONBASIC 25 2 backorder April
39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May
40 23.550 19 10 LOWERBD NONBASIC 19 2 production May
41 . 20 6 KEY_ARC BASIC 19 2 storage April
42 28.960 50 14 LOWERBD NONBASIC 25 . f1_to_2 May
43 73.170 51 20 LOWERBD NONBASIC 25 2 production May
44 108.130 52 16 LOWERBD NONBASIC 25 2 storage April
45 . 21 2 KEY_ARC BASIC 19 1 sales March
46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April
47 9.000 23 4 LOWERBD NONBASIC 19 1 sales May
48 -9.650 24 5 UPPERBD NONBASIC 19 2 sales March
49 . 25 6 KEY_ARC BASIC 19 2 sales April
50 18.000 26 7 LOWERBD NONBASIC 19 2 sales May
51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March
52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April
53 . 55 14 KEY_ARC BASIC 25 1 sales May
54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March
55 . 57 16 KEY_ARC BASIC 25 2 sales April
56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May
57 -46.090 27 2 UPPERBD NONBASIC 19 1 sales March
58 -32.000 28 3 UPPERBD NONBASIC 19 1 sales April
59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May
60 4.050 30 5 LOWERBD NONBASIC 19 2 sales March
61 -33.000 31 6 UPPERBD NONBASIC 19 2 sales April
62 . 32 7 KEY_ARC BASIC 19 2 sales May
63 . 59 12 KEY_ARC BASIC 25 1 sales March
64 . 60 13 KEY_ARC BASIC 25 1 sales April
65 32.020 61 14 LOWERBD NONBASIC 25 1 sales May
66 . 62 15 KEY_ARC BASIC 25 2 sales March
67 . 63 16 KEY_ARC BASIC 25 2 sales April
68 . 64 17 KEY_ARC BASIC 25 2 sales May

622 � Chapter 5. The NETFLOW Procedure

Output 5.4.3. NODEOUT=NODE2

Minimum Cost Flow problem
Production Planning/Inventory/Distribution

_
s _ _ _

_ u _ N _ _ S A _
n p D N P T C R F _
o d U U R R E C L F

O d e A M E A S I O B
b e m L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69
2 _EXCESS_ -200 -100000198.75 21 1 11 13 65 5 65
3 f1_apr_1 . -100000278.00 3 6 7 1 -14 30 4
4 f1_apr_2 . -100000387.60 13 19 17 1 -60 535 36
5 f1_mar_1 . -100000326.65 2 8 1 15 -21 155 1
6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33
7 f1_may_1 . -100000293.00 4 7 2 1 -18 100 8
8 f1_may_2 . -100000329.94 14 18 12 1 -55 25 40
9 f2_apr_1 . -100000289.00 6 8 3 5 -25 245 14
10 f2_apr_2 . -100000397.11 16 19 18 3 -63 320 46
11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11
12 f2_mar_2 . -100000380.75 15 20 19 8 44 610 43
13 f2_may_1 . -100000309.00 7 6 9 3 20 15 18
14 f2_may_2 . -100000326.98 17 19 10 1 -64 20 50
15 fact1_1 1000 -100000198.75 1 2 21 14 -1 295 -1
16 fact1_2 1000 -100000198.75 11 21 20 1 -67 10 -33
17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33
18 fact2_2 1500 -100000198.75 20 21 15 9 -68 140 -65
19 shop1_1 -900 -99999999.00 8 22 6 21 0 0 21
20 shop1_2 -900 -99999854.92 18 16 14 2 57 375 53
21 shop2_1 -900 -100000010.00 9 7 4 1 32 150 27
22 shop2_2 -1450 -99999837.92 19 15 16 7 62 120 59

Example 5.5. Using an Unconstrained Solution Warm Start

This example examines the effect of changing some of the arc costs. The backorder
penalty costs are increased by twenty percent. The sales profit of 25-inch TVs sent to
the shops in May is increased by thirty units. The backorder penalty costs of 25-inch
TVs manufactured in May for April consumption is decreased by thirty units. The
production cost of 19- and 25-inch TVs made in May are decreased by five units and
twenty units, respectively. How does the optimal solution of the network after these
arc cost alterations compare with the optimum of the original network? If you want
to use the warm start facilities of PROC NETFLOW to solve this undefined problem,
specify the WARM option. Notice that the FUTURE1 option was specified in the last
PROC NETFLOW run.

The following SAS statements produce the new NODEOUT= and ARCOUT= data
sets.

Example 5.5. Using an Unconstrained Solution Warm Start � 623

title ’Minimum Cost Flow problem- Unconstrained Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data arc2;

set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id=’backorder’

then _cost_=_cost_*1.2;
else if _tail_=’f2_may_2’ then _cost_=_cost_-30;

if key_id=’production’ & mth_made=’May’ then
if diagonal=19 then _cost_=_cost_-5;

else _cost_=_cost_-20;

proc netflow
warm future1
nodedata=node2
arcdata=arc2
nodeout=node3
arcout=arc3;

proc print data=arc3 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;
/* to get this variable order */

sum oldfc _fcost_;
proc print data=node3;

run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total

demand= 4350 .
NOTE: Number of iterations performed (neglecting any

constraints)= 8 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: The data set WORK.ARC3 has 68 observations and

21 variables.
NOTE: The data set WORK.NODE3 has 22 observations and

10 variables.

The solution is displayed in Output 5.5.1 and Output 5.5.2. The associated
NODEOUT data set is in Output 5.5.3.

624 � Chapter 5. The NETFLOW Procedure

Output 5.5.1. ARCOUT=ARC3

Minimum Cost Flow problem- Unconstrained Warm Start
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 99999999 0 1000 200 0.00 5 0.00
2 fact2_1 _EXCESS_ 99999999 0 850 200 0.00 45 0.00
3 fact1_2 _EXCESS_ 99999999 0 1000 200 0.00 0 0.00
4 fact2_2 _EXCESS_ 99999999 0 1500 200 0.00 150 0.00
5 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 540 42444.00
6 f1_mar_1 f1_apr_1 50 0 . . 15.00 0 0.00
7 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0 0.00
8 f2_apr_1 f1_apr_1 40 0 . . 11.00 0 0.00
9 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250 43625.00
10 f1_mar_2 f1_apr_2 40 0 . . 20.00 0 0.00
11 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 15 738.00
12 f2_apr_2 f1_apr_2 25 0 . . 21.00 0 0.00
13 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 340 43486.00
14 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20 672.00
15 f2_mar_1 f1_mar_1 40 0 . . 10.00 40 400.00
16 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400 87160.00
17 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30 1152.00
18 f2_mar_2 f1_mar_2 25 0 . . 20.00 25 500.00
19 fact1_1 f1_may_1 400 50 1000 . 90.10 115 10361.50
20 f1_apr_1 f1_may_1 50 0 . . 12.00 0 0.00
21 f2_may_1 f1_may_1 40 0 . . 13.00 0 0.00
22 fact1_2 f1_may_2 350 40 1000 . 113.30 350 39655.00
23 f1_apr_2 f1_may_2 40 0 . . 18.00 0 0.00
24 f2_may_2 f1_may_2 25 0 . . 13.00 0 0.00
25 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 20 220.00
26 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480 29952.00
27 f2_mar_1 f2_apr_1 30 0 . . 18.00 0 0.00
28 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0 0.00
29 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0 0.00
30 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 680 133756.00
31 f2_mar_2 f2_apr_2 50 0 . . 28.00 0 0.00
32 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0 0.00
33 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0 0.00
34 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290 25520.00
35 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0 0.00
36 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0 0.00
37 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 635 115570.00
38 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0 0.00
39 f1_may_1 f2_may_1 99999999 0 . . 16.00 115 1840.00
40 fact2_1 f2_may_1 250 35 850 . 128.80 35 4508.00
41 f2_apr_1 f2_may_1 30 0 . . 20.00 0 0.00
42 f1_may_2 f2_may_2 99999999 0 . . 26.00 335 8710.00
43 fact2_2 f2_may_2 550 35 1500 . 181.40 35 6349.00
44 f2_apr_2 f2_may_2 50 0 . . 38.00 0 0.00
45 f1_mar_1 shop1_1 250 0 . 900 -327.65 150 -49147.50
46 f1_apr_1 shop1_1 250 0 . 900 -300.00 250 -75000.00
47 f1_may_1 shop1_1 250 0 . 900 -285.00 0 0.00
48 f2_mar_1 shop1_1 250 0 . 900 -297.40 250 -74350.00
49 f2_apr_1 shop1_1 250 0 . 900 -290.00 250 -72500.00
50 f2_may_1 shop1_1 250 0 . 900 -292.00 0 0.00
51 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0 0.00
52 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0 0.00
53 f1_may_2 shop1_2 99999999 0 . 900 -475.02 0 0.00
54 f2_mar_2 shop1_2 500 0 . 900 -567.83 500 -283915.00
55 f2_apr_2 shop1_2 500 0 . 900 -542.19 400 -216876.00
56 f2_may_2 shop1_2 500 0 . 900 -491.56 0 0.00
57 f1_mar_1 shop2_1 250 0 . 900 -362.74 250 -90685.00
58 f1_apr_1 shop2_1 250 0 . 900 -300.00 250 -75000.00
59 f1_may_1 shop2_1 250 0 . 900 -245.00 0 0.00
60 f2_mar_1 shop2_1 250 0 . 900 -272.70 0 0.00
61 f2_apr_1 shop2_1 250 0 . 900 -312.00 250 -78000.00
62 f2_may_1 shop2_1 250 0 . 900 -299.00 150 -44850.00
63 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455 -283869.95
64 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 235 -129174.80
65 f1_may_2 shop2_2 99999999 0 . 1450 -460.00 0 0.00
66 f2_mar_2 shop2_2 500 0 . 1450 -542.83 110 -59711.30
67 f2_apr_2 shop2_2 500 0 . 1450 -559.19 280 -156573.20
68 f2_may_2 shop2_2 500 0 . 1450 -519.06 370 -192052.20

===========
-1285086.45

Example 5.5. Using an Unconstrained Solution Warm Start � 625

Output 5.5.2. ARCOUT=ARC3 (continued)

Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

1 0.00 5 0.00 . . 65 1
2 0.00 45 0.00 . . 66 10
3 0.00 10 0.00 . . 67 11
4 0.00 140 0.00 . . 68 20
5 78.60 600 47160.00 19 1 production April 4 1
6 15.00 0 0.00 19 1 storage March 5 2
7 28.00 0 0.00 19 1 backorder May 6 4
8 11.00 0 0.00 19 . f2_to_1 April 7 6
9 174.50 550 95975.00 25 1 production April 36 11

10 20.00 0 0.00 25 1 storage March 37 12
11 41.00 15 615.00 25 1 backorder May 38 14
12 21.00 0 0.00 25 . f2_to_1 April 39 16
13 127.90 345 44125.50 19 1 production March 1 1
14 28.00 20 560.00 19 1 backorder April 2 3
15 10.00 40 400.00 19 . f2_to_1 March 3 5
16 217.90 400 87160.00 25 1 production March 33 11
17 32.00 30 960.00 25 1 backorder April 34 13
18 20.00 25 500.00 25 . f2_to_1 March 35 15
19 95.10 50 4755.00 19 1 production May 8 1
20 12.00 50 600.00 19 1 storage April 9 3
21 13.00 0 0.00 19 . f2_to_1 May 10 7
22 133.30 40 5332.00 25 1 production May 40 11
23 18.00 0 0.00 25 1 storage April 41 13
24 43.00 0 0.00 25 . f2_to_1 May 42 17
25 11.00 30 330.00 19 . f1_to_2 April 14 3
26 62.40 480 29952.00 19 2 production April 15 10
27 18.00 0 0.00 19 2 storage March 16 5
28 25.00 0 0.00 19 2 backorder May 17 7
29 23.00 0 0.00 25 . f1_to_2 April 46 13
30 196.70 680 133756.00 25 2 production April 47 20
31 28.00 0 0.00 25 2 storage March 48 15
32 54.00 15 810.00 25 2 backorder May 49 17
33 11.00 0 0.00 19 . f1_to_2 March 11 2
34 88.00 290 25520.00 19 2 production March 12 10
35 17.00 0 0.00 19 2 backorder April 13 6
36 23.00 0 0.00 25 . f1_to_2 March 43 12
37 182.00 645 117390.00 25 2 production March 44 20
38 31.00 0 0.00 25 2 backorder April 45 16
39 16.00 100 1600.00 19 . f1_to_2 May 18 4
40 133.80 35 4683.00 19 2 production May 19 10
41 20.00 15 300.00 19 2 storage April 20 6
42 26.00 0 0.00 25 . f1_to_2 May 50 14
43 201.40 35 7049.00 25 2 production May 51 20
44 38.00 0 0.00 25 2 storage April 52 16
45 -327.65 155 -50785.75 19 1 sales March 21 2
46 -300.00 250 -75000.00 19 1 sales April 22 3
47 -285.00 0 0.00 19 1 sales May 23 4
48 -297.40 250 -74350.00 19 2 sales March 24 5
49 -290.00 245 -71050.00 19 2 sales April 25 6
50 -292.00 0 0.00 19 2 sales May 26 7
51 -559.76 0 0.00 25 1 sales March 53 12
52 -524.28 0 0.00 25 1 sales April 54 13
53 -475.02 25 -11875.50 25 1 sales May 55 14
54 -567.83 500 -283915.00 25 2 sales March 56 15
55 -542.19 375 -203321.25 25 2 sales April 57 16
56 -461.56 0 0.00 25 2 sales May 58 17
57 -362.74 250 -90685.00 19 1 sales March 27 2
58 -300.00 250 -75000.00 19 1 sales April 28 3
59 -245.00 0 0.00 19 1 sales May 29 4
60 -272.70 0 0.00 19 2 sales March 30 5
61 -312.00 250 -78000.00 19 2 sales April 31 6
62 -299.00 150 -44850.00 19 2 sales May 32 7
63 -623.89 455 -283869.95 25 1 sales March 59 12
64 -549.68 535 -294078.80 25 1 sales April 60 13
65 -460.00 0 0.00 25 1 sales May 61 14
66 -542.83 120 -65139.60 25 2 sales March 62 15
67 -559.19 320 -178940.80 25 2 sales April 63 16
68 -489.06 20 -9781.20 25 2 sales May 64 17

===========
-1281110.35

626 � Chapter 5. The NETFLOW Procedure

Output 5.5.3. NODEOUT=NODE3

Minimum Cost Flow problem- Unconstrained Warm Start
Production Planning/Inventory/Distribution

_
s _ _ _

_ u _ N _ _ S A _
n p D N P T C R F _
o d U U R R E C L F

O d e A M E A S I O B
b e m L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69
2 _EXCESS_ -200 -100000198.75 21 1 20 13 65 5 65
3 f1_apr_1 . -100000277.35 3 1 6 2 4 490 4
4 f1_apr_2 . -100000387.60 13 19 11 2 -60 235 36
5 f1_mar_1 . -100000326.65 2 8 1 20 -21 150 1
6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33
7 f1_may_1 . -100000288.85 4 1 7 3 8 65 8
8 f1_may_2 . -100000330.98 14 17 10 1 -50 335 40
9 f2_apr_1 . -100000288.35 6 3 4 1 14 20 14
10 f2_apr_2 . -100000397.11 16 19 18 2 -63 280 46
11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11
12 f2_mar_2 . -100000380.75 15 20 19 9 44 600 43
13 f2_may_1 . -100000304.85 7 4 9 2 18 115 18
14 f2_may_2 . -100000356.98 17 19 14 2 -64 370 50
15 fact1_1 1000 -100000198.75 1 2 3 19 -1 290 -1
16 fact1_2 1000 -100000213.10 11 13 17 1 -36 200 -33
17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33
18 fact2_2 1500 -100000198.75 20 21 15 10 -68 150 -65
19 shop1_1 -900 -99999999.00 8 22 2 21 0 0 21
20 shop1_2 -900 -99999854.92 18 16 12 1 57 400 53
21 shop2_1 -900 -100000005.85 9 7 21 1 32 150 27
22 shop2_2 -1450 -99999837.92 19 15 16 8 62 110 59

Example 5.6. Adding Side Constraints, Using a Warm Start

The manufacturer of Gizmo chips, which are parts needed to make televisions, can
supply only 2600 chips to factory 1 and 3750 chips to factory 2 in time for production
in each of the months of March and April. However, Gizmo chips will not be in short
supply in May. Three chips are required to make each 19-inch TV while the 25-
inch TVs require four chips each. To limit the production of televisions produced at
factory 1 in March so that the TVs have the correct number of chips, a side constraint
called FACT1 MAR GIZMO is used. The form of this constraint is

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

“prod f1 19 mar” is the name of the arc directed from the node fact1–1 toward node
f1–mar–1 and, in the previous constraint, designates the flow assigned to this arc. The
ARCDATA= and ARCOUT= data sets have arc names in a variable called –name– .

The other side constraints (shown below) are called FACT2 MAR GIZMO , FACT1
APL GIZMO, and FACT2 APL GIZMO.

Example 5.6. Adding Side Constraints, Using a Warm Start � 627

3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750

To maintain customer goodwill, the total number of backorders is not to exceed 50
sets. The side constraint TOTAL BACKORDER that models this restriction is:

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

The sparse CONDATA= data set format is used. All side constraints are less than
or equal type. Because this is the default type value for the DEFCONTYPE= op-
tion, type information is not necessary in the following CONDATA=CON3. Also,
DEFCONTYPE= <= does not have to be specified in the PROC NETFLOW state-
ment that follows. Notice that the –column– variable value CHIP/BO LIMIT indi-
cates that an observation of the CON3 data set contains rhs information. Therefore,
specify RHSOBS=‘CHIP/BO LIMIT’.

title ’Adding Side Constraints and Using a Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data con3;

input _column_ &$14. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA=
data sets in the following PROC NETFLOW run. The set used depends on which
cost information the arcs are to have and whether a warm start is to be used.

628 � Chapter 5. The NETFLOW Procedure

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node2
ARCDATA=arc2 NODEDATA=node2
ARCDATA=arc3 NODEDATA=node3

arc0, node0, arc1, and node2 were created in Example 5.4. The first two data
sets are the original input data sets. arc1 and node2 were the ARCOUT= and
NODEOUT= data sets of a PROC NETFLOW run with FUTURE1 specified. Now, if
you use arc1 and node2 as the ARCDATA= data set and NODEDATA= data set in a
PROC NETFLOW run, you can specify WARM, as these data sets contain additional
information describing a warm start.

In Example 5.5, arc2 was created by modifying arc1 to reflect different arc costs.
arc2 and node2 can also be used as the ARCDATA= and NODEDATA= data sets in
a PROC NETFLOW run. Again, specify WARM, as these data sets contain additional
information describing a warm start. This start, however, contains the optimal basis
using the original costs.

If you are going to continue optimization using the changed arc costs, it is probably
best to use arc3 and node3 as the ARCDATA= and NODEDATA= data sets. These
data sets, created in Example 5.6 by PROC NETFLOW when the FUTURE1 option
was specified, contain an optimal basis that can be used as a warm start.

PROC NETFLOW is used to find the changed cost network solution that obeys the
chip limit and backorder side constraints. The FUTURE2 option is specified in case
further processing is required. An explicit ID list has also been specified so that the
variables oldcost, oldfc and oldflow do not appear in the subsequent output data sets.

proc netflow
nodedata=node3 arcdata=arc3 warm
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
future2 dualout=dual4 conout=con4;

id diagonal factory key_id mth_made;
proc print data=con4;

sum _fcost_;
proc print data=dual4;

run;

The following messages appear on the SAS log:

Example 5.6. Adding Side Constraints, Using a Warm Start � 629

NOTE: The following 3 variables in ARCDATA do not belong to
any SAS variable list. These will be ignored.
oldcost
oldfc
oldflow

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of iterations performed (neglecting any

constraints)= 1 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 16 .
NOTE: Number of iterations, optimizing with constraints= 10 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1282708.625 .
NOTE: The data set WORK.CON4 has 68 observations and 18

variables.
NOTE: The data set WORK.DUAL4 has 27 observations and 14

variables.

630 � Chapter 5. The NETFLOW Procedure

Output 5.6.1. CONOUT=CON4

Adding Side Constraints and Using a Warm Start
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5.000 0.00
2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45.000 0.00
3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 0.000 0.00
4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 150.000 0.00
5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 533.333 41920.00
6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000 0.00
7 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000 0.00
8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000 0.00
9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000 43625.00
10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000 0.00
11 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000 0.00
12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0.000 0.00
13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 333.333 42633.33
14 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000 672.00
15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000 400.00
16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000 87160.00
17 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000 1152.00
18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000 500.00
19 fact1_1 f1_may_1 90.10 400 50 1000 . 128.333 11562.83
20 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000 0.00
21 f2_may_1 f1_may_1 13.00 40 0 . . 0.000 0.00
22 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000 39655.00
23 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000 0.00
24 f2_may_2 f1_may_2 13.00 25 0 . . 0.000 0.00
25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 13.333 146.67
26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000 29952.00
27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000 0.00
28 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000 0.00
29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000 0.00
30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500 113594.25
31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000 0.00
32 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000 0.00
33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000 0.00
34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000 25520.00
35 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000 0.00
36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000 0.00
37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000 118300.00
38 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000 0.00
39 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000 1840.00
40 fact2_1 f2_may_1 128.80 250 35 850 . 35.000 4508.00
41 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000 0.00
42 f1_may_2 f2_may_2 26.00 99999999 0 . . 350.000 9100.00
43 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500 22221.50
44 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000 0.00
45 f1_mar_1 shop1_1 -327.65 250 0 . 900 143.333 -46963.17
46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000 -75000.00
47 f1_may_1 shop1_1 -285.00 250 0 . 900 13.333 -3800.00
48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000 -74350.00
49 f2_apr_1 shop1_1 -290.00 250 0 . 900 243.333 -70566.67
50 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000 0.00
51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000 0.00
52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000 0.00
53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 0.000 0.00
54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000 -283915.00
55 f2_apr_2 shop1_2 -542.19 500 0 . 900 400.000 -216876.00
56 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000 0.00
57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000 -90685.00
58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000 -75000.00
59 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000 0.00
60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000 0.00
61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000 -78000.00
62 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000 -44850.00
63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000 -283869.95
64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 220.000 -120929.60
65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0.000 0.00
66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000 -67853.75
67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 177.500 -99256.23
68 f2_may_2 shop2_2 -519.06 500 0 . 1450 472.500 -245255.85

===========
-1282708.63

Example 5.6. Adding Side Constraints, Using a Warm Start � 631

Output 5.6.2. CONOUT=CON4 (continued)

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 65 1 KEY_ARC BASIC . .
2 . 66 10 KEY_ARC BASIC . .
3 30.187 67 11 LOWERBD NONBASIC . .
4 . 68 20 KEY_ARC BASIC . .
5 . 4 1 KEY_ARC BASIC 19 1 production April
6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March
7 54.650 6 4 LOWERBD NONBASIC 19 1 backorder May
8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April
9 . 36 11 KEY_ARC BASIC 25 1 production April
10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March
11 7.630 38 14 LOWERBD NONBASIC 25 1 backorder May
12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April
13 . 1 1 KEY_ARC BASIC 19 1 production March
14 . 2 3 NONKEY ARC BASIC 19 1 backorder April
15 -34.750 3 5 UPPERBD NONBASIC 19 . f2_to_1 March
16 -31.677 33 11 UPPERBD NONBASIC 25 1 production March
17 -20.760 34 13 UPPERBD NONBASIC 25 1 backorder April
18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March
19 . 8 1 KEY_ARC BASIC 19 1 production May
20 6.000 9 3 LOWERBD NONBASIC 19 1 storage April
21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May
22 -11.913 40 11 UPPERBD NONBASIC 25 1 production May
23 74.620 41 13 LOWERBD NONBASIC 25 1 storage April
24 39.000 42 17 LOWERBD NONBASIC 25 . f2_to_1 May
25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April
26 -14.077 15 10 UPPERBD NONBASIC 19 2 production April
27 10.900 16 5 LOWERBD NONBASIC 19 2 storage March
28 56.050 17 7 LOWERBD NONBASIC 19 2 backorder May
29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April
30 . 47 20 KEY_ARC BASIC 25 2 production April
31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March
32 39.720 49 17 LOWERBD NONBASIC 25 2 backorder May
33 55.750 11 2 LOWERBD NONBASIC 19 . f1_to_2 March
34 . 12 10 KEY_ARC BASIC 19 2 production March
35 42.550 13 6 LOWERBD NONBASIC 19 2 backorder April
36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March
37 -23.170 44 20 UPPERBD NONBASIC 25 2 production March
38 68.610 45 16 LOWERBD NONBASIC 25 2 backorder April
39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May
40 22.700 19 10 LOWERBD NONBASIC 19 2 production May
41 9.000 20 6 LOWERBD NONBASIC 19 2 storage April
42 . 50 14 KEY_ARC BASIC 25 . f1_to_2 May
43 . 51 20 NONKEY ARC BASIC 25 2 production May
44 78.130 52 16 LOWERBD NONBASIC 25 2 storage April
45 . 21 2 KEY_ARC BASIC 19 1 sales March
46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April
47 . 23 4 NONKEY ARC BASIC 19 1 sales May
48 -14.500 24 5 UPPERBD NONBASIC 19 2 sales March
49 . 25 6 NONKEY ARC BASIC 19 2 sales April
50 9.000 26 7 LOWERBD NONBASIC 19 2 sales May
51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March
52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April
53 1.040 55 14 LOWERBD NONBASIC 25 1 sales May
54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March
55 . 57 16 KEY_ARC BASIC 25 2 sales April
56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May
57 -37.090 27 2 UPPERBD NONBASIC 19 1 sales March
58 -23.000 28 3 UPPERBD NONBASIC 19 1 sales April
59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May
60 8.200 30 5 LOWERBD NONBASIC 19 2 sales March
61 -24.000 31 6 UPPERBD NONBASIC 19 2 sales April
62 . 32 7 KEY_ARC BASIC 19 2 sales May
63 . 59 12 KEY_ARC BASIC 25 1 sales March
64 . 60 13 KEY_ARC BASIC 25 1 sales April
65 33.060 61 14 LOWERBD NONBASIC 25 1 sales May
66 . 62 15 KEY_ARC BASIC 25 2 sales March
67 . 63 16 KEY_ARC BASIC 25 2 sales April
68 . 64 17 KEY_ARC BASIC 25 2 sales May

632 � Chapter 5. The NETFLOW Procedure

Output 5.6.3. DUALOUT=DUAL4

Adding Side Constraints and Using a Warm Start
Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 _ROOT_ 238 0.00 22 0 8 5
2 _EXCESS_ -200 -100000193.90 21 1 20 13
3 f1_apr_1 . -100000278.00 3 1 6 2
4 f1_apr_2 . -100000405.92 13 19 11 2
5 f1_mar_1 . -100000326.65 2 8 1 20
6 f1_mar_2 . -100000480.13 12 19 13 1
7 f1_may_1 . -100000284.00 4 1 7 3
8 f1_may_2 . -100000349.30 14 17 15 1
9 f2_apr_1 . -100000289.00 6 3 4 1

10 f2_apr_2 . -100000415.43 16 20 18 9
11 f2_mar_1 . -100000281.90 5 10 3 1
12 f2_mar_2 . -100000399.07 15 19 10 1
13 f2_may_1 . -100000300.00 7 4 9 2
14 f2_may_2 . -100000375.30 17 19 14 2
15 fact1_1 1000 -100000193.90 1 2 21 19
16 fact1_2 1000 -100000224.09 11 13 17 1
17 fact2_1 850 -100000193.90 10 21 5 2
18 fact2_2 1500 -100000193.90 20 21 16 10
19 shop1_1 -900 -99999999.00 8 22 2 21
20 shop1_2 -900 -99999873.24 18 16 19 1
21 shop2_1 -900 -100000001.00 9 7 22 1
22 shop2_2 -1450 -99999856.24 19 16 12 7
23 . -1.83 2 8 . .
24 . -1.62 0 8 . .
25 . -6.21 3 17 . .
26 . 0.00 1 1 . 1
27 . -15.05 4 2 . .

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 3 166.000 -69 0 75
2 65 5.000 65 . .
3 4 483.333 4 . .
4 -60 220.000 36 . .
5 -21 143.333 1 . .
6 -59 455.000 33 . .
7 8 78.333 8 . .
8 -50 350.000 40 . .
9 14 13.333 14 . .

10 47 542.500 46 . .
11 12 255.000 11 . .
12 -62 125.000 43 . .
13 18 115.000 18 . .
14 -64 472.500 50 . .
15 -1 283.333 -1 . .
16 -36 200.000 -33 . .
17 -66 45.000 -33 . .
18 -68 150.000 -65 . .
19 0 0.000 21 . .
20 57 400.000 53 . .
21 32 150.000 27 . .
22 63 177.500 59 . .
23 25 243.333 . 2600 2600 LE FACT1 APL GIZMO
24 23 13.333 . 2600 2600 LE FACT1 MAR GIZMO
25 51 87.500 . 3750 3750 LE FACT2 APL GIZMO
26 . 280.000 . 3470 3750 LE FACT2 MAR GIZMO
27 2 20.000 . 50 50 LE TOTAL BACKORDER

Example 5.7. Using a Constrained Solution Warm Start � 633

Example 5.7. Using a Constrained Solution Warm Start

Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either
shop with an increased profit of 40 dollars each. What is the new optimal solu-
tion? Because only arc costs have been changed, information about the present so-
lution in DUALOUT=dual4 and CONOUT=con4 can be used as a warm start in the
following PROC NETFLOW run. It is still necessary to specify CONDATA=con3
SPARSECONDATA RHSOBS=‘CHIP/BO LIMIT’, since the CONDATA= data set
is always read.

title ’Using a Constrained Solution Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data new_con4;

set con4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_=’f1_may_2’

& (_head_=’shop1_2’ | _head_=’shop2_2’)
then _cost_=_cost_-40;

run;

proc netflow
warm
arcdata=new_con4
dualin=dual4
condata=con3
sparsecondata
rhsobs=’CHIP/BO LIMIT’
dualout=dual5
conout=con5;
run;

proc print data=con5 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;

/* to get this variable order */
sum oldfc _fcost_;

run;

proc print data=dual5;
run;

The following messages appear on the SAS log:

NOTE: The following 1 variables in NODEDATA do not belong to
any SAS variable list. These will be ignored.
VALUE

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .

634 � Chapter 5. The NETFLOW Procedure

NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 16 .
NOTE: Number of iterations, optimizing with constraints= 7 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295661.8 .
NOTE: The data set WORK.CON5 has 64 observations and 21

variables.
NOTE: The data set WORK.DUAL5 has 25 observations and 14

variables.

Example 5.7. Using a Constrained Solution Warm Start � 635

Output 5.7.1. CONOUT=CON5

Using a Constrained Solution Warm Start
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 99999999 0 1000 200 0.00 5.000 0.00
2 fact2_1 _EXCESS_ 99999999 0 850 200 0.00 45.000 0.00
3 fact1_2 _EXCESS_ 99999999 0 1000 200 0.00 0.000 0.00
4 fact2_2 _EXCESS_ 99999999 0 1500 200 0.00 150.000 0.00
5 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 533.333 41920.00
6 f1_mar_1 f1_apr_1 50 0 . . 15.00 0.000 0.00
7 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0.000 0.00
8 f2_apr_1 f1_apr_1 40 0 . . 11.00 0.000 0.00
9 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250.000 43625.00
10 f1_mar_2 f1_apr_2 40 0 . . 20.00 0.000 0.00
11 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 0.000 0.00
12 f2_apr_2 f1_apr_2 25 0 . . 21.00 0.000 0.00
13 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 333.333 42633.33
14 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20.000 672.00
15 f2_mar_1 f1_mar_1 40 0 . . 10.00 40.000 400.00
16 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400.000 87160.00
17 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30.000 1152.00
18 f2_mar_2 f1_mar_2 25 0 . . 20.00 25.000 500.00
19 fact1_1 f1_may_1 400 50 1000 . 90.10 128.333 11562.83
20 f1_apr_1 f1_may_1 50 0 . . 12.00 0.000 0.00
21 f2_may_1 f1_may_1 40 0 . . 13.00 0.000 0.00
22 fact1_2 f1_may_2 350 40 1000 . 113.30 350.000 39655.00
23 f1_apr_2 f1_may_2 40 0 . . 18.00 0.000 0.00
24 f2_may_2 f1_may_2 25 0 . . 13.00 0.000 0.00
25 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 13.333 146.67
26 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480.000 29952.00
27 f2_mar_1 f2_apr_1 30 0 . . 18.00 0.000 0.00
28 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0.000 0.00
29 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0.000 0.00
30 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 550.000 108185.00
31 f2_mar_2 f2_apr_2 50 0 . . 28.00 0.000 0.00
32 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0.000 0.00
33 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0.000 0.00
34 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290.000 25520.00
35 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0.000 0.00
36 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0.000 0.00
37 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 650.000 118300.00
38 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0.000 0.00
39 f1_may_1 f2_may_1 99999999 0 . . 16.00 115.000 1840.00
40 fact2_1 f2_may_1 250 35 850 . 128.80 35.000 4508.00
41 f2_apr_1 f2_may_1 30 0 . . 20.00 0.000 0.00
42 f1_may_2 f2_may_2 99999999 0 . . 26.00 0.000 0.00
43 fact2_2 f2_may_2 550 35 1500 . 181.40 150.000 27210.00
44 f2_apr_2 f2_may_2 50 0 . . 38.00 0.000 0.00
45 f1_mar_1 shop1_1 250 0 . 900 -327.65 143.333 -46963.17
46 f1_apr_1 shop1_1 250 0 . 900 -300.00 250.000 -75000.00
47 f1_may_1 shop1_1 250 0 . 900 -285.00 13.333 -3800.00
48 f2_mar_1 shop1_1 250 0 . 900 -297.40 250.000 -74350.00
49 f2_apr_1 shop1_1 250 0 . 900 -290.00 243.333 -70566.67
50 f2_may_1 shop1_1 250 0 . 900 -292.00 0.000 0.00
51 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0.000 0.00
52 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0.000 0.00
53 f1_may_2 shop1_2 99999999 0 . 900 -515.02 350.000 -180257.00
54 f2_mar_2 shop1_2 500 0 . 900 -567.83 500.000 -283915.00
55 f2_apr_2 shop1_2 500 0 . 900 -542.19 50.000 -27109.50
56 f2_may_2 shop1_2 500 0 . 900 -491.56 0.000 0.00
57 f1_mar_1 shop2_1 250 0 . 900 -362.74 250.000 -90685.00
58 f1_apr_1 shop2_1 250 0 . 900 -300.00 250.000 -75000.00
59 f1_may_1 shop2_1 250 0 . 900 -245.00 0.000 0.00
60 f2_mar_1 shop2_1 250 0 . 900 -272.70 0.000 0.00
61 f2_apr_1 shop2_1 250 0 . 900 -312.00 250.000 -78000.00
62 f2_may_1 shop2_1 250 0 . 900 -299.00 150.000 -44850.00
63 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455.000 -283869.95
64 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 220.000 -120929.60
65 f1_may_2 shop2_2 99999999 0 . 1450 -500.00 0.000 0.00
66 f2_mar_2 shop2_2 500 0 . 1450 -542.83 125.000 -67853.75
67 f2_apr_2 shop2_2 500 0 . 1450 -559.19 500.000 -279595.00
68 f2_may_2 shop2_2 500 0 . 1450 -519.06 150.000 -77859.00

===========
-1295661.80

636 � Chapter 5. The NETFLOW Procedure

Output 5.7.2. CONOUT=CON5 (continued)

Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

1 0.00 5.000 0.00 . . 65 1
2 0.00 45.000 0.00 . . 66 10
3 0.00 0.000 0.00 . . 67 11
4 0.00 150.000 0.00 . . 68 20
5 78.60 533.333 41920.00 19 1 production April 4 1
6 15.00 0.000 0.00 19 1 storage March 5 2
7 33.60 0.000 0.00 19 1 backorder May 6 4
8 11.00 0.000 0.00 19 . f2_to_1 April 7 6
9 174.50 250.000 43625.00 25 1 production April 36 11

10 20.00 0.000 0.00 25 1 storage March 37 12
11 49.20 0.000 0.00 25 1 backorder May 38 14
12 21.00 0.000 0.00 25 . f2_to_1 April 39 16
13 127.90 333.333 42633.33 19 1 production March 1 1
14 33.60 20.000 672.00 19 1 backorder April 2 3
15 10.00 40.000 400.00 19 . f2_to_1 March 3 5
16 217.90 400.000 87160.00 25 1 production March 33 11
17 38.40 30.000 1152.00 25 1 backorder April 34 13
18 20.00 25.000 500.00 25 . f2_to_1 March 35 15
19 90.10 128.333 11562.83 19 1 production May 8 1
20 12.00 0.000 0.00 19 1 storage April 9 3
21 13.00 0.000 0.00 19 . f2_to_1 May 10 7
22 113.30 350.000 39655.00 25 1 production May 40 11
23 18.00 0.000 0.00 25 1 storage April 41 13
24 13.00 0.000 0.00 25 . f2_to_1 May 42 17
25 11.00 13.333 146.67 19 . f1_to_2 April 14 3
26 62.40 480.000 29952.00 19 2 production April 15 10
27 18.00 0.000 0.00 19 2 storage March 16 5
28 30.00 0.000 0.00 19 2 backorder May 17 7
29 23.00 0.000 0.00 25 . f1_to_2 April 46 13
30 196.70 577.500 113594.25 25 2 production April 47 20
31 28.00 0.000 0.00 25 2 storage March 48 15
32 64.80 0.000 0.00 25 2 backorder May 49 17
33 11.00 0.000 0.00 19 . f1_to_2 March 11 2
34 88.00 290.000 25520.00 19 2 production March 12 10
35 20.40 0.000 0.00 19 2 backorder April 13 6
36 23.00 0.000 0.00 25 . f1_to_2 March 43 12
37 182.00 650.000 118300.00 25 2 production March 44 20
38 37.20 0.000 0.00 25 2 backorder April 45 16
39 16.00 115.000 1840.00 19 . f1_to_2 May 18 4
40 128.80 35.000 4508.00 19 2 production May 19 10
41 20.00 0.000 0.00 19 2 storage April 20 6
42 26.00 350.000 9100.00 25 . f1_to_2 May 50 14
43 181.40 122.500 22221.50 25 2 production May 51 20
44 38.00 0.000 0.00 25 2 storage April 52 16
45 -327.65 143.333 -46963.17 19 1 sales March 21 2
46 -300.00 250.000 -75000.00 19 1 sales April 22 3
47 -285.00 13.333 -3800.00 19 1 sales May 23 4
48 -297.40 250.000 -74350.00 19 2 sales March 24 5
49 -290.00 243.333 -70566.67 19 2 sales April 25 6
50 -292.00 0.000 0.00 19 2 sales May 26 7
51 -559.76 0.000 0.00 25 1 sales March 53 12
52 -524.28 0.000 0.00 25 1 sales April 54 13
53 -475.02 0.000 0.00 25 1 sales May 55 14
54 -567.83 500.000 -283915.00 25 2 sales March 56 15
55 -542.19 400.000 -216876.00 25 2 sales April 57 16
56 -491.56 0.000 0.00 25 2 sales May 58 17
57 -362.74 250.000 -90685.00 19 1 sales March 27 2
58 -300.00 250.000 -75000.00 19 1 sales April 28 3
59 -245.00 0.000 0.00 19 1 sales May 29 4
60 -272.70 0.000 0.00 19 2 sales March 30 5
61 -312.00 250.000 -78000.00 19 2 sales April 31 6
62 -299.00 150.000 -44850.00 19 2 sales May 32 7
63 -623.89 455.000 -283869.95 25 1 sales March 59 12
64 -549.68 220.000 -120929.60 25 1 sales April 60 13
65 -460.00 0.000 0.00 25 1 sales May 61 14
66 -542.83 125.000 -67853.75 25 2 sales March 62 15
67 -559.19 177.500 -99256.23 25 2 sales April 63 16
68 -519.06 472.500 -245255.85 25 2 sales May 64 17

===========
-1282708.63

Example 5.8. Nonarc Variables in the Side Constraints � 637

Output 5.7.3. DUALOUT=DUAL5

Using a Constrained Solution Warm Start
Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 f1_apr_1 . -100000278.00 3 1 6 2
2 f1_apr_2 . -100000405.92 13 19 11 2
3 f1_mar_1 . -100000326.65 2 8 1 20
4 f1_mar_2 . -100000480.13 12 19 13 1
5 f1_may_1 . -100000284.00 4 1 7 3
6 f1_may_2 . -100000363.43 14 18 10 1
7 f2_apr_1 . -100000289.00 6 3 4 1
8 f2_apr_2 . -100000390.60 16 20 18 3
9 f2_mar_1 . -100000281.90 5 10 3 1

10 f2_mar_2 . -100000399.07 15 19 16 1
11 f2_may_1 . -100000300.00 7 4 9 2
12 f2_may_2 . -100000375.30 17 20 19 6
13 fact1_1 1000 -100000193.90 1 2 21 19
14 fact1_2 1000 -100000224.09 11 13 15 1
15 fact2_1 850 -100000193.90 10 21 5 2
16 fact2_2 1500 -100000193.90 20 21 17 10
17 shop1_1 -900 -99999999.00 8 22 2 21
18 shop1_2 -900 -99999848.41 18 16 14 2
19 shop2_1 -900 -100000001.00 9 7 22 1
20 shop2_2 -1450 -99999856.24 19 17 12 5
21 . -1.83 2 8 . .
22 . -1.62 0 8 . .
23 . 0.00 3 3 . 3
24 . 0.00 1 1 . 1
25 . -15.05 4 2 . .

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 4 483.333 4 . .
2 -60 220.000 36 . .
3 -21 143.333 1 . .
4 -59 455.000 33 . .
5 8 78.333 8 . .
6 -55 350.000 40 . .
7 14 13.333 14 . .
8 47 515.000 46 . .
9 12 255.000 11 . .

10 -62 125.000 43 . .
11 18 115.000 18 . .
12 51 115.000 50 . .
13 -1 283.333 -1 . .
14 -36 200.000 -33 . .
15 -66 45.000 -33 . .
16 -68 150.000 -65 . .
17 0 0.000 21 . .
18 57 50.000 53 . .
19 32 150.000 27 . .
20 64 150.000 59 . .
21 25 243.333 . 2600 2600 LE FACT1 APL GIZMO
22 23 13.333 . 2600 2600 LE FACT1 MAR GIZMO
23 . 110.000 . 3640 3750 LE FACT2 APL GIZMO
24 . 280.000 . 3470 3750 LE FACT2 MAR GIZMO
25 2 20.000 . 50 50 LE TOTAL BACKORDER

Example 5.8. Nonarc Variables in the Side Constraints

Notice in DUALOUT=dual5 from Example 5.7 the FACT2 MAR GIZMO constraint
(observation 24) has a –VALUE– of 3470, which is not equal to the –RHS– of this
constraint. Not all of the 3750 chips that can be supplied to factory 2 for March
production are used. It is suggested that all the possible chips be obtained in March
and those not used be saved for April production. Because chips must be kept in an
air-controlled environment, it costs 1 dollar to store each chip purchased in March
until April. The maximum number of chips that can be stored in this environment at

638 � Chapter 5. The NETFLOW Procedure

each factory is 150. In addition, a search of the parts inventory at factory 1 turned up
15 chips available for their March production.

Nonarc variables are used in the side constraints that handle the limitations of supply
of Gizmo chips. A nonarc variable called “f1 unused chips” has as a value the number
of chips that are not used at factory 1 in March. Another nonarc variable, “f2 unused
chips”, has as a value the number of chips that are not used at factory 2 in March.
“f1 chips from mar” has as a value the number of chips left over from March used
for production at factory 1 in April. Similarly, “f2 chips from mar” has as a value
the number of chips left over from March used for April production at factory 2 in
April. The last two nonarc variables have objective function coefficients of 1 and
upper bounds of 150. The Gizmo side constraints are

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

The last side constraint states that the number of chips not used in March is not less
than the number of chips left over from March and used in April. Here, this constraint
is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems
that most of the constraints are now equalities, so you specify DEFCONTYPE=EQ in
the PROC NETFLOW statements from now on and provide constraint type data for
constraints that are not “equal to” type, using the default TYPEOBS value –TYPE–
as the –COLUMN– variable value to indicate observations that contain constraint
type data. Also, from now on, the default RHSOBS value is used.

title ’Nonarc Variables in the Side Constraints’;
title2 ’Production Planning/Inventory/Distribution’;
data con6;

input _column_ &$17. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1

Example 5.8. Nonarc Variables in the Side Constraints � 639

RHS FACT2 APL GIZMO 3750
f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1
f1 chips from mar CHIP LEFTOVER -1
f2 chips from mar CHIP LEFTOVER -1
TYPE CHIP LEFTOVER 1
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
TYPE TOTAL BACKORDER -1
RHS TOTAL BACKORDER 50
;

The nonarc variables “f1 chips from mar” and “f2 chips from mar” have objective
function coefficients of 1 and upper bounds of 150. There are various ways in which
this information can be furnished to PROC NETFLOW. If there were a TYPE list
variable in the CONDATA= data set, observations could be in the form

COLUMN _TYPE_ _ROW_ _COEF_
f1 chips from mar objfn . 1
f1 chips from mar upperbd . 150
f2 chips from mar objfn . 1
f2 chips from mar upperbd . 150

It is desirable to assign ID list variable values to all the nonarc variables:

data arc6;
set con5;
drop oldcost oldfc oldflow _flow_ _fcost_ _status_ _rcost_;

data arc6_b;
length key_id $10;
input _name_ &$17. _cost_ _capac_ factory key_id $;
datalines;

f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;

proc append force nowarn
base=arc6 data=arc6_b;
run;

proc netflow
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
dualout=dual7 conout=con7;

640 � Chapter 5. The NETFLOW Procedure

run;
print nonarcs/short;

The following messages appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of nonarc variables= 4 .
NOTE: Number of iterations performed (neglecting any

constraints)= 70 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1295730.8 .
NOTE: Number of <= side constraints= 1 .
NOTE: Number of == side constraints= 4 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 24 .
NOTE: Number of iterations, optimizing with constraints= 13 .
NOTE: Of these, 3 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295542.742 .
NOTE: The data set WORK.CON7 has 68 observations and 18

variables.
NOTE: The data set WORK.DUAL7 has 26 observations and 14

variables.

The output in Output 5.8.1 is produced by

print nonarcs/short;

Output 5.8.1. Output of PRINT NONARCS/SHORT;

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

The NETFLOW Procedure

N _name_ _cost_ _capac_ _lo_ _VALUE_

1 f1 chips from mar 1 150 0 20
2 f1 unused chips 0 99999999 0 0
3 f2 chips from mar 1 150 0 0
4 f2 unused chips 0 99999999 0 280

The optimal solution data sets, CONOUT=CON7 in Output 5.8.2 and Output 5.8.3
and DUALOUT=DUAL7 in Output 5.8.4 follow.

proc print data=con7;
sum _fcost_;

proc print data=dual7;

Example 5.8. Nonarc Variables in the Side Constraints � 641

Output 5.8.2. CONOUT=CON7

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 540.000 42444.00
2 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000 0.00
3 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000 0.00
4 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000 0.00
5 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000 43625.00
6 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000 0.00
7 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000 0.00
8 f2_apr_2 f1_apr_2 21.00 25 0 . . 25.000 525.00
9 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 338.333 43272.83

10 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000 672.00
11 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000 400.00
12 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000 87160.00
13 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000 1152.00
14 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000 500.00
15 fact1_1 f1_may_1 90.10 400 50 1000 . 116.667 10511.67
16 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000 0.00
17 f2_may_1 f1_may_1 13.00 40 0 . . 0.000 0.00
18 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000 39655.00
19 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000 0.00
20 f2_may_2 f1_may_2 13.00 25 0 . . 0.000 0.00
21 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 20.000 220.00
22 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000 29952.00
23 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000 0.00
24 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000 0.00
25 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000 0.00
26 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500 113594.25
27 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000 0.00
28 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000 0.00
29 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000 0.00
30 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000 25520.00
31 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000 0.00
32 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000 0.00
33 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000 118300.00
34 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000 0.00
35 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000 1840.00
36 fact2_1 f2_may_1 128.80 250 35 850 . 35.000 4508.00
37 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000 0.00
38 f1_may_2 f2_may_2 26.00 99999999 0 . . 0.000 0.00
39 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500 22221.50
40 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000 0.00
41 f1_mar_1 shop1_1 -327.65 250 0 . 900 148.333 -48601.42
42 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000 -75000.00
43 f1_may_1 shop1_1 -285.00 250 0 . 900 1.667 -475.00
44 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000 -74350.00
45 f2_apr_1 shop1_1 -290.00 250 0 . 900 250.000 -72500.00
46 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000 0.00
47 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000 0.00
48 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000 0.00
49 f1_may_2 shop1_2 -515.02 99999999 0 . 900 347.500 -178969.45
50 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000 -283915.00
51 f2_apr_2 shop1_2 -542.19 500 0 . 900 52.500 -28464.98
52 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000 0.00
53 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000 -90685.00
54 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000 -75000.00
55 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000 0.00
56 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000 0.00
57 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000 -78000.00
58 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000 -44850.00
59 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000 -283869.95
60 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 245.000 -134671.60
61 f1_may_2 shop2_2 -500.00 99999999 0 . 1450 2.500 -1250.00
62 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000 -67853.75
63 f2_apr_2 shop2_2 -559.19 500 0 . 1450 500.000 -279595.00
64 f2_may_2 shop2_2 -519.06 500 0 . 1450 122.500 -63584.85
65 1.00 150 0 f1 chips from mar . . 20.000 20.00
66 0.00 99999999 0 f1 unused chips . . 0.000 0.00
67 1.00 150 0 f2 chips from mar . . 0.000 0.00
68 0.00 99999999 0 f2 unused chips . . 280.000 0.00

===========
-1295542.74

642 � Chapter 5. The NETFLOW Procedure

Output 5.8.3. CONOUT=CON7 (continued)

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 5 1 KEY_ARC BASIC 19 1 production April
2 66.150 6 7 LOWERBD NONBASIC 19 1 storage March
3 42.580 7 8 LOWERBD NONBASIC 19 1 backorder May
4 22.000 8 9 LOWERBD NONBASIC 19 . f2_to_1 April
5 . 19 4 KEY_ARC BASIC 25 1 production April
6 94.210 20 11 LOWERBD NONBASIC 25 1 storage March
7 . 21 12 NONKEY ARC BASIC 25 1 backorder May
8 -1.510 22 13 UPPERBD NONBASIC 25 . f2_to_1 April
9 . 9 1 KEY_ARC BASIC 19 1 production March
10 -17.070 10 6 UPPERBD NONBASIC 19 1 backorder April
11 -34.750 11 14 UPPERBD NONBASIC 19 . f2_to_1 March
12 -28.343 23 4 UPPERBD NONBASIC 25 1 production March
13 -35.330 24 10 UPPERBD NONBASIC 25 1 backorder April
14 -61.060 25 15 UPPERBD NONBASIC 25 . f2_to_1 March
15 . 12 1 KEY_ARC BASIC 19 1 production May
16 3.500 13 6 LOWERBD NONBASIC 19 1 storage April
17 29.000 14 16 LOWERBD NONBASIC 19 . f2_to_1 May
18 -15.520 26 4 UPPERBD NONBASIC 25 1 production May
19 67.680 27 10 LOWERBD NONBASIC 25 1 storage April
20 32.060 28 17 LOWERBD NONBASIC 25 . f2_to_1 May
21 . 15 6 KEY_ARC BASIC 19 . f1_to_2 April
22 -35.592 16 3 UPPERBD NONBASIC 19 2 production April
23 13.400 17 14 LOWERBD NONBASIC 19 2 storage March
24 43.980 18 16 LOWERBD NONBASIC 19 2 backorder May
25 45.510 29 10 LOWERBD NONBASIC 25 . f1_to_2 April
26 . 30 5 KEY_ARC BASIC 25 2 production April
27 43.660 31 15 LOWERBD NONBASIC 25 2 storage March
28 57.170 32 17 LOWERBD NONBASIC 25 2 backorder May
29 55.750 33 7 LOWERBD NONBASIC 19 . f1_to_2 March
30 . 34 3 KEY_ARC BASIC 19 2 production March
31 25.480 35 9 LOWERBD NONBASIC 19 2 backorder April
32 104.060 36 11 LOWERBD NONBASIC 25 . f1_to_2 March
33 -23.170 37 5 UPPERBD NONBASIC 25 2 production March
34 22.020 38 13 LOWERBD NONBASIC 25 2 backorder April
35 . 39 8 KEY_ARC BASIC 19 . f1_to_2 May
36 22.700 40 3 LOWERBD NONBASIC 19 2 production May
37 6.500 41 9 LOWERBD NONBASIC 19 2 storage April
38 6.940 42 12 LOWERBD NONBASIC 25 . f1_to_2 May
39 . 43 5 KEY_ARC BASIC 25 2 production May
40 46.110 44 13 LOWERBD NONBASIC 25 2 storage April
41 . 45 7 KEY_ARC BASIC 19 1 sales March
42 -23.500 46 6 UPPERBD NONBASIC 19 1 sales April
43 . 47 8 NONKEY ARC BASIC 19 1 sales May
44 -14.500 48 14 UPPERBD NONBASIC 19 2 sales March
45 -2.500 49 9 UPPERBD NONBASIC 19 2 sales April
46 9.000 50 16 LOWERBD NONBASIC 19 2 sales May
47 79.150 51 11 LOWERBD NONBASIC 25 1 sales March
48 40.420 52 10 LOWERBD NONBASIC 25 1 sales April
49 . 53 12 KEY_ARC BASIC 25 1 sales May
50 -9.980 54 15 UPPERBD NONBASIC 25 2 sales March
51 . 55 13 KEY_ARC BASIC 25 2 sales April
52 42.520 56 17 LOWERBD NONBASIC 25 2 sales May
53 -37.090 57 7 UPPERBD NONBASIC 19 1 sales March
54 -25.500 58 6 UPPERBD NONBASIC 19 1 sales April
55 38.000 59 8 LOWERBD NONBASIC 19 1 sales May
56 8.200 60 14 LOWERBD NONBASIC 19 2 sales March
57 -26.500 61 9 UPPERBD NONBASIC 19 2 sales April
58 . 62 16 KEY_ARC BASIC 19 2 sales May
59 . 63 11 KEY_ARC BASIC 25 1 sales March
60 . 64 10 KEY_ARC BASIC 25 1 sales April
61 . 65 12 NONKEY ARC BASIC 25 1 sales May
62 . 66 15 KEY_ARC BASIC 25 2 sales March
63 -32.020 67 13 UPPERBD NONBASIC 25 2 sales April
64 . 68 17 KEY_ARC BASIC 25 2 sales May
65 . -2 . NONKEY BASIC . 1 chips
66 1.617 0 . LOWERBD NONBASIC . 1 chips
67 2.797 -3 . LOWERBD NONBASIC . 2 chips
68 . -1 . NONKEY BASIC . 2 chips

Example 5.8. Nonarc Variables in the Side Constraints � 643

Output 5.8.4. DUALOUT=DUAL7

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 f1_apr_1 . -100000275.50 6 1 9 2
2 f1_apr_2 . -100000405.92 10 21 4 2
3 f1_mar_1 . -100000326.65 7 18 1 20
4 f1_mar_2 . -100000480.13 11 21 15 1
5 f1_may_1 . -100000284.00 8 1 16 3
6 f1_may_2 . -100000356.24 12 19 6 1
7 f2_apr_1 . -100000286.50 9 6 8 1
8 f2_apr_2 . -100000383.41 13 5 19 3
9 f2_mar_1 . -100000281.90 14 3 5 1

10 f2_mar_2 . -100000399.07 15 21 10 1
11 f2_may_1 . -100000300.00 16 8 20 2
12 f2_may_2 . -100000375.30 17 5 21 6
13 fact1_1 1000 -100000193.90 1 7 2 19
14 fact1_2 1000 -100000227.42 4 10 13 1
15 fact2_1 850 -100000193.90 3 2 14 2
16 fact2_2 1500 -100000193.90 5 2 17 10
17 shop1_1 -900 -99999999.00 18 22 7 21
18 shop1_2 -900 -99999841.22 19 13 12 2
19 shop2_1 -900 -100000001.00 20 16 22 1
20 shop2_2 -1450 -99999856.24 21 17 11 5
21 . 0.00 4 4 . 4
22 . -1.00 2 2 . .
23 . -1.62 0 18 . .
24 . 1.80 3 21 . .
25 . 0.00 1 1 . .
26 . -0.48 5 10 . .

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 5 490.000 5 . .
2 -64 245.000 19 . .
3 -45 148.333 9 . .
4 -63 455.000 23 . .
5 12 66.667 12 . .
6 -53 347.500 26 . .
7 15 20.000 15 . .
8 30 542.500 29 . .
9 34 255.000 33 . .

10 -66 125.000 36 . .
11 39 115.000 39 . .
12 43 87.500 42 . .
13 -9 288.333 -1 . .
14 -19 200.000 -5 . .
15 -2 45.000 -5 . .
16 -4 150.000 -5 . .
17 0 0.000 45 . .
18 55 52.500 51 . .
19 62 150.000 57 . .
20 68 122.500 63 . .
21 . 260.000 . 260 0 GE CHIP LEFTOVER
22 -2 20.000 . 2600 2600 EQ FACT1 APL GIZMO
23 47 1.667 . 2615 2615 EQ FACT1 MAR GIZMO
24 65 2.500 . 3750 3750 EQ FACT2 APL GIZMO
25 -1 280.000 . 3750 3750 EQ FACT2 MAR GIZMO
26 21 0.000 . 50 50 LE TOTAL BACKORDER

The optimal value of the nonarc variable “f2 unused chips” is 280. This means that
although there are 3750 chips that can be used at factory 2 in March, only 3470
are used. As the optimal value of “f1 unused chips” is zero, all chips available for
production in March at factory 1 are used. The nonarc variable “f2 chips from mar”
also has zero optimal value. This means that the April production at factory 2 does
not need any chips that could have been held in inventory since March. However,
the nonarc variable “f1 chips from mar” has value of 20. Thus, 3490 chips should
be ordered for factory 2 in March. Twenty of these chips should be held in inventory
until April, then sent to factory 1.

644 � Chapter 5. The NETFLOW Procedure

Example 5.9. Pure Networks: Using the EXCESS= Option

In this example we illustrate the use of the EXCESS= option for various scenarios
in pure networks. Consider a simple network as shown in Figure 5.43. The positive
numbers on the nodes correspond to supply and the negative numbers correspond to
demand. The numbers on the arcs indicate costs.

Transportation Problem, Total Supply < Total Demand

We first analyze a simple transportation problem where total demand exceeds total
supply, as seen in Figure 5.43. The EXCESS=SLACKS option is illustrated first.

S
2

D
2

D
1

S
1

10 -5

-101

1

2

4

8

Figure 5.43. Transportation Problem

The following SAS code creates the input data sets.

data parcs;
input _from_ $ _to_ $ _cost_;

datalines;
s1 d1 1
s1 d2 8
s2 d1 4
s2 d2 2
;

data SleD;
input _node_ $ _sd_;

datalines;
s1 1
s2 10
d1 -10
d2 -5
;

You can solve the problem using the following call to PROC NETFLOW:

Example 5.9. Pure Networks: Using the EXCESS= Option � 645

title1 ’The NETFLOW Procedure’;
proc netflow

excess = slacks
arcdata = parcs
nodedata = SleD
conout = solex1;

run;

Since the EXCESS=SLACKS option is specified, the interior point method is used
for optimization. Accordingly, the CONOUT= data set is specified. The optimal
solution is displayed in Output 5.9.1.

Output 5.9.1. Supply < Demand

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 10 1 1
2 s2 d1 4 99999999 0 10 10 5 20
3 s1 d2 8 99999999 0 1 5 0 0
4 s2 d2 2 99999999 0 10 5 5 10

The solution with the THRUNET option specified is displayed in Output 5.9.2.

Output 5.9.2. Supply < Demand, THRUNET Specified

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 10 5 5
2 s2 d1 4 99999999 0 10 10 5 20
3 s1 d2 8 99999999 0 1 5 0 0
4 s2 d2 2 99999999 0 10 5 5 10

Note: If you want to use the network simplex solver instead, you need to specify the
EXCESS=ARCS option and, accordingly, the ARCOUT= data set.

Missing D Demand

As shown in Figure 5.44, node D1 has a missing D demand value.

646 � Chapter 5. The NETFLOW Procedure

S2 D2

D1S1

10 -1

D1

1

2

4

8

Figure 5.44. Missing D Demand

The following code creates the node data set:

data node_missingD1;
input _node_ $ _sd_;
missing D;

datalines;
s1 1
s2 10
d1 D
d2 -1
;

You can use the following call to PROC NETFLOW to solve the problem:

title1 ’The NETFLOW Procedure’;
proc netflow

excess = slacks
arcdata = parcs
nodedata = node_missingD1
conout = solex1b;

run;

The optimal solution is displayed in Output 5.9.3. As you can see, the flow balance at
nodes with nonmissing supdem values is maintained. In other words, if a node has
a nonmissing supply (demand) value, then the sum of flows out of (into) that node is
equal to its supdem value.

Example 5.9. Pure Networks: Using the EXCESS= Option � 647

Output 5.9.3. THRUNET Not Specified

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 D 1 1
2 s2 d1 4 99999999 0 10 D 9 36
3 s1 d2 8 99999999 0 1 1 0 0
4 s2 d2 2 99999999 0 10 1 1 2

Missing D Demand, THRUNET Specified

Consider the previous example, but with the THRUNET option specified.

title1 ’The NETFLOW Procedure’;
proc netflow

thrunet
excess = slacks
arcdata = parcs
nodedata = node_missingD1
conout = solex1c;

run;

The optimal solution is displayed in Output 5.9.4. By specifying the THRUNET
option, we have actually obtained the minimum-cost flow through the network, while
maintaining flow balance at the nodes with nonmissing supply values.

Output 5.9.4. Missing D Demand, THRUNET Specified

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 D 1 1
2 s2 d1 4 99999999 0 10 D 0 0
3 s1 d2 8 99999999 0 1 1 0 0
4 s2 d2 2 99999999 0 10 1 10 20

Note: The case with missing S supply values is similar to the case with missing D
demand values.

648 � Chapter 5. The NETFLOW Procedure

Example 5.10. Maximum Flow Problem
Consider the maximum flow problem depicted in Figure 5.45. The maximum flow
between nodes S and T is to be determined. The minimum arc flow and arc capacities
are specified as lower and upper bounds in square brackets, respectively.

a

S

b f

e

h

T

gc

d

[0,7] [0,15] [0,11]

[0,8] [0,20] [0,4]

[0,9]

[0,5]
[0,6]

[0
,1

2]

Figure 5.45. Maximum Flow Problem Example

You can solve the problem using either EXCESS=ARCS or EXCESS=SLACKS.
Consider using the EXCESS=ARCS option first. You can use the following SAS
code to create the input data set:

data arcs;
input _from_ $ _to_ $ _cost_ _capac_;

datalines;
S a . .
S b . .
a c 1 7
b c 2 9
a d 3 5
b d 4 8
c e 5 15
d f 6 20
e g 7 11
f g 8 6
e h 9 12
f h 10 4
g T . .
h T . .
;

You can use the following call to PROC NETFLOW to solve the problem:

title1 ’The NETFLOW Procedure’;
proc netflow

intpoint
maxflow
excess = arcs

Example 5.10. Maximum Flow Problem � 649

arcdata = arcs
source = S sink = T
conout = gout3;

run;

With the EXCESS=ARCS option specified, the problem gets transformed internally
to the one depicted in Figure 5.46. Note that there is an additional arc from the source
node to the sink node.

a

S

b f

e

h

T

gc

d

[0,7] [0,15] [0,11]

[0,8] [0,20] [0,4]

[0,9]

[0,5]

[0,6]

[0
,1

2]

Bypass arc with unattractive cost

99999998 -99999998

Figure 5.46. Maximum Flow Problem, EXCESS=ARCS Option Specified

The output SAS data set is displayed in Output 5.10.1.

Output 5.10.1. Maximum Flow Problem, EXCESS=ARCS Option Specified

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _capac_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 g T 0 99999999 0 . 99999998 16.9996 0.0000
2 h T 0 99999999 0 . 99999998 8.0004 0.0000
3 S a 0 99999999 0 99999998 . 11.9951 0.0000
4 S b 0 99999999 0 99999998 . 13.0049 0.0000
5 a c 1 7 0 . . 6.9952 6.9952
6 b c 2 9 0 . . 8.0048 16.0097
7 a d 3 5 0 . . 4.9999 14.9998
8 b d 4 8 0 . . 5.0001 20.0002
9 c e 5 15 0 . . 15.0000 75.0000
10 d f 6 20 0 . . 10.0000 60.0000
11 e g 7 11 0 . . 10.9996 76.9975
12 f g 8 6 0 . . 6.0000 48.0000
13 e h 9 12 0 . . 4.0004 36.0032
14 f h 10 4 0 . . 4.0000 40.0000

You can solve the same maximum flow problem, but this time with
EXCESS=SLACKS specified. The SAS code is as follows:

650 � Chapter 5. The NETFLOW Procedure

title1 ’The NETFLOW Procedure’;
proc netflow

intpoint
excess = slacks
arcdata = arcs
source = S sink = T
maxflow
conout = gout3b;

run;

With the EXCESS=SLACKS option specified, the problem gets transformed inter-
nally to the one depicted in Figure 5.47. Note that the source node and sink node
each have a single-ended “excess” arc attached to them.

a

S

b f

e

h

T

gc

d

[0,7] [0,15] [0,11]

[0,8] [0,20] [0,4]

[0,9]

[0,5]

[0,6]

[0
,1

2]

Figure 5.47. Maximum Flow Problem, EXCESS=SLACKS Option Specified

The solution, as displayed in Output 5.10.2, is the same as before. Note that the
–SUPPLY– value of the source node Y has changed from 99999998 to missing S,
and the –DEMAND– value of the sink node Z has changed from −99999998 to
missing D.

Example 5.11. Generalized Networks: Using the EXCESS= Option � 651

Output 5.10.2. Maximal Flow Problem, EXCESS=SLACKS Option Specified

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _capac_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 g T 0 99999999 0 . D 16.9993 0.0000
2 h T 0 99999999 0 . D 8.0007 0.0000
3 S a 0 99999999 0 S . 11.9867 0.0000
4 S b 0 99999999 0 S . 13.0133 0.0000
5 a c 1 7 0 . . 6.9868 6.9868
6 b c 2 9 0 . . 8.0132 16.0264
7 a d 3 5 0 . . 4.9999 14.9998
8 b d 4 8 0 . . 5.0001 20.0002
9 c e 5 15 0 . . 15.0000 75.0000
10 d f 6 20 0 . . 10.0000 60.0000
11 e g 7 11 0 . . 10.9993 76.9953
12 f g 8 6 0 . . 6.0000 48.0000
13 e h 9 12 0 . . 4.0007 36.0061
14 f h 10 4 0 . . 4.0000 40.0000

Example 5.11. Generalized Networks: Using the EXCESS=
Option

For generalized networks you can specify either EXCESS=SUPPLY or
EXCESS=DEMAND to indicate which nodal flow conservation constraints
have slack variables associated with them. The default option is EXCESS=NONE.

Using the EXCESS=SUPPLY Option

Consider the simple network shown in Figure 5.48. As you can see, the sum of posi-
tive supdem values (35) is equal to the absolute sum of the negative ones. However,
the arcs connecting the supply and demand nodes have varying arc multipliers. Let
us now solve the problem using the EXCESS=SUPPLY option.

652 � Chapter 5. The NETFLOW Procedure

S2 D2

D1S1

10 -20

-55

(1, 1)

(2, 2)

(4, 2
)

(8, 1)

S3
D3

20 -10

(1, 2)

(5, 0
.5)

(4, 0.5)

N

Figure 5.48. Generalized Network: Supply = Demand

You can use the following SAS code to create the input data sets:

data garcs;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
s1 d1 1 .
s1 d2 8 .
s2 d1 4 2
s2 d2 2 2
s2 d3 1 2
s3 d2 5 0.5
s3 d3 4 0.5
;

data gnodes;
input _node_ $ _sd_ ;

datalines;
s1 5
s2 20
s3 10
d1 -5
d2 -10
d3 -20
;

To solve the problem, use the following call to PROC NETFLOW:

title1 ’The NETFLOW Procedure’;
proc netflow

Example 5.11. Generalized Networks: Using the EXCESS= Option � 653

arcdata = garcs
nodedata = gnodes
excess = supply
conout = gnetout;

run;

The optimal solution is displayed in Output 5.11.1.

Output 5.11.1. Optimal Solution Obtained Using the EXCESS=SUPPLY Option

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1.0 5 5 5 5
2 s2 d1 4 99999999 0 2.0 20 5 0 0
3 s1 d2 8 99999999 0 1.0 5 10 0 0
4 s2 d2 2 99999999 0 2.0 20 10 5 10
5 s3 d2 5 99999999 0 0.5 10 10 0 0
6 s2 d3 1 99999999 0 2.0 20 20 10 10
7 s3 d3 4 99999999 0 0.5 10 20 0 0

Note: If you do not specify the EXCESS= option, or if you specify the
EXCESS=DEMAND option, the procedure will declare the problem infeasi-
ble. Therefore, in case of real-life problems, you would need to have a little more
detail about how the arc multipliers end up affecting the network — whether they
tend to create excess demand or excess supply.

Using the EXCESS=DEMAND Option

Consider the previous example but with a slight modification: the arcs out of node
S1 have multipliers of 0.5, and the arcs out of node S2 have multipliers of 1. You can
use the following SAS code to create the input arc data set:

data garcs1;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
s1 d1 1 0.5
s1 d2 8 0.5
s2 d1 4 .
s2 d2 2 .
s2 d3 1 .
s3 d2 5 0.5
s3 d3 4 0.5
;

654 � Chapter 5. The NETFLOW Procedure

Note that the node data set remains unchanged. You can use the following call to
PROC NETFLOW to solve the problem:

title1 ’The NETFLOW Procedure’;
proc netflow

arcdata = garcs1
nodedata = gnodes
excess = demand
conout = gnetout1;

run;

The optimal solution is displayed in Output 5.11.2.

Output 5.11.2. Optimal Solution Obtained Using the EXCESS=DEMAND Option

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 0.5 5 5 5.0000 5.0000
2 s2 d1 4 99999999 0 1.0 20 5 0.0000 0.0000
3 s1 d2 8 99999999 0 0.5 5 10 0.0000 0.0000
4 s2 d2 2 99999999 0 1.0 20 10 5.0000 10.0000
5 s3 d2 5 99999999 0 0.5 10 10 0.0000 0.0000
6 s2 d3 1 99999999 0 1.0 20 20 15.0000 15.0000
7 s3 d3 4 99999999 0 0.5 10 20 10.0000 40.0000

Example 5.13. Generalized Networks: Maximum Flow Problem � 655

Example 5.12. Generalized Networks: Maximum Flow
Problem

Consider the generalized network displayed in Figure 5.49. Lower and upper bounds
of the flow are displayed in parentheses above the arc, and cost and multiplier, where
applicable, are indicated in square brackets below the arc.

A

E

D

C

B

[0, 3]

[0
,
2
]

F

(0, 1)

(0, 1)

(0
, 2

)

(0, 2)

(0
, 2

)

(0
,
1
)

(0
, 1

)

(0, 2)

(0
,
1
)

Figure 5.49. Generalized Maximum Flow Problem

You can enter the data for the problem using the following SAS code:

data garcsM;
input _from_ $ _to_ $ _upper_ _mult_;

datalines;
A B 2 .
A C 2 .
C B 1 .
B D 1 .
C D 2 .
C E 1 3
D E 1 2
E F 5 .
D F 2 .
;

Use the following call to PROC NETFLOW:

title1 ’The NETFLOW Procedure’;
proc netflow

arcdata = garcsM
maxflow
source = A sink = F
conout = gmfpout;

run;

The optimal solution is displayed in Output 5.12.1.

656 � Chapter 5. The NETFLOW Procedure

Output 5.12.1. Generalized Maximum Flow Problem: Optimal Solution

The NETFLOW Procedure

Obs _from_ _to_ _COST_ _upper_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 A B 0 2 0 1 S . 1.00000 0
2 C B 0 1 0 1 . . 0.00000 0
3 A C 0 2 0 1 S . 2.00000 0
4 B D 0 1 0 1 . . 1.00000 0
5 C D 0 2 0 1 . . 1.00000 0
6 C E 0 1 0 3 . . 1.00000 0
7 D E 0 1 0 2 . . 1.00000 0
8 E F 0 5 0 1 . D 5.00000 0
9 D F 0 2 0 1 . D 1.00000 0

Example 5.13. Machine Loading Problem

Machine loading problems arise in a variety of applications. Consider a simple in-
stance as described in Ahuja, Magnanti, and Orlin (1993). Assume you need to sched-
ule the production of three products, P1 – P3, on four machines, M1 – M4. Suppose
that machine 1 and machine 2 are each available for 40 hours and machine 3 and ma-
chine 4 are each available for 50 hours. Also, any of the machines can produce any
product. The per-unit processing time and production cost for each product on each
machine are indicated in Table 5.9.

Table 5.9. Processing Times and Production Costs

M1 M2 M3 M4

P1 1 2 2 3

P2 2 3 2 1

P3 3 1 2 4

M1 M2 M3 M4

P1 4 3 3 1

P2 0.5 2 0.5 3

P3 2 5 1 5

The problem is to satisfy the demands for the three products at minimum cost.

You can model this problem as a generalized network as shown in Figure 5.50. The
network has three product nodes with demands indicated by positive supdem values
and four machine nodes with availabilities (in hours) indicated by negative supdem
values. The multiplier on an arc between a machine and a product indicates the hours
of machine capacity needed to produce one unit of the product.

Example 5.13. Machine Loading Problem � 657

P1

P2

P3
M4

M3

M2

M1

Figure 5.50. Machine Loading Problem

You can create the input data sets with the following SAS code:

data mlarcs;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
P1 M1 4 .
P1 M2 3 2
P1 M3 3 2
P1 M4 1 3
P2 M1 .5 2
P2 M2 2 3
P2 M3 .5 2
P2 M4 3 1
P3 M1 2 3
P3 M2 5 .
P3 M3 1 2
P3 M4 .5 4
;

data mlnodes;
input _node_ $ _sd_;

datalines;
P1 10

658 � Chapter 5. The NETFLOW Procedure

P2 5
P3 10
M1 -40
M2 -40
M3 -50
M4 -50
;

You can solve the problem using the following call to PROC NETFLOW:

title1 ’The NETFLOW Procedure’;
proc netflow

excess = demand
arcdata = mlarcs
nodedata = mlnodes
conout = mlsol;

run;

The optimal solution, as displayed in Output 5.13.1, can be interpreted as follows:

• Product 1: 10 units on machine 4

• Product 2: 3 units on machine 1, and 2 units on machine 3

• Product 3: 5 units on machine 3, and 5 units on machine 4

Output 5.13.1. Optimum Solution to the Machine Loading Problem

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 P1 M1 4.0 99999999 0 1 10 40 0.00000 0.00000
2 P2 M1 0.5 99999999 0 2 5 40 3.67856 1.83928
3 P3 M1 2.0 99999999 0 3 10 40 0.00000 0.00000
4 P1 M2 3.0 99999999 0 2 10 40 0.00000 0.00000
5 P2 M2 2.0 99999999 0 3 5 40 0.00000 0.00000
6 P3 M2 5.0 99999999 0 1 10 40 0.00000 0.00000
7 P1 M3 3.0 99999999 0 2 10 50 0.00000 0.00000
8 P2 M3 0.5 99999999 0 2 5 50 1.32144 0.66072
9 P3 M3 1.0 99999999 0 2 10 50 5.00000 5.00000

10 P1 M4 1.0 99999999 0 3 10 50 10.0000 10.0000
11 P2 M4 3.0 99999999 0 1 5 50 0.00000 0.00000
12 P3 M4 0.5 99999999 0 4 10 50 5.00000 2.50000

Example 5.14. Generalized Networks: Distribution Problem � 659

Example 5.14. Generalized Networks: Distribution Problem

Consider a distribution problem (from Jensen and Bard 2003) with three supply plants
(S1 – S3) and five demand points (D1 – D5). Further information about the problem
is as follows:

S1 To be closed. Entire inventory must be shipped or sold to scrap. The scrap
value is $5 per unit.

S2 Maximum production of 300 units with manufacturing cost of $10 per unit.

S3 The production in regular time amounts to 200 units and must be shipped. An
additional 100 units can be produced using overtime at $14 per unit.

D1 Fixed demand of 200 units must be met.

D2 Contracted demand of 300 units. An additional 100 units can be sold at $20 per
unit.

D3 Minimum demand of 200 units. An additional 100 units can be sold at $20 per
unit. Additional units can be procured from D4 at $4 per unit. There is a 5%
“shipping loss” on the arc connecting these two nodes.

D4 Fixed demand of 150 units must be met.

D5 100 units left over from previous shipments. No firm demand, but up to 250
units can be sold at $25 per unit.

Additionally, there is a 5% “shipping loss” on each of the arcs between supply and
demand nodes.

You can model this scenario as a generalized network. Since there are both fixed and
varying supply and demand supdem values, you can transform this to a case where
you need to address missing supply and demand simultaneously. As seen from Figure
5.51, we have added two artificial nodes, Y and Z, with missing S supply value and
missing D demand value, respectively. The extra production capability is depicted by
arcs from node Y to the corresponding supply nodes, and the extra revenue generation
capability of the demand points (and scrap revenue for S1) is depicted by arcs to node
Z.

660 � Chapter 5. The NETFLOW Procedure

S1

D3

D4

D2

D1

D5

S2

S3

Y

Z

(3, 0
.95)

(3, 0.95)

(6, 0.95)

(7, 0.95)(7
, 0

.9
5)

(5, 0.95)

(4, 0.95)

(7, 0.95)

(-5, 1)

(10, 1)

(14, 1)

(-20, 1)

(-20, 1)

(-2
5,

 1
)

700

200

-200

-300

-200

-150

100
[0, 100]

[0, 300]

[0
, 2

50
]

[0, 100]

[0, 100]

[0, 700]
Z

(4
, 0

.9
5) D

D

S

(2
, 0

.95
)

(6
, 0

.9
5)

Figure 5.51. Distribution Problem

The following SAS data set has the complete information about the arc costs, multi-
pliers, and node supdem values:

data dnodes;
input _node_ $ _sd_ ;
missing S D;

datalines;
S1 700
S2 0
S3 200
D1 -200
D2 -300
D3 -200
D4 -150
D5 100
Y S
Z D
;

data darcs;
input _from_ $ _to_ $ _cost_ _capac_ _mult_;

datalines;
S1 D1 3 200 0.95
S1 D2 3 200 0.95
S1 D3 6 200 0.95

Example 5.14. Generalized Networks: Distribution Problem � 661

S1 D4 7 200 0.95
S2 D1 7 200 0.95
S2 D2 2 200 0.95
S2 D4 5 200 0.95
S3 D2 6 200 0.95
S3 D4 4 200 0.95
S3 D5 7 200 0.95
D4 D3 4 200 0.95
Y S2 10 300 .
Y S3 14 100 .
S1 Z -5 700 .
D2 Z -20 100 .
D3 Z -20 100 .
D5 Z -25 250 .
;

You can solve this problem by using the following call to PROC NETFLOW:

title1 ’The NETFLOW Procedure’;
proc netflow

nodedata = dnodes
arcdata = darcs
conout = dsol;

run;

The optimal solution is displayed in Output 5.14.1.

Output 5.14.1. Distribution Problem: Optimal Solution

The NETFLOW Procedure

Obs _from_ _to_ _cost_ _capac_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 S1 D1 3 200 0 0.95 700 200 200.000 600.00
2 S2 D1 7 200 0 0.95 . 200 10.526 73.68
3 S1 D2 3 200 0 0.95 700 300 200.000 600.00
4 S2 D2 2 200 0 0.95 . 300 200.000 400.00
5 S3 D2 6 200 0 0.95 200 300 21.053 126.32
6 S1 D3 6 200 0 0.95 700 200 200.000 1200.00
7 D4 D3 4 200 0 0.95 . 200 10.526 42.11
8 S1 D4 7 200 0 0.95 700 150 100.000 700.00
9 S2 D4 5 200 0 0.95 . 150 47.922 239.61
10 S3 D4 4 200 0 0.95 200 150 21.053 84.21
11 S3 D5 7 200 0 0.95 200 . 157.895 1105.26
12 Y S2 10 300 0 1.00 S . 258.449 2584.49
13 Y S3 14 100 0 1.00 S . 0.000 0.00
14 S1 Z -5 700 0 1.00 700 D 0.000 0.00
15 D2 Z -20 100 0 1.00 . D 100.000 -2000.00
16 D3 Z -20 100 0 1.00 . D 0.000 0.00
17 D5 Z -25 250 0 1.00 100 D 250.000 -6250.00

========
-494.32

662 � Chapter 5. The NETFLOW Procedure

Example 5.15. Converting to an MPS-Format SAS Data Set

This example demonstrates the use of the MPSOUT= option to convert a problem
data set in PROC NETFLOW input format into an MPS-format SAS data set for use
with the OPTLP procedure.

Suppose you want to solve a linear program with the following formulation:

min 2x1 − 3x2 − 4x3

subject to − 2x2 − 3x3 ≥ −5

x1 + x2 + 2x3 ≤ 4

x1 + 2x2 + 3x3 ≥ 7

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 15

0 ≤ x3 ≤ 20

You can save the LP in dense format by using the following DATA step:

data exdata;
input x1 x2 x3 _type_ $ _rhs_;

datalines;
2 -3 -4 min .
. -2 -3 >= -5
1 1 2 <= 6
1 2 3 >= 7
10 15 20 upperbd .
;

If you decide to solve the problem by using the OPTLP procedure, you need to con-
vert the data set exdata from dense format to MPS format. You can accomplish this
by using the following statements:

/* convert to MPS format */

proc netflow condata=exdata mpsout=mpsdata bytes=100000;
run;

The MPS-format SAS data set mpsdata is shown in Output 5.15.1.

References � 663

Output 5.15.1. Data Set mpsdata

Obs field1 field2 field3 field4 field5 field6

1 NAME modname . .
2 ROWS . .
3 MIN objfn . .
4 G _OBS2_ . .
5 L _OBS3_ . .
6 G _OBS4_ . .
7 COLUMNS . .
8 x1 objfn 2 _OBS3_ 1
9 x1 _OBS4_ 1 .
10 x2 objfn -3 _OBS2_ -2
11 x2 _OBS3_ 1 _OBS4_ 2
12 x3 objfn -4 _OBS2_ -3
13 x3 _OBS3_ 2 _OBS4_ 3
14 RHS . .
15 _OBS2_ -5 _OBS3_ 6
16 _OBS4_ 7 .
17 BOUNDS . .
18 UP bdsvect x1 10 .
19 UP bdsvect x2 15 .
20 UP bdsvect x3 20 .
21 ENDATA . .

The constraint names –OBS2– , –OBS3– , and –OBS4– are generated by the
NETFLOW procedure. If you want to provide your own constraint names, use the
ROW list variable in the CONOUT= data set. If you specify the problem data in
sparse format instead of dense format, the MPSOUT= option produces the same
MPS-format SAS data set shown in the preceding output.

Now that the problem data is in MPS format, you can solve the problem by using the
OPTLP procedure. For more information, see Chapter 15, “The OPTLP Procedure.”

References
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows, Prentice-Hall,

New Jersey.

Bland, R. G. (1977), “New Finite Pivoting Rules for the Simplex Method,”
Mathematics of Operations Research, 2, 103–107.

George, A., Liu, J., and Ng, E. (2001), “Computer Solution of Positive Definite
Systems,” Unpublished book obtainable from authors.

Jensen, P. A. and Bard, J. F. (2003), Operations Research Models and Methods, John
Wiley & Sons.

Kearney, T. D. (1990), “A Tutorial on the NETFLOW Procedure in SAS/OR,” in
Proceedings of the Fifteenth Annual SAS Users Group International Conference,
Cary, NC: SAS Institute Inc.

664 � Chapter 5. The NETFLOW Procedure

Kennington, J. L. and Helgason, R. V. (1980), Algorithms for Networking
Programming, New York: Wiley Interscience.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992), “On Implementing
Mehrotra’s Predictor-Corrector Interior-Point Method for Linear Programming,”
SIAM Journal of Optimization, 2, 435–449.

Reid, J. K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases,” Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear
Optimization, Chichester, England: John Wiley & Sons.

Ryan, D. M. and Osborne, M. R. (1988), “On the Solution of Highly Degenerate
Linear Programmes,” Mathematical Programming, 41, 385–392.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John
Wiley & Sons.

Chapter 6
The OPTMODEL Procedure

Chapter Contents

OVERVIEW: OPTMODEL PROCEDURE 669

GETTING STARTED: OPTMODEL PROCEDURE 670
An Unconstrained Optimization Example 671
The Rosenbrock Problem . 673
A Transportation Problem . 674

OPTMODEL MODELING LANGUAGE: BASIC CONCEPTS 677
Named Parameters . 677
Indexing . 678
Types . 680
Names . 680
Parameters . 681
Expressions . 682
Identifier Expressions . 685
Function Expressions . 686
Index Sets . 686

SYNTAX: OPTMODEL PROCEDURE . 687
Functional Summary . 688
PROC OPTMODEL Statement . 691
Declaration Statements . 694

CONSTRAINT Declaration . 694
MAX and MIN Objective Declarations 695
NUMBER, STRING, and SET Parameter Declarations 696
VAR Declaration . 700

Programming Statements . 701
Assignment Statement . 701
CALL Statement . 702
CLOSEFILE Statement . 702
CONTINUE Statement . 703
CREATE DATA Statement . 703
DO Statement . 708
DO Statement, Iterative . 708
DO UNTIL Statement . 710
DO WHILE Statement . 710
DROP Statement . 711

666 � Chapter 6. The OPTMODEL Procedure

EXPAND Statement . 711
FILE Statement . 713
FIX Statement . 715
FOR Statement . 716
IF Statement . 717
LEAVE Statement . 717
Null Statement . 718
PRINT Statement . 718
PUT Statement . 723
READ DATA Statement . 725
RESET OPTIONS Statement . 729
RESTORE Statement . 730
SAVE MPS Statement . 730
SAVE QPS Statement . 731
SOLVE Statement . 733
STOP Statement . 734
UNFIX Statement . 734

Macro Variable –OROPTMODEL– . 735

OPTMODEL EXPRESSION EXTENSIONS 736
AND Aggregation Expression . 736
CARD Function . 737
CROSS Expression . 737
DIFF Expression . 737
IF-THEN/ELSE Expression . 738
IN Expression . 739
Index Set Expression . 739
INTER Expression . 740
INTER Aggregation Expression . 740
MAX Aggregation Expression . 740
MIN Aggregation Expression . 741
OR Aggregation Expression . 741
PROD Aggregation Expression . 741
Range Expression . 742
Set Constructor Expression . 742
Set Literal Expression . 743
SETOF Aggregation Expression . 744
SLICE Expression . 744
SUM Aggregation Expression . 745
SYMDIFF Expression . 746
Tuple Expression . 746
UNION Expression . 746
UNION Aggregation Expression . 747
WITHIN Expression . 747

DETAILS: OPTMODEL PROCEDURE 748
Conditions of Optimality . 748
Data Set Input/Output . 751
Control Flow . 755

Formatted Output . 755
ODS Table and Variable Names . 758
Constraints . 763
Suffixes . 767
Integer Variable Suffixes . 770
Dual Values . 771
Reduced Costs . 776
Presolver . 777
Model Update . 778
OPTMODEL Options . 781
Automatic Differentiation . 782
Conversions . 784
More on Index Sets . 784
Memory Limit . 786

EXAMPLES: OPTMODEL PROCEDURE 787
Example 6.1. Matrix Square Root . 787
Example 6.2. Reading from and Creating a Data Set 788
Example 6.3. Model Construction . 790
Example 6.4. Set Manipulation . 795

REWRITING NLP MODELS FOR PROC OPTMODEL 797

REFERENCES . 805

668

Chapter 6
The OPTMODEL Procedure
Overview: OPTMODEL Procedure

The OPTMODEL procedure comprises the powerful OPTMODEL modeling lan-
guage and state-of-the-art solvers for several classes of mathematical programming
problems. The problems and their solvers are listed in Table 6.1.

Table 6.1. Solvers in PROC OPTMODEL
Problem Solver

Linear Programming LP
Mixed Integer Linear Programming MILP
Quadratic Programming QP (experimental)

Nonlinear Programming, Unconstrained NLPU
General Nonlinear Programming NLPC
General Nonlinear Programming SQP
General Nonlinear Programming IPNLP (experimental)

The OPTMODEL modeling language provides a modeling environment tailored to
building, solving, and maintaining optimization models. This makes the process of
translating the symbolic formulation of an optimization model into OPTMODEL vir-
tually transparent since the modeling language mimics the symbolic algebra of the
formulation as closely as possible. The OPTMODEL language also streamlines and
simplifies the critical process of populating optimization models with data from SAS
data sets. All of this transparency produces models that are more easily inspected
for completeness and correctness, more easily corrected, and more easily modified,
whether through structural changes or through the substitution of new data for old.

In addition to invoking optimization solvers directly with PROC OPTMODEL as
already mentioned, you can use the OPTMODEL language purely as a modeling
facility. You can save optimization models built with the OPTMODEL language in
SAS data sets that can be submitted to other optimization procedures in SAS/OR.
In general, the OPTMODEL language serves as a common point of access for many
of the optimization capabilities of SAS/OR, whether providing both modeling and
solver access or acting as a modeling interface for other optimization procedures.

For details and examples of the problems addressed and corresponding solvers, please
see the dedicated chapters in this book. This chapter aims to give you a compre-
hensive understanding of the OPTMODEL procedure by discussing the framework
provided by the OPTMODEL modeling language.

670 � Chapter 6. The OPTMODEL Procedure

The OPTMODEL modeling language features automatic differentiation, advanced
flow control, optimization-oriented syntax (parameters, variables, arrays, constraints,
objective functions), dynamic model generation, model-data separation, and trans-
parent access to SAS data sets.

Getting Started: OPTMODEL Procedure
Optimization or mathematical programming is a search for a maximum or minimum
of an objective function (also called a cost function), where search variables are re-
stricted to particular constraints. Constraints are said to define a feasible region (see
Figure 6.1).

feasible region

x ≥ −1

-1

feasible region

y ≥ x
2 − 2

Figure 6.1. Examples of Feasible Regions

A more rigorous general formulation of such problems is as follows.

Let

f : S → R

be a real-valued function. Find x∗ such that

• x∗ ∈ S

• f(x∗) ≤ f(x), ∀x ∈ S

Note that the formulation is for the minimum of f and that the maximum of f is
simply the negation of the minimum of −f .

Here, function f is the objective function, and the variable in the objective function
is called the optimization variable (or decision variable). S is the feasible region.
Typically S is a subset of the Euclidean space Rn specified by the set of constraints,
which are often a set of equalities (=) or inequalities (≤,≥) that every element in S is
required to satisfy simultaneously. For the special case where S = Rn, the problem
is an unconstrained optimization. An element x of S is called a feasible solution to
the optimization problem, and the value f(x) is called the objective value. A feasible
solution x∗ that minimizes the objective function is called an optimal solution to the
optimization problem, and the corresponding objective value is called the optimal
value.

An Unconstrained Optimization Example � 671

In mathematics, special notation is used to denote an optimization problem.
Generally, we can write an optimization problem as follows:

minimize f(x)

subject to x ∈ S

Normally, an empty body of constraint (the part after “subject to”) implies that the
optimization is unconstrained (i.e., the feasible region is the whole space Rn). The
optimal solution (x∗) is denoted as

x∗ = argmin
x∈S

f(x)

The optimal value (f(x∗)) is denoted as

f(x∗) = min
x∈S

f(x)

Optimization problems can be classified by the forms (linear, quadratic, nonlinear,
etc.) of the functions in the objective and constraints. For example, a problem is said
to be linearly constrained if the functions in the constraints are linear. A linear pro-
gramming problem is a linearly constrained problem with a linear objective function.
A nonlinear programming problem occurs where some function in the objective or
constraints is nonlinear, etc.

An Unconstrained Optimization Example
An unconstrained optimization problem formulation is simply

minimize f(x)

For example, suppose you wanted to find the minimum value of this polynomial:

z(x, y) = x2 − x− 2y − xy + y2

You can compactly specify and solve the optimization problem by using the
OPTMODEL modeling language. Here is the program:

/* invoke procedure */
proc optmodel;

var x, y; /* declare variables */

/* objective function */
min z=x**2 - x - 2*y - x*y + y**2;

/* now run the solver */
solve;

print x y;
quit;

672 � Chapter 6. The OPTMODEL Procedure

This program produces the output in Figure 6.2.

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver L-BFGS
Objective Function z
Solution Status Optimal
Objective Value -2.333333333
Iterations 2

Optimality Error 1.3718109E-7

x y

1.3333 1.6667

Figure 6.2. Optimizing a Simple Polynomial

In PROC OPTMODEL you specify the mathematical formulas that describe the be-
havior of the optimization problem that you want to solve. In the preceding example
there were two independent variables in the polynomial, x and y. These are the opti-
mization variables of the problem. In PROC OPTMODEL you declare optimization
variables with the VAR statement. The formula that defines the quantity that you are
seeking to optimize is called the objective function, or objective. The solver varies
the values of the optimization variables when searching for an optimal value for the
objective.

In the preceding example the objective function is named z, declared with the MIN
statement. The keyword MIN is an abbreviation for MINIMIZE. The expression that
follows the equal sign (=) in the MIN statement defines the function to be minimized
in terms of the optimization variables.

The Rosenbrock Problem � 673

The VAR and MIN statements are just two of the many available PROC OPTMODEL
declaration and programming statements. PROC OPTMODEL processes all such
statements interactively, meaning that each statement is processed as soon as it is
complete.

After PROC OPTMODEL has completed processing of declaration and programming
statements, it processes the SOLVE statement, which submits the problem to a solver
and prints a summary of the results. The PRINT statement displays the optimal values
of the optimization variables x and y found by the solver.

It is worth noting that PROC OPTMODEL does not use a RUN statement but instead
operates on an interactive basis throughout. You can continue to interact with PROC
OPTMODEL even after invoking a solver. For example, you could modify the prob-
lem and issue another SOLVE statement (see the section “Model Update” on page
778).

The Rosenbrock Problem

You can use parameters to produce a clear formulation of a problem. Consider the
Rosenbrock problem:

minimize f(x1, x2) = α (x2 − x2
1)

2 + (1− x1)2

where α = 100 is a parameter (constant), x1 and x2 are optimization variables (whose
values are to be determined), and f(x1, x2) is an objective function.

Here is a PROC OPTMODEL program that solves the Rosenbrock problem:

proc optmodel;

number alpha = 100; /* declare parameter */
var x {1..2}; /* declare variables */

/* objective function */
min f = alpha*(x[2] - x[1]**2)**2 +

(1 - x[1])**2;

/* now run the solver */
solve;

print x;
quit;

674 � Chapter 6. The OPTMODEL Procedure

The PROC OPTMODEL output is shown in Figure 6.3.

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver L-BFGS
Objective Function f
Solution Status Optimal
Objective Value 3.903434E-12
Iterations 8

Optimality Error 7.8875438E-6

[1] x

1 1
2 1

Figure 6.3. Rosenbrock Function Results

A Transportation Problem

You can easily translate the symbolic formulation of a problem into the OPTMODEL
procedure. Let’s consider the transportation problem, which is mathematically mod-
eled as the following linear programming problem:

minimize
∑

i∈O,j∈D

cijxij

subject to
∑
j∈D

xij = ai, ∀i ∈ O (SUPPLY)∑
i∈O

xij = bj , ∀j ∈ D (DEMAND)

xij ≥ 0, ∀(i, j) ∈ O ×D

A Transportation Problem � 675

where O is the set of origins, D is the set of destinations, cij is the cost to transport
one unit from i to j, ai is the supply of origin i, bj is the demand of destination j, and
xij is the decision variable for the amount of shipment from i to j.

Here is a very simple example. The cities in the set O of origins are Detroit and
Pittsburgh. The cities in the set D of destinations are Boston and New York. The cost
matrix, supply, and demand are shown in Table 6.2.

Table 6.2. A Transportation Problem

Boston New York Supply

Detroit 30 20 200

Pittsburgh 40 10 100

Demand 150 150

The problem is compactly and clearly formulated and solved by using the
OPTMODEL procedure with the following code:

proc optmodel;

/* specify parameters */
set O={’Detroit’,’Pittsburgh’};
set D={’Boston’,’New York’};
number c{O,D}=[30 20

40 10];
number a{O}=[200 100];
number b{D}=[150 150];

/* model description */
var x{O,D} >= 0;
min total_cost = sum{i in O, j in D}c[i,j]*x[i,j];
constraint supply{i in O}: sum{j in D}x[i,j]=a[i];
constraint demand{j in D}: sum{i in O}x[i,j]=b[j];

/* solve and output */
solve;
print x;

676 � Chapter 6. The OPTMODEL Procedure

The output is shown in Figure 6.4.

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function total_cost
Objective Type Linear

Number of Variables 4
Bounded Above 0
Bounded Below 4
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 4
Linear LE (<=) 0
Linear EQ (=) 4
Linear GE (>=) 0
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver Dual Simplex
Objective Function total_cost
Solution Status Optimal
Objective Value 6500
Iterations 0

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

x
New

Boston York

Detroit 150 50
Pittsburgh 0 100

Figure 6.4. Solution to the Transportation Problem

Named Parameters � 677

OPTMODEL Modeling Language: Basic
Concepts
As seen from the examples in the previous section, a PROC OPTMODEL model con-
sists of one or more declarations of variables, objectives, constraints, and parameters,
as well as possibly intermixed programming statements, which use the components
that are created by the declarations. The declarations define the mathematical form
of the problem to solve. The programming statements define data values, invoke the
solver, or print the results. This section describes some basic concepts, such as vari-
ables, indices, etc., which are used in the section “Syntax: OPTMODEL Procedure”
on page 687.

Named Parameters

In the example described in the section “An Unconstrained Optimization Example”
on page 671, all the numeric constants that describe the behavior of the objective
function were specified directly in the objective expression. This is a valid way to
formulate the objective expression. However, in many cases it is inconvenient to
specify the numeric constants directly. Direct specification of numeric constants can
also hide the structure of the problem that is being solved. The objective expression
text would need to be modified when the numeric values in the problem change. This
can be very inconvenient with large models.

In PROC OPTMODEL, you can create named numeric values that behave as con-
stants in expressions. These named values are called parameters. You can write an
expression by using mnemonic parameter names in place of numeric literals. This
produces a clearer formulation of the optimization problem. You can easily modify
the values of parameters, define them in terms of other parameters, or read them from
a SAS data set.

The model from this same example can be reformulated in a more general polynomial
form, as follows:

data coeff;
input c_xx c_x c_y c_xy c_yy;
datalines;
1 -1 -2 -1 1
;

proc optmodel;
var x, y;
number c_xx, c_x, c_y, c_xy, c_yy;
read data coeff into c_xx c_x c_y c_xy c_yy;
min z=c_xx*x**2 + c_x*x + c_y*y + c_xy*x*y + c_yy*y**2;
solve;

This code reads the coefficients from a data set, COEFF. The NUMBER statement
declares the parameters. The READ DATA statement reads the parameters from the
data set. You can apply this model easily to coefficients that you have generated by
various means.

678 � Chapter 6. The OPTMODEL Procedure

Indexing

Many models have large numbers of variables or parameters that can be categorized
into families of similar purpose or behavior. Such families of items can be compactly
represented in PROC OPTMODEL by using indexing. You can use indexing to assign
each item in such families to a separate value location.

PROC OPTMODEL indexing is similar to array indexing in the DATA step but more
flexible. Index values can be numbers or strings, and are not required to fit into
some rigid sequence. PROC OPTMODEL indexing is based on index sets, described
further in the section “Index Sets” on page 686. For example, the following code
declares an indexed parameter:

number p{1..3};

The construct that follows the parameter name p, “{1..3},” is a simple index set
that uses a range expression (see “Range Expression” on page 742). The index set
contains the numeric members 1, 2, and 3. The parameter has distinct value locations
for each of the index set members. The first such location is referenced as p[1], the
second as p[2], and the third as p[3].

The following code shows an example of indexing:

proc optmodel;
number p{1..3};
p[1]=5;
p[2]=7;
p[3]=9;
put p[*]=;

The preceding code produces a line like the one shown in Figure 6.5 in the log.

p[1]=5 p[2]=7 p[3]=9

Figure 6.5. Indexed Parameter Output

Index sets can also specify local dummy parameters. A dummy parameter can be used
as an operand in the expressions that are controlled by the index set. For example, the
assignment statements in the preceding code could be replaced by an initialization in
the parameter declaration, as follows:

number p{i in 1..3} init 3 + 2*i;

The initialization value of the parameter location p[1] is evaluated with the value
of the local dummy parameter i equal to 1. So the initialization expression 3 + 2*i

Indexing � 679

evaluates to 5. Similarly for location p[2], the value of i is 2 and the initialization
expression evaluates to 7.

The OPTMODEL modeling language supports aggregation operators that combine
values of an expression where a local dummy parameter (or parameters) ranges over
the members of a set. For example, the SUM aggregation operator combines expres-
sion values by adding them together. The following code outputs 21, since p[1] +
p[2] + p[3] = 5 + 7 + 9 = 21:

proc optmodel;
number p{i in 1..3} init 3 + 2*i;
put (sum{i in 1..3} p[i]);

Aggregation operators like SUM are especially useful in objective expressions be-
cause they can combine a large number of similar expressions into a compact repre-
sentation. As an example, the following code defines a trivial least squares problem:

proc optmodel;
number n init 100000;
var x{1..n};
min z = sum{i in 1..n}(x[i] - log(i))**2;
solve;

The objective function in this case is

z =
n∑

i=1

(xi − log i)2

Effectively, the objective expression expands to the following large expression:

min z = (x[1] - log(1))**2
+ (x[2] - log(2))**2
. . .
+ (x[99999] - log(99999))**2
+ (x[100000] - log(100000))**2;

Even though the problem has 100,000 variables, the aggregation operator SUM en-
ables a compact objective expression.

Note: PROC OPTMODEL classifies as mathematically impure any function that re-
turns a different value each time it is called. The RAND function, for example, falls
into this category. PROC OPTMODEL disallows impure functions inside array index
sets, objectives, and constraint expressions.

680 � Chapter 6. The OPTMODEL Procedure

Types

In PROC OPTMODEL, parameters and expressions can have numeric or character
values. These correspond to the elementary types named NUMBER and STRING,
respectively. The NUMBER type is the same as the SAS data set numeric type. The
NUMBER type includes support for missing values. The STRING type corresponds
to the SAS character type, except that strings can have lengths up to a maximum of
65,534 characters (versus 32,767 for SAS character-type variables). The NUMBER
and STRING types together are called the scalar types. You can abbreviate the type
names as NUM and STR, respectively.

PROC OPTMODEL also supports set types for parameters and expressions. Sets rep-
resent collections of values of a member type, which can be a NUMBER, a STRING,
or a vector of scalars (the latter is called a tuple and described in the following para-
graphs). Members of a set all have the same member type. Members that have the
same value are stored only once. For example, PROC OPTMODEL stores the set 2,
2, 2 as the set 2.

Specify a set of numbers with SET<NUMBER>. Similarly, specify a set of strings as
SET<STRING>.

A set can also contain a collection of tuples, all of the same fixed length. A tuple is an
ordered collection that contains a fixed number of elements. Each element in a tuple
contains a scalar value. In PROC OPTMODEL, tuples of length 1 are equivalent to
scalars. Two tuples have equal values if the elements at corresponding positions in
each tuple have the same value. Within a set of tuples, the element type at a particular
position in each tuple is the same for all set members. The element types are part of
the set type. For example, the following statement declares parts as a set of tuples
that have a string in the first element position and a number in the second element
position and then initializes its elements to be <R 1>, <R 2>, <C 1>, and <C 2>.

set<string,number> parts = /<R 1> <R 2> <C 1> <C 2>/;

To create a compact model, use sets to take advantage of the structure of the prob-
lem being modeled. For example, a model might contain various values that specify
attributes for each member of a group of suppliers. You could create a set that con-
tains members representing each supplier. You can then model the attribute values by
using arrays that are indexed by members of the set.

The section “Parameters” on page 681 has more details and examples.

Names

Names are used in the OPTMODEL modeling language to refer to various entities
such as parameters or variables. Names must follow the usual rules for SAS names.
Names can be up to 32 characters long and are not case sensitive. They must be
declared before they are used.

Avoid declarations with names that begin with an underscore (–). These names can
have special uses in PROC OPTMODEL.

Parameters � 681

Parameters
In the OPTMODEL modeling language, parameters are named locations that hold
constant values. Parameter declarations specify the parameter type followed by a list
of parameter names to declare. For example, the following code declares numeric
parameters named a and b:

number a, b;

Similarly, the following code declares a set s of strings, a set n of numbers, and a set
sn of tuples:

set<string> s;
set<number> n;
set<string, number> sn;

You can assign values to parameters in various ways. A parameter can be assigned a
value with an assignment statement. For example, the following statement assigns a
value to the parameter s, n, and sn in the preceding declaration:

s = {’a’, ’b’, ’c’};
n = {1, 2, 3};
sn = {<’a’,1>, <’b’,2>, <’c’,3>};

Parameter values can also be assigned using a READ DATA statement (see the section
“READ DATA Statement” on page 725).

A parameter declaration can provide an explicit value. To specify the value, follow
the parameter name with an equal sign (=) and an expression. The value expression
can be written in terms of other parameters. The declared parameter takes on a new
value each time a parameter that is used in the expression changes. This automatic
value update is shown in the following example:

proc optmodel;
number pi=4*atan(1);
number r;
number circum=2*pi*r;
r=1;
put circum; /* prints 6.2831853072 */
r=2;
put circum; /* prints 12.566370614 */

The automatic update of parameter values makes it easy to perform “what if” analysis
since, after the solver finds a solution, you can change parameters and reinvoke the
solver. You can easily examine the effects of the changes on the optimal values.

If you declare a set parameter that has only the SET type specifier, then the element
type is determined from the initialization expression. If the initialization expres-
sion is omitted or if the expression is an empty set, then the set type defaults to

682 � Chapter 6. The OPTMODEL Procedure

SET<NUMBER>. For example, the following code implicitly declares s1 as a set of
numbers:

set s1;

The following code declares s2 as a set of strings:

set s2 = {’A’};

You can declare an array parameter by following the parameter name with an index
set specification (see the section “Index Sets” on page 686). For example, declare an
array of 10 numbers as follows:

number c{1..10};

Individual locations of a parameter array can be referred to with an indexing expres-
sion. For example, you can refer to the third location of parameter c as c[3]. Array
index sets cannot be specified using a function such as RAND that returns a different
value each time it is called.

Parameter names must be declared before they are used. Nonarray names become
available at the end of the parameter declaration item. Array names become available
after the index set specification. The latter case permits some forms of recursion in
the optional initialization expression that can be supplied for a parameter.

You do not need to assign values to parameters before they are referenced. Most infor-
mation in PROC OPTMODEL is stored symbolically and resolved when necessary.
Values are resolved in certain statements. For example, PROC OPTMODEL resolves
a parameter used in the objective during the execution of a SOLVE statement. If no
value is available during resolution, then an error is diagnosed.

Expressions

Expressions are grouped into three categories based on the types of values they can
produce: logical, set, and scalar (i.e., numeric or character).

Logical expressions test for a Boolean (true or false) condition. As in the DATA step,
logical operators produce a value equal to either 0 or 1. A value of 0 represents a
false condition, while a value of 1 represents a true condition.

Logical expression operators are not allowed in certain contexts due to syntactic con-
siderations. For example, in the VAR statement a logical operator might indicate
the start of an option. Enclose a logical expression in parentheses to use it in such
contexts. The difference is illustrated by the output of the following code (Figure
6.6), where two variables, x and y, are declared with initial values. The PRINT state-
ment and the EXPAND statement are used to check the initial values and the variable
bounds, respectively.

Expressions � 683

proc optmodel;
var x init 0.5 >= 0 <= 1;
var y init (0.5 >= 0) <= 1;
print x y;
expand;

The OPTMODEL Procedure

x y

0.5 1
Var x >= 0 <= 1
Var y <= 1

Figure 6.6. Logical Expression in the VAR Statement

Contexts that expect a logical expression also accept numeric expressions. In such
cases zero or missing values are interpreted as false, while all nonzero nonmissing
numeric values are interpreted as true.

Set expressions return a set value. PROC OPTMODEL supports a number of op-
erators that create and manipulate sets. See the section “OPTMODEL Expression
Extensions” on page 736 for a description of the various set expressions. Index-set
syntax is described in the section “Index Sets” on page 686.

Scalar expressions are similar to the expressions in the DATA step except for PROC
OPTMODEL extensions. PROC OPTMODEL provides an IF expression (described
in the section “IF-THEN/ELSE Expression” on page 738). String lengths are as-
signed dynamically, so there is generally no padding or truncation of string values.

Table 6.3 shows the expression operators from lower to higher precedence (a higher
precedence is given a larger number). Operators that have higher precedences are
applied in compound expressions before operators that have lower precedence. The
table also gives the order of evaluation that is applied when multiple operators of the
same precedence are used together. Operators available in both PROC OPTMODEL
and the DATA step have compatible precedences, except that in PROC OPTMODEL
the NOT operator has a lower precedence than the relational operators. This means
that, for example, NOT 1 < 2 is equal to NOT (1 < 2) (which is 0), rather than
(NOT 1) < 2 (which is 1).

Table 6.3. Expression Operator Table

Precedence Associativity Operator Alternates

logic expression operators

1 left to right OR | !

2 unary OR{index-set}

AND{index-set}

3 left to right AND &

684 � Chapter 6. The OPTMODEL Procedure

Table 6.3. (continued)

Precedence Associativity Operator Alternates

4 unary NOT ˜ ˆ ¬
5 left to right < LT

> GT

<= LE

>= GE

= EQ

˜= NE ˆ= ¬=
6 left to right IN

NOT IN

7 left to right WITHIN

NOT WITHIN

set expression operators

11 IF l THEN s1 ELSE s2

12 left to right UNION

DIFF

SYMDIFF

13 unary UNION{index-set}

14 left to right INTER

15 unary INTER{index-set}

16 left to right CROSS

17 unary SETOF{index-set}

right to left .. TO

.. e BY TO e BY

scalar expression operators

21 IF l THEN e

IF l THEN e1 ELSE e2

22 left to right || !!

23 left to right + -

24 unary SUM{index-set}

PROD{index-set}

MIN{index-set}

MAX{index-set}

25 left to right * /

26 unary + -

right to left ><

Identifier Expressions � 685

Table 6.3. (continued)

Precedence Associativity Operator Alternates

<>

** ˆ

Primary expressions are the individual operands that are combined using the expres-
sion operators. Simple primary expressions can represent constants or named pa-
rameter and variable values. More complex primary expressions can be used to call
functions or construct sets.

Table 6.4. Primary Expression Table

Expression Description

identifier-expression parameter/variable reference; see the section
“Identifier Expressions” on page 685

name (arg-list) function call; arg-list is 0 or more expressions sepa-
rated by commas

n numeric constant

. or .c missing value constant

“string” or ‘string’ string constant

{ member-list } set constructor; member-list is 0 or more scalar ex-
pressions or tuple expressions separated by commas

{ index-set } index set expression; returns the set of all index set
members

/ member(s) / set literal expression; compactly specifies a simple
set value

(expression) expression enclosed in parentheses

< expr-list > tuple expression; used with set operations; contains
one or more scalar expressions separated by commas

Identifier Expressions

Use an identifier-expression to refer to a variable, objective, constraint, or parameter
location in expressions or initializations. This is the syntax for identifier-expressions:

name [[expression-1 [, . . . expression-n]]] [. suffix]

To refer to a location in an array, follow the array name with a list of scalar expres-
sions in square brackets ([]). The expression values are compared to the index set
that was used to declare name. If there is more than one expression, then the values
are formed into a tuple. The expression values for a valid array location must match a
member of the array’s index set. For example, the following code defines a parameter
array A that has two valid indices that match the tuples <1,2> and <3,4>:

686 � Chapter 6. The OPTMODEL Procedure

proc optmodel;
set<number, number> ISET = {<1,2>, <3,4>};
number A{ISET};
a[1,2] = 0; /* OK */
a[3,2] = 0; /* invalid index */

The first assignment is valid with this definition of the index set, but the second fails
because <3,2> is not a member of the set parameter ISET.

Specify a suffix to refer to auxiliary locations for variables or objectives. See the
section “Suffixes” on page 767 for more information.

Function Expressions

Most functions that can be invoked from the DATA step or the %SYSFUNC macro
can be used in PROC OPTMODEL expressions. Note that certain functions are spe-
cific to the DATA step and cannot be used in PROC OPTMODEL. Functions specific
to the DATA step include these:

• functions in the LAG/DIF/DIM families

• functions that access the DATA step program data vector

• functions that access symbol attributes

The CALL statement can invoke SAS library subroutines. These subroutines can read
and update the values of the parameters and variables that are used as arguments. See
the section “CALL Statement” on page 702 for an example.

Index Sets

An index set represents a set of combinations of members from the component set
expressions. The index set notation is used in PROC OPTMODEL to describe col-
lections of valid array indices and to specify sets of values with which to perform an
operation. Index sets can declare local dummy parameters and can further restrict the
set of combinations by a selection expression.

In { index-set }, the index-set consists of one or more index-set-items that are sep-
arated by commas. Each index-set-item can include local dummy parameter decla-
rations. An optional selection expression follows the list of index-set-items. This
syntax describes an index-set:

index-set-item [, . . . index-set-item] [: logic-expression]

Index-set-item has these forms:

set-expression

Syntax: OPTMODEL Procedure � 687

name IN set-expression

< name-1 [, . . . name-n] > IN set-expression

Names preceding the IN keyword in index-set-items declare local dummy parameter
names. Dummy parameters correspond to the dummy index variables in mathemati-
cal expressions. For example, the following code outputs the number 385:

proc optmodel;
put (sum{i in 1..10} i**2);

The preceding code evaluates this summation:

10∑
i=1

i2 = 385

In both the code and the summation the index name is i.

The last form of index-set-item in the list can be modified to use the SLICE expression
implicitly. See the section “More on Index Sets” on page 784 for details.

Array index sets cannot be defined using functions that return different values each
time the functions are called. See the section “Indexing” on page 678 for details.

Syntax: OPTMODEL Procedure
PROC OPTMODEL statements are divided into three categories: the PROC state-
ment, the declaration statements, and the programming statements. The PROC state-
ment invokes the procedure and sets initial option values. The declaration statements
declare optimization model components. The programming statements are used to
read and write data, invoke the solver, and print results. The statements are listed in
the order in which they appear in the following text, with declaration statements first.

Note: Solver specific options are described in the individual chapters corresponding
to the solvers.

PROC OPTMODEL options ;

Declaration Statements:
CONSTRAINT constraints ;
MAX objective ;
MIN objective ;
NUMBER parameter declarations ;
SET [< types >] parameter declarations ;
STRING parameter declarations ;
VAR variable declarations ;

Programming Statements:
parameter = expression ; (Assignment)

688 � Chapter 6. The OPTMODEL Procedure

CALL name [(expressions)] ;
CLOSEFILE files ;
CONTINUE ;
CREATE DATA SAS-data-set FROM columns ;
DO ; statements ; END ;
DO variable = specifications ; statements ; END ;
DO UNTIL (logic) ; statements ; END ;
DO WHILE (logic) ; statements ; END ;
DROP constraint ;
EXPAND name [/ options] ;
FILE file ;
FIX variable [= expression] ;
FOR { index set } statement ;
IF logic THEN statement ; [ELSE statement ;]
LEAVE ;
; (Null)
PRINT print items ;
PUT put items ;
READ DATA SAS-data-set INTO columns ;
RESET OPTIONS options ;
RESTORE constraint ;
SAVE MPS SAS-data-set ;
SAVE QPS SAS-data-set ;
SOLVE [WITH solver] [OBJECTIVE name] [/ options ;
STOP ;
UNFIX variable [= expression] ;

Functional Summary

The statements and options available with PROC OPTMODEL are summarized by
purpose in Table 6.5.

Table 6.5. Functional Summary

Description Statement Option

Declaration Statements:
declare constraint CONSTRAINT

declare maximization objective MAX

declare minimization objective MIN

declare number type parameter NUMBER

declare set type parameter SET

declare string type parameter STRING

declare optimization variables VAR

Functional Summary � 689

Description Statement Option

Programming Statements:
assign value to a variable or parameter =

invoke a library subroutine CALL

close opened file CLOSEFILE

terminate one iteration of a loop statement CONTINUE

create a new SAS data set and copy data into it
from PROC OPTMODEL parameters and vari-
ables

CREATE DATA

group a sequence of statements together as a sin-
gle statement

DO

execute statements repeatedly DO (iterative)

execute statements repeatedly until some condi-
tion is satisfied

DO UNTIL

execute statements repeatedly while some condi-
tion is satisfied

DO WHILE

ignore the specified constraint DROP

print the specified constraint, variable, or objec-
tive declaration expressions after expanding ag-
gregation operators, etc.

EXPAND

select a file for the PUT statement FILE

treat a variable as fixed in value FIX

execute statement repeatedly FOR

execute statement conditionally IF

terminate the execution of the entire loop body LEAVE

null statement ;

output string and numeric data PRINT

write text data to the current output file PUT

read data from a SAS data set into PROC
OPTMODEL parameters and variables

READ DATA

set PROC OPTMODEL option values or restore
them to their defaults

RESET OPTIONS

add constraint that was previously dropped back
into the model

RESTORE

save the structure and coefficients for a linear pro-
gramming model into a SAS data set

SAVE MPS

save the structure and coefficients for a quadratic
programming model into a SAS data set

SAVE QPS

invoke an OPTMODEL solver SOLVE

690 � Chapter 6. The OPTMODEL Procedure

Description Statement Option

halt the execution of all statements that contain it STOP

reverse the effect of FIX statement UNFIX

PROC OPTMODEL Options:
accuracy for nonlinear constraints PROC OPTMODEL CDIGITS=

the method used to approximate numeric deriva-
tives

PROC OPTMODEL FD=

accuracy for the objective function PROC OPTMODEL FDIGITS=

pass initial values for variables to solver PROC OPTMODEL INITVAR/NOINITVAR

tolerance for rounding the bounds on integer and
binary variables

PROC OPTMODEL INTFUZZ=

maximum length for MPS row and column labels PROC OPTMODEL MAXLABLEN=

check missing values PROC OPTMODEL MISSCHECK/NOMISSCHECK

number of digits to display PROC OPTMODEL PDIGITS=

adjust how two-dimensional array is displayed PROC OPTMODEL PMATRIX=

type of presolve performed by OPTMODEL pre-
solver

PROC OPTMODEL PRESOLVER=

tolerance enabling OPTMODEL presolver to re-
move slightly infeasible constraints

PROC OPTMODEL PRESTOL=

width to display numeric columns PROC OPTMODEL PWIDTH=

the smallest difference that is permitted by the
OPTMODEL presolver between the upper and
lower bounds of an unfixed variable

PROC OPTMODEL VARFUZZ=

PROC OPTMODEL Statement � 691

PROC OPTMODEL Statement

The PROC OPTMODEL statement invokes the OPTMODEL procedure. You can
specify options to control how the optimization model is processed and how results
are displayed. This is the syntax:

PROC OPTMODEL [option(s)];

The following options can appear in the PROC OPTMODEL statement (these options
can also be specified by the RESET statement).

CDIGITS=num
specifies the expected number of decimal digits of accuracy for nonlinear constraints.
The value can be fractional. PROC OPTMODEL uses this option to choose a step
length when numeric derivative approximations are required to evaluate the Jacobian
of nonlinear constraints. The default value depends on your operating environment.
It is assumed that constraint values are accurate to the limits of machine precision.

See the section “Automatic Differentiation” on page 782 for more information about
numeric derivative approximations.

FD=FORWARD|CENTRAL
selects the method used to approximate numeric derivatives when analytic derivatives
are unavailable. Most solvers require the derivatives of the objective and constraints.
The methods available are as follows:

FD=FORWARD use forward differences

FD=CENTRAL use central differences

The default value is FORWARD. See the section “Automatic Differentiation” on page
782 for more information about numeric derivative approximations.

FDIGITS=num
specifies the expected number of decimal digits of accuracy for the objective function.
The value can be fractional. PROC OPTMODEL uses the value to choose a step
length when numeric derivatives are required. The default value depends on your
operating environment. It is assumed that objective function values are accurate to
the limits of machine precision.

See the section “Automatic Differentiation” on page 782 for more information about
numeric derivative approximations.

INITVAR | NOINITVAR
selects whether or not to pass initial values for variables to the solver when the
SOLVE statement is executed. INITVAR enables the current variable values to be
passed. NOINITVAR causes the solver to be invoked without any specific initial
values for variables. The INITVAR option is the default.

Note that the LP and QP solvers always ignore initial values. The NLPU, NLPC,
SQP, and IPNLP solvers attempt to use specified initial values. The MILP solver
uses initial values only if the PRIMALIN option is specified.

692 � Chapter 6. The OPTMODEL Procedure

INTFUZZ=num
specifies the tolerance for rounding the bounds on integer and binary variables to
integer values. Bounds that differ from an integer by at most num are rounded to that
integer. Otherwise lower bounds are rounded up to the next greater integer and upper
bounds are rounded down to the next lesser integer. The value of num can range
between 0 and 0.5. The default value is 0.00001.

MAXLABLEN=num
specifies the maximum length for MPS row and column labels. The allowed range is
8 to 256, with 32 as the default. This option can also be used to control the length
of row and column names displayed by solvers, such as those found in the LP solver
iteration log.

MISSCHECK | NOMISSCHECK
enables detailed checking of missing values in expressions. MISSCHECK requests
that a message be produced each time PROC OPTMODEL evaluates an arithmetic
operation or built-in function that has missing value operands (except when the oper-
ation or function specifically supports missing values). The MISSCHECK option
can increase processing time. NOMISSCHECK turns off this detailed reporting.
NOMISSCHECK is the default.

PDIGITS=num
requests that the PRINT statement display num significant digits for numeric columns
for which no format is specified. The value can range from 1 to 9. The default is 5.

PMATRIX=num
adjusts the density evaluation of a two-dimensional array to affect how it is displayed.
The value num scales the total number of nonempty array elements and is used by the
PRINT statement to evaluate whether a two-dimensional array is “sparse” or “dense.”
Tables containing a single two-dimensional array are printed in list form if they are
sparse and in matrix form if they are dense. Any nonnegative value can be assigned
to num; the default value is 1. Specifying values for the PMATRIX= option less than
1 causes the list form to be used in more cases, while specifying values greater than 1
causes the matrix form to be used in more cases. If the value is 0, then the list form is
always used. See the section “PRINT Statement” on page 718 for more information.

PRESOLVER=option
PRESOLVER=num

specifies a presolve option or its corresponding value num, as listed in Table 6.6.

Table 6.6. Values for the PRESOLVER= Option

Number Option Description

–1 AUTOMATIC Apply presolver using default setting.

0 NONE Disable presolver.

1 BASIC Perform minimal processing, only substituting
fixed variables and removing empty feasible con-
straints.

2 MODERATE Apply a higher level of presolve processing.

PROC OPTMODEL Statement � 693

Table 6.6. (continued)

Number Option Description

3 AGGRESSIVE Apply the highest level of presolve processing.

The OPTMODEL presolver tightens variable bounds and eliminates redundant con-
straints. In general, this improves the performance of any solver. The AUTOMATIC
option is intermediate between the MODERATE and AGGRESSIVE levels.

PRESTOL=num
provides a tolerance so that slightly infeasible constraints can be eliminated by the
OPTMODEL presolver. If the magnitude of the infeasibility is no greater than
num(|X|+1), where X is the value of the original bound, then the empty constraint is
removed from the presolved problem. OPTMODEL’s presolver does not print mes-
sages about infeasible constraints and variable bounds when the infeasibilty is within
the PRESTOL tolerance. The value of PRESTOL can range between 0 and 0.1; the
default value is 1E−12.

PRINTLEVEL=num
controls the level of listing output during a SOLVE command. The Output Delivery
System (ODS) tables printed at each level are listed in Table 6.7. Some solvers can
produce additional tables; see the individual solver chapters for more information.

Table 6.7. Values for the PRINTLEVEL= Option

Number Description

0 Disable all tables.

1 Print Problem Summary and Solution Summary.

2 Print Problem Summary, Solution Summary,
Methods of Derivative Computation (for NLP
solvers), Solver Options, Optimization Statistics
and solver-specific ODS tables.

For more details about the ODS tables produced by PROC OPTMODEL, see the
section “ODS Table and Variable Names” on page 758.

PWIDTH=num
sets the width used by the PRINT statement to display numeric columns when no
format is specified. The smallest value num can take is the value of the PDIGITS=
option plus 7; the largest value num can take is 16. The default value is equal to the
value of the PDIGITS= option plus 7.

VARFUZZ=num
specifies the smallest difference that is permitted by the OPTMODEL presolver be-
tween the upper and lower bounds of an unfixed variable. If the difference is smaller
than num, then the variable is fixed to the average of the upper and lower bounds

694 � Chapter 6. The OPTMODEL Procedure

before it is presented to the solver. Any nonnegative value can be assigned to num;
the default value is 0.

Declaration Statements

The declaration statements define the parameters, variables, constraints, and objec-
tives that describe a PROC OPTMODEL optimization model. Declarations in the
PROC OPTMODEL input are saved for later use. Unlike programming statements,
declarations cannot be nested in other statements. Declaration statements are termi-
nated by a semicolon.

Many declaration attributes, such as variable bounds, are defined using expressions.
Expressions in declarations are handled symbolically and are resolved as needed. In
particular, expressions are generally reevaluated when one of the parameter values
they use has been changed.

CONSTRAINT Declaration

CONSTRAINT constraint [, . . . constraint] ;

CON constraint [, . . . constraint] ;

The constraint declaration defines one or more constraints on expressions in terms
of the optimization variables. You can specify multiple constraint declaration state-
ments.

Constraints can have an upper bound, a lower bound, or both bounds. The allowed
forms are as follows:

[name [{ index-set }] :] expression = expression
declares an equality constraint or, when an index-set is specified, a
family of equality constraints. The solver attempts to assign values
to the optimization variables to make the two expressions equal.

[name [{ index-set }] :] expression relation expression
declares an inequality constraint that has a single upper or lower
bound. When an index-set is specified, this declares a family of in-
equality constraints. Relation is the <= or >= operator. The solver
tries to assign optimization variable values so that the left expres-
sion has a value less than or equal to (respectively, greater than or
equal to) the right expression value.

[name [{ index-set }] :] bound relation body relation bound
declares an inequality constraint that is bounded on both sides, or
range constraint. When an index-set is specified, this declares a
family of range constraints. Relation is the <= or >= operator. The
same operator must be used in both positions. The first bound ex-
pression defines the lower bound (respectively, upper bound). The
second bound expression defines the upper bound (respectively,
lower bound). The solver tries to assign optimization variables so
that the value of the body expression is in the range between the
upper and lower bounds.

Declaration Statements � 695

Name defines the name for the constraint. Use the name to reference constraint at-
tributes, such as the bounds, elsewhere in the PROC OPTMODEL model. If no name
is provided, then a default name is created of the form –ACON–[n], where n is an
integer. See the section “Constraints” on page 763 for more information.

Here is a simple example that defines a constraint with a lower bound:

proc optmodel;
var x, y;
number low;
con a: x+y >= low;

The following example adds an upper bound:

var x, y;
number low;
con a: low <= x+y <= low+10;

Indexed families of constraints can be defined by specifying an index-set after the
name. Any dummy parameters that are declared in the index-set can be referenced in
the expressions that define the constraint. A particular member of a indexed family
can be specified using an identifier-expression with a bracketed index list, in the same
fashion as array parameters and variables. For example, the following code creates
an indexed family of constraints named incr:

proc optmodel;
number n;
var x{1..n}
/* require nondecreasing x values */
con incr{i in 1..n-1}: x[i+1] >= x[i];

The CON statement in the example creates constraints incr[1] through incr[n−1].

Constraint expressions cannot be defined using functions that return different values
each time they are called. See the section “Indexing” on page 678 for details.

MAX and MIN Objective Declarations

MAX name = expression ;

MIN name = expression ;

The MAX or MIN declaration specifies an objective for the solver. The name names
the objective function for later reference. The solver maximizes an objective spec-
ified with the MAX keyword and minimizes an objective specified with the MIN
keyword. An objective is not allowed to have the same name as a parameter or vari-
able. Multiple objectives are permitted, but the solver processes only one objective at
a time.

Expression specifies the numeric function to maximize or minimize in terms of the
optimization variables.

696 � Chapter 6. The OPTMODEL Procedure

When used in an expression, an objective name refers to the current value of the
named objective function. The value of unsuffixed objective names can depend on
the value of optimization variables, so objective names cannot be used in constant
expressions such as variable bounds. You can reference objective names in objective
or constraint expressions. For example, the following code declares two objective
names, q and l, which are immediately referred to in the objective declaration of z
and the declarations of the constraints.

proc optmodel;
var x, y;
min q=(x+y)**2;
max l=x+2*y;
min z=q+l;
con c1: q<=4;
con c2: l>=2;

Objectives cannot be defined using functions that return different values each time
they are called. See the section “Indexing” on page 678 for details.

NUMBER, STRING, and SET Parameter Declarations

NUMBER parameter-decl [, . . . parameter-decl] ;

STRING parameter-decl [, . . . parameter-decl] ;

SET [<scalar-type, . . . scalar-type >] parameter-decl [, . . . parameter-
decl] ;

Parameters provide names for constants. Parameters are declared by specifying the
parameter type followed by a list of parameter names. Declarations of parameters
that have NUMBER or STRING types start with a scalar-type specification:

NUMBER | NUM

STRING | STR

The NUM and STR keywords are abbreviations for the NUMBER and STRING key-
words, respectively.

The declaration of a parameter that has the set type begins with a set-type specifica-
tion:

SET [<scalar-type, . . . scalar-type >]

In a set-type declaration, the SET keyword is followed by a list of scalar-type items
that specify the member type. A set with scalar members is specified with a single
scalar-type item. A set with tuple members has a scalar-type item for each tuple ele-
ment. The scalar-type items specify the types of the elements at each tuple position.

If the SET keyword is not followed by a list of scalar-type items, then the set type is
determined from the type of the initialization expression. The declared type defaults
to SET<NUMBER> if no initialization expression is given or if the expression type
cannot be determined.

Declaration Statements � 697

For any parameter type, the type declaration is followed by a list of parameter-decl
items that specify the names of the parameters to declare. In a parameter-decl item
the parameter name can be followed by an optional index specification and any nec-
essary options, as follows:

name [{ index-set }] [parameter-option(s)]

The parameter name and index-set can be followed by a list of parameter-options.
Dummy parameters declared in the index-set can be used in the parameter-options.
The parameter options can be specified with the following forms:

= expression
This option provides an explicit value for each parameter location.
In this case the parameter acts like an alias for the expression value.

INIT expression
This option specifies a default value that is used when a param-
eter value is required but no other value has been supplied. For
example:

number n init 1;
set s init {’a’, ’b’, ’c’};

PROC OPTMODEL evaluates the expression for each parameter
location the first time the parameter needs to be resolved. The ex-
pression is not used when the parameter already has a value.

= [initializer(s)]
This option provides a compact means to define the values for an
array, in which each array location value can be individually spec-
ified by the initializers.

The =expression parameter option defines a parameter value by using a formula. The
formula can refer to other parameters. The parameter value is updated when the ref-
erenced parameters change. The following example shows the effects of the update:

proc optmodel;
number n;
set<number> s = 1..n;
number a{s};
n = 3;
a[1] = 2; /* OK */
a[7] = 19; /* error, 7 is not in s */
n = 10;
a[7] = 19; /* OK now */

In the preceding example the value of set s is resolved for each use of array a that has
an index. For the first use of a[7], the value 7 is not a member of the set s. However,
the value 7 is a member of s at the second use of a[7].

The INIT expression parameter option specifies a default value for a parameter. The
following example shows the usage of this option:

698 � Chapter 6. The OPTMODEL Procedure

proc optmodel;
num a{i in 1..2} init i**2;
a[1] = 2;
put a[*]=;

When the value of a parameter is needed but no other value has been supplied, the
default value specified by INIT expression is used, as shown in Figure 6.7.

a[1]=2 a[2]=4

Figure 6.7. INIT Option: Output

Note: Parameter values can also be read from files or specified with assignment state-
ments. However, the value of a parameter that is assigned with the =expression or
=[initializer(s)] forms can be changed only by modifying the parameters used in the
defining expressions. Parameter values specified by the INIT option can be reassigned
freely.

Initializing Arrays

Arrays can be initialized with the =[initializer(s)] form. This form is convenient when
array location values need to be individually specified. This form of initialization is
used in the following code:

proc optmodel;
number a{1..3} = [5 4 7];
put a[*]=;

Each array location receives a different value, as shown in Figure 6.8.

a[1]=5 a[2]=4 a[3]=7

Figure 6.8. Array Initialization

Each initializer takes the following form:

[[index]] value

The value specifies the value of an array location and can be a numeric or string
constant, a set literal, or an expression enclosed in parentheses.

In array initializers, string constants can be specified using quoted strings. When the
string text follows the rules for a SAS name, the text can also be specified without
quotation marks. String constants that begin with a digit, contain blanks, or contain
other special characters must be specified with a quoted string.

Declaration Statements � 699

As an example, the following code defines an array parameter that could be used to
map numeric days of the week to text strings:

proc optmodel;
string dn{1..5} =

[Monday Tuesday Wednesday Thursday Friday];

The optional index in square brackets specifies the index of the array location to ini-
tialize. The index specifies one or more numeric or string subscripts. The subscripts
allow the same syntactic forms as the value items. Commas can be used to separate
index subscripts. For example, location a[1,’abc’] of an array a could be specified
with the index [1 abc]. The following example initializes just the diagonal locations
in a square array:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [2 2] 0.2 [3 3] 0.3];

An index does not need to specify all the subscripts of an array location. If the index
begins with a comma, then only the right-most subscripts of the index need to be
specified. The preceding subscripts are supplied from the index that was used by the
preceding initializer. This can simplify the initialization of arrays that are indexed
by multiple subscripts. For example, you can add new entries to the matrix of the
previous example by using the following code:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [,3] 1

[2 2] 0.2 [,3] 2
[3 3] 0.3];

The spacing shows the layout of the example array. The previous example was up-
dated by initializing two more values at m[1,3] and m[2,3].

If an index is omitted, then the next location in the order of the array’s index set is
initialized. If the index set has multiple index-set-items, then the rightmost indices are
updated before indices to the left are updated. At the beginning of the initializer list,
this is the first member of the index set. The index set must use a range expression to
avoid unpredictable results when an index value is omitted.

The initializers can be followed by commas. The use of commas has no effect on
the initialization. The comma can be used to clarify layout. For example, the comma
could separate rows in a matrix.

Not every array location needs to be initialized. The locations without an explicit
initializer are set to zero for numeric arrays, set to an empty string for string arrays,
and set to an empty set for set arrays.

Note: An array location must not be initialized more than once during the processing
of the initializer list.

700 � Chapter 6. The OPTMODEL Procedure

VAR Declaration

VAR var-decl [, . . . var-decl] ;

The VAR statement declares one or more optimization variables. Multiple VAR state-
ments are permitted. A variable is not allowed to have the same name as a parameter
or constraint.

Each var-decl specifies a variable name. The name can be followed by an array index-
set specification and then variable options. Dummy parameters declared in the index
set specification can be used in the following variable options.

Here is the syntax for a var-decl:

name [{ index-set }] [var-option(s)]

For example, the following code declares a group of 100 variables, x[1]–x[100]:

proc optmodel;
var x{1..100};

Here are the available variable options:

INIT expression
sets an initial value for the variable. The expression is used only
the first time the value is required. If no initial value is specified,
then 0 is used by default.

>= expression
sets a lower bound for the variable value. The default lower bound
is −∞.

<= expression
sets an upper bound for the variable value. The default upper bound
is ∞.

INTEGER
requests that the solver assign the variable an integer value.

BINARY
requests that the solver assign the variable a value of either 0 or 1.

For example, the following code declares a variable that has an initial value of 0.5.
The variable is bounded between 0 and 1:

proc optmodel;
var x init 0.5 >= 0 <= 1;

The values of the bounds can be determined later by using suffixed references to the
variable. For example, the upper bound for variable x can be referred to as x.ub. In
addition the bounds options can be overridden by explicit assignment to the suffixed
variable name. Suffixes are described further in the section “Suffixes” on page 767.

Programming Statements � 701

When used in an expression, an unsuffixed variable name refers to the current value
of the variable. Unsuffixed variables are not allowed in the expressions for options
that define variable bounds or initial values. Such expressions have values that must
be fixed during execution of the solver.

Programming Statements

PROC OPTMODEL supports several programming statements. You can perform
various actions with these statements, such as reading or writing data sets, setting
parameter values, generating text output, or invoking a solver.

Statements are read from the input and are executed immediately when complete.
Note that certain statements can contain one or more substatements. The execution of
substatements is held until the statements that contain them are submitted. Parameter
values that are used by expressions in programming statements are resolved when
the statement is executed. Note that this resolution might cause errors to be detected.
For example, the use of undefined parameters is detected during resolution of the
symbolic expressions from declarations.

A statement is terminated by a semicolon. The positions at which semicolons are
placed are shown explicitly in the following statement syntax descriptions.

The programming statements can be grouped into these categories:

Control Looping General Input/Output Model

DO CONTINUE Assignment CLOSEFILE DROP

IF FOR CALL CREATE DATA EXPAND

Null (;) DO Iterative RESET OPTIONS FILE FIX

STOP DO UNTIL PRINT RESTORE

DO WHILE PUT SOLVE

LEAVE READ DATA UNFIX

SAVE MPS

SAVE QPS

Assignment Statement

identifier-expression = expression ;

The assignment statement assigns a variable or parameter value. The type of the
target identifier-expression must match the type of the right-hand-side expression.

For example, the following code sets the current value for variable x to 3:

702 � Chapter 6. The OPTMODEL Procedure

proc optmodel;
var x;
x = 3;

Note: Parameters that were declared with the equal sign (=) initialization forms must
not be reassigned a value with an assignment statement. If this occurs, PROC
OPTMODEL reports an error.

CALL Statement

CALL name (argument-1 [, . . . argument-n]) ;

The CALL statement invokes the named library subroutine. The values that are deter-
mined for each argument expression are passed to the subroutine when the subroutine
is invoked. The subroutine can update the values of PROC OPTMODEL parameters
and variables when an argument is an identifier-expression (see the section “Identifier
Expressions” on page 685). For example, the following code sets the parameter array
a to a random permutation of 1 to 4:

proc optmodel;
number a{i in 1..4} init i;
number seed init -1;
call ranperm(seed, a[1], a[2], a[3], a[4]);

See Chapter 4, “Functions and CALL Routines,” in SAS Language Reference:
Dictionary for a list of CALL routines.

CLOSEFILE Statement

CLOSEFILE file-specification(s) ;

The CLOSEFILE statement closes files that were opened by the FILE statement.
Each file is specified by a logical name, a physical filename in quotation marks, or
an expression enclosed in parentheses that evaluates to a physical filename. See the
section “FILE Statement” on page 713 for more information about file specifications.

The following example shows how the CLOSEFILE statement is used with a logical
filename:

filename greet ’hello.txt’;
proc optmodel;

file greet;
put ’Hi!’;
closefile greet;

Generally you must close a file with a CLOSEFILE statement before external pro-
grams can access the file. However, any open files are automatically closed when
PROC OPTMODEL terminates.

Programming Statements � 703

CONTINUE Statement

CONTINUE ;

The CONTINUE statement terminates the current iteration of the loop statement
(iterative DO, DO UNTIL, DO WHILE, or FOR) that immediately contains the
CONTINUE statement. Execution resumes at the start of the loop after checking
WHILE or UNTIL tests. The FOR or iterative DO loops apply new iteration values.

CREATE DATA Statement

CREATE DATA SAS-data-set FROM [[key-column(s)] [=key-set]]
column(s) ;

The CREATE DATA statement creates a new SAS data set and copies data into it
from PROC OPTMODEL parameters and variables. The CREATE DATA statement
can create a data set with a single observation or a data set with observations for
every location in one or more arrays. The data set is closed after the execution of the
CREATE DATA statement.

The arguments to the CREATE DATA statement are as follows:

SAS-data-set
specifies the output data set name and options.

key-column(s)
declares index values and their corresponding data set variables.
The values are used to index array locations in column(s).

key-set
specifies a set of index values for the key-column(s).

column(s)
specifies data set variables as well as the PROC OPTMODEL
source data for the variables.

Each column or key-column defines output data set variables and a data source for a
column. For example, the following code generates the output SAS data set resdata
from the PROC OPTMODEL array opt, which is indexed by the set indset:

create data resdata from [solns]=indset opt;

The output data set variable solns contains the index elements in indset.

Columns

Column(s) can have the following forms:

704 � Chapter 6. The OPTMODEL Procedure

identifier-expression
transfers data from the PROC OPTMODEL parameter or variable
specified by the identifier-expression. The output data set variable
has the same name as the name part of the identifier-expression (see
the section “Identifier Expressions” on page 685). If the identifier-
expression refers to an array, then the index can be omitted when it
matches the key-column(s). The following example creates a data
set with the variables m and n:

proc optmodel;
number m = 7, n = 5;
create data example from m n;

name = expression
transfers the value of a PROC OPTMODEL expression to the out-
put data set variable name. The expression is reevaluated for each
observation. If the expression contains any operators or function
calls, then it must be enclosed in parentheses. If the expression is
an identifier-expression that refers to an array, then the index can
be omitted if it matches the key-column(s). The following example
creates a data set with the variable ratio:

proc optmodel;
number m = 7, n = 5;
create data example from ratio=(m/n);

COL(name-expression) = expression
transfers the value of a PROC OPTMODEL expression to the
output data set variable named by the string expression name-
expression. The PROC OPTMODEL expression is reevaluated for
each observation. If this expression contains any operators or func-
tion calls, then it must be enclosed in parentheses. If the PROC
OPTMODEL expression is an identifier-expression that refers to an
array, then the index can be omitted if it matches the key-column(s).
The following example uses the COL expression to form the vari-
able s5:

proc optmodel;
number m = 7, n = 5;
create data example from col("s"||n)=(m+n);

{ index-set } < column(s) >
performs the transfers by iterating each column specified by <col-
umn(s)> for each member of the index set. If there are n columns
and m index set members, then n×m columns are generated. The
dummy parameters from the index set can be used in the columns
to generate distinct output data set variable names in the iterated
columns, using COL expressions. The columns are expanded when

Programming Statements � 705

the CREATE DATA statement is executed, before any output is per-
formed. This form of column(s) cannot be nested. In other words,
the following form of column(s) is NOT allowed:

{ index-set } < { index-set } < column(s) > >

The following example demonstrates the use of the iterated col-
umn(s) form:

proc optmodel;
set<string> alph = {’a’, ’b’, ’c’};
var x{1..3, alph} init 2;
create data example from [i]=(1..3)

{j in alph}<col("x"||j)=x[i,j]>;

The data set created by this code is shown in Figure 6.9.

Obs i xa xb xc

1 1 2 2 2
2 2 2 2 2
3 3 2 2 2

Figure 6.9. CREATE DATA with COL Expression

Note: When no key-column(s) are specified, the output data set has a single observa-
tion.

The following code incorporates several of the preceding examples to create and print
a data set by using PROC OPTMODEL parameters:

proc optmodel;
number m = 7, n = 5;
create data example from m n ratio=(m/n) col("s"||n)=(m+n);

proc print;
run;

The output from the PRINT procedure is shown in Figure 6.10.

Obs m n ratio s5

1 7 5 1.4 12

Figure 6.10. CREATE DATA for Single Observation

706 � Chapter 6. The OPTMODEL Procedure

Key columns

Key-column(s) declare index values that enable multiple observations to be written
from array column(s). An observation is created for each unique index value com-
bination. The index values supply the index for array column(s) that do not have an
explicit index.

Key-column(s) define the data set variables where the index value elements are writ-
ten. They can also declare local dummy parameters for use in expressions in the col-
umn(s). Key-column(s) are syntactically similar to column(s), but are more restricted
in form. The following forms of key-column(s) are allowed:

name
transfers an index element value to the data set variable name. A
local dummy parameter, name, is declared to hold the index ele-
ment value.

COL(name-expression) [= index-name]
transfers an index element value to the data set variable named by
the string-valued name-expression. Index-name optionally declares
a local dummy parameter to hold the index element value.

A key-set in the CREATE DATA statement explicitly specifies the set of index values.
Key-set can be specified as a set expression, although it must be enclosed in paren-
theses if it contains any function calls or operators. Key-set can also be specified as
an index set expression, in which case the index-set dummy parameters override any
dummy parameters that are declared in the key-column(s) items. The following code
creates a data set from the PROC OPTMODEL parameter m, a matrix whose only
nonzero entries are located at (1, 1) and (4, 1):

proc optmodel;
number m{1..5, 1..3} = [[1 1] 1 [4 1] 1];
create data example

from [i j] = {setof{i in 1..2}<i**2>, {1, 2}} m;
proc print data=example noobs;

run;

The dummy parameter i in the SETOF expression takes precedence over the dummy
parameter i declared in the key-column(s) item. The output from this code is shown
in Figure 6.11.

i j m

1 1 1
1 2 0
4 1 1
4 2 0

Figure 6.11. CREATE: Key-set with SETOF Aggregation Expression

Programming Statements � 707

If no key-set is specified, then the set of index values is formed from the union of
the index sets of the implicitly indexed column(s). The number of index elements
for each implicitly indexed array must match the number of key-column(s). The type
of each index element (string versus numeric) must match the element of the same
position in other implicit indices.

The arrays for implicitly indexed columns in a CREATE DATA statement do not need
to have identical index sets. A missing value is supplied for the value of an implicitly
indexed array location when the implied index value is not in the array’s index set.

In the following code, the key-set is unspecified. The set of index values is {1, 2, 3},
which is the union of the index sets of x and y. These index sets are not identical,
so missing values are supplied when necessary. The results of this code are shown in
Figure 6.12.

proc optmodel;
number x{1..2} init 2;
var y{2..3} init 3;
create data exdata from [keycol] x y;

proc print;
run;

Obs keycol x y

1 1 2 .
2 2 2 3
3 3 . 3

Figure 6.12. CREATE: Unspecified Key-set

The types of the output data set variables match the types of the source values. The
output variable type for a key-column(s) matches the corresponding element type in
the index value tuple. A numeric element matches a NUMERIC data set variable,
while a string element matches a CHAR variable. For regular column(s) the source
expression type determines the output data set variable type. A numeric expression
produces a NUMERIC variable, while a string expression produces a CHAR variable.

Lengths of character variables in the output data set are determined automatically.
The length is set to accommodate the longest string value output in that column.

You can use the iterated column(s) form to output selected rows of multiple arrays, as-
signing a different data set variable to each column. For example, the following code
outputs the last two rows of the two-dimensional array, a, along with corresponding
elements of the one-dimensional array, b:

proc optmodel;
num m = 3; /* number of rows/observations */
num n = 4; /* number of columns in a */
num a{i in 1..m, j in 1..n} = i*j; /* compute a */

708 � Chapter 6. The OPTMODEL Procedure

num b{i in 1..m} = i**2; /* compute b */
set<num> subset = 2..m; /* used to omit first row */
create data out

from [i]=subset {j in 1..n}<col("a"||j)=a[i,j]> b;

To specify the data set to be created, the CREATE DATA statement uses the form
key-column(s) {index set}<column(s)> column(s). The preceding code creates a data
set out, which has m− 1 observations and n + 2 variables. The variables are named
i, a1 through an, and b, as shown in Figure 6.13.

Obs i a1 a2 a3 a4 b

1 2 2 4 6 8 4
2 3 3 6 9 12 9

Figure 6.13. CREATE DATA Set: The Iterated Column Form

See the section “Data Set Input/Output” on page 751 for more examples of using the
CREATE DATA statement.

DO Statement

DO ; statement(s) ; END ;

The DO statement groups a sequence of statements together as a single statement.
Each statement within the list is executed sequentially. The DO statement can be
used for grouping with the IF and FOR statements.

DO Statement, Iterative

DO name = specification-1 [, . . . specification-n] ; statement(s) ; END ;

The iterative DO statement assigns the values from the sequence of specification
items to a previously declared parameter or variable, name. The specified statement
sequence is executed after each assignment. This statement corresponds to the itera-
tive DO statement of the DATA step.

Each specification provides either a single number or a single string value, or a se-
quence of such values. Each specification takes the following form:

expression [WHILE(logic-expression) | UNTIL(logic-expression)]

The expression in the specification provides a single value or set of values to assign
to the target name. Multiple values can be provided for the loop by giving multiple
specification items that are separated by commas. For example, the following code
outputs the values 1, 3, and 5:

proc optmodel;
number i;
do i=1,3,5;

put i;
end;

Programming Statements � 709

The same effect can be achieved with a single range expression in place of the explicit
list of values, as in the following code:

proc optmodel;
number i;
do i=1 to 5 by 2;

put ’value of i assigned by the DO loop = ’ i;
i=i**2;
put ’value of i assigned in the body of the loop = ’ i;

end;

The output of this code is shown in Figure 6.14.

value of i assigned by the DO loop = 1
value of i assigned in the body of the loop = 1
value of i assigned by the DO loop = 3
value of i assigned in the body of the loop = 9
value of i assigned by the DO loop = 5
value of i assigned in the body of the loop = 25

Figure 6.14. DO Loop: Name Parameter Unaffected

Note that unlike the DATA step, a range expression requires the limit to be specified.
Additionally the BY part, if any, must follow the limit expression. Moreover, while
the name parameter can be reassigned in the body of the loop, the sequence of values
that is assigned by the DO loop is unaffected.

Expression can also be an expression that returns a set of numbers or strings. For
example, the following code produces the same output as the previous code but uses
a set parameter value:

proc optmodel;
set s = {1,3,5};
number i;
do i = s;

put i;
end;

Each specification can include a WHILE or UNTIL clause. A WHILE or UNTIL
clause applies to the expression that immediately precedes the clause. The sequence
that is specified by an expression can be terminated early by a WHILE or UNTIL
clause. A WHILE logic-expression is evaluated for each sequence value before the
nested statements. If the logic-expression returns a false (zero or missing) value,
then the current sequence is terminated immediately. An UNTIL logic-expression is
evaluated for each sequence value after the nested statements. The sequence from the
current specification is terminated if the logic-expression returns a true value (non-
zero and nonmissing). After early termination of a sequence due to a WHILE or
UNTIL expression, the DO loop execution continues with the next specification, if
any.

710 � Chapter 6. The OPTMODEL Procedure

To demonstrate use of the WHILE clause, the following code outputs the values 1, 2,
and 3. In this case the sequence of values from the set s is stopped when the value of
i reaches 4.

proc optmodel;
set s = {1,2,3,4,5};
number i;
do i = s while(i NE 4);

put i;
end;

DO UNTIL Statement
DO UNTIL (logic-expression) ; statement(s) ; END ;

The DO UNTIL loop executes the specified sequence of statements repeatedly until
the logic-expression, evaluated after the statements, returns true (a nonmissing non-
zero value).

For example, the following code outputs the values 1 and 2:

proc optmodel;
number i;
i = 1;
do until (i=3);

put i;
i=i+1;

end;

Note that multiple criteria can be introduced using expression operators, as in the
following example:

do until (i=3 and j=7);

For a list of expression operators, see Table 6.3 on page 683.

DO WHILE Statement
DO WHILE (logic-expression) ; statement(s) ; END ;

The DO WHILE loop executes the specified sequence of statements repeatedly as
long as the logic-expression, evaluated before the statements, returns true (a non-
missing nonzero value).

For example, the following code outputs the values 1 and 2:

proc optmodel;
number i;
i = 1;
do while (i<3);

put i;
i=i+1;

end;

Programming Statements � 711

Note that multiple criteria can be introduced using expression operators, as in the
following example:

do while (i<3 and j<7);

For a list of expression operators, see Table 6.3 on page 683.

DROP Statement
DROP identifier-expression ;

The DROP statement causes the solver to ignore the specified constraint, constraint
array, or constraint array location. The identifier-expression specifies the dropped
constraint. An entire constraint array is dropped if the identifier-expression omits the
index for an array name.

The following example code uses the DROP statement:

proc optmodel;
var x{1..10};
con c1: x[1] + x[2] <= 3;
con disp{i in 1..9}: x[i+1] >= x[i] + 0.1;
. . .
drop c1; /* drops the c1 constraint */
drop disp[5]; /* drops just disp[5] */
drop disp; /* drops all disp constraints */

The constraint can be added back to the model with the RESTORE statement.

Multiple names can be specified in a single DROP statement. For example, the fol-
lowing line drops both the c1 and disp[5] constraints:

drop c1 disp[5];

EXPAND Statement
EXPAND [identifier-expression] [/ options] ;

The EXPAND statement prints the specified constraint, variable, or objective dec-
laration expressions after expanding aggregation operators, substituting the current
value for parameters and indices, and resolving constant subexpressions. Identifier-
expression is the name of a variable, objective, or constraint. If the name is omitted
and no options are specified, then all variables, objectives, and undropped constraints
are printed. The following code shows an example EXPAND statement:

proc optmodel;
number n=2;
var x{1..n};
min z1=sum{i in 1..n}(x[i]-i)**2;
max z2=sum{i in 1..n}(i-x[i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand;

712 � Chapter 6. The OPTMODEL Procedure

This code produces the output in Figure 6.15.

Var x[1]
Fix x[2] = 3
Objective z1=(x[1] - 1)**2 + (x[2] - 2)**2
Maximize z2=(-x[1] + 1)**3 + (-x[2] + 2)**3
Constraint c[1]: x[1] >= 0
Constraint c[2]: x[2] >= 0

Figure 6.15. EXPAND Statement Output

Specifying an identifier-expression restricts output to the specified declaration. A
nonarray name prints only the specified item. If an array name is used with a specific
index, then information for the specified array location is output. Using an array
name without an index restricts output to all locations in the array.

Use options to further control the EXPAND statement output. The supported options
follow:

SOLVE
causes the EXPAND statement to print the variables, objectives,
and constraints in the same form that would be seen by the solver if
a SOLVE statement were executed. This includes any transforma-
tions by the OPTMODEL presolver (see the section “Presolver” on
page 777). In this form any fixed variables are replaced by their val-
ues and any objectives are replaced by the expressions that define
them. Unless an identifier-expression specifies a particular nonar-
ray item or array location, the EXPAND output is restricted to only
the variables, the constraints, and the most recent objective seen in
a MAX or MIN declaration or specified in a SOLVE statement.

The following options restrict the types of declarations output when no specific nonar-
ray item or array location is requested. By default all types of declarations are output.
Only the requested declaration types are output when one or more of the following
options are used.

VAR
requests the output of unfixed variables. The VAR option can also
be used in combination with the name of a variable array to display
just the unfixed elements of the array.

FIX
requests the output of fixed variables. These variables might have
been fixed by the FIX statement (or by the presolver if the SOLVE
option is specified). The FIX option can also be used in combi-
nation with the name of a variable array to display just the fixed
elements of the array.

Programming Statements � 713

OBJECTIVE / OBJ
requests the output of objectives. Only the most recent objective
seen in a MAX or MIN declaration or specified in a SOLVE state-
ment is considered when the SOLVE option is used.

CONSTRAINT / CON
requests the output of undropped constraints.

IIS
restricts the display to items found in the irreducible infeasible set
(IIS) after the most recent SOLVE performed by the LP solver with
the IIS=ON option. The IIS option for the EXPAND statement
can also be used in combination with the name of a variable or
constraint array to display only the elements of the array in the
IIS. For more information about IIS, see the section “Irreducible
Infeasible Set” on page 847.

For example, you can see the effect of a FIX statement on the problem that is pre-
sented to the solver by using the SOLVE option. You can modify the previous exam-
ple as follows:

proc optmodel;
number n=2;
var x{1..n};
min z1=sum{i in 1..n}(x[i]-i)**2;
max z2=sum{i in 1..n}(i-x[i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand / solve;

This code produces the output in Figure 6.16.

Var x[1] >= 0
Fix x[2] = 3
Maximize z2=(-x[1] + 1)**3 - 1

Figure 6.16. Expansion with Fixed Variable

Compare the results in Figure 6.16 to those in Figure 6.15. The constraint c[1] has
been converted to a variable bound. The subexpression that uses the fixed variable
has been resolved to a constant.

FILE Statement

FILE file-specification [LRECL=value] ;

The FILE statement selects the current output file for the PUT statement. By default
PUT output is sent to the SAS log. Use the FILE statement to manage a group of

714 � Chapter 6. The OPTMODEL Procedure

output files. The specified file is opened for output if it is not already open. The
output file remains open until it is closed with the CLOSEFILE statement.

File-specification names the output file. It can use any of the following forms:

’external-file’
specifies the physical name of an external file in quotation marks.
The interpretation of the filename depends on the operating envi-
ronment.

file-name
specifies the logical name associated with a file by the FILENAME
statement or by the operating environment. The names PRINT and
LOG are reserved to refer to the SAS listing and log files, respec-
tively.

Note: Details about the FILENAME statement can be found in SAS
Language Reference: Dictionary.

(expression)
specifies an expression that evaluates to a string that contains the
physical name of an external file.

The LRECL option sets the line length of the output file. If the option is omitted, then
the line length defaults to 256 characters. The LRECL option is ignored if the file is
already open or if the PRINT or LOG file is specified.

In SAS/OR release 9.2, if the LRECL= option is omitted, then the default line length
is defined by the value of the SAS LRECL system option. The default value for the
SAS LRECL system option is 256. In SAS/OR releases before 9.2, the default line
length is 256.

The LRECL value can be specified in these forms:

integer
specifies the desired line length.

identifier-expression
specifies the name of a numeric parameter that contains the length.

(expression)
specifies a numeric expression in parentheses that returns the line
length.

The LRECL value cannot exceed the largest four-byte signed integer, which is
231 − 1.

The following example shows how to use the FILE statement to handle multiple files:

proc optmodel;
file ’file.txt’ lrecl=80; /* opens file.txt */
put ’This is line 1 of file.txt.’;

Programming Statements � 715

file print; /* selects the listing */
put ’This goes to the listing.’;
file ’file.txt’; /* reselects file.txt */
put ’This is line 2 of file.txt.’;
closefile ’file.txt’; /* closes file.txt */
file log; /* selects the SAS log */
put ’This goes to the log.’;

/* using expression to open and write a collection of files */
str ofile;
num i;
num l = 40;
do i = 1 to 3;

ofile = (’file’ || i || ’.txt’);
file (ofile) lrecl=(l*i);
put (’This goes to ’ || ofile);
closefile (ofile);

end;

The following code illustrates the usefulness of using a logical name associated with
a file by FILENAME statement:

proc optmodel;
/* assigns a logical name to file.txt */
/* see FILENAME statement in */
/* SAS Language Reference: Dictionary */
filename myfile ’file.txt’ mod;

file myfile;
put ’This is line 3 of file.txt.’;
closefile myfile;
file myfile;
put ’This is line 4 of file.txt.’;
closefile myfile;

Notice that the FILENAME statement opens the file referenced for append.
Therefore, new data are appended to the end every time the logical name, myfile, is
used in the FILE statement.

FIX Statement

FIX identifier-list [=(expression)] ;

The FIX statement causes the solver to treat a list of variables, variable arrays, or
variable array locations as fixed in value. The identifier-list consists of one or more
variable names separated by spaces. Each member of the identifier-list is fixed to the
same expression. For example, the following code fixes the variables x and y to 3:

proc optmodel;
var x, y;
num a = 2;
fix x y=(a+1);

716 � Chapter 6. The OPTMODEL Procedure

A variable is specified with an identifier-expression (see the section “Identifier
Expressions” on page 685). An entire variable array is fixed if the identifier-
expression names an array without providing an index. A new value can be specified
with the expression. If the expression is a constant, then the parentheses can be omit-
ted. For example, the following code fixes all locations in array x to 0 except x[10],
which is fixed to 1:

proc optmodel;
var x{1..10};
fix x = 0;
fix x[10] = 1;

If expression is omitted, the variable is fixed at its current value. For example, you can
fix some variables to be their optimal values after the SOLVE statement is invoked.

The effect of FIX can be reversed using the UNFIX statement.

FOR Statement

FOR { index-set } statement ;

The FOR statement executes its substatement for each member of the specified index-
set. The index set can declare local dummy parameters. You can reference the value
of these parameters in the substatement. For example, consider the following code:

proc optmodel;
for {i in 1..2, j in {’a’, ’b’}} put i= j=;

This code produces the output in Figure 6.17.

i=1 j=a
i=1 j=b
i=2 j=a
i=2 j=b

Figure 6.17. FOR Statement Output

As another example, the following code sets the current values for variable x to ran-
dom values between 0 and 1:

proc optmodel;
var x{1..10};
for {i in 1..10}

x[i] = ranuni(-1);

Multiple statements can be controlled by specifying a DO statement group for the
substatement.

Programming Statements � 717

CAUTION: Avoid modifying the parameters that are used by the FOR statement
index set from within the substatement. The set value that is used for the left-most
index set item is not affected by such changes. However, the effect of parameter
changes on later index set items cannot be predicted.

IF Statement

IF logic-expression THEN statement ; [ELSE statement ;]

The IF statement evaluates the logical expression and then conditionally executes the
THEN or ELSE substatements. The substatement that follows the THEN keyword is
executed when the logical expression result is nonmissing and nonzero. The ELSE
substatement, if any, is executed when the logical expression result is a missing value
or zero. The ELSE part is optional and must immediately follow the THEN sub-
statement. When IF statements are nested, an ELSE is always matched to the nearest
incomplete unmatched IF-THEN. Multiple statements can be controlled by using DO
statements with the THEN or ELSE substatements.

Note: When an IF-THEN statement is used without an ELSE substatement, sub-
statements of the IF statement are executed when possible as they are entered. Under
certain circumstances, such as when an IF statement is nested in a FOR loop, the
statement is not executed during interactive input until the next statement is seen. By
following the IF-THEN statement with an extra semicolon, you can cause it to be
executed upon submission, since the extra semicolon is handled as a null statement.

LEAVE Statement

LEAVE ;

The LEAVE statement terminates the execution of the entire loop body (iterative DO,
DO UNTIL, DO WHILE, or FOR) that immediately contains the LEAVE statement.
Execution resumes at the statement that follows the loop. The following example
demonstrates a simple use of the LEAVE statement:

proc optmodel;
number i, j;
do i = 1..5;

do j = 1..4;
if i >= 3 and j = 2 then leave;

end;
print i j;
end;

The results from this code are displayed in Figure 6.18.

718 � Chapter 6. The OPTMODEL Procedure

The OPTMODEL Procedure

i j

1 5

i j

2 5

i j

3 2

i j

4 2

i j

5 2

Figure 6.18. LEAVE Statement Output

For values of i equal to 1 or 2, the inner loop continues uninterrupted, leaving j with a
value of 5. For values of i equal to 3, 4, or 5, the inner loop terminates early, leaving
j with a value of 2.

Null Statement

;

The null statement is treated as a statement in the PROC OPTMODEL syntax, but its
execution has no effect. It can be used as a placeholder statement.

PRINT Statement

PRINT print-item(s) ;

The PRINT statement outputs string and numeric data in tabular form. The statement
specifies a list of arrays or other data items to print. Multiple items can be output
together as data columns in the same table.

If no format is specified, the PRINT statement handles the details of formatting auto-
matically (see the section “Formatted Output” on page 755 for details). The default
format for a numerical column is the fixed-point format (w.d format), which is cho-
sen based on the values of the PDIGITS= and PWIDTH= options (see the section
“PROC OPTMODEL Statement” on page 691) as well as the values in the column.
The PRINT statement uses scientific notation (the Ew. format) when a value is too
large or too small to display in fixed format. The default format for a character col-

Programming Statements � 719

umn is the $w. format, where the width is set to be the length of the longest string
(ignoring trailing blanks) in the column.

Print-item can be specified in the following forms:

identifier-expression [format]
specifies a data item to output. Identifier-expression can name an
array. In that case all defined array locations are output. Format
specifies a SAS format that overrides the default format.

(expression) [format]
specifies a data value to output. Format specifies a SAS format that
overrides the default format.

{index-set} identifier-expression [format]
specifies a data item to output under the control of an index set.
The item is printed as if it were an array with the specified set of
indices. This form can be used to print a subset of the locations in
an array, such as a single column. If the identifier-expression names
an array, then the indices of the array must match the indices of the
index-set. Format specifies a SAS format that overrides the default
format.

{index-set} (expression) [format]
specifies a data item to output under the control of an index set.
The item is printed as if it were an array with the specified set of
indices. In this form the expression is evaluated for each member of
the index-set to create the array values for output. Format specifies
a SAS format that overrides the default format.

string
specifies a string value to print.

–PAGE–
specifies a page break.

The following example demonstrates the use of several print-item forms:

proc optmodel;
num x = 4.3;
var y{j in 1..4} init j*3.68;
print y; /* identifier-expression */
print (x * .265) dollar6.2; /* (expression) [format] */
print {i in 2..4} y; /* {index-set} identifier-expression */
print {i in 1..3}(i + i*.2345692) best7.;

/* {index-set} (expression) [format] */
print "Line 1"; /* string */

The output is displayed in Figure 6.19.

720 � Chapter 6. The OPTMODEL Procedure

The OPTMODEL Procedure

[1] y

1 3.68
2 7.36
3 11.04
4 14.72

$1.14

[1] y

2 7.36
3 11.04
4 14.72

[1]

1 1.23457
2 2.46914
3 3.70371

Line 1

Figure 6.19. Print-item Forms

Adjacent print items that have similar indexing are grouped together and output in
the same table. Items have similar indexing if they specify arrays that have the same
number of indices and have matching index types (numeric versus string). Nonarray
items are considered to have the same indexing as other nonarray items. The resulting
table has a column for each array index followed by a column for each print item
value. This format is called list form. For example, the following code produces a list
form table:

proc optmodel;
num a{i in 1..3} = i*i;
num b{i in 3..5} = 4*i;
print a b;

This code produces the listing output in Figure 6.20.

Programming Statements � 721

[1] a b

1 1
2 4
3 9 12
4 16
5 20

Figure 6.20. List Form PRINT Table

The array index columns show the set of valid index values for the print items in the
table. The array index column for the ith index is labeled [i]. There is a row for each
combination of index values that was used. The index values are displayed in sorted
ascending order.

The data columns show the array values that correspond to the index values in each
row. If a particular array index is invalid or the array location is undefined, then the
corresponding table entry is displayed as blank for numeric arrays and as an empty
string for string arrays. If the print items are scalar, then the table has a single row
and no array index columns.

If a table contains a single array print item, the array is two-dimensional (has two
indices), and the array is dense enough, then the array is shown in matrix form. In
this format there is a single index column that contains the row index values. The
label of this column is blank. This column is followed by a column for every unique
column index value for the array. The latter columns are labeled by the column value.
These columns contain the array values for that particular array column. Table entries
that correspond to array locations that have invalid or undefined combinations of row
and column indices are blank or (for strings) printed as an empty string.

The following code generates a simple example of matrix output:

proc optmodel;
print {i in 1..6, j in i..6} (i*10+j);

The PRINT statement produces the output in Figure 6.21.

1 2 3 4 5 6

1 11 12 13 14 15 16
2 22 23 24 25 26
3 33 34 35 36
4 44 45 46
5 55 56
6 66

Figure 6.21. Matrix Form PRINT Table

722 � Chapter 6. The OPTMODEL Procedure

The PRINT statement prints single two-dimensional arrays in the form that uses fewer
table cells (headings are ignored). Sparse arrays are normally printed in list form, and
dense arrays are normally printed in matrix form. In a PROC OPTMODEL statement,
the PMATRIX= option enables you to tune how the PRINT statement displays a two-
dimensional array. The value of this option scales the total number of nonempty
array elements, which is used to compute the tables cells needed for list form display.
Specifying values for the PMATRIX= option less than 1 causes the list form to be
used in more cases, while specifying values greater than 1 causes the matrix form to
be used in more cases. If the value is 0, then list form is always used. The default
value of the PMATRIX= option is 1. Changing the default can be done with the
RESET OPTIONS statement.

The following code illustrates how the PMATRIX= option affects the display of the
PRINT statement:

proc optmodel;
num a{i in 1..6, i..i} = i;
num b{i in 1..3, j in 1..3} = i*j;
print a;
print b;
reset options pmatrix=3;
print a;
reset options pmatrix=0.5;
print b;

The output is shown in Figure 6.22.

Programming Statements � 723

The OPTMODEL Procedure

[1] [2] a

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

b
1 2 3

1 1 2 3
2 2 4 6
3 3 6 9

a
1 2 3 4 5 6

1 1
2 2
3 3
4 4
5 5
6 6

[1] [2] b

1 1 1
1 2 2
1 3 3
2 1 2
2 2 4
2 3 6
3 1 3
3 2 6
3 3 9

Figure 6.22. PRINT Statement: Effects of PMATRIX= Option

From Figure 6.22, it can be seen that by default, the PRINT statement tries to make
the display compact. However, the default can be changed by using the PMATRIX=
option.

PUT Statement

PUT [put-item(s)] [@ | @@] ;

The PUT statement writes text data to the current output file. The syntax of the
PUT statement in PROC OPTMODEL is similar to the syntax of the PROC IML and
DATA step PUT statements. The PUT statement contains a list of items that specify
data for output and provide instructions for formatting the data.

724 � Chapter 6. The OPTMODEL Procedure

The current output file is initially the SAS log. This can be overridden with the FILE
statement. An output file can be closed with the CLOSEFILE statement.

Normally the PUT statement outputs the current line after processing all items. Final
@ or @@ operators suppress this automatic line output and cause the current column
position to be retained for use in the next PUT statement.

Put-item can take any of the following forms.

identifier-expression [=] [format]
outputs the value of the parameter or variable that is specified by
the identifier-expression. The equal sign (=) causes a name for the
location to be printed before each location value.

Normally each item value is printed in a default format. Any lead-
ing and trailing blanks in the formatted value are removed and the
value is followed by a blank space. When an explicit format is
specified, the value is printed within the width determined by the
format.

name[*] [.suffix] [=] [format]
outputs each defined location value for an array parameter. The
array name is specified as in the identifier-expression form except
that the index list is replaced by an asterisk (*). The equal sign (=)
causes a name for the location to be printed before each location
value along with the actual index values to be substituted for the
asterisk.

Each item value normally prints in a default format. Any leading
and trailing blanks in the formatted value are removed and the value
is followed by a blank space. When an explicit format is specified,
the value is printed within the width determined by the format.

(expression) [=] [format]
outputs the value of the expression enclosed in parentheses. This
produces similar results to the identifier-expression form except
that the equal sign (=) uses the expression to form the name.

’quoted-string’
copies the string to the output file.

@integer

@identifier-expression

@(expression)
sets the absolute column position within the current line. The literal
or expression value determines the new column position.

+integer

+identifier-expression

+(expression)
sets the relative column position within the current line. The literal

Programming Statements � 725

or expression value determines the amount to update the column
position.

/
outputs the current line and moves to the first column of the next
line.

–PAGE–
outputs any pending line data and moves to the top of the next page.

READ DATA Statement

READ DATA SAS-data-set [NOMISS] INTO [[set-name =] [read-key-
column(s)]] [read-column(s)] ;

The READ DATA statement reads data from a SAS data set into PROC OPTMODEL
parameter and variable locations. The arguments to the READ DATA statement are
as follows:

SAS-data-set
specifies the input data set name and options.

set-name
specifies a set parameter in which to save the set of observation key
values read from the input data set.

read-key-column(s)
provide the index values for array destinations.

read-column(s)
specify the data values to read and the destination locations.

The following example uses the READ DATA statement to copy data set variables j
and k from the SAS data set indata into parameters of the same name. The READ=
data set option is used to specify a password.

proc optmodel;
number j, k;
read data indata(read=secret) into j k;

Key Columns

If any read-key-column(s) are specified, then the READ DATA statement reads all
observations from the input data set. If no read-key-column(s) are specified, then
only the first observation of the data set is read. The data set is closed after reading
the requested information.

Each read-key-column declares a local dummy parameter and specifies a data set
variable that supplies the column value. The values of the specified data set variables
from each observation are combined into a key tuple. This combination is known as
the observation key. The observation key is used to index array locations specified

726 � Chapter 6. The OPTMODEL Procedure

by the read-column(s) items. The observation key is expected to be unique for each
observation read from the data set.

The syntax for a read-key-column(s) is as follows:

name [= source-name] [/trim-option]

A read-key-column creates a local dummy parameter named name that holds an ele-
ment of the observation key tuple. The dummy parameter can be used in subsequent
read-column(s) items to reference the element value. If a source-name is given, then
it specifies the data set variable that supplies the value. Otherwise the source data set
variable has the same name as the dummy parameter, name. Use the special data set
variable name –N– to refer to the number identification of the observations.

You can specify a set-name to save the set of observation keys into a set parameter. If
the observation key consists of a single scalar value, then the set member type must
match the scalar type. Otherwise the set member type must be a tuple with element
types that match the corresponding observation key element types.

The READ DATA statement initially assigns an empty set to the target set-name
parameter. As observations are read, a tuple for each observation key is added to the
set. A set used to index an array destination in the read-column(s) can be read at the
same time as the array values. Consider a data set, invdata, created by the following
code:

data invdata;
input item $ invcount;

datalines;
table 100
sofa 250
chair 80
;

The following code reads the data set invdata, which has two variables, item and
invcount. The READ DATA statement constructs a set of inventory items, Items.
At the same time, the parameter location invcount[item] is assigned the value of the
data set variable invcount in the corresponding observation.

proc optmodel;
set<string> Items;
number invcount{Items};
read data invdata into Items=[item] invcount;
print invcount;

Programming Statements � 727

The output of this code is shown in Figure 6.23.

The OPTMODEL Procedure

[1] invcount

chair 80
sofa 250
table 100

Figure 6.23. READ DATA Statement: Key Column

When observations are read, the values of data set variables are copied to parameter
locations. Numeric values are copied unchanged. For character values, trim-option
controls how leading and trailing blanks are processed. Trim-option is ignored when
the value type is numeric. Specify any of the following keywords for trim-option:

TRIM | TR
removes leading and trailing blanks from the data set value. This
is the default behavior.

LTRIM | LT
removes only leading blanks from the data set value.

RTRIM | RT
removes only trailing blanks from the data set value.

NOTRIM | NT
copies the data set value with no changes.

Columns

Read-column(s) specify data set variables to read and PROC OPTMODEL parameter
locations to which to assign the values. The types of the input data set variables must
match the types of the parameters. Array parameters can be implicitly or explicitly
indexed by the observation key values.

Normally, missing values from the data set are assigned to the parameters that are
specified in the read-column(s). The NOMISS keyword suppresses the assignment
of missing values, leaving the corresponding parameter locations unchanged. Note
that the parameter location does not need to have a valid index in this case. This
permits a single statement to read data into multiple arrays that have different index
sets.

Read-column(s) has the following forms:

identifier-expression [= name | COL(name-expression)] [/trim-option]
transfers an input data set variable to a target parameter or vari-
able. Identifier-expression specifies the target. If the identifier-
expression specifies an array without an explicit index, then the

728 � Chapter 6. The OPTMODEL Procedure

observation key provides an implicit index. The name of the in-
put data set variable can be specified with a name or a COL ex-
pression. Otherwise the data set variable name is given by the
name part of the identifier-expression. For COL expressions, the
string-valued name-expression is evaluated to determine the data
set variable name. Trim-option controls removal of leading and
trailing blanks in the incoming data. For example, the following
code reads the data set variables column1 and column2 from the
data set exdata into the PROC OPTMODEL parameters p and q,
respectively. The observation numbers in exdata are read into the
set indx, which indexes p and q.

data exdata;
input column1 column2;
datalines;

1 2
3 4
;

proc optmodel;
number n init 2;
set<num> indx;
number p{indx}, q{indx};
read data exdata into

indx=[_N_] p=column1 q=col("column"||n);
print p q;

The output is shown in Figure 6.24.

The OPTMODEL Procedure

[1] p q

1 1 2
2 3 4

Figure 6.24. READ DATA Statement: Identifier Expressions

{ index-set } < read-column(s) >
performs the transfers by iterating each column specified by <read-
column(s)> for each member of the index-set. If there are n
columns and m index set members, then n ×m columns are gen-
erated. The dummy parameters from the index set can be used in
the columns to generate distinct input data set variable names in
the iterated columns, using COL expressions. The columns are
expanded when the READ DATA statement is executed, before
any observations are read. This form of read-column(s) cannot be
nested. In other words, the following form of read-column(s) is
NOT allowed:

Programming Statements � 729

{ index-set } < { index-set } < read-column(s) > >

An example demonstrating the use of the iterated column read-
option follows.

You can use an iterated column read-option to read multiple data set variables into
the same array. For example, a data set might store an entire row of array data in a
group of data set variables. The following code demonstrates how to read a data set
containing demand data divided by day:

data dmnd;
input loc $ day1 day2 day3 day4 day5;
datalines;

East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2
;
proc optmodel;

set DOW = 1..5; /* days of week, 1=Monday, 5=Friday */
set<string> LOC; /* locations */
number demand{LOC, DOW};
read data dmnd

into LOC=[loc]
{d in DOW} < demand[loc, d]=col("day"||d) >;

print demand;

This reads a set of demand variables named DAY1–DAY5 from each observation,
filling in the two-dimensional array demand. The output is shown in Figure 6.25.

demand
1 2 3 4 5

East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2

Figure 6.25. Demand Data

RESET OPTIONS Statement

RESET OPTIONS option(s) ;

RESET OPTION option(s) ;

The RESET OPTIONS statement sets PROC OPTMODEL option values or restores
them to their defaults. Options can be specified by using the same syntax as in the
PROC OPTMODEL statement. The RESET OPTIONS statement provides two ex-
tensions to the option syntax. If an option normally requires a value (specified with
an equal sign (=) operator), then specifying the option name alone resets it to its de-
fault value. You can also specify an expression enclosed in parentheses in place of a
literal value. See the section “OPTMODEL Options” on page 781 for an example.

730 � Chapter 6. The OPTMODEL Procedure

The RESET OPTIONS statement can be placed inside loops or conditional code. The
statement is applied each time it is executed.

RESTORE Statement

RESTORE identifier-expression ;

The RESTORE statement adds a constraint, constraint array, or constraint array loca-
tion that was dropped by the DROP statement back into the solver model. Identifier-
expression specifies the constraint. An entire constraint array is restored if the
identifier-expression omits the index from an array name. For example, the following
code declares a constraint array and then drops it:

con c{i in 1..4}: x[i] + y[i] <=1;
drop c;

The following statement restores the first constraint:

restore c[1];

Multiple names can be specified in a single RESTORE statement. The following
statement restores the second and third constraints:

restore c[2] c[3];

If you want to restore all of them, you can submit the following statement:

restore c;

SAVE MPS Statement

SAVE MPS SAS-data-set ;

The SAVE MPS statement saves the structure and coefficients for a linear program-
ming model into a SAS data set. This data set can be used as input data for the OPTLP
or OPTMILP procedure.

Note: The OPTMODEL presolver (see the section “Presolver” on page 777) is auto-
matically bypassed so that the statement saves the original model without eliminating
fixed variables, tightening bounds, etc.

The SAS-data-set argument specifies the output data set name and options. The output
data set uses the MPS format described in Chapter 14. The generated data set contains
observations that define different parts of the linear program.

Variables, constraints, and objectives are referenced in the data set by using label text
based on the model name. For example, a model variable x[1] would be labeled “x[1]”
in the data set. Labels are limited by default to 32 characters and are abbreviated to
fit. You can change the maximum length for labels by using the MAXLABLEN=
option. When needed, a programmatically generated number is added to labels to

Programming Statements � 731

avoid duplication. Only the most recent objective, which was specified in a MIN or
MAX declaration or specified in a SOLVE statement, is included in the data set.

When an integer variable has been assigned a nondefault branching priority or di-
rection, the MPS data set includes a BRANCH section. See Chapter 14 for more
details.

The following code shows an example of the SAVE MPS statement. The model
is specified using the OPTMODEL procedure. Then it is saved as the MPS data
set MPSData, as shown in Figure 6.26. Next, PROC OPTLP is used to solve the
resulting linear program.

proc optmodel;
var x >= 0, y >= 0;
con c: x >= y;
con bx: x <= 2;
con by: y <= 1;
min obj=0.5*x-y;
save mps MPSData;

quit;
proc optlp data=MPSData pout=PrimalOut dout=DualOut;
run;

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME MPSData . .
2 ROWS . .
3 N obj . .
4 G c . .
5 L bx . .
6 L by . .
7 COLUMNS . .
8 x obj 0.5 c 1
9 x bx 1.0 .
10 y obj -1.0 c -1
11 y by 1.0 .
12 RHS . .
13 .RHS. bx 2.0 .
14 .RHS. by 1.0 .
15 ENDATA . .

Figure 6.26. The MPS Data Set Generated by SAVE MPS Statement

SAVE QPS Statement
SAVE QPS SAS-data-set ;

The SAVE QPS statement saves the structure and coefficients for a quadratic pro-
gramming model into a SAS data set. This data set can be used as input data for the
OPTQP procedure.

Note: The OPTMODEL presolver (see the section “Presolver” on page 777) is auto-
matically bypassed so that the statement saves the original model without eliminating
fixed variables, tightening bounds, etc.

732 � Chapter 6. The OPTMODEL Procedure

The SAS-data-set argument specifies the output data set name and options. The output
data set uses the QPS format described in Chapter 14. The generated data set contains
observations that define different parts of the quadratic program.

Variables, constraints, and objectives are referenced in the data set by using label text
based on the model name. For example, a model variable x[1] would be labeled “x[1]”
in the data set. Labels are limited by default to 32 characters and are abbreviated to
fit. You can change the maximum length for labels by using the MAXLABLEN=
option. When needed, a programmatically generated number is added to labels to
avoid duplication. Only the most recent objective, which was specified in a MIN or
MAX declaration or specified in a SOLVE statement, is included in the output data
set. The coefficients of the objective function appear in the QSECTION section.

The following code shows an example of the SAVE QPS statement. The model is
specified using the OPTMODEL procedure. Then it is saved as the QPS data set
QPSData, as shown in Figure 6.27. Next, PROC OPTQP is used to solve the result-
ing quadratic program.

proc optmodel;
var x{1..2} >= 0;

min z = 2*x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2
+ 2.5*x[1]*x[2];

con c1: x[1] - x[2] <= 1;
con c2: x[1] + 2*x[2] >= 100;
save qps QPSData;

quit;
proc optqp data=QPSData pout=PrimalOut dout=DualOut;
run;

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME QPSData . .
2 ROWS . .
3 N z . .
4 L c1 . .
5 G c2 . .
6 COLUMNS . .
7 x[1] z 2.0 c1 1
8 x[1] c2 1.0 .
9 x[2] z 3.0 c1 -1
10 x[2] c2 2.0 .
11 RHS . .
12 .RHS. c1 1.0 .
13 .RHS. c2 100.0 .
14 QSECTION . .
15 x[1] x[1] 2.0 .
16 x[1] x[2] 2.5 .
17 x[2] x[2] 20.0 .
18 ENDATA . .

Figure 6.27. The QPS Data Set Generated by SAVE QPS Statement

Programming Statements � 733

SOLVE Statement

SOLVE [WITH solver] [(OBJECTIVE|OBJ) name] [/ options] ;

The SOLVE statement invokes a PROC OPTMODEL solver. The current model is
first resolved to the numeric form that is required by the solver. The resolved model
and possibly the current values of any optimization variables are passed to the solver.
After the solver finishes executing, the SOLVE statement prints a short table giving a
summary of results from the solver (see the section “ODS Table and Variable Names”
on page 758) and updates the –OROPTMODEL– macro variable.

Here are the arguments to the SOLVE statement:

solver
selects the named solver, namely LP, MILP, QP, NLPC, NLPU,
SQP, or IPNLP (see corresponding chapters in this book for de-
tails). If no WITH clause is specified, then a solver is chosen auto-
matically, depending on the problem type.

name
specifies the objective to use. You can abbreviate the OBJECTIVE
keyword as OBJ. If no name is specified, then the solver uses the
most recent objective seen in a MAX or MIN declaration or speci-
fied in a SOLVE statement.

options specifies solver options. Solver options can be specified only when
the WITH clause is used. A list of the options available with the
solver is provided in the individual chapters describing each solver.

Optimization techniques that use initial values obtain them from the current values
of the optimization variables unless the NOINITVAR option is specified. When the
solver finishes executing, the current value of each optimization variable is replaced
by the optimal value found by the solver. These values can then be used as the initial
values for subsequent solver invocations. The .init suffix location for each variable
saves the initial value used for the most recent SOLVE statement.

Note: Should a solver fail, any currently pending statement is stopped and processing
continues with the next complete statement read from the input. For example, if
a SOLVE statement enclosed in a DO group (see the section “DO Statement” on
page 708) fails, then the subsequent statements in the group are not executed and
processing resumes at the point immediately following the DO group. Note that
neither an infeasible result, an unbounded result, nor reaching an iteration limit is
considered to be a solver failure.

Note: The information appearing in the macro variable –OROPTMODEL– (see the
section “Macro Variable –OROPTMODEL–” on page 735) varies by solver.

734 � Chapter 6. The OPTMODEL Procedure

STOP Statement

STOP ;

The STOP statement halts the execution of all statements that contain it, including
DO statements and other control or looping statements. Execution continues with the
next top-level source statement. The following code demonstrates a simple use of the
STOP statement:

proc optmodel;
number i, j;
do i = 1..5;

do j = 1..4;
if i = 3 and j = 2 then stop;

end;
end;
print i j;

The output is shown in Figure 6.28.

The OPTMODEL Procedure

i j

3 2

Figure 6.28. STOP Statement: Output

When the counters i and j reach 3 and 2, respectively, the STOP statement terminates
both loops. Execution continues with the PRINT statement.

UNFIX Statement

UNFIX identifier-list [=(expression)] ;

The UNFIX statement reverses the effect of FIX statements. The solver can vary the
specified variables, variable arrays, or variable array locations specified by identifier-
list. The identifier-list consists of one or more variable names separated by spaces.

Variable is an identifier expression (see the section “Identifier Expressions” on page
685). The UNFIX statement affects an entire variable array if the identifier expression
omits the index from an array name. The expression specifies a new initial value that
will be stored in each element of the identifier-list.

Macro Variable –OROPTMODEL– � 735

The following example demonstrates the UNFIX command:

proc optmodel;
var x{1..3};
fix x; /* fixes entire array to 0 */
unfix x[1]; /* x[1] can now be varied again */
unfix x[2] = 2; /* x[2] is given an initial value 2 */

/* and can be varied now */
unfix x; /* all x indices can now be varied */

After the following code is executed, the variables x[1] and x[2] are not fixed. They
each hold the value 4. The variable x[3] is fixed at a value of 2.

proc optmodel;
var x{1..3} init 2;
num a = 1;
fix x;
unfix x[1] x[2]=(a+3);

Macro Variable –OROPTMODEL–
The OPTMODEL procedure creates a macro variable named –OROPTMODEL–.
You can inspect the execution of the most recently invoked solver from the value of
the macro variable. The macro variable is defined at the start of the procedure and
updated after each SOLVE statement is executed. The OPTMODEL procedure also
updates the macro variable when an error is detected.

The –OROPTMODEL– value is a string consisting of several “KEYWORD=value”
items in sequence, separated by blanks; for example:

STATUS=OK SOLUTION_STATUS=OPTIMAL OBJECTIVE=9 ITERATIONS=1
PRESOLVE_TIME=0 SOLUTION_TIME=0

The information contained in –OROPTMODEL– varies according to which solver
was last called. For lists of keywords and possible values, see the individual solver
chapters.

If a value has not been computed, then the corresponding element is not included in
the value of the macro variable. When PROC OPTMODEL starts, for instance, the
macro variable value is set to “STATUS=OK” because no SOLVE statement has been
executed. If the STATUS= indicates an error, then the other values from the solver
might not be available, depending on when the error occurred.

Note that PROC OPTMODEL reads a complete statement, such as a DO statement,
before executing any code in it. But macro language statements are processed as
the code is read. So you must be careful when using the –OROPTMODEL– macro
variable in code involving SOLVE statements nested in loops or DO statements. The
following code demonstrates one example of this behavior:

736 � Chapter 6. The OPTMODEL Procedure

proc optmodel;
var x, y;
min z=x**2 + (x*y-1)**2;
for {n in 1..3} do;

fix x=n;
solve;
%put Line 1 &_OROPTMODEL_;
put ’Line 2 ’ (symget("_OROPTMODEL_"));

end;
quit;

In the preceding code the %PUT statement is executed once, before any SOLVE
statements are executed. It displays PROC OPTMODEL’s initial setting of the macro
variable. But the PUT statement is executed after each SOLVE statement, and indi-
cates the expected solution status.

OPTMODEL Expression Extensions
PROC OPTMODEL defines several new types of expressions for the manipulation
of sets. Aggregation operators combine values of an expression that is evaluated
over the members of an index set. Other operators create new sets by combining
existing sets, or test relationships between sets. PROC OPTMODEL also supports an
IF expression operator that can conditionally evaluate expressions. These and other
such expressions are described in this section.

AND Aggregation Expression

AND{ index-set } logic-expression

The AND aggregation operator evaluates the logical expression logic-expression
jointly for each member of the index set index-set. The index set enumeration fin-
ishes early if the logic-expression evaluation produces a false value (zero or missing).
The expression returns 0 if a false value is found or returns 1 otherwise. The follow-
ing code demonstrates both a true and a false result:

proc optmodel;
put (and{i in 1..5} i < 10); /* returns 1 */
put (and{i in 1..5} i NE 3); /* returns 0 */

DIFF Expression � 737

CARD Function
CARD(set-expression)

The CARD function returns the number of members of its set operand. For example,
the following code produces the output 3 since the set has 3 members:

proc optmodel;
put (card(1..3));

CROSS Expression
set-expression CROSS set-expression

The CROSS expression returns the crossproduct of its set operands. The result is
the set of tuples formed by concatenating the tuple value of each member of the
left operand with the tuple value of each member of the right operand. Scalar set
members are treated as tuples of length 1. The following code demonstrates the
CROSS operator:

proc optmodel;
set s1 = 1..2;
set<string> s2 = {’a’, ’b’};
set<number, string> s3=s1 cross s2;
put ’s3 is ’ s3;
set<number, string, number> s4 = s3 cross 4..5;
put ’s4 is ’ s4;

This code produces the output in Figure 6.29.

s3 is {<1,’a’>,<1,’b’>,<2,’a’>,<2,’b’>}
s4 is {<1,’a’,4>,<1,’a’,5>,<1,’b’,4>,<1,’b’,5>,<2,’a’,4>,<2,’a’,5>,<2,’b’,4>,<2,
’b’,5>}

Figure 6.29. CROSS Expression Output

DIFF Expression
set-expression DIFF set-expression

The DIFF operator returns a set that contains the set difference of the left and right
operands. The result set contains values that are members of the left operand but not
members of the right operand. The operands must have compatible set types. The
following code evaluates and prints a set difference:

proc optmodel;
put ({1,3} diff {2,3}); /* outputs {1} */

738 � Chapter 6. The OPTMODEL Procedure

IF-THEN/ELSE Expression
IF logic-expression THEN expression-2 [ELSE expression-3]

The IF-THEN/ELSE expression evaluates the logical expression logic-expression and
returns the result of evaluating the second or third operand expression according to
the logical test result. If the logic-expression is true (nonzero and nonmissing), then
the result of evaluating expression-2 is returned. If the logic-expression is false (zero
or missing), then the result of evaluating expression-3 is returned. The other subex-
pression that is not selected is not evaluated.

An ELSE clause is matched during parsing with the nearest IF-THEN clause that does
not have a matching ELSE. The ELSE clause can be omitted for numeric expressions;
the resulting IF-THEN is handled as if a default ELSE 0 clause were supplied.

Use the IF-THEN/ELSE expression to handle special cases in models. For example,
an inventory model based on discrete time periods might require special handling for
the first or last period. In the following example the initial inventory for the first
period is assumed to be fixed:

proc optmodel;
number T;
var inv{1..T}, order{1..T};
number sell{1..T};
number inv0;
. . .
/* balance inventory flow */
con iflow{i in 1..T}:

inv[i] = order[i] - sell[i] +
if i=1 then inv0 else inv[i-1];

. . .

The IF-THEN/ELSE expression in the example models the initial inventory for a time
period i. Usually the inventory value is the inventory at the end of the previous period,
but for the first time period the inventory value is given by the inv0 parameter. Note
that the iflow constraints are linear since the IF-THEN/ELSE test subexpression does
not depend on variables and the other subexpressions are linear.

IF-THEN/ELSE can be used as either a set expression or a scalar expression. The type
of expression depends on the subexpression between the THEN and ELSE keywords.
The type used affects the parsing of the subexpression that follows the ELSE keyword
because the set form has a lower operator precedence. For example, the following
two expressions are equivalent because the numeric IF-THEN/ELSE has a higher
precedence than the range operator (..):

IF logic THEN 1 ELSE 2 .. 3

(IF logic THEN 1 ELSE 2) .. 3

But the set form of IF-THEN/ELSE has lower precedence than the range expression
operator. So the following two expressions are equivalent:

Index Set Expression � 739

IF logic THEN 1 .. 2 ELSE 3 .. 4

IF logic THEN (1 .. 2) ELSE (3 .. 4)

The IF-THEN and IF-THEN/ELSE operators always have higher precedence than the
logic operators. So, for example, the following two expressions are equivalent:

IF logic THEN numeric1 < numeric2

(IF logic THEN numeric1) < numeric2

It is best to use parentheses when in doubt about precedence.

IN Expression

expression IN set-expression

expression NOT IN set-expression

The IN expression returns 1 if the value of the left operand is a member of the right
operand set. Otherwise the IN expression returns 0. The NOT IN operator logically
negates the returned value. Unlike the DATA step, the right operand is an arbitrary
set expression. The left operand can be a tuple expression. The following example
demonstrates the IN and NOT IN operators:

proc optmodel;
set s = 1..10;
put (5 in s); /* outputs 1 */
put (-1 not in s); /* outputs 1 */
set<num, str> t = {<1,’a’>, <2,’b’>, <2,’c’>};
put (<2, ’b’> in t); /* outputs 1 */
put (<1, ’b’> in t); /* outputs 0 */

Index Set Expression

{ index-set }

The index set expression returns the members of an index set. This expression is
distinguished from a set constructor (see the section “Set Constructor Expression” on
page 742) because it contains a list of set expressions.

The following code uses an index set with a selection expression that excludes the
value 3:

proc optmodel;
put ({i in 1..5 : i NE 3}); /* outputs {1,2,4,5} */

740 � Chapter 6. The OPTMODEL Procedure

INTER Expression

set-expression INTER set-expression

The INTER operator returns a set that contains the intersection of the left and right
operands. This is the set that contains values that are members of both operand sets.
The operands must have compatible set types.

The following code evaluates and prints a set intersection:

proc optmodel;
put ({1,3} inter {2,3}); /* outputs {3} */

INTER Aggregation Expression

INTER{ index-set } set-expression

The INTER aggregation operator evaluates the set-expression for each member of the
index set index-set. The result is the set containing the intersection of the set of values
that were returned by the set-expression for each member of the index set. An empty
index set causes an expression evaluation error.

The following code uses the INTER aggregation operator to compute the value of
{1,2,3,4} ∩ {2,3,4,5} ∩ {3,4,5,6}:

proc optmodel;
put (inter{i in 1..3} i..i+3); /* outputs {3,4} */

MAX Aggregation Expression

MAX{ index-set } expression

The MAX aggregation operator evaluates the numeric expression expression for each
member of the index set index-set. The result is the maximum of the values that are
returned by the expression. Missing values are handled with the SAS numeric sort
order, so a missing value is treated as smaller than any nonmissing value. If the index
set is empty, then the result is the negative number that has the largest absolute value
representable on the machine.

The following example produces the output 0.5:

proc optmodel;
put (max{i in 2..5} 1/i);

PROD Aggregation Expression � 741

MIN Aggregation Expression

MIN{ index-set } expression

The MIN aggregation operator evaluates the numeric expression expression for each
member of the index set index-set. The result is the minimum of the values that are
returned by the expression. Missing values are handled with the SAS numeric sort
order, so a missing value is treated as smaller than any nonmissing value. If the
index set is empty, then the result is the largest positive number representable on the
machine.

The following example produces the output 0.2:

proc optmodel;
put (min{i in 2..5} 1/i);

OR Aggregation Expression

OR{ index-set } logic-expression

The OR aggregation operator evaluates the logical expression logic-expression for
each member of the index set index-set. The index set enumeration finishes early if
the logic-expression evaluation produces a true value (nonzero and nonmissing). The
result is 1 if a true value is found, or 0 otherwise. The following code demonstrates
both a true and a false result:

proc optmodel;
put (or{i in 1..5} i = 2); /* returns 1 */
put (or{i in 1..5} i = 7); /* returns 0 */

PROD Aggregation Expression

PROD{ index-set } expression

The PROD aggregation operator evaluates the numeric expression expression for each
member of the index set index-set. The result is the product of the values that are
returned by the expression. This operator is analogous to the

∏
operator used in

mathematical notation. If the index set is empty, then the result is 1.

The following example uses the PROD operator to evaluate a factorial:

proc optmodel;
number n = 5;
put (prod{i in 1..n} i); /* outputs 120 */

742 � Chapter 6. The OPTMODEL Procedure

Range Expression

expression .. expression [BY expression]

The range expression returns the set of numbers from the specified arithmetic pro-
gression. The sequence proceeds from the left operand value up to the right operand
limit. The increment between numbers is 1 unless a different value is specified with a
BY clause. If the increment is negative, then the progression is from the left operand
down to the right operand limit. The result can be an empty set.

For compatibility with the DATA step iterative DO loop construct, the keyword TO
can substitute for the range (..) operator.

The limit value is not included in the resulting set unless it belongs in the arithmetic
progression. For example, the following range expression does not include 30:

proc optmodel;
put (10..30 by 7); /* outputs {10,17,24} */

The actual numbers that the range expression “f..l by i” produces are in the arithmetic
sequence

f, f + i, f + 2i, . . . , f + ni

where

n =
⌊

l − f

i
+
√

ε

⌋
and ε represents the relative machine precision. The limit is adjusted to avoid arith-
metic roundoff errors.

PROC OPTMODEL represents the set specified by a range expression compactly
when the value is stored in a parameter location, used as a set operand of an
IN/NOTIN expression, used by an iterative DO loop, or used in an index set. For
example, the following expression is evaluated efficiently:

999998.5 IN 1..1000000000

Set Constructor Expression

{ [expression-1 [, . . . expression-n]] }

The set constructor expression returns the set of the expressions in the member list.
Duplicated values are added to the set only once. A warning message is produced
when duplicates are detected. The constructor expression consists of 0 or more subex-
pressions of the same scalar type or of tuple expressions that match in length and in
element types.

The following code outputs a three-member set and warns about the duplicated value
2:

SETOF Aggregation Expression � 743

proc optmodel;
put ({1,2,3,2}); /* outputs {1,2,3} */

The following example produces a three-member set of tuples, using PROC
OPTMODEL parameters and variables. The output is displayed in Figure 6.30.

proc optmodel;
number m = 3, n = 4;
var x{1..4} init 1;
string y = ’c’;
put ({<’a’, x[3]>, <’b’, m>, <y, m/n>});

{<’a’,1>,<’b’,3>,<’c’,0.75>}

Figure 6.30. Set Constructor Expression Output

Set Literal Expression
/ member(s) /

The set literal expression provides compact specification of simple set values. It
is equivalent in function to the set constructor expression but minimizes typing for
sets that contain numeric and string constant values. The set members are specified
by members, which are literal values. As with the set constructor expression, each
member must have the same type.

The following code specifies a simple numeric set:

/1 2.5 4/

The set contains the members 1, 2.5, and 4. A string set could be specified as
follows:

/Miami ’San Francisco’ Seattle ’Washington, D.C.’/

This set contains the strings ’Miami’, ’San Francisco’, ’Seattle’, and
’Washington, D.C.’. You can specify string values in set literals without quo-
tation marks when the text follows the rules for a SAS name. Strings that begin with
a digit or contain blanks or other special characters must be specified with quotation
marks.

Specify tuple members of a set by enclosing the tuple elements within angle brackets
(<element(s)>). The tuple elements can be specified with numeric and string liter-
als. The following example includes the tuple elements <’New York’, 4.5>
and <’Chicago’, -5.7>:

/<’New York’ 4.5> <Chicago -5.7>/

744 � Chapter 6. The OPTMODEL Procedure

SETOF Aggregation Expression

SETOF{ index-set } expression

The SETOF aggregation operator evaluates the expression expression for each mem-
ber of the index set index-set. The result is the set that is formed by collecting the val-
ues returned by the operand expression. The operand can be a tuple expression. For
example, the following code produces a set of tuples of numbers with their squared
and cubed values:

proc optmodel;
put (setof{i in 1..3}<i, i*i, i**3>);

Figure 6.31 shows the displayed output.

{<1,1,1>,<2,4,8>,<3,9,27>}

Figure 6.31. SETOF Aggregation Expression Output

SLICE Expression

SLICE(< element-1, . . . element-n >, set-expression)

The SLICE expression produces a new set by selecting members in the operand set
that match a pattern tuple. The pattern tuple is specified by the element list in angle
brackets. Each element in the pattern tuple must specify a numeric or string expres-
sion. The expressions are used to match the values of the corresponding elements in
the operand set member tuples. You can also specify an element by using an aster-
isk (*). The sequence of element values that correspond to asterisk positions in each
matching tuple is combined into a tuple of the result set. At least one asterisk element
must be specified.

The following code demonstrates the SLICE expression:

proc optmodel;
put (slice(<1,*>, {<1,3>, <1,0>, <3,1>}));
put (slice(<*,2,*>, {<1,2,3>, <2,4,3>, <2,2,5>}));

This code produces the output in Figure 6.32.

{3,0}
{<1,3>,<2,5>}

Figure 6.32. SLICE Expression Output

SUM Aggregation Expression � 745

For the first PUT statement, <1,*> matches set members <1,3> and <1,0> but not
<3,1>. The second element of each matching set tuple, corresponding to the asterisk
element, becomes the value of the resulting set member. In the second PUT state-
ment, the values of the first and third elements of the operand set member tuple are
combined into a two-position tuple in the result set.

The following code uses the SLICE expression to help compute the transitive closure
of a set of tuples representing a relation by using Warshall’s algorithm. In this code
the set parameter dep represents a direct dependency relation.

proc optmodel;
set<str,str> dep = {<’B’,’A’>, <’C’,’B’>, <’D’,’C’>};
set<str,str> cl;
set<str> cn;
cl = dep;
cn = (setof{<i,j> in dep} i) inter (setof{<i,j> in dep} j);
for {node in cn}

cl = cl union (slice(<*,node>,cl) cross slice(<node,*>,cl));
put cl;

The local dummy parameter node in the FOR statement iterates over the set cn of
possible intermediate nodes that can connect relations transitively. At the end of each
FOR iteration, the set parameter cl contains all tuples from the original set as well as
all transitive tuples found in the current or previous iterations.

The output in Figure 6.33 includes the indirect as well as direct transitive dependen-
cies from the set dep.

{<’B’,’A’>,<’C’,’B’>,<’D’,’C’>,<’C’,’A’>,<’D’,’B’>,<’D’,’A’>}

Figure 6.33. Warshall’s Algorithm Output

A special form of index-set-item uses the SLICE expression implicitly. See the sec-
tion “More on Index Sets” on page 784 for details.

SUM Aggregation Expression

SUM{ index-set } expression

The SUM aggregation operator evaluates the numeric expression expression for each
member in the index set index-set. The result is the sum of the values that are returned
by the expression. If the index set is empty, then the result is 0. This operator is
analogous to the

∑
operator that is used in mathematical notation. The following

code demonstrates the use of the SUM aggregation operator:

proc optmodel;
put (sum {i in 1..10} i); /* outputs 55 */

746 � Chapter 6. The OPTMODEL Procedure

SYMDIFF Expression

set-expression SYMDIFF set-expression

The SYMDIFF expression returns the symmetric set difference of the left and right
operands. The result set contains values that are members of either the left or right
operand but are not members of both operands. The operands must have compatible
set types.

The following example demonstrates a symmetric difference:

proc optmodel;
put ({1,3} symdiff {2,3}); /* outputs {1,2} */

Tuple Expression

< expression-1, . . . expression-n >

A tuple expression represents the value of a member in a set of tuples. Each scalar
subexpression inside the angle brackets represents the value of a tuple element. This
form is used only with IN, SETOF, and set constructor expressions.

The following code demonstrates the tuple expression:

proc optmodel;
put (<1,2,3> in setof{i in 1..2}<i,i+1,i+2>);
put ({<1,’a’>, <2,’b’>} cross {<3,’c’>, <4,’d’>});

The first PUT statement checks whether the tuple <1, 2, 3> is a member of a set of
tuples. The second PUT statement outputs the cross product of two sets of tuples
constructed by the set constructor.

This code produces the output in Figure 6.34.

1
{<1,’a’,3,’c’>,<1,’a’,4,’d’>,<2,’b’,3,’c’>,<2,’b’,4,’d’>}

Figure 6.34. Tuple Expression Output

UNION Expression

set-expression UNION set-expression

The UNION expression returns the set union of the left and right operands. The result
set contains values that are members of either the left or right operand. The operands
must have compatible set types. The following example performs a set union:

WITHIN Expression � 747

proc optmodel;
put ({1,3} union {2,3}); /* outputs {1,3,2} */

UNION Aggregation Expression

UNION{ index-set } set-expression

The UNION aggregation expression evaluates the set-expression for each member of
the index set index-set. The result is the set union of the values that are returned by
the set-expression. If the index set is empty, then the result is an empty set.

The following code demonstrates a UNION aggregation. The output is the value of
{1,2,3,4} ∪ {2,3,4,5} ∪ {3,4,5,6}.

proc optmodel;
put (union{i in 1..3} i..i+3); /* outputs {1,2,3,4,5,6} */

WITHIN Expression

set-expression WITHIN set-expression

set-expression NOT WITHIN set-expression

The WITHIN expression returns 1 if the left operand set is a subset of the right
operand set and returns 0 otherwise. (That is, the operator returns true if every
member of the left operand set is a member of the right operand set.) The NOT
WITHIN form logically negates the result value. The following code demonstrates
the WITHIN and NOT WITHIN operators:

proc optmodel;
put ({1,3} within {2,3}); /* outputs 0 */
put ({1,3} not within {2,3}); /* outputs 1 */
put ({1,3} within {1,2,3}); /* outputs 1 */

748 � Chapter 6. The OPTMODEL Procedure

Details: OPTMODEL Procedure

Conditions of Optimality

Linear Programming

A standard linear program has the following formulation:

minimize cTx

subject to Ax ≥ b

x ≥ 0

where

x ∈ Rn is the vector of decision variables

A ∈ Rm×n is the matrix of constraints

c ∈ Rn is the vector of objective function coefficients

b ∈ Rm is the vector of constraints right-hand sides (RHS)

This formulation is called the primal problem. The corresponding dual problem (see
the section “Dual Values” on page 771) is

maximize bTy

subject to ATy ≤ c

y ≥ 0

where y ∈ Rm is the vector of dual variables.

The vectors x and y are optimal to the primal and dual problems, respectively, only if
there exist primal slack variables s = Ax−b and dual slack variables w = ATy−c
such that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Ax + s = b, x ≥ 0, s ≥ 0

ATy + w = c, y ≥ 0, w ≥ 0

sTy = 0

wTx = 0

The first line of equations defines primal feasibility, the second line of equations de-
fines dual feasibility, and the last two equations are called the complementary slack-
ness conditions.

Conditions of Optimality � 749

Nonlinear Programming

To facilitate discussion of optimality conditions in nonlinear programming, we write
the general form of nonlinear optimization problems by grouping the equality con-
straints and inequality constraints. We also write all the general nonlinear inequality
constraints and bound constraints in one form as “≥” inequality constraints. Thus we
have the following formulation:

minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

where E is the set of indices of the equality constraints, I is the set of indices of the
inequality constraints, and m = |E|+ |I|.

A point x is feasible if it satisfies all the constraints ci(x) = 0, i ∈ E and ci(x) ≥
0, i ∈ I. The feasible region F consists of all the feasible points. In unconstrained
cases, the feasible region F is the entire Rn space.

A feasible point x∗ is a local solution of the problem if there exists a neighborhood
N of x∗ such that

f(x) ≥ f(x∗) for all x ∈ N ∩ F

Further, a feasible point x∗ is a strict local solution if strict inequality holds in the
preceding case; i.e.,

f(x) > f(x∗) for all x ∈ N ∩ F

A feasible point x∗ is a global solution of the problem if no point in F has a smaller
function value than f(x∗); i.e.,

f(x) ≥ f(x∗) for all x ∈ F

Unconstrained Optimization

The following conditions hold true for unconstrained optimization problems:

• First-order necessary conditions: If x∗ is a local solution and f(x) is con-
tinuously differentiable in some neighborhood of x∗, then

∇f(x∗) = 0

• Second-order necessary conditions: If x∗ is a local solution and f(x) is
twice continuously differentiable in some neighborhood of x∗, then∇2f(x∗) is
positive semidefinite.

• Second-order sufficient conditions: If f(x) is twice continuously differen-
tiable in some neighborhood of x∗, ∇f(x∗) = 0, and ∇2f(x∗) is positive defi-
nite, then x∗ is a strict local solution.

750 � Chapter 6. The OPTMODEL Procedure

Constrained Optimization

For constrained optimization problems, the Lagrangian function is defined as follows:

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x)

where λi, i ∈ E ∪ I, are called Lagrange multipliers. ∇xL(x, λ) is used to denote
the gradient of the Lagrangian function with respect to x, and ∇2

xL(x, λ) is used to
denote the Hessian of the Lagrangian function with respect to x. The active set at a
feasible point x is defined as

A(x) = E ∪ {i ∈ I : ci(x) = 0}

We also need the following definition before we can state the first-order and second-
order necessary conditions:

• Linear independence constraint qualification and regular point: A point x
is said to satisfy the linear independence constraint qualification if the gradi-
ents of active constraints

∇ci(x), i ∈ A(x)

are linearly independent. Further, we refer to such a point x as a regular point.

We now state the theorems that are essential in the analysis and design of algorithms
for constrained optimization:

• First-order necessary conditions: Suppose that x∗ is a local minimum and
also a regular point. If f(x) and ci(x), i ∈ E ∪ I, are continuously differ-
entiable, there exist Lagrange multipliers λ∗ ∈ Rm such that the following
conditions hold:

∇xL(x∗, λ∗) = ∇f(x∗)−
∑

i∈E∪I
λ∗i∇ci(x∗) = 0

ci(x∗) = 0, i ∈ E
ci(x∗) ≥ 0, i ∈ I

λ∗i ≥ 0, i ∈ I
λ∗i ci(x∗) = 0, i ∈ I

The preceding conditions are often known as the Karush-Kuhn-Tucker condi-
tions, or KKT conditions for short.

• Second-order necessary conditions: Suppose that x∗ is a local minimum and
also a regular point. Let λ∗ be the Lagrange multipliers that satisfy the KKT
conditions. If f(x) and ci(x), i ∈ E ∪ I, are twice continuously differentiable,
the following conditions hold:

zT∇2
xL(x∗, λ∗)z ≥ 0

for all z ∈ Rn that satisfy

∇ci(x∗)T z = 0, i ∈ A(x∗)

Data Set Input/Output � 751

• Second-order sufficient conditions: Suppose there exist a point x∗ and some
Lagrange multipliers λ∗ such that the KKT conditions are satisfied. If

zT∇2
xL(x∗, λ∗)z > 0

for all z ∈ Rn that satisfy

∇ci(x∗)T z = 0, i ∈ A(x∗)

then x∗ is a strict local solution.

Note that the set of all such z’s forms the null space of the matrix[
∇ci(x∗)T

]
i∈A(x∗)

. Thus we can search for strict local solutions by numer-
ically checking the Hessian of the Lagrangian function projected onto the
null space. For a rigorous treatment of the optimality conditions, see Fletcher
(1987) and Nocedal and Wright (1999).

Data Set Input/Output

You can use the CREATE DATA and READ DATA statements to exchange PROC
OPTMODEL data with SAS data sets. The statements can move data into and out of
PROC OPTMODEL parameters and variables. For example, the following code uses
a CREATE DATA statement to save the results from an optimization into a data set:

proc optmodel;
var x;
min z = (x-5)**2;
solve;
create data optdata from xopt=x z;

This code writes a single observation into the data set OPTDATA. The data set con-
tains two variables, xopt and z, and the values contain the optimized values of the
PROC OPTMODEL variable x and objective z, respectively. The code “xopt=x”
renames the variable x to xopt.

The group of values held by a data set variable in different observations of a data set
is referred to as a column. The READ DATA and CREATE DATA statements specify
a set of columns for a data set and define how data are to be transferred between the
columns and PROC OPTMODEL parameters.

Columns in square brackets ([]) are handled specially. Such columns are called
key columns. Key columns specify element values that provide an implicit index
for subsequent array columns. The following example uses key columns with the
CREATE DATA statement to write out variable values from an array:

proc optmodel;
set LOCS = {’New York’, ’Washington’, ’Boston’}; /* locations */
set DOW = 1..7; /* day of week */
var s{LOCS, DOW} init 1;
create data soldata from [location day_of_week]={LOCS, DOW} sale=s;

752 � Chapter 6. The OPTMODEL Procedure

In this case the optimization variable s is initialized to a value of 1 and is indexed
by values from the set parameters LOCS and DOW. The output data set contains an
observation for each combination of values in these sets. The output data set contains
three variables, location, day–of–week, and sale. The data set variables location
and day–of–week save the index element values for the optimization variable s that
is written in each observation. The data set created is shown in Figure 6.35.

Data Set: SOLDATA

day_of_
Obs location week sale

1 New York 1 1
2 New York 2 1
3 New York 3 1
4 New York 4 1
5 New York 5 1
6 New York 6 1
7 New York 7 1
8 Washington 1 1
9 Washington 2 1

10 Washington 3 1
11 Washington 4 1
12 Washington 5 1
13 Washington 6 1
14 Washington 7 1
15 Boston 1 1
16 Boston 2 1
17 Boston 3 1
18 Boston 4 1
19 Boston 5 1
20 Boston 6 1
21 Boston 7 1

Figure 6.35. Data Sets Created

Note that the key columns in the preceding example do not name existing PROC
OPTMODEL variables. They create new local dummy parameters, location and
day–of–week, in the same manner as dummy parameters in index sets. These local
parameters can be used in subsequent columns. For example, the following code
demonstrates how to use a key column value in an expression for a later column
value:

proc optmodel;
create data tab

from [i]=(1..10)
Square=(i*i) Cube=(i*i*i);

This creates a data set that has 10 observations that hold squares and cubes of the
numbers from 1 to 10. The key column variable here is named i and is explicitly
assigned the values from 1 to 10, while the data set variables Square and Cube hold
the square and cube, respectively, of the corresponding value of i.

Data Set Input/Output � 753

In the preceding example the key column values are simply the numbers from 1 to
10. The value is the same as the observation number, so the variable i is redundant.
You can remove the data set variable for a key column via the DROP data set option,
as follows:

proc optmodel;
create data tab2 (drop=i)

from [i] =(1..10)
Square=(i*i) Cube=(i*i*i);

The local parameters declared by key columns receive their values in various ways.
For a READ DATA statement the key column values come from the data set variables
for the column. In a CREATE DATA statement the values can be defined explicitly,
as shown in the previous example. Otherwise the CREATE DATA statement gener-
ates a set of values that combines the index sets of array columns that need implicit
indexing. The code producing the output in Figure 6.35 demonstrates implicit index-
ing.

Use a suffix (“Suffixes” on page 767) to read or write auxiliary values, such as vari-
able bounds or constraint duals. For example, consider the following code:

data pdat;
input p $ maxprod cost;
datalines;

ABQ 12 0.7
MIA 9 0.6
CHI 14 0.5
run;
proc optmodel;

set<string> plants;
var prod{plants} >= 0;
number cost{plants};
read data pdat into plants=[p] prod.ub=maxprod cost;

The code “plants=[p]” in the READ DATA statement declares p as a key column
and instructs PROC OPTMODEL to store the set of plant names from the data set
variable p into the set parameter plants. The statement assigns the upper bound for
the variable prod indexed by p to be the value of the data set variable maxprod. The
cost parameter location indexed by p is also assigned to be the value of the data set
variable cost.

The target variables prod and cost in the preceding example use implicit indexing.
Indexing can also be performed explicitly. The following version of the READ DATA
statement makes the indices explicit:

read data pdat into plants=[p] prod[p].ub=maxprod cost[p];

Explicit indexing is useful when array indices need to be transformed from the key
column values in the data set. For example, the following code reverses the order in
which elements from the data set are stored in an array:

754 � Chapter 6. The OPTMODEL Procedure

data abcd;
input letter $ @@;
datalines;
a b c d
;

proc optmodel;
set<num> subscripts=1..4;
string letter{subscripts};
read data abcd into [_N_] letter[5-_N_];
print letter;

The output from this example appears in Figure 6.36.

The OPTMODEL Procedure

[1] letter

1 d
2 c
3 b
4 a

Figure 6.36. READ DATA Statement: Explicit Indexing

The following example demonstrates the use of explicit indexing to save sequential
subsets of an array in individual data sets:

data revdata;
input month rev @@;
datalines;

1 200 2 345 3 362 4 958
5 659 6 804 7 487 8 146
9 683 10 732 11 652 12 469
;

proc optmodel;
set m = 1..3;
var revenue{1..12};
read data revdata into [_N_] revenue=rev;
create data qtr1 from [month]=m revenue[month];
create data qtr2 from [month]=m revenue[month+3];
create data qtr3 from [month]=m revenue[month+6];
create data qtr4 from [month]=m revenue[month+9];

Each CREATE DATA statement generates a data set representing one quarter of the
year. Each data set contains the variables month and revenue. The data set qtr2 is
shown in Figure 6.37.

Formatted Output � 755

Obs month revenue

1 1 958
2 2 659
3 3 804

Figure 6.37. CREATE DATA Statement: Explicit Indexing

Control Flow

Most of the control flow statements in PROC OPTMODEL are familiar to users of
the DATA step or PROC IML. PROC OPTMODEL supports the IF statement, DO
blocks, the iterative DO statement, the DO WHILE statement, and the DO UNTIL
statement. You can also use the CONTINUE, LEAVE, and STOP statements to mod-
ify control flow.

PROC OPTMODEL adds the FOR statement. This statement is similar in operation
to an iterative DO loop. However, the iteration is performed over the members of an
index set. This form is convenient for iteration over all the locations in an array, since
the valid array indices are also defined using an index set. For example, the following
code initializes the array parameter A, indexed by i and j, to random values sampled
from a normal distribution with mean 0 and variance 1:

proc optmodel;
set R=1..10;
set C=1..5;
number A{R, C};
for {i in R, j in C}

A[i, j]=rannor(-1);

The FOR statement provides a convenient way to perform a statement such as the
preceding assignment statement for each member of a set.

Formatted Output

PROC OPTMODEL provides two primary means of producing formatted output.
The PUT statement provides output of data values with detailed format control. The
PRINT statement handles arrays and produces formatted output in tabular form.

The PUT statement is similar in syntax to the PUT statement in the DATA step and
in PROC IML. The PUT statement can output data to the SAS log, the SAS listing,
or an external file. Arguments to the PUT statement specify the data to output and
provide instructions for formatting. The PUT statement provides enough control to
create reports within PROC OPTMODEL. However, typically the PUT statement is
used to produce output for debugging or to quickly check data values.

The following example demonstrates some features of the PUT statement:

756 � Chapter 6. The OPTMODEL Procedure

proc optmodel;
number a=1.7, b=2.8;
set s={a,b};
put a b; /* list output */
put a= b=; /* named output */
put ’Value A: ’ a 8.1 @30 ’Value B: ’ b 8.; /* formatted */
string str=’Ratio (A/B) is:’;
put str (a/b); /* strings and expressions */
put s=; /* named set output */

This code produces the output in Figure 6.38.

1.7 2.8
a=1.7 b=2.8
Value A: 1.7 Value B: 3
Ratio (A/B) is: 0.6071428571
s={1.7,2.8}

Figure 6.38. PUT Statement Output

The first PUT statement demonstrates list output. The numeric data values are output
in a default format, BEST12., with leading and trailing blanks removed. A blank
space is inserted after each data value is output. The second PUT statement uses the
equal sign (=) to request that the variable name be output along with the regular list
output.

The third PUT statement demonstrates formatted output. It uses the @ operator to
position the output in a specific column. This style of output can be used in report
generation. Note that the format specification “8.” causes the displayed value of
parameter b to be rounded.

The fourth PUT statement shows the output of a string value, str. It also outputs the
value of an expression enclosed in parentheses. The final PUT statement outputs a
set along with its name.

The default destination for PUT statement output is the SAS log. The FILE and
CLOSEFILE statements can be used to send output to the SAS listing or to an external
data file. Multiple files can be open at the same time. The FILE statement selects
the current destination for PUT statement output, and the CLOSEFILE statement
closes the corresponding file. See the section “FILE Statement” on page 713 for
more details.

The PRINT statement is designed to output numeric and string data in the form of ta-
bles. The PRINT statement handles the details of formatting automatically. However,
the output format can be overridden by PROC OPTMODEL options and through
Output Delivery System (ODS) facilities.

The PRINT statement can output array data in a table form that contains a row for
each combination of array index values. This form uses columns to display the ar-
ray index values for each row and uses other columns to display the value of each
requested data item. The following code demonstrates the table form:

Formatted Output � 757

proc optmodel;
number square{i in 0..5} = i*i;
number recip{i in 1..5} = 1/i;
print square recip;

The PRINT statement produces the output in Figure 6.39.

[1] square recip

0 0
1 1 1.00000
2 4 0.50000
3 9 0.33333
4 16 0.25000
5 25 0.20000

Figure 6.39. PRINT Statement Output (List Form)

The first table column, labeled “[1],” contains the index values for the parameters
square and recip. The columns that are labeled “square” and “recip” contain the
parameter values for each array index. For example, the last row corresponds to the
index 5 and the value in the last column is 0.2, which is the value of recip[5].

Note that the first row of the table contains no value in the recip column. Parameter
location recip[0] does not have a valid index, so no value is printed. The PRINT
statement does not display variables that are undefined or have invalid indices. This
permits arrays that have similar indexing to be printed together. The sets of defined
indices in the arrays are combined to generate the set of indices shown in the table.

Also note that the PRINT statement has assigned formats and widths that differ be-
tween the square and recip columns. The PRINT statement assigns a default fixed-
point format to produce the best overall output for each data column. The format that
is selected depends on the PDIGITS= and PWIDTH= options.

The PDIGITS= and PWIDTH= options specify the desired significant digits and for-
matted width, respectively. If the range of magnitudes is large enough that no suitable
format can be found, then the data item is displayed in scientific format. The table
in the preceding example displays the last column with 5 decimal places in order to
display the 5 significant digits that were requested by the default PDIGITS value. The
square column, on the other hand, does not need any decimal places.

The PRINT statement can also display two-dimensional arrays in matrix form. If the
list following the PRINT statement contains only a single array that has two index
elements, then the array is displayed in matrix form when it is sufficiently dense
(otherwise the display is in table form). In this form the left-most column contains
the values of the first index element. The remaining columns correspond to and are
labeled by the values of the second index element. The following code prints an
example of matrix form:

758 � Chapter 6. The OPTMODEL Procedure

proc optmodel;
set R=1..6;
set C=1..4;
number a{i in R, j in C} = 10*i+j;
print a;

The PRINT statement produces the output in Figure 6.40.

a
1 2 3 4

1 11 12 13 14
2 21 22 23 24
3 31 32 33 34
4 41 42 43 44
5 51 52 53 54
6 61 62 63 64

Figure 6.40. PRINT Statement Output (Matrix Form)

In the example the first index element ranges from 1 to 6 and corresponds to the
table rows. The second index element ranges from 1 to 4 and corresponds to the
table columns. Array values can be found based on the row and column values. For
example, the value of parameter a[3,2] is 32. This location is found in the table in
the row labeled “3” and the column labeled “2.”

ODS Table and Variable Names

PROC OPTMODEL assigns a name to each table it creates. You can use these names
to reference the table when you use the Output Delivery System (ODS) to select
tables and create output data sets. The names of tables common to all solvers are
listed in Table 6.8. Some solvers can generate additional tables; see the individual
solver chapters for more information. For more information about ODS, see SAS
Output Delivery System: User’s Guide.

ODS Table and Variable Names � 759

Table 6.8. ODS Tables Produced in PROC OPTMODEL

ODS Table Name Description Statement/Option
DerivMethods List of derivatives used by the

solver, including the method of
computation

SOLVE

OptStatistics Solver-dependent description of the
resources required for solution, in-
cluding function evaluations and
solver time

SOLVE

PrintTable Specified parameter and/or variable
values

PRINT

ProblemSummary Description of objective, variables,
and constraints

SOLVE

SolutionSummary Overview of solution, including
solver-dependent solution quality
values

SOLVE

SolverOptions List of solver options and their val-
ues

SOLVE

To guarantee that ODS output data sets contain information from all executed state-
ments, use the PERSIST= option on the ODS OUTPUT statement. For details, see
SAS Output Delivery System: User’s Guide.

Table 6.9 lists the variable names of the preceding tables used in the ODS template
of the OPTMODEL procedure.

Table 6.9. Variable Names for the ODS Tables Produced in PROC OPTMODEL

Table Name Variables
DerivMethods Label1, cValue1, and nValue1
OptStatistics Label1, cValue1, and nValue1
PrintTable (matrix form) ROW, COL1 - COLn, identifier-expression(–suffix)

PrintTable (table form) COL1 - COLn, identifier-expression(–suffix)

ProblemSummary Label1, cValue1, and nValue1
SolutionSummary Label1, cValue1, and nValue1
SolverOptions Label1, cValue1, nValue1, cValue2, and nValue2

The PRINT statement produces an ODS table named “PrintTable.” The variable
names used depend on the display format used. See the section “Formatted Output”
on page 755 for details on choosing the display format.

For the PRINT statement with table format, the columns that display array indices
are named COL1–COLn, where n is the number of index elements. Columns that
display values from identifier expressions are named based on the expression’s name

760 � Chapter 6. The OPTMODEL Procedure

and suffix. The identifier name becomes the output variable name if no suffix is
used. Otherwise the variable name is formed by appending an underscore (–) and
the suffix to the identifier name. Columns that display the value of expressions are
named COLn, where n is the column number in the table.

For the PRINT statement with matrix format, the first column has the variable name
ROW. The remaining columns are named COL1–COLn where n is the number of
distinct column indices. Columns that display values from identifier expressions are
named based on the expression’s name and suffix, as described in the case of table
format.

The PRINTLEVEL= option controls the tables produced by the SOLVE statement.
When PRINTLEVEL=0, the SOLVE statement produces no ODS tables. When
PRINTLEVEL=1, the SOLVE statement produces the “ProblemSummary” and
“SolutionSummary” tables. When PRINTLEVEL=2, the SOLVE statement produces
the “ProblemSummary,” “SolverOptions,” “DerivMethods,” “SolutionSummary,”
and “OptStatistics” tables.

The following code generates several ODS tables and writes each table to a SAS data
set:

proc optmodel printlevel=2;
ods output PrintTable=expt ProblemSummary=exps DerivMethods=exdm

SolverOptions=exso SolutionSummary=exss OptStatistics=exos;
var x{1..2} >= 0;
min z = 2*x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2

+ 2.5*x[1]*x[2] + x[1]**3;
con c1: x[1] - x[2] <= 1;
con c2: x[1] + 2*x[2] >= 100;
solve;
print x;

The data set expt contains the Print table (“PrintTable”) and is shown in Figure 6.41.
The variable names are COL1 and x.

Obs COL1 x

1 1 10.448
2 2 44.776

Figure 6.41. ODS Table “PrintTable”

The data set exps contains the Problem Summary table (“ProblemSummary”) and is
shown in Figure 6.42. The variable names are Label1, cValue11, and nValue1. The
rows describe the objective function, variables, and constraints. The rows depend on
the form of the problem.

ODS Table and Variable Names � 761

Obs Label1 cValue1 nValue1

1 Objective Sense Minimization .
2 Objective Function z .
3 Objective Type Nonlinear .
4 .
5 Number of Variables 2 2.000000
6 Bounded Above 0 0
7 Bounded Below 2 2.000000
8 Bounded Below and Above 0 0
9 Free 0 0
10 Fixed 0 0
11 .
12 Number of Constraints 2 2.000000
13 Linear LE (<=) 1 1.000000
14 Linear EQ (=) 0 0
15 Linear GE (>=) 1 1.000000
16 Linear Range 0 0

Figure 6.42. ODS Table “ProblemSummary”

The data set exso contains the Solver Options table (“SolverOptions”) and is shown
in Figure 6.43. The variable names are Label1, cValue1, nValue1, cValue2, and
nValue2. The rows, which depend on the solver called by PROC OPTMODEL, list
the values taken by each of the solver options. The presence of an asterisk (*) next to
an option indicates that a nondefault value has been specified for that option.

c
Obs Label1 cValue1 nValue1 Value2 nValue2

1 TECH TRUREG . .
2 ABSOPTTOL 0.001 0.001000 .
3 MAXFUNC 3000 3000.000000 .
4 MAXITER 500 500.000000 .
5 MAXTIME I I .
6 OBJLIMIT 1E20 1E20 .
7 PRINTFREQ 0 0 .
8 RELOPTTOL 1E-6 0.000001000 .

Figure 6.43. ODS Table “SolverOptions”

The data set exdm contains the Methods of Derivative Computation table
(“DerivMethods”) and is shown in Figure 6.44. The variable names are Label1,
cValue11, and nValue1. The rows, which depend on the derivatives used by the
solver, specify the method used to calculate each derivative.

762 � Chapter 6. The OPTMODEL Procedure

Obs Label1 cValue1 nValue1

1 Objective Gradient Analytic Formulas .
2 Objective Hessian Analytic Formulas .

Figure 6.44. ODS Table “DerivMethods”

The data set exss contains the Solution Summary table (“SolutionSummary”) and
is shown in Figure 6.45. The variable names are Label1, cValue11, and nValue1.
The rows give an overview of the solution, including the solver chosen, the objective
value, and the solution status. Depending on the values returned by the solver, the
Solution Summary table might also include some solution quality values such as
optimality error and infeasibility. The values in the Solution Summary table appear in
the –OROPTMODEL– macro variable; each solver chapter has a section describing
the solver’s contribution to this macro variable.

Obs Label1 cValue1 nValue1

1 Solver NLPC/Trust Region .
2 Objective Function z .
3 Solution Status Optimal .
4 Objective Value 22623.346619 22623
5 Iterations 4 4.000000
6 .
7 Absolute Optimality Error 8.6694316E-6 0.000008669
8 Relative Optimality Error 9.3760097E-9 9.3760097E-9
9 Absolute Infeasibility 1.065814E-14 1.065814E-14
10 Relative Infeasibility 1.055261E-16 1.055261E-16

Figure 6.45. ODS Table “SolutionSummary”

The data set exos contains the Optimization Statistics table (“OptStatistics”) and is
shown in Figure 6.46. The variable names are Label1, cValue11, and nValue1. The
rows, which depend on the solver called by PROC OPTMODEL, describe the amount
of time and function evaluations used by the solver.

Obs Label1 cValue1 nValue1

1 Function Evaluations 9 9.000000
2 Gradient Evaluations 1 1.000000
3 Hessian Evaluations 5 5.000000
4 Problem Generation Time 0.00 0
5 Code Generation Time 0.00 0
6 Presolver Time 0.00 0
7 Solver Time 0.02 0.016000

Figure 6.46. ODS Table “OptStatistics”

Constraints � 763

Constraints

You can add constraints to a PROC OPTMODEL model. The solver tries to satisfy
the specified constraints while minimizing or maximizing the objective.

Constraints in PROC OPTMODEL have names. By using the name, you can examine
various attributes of the constraint, such as the dual value that is returned by the solver
(see the section “Suffixes” on page 767 for details). A constraint is not allowed to
have the same name as any other model component.

PROC OPTMODEL provides a default name if none is supplied by the con-
straint declaration. The predefined array –ACON– provides names for otherwise
anonymous constraints. The predefined numeric parameter –NACON– contains
the number of such constraints. The constraints are assigned integer indices in
sequence, so –ACON–[1] refers to the first unnamed constraint declared, while
–ACON–[–NACON–] refers to the newest.

Consider the following example of a simple model that has a constraint:

proc optmodel;
var x, y;
min r = x**2 + y**2;
con c: x+y >= 1;
solve;
print x y;

Without the constraint named c, the solver would find the point x = y = 0 that has
an objective value of 0. However, the constraint makes this point infeasible. The
resulting output is shown in Figure 6.47.

764 � Chapter 6. The OPTMODEL Procedure

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver NLPC/Trust Region
Objective Function r
Solution Status Optimal
Objective Value 0.5
Iterations 0

Absolute Optimality Error 0
Relative Optimality Error 0
Absolute Infeasibility 0
Relative Infeasibility 0

x y

0.5 0.5

Figure 6.47. Constrained Model Solution

The solver has found the point where the objective function is minimized in the region
x + y ≥ 1. This is actually on the border of the region, or we say the constraint c is
active (see the section “Dual Values” on page 771 for details).

In the preceding example the constraint c had only a lower bound. You can spec-
ify constraints that have both upper and lower bounds. For example, replacing the
constraint c in the previous example would further restrict the feasible region:

con c: 3 >= x+y >= 1;

PROC OPTMODEL standardizes constraints to collect the expression terms that de-
pend on variables and to separate the expression terms that are constant. When there

Constraints � 765

is a single equality or inequality operator, the separable constant terms are moved to
the right operand while the variable terms are moved to the left operand. For range
constraints the separable constant terms from the middle expression are subtracted
from the lower and upper bounds. You can see the standardized constraints with the
use of the EXPAND statement in the following example. Consider the following
PROC OPTMODEL code:

proc optmodel;
var x{1..3};
con b: sum{i in 1..3}(x[i] - i) = 0;
expand b;

This produces an optimization problem with the following constraint:

(x[1] - 1) + (x[2] - 2) + (x[3] - 3) = 0

The EXPAND statement produces the output in Figure 6.48.

Constraint b: x[1] + x[2] + x[3] = 6

Figure 6.48. Expansion of a Standardized Constraint

Here the i separable constant terms in the operand of the SUM operation were moved
to the right-hand side of the constraint. The sum of these i values is 6.

After standardization the constraint expression that contains all the variables is called
the body of the constraint. You can reference the current value of the body expression
by attaching the .body suffix to the constraint name. Similarly, the upper and lower
bound expressions can be referenced by using the .ub and .lb suffixes, respectively.
(See the section “Suffixes” on page 767 for more information.)

As a result of standardization, the value of a body expression depends on how the
corresponding constraint is entered. The following example demonstrates how using
equivalent relational syntax can result in different .body values:

proc optmodel;
var x init 1;
con c1: x**2 <= 5;
con c2: 5 >= x**2;
con c3: -x**2 >= -5;
con c4: -5 <= -x**2;
expand;
print c1.body c2.body c3.body c4.body;

The EXPAND and PRINT statements produce the output in Figure 6.49.

766 � Chapter 6. The OPTMODEL Procedure

The OPTMODEL Procedure

Var x
Constraint c1: x**2 <= 5
Constraint c2: -x**2 >= -5
Constraint c3: -x**2 >= -5
Constraint c4: --x**2 <= 5

c1.BODY c2.BODY c3.BODY c4.BODY

1 -1 -1 1

Figure 6.49. Expansion and Body Values of Standardized Constraints

CAUTION: Each constraint has an associated dual value (see “Dual Values” on
page 771). As a result of standardization, the sign of a dual value depends in some
instances on the way in which the corresponding constraint is entered into PROC
OPTMODEL. In the case of a minimization objective with one-sided constraint
g(x) ≥ L, avoid entering the constraint as L ≤ g(x). For example, the following
code produces a value of 2:

proc optmodel;
var x;
min o1 = x**2;
con c1: x >= 1;
solve with nlpc;
print (c1.dual);

Replacing the constraint as follows results in a value of –2:

con c1: 1 <= x;

results in a value of -2.

In the case of a maximization objective with the one-sided constraint g(x) ≤ U ,
avoid entering the constraint as U ≥ g(x).

When a constraint has variables on both sides, the sign of the dual value depends on
the direction of the inequality. For example, you can enter the following constraint:

con c1: x**5 - y + 8 <= 5*x + y**2;

This is a ≤ constraint, so c1.dual is nonpositive. If you enter the same constraint as
follows, then c1.dual is nonnegative:

con c1: 5*x + y**2 >= x**5 - y + 8;

Suffixes � 767

It is also important to note that the signs of the dual values are negated in the case of
maximization. The following code outputs a value of 2:

proc optmodel;
var x;
min o1 = x**2;
con c1: 1 <= x <= 2;
solve with nlpc;
print (c1.dual);

Changing the objective function as follows yields the same value of x, but c1.dual
now holds the value –2:

max o1 = -x**2;

Note: A simple bound constraint on a decision variable x can be entered either by
using a CONSTRAINT declaration or by assigning values to x.lb and x.ub. If you
require dual values for simple bound constraints, use the CONSTRAINT declaration.

Constraints can be linear or nonlinear. PROC OPTMODEL determines the
type of constraint automatically by examining the form of the body expression.
Subexpressions that do not involve variables are treated as constants. Constant
subexpressions that are multiplied by or added to linear subexpressions produce new
linear subexpressions. For example, constraint A in the following code is linear:

proc optmodel;
var x{1..3};
con A: 0.5*(x[1]-x[2]) + x[3] >= 0;

Suffixes

Use suffixes with identifier-expressions to retrieve and modify various auxiliary val-
ues maintained by the solver. The values of the suffixes can come from expressions
in the declaration of the name that is suffixed. For example, the following declaration
of variable v provides the values of several suffixes of v at the same time:

var v >= 0 <= 2 init 1;

The values of the suffixes also come from the solver or from values assigned by
assignment or READ DATA statements (see an example in the section “Data Set
Input/Output” on page 751).

Table 6.10 shows the names of the available suffixes.

768 � Chapter 6. The OPTMODEL Procedure

Table 6.10. Suffix Names
Name Kind Suffix Modifiable Description

Variable .init No initial value for the solver

Variable .lb Yes lower bound

Variable .ub Yes upper bound

Variable .sol No current solution value

Variable .rc No reduced cost (LP) / gradient of Lagrangian
function

Variable .dual No reduced cost (LP) / gradient of Lagrangian
function

Variable .relax Yes relaxation of integrality restriction

Variable .priority Yes branching priority

Variable .direction Yes branching direction

Variable .status Yes status information from solver

Objective .sol No current objective value

Constraint .body No current constraint body value

Constraint .dual No dual value from the solver

Constraint .lb Yes current lower bound

Constraint .ub Yes current upper bound

Constraint .status Yes status information from solver

Note: The .init value of a variable represents the value it had before the most re-
cent SOLVE statement that used the variable. The value is zero before a successful
completion of a SOLVE statement that uses the variable.

The .sol suffix for a variable or objective can be used within a declaration to reference
the current value of the symbol. It is treated as a constant in such cases. When
processing a SOLVE statement, the value is fixed at the start of the SOLVE. Outside
of declarations, a variable or objective name with the .sol suffix is equivalent to the
unsuffixed name.

The .status suffix reports status information from the solver. Currently only the LP
solver provides status information. The .status suffix takes on the same character
values found in the –STATUS– variable of the PRIMALOUT and DUALOUT data
sets for the OPTLP procedure, including values set by the IIS= option. See the section
“Variable and Constraint Status” on page 846 and the section “Irreducible Infeasible
Set” on page 847, both in Chapter 8, “The Linear Programming Solver,” for more
information. For other solvers, the .status values default to a single blank character.

If you choose to modify the .status suffix for a variable or constraint, the assigned
suffix value can be a single character or an empty string. The LP solver will reject
invalid status characters. Blank or empty strings are treated as new row or column
entries for the purpose of “warm starting” the solver.

Suffixes � 769

You must use suffixes with names of the appropriate kind. For example, the .init
suffix cannot be used with the name of an objective. In particular, parameter names
cannot have suffixes.

Suffixed names can be used wherever a parameter name is accepted, provided only
the value is required. However, you are not allowed to change the value of certain
suffixes. Table 6.10 marks these suffixes as not modifiable. Suffixed names that are
used as a target in an assignment or READ DATA statement must be modifiable.

The following code formulates a trivial linear programming problem. The objective
value is unbounded, which is reported after the execution of the SOLVE statement.
The PRINT statements illustrate the corresponding default auxiliary values. This is
shown in Figure 6.50.

proc optmodel;
var x, y;
min z = x + y;
con c: x + 2*y <= 3;
solve;
print x.lb x.ub x.init x.sol;
print y.lb y.ub y.init y.sol;
print c.lb c.ub c.body c.dual;

The OPTMODEL Procedure

x.LB x.UB x.INIT x.SOL

-1.7977E308 1.79769E308 0 0

y.LB y.UB y.INIT y.SOL

-1.7977E308 1.79769E308 0 0

c.LB c.UB c.BODY c.DUAL

-1.7977E308 3 0 0

Figure 6.50. Using a Suffix: Retrieving Auxiliary Values

Next, continue to submit the following statements to change the default bounds and
solve again. The output is shown in Figure 6.51.

x.lb=0;
y.lb=0;
c.lb=1;
solve;
print x.lb x.ub x.init x.sol;
print y.lb y.ub y.init y.sol;
print c.lb c.ub c.body c.dual;

770 � Chapter 6. The OPTMODEL Procedure

The OPTMODEL Procedure

x.LB x.UB x.INIT x.SOL

0 1.79769E308 0 0

y.LB y.UB y.INIT y.SOL

0 1.79769E308 0 0.5

c.LB c.UB c.BODY c.DUAL

1 3 1 0.5

Figure 6.51. Using a Suffix: Modifying Auxiliary Values

CAUTION: Spaces are significant. The form NAME. TAG is treated as a SAS
format name followed by the tag name, not as a suffixed identifier. The forms
NAME.TAG, NAME . TAG, and NAME .TAG (note the location of spaces) are
interpreted as suffixed references.

Integer Variable Suffixes

The suffixes .relax, .priority, and .direction are applicable to integer variables.

For an integer variable x, setting x.relax to a nonzero, nonmissing value relaxes the
integrality restriction. The value of x.relax is read as either 1 or 0, depending on
whether or not integrality is relaxed. This suffix is ignored for noninteger variables.

The value contained in x.priority sets the branching priority of an integer variable
x for use with the MILP solver. This value can be any nonnegative, nonmissing
number. The default value is 0, which indicates default branching priority. Variables
with positive .priority values are assigned greater priority than the default. Variables
with the highest .priority values are assigned the highest priority. Variables with the
same .priority value are assigned the same branching priority.

The value of x.direction assigns a branching direction to an integer variable x. This
value should be an integer in the range –1 to 3. A noninteger value in this range is
rounded on assignment. The default value is 0. The significance of each integer is
found in Table 6.11.

Dual Values � 771

Table 6.11. Branching Directions

Value Direction

–1 Round down to nearest integer

0 Default

1 Round up to nearest integer

2 Round to nearest integer

3 Round to closest presolved bound

Suppose the solver will branch next on an integer variable x whose last LP relaxation
solution is 3.3. Suppose also that after passing through the presolver, the lower bound
of x is 0 and the upper bound of x is 10. If the value in x.direction is –1 or 2, then
the solver sets x to 3 for the next iteration. If the value in x.direction is 1, then the
solver sets x to 4. If the value in x.direction is 3, then the solver sets x to 0.

The MPS data set created by the SAVE MPS statement (“SAVE MPS Statement” on
page 730) will include a BRANCH section if any nondefault .priority or .direction
values have been specified for integer variables.

Dual Values

A dual value is associated with each constraint. To access the dual value of a con-
straint, use the constraint name followed by the suffix .dual.

For linear programming problems, the dual value associated with a constraint is also
known as the dual price (or the shadow price). The latter is usually interpreted eco-
nomically as the rate at which the optimal value changes with respect to a change in
some right-hand side that represents a resource supply or demand requirement.

For nonlinear programming problems, the dual values correspond to the values of the
optimal Lagrange multipliers. For more details about duality in nonlinear program-
ming, see Bazaraa, Sherali, and Shetty (1993).

From the dual value associated with the constraint, you can also tell whether the
constraint is active or not. A constraint is said to be active, or tight at a point, if it
holds with equality at that point. It can be informative to identify active constraints
at the optimal point and check their corresponding dual values. Relaxing the active
constraints might improve the objective value.

Background on Duality in Mathematical Programming

For a minimization problem, there exists an associated problem with the following
property: any feasible solution to the associated problem provides a lower bound for
the original problem, and conversely any feasible solution to the original problem
provides an upper bound for the associated problem. The original and the associated
problems are referred to as the primal and the dual problem, respectively. More

772 � Chapter 6. The OPTMODEL Procedure

specifically, consider the following primal problem:

minimize
x

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ L
ci(x) ≥ 0, i ∈ G

where E , L, and G denote the sets of equality, ≤ inequality, and ≥ inequality
constraints, respectively. Variables x ∈ Rn are called the primal variables. The
Lagrangian function of the primal problem is defined as

L(x, λ, µ, ν) = f(x)−
∑
i∈E

λici(x)−
∑
i∈L

µici(x)−
∑
i∈G

νici(x)

where λi ∈ R, µi ≤ 0, and νi ≥ 0. By convention, the Lagrange multipliers for
inequality constraints have to be nonnegative. Hence λ, −µ and ν correspond to the
Lagrange multipliers in the preceding Lagrangian function. It can be seen that the
Lagrangian function is a linear combination of the objective function and constraints
of the primal problem.

The Lagrangian function plays a fundamental role in nonlinear programming. It is
used to define the optimality conditions that characterize a local minimum of the
primal problem. It is also used to formulate the dual problem of the preceding primal
problem. To this end, consider the following dual function:

d(λ, µ, ν) = inf
x

L(x, λ, µ, ν)

The dual problem is defined as

maximize
λ,µ,ν

d(λ, µ, ν)

subject to µ ≤ 0

ν ≥ 0.

The variables λ, µ, and ν are called the dual variables. Note that the dual variables
associated with the equality constraints (λ) are free, whereas those associated with
≤ inequality constraints (µ) have to be nonpositive and those associated with ≥ in-
equality constraints (ν) have to be nonnegative.

The relation between the primal and the dual problems provides a nice connection
between the optimal solutions of the problems. Suppose x∗ is an optimal solution
of the primal problem and (λ∗, µ∗, ν∗) is an optimal solution of the dual problem.
The difference between the objective values of the primal and dual problems, δ =
f(x∗) − d(λ∗, µ∗, ν∗) ≥ 0, is called the duality gap. For some restricted class of
convex nonlinear programming problems, both the primal and the dual problems have
an optimal solution and the optimal objective values are equal—i.e., the duality gap
δ = 0. In such cases, the optimal values of the dual variables correspond to the
optimal Lagrange multipliers of the primal problem with the correct signs.

Dual Values � 773

A maximization problem is treated analogously to a minimization problem. For the
maximization problem

maximize
x

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ L
ci(x) ≥ 0, i ∈ G,

the dual problem is
minimize

λ,µ,ν
d(λ, µ, ν)

subject to µ ≥ 0

ν ≤ 0.

where the dual function is defined as d(λ, µ, ν) = sup
x

L(x, λ, µ, ν) and the

Lagrangian function L(x, λ, µ, ν) is defined the same as earlier. In this case, λ, µ,
and −ν correspond to the Lagrange multipliers in L(x, λ, µ, ν).

Minimization Problems

For inequality constraints in minimization problems, a positive optimal dual value
indicates that the associated ≥ inequality constraint is active at the solution, and a
negative optimal dual value indicates that the associated ≤ inequality constraint is
active at the solution. In PROC OPTMODEL, the optimal dual value for a range
constraint (a constraint with both upper and lower bounds) is the sum of the dual
values associated with the upper and lower inequalities. Since only one of the two
inequalities can be active, the sign of the optimal dual value, if nonzero, identifies
which one is active.

For equality constraints in minimization problems, the optimal dual values are unre-
stricted in sign. A positive optimal dual value for an equality constraint implies that,
starting close enough to the primal solution, the same optimum could be found if the
equality constraint were replaced with a ≥ inequality constraint. A negative optimal
dual value for an equality constraint implies that the same optimum could be found if
the equality constraint were replaced with a ≤ inequality constraint.

The following is an example where simple linear programming is considered:

proc optmodel;
var x, y;
min z = 6*x + 7*y;
con

4*x + y >= 5,
-x - 3*y <= -4,
x + y <= 4;

solve;
print x y;
expand _ACON_ ;
print _ACON_.dual _ACON_.body;

774 � Chapter 6. The OPTMODEL Procedure

The PRINT statements generate the output shown in Figure 6.52.

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Linear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 3
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 13
Iterations 2

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

x y

1 1
Constraint _ACON_[1]: y + 4*x >= 5
Constraint _ACON_[2]: - 3*y - x <= -4
Constraint _ACON_[3]: y + x <= 4

ACON. _ACON_.
[1] DUAL BODY

1 1 5
2 -2 -4
3 0 2

Figure 6.52. Dual Values in Minimization Problem: Display

It can be seen that the first and second constraints are active, with dual values 1 and
−2. Continue to submit the following statements. Notice how the objective value is
changed in Figure 6.53.

Dual Values � 775

ACON[1].lb = _ACON_[1].lb - 1;
solve;
ACON[2].ub = _ACON_[2].ub + 1;
solve;

The OPTMODEL Procedure

Solution Summary

Solver Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 12
Iterations 2

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

The OPTMODEL Procedure

Solution Summary

Solver Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 10
Iterations 2

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Figure 6.53. Dual Values in Minimization Problem: Interpretation

The change is just as the dual values imply. After the first constraint is relaxed by
1 unit, the objective value is improved by 1 unit. For the second constraint, the
relaxation and improvement are 1 unit and 2 units, respectively.

CAUTION: The signs of dual values produced by PROC OPTMODEL depend, in
some instances, on the way in which the corresponding constraints are entered. See
the section “Constraints” on page 763 for details.

Maximization Problems

For inequality constraints in maximization problems, a positive optimal dual value
indicates that the associated ≤ inequality constraint is active at the solution, and a
negative optimal dual value indicates that the associated ≥ inequality constraint is
active at the solution. The optimal dual value for a range constraint is the sum of the
dual values associated with the upper and lower inequalities. The sign of the optimal
dual value identifies which inequality is active.

For equality constraints in maximization problems, the optimal dual values are unre-
stricted in sign. A positive optimal dual value for an equality constraint implies that,

776 � Chapter 6. The OPTMODEL Procedure

starting close enough to the primal solution, the same optimum could be found if the
equality constraint were replaced with a ≤ inequality constraint. A negative optimal
dual value for an equality constraint implies that the same optimum could be found if
the equality constraint were replaced with a ≥ inequality constraint.

CAUTION: The signs of dual values produced by PROC OPTMODEL depend, in
some instances, on the way in which the corresponding constraints are entered. See
the section “Constraints” on page 763 for details.

Reduced Costs

In linear programming problems, each variable has a corresponding reduced cost. To
access the reduced cost of a variable, add the suffix .rc or .dual to the variable name.
These two suffixes are interchangeable.

The reduced cost of a variable is the rate at which the objective value changes when
the value of that variable changes. At optimality, basic variables have a reduced cost
of zero; a nonbasic variable with zero reduced cost indicates the existence of multiple
optimal solutions.

In nonlinear programming problems, the reduced cost interpretation does not apply.
The .dual and .rc variable suffixes represent the gradient of the Lagrangian function,
computed using the values returned by the solver.

The following example illustrates the use of the .rc suffix:

proc optmodel;
var x >= 0, y >= 0, z >= 0;
max cost = 4*x + 3*y - 5*z;
con

-x + y + 5*z <= 15,
3*x - 2*y - z <= 12,
2*x + 4*y + 2*z <= 16;

solve;
print x y z;
print x.rc y.rc z.rc;

The PRINT statements generate the output shown in Figure 6.54.

The OPTMODEL Procedure

x y z

5 1.5 0

x.RC y.RC z.RC

0 0 -6.5

Figure 6.54. Reduced Cost in Maximization Problem: Display

Presolver � 777

In this example, x and y are basic variables, while z is nonbasic. The reduced cost
of z is –6.5, which implies that increasing z from 0 to 1 decreases the optimal value
from 24.5 to 18.

Presolver

PROC OPTMODEL includes a simple presolver that processes linear constraints to
produce tighter bounds on variables. The presolver can reduce the number of vari-
ables and constraints that are presented to the solver. These changes can result in
reduced solution times.

Linear constraints that involve only a single variable are converted into variable
bounds. The presolver then eliminates redundant linear constraints for which variable
bounds force the constraint to always be satisfied. Tightly bounded variables where
upper and lower bounds are within the VARFUZZ range (see the section “PROC
OPTMODEL Statement” on page 691) are automatically fixed to the average of the
bounds. The presolver also eliminates variables that are fixed by the user or by the
presolver.

The presolver can infer tighter variable bounds from linear constraints when all vari-
ables in the constraint or all but one variable have known bounds. For example, when
given the following PROC OPTMODEL declarations, the presolver can determine
the bound y ≤ 4:

proc optmodel;
var x >= 3;
var y;
con c: x + y <= 7;

The presolver makes multiple passes and rechecks linear constraints after bounds are
tightened for the referenced variables. The number of passes is controlled by the
PRESOLVER= option. After the passes are finished, the presolver attempts to fix the
value of all variables that are not used in the updated objective and constraints. The
current value of such a variable is used if the value lies between the variable’s upper
and lower bounds. Otherwise the value is adjusted to the nearer bound. The value of
an integer variable is rounded before being checked against its bounds.

In some cases the solver might perform better without the presolve transfor-
mations, so almost all such transformations are unavailable when the option
PRESOLVER=BASIC is specified. However, the presolver still eliminates vari-
ables that have values that have been fixed by the FIX statement. To disable the
OPTMODEL presolver entirely, use PRESOLVER=NONE. The solver assigns val-
ues to any unused, unfixed variables when the option PRESOLVER=NONE is speci-
fied.

778 � Chapter 6. The OPTMODEL Procedure

Model Update

The OPTMODEL modeling language provides several means of modifying a model
after it is first specified. You can change the parameter values of the model. You
can add new model components. The FIX and UNFIX statements can fix variables
to specified values or rescind previously fixed values. The DROP and RESTORE
statements can deactivate and reactivate constraints.

To illustrate how these statements work, reconsider the following example from the
section “Constraints” on page 763:

proc optmodel;
var x, y;
min r = x**2 + y**2;
con c: x+y >= 1;
solve;
print x y;

As described previously, the solver finds the optimal point x = y = 0.5 with r = 0.5.
You can see the effect of the constraint c on the solution by temporarily removing it.
You can add the following code:

drop c;
solve;
print x y;

This change produces the output in Figure 6.55.

Model Update � 779

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver L-BFGS
Objective Function r
Solution Status Optimal
Objective Value 0
Iterations 1

Optimality Error 0

x y

0 0

Figure 6.55. Solution with Dropped Constraint

Note that the SOLVE statement was able to use LBFGS, a solver for unconstrained
problems (see “Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm” on page
964). The optimal point is x = y = 0, as expected.

You can restore the constraint c with the RESTORE statement, and you can also
investigate the effect of forcing the value of variable x to 0.3. This requires the
following statements:

restore c;
fix x=0.3;
solve;
print x y c.dual;

This produces the output in Figure 6.56.

780 � Chapter 6. The OPTMODEL Procedure

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 1
Fixed 1

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver NLPC/Trust Region
Objective Function r
Solution Status Optimal
Objective Value 0.58
Iterations 1

Absolute Optimality Error 0
Relative Optimality Error 0
Absolute Infeasibility 0
Relative Infeasibility 0

x y c.DUAL

0.3 0.7 1.4

Figure 6.56. Solution with Fixed Variable

The variable x still has the value that was defined in the FIX statement. The objective
value has increased by 0.08 from its constrained optimum 0.5 (see Figure 6.47). The
constraint c is active, as confirmed by the positive dual value.

You can return to the original optimization problem by allowing the solver to vary
variable x with the UNFIX statement, as follows:

unfix x;
solve;
print x y c.dual;

This produces the output in Figure 6.57. The model was returned to its original
conditions.

OPTMODEL Options � 781

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver NLPC/Trust Region
Objective Function r
Solution Status Optimal
Objective Value 0.5
Iterations 1

Absolute Optimality Error 0
Relative Optimality Error 0
Absolute Infeasibility 0
Relative Infeasibility 0

x y c.DUAL

0.5 0.5 1

Figure 6.57. Solution with Original Model

OPTMODEL Options

All PROC OPTMODEL options can be specified in the PROC statement (see the sec-
tion “PROC OPTMODEL Statement” on page 691 for more information). However,
it is sometimes necessary to change options after other OPTMODEL statements have
been executed. For example, if an optimization technique had trouble with conver-
gence, then it might be useful to vary the PRESOLVER= option value. This can be
done with the RESET OPTIONS statement.

The RESET OPTIONS statement accepts options in the same form used by the PROC
OPTMODEL statement. The RESET OPTIONS statement is also able to reset option
values and to change options programmatically. For example, the following code

782 � Chapter 6. The OPTMODEL Procedure

prints the value of parameter n at various precisions:

proc optmodel;
number n = 1/7;
for {i in 1..9 by 4}
do;

reset options pdigits=(i);
print n;

end;
reset options pdigits; /* reset to default */

The OPTMODEL Procedure

n

0.1

n

0.14286

n

0.142857143

Figure 6.58. Changing the PDIGITS Option Value

The output generated is shown in Figure 6.58. The RESET OPTIONS statement in
the DO loop sets the PDIGITS option to the value of i. The final RESET OPTIONS
statement restores the default option value, because the value was omitted.

Automatic Differentiation

PROC OPTMODEL automatically generates code to evaluate the derivatives for most
objective expressions and nonlinear constraints. PROC OPTMODEL generates ana-
lytic derivatives for objective and constraint expressions written in terms of the pro-
cedure’s mathematical operators and the following functions:

ABS ATAN COSH LOG SIGN SQRT

ARCOS CEIL EXP LOG10 SIN TAN

ARSIN COS FLOOR LOG2 SINH TANH

CAUTION: Some of these functions, such as ABS, FLOOR, and SIGN, as well as
some operators, such as IF-THEN, <> (element minimum operator), and >< (ele-
ment maximum operator), must be used carefully in modeling expressions because
functions including such components are not continuously differentiable or even con-
tinuous.

Automatic Differentiation � 783

Expressions that use other SAS library functions might require numerical approxi-
mation of derivatives. PROC OPTMODEL uses either forward-difference approxi-
mation or central-difference approximation as specified by the FD= option (see the
section “PROC OPTMODEL Statement” on page 691).

Note: The numerical gradient approximations are significantly slower than automat-
ically generated derivatives when there are a large number of optimization variables.

Forward-Difference Approximations

The FD=FORWARD option requests the use of forward-difference derivative approx-
imations. For a function f of n variables, the first-order derivatives are approximated
by

gi =
∂f

∂xi
=

f(x + eihi)− f(x)
hi

Notice that n additional function calls are needed here. The step lengths hi, i =
1, . . . , n, are based on the assumed function precision, DIGITS:

hi = 10−DIGITS/2(1 + |xi|)

You can use the FDIGITS= option to specify the function precision, DIGITS, for the
objective function. For constraints, use the CDIGITS= option.

The second-order derivatives are approximated using n(n + 3)/2 extra function calls
(Dennis and Schnabel 1983, pp. 80, 104):

∂2f

∂x2
i

=
f(x + hiei)− 2f(x) + f(x− hiei)

h2
i

∂2f

∂xi∂xj
=

f(x + hiei + hjej)− f(x + hiei)− f(x + hjej) + f(x)
hihj

Notice that the diagonal of the Hessian uses a central-difference approximation
(Abramowitz and Stegun 1972, p. 884). The step lengths are

hi = 10−DIGITS/3(1 + |xi|)

Central-Difference Approximations

The FD=CENTRAL option requests the use of central-difference derivative ap-
proximations. Generally, central-difference approximations are more accurate than
forward-difference approximations, but they require more function evaluations. For
a function f of n variables, the first-order derivatives are approximated by

784 � Chapter 6. The OPTMODEL Procedure

gi =
∂f

∂xi
=

f(x + eihi)− f(x− eihi)
2hi

Notice that 2n additional function calls are needed here. The step lengths hi, i =
1, . . . , n, are based on the assumed function precision, DIGITS:

hi = 10−DIGITS/3(1 + |xi|)

You can use the FDIGITS= option to specify the function precision, DIGITS, for the
objective function. For constraints, use the CDIGITS= option.

The second-order derivatives are approximated using 2n(n + 1) extra function calls
(Abramowitz and Stegun 1972, p. 884):

∂2f

∂x2
i

=
−f(x + 2hiei) + 16f(x + hiei)− 30f(x) + 16f(x− hiei)− f(x− 2hiei)

12h2
i

∂2f

∂xi∂xj
=

f(x + hiei + hjej)− f(x + hiei − hjej)− f(x− hiei + hjej) + f(x− hiei − hjej)
4hihj

The step lengths are

hi = 10−DIGITS/3(1 + |xi|)

Conversions

Numeric values are implicitly converted to strings when needed for function argu-
ments or operands to the string concatenation operator (||). A warning message is
generated when the conversion is applied to a function argument. The conversion
uses BEST12. format. Unlike the DATA step, the conversion trims blanks.

Implicit conversion of strings to numbers is not permitted. Use the INPUT function
to explicitly perform such conversions.

More on Index Sets

Dummy parameters behave like parameters but are assigned values only when an in-
dex set is evaluated. You can reference the declared dummy parameters from index
set expressions that follow the index-set-item. You can also reference the dummy
parameters in the expression or statement controlled by the index set. As the mem-
bers of an index-set-item set expression are enumerated, the element values of the
members are assigned to the local dummy parameters.

The number of names in a dummy parameter declaration must match the element
length of the corresponding set expression in the index-set-item. A single name is

More on Index Sets � 785

allowed when the set member type is scalar (numeric or string). If the set members
are tuples that have n > 1 elements, then n names are required between the angle
brackets (< >) that precede the IN keyword.

Multiple index-set-items in an index set are nominally processed in a left-to-right
order. That is, a set expression from an index-set-item is evaluated as if the index-
set-items that precede it have already been evaluated. The left-hand index-set-items
can assign values to local dummy parameters that are used by the set expressions that
follow them. After each member from the set expression is enumerated, any index-
set-items to the right are reevaluated as needed. The actual order in which index-set-
items are evaluated can vary, if necessary, to allow more efficient enumeration. PROC
OPTMODEL will generate the same set of values in any case, although possibly in a
different order than strict left-to-right evaluation.

You can view the element combinations that are generated from an index set as tu-
ples. This is especially true for index set expressions (see the section “Index Set
Expression” on page 739). However, in most cases no tuple set is actually formed
and the element values are assigned only to local dummy parameters.

You can specify a selection expression following a colon (:). The index set generates
only those combinations of values for which the selection expression is true. For
example, the following statement produces a set of upper triangular indices:

proc optmodel;
put (setof {i in 1..3, j in 1..3 : j >= i} <i, j>);

This code produces the output in Figure 6.59.

{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>}

Figure 6.59. Upper Triangular Index Set

You can use the left-to-right evaluation of index-set-items to express the previous
set more compactly. The following code produces the same output as the previous
statement:

proc optmodel;
put ({i in 1..3, i..3});

In this example, the first time the second index set item is evaluated, the value of the
dummy parameter i is 1 so the item produces the set {1,2,3}. At the second evaluation
the value of i is 2, so the second item produces the set {2,3}. At the final evaluation
the value of i is 3, so the second item produces the set {3}.

In many cases it is useful to combine the SLICE operator with index sets. A special
form of index-set-item uses the SLICE operator implicitly. Normally an index set
item that is applied to a set of tuples of length greater than one must be of the form

786 � Chapter 6. The OPTMODEL Procedure

< name-1 [, . . . name-n] > IN set-expression

In the special form, one or more of the name elements are replaced by expressions.
The expressions select tuple elements by using the SLICE operator. Note that an ex-
pression consisting of a single name must be enclosed in parentheses to distinguish
it from a dummy parameter. The remaining names are the dummy parameters for the
index set item that is applied to the SLICE result. The following example demon-
strates the use of implicit set slicing:

proc optmodel;
number N = 3;
set<num,str> S = {<1,’a’>,<2,’b’>,<3,’a’>,<4,’b’>};
put ({i in 1..N, <(i),j> in S});
put ({i in 1..N, j in slice(<i,*>, S)});

The two PUT statements in this example are equivalent.

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the SAS
System. If you do not specify a value for this option, then the SAS System sets a
default memory limit. Your operating environment determines the actual size of the
default memory limit, which is sufficient for many applications. However, to solve
most realistic optimization problems, the OPTMODEL procedure might require more
memory. Increasing the memory limit can reduce the chance of an out-of-memory
condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-
ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For
example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to
enable the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion for
your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion for your operating environment.

Example 6.1. Matrix Square Root � 787

Examples: OPTMODEL Procedure

Example 6.1. Matrix Square Root
This example demonstrates the use of PROC OPTMODEL array parameters and vari-
ables. The following code creates a randomized positive definite symmetric matrix
and defines an optimization model to find the matrix square root of the generated
matrix:

proc optmodel;
number n = 5; /* size of matrix */

/* random original array */
number A{1..n, 1..n} = 10 - 20*ranuni(-1);

/* compute upper triangle of the
* symmetric matrix A*transpose(A) */

/* should be positive def unless A is singular */
number P{i in 1..n, j in i..n};
for {i in 1..n, j in i..n}

P[i,j] = sum{k in 1..n} A[i,k]*A[j,k];

/* coefficients of square root array
* (upper triangle of symmetric matrix) */

var q{i in 1..n, i..n};

/* The default initial value q[i,j]=0 is
* a local minimum of the objective,
* so you must move it away from that point. */

q[1,1] = 1;

/* minimize difference of square of q from P */
min r = sum{i in 1..n, j in i..n}

(sum{k in 1..i} q[k,i]*q[k,j]
+ sum{k in i+1..j} q[i,k]*q[k,j]
+ sum{k in j+1..n} q[i,k]*q[j,k]
- P[i,j])**2;

solve with nlpu / opttol=1e-5;
print q;

The code defines a random array A of size n × n. The product P is defined as the
matrix product AAT . The product is symmetric, so the declaration of the parameter
P gives it upper triangular indexing. The matrix represented by P should be positive
definite unless A is singular. But singularity is unlikely because of the random gen-
eration of A. If P is positive definite, then it has a well-defined square root, Q, such
that P = QQT .

The objective r simply minimizes the sum of squares of the coefficients, as follows:

r =
∑

1≤i≤j≤n

R2
i,j

788 � Chapter 6. The OPTMODEL Procedure

where R = QQT − P . (Note that this technique for computing matrix square roots
is intended only for the demonstration of PROC OPTMODEL capabilities. Better
methods exist.)

Output 6.1.1 shows part of the output from running this code. The values that are
actually displayed depend on the random numbers generated.

Output 6.1.1. Matrix Square Root Results

The OPTMODEL Procedure

q
1 2 3 4 5

1 6.15337 -12.49326 5.05941 -0.15411 7.20667
2 -5.21684 -0.48140 5.47795 -4.39379
3 -10.98701 1.95545 -7.50599
4 1.86863 -0.64200
5 3.54247

Example 6.2. Reading from and Creating a Data Set

This example demonstrates how to use the READ DATA statement to read parameters
from a SAS data set. The objective is the Bard function, which is the following least
squares problem with I = {1, 2, . . . , 15}:

f(x) =
1
2

∑
k∈I

[
yk −

(
x1 +

k

vkx2 + wkx3

)]2

x = (x1, x2, x3), y = (y1, y2, · · · , y15)

where vk = 16− k, wk = min(k, vk) (k ∈ I), and

y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39)

The minimum function value f(x∗) = 4.107E−3 is at the point (0.08, 1.13, 2.34).
The starting point x0 = (1, 1, 1) is used. This problem is identical to Example 4.1
on page 389 in the PROC NLP documentation. The following code uses the READ
DATA statement to input parameter values and the CREATE DATA statement to save
the solution in a SAS data set:

data bard;
input y @@;
datalines;

.14 .18 .22 .25 .29 .32 .35 .39

.37 .58 .73 .96 1.34 2.10 4.39
;

Example 6.3. Reading from and Creating a Data Set � 789

proc optmodel;
set I = 1..15;
number y{I};
read data bard into [_n_] y;
number v{k in I} = 16 - k;
number w{k in I} = min(k, v[k]);
var x{1..3} init 1;
min f = 0.5*

sum{k in I}
(y[k] - (x[1] + k /

(v[k]*x[2] + w[k]*x[3])))**2;
solve;
print x;
create data xdata from [i] xd=x;

In this code the values for parameter y are read from the BARD data set. The set I
indexes the terms of the objective as well as the y array.

The code defines two utility parameters that contain coefficients used in the objec-
tive function. These coefficients could have been defined in the expression for the
objective, f, but it was convenient to give them names and simplify the objective
expression.

The result is shown in Output 6.2.1.

Output 6.2.1. Bard Function Solution

The OPTMODEL Procedure

[1] x

1 0.082411
2 1.133125
3 2.343610

The final CREATE DATA statement saves the solution values determined by the
solver into the data set XDATA. The data set contains an observation for each x
index. Each observation contains two variables. The output variable i contains the
index, while xd contains the value for the indexed entry in the array x. The resulting
data can be seen by using the PRINT procedure as follows:

proc print data=xdata;
run;

The output from PROC PRINT is shown in Output 6.2.2.

790 � Chapter 6. The OPTMODEL Procedure

Output 6.2.2. Output Data Set Contents

Obs i xd

1 1 0.08241
2 2 1.13312
3 3 2.34361

Example 6.3. Model Construction

This example uses PROC OPTMODEL features to simplify the construction of a
mathematically formulated model. The model is based on Example 3.12 on page 266
in the PROC LP documentation. A single invocation of PROC OPTMODEL replaces
several steps in the PROC LP code.

The model assigns production of various grades of cloth to a set of machines in order
to maximize profit while meeting customer demand. Each machine has different
capacities to produce the various grades of cloth. (See the PROC LP example for
more details.) The mathematical formulation, where xijk represents the amount of
cloth of grade j to produce on machine k for customer i, follows:

max
∑

ijk rijkxijk

subject to
∑

k xijk = dij for all i and j∑
ij cjkxijk ≤ ak for all k

xijk ≥ 0 for all i, j, and k

The following code defines the same data sets used in the PROC LP example to
specify the problem coefficients:

title ’An Assignment Problem’;

data object;
input machine customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147

Example 6.3. Model Construction � 791

3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 100 100 150 150 175 250
2 300 125 300 275 310 325
3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine

grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;

1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;

The following PROC OPTMODEL code specifies the model, processes the input data
sets, solves the optimization problem, and generates a solution data set:

proc optmodel;
set CUSTOMERS;
set GRADES = 1..6;
set MACHINES;

/* parameters */
number return{CUSTOMERS, GRADES, MACHINES} init 0;
number demand{CUSTOMERS, GRADES};
number cost{GRADES,MACHINES} init 0;
number avail{MACHINES} init 0;

/* load the customer set and demands */
read data demand

into CUSTOMERS=[customer]
{j in GRADES} <demand[customer,j]=col("grade"||j)>;

/* load the machine set, time costs, and availability */
read data resource nomiss

into MACHINES=[machine]

792 � Chapter 6. The OPTMODEL Procedure

{j in GRADES} <cost[j,machine]=col("grade"||j)>
avail;

/* load objective data */
read data object nomiss

into [machine customer]
{j in GRADES} <return[customer,j,machine]=col("grade"||j)>;

/* the model */
var x{CUSTOMERS, GRADES, MACHINES} >= 0;
max obj = sum{i in CUSTOMERS, j in GRADES, k in MACHINES}

return[i,j,k] * x[i,j,k];
con req_demand{i in CUSTOMERS, j in GRADES}:

sum{k in MACHINES} x[i,j,k] = demand[i,j];
con req_avail{k in MACHINES}:

sum{i in CUSTOMERS, j in GRADES}
cost[j,k]*x[i,j,k] <= avail[k];

/* fix x[i,j,k] to 0 if cost[j,k] = 0 */
for {j in GRADES, k in MACHINES: cost[j,k] = 0} do;

for {i in CUSTOMERS} fix x[i,j,k]=0;
end;

/* call the solver and save the results */
solve with lp/solver=primal;
create data solution

from [customer grade machine]
={i in CUSTOMERS, j in GRADES,k in MACHINES: x[i,j,k] NE 0}
amount=x;

quit;

PROC OPTMODEL processes the data sets directly, using the READ DATA state-
ments to load the data into suitably declared numeric parameters. The READ DATA
statements use the iterated column syntax to transfer a range of data set variables into
indexed parameters. The COL name expression is expanded in each case into the
input data set variables grade1 to grade6. Missing values in the input data sets are
handled by using the NOMISS option and initializing the parameters to zero.

For simplicity, the preceding code assumes a fixed set of cloth grades. However, the
number of grades could be read from another data set or determined by using SAS
functions to examine the variables in the data sets. The first and second READ DATA
statements assign the customer and machine sets, respectively, with the set of index
values read from the input data sets.

The model portion of the PROC OPTMODEL code parallels the mathematical for-
mulation of the linear program. The solver produces the following output:

Example 6.3. Model Construction � 793

Output 6.3.1. LP Solver Result

An Assignment Problem

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization
Objective Function obj
Objective Type Linear

Number of Variables 120
Bounded Above 0
Bounded Below 100
Bounded Below and Above 0
Free 0
Fixed 20

Number of Constraints 34
Linear LE (<=) 4
Linear EQ (=) 30
Linear GE (>=) 0
Linear Range 0

An Assignment Problem

The OPTMODEL Procedure

Solution Summary

Solver Primal Simplex
Objective Function obj
Solution Status Optimal
Objective Value 871426.03763
Iterations 37

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

The CREATE DATA statement writes the solution variables to a data set after the
solver finishes executing. The explicit source index set is used to restrict the output to
the nonzero solution variables. This data set can be processed by PROC TABULATE
as follows to create a compact representation of the solution:

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount);

run;

This code produces the table shown in Output 6.3.2.

794 � Chapter 6. The OPTMODEL Procedure

Output 6.3.2. An Assignment Problem

	grade			

	1	2	3	4
	------------+------------+------------+------------			
	amount	amount	amount	amount
	------------+------------+------------+------------			
	Sum	Sum	Sum	Sum
-------------------+------------+------------+------------+------------				
machine	customer			
---------+---------				
1	1	.	100.00	150.00
	---------+------------+------------+------------+------------			
	2	.	.	300.00
	---------+------------+------------+------------+------------			
	3	.	.	256.72
	---------+------------+------------+------------+------------			
	4	.	.	750.00
	---------+------------+------------+------------+------------			
	5	.	92.27	.
---------+---------+------------+------------+------------+------------				
2	3	.	.	143.28
	---------+------------+------------+------------+------------			
	5	.	.	300.00
---------+---------+------------+------------+------------+------------				
3	2	.	.	.
	---------+------------+------------+------------+------------			
	3	.	.	.
	---------+------------+------------+------------+------------			
	4	.	.	.
	---------+------------+------------+------------+------------			
	5	.	.	.
---------+---------+------------+------------+------------+------------				
4	1	100.00	.	.
	---------+------------+------------+------------+------------			
	2	300.00	125.00	.
	---------+------------+------------+------------+------------			
	3	400.00	.	.
	---------+------------+------------+------------+------------			
	4	250.00	.	.
	---------+------------+------------+------------+------------			
	5	.	507.73	.

(Continued)

Example 6.4. Set Manipulation � 795

Output 6.3.2. (continued)

	grade	

	5	6
	------------+------------	
	amount	amount
	------------+------------	
	Sum	Sum
-------------------+------------+------------		
machine	customer	
---------+---------		
1	1	175.00
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
2	3	340.00
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
3	2	310.00
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	210.00
---------+---------+------------+------------		
4	1	.
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.

Example 6.4. Set Manipulation

This example demonstrates PROC OPTMODEL set manipulation operators. These
operators are used to compute the set of primes up to a given limit. This example
does not solve an optimization problem, but similar set manipulation could be used
to set up an optimization model. Here is the code:

proc optmodel;
number maxprime; /* largest number to consider */
set composites =

union {i in 3..sqrt(maxprime) by 2} i*i..maxprime by 2*i;
set primes = {2} union (3..maxprime by 2 diff composites);
maxprime = 500;
put primes;

The set composites contains the odd composite numbers up to the value of the pa-
rameter maxprime. The even numbers are excluded here to reduce execution time
and memory requirements. The UNION aggregation operation is used in the defini-
tion to combine the sets of odd multiples of i for i = 3, 5, Any composite number

796 � Chapter 6. The OPTMODEL Procedure

less than the value of the parameter maxprime has a divisor ≤
√

maxprime, so the
range of i can be limited. The set of multiples of i can also be started at i × i since
smaller multiples are found in the set of multiples for a smaller index.

You can then define the set primes. The odd primes are determined by using the
DIFF operator to remove the composites from the set of odd numbers no greater than
the parameter maxprime. The UNION operator adds the single even prime, 2, to the
resulting set of primes.

The PUT statement produces the result in Output 6.4.1.

Output 6.4.1. Primes ≤ 500

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499}

Note that you were able to delay the definition of the value of the parameter max-
prime until just before the PUT statement. Since the defining expressions of the SET
declarations are handled symbolically, the value of maxprime is not necessary until
you need the value of the set primes. Because the sets composites and primes are
defined symbolically, their values reflect any changes to the parameter maxprime.
You can see this update by appending the following statements to the preceding code:

maxprime = 50;
put primes;

The additional statements produce the results in Output 6.4.2. The value of the set
primes has been recomputed to reflect the change to the parameter maxprime.

Output 6.4.2. Primes ≤ 50

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}

Rewriting NLP Models for PROC OPTMODEL � 797

Rewriting NLP Models for PROC OPTMODEL
This section covers techniques for converting NLP models to PROC OPTMODEL
models.

To illustrate the basics, consider the following first version of the NLP model for
Example 4.7 on page 410 in the NLP documentation:

proc nlp all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

This code defines a model that has bounds, linear constraints, nonlinear constraints,
and a simple objective function. The following code is a straightforward conversion
of the NLP code to PROC OPTMODEL form:

proc optmodel;
var amountx init 1 >= 0 <= 100,

amounty init 1 >= 0 <= 200;
var amounta init 1 >= 0,

amountb init 1 >= 0,
amountc init 1 >= 0;

var pooltox init 1 >= 0,
pooltoy init 1 >= 0;

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >=1 <= 3;
con amounta + amountb = pooltox + pooltoy,

pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

798 � Chapter 6. The OPTMODEL Procedure

number costa, costb, costc, costx, costy;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
max f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,

nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;
solve;
print amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;

The PROC OPTMODEL variable declarations were split into individual declarations
since PROC OPTMODEL does not permit name lists in its declarations. In the
OPTMODEL procedure, variable bounds are part of the variable declaration instead
of a separate BOUNDS statement. The PROC NLP statements are as follows:

parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;

bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

The following PROC OPTMODEL statements are equivalent to the PROC NLP state-
ments:

var amountx init 1 >= 0 <= 100,
amounty init 1 >= 0 <= 200;

var amounta init 1 >= 0,
amountb init 1 >= 0,
amountc init 1 >= 0;

var pooltox init 1 >= 0,
pooltoy init 1 >= 0;

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >=1 <= 3;

The linear constraints are declared in the NLP model with the following statement:

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

The following linear constraint declarations in the PROC OPTMODEL model are
quite similar to the NLP LINCON declarations:

Rewriting NLP Models for PROC OPTMODEL � 799

con amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

But PROC OPTMODEL provides much more flexibility in defining linear con-
straints. For example, coefficients can be named parameters or any other expression
that evaluates to a constant.

The cost parameters are declared explicitly in the PROC OPTMODEL model. Unlike
the DATA step or PROC NLP, PROC OPTMODEL requires names to be declared
before they are used. There are multiple ways to set the values of these parameters.
The preceding example used assignments. The values could have been made part of
the declaration by using the INIT expression clause or the = expression clause. The
values could also have been read from a data set with the READ DATA statement.

Note in the original NLP code that the assignment to a parameter such as costa oc-
curs every time the objective function is evaluated. However, the assignment occurs
just once in the PROC OPTMODEL code, when the assignment statement is pro-
cessed. This works because the values are constant. But the PROC OPTMODEL
code permits the parameters to be reassigned later to interactively modify the model.

The following statements define the objective f in the NLP model:

max f;
. . .
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;

The PROC OPTMODEL version of the objective is defined with the same expression
text, as follows:

max f = costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;

But in PROC OPTMODEL the MAX statement and the assignment to the name f
in the NLP code are combined. There are advantages and disadvantages to this ap-
proach. The PROC OPTMODEL formulation is much closer to the mathematical
formulation of the model. However, PROC OPTMODEL currently has limited sup-
port for named intermediate variables, which can be used to structure the objective
formula. The objective formula can refer to the name of other objectives. In that
case the named objective expression is effectively substituted into the new objective
formula.

In the NLP model the nonlinear constraints use the following syntax:

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

. . .

800 � Chapter 6. The OPTMODEL Procedure

nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

In the PROC OPTMODEL model the equivalent statements are as follows:

con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,
nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;

The nonlinear constraints in PROC OPTMODEL use the same syntax as linear con-
straints. In fact, if the variable pools were declared as a parameter, then all the pre-
ceding constraints would be linear. The nonlinear constraint in PROC OPTMODEL
combines the NLINCON statement of NLP with the assignment in the NLP code. As
in objective expressions, objective names can be used in nonlinear constraint expres-
sions to structure the formula.

The PROC OPTMODEL model does not use a RUN statement to invoke the
solver. Instead the solver is invoked interactively by the SOLVE statement in PROC
OPTMODEL. Note that by default the OPTMODEL procedure prints much less
data about the optimization process. Generally this consists of messages from the
solver (such as the termination reason) as well as a short status display. The PROC
OPTMODEL code adds a PRINT statement in order to display the variable estimates
from the solver.

The model for Example 4.8 on page 418 in the NLP documentation is used to illus-
trate how to convert NLP code that handles arrays into PROC OPTMODEL form.
The NLP model is as follows:

proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
end;

run;

The model finds an equilibrium state for a mixture of chemicals. The following code
shows a corresponding PROC OPTMODEL model:

Rewriting NLP Models for PROC OPTMODEL � 801

proc optmodel;
set CMP = 1..10;
number c{CMP} = [-6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179];
var x{CMP} init 0.1 >= 1.e-6;
con 2. = x[1] + 2. * x[2] + 2. * x[3] + x[6] + x[10],

1. = x[4] + 2. * x[5] + x[6] + x[7],
1. = x[3] + x[7] + x[8] + 2. * x[9] + x[10];

/* replace the variable s in the NLP model */
/* min/max is irrelevant */
min s = sum{i in CMP} x[i];

min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
solve with nlpc / tech=trureg;
print x y;

The PROC OPTMODEL model uses the set CMP to represent the set of compounds,
which are numbered 1 to 10 in the example. The array c was initialized by using the
equivalent PROC OPTMODEL syntax. Note that the individual array locations could
also have been initialized by assignment or READ DATA statements.

The VAR declaration for variable x combines the VAR and BOUNDS statements of
the NLP model. The index set of the array is based on the set of compounds CMP,
to simplify changes to the model.

The linear constraints are similar in form to the NLP model. However, the
PROC OPTMODEL version uses the array form of the variable names since the
OPTMODEL procedure treats arrays as distinct variables, not as aliases of lists of
scalar variables.

The objective s replaces the intermediate variable of the same name in the NLP
model. The keyword (MAX or MIN) that was used to declare objective s is irrelevant
here. This is an example of translating an intermediate variable from the other mod-
els to PROC OPTMODEL. An alternative way is to use an additional constraint for
every intermediate variable. This is useful if you have a set of intermediate variables.
In the preceding code, instead of declaring objective s, you can use the following
statements:

. . .
var s;
con s = sum{i in CMP} x[i];
. . .

Note that this alternative formulation passes an extra variable and constraint to the
solver.

The PROC OPTMODEL version uses a SUM operator over the set CMP, which
enhances the flexibility of the model to accommodate possible changes in the set of
compounds.

802 � Chapter 6. The OPTMODEL Procedure

In the NLP model the objective function y is determined by an explicit loop. With
PROC OPTMODEL the DO loop is replaced by a SUM aggregation operation. The
accumulation in the NLP model is now performed by PROC OPTMODEL with the
SUM operator.

This PROC OPTMODEL model can be further generalized. Note that the array ini-
tialization and constraints assume a fixed set of compounds. You can rewrite the
model to handle an arbitrary number of compounds and chemical elements. The new
model loads the linear constraint coefficients from a data set along with the objective
coefficients for the parameter c, as follows:

data comp;
input c a_1 a_2 a_3;
datalines;

-6.089 1 0 0
-17.164 2 0 0
-34.054 2 0 1
-5.914 0 1 0
-24.721 0 2 0
-14.986 1 1 0
-24.100 0 1 1
-10.708 0 0 1
-26.662 0 0 2
-22.179 1 0 1
;
data atom;

input b @@;
datalines;

2. 1. 1.
;
proc optmodel;

set CMP;
set ELT;
number c{CMP};
number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[_n_] b;
read data comp into CMP=[_n_]

c {i in ELT} < a[i,_n_]=col("a_"||i) >;
var x{CMP} init 0.1 >= 1.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
min s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
print a b;
solve with nlpc / tech=trureg;
print x;

This version adds coefficients for the linear constraints to the COMP data set. The
data set variable a–n represents the number of atoms in the compound for element
n. The READ DATA statement for COMP uses the iterated column syntax to read
each of the data set variables a–n into the appropriate location in the array a. In this
example the expanded data set variable names are a–1, a–2, and a–3.

Rewriting NLP Models for PROC OPTMODEL � 803

The preceding version also adds a new set, ELT, of chemical elements and a numeric
parameter, b, that represents the left-hand side of the linear constraints. The data
values for the parameters ELT and b are read from the data set ATOM. The model
can handle varying sets of chemical elements because of this extra data set and the
new parameters.

The linear constraints have been converted to a single indexed family of constraints.
One constraint is applied for each chemical element in the set ELT. The constraint
expression uses a simple form that applies generally to linear constraints. The fol-
lowing PRINT statement in the model shows the values read from the data sets to
define the linear constraints:

print a b;

The PRINT statements in the model produce the results shown in Output 6.4.3.

Output 6.4.3. PROC OPTMODEL Output

The OPTMODEL Procedure

a
1 2 3 4 5 6 7 8 9 10

1 1 2 2 0 0 1 0 0 0 1
2 0 0 0 1 2 1 1 0 0 0
3 0 0 1 0 0 0 1 1 2 1

[1] b

1 2
2 1
3 1

[1] x

1 0.04066808
2 0.14773032
3 0.78315338
4 0.00141422
5 0.48524669
6 0.00069317
7 0.02739923
8 0.01794728
9 0.03731438
10 0.09687134

In the preceding model the chemical elements and compounds are designated by
numbers. So in the PRINT output, for example, the row that is labeled “3” represents
the amount of the compound H2O. PROC OPTMODEL is capable of using more
symbolic strings to designate array indices. The following version of the model uses
strings to index arrays:

804 � Chapter 6. The OPTMODEL Procedure

data comp;
input name $ c a_h a_n a_o;
datalines;

H -6.089 1 0 0
H2 -17.164 2 0 0
H2O -34.054 2 0 1
N -5.914 0 1 0
N2 -24.721 0 2 0
NH -14.986 1 1 0
NO -24.100 0 1 1
O -10.708 0 0 1
O2 -26.662 0 0 2
OH -22.179 1 0 1
;
data atom;

input name $ b;
datalines;

H 2.
N 1.
O 1.
;
proc optmodel;
set<string> CMP;
set<string> ELT;
number c{CMP};
number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[name] b;
read data comp into CMP=[name]

c {i in ELT} < a[i,name]=col("a_"||i) >;
var x{CMP} init 0.1 >= 1.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
min s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
solve with nlpc / tech=trureg;
print x;

In this model the sets CMP and ELT are now sets of strings. The data sets provide
the names of the compounds and elements. The names of the data set variables for
atom counts in the data set COMP now include the chemical element symbol as part
of their spelling. For example, the atom count for element H (hydrogen) is named
a–h. Note that these changes did not require any modification to the specifications
of the linear constraints or the objective.

The PRINT statement in the preceding code produces the results shown in Output
6.4.4. The indices of variable x are now strings that represent the actual compounds.

References � 805

Output 6.4.4. PROC OPTMODEL Output with Strings

The OPTMODEL Procedure

[1] x

H 0.04066808
H2 0.14773032
H2O 0.78315338
N 0.00141422
N2 0.48524669
NH 0.00069317
NO 0.02739923
O 0.01794728
O2 0.03731438
OH 0.09687134

References
Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions,

New York: Dover Publications.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear Programming:
Theory and Algorithms, New York: John Wiley & Sons.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood, NJ: Prentice-Hall.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester,
UK: John Wiley & Sons.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-
Verlag.

806

Chapter 7
The Interior Point NLP Solver

(Experimental)

Chapter Contents

OVERVIEW . 809

GETTING STARTED . 810

SYNTAX . 813
Functional Summary . 813
IPNLP Solver Options . 813

DETAILS . 814
Basic Definitions and Notation . 814
Overview of Constrained Optimization . 815
Overview of Interior Point Methods . 816
Solver Termination Criterion . 818
Solver Termination Messages . 818
Macro Variable –OROPTMODEL– . 819

EXAMPLES . 821
Example 7.1. Solving Highly Nonlinear Optimization Problems 821
Example 7.2. Solving Unconstrained Optimization Problems 823
Example 7.3. Solving NLP Problems with Range Constraints 825

REFERENCES . 828

808

Chapter 7
The Interior Point Nonlinear

Programming Solver
(Experimental)

Overview
The interior point nonlinear programming (IPNLP) solver is a component of the
OPTMODEL procedure. It can solve nonlinear programming (NLP) problems that
contain both nonlinear equality and inequality constraints. The general NLP problem
can be defined as follows:

minimize f(x)

subject to hi(x) = 0, i ∈ E = {1, 2, ..., p}
gi(x) ≥ 0, i ∈ I = {1, 2, ..., q}
l ≤ x ≤ u

where x ∈ Rn represents the vector of the decision variables; f : Rn 7→ R represents
the objective function; h : Rn 7→ Rp represents the vector of equality constraints, i.e.,
h = (h1, ..., hp); g : Rn 7→ Rq represents the vector of inequality constraints, i.e.,
g = (g1, ..., gq); and l, u ∈ Rn represent the vectors of the lower and upper bounds,
respectively, on the decision variables.

It is assumed that the functions f, hi, and gi are twice continuously differentiable.
Any point satisfying the constraints of the NLP problem is called a feasible point,
and the set of all those points forms the feasible region of the NLP problem, i.e.,
F = {x ∈ Rn : h(x) = 0, g(x) ≥ 0, l ≤ x ≤ u}.

The NLP problem can have a unique minimum or many different minima, depending
on the type of functions involved in it. If the objective function is convex, the equality
constraint functions are linear, and the inequality constraint functions are concave,
then the NLP problem is called a convex program and has a unique minimum. All
other types of NLP problems are called nonconvex and can contain more than one
minimum, usually called local minima. The least of all those local minima is called
the global minimum or global solution of the NLP problem. The IPNLP solver can
find the unique solution of convex programs as well as a local minimum of a general
NLP problem.

The IPNLP solver implements a primal-dual interior point algorithm that shares sev-
eral powerful features from recent state-of-the-art algorithms (Akrotirianakis and
Rustem 2000; Armand, Gilbert, and Jan-Jégou 2002; Vanderbei and Shanno 1999;
Wächter and Biegler 2006; Yamashita 1998). It uses a line-search procedure and a
merit function to ensure convergence of the iterates to a local minimum. The term

810 � Chapter 7. The Interior Point NLP Solver (Experimental)

“primal-dual” means that the algorithm iteratively generates better approximations
of the decision variables x (usually called “primal” variables) as well as the dual
variables (also referred to as Lagrange multipliers). At every iteration, the algorithm
solves a system of nonlinear equations by using Newton’s method. The solution of
that system provides the direction and the steps along which the next approximation
of the local minimum will be searched. The algorithm also ensures that the primal
iterates always remain strictly within their bounds—i.e., l < xk < u, for every itera-
tion k.

The current version of the solver is particularly suited for problems that contain many
dense nonlinear inequality constraints, and it is expected to perform better than other
nonlinear programming solvers in the SAS/OR suite.

Getting Started
Consider the following simple example of a nonlinear optimization problem:

minimize f(x) = (x1 + 3x2 + x3)2 + 4(x1 − x2)2

subject to h1(x) = x1 + x2 + x3 = 1

g1(x) = 6x2 + 4x3 − x3
1 − 3 ≥ 0

xi ≥ 0, i = 1, 2, 3

The problem consists of a quadratic objective function, a linear equality, and a non-
linear inequality constraint. We are interested in finding a local minimum, starting
from the point x0 = (0.1, 0.7, 0.2). To achieve this, we write the following SAS
code:

proc optmodel;
var x{1..3} >= 0;
minimize obj = (x[1] + 3*x[2] + x[3])**2 + 4*(x[1] - x[2])**2;

con constr1: sum{i in 1..3}x[i] = 1;
con constr2: 6*x[2] + 4*x[3] - x[1]**3 -3 >= 0;

/* starting point */
x[1] = 0.1;
x[2] = 0.7;
x[3] = 0.2;

solve with IPNLP;
print x;

quit;

The SAS output displays a detailed summary of the problem, together with the status
of the solver at termination, the total number of iterations required, and the value of
the objective function at the local minimum. The summary and the optimal solution
are shown in Figure 7.1.

Getting Started � 811

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Quadratic

Number of Variables 3
Bounded Above 0
Bounded Below 3
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 0
Linear EQ (=) 1
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 1
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver IPNLP
Objective Function obj
Solution Status Optimal
Objective Value 1.0000053879
Iterations 21

Infeasibility 2.810568E-10
Optimality Error 7.8706805E-7

[1] x

1 0.00071696
2 0.00000083
3 0.99928221

Figure 7.1. Problem Summary and the Optimal Solution

The SAS log shown in Figure 7.2 displays a brief summary of the problem being
solved, followed by the iterations generated by the solver.

812 � Chapter 7. The Interior Point NLP Solver (Experimental)

NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 1 linear constraints (0 LE, 1 EQ, 0 GE, 0 range).
NOTE: The problem has 3 linear constraint coefficients.
NOTE: The problem has 1 nonlinear constraints (0 LE, 0 EQ, 1 GE, 0 range).
NOTE: This is an experimental version of the IPNLP solver.
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The IPNLP solver is called.

Objective Optimality
Iter Value Infeasibility Error

0 25.00000000 2.00000000 70.04792090
1 8.25327051 1.60939368 35.77834471
2 6.39960188 1.23484604 20.13229803
3 2.04185087 0.07936183 3.03960094
4 1.54274807 0.00397738 1.06189744
5 1.28365293 0.00020216 0.43781371
6 1.14816541 0.00004932 0.19807160
7 1.07829315 0.00007323 0.11097627
8 1.04065865 0.00007384 0.08008765
9 1.02071978 0.00005144 0.02705360
10 1.01052389 0.00001978 0.00810753
11 1.00533187 0.00000746 0.00340008
12 1.00269340 0.00000282 0.00146226
13 1.00135663 0.00000104 0.00062682
14 1.00068185 0.0000003814609 0.00027023
15 1.00034218 0.0000001378457 0.00011693
16 1.00017153 0.0000000494663 0.00005071
17 1.00008592 0.0000000176688 0.00002202
18 1.00004302 0.0000000062912 0.00000957
19 1.00002153 0.0000000022353 0.00000416
20 1.00001077 0.0000000007930 0.00000181
21 1.00000539 0.0000000002811 0.0000007870680

NOTE: Converged.
NOTE: Objective = 1.00000539.

Figure 7.2. Progress of the Algorithm as Shown in the Log

IPNLP Solver Options � 813

Syntax
The following PROC OPTMODEL statement is available for the IPNLP solver:

SOLVE WITH IPNLP < / options > ;

Functional Summary

Table 7.1 summarizes the options that can currently be used with the SOLVE WITH
IPNLP statement.

Table 7.1. Options for the IPNLP Solver

Description Option
Solver Options:
specify the maximum number of iterations MAXITER=

specify the maximum allowable real time MAXTIME=

specify the convergence tolerance OPTTOL=

Output Option:
control the amount of printing by the solver PRINTFREQ=

IPNLP Solver Options

This section describes the options recognized by the IPNLP solver. These options
can be specified after a forward slash (/) in the SOLVE statement, provided that the
IPNLP solver is explicitly specified using a WITH clause.

Details of the currently available options are described as follows:

MAXITER=N
specifies that the solver take at most N major iterations to determine an optimum of
the NLP problem. The value of N is an integer between zero and the largest four-
byte, signed integer, which is 231−1. A major iteration in IPNLP consists of finding a
descent direction and a step size along which the next approximation of the optimum
will reside. The default value of N is 5000 iterations.

MAXTIME=T
specifies an upper limit of T seconds of real time for the solver to find a local opti-
mum. Note that the time specified by the MAXTIME= option is checked only once
at the end of each major iteration. The default value is 7200 seconds (2 hours).

OPTTOL=ε
defines the measure by which the user can decide whether the current iterate is an
acceptable approximation of a local minimum. The value of this option is a positive
real number. The IPNLP solver determines that the current iterate is a local minimum

814 � Chapter 7. The Interior Point NLP Solver (Experimental)

when the norm of the scaled vector of the optimality conditions is less than ε. The
default value is ε=1E–6.

PRINTFREQ=N
specifies how often the iterations are to be displayed in the SAS log. N should be an
integer between zero and the largest four-byte, signed integer, which is 231 − 1. If
N ≥ 1, the solver prints only those iterations that are a multiple of N . If N = 0, no
iteration is displayed in the log. The default value is PRINTFREQ=1.

Details
In this section, we present a brief discussion about the algorithmic details of the
IPNLP solver. We start by defining the notation. Next, we present an introduction
to the fundamental ideas in constrained optimization; the main point of the second
section is to present the necessary and sufficient optimality conditions, which play
a central role in all optimization algorithms. We conclude by discussing a general
overview of primal-dual interior point algorithms for nonlinear optimization. A de-
tailed treatment of the preceding topics can be found in Nocedal and Wright (1999),
Wright (1997), and Forsgren, Gill, and Wright (2002).

Basic Definitions and Notation

The gradient of a function f : Rn 7→ R is the vector of all the first partial derivatives
of f , and is denoted by

∇f(x) = (
∂f

∂x1
,

∂f

∂x2
, ...,

∂f

∂xn
)T

where the superscript T denotes the transpose of a vector.

The Hessian matrix of f , denoted by∇2f(x), or simply by H(x), is an n×n symmet-
ric matrix whose (i, j) element is the second partial derivative of f(x) with respect
to xi and xj . That is, Hi,j(x) = ∂2f(x)

∂xi∂xj
.

Consider the vector function, c : Rn 7→ Rp+q, whose first p elements are the equality
constraint functions hi(x), i = 1, 2, .., p, and whose last q elements are the inequality
constraint functions gi(x), i = 1, 2, .., q. That is,

c(x) = (h(x) : g(x))T = (h1(x), ..., hp(x) : g1(x), ..., gq(x))T

The n × (p + q) matrix whose ith column is the gradient of the ith element of c(x)
is called the Jacobian matrix of c(x) (or simply the Jacobian of the NLP problem)
and is denoted by J(x). We can also use Jh(x) to denote the n × p Jacobian matrix
of the equality constraints and use Jg(x) to denote the n × q Jacobian matrix of the
inequality constraints. It is easy to see that J(x) = (Jh(x) : Jg(x)).

Overview of Constrained Optimization � 815

Overview of Constrained Optimization

A function that plays a pivotal role in establishing conditions that characterize a local
minimum of an NLP problem is the Lagrangian function L(x, y, z), defined as

L(x, y, z) = f(x)−
∑
i∈E

yihi(x)−
∑
i∈I

zigi(x)

Note that the Lagrangian function can be seen as a linear combination of the objective
and constraint functions. The coefficients of the constraints, yi, i ∈ E , and zi, i ∈
I, are called the Lagrange multipliers or dual variables. At a feasible point x̂, an
inequality constraint is called active if it is satisfied as an equality, i.e., gi(x̂) = 0.
The set of active constraints at a feasible point x̂ is then defined as the union of the
index set of the equality constraints, E , and the indices of those inequality constraints
that are active at x̂, i.e.,

A(x̂) = E ∪ {i ∈ I : gi(x̂) = 0}

An important condition that is assumed to hold in the majority of optimization al-
gorithms is the so-called linear independence constraint qualification (LICQ). The
LICQ states that at any feasible point x̂, the gradients of all the active constraints
are linearly independent. The main purpose of the LICQ is to ensure that the set of
constraints is well-defined, in a way that there are no redundant constraints, or in a
way that there are no constraints defined such that their gradients are always equal to
zero.

The First-Order Necessary Optimality Conditions

If x∗ is a local minimum of the NLP problem and the LICQ holds at x∗, then there are
vectors of Lagrange multipliers y∗ and z∗, with components y∗i , i ∈ E , and z∗i , i ∈ I,
respectively, such that the following conditions are satisfied:

∇xL(x∗, y∗, z∗) = 0

hi(x∗) = 0, i ∈ E

gi(x∗) ≥ 0, i ∈ I

z∗i ≥ 0, i ∈ I

z∗i gi(x∗) = 0, i ∈ I

where ∇xL(x∗, y∗, z∗) is the gradient of the Lagrangian function with respect to x,
defined as

∇xL(x∗, y∗, z∗) = ∇f(x)−
∑
i∈E

yi∇hi(x)−
∑
i∈I

zi∇gi(x)

The preceding conditions are often called the Karush-Kuhn-Tucker (KKT) conditions,
named after their inventors. The last group of equations (zigi(x) = 0, i ∈ I) is
called the complementarity condition. Its main aim is to try to force the Lagrange

816 � Chapter 7. The Interior Point NLP Solver (Experimental)

multipliers, z∗i , of the inactive inequalities (i.e., those inequalities with gi(x∗) > 0)
to zero.

The KKT conditions describe the way the first derivatives of the objective and con-
straints are related at a local minimum x∗. However, they are not enough to fully
characterize a local minimum. The second-order optimality conditions attempt to
fulfill this aim, by examining the curvature of the Hessian matrix of the Lagrangian
function at a point that satisfies the KKT conditions.

The Second-Order Necessary Optimality Condition

Let x∗ be a local minimum of the NLP problem, and let y∗, z∗ be the correspond-
ing Lagrange multipliers that satisfy the first-order optimality conditions. Then
dT∇2

xL(x∗, y∗, z∗)d ≥ 0 for all nonzero vectors d that satisfy the following con-
ditions:

1. ∇hT
i (x∗)d = 0, ∀i ∈ E

2. ∇gT
i (x∗)d = 0, ∀i ∈ A(x∗), such that z∗i > 0

3. ∇gT
i (x∗)d ≥ 0, ∀i ∈ A(x∗), such that z∗i = 0

The second-order necessary optimality condition states that, at a local minimum, the
curvature of the Lagrangian function along the directions that satisfy the preceding
conditions must be nonnegative.

Overview of Interior Point Methods
Primal-dual interior point methods can be classified into two categories: feasible and
infeasible. The first category requires the starting point as well as all subsequent it-
erations of the algorithm to strictly satisfy all the inequality constraints. The second
category relaxes those requirements and allows the iterates to violate some or all of
the inequality constraints during the course of the minimization procedure. Currently,
the IPNLP solver implements an infeasible algorithm. For this reason we will con-
centrate on that type of algorithm.

To make the notation less cluttered and the fundamentals of interior point methods
easier to understand, we consider, without loss of generality, the following simpler
NLP problem:

minimize f(x)

subject to gi(x) ≥ 0, i ∈ I = {1, 2, ..., q}

Note that the equality and bound constraints have been omitted from the preceding
problem. Initially, slack variables are added to the inequality constraints, giving rise
to the following problem:

minimize f(x)

subject to gi(x)− si = 0, i ∈ I
s ≥ 0

Overview of Interior Point Methods � 817

where s = (s1, ..., sq)T represents the vector of the slack variables, which are re-
quired to be nonnegative. Next, all the nonnegativity constraints on the slack vari-
ables are eliminated by being incorporated into the objective function, by means of
a logarithmic function. This gives rise to the following equality-constrained NLP
problem:

minimize B(x, s) = f(x)− µ
∑

i∈I ln(si)

subject to gi(x)− si = 0, i ∈ I

where µ is a positive parameter. The preceding problem is often called the barrier
problem. The nonnegativity constraints on the slack variables are implicitly enforced
by the logarithmic functions, since the logarithmic function prohibits s from taking
zero or negative values.

Depending on the size of the parameter µ, a local minimum of the barrier problem
provides an approximation to the local minimum of the original NLP problem. The
smaller the size of µ, the better the approximation becomes. Infeasible primal-dual
interior point algorithms repetitively solve the barrier problem for different values of
µ that progressively go to zero, in order to get as close as possible to a local minimum
of the original NLP problem.

To solve the barrier problem we first define its Lagrangian function:

LB(x, s, z) = B(x, s)− zT(g(x)− s)

= f(x)− µ
∑

i∈I ln(si)− zT(g(x)− s)

Then we define its first-order optimality conditions:

∇xLB = ∇xf(x)− J(x)Tz = 0

∇sLB = −µS−1e + z = 0

g(x)− s = 0

where J(x) represents the Jacobian matrix of the vector function g(x), S repre-
sents the diagonal matrix whose elements are the elements of the vector s (i.e.,
S = diag{s1, ..., sq}), and e represents a vector of all ones. By multiplying the
second equation by S, we obtain the following equivalent nonlinear system:

∇xf(x)− J(x)Tz = 0

−µe + Sz = 0

g(x)− s = 0

Note that if µ = 0, the preceding conditions represent the optimality conditions of
the original optimization problem, after adding slack variables. One of the main aims
of the algorithm is to gradually reduce the value of µ to zero, so that it converges to
a local optimum of the original NLP problem. The rate by which µ approaches zero
affects the overall efficiency of the algorithm.

818 � Chapter 7. The Interior Point NLP Solver (Experimental)

At an iteration k, the infeasible primal-dual interior point algorithm approximately
solves the preceding system by using Newton’s method. The Newton system is

HL(xk, zk) 0 −J(xk)T

0 Zk Sk

J(xk) −I 0




∆xk

∆sk

∆zk

 = −


∇xf(xk)− J(xk)Tz

−µe + Skzk

g(xk)− sk


where HL is the Hessian matrix of the Lagrangian function L(x, z) = f(x)−zTg(x)
of the original NLP problem, i.e.,

HL(x, z) = ∇2f(x)−
∑
i∈I

zi∇2gi(x)

The solution (∆xk,∆sk,∆zk) of the Newton system provides a direction to move
from the current iteration (xk, sk, zk) to the next:

(xk+1, sk+1, zk+1) = (xk, sk, zk) + α(∆xk,∆sk,∆zk)

where α is the step length along the Newton direction. The step length is determined
through a line-search procedure that ensures sufficient decrease of a merit function
based on the augmented Lagrangian function of the barrier problem. The role of
the merit function and the line-search procedure is to ensure that the objective and
the infeasibility reduce sufficiently at every iteration and that the iterates approach a
local minimum of the original NLP problem.

Solver Termination Criterion

The solver terminates when the norm of the optimality conditions of the original
problem is less than the user-defined or default tolerance (see OPTTOL= option).
More specifically, if

F (x, s, z) = (∇xf(x)− J(x)Tz, Sz, g(x)− s)T

is the vector of the optimality conditions of the original NLP problem, then the solver
terminates when

‖ F (x, s, z) ‖≤ OPTTOL

Solver Termination Messages

Upon termination the solver produces the following messages in the log:

Converged
The solver has successfully found a local solution to the optimization problem.

Conditionally optimal solution found
The solver is sufficiently close to a local solution, but it has difficulty in completely

Macro Variable –OROPTMODEL– � 819

satisfying the user-defined optimality tolerance. This can happen when the line search
finds very small steps resulting in very slight progress of the algorithm. It can also
happen when the prespecified tolerance is too strict for the optimization problem at
hand.

Maximum number of iterations reached
The solver could not find a local optimum in the prespecified number of iterations.

Maximum specified time reached
The solver could not find a local optimum in the prespecified maximum real time for
the optimization process.

Did not converge
The solver could not satisfy the optimality conditions and failed to converge.

Problem may be unbounded
The objective function takes arbitrarily large values, and the optimality conditions fail
to be satisfied. This can happen when the problem is unconstrained or constrained
and the feasible region is not bounded.

Problem may be infeasible
The solver cannot identify a point in the feasible region.

Out of memory
The problem is so large that the solver requires more memory to solve the problem.

Problem solved by the OPTMODEL presolver
The problem was solved by the OPTMODEL presolver.

Macro Variable –OROPTMODEL–
The OPTMODEL procedure always creates and initializes a SAS macro called
–OROPTMODEL–. This variable contains a character string. After each
PROC OROPTMODEL run, you can examine this macro by specifying %put
–OROPTMODEL–; and check the execution of the most recently invoked solver
from the value of the macro variable. The various terms of the variable after the
IPNLP solver is called are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK solver terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing of data

SEMANTIC–ERROR evaluation error, such as an invalid operand type

ERROR status that cannot be classified into any of the preceding
categories

820 � Chapter 7. The Interior Point NLP Solver (Experimental)

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL optimality of the solution cannot be
proven

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

BAD–PROBLEM–TYPE problem type is unsupported by solver

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED solver reached its execution time limit

FAILED solver failed to converge, possibly due to
numerical issues

OBJECTIVE
indicates the objective value obtained by the solver at termination.

INFEASIBILITY
indicates the level of infeasibility of the constraints at the solution.

OPTIMALITY–ERROR
indicate of the norm of the optimality conditions at the solution. See the section
“Solver Termination Criterion” on page 818 for details.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE–TIME
indicates the real time taken for preprocessing (seconds).

SOLUTION–TIME
indicates the real time taken by the interior point algorithm to perform iterations for
solving the problem (seconds).

Example 7.1. Solving Highly Nonlinear Optimization Problems � 821

Examples
In this section several examples are presented in order to show the capabilities and
features of the IPNLP solver.

Example 7.1. Solving Highly Nonlinear Optimization Problems
This example demonstrates the use of the IPNLP solver to solve the following highly
nonlinear optimization problem, which appears in Hock and Schittkowski (1981).

minimize f(x) = 0.4(x1)0.67(x7)−0.67 + 0.4(x2)0.67(x8)−0.67

+10− x1 − x2

subject to 1− 0.0588x5x7 − 0.1x1 ≥ 0

1− 0.0588x6x8 − 0.1x1 − 0.1x2 ≥ 0

1− 4x3(x5)−1 − 2(x3)−0.71(x5)−1 − 0.0588(x3)−1.3x7 ≥ 0

1− 4x4(x6)−1 − 2(x4)−0.71(x6)−1 − 0.0588(x4)−1.3x8 ≥ 0

0.1 ≤ f(x) ≤ 4.2

0.1 ≤ xi ≤ 10, i = 1, 2, ..., 8

The initial point used is x0 = (6, 3, 0.4, 0.2, 6, 6, 1, 0.5). You can call the IPNLP
solver within PROC OPTMODEL to solve the problem by writing the following SAS
code:

proc optmodel;
var x{1..8} >=.1 <=10;

minimize obj = 0.4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67
+10-x[1]-x[2];

con c1: 1-.0588*x[5]*x[7]-.1*x[1]>=0;
con c2: 1-.0588*x[6]*x[8]-.1*x[1]-.1*x[2]>=0;
con c3: 1-4*x[3]/x[5]-2/(x[3]^.71*x[5])-.0588*x[7]/x[3]^1.3>=0;
con c4: 1-4*x[4]/x[6]-2/(x[4]^.71*x[6])-.0588*x[8]/x[4]^1.3>=0;
con c5: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10

-x[1]-x[2]>=.1;
con c6: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10

-x[1]-x[2]<=4.2;

/* starting point */
x[1] = 6;
x[2] = 3;
x[3] = .4;
x[4] = .2;
x[5] = 6;
x[6] = 6;
x[7] = 1;
x[8] = .5;

solve with ipnlp;
print x;

quit;

822 � Chapter 7. The Interior Point NLP Solver (Experimental)

The summaries and the optimal solution are shown in Output 7.1.1.

Output 7.1.1. Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 8
Bounded Above 0
Bounded Below 0
Bounded Below and Above 8
Free 0
Fixed 0

Number of Constraints 6
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 1
Nonlinear EQ (=) 0
Nonlinear GE (>=) 5
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver IPNLP
Objective Function obj
Solution Status Optimal
Objective Value 3.9511673625
Iterations 29

Infeasibility 5.049056E-12
Optimality Error 7.5708926E-7

[1] x

1 6.46509
2 2.23272
3 0.66740
4 0.59576
5 5.93268
6 5.52724
7 1.01333
8 0.40067

Example 7.2. Solving Unconstrained Optimization Problems � 823

Example 7.2. Solving Unconstrained Optimization Problems

Although the IPNLP solver is suited for solving constrained NLP problems, it can
solve efficiently unconstrained problems too. We demonstrate its ability by consider-
ing the following relatively large unconstrained NLP problem:

minimize f(x) =
n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

n)2

where n = 5000. To solve this problem, you can write the following SAS code:

proc optmodel;
number N=5000;
var x{1..N} init 1.0;

minimize obj = sum {i in 1..N - 1} (- 4 * x[i] + 3.0) +
sum {i in 1..N - 1} (x[i]^2 + x[N]^2)^2;

solve with ipnlp;
quit;

The problem and solution summaries are shown in Output 7.2.1.

824 � Chapter 7. The Interior Point NLP Solver (Experimental)

Output 7.2.1. Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 5000
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 5000
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver IPNLP
Objective Function obj
Solution Status Optimal
Objective Value 0
Iterations 12

Infeasibility 0
Optimality Error 5.3537499E-8

Example 7.3. Solving NLP Problems with Range Constraints � 825

Example 7.3. Solving NLP Problems with Range Constraints

Often there are constraints with both lower and upper bounds, i.e., a ≤ g(x) ≤ b.
These constraints are called range constraints. The IPNLP solver can handle range
constraints in an efficient way. Consider the following NLP problem:

minimize f(x) = 5.35(x3)2 + 0.83x1x5 + 37.29x1 − 40792.141

subject to 0 ≤ a1 + a2x2x5 + a3x1x4 − a4x3x5 ≤ 92

0 ≤ a5 + a6x2x5 + a7x1x2 + a8(x3)3 − 90 ≤ 20

0 ≤ a9 + a10x3x5 + a11x1x3 + a12x3x4 − 20 ≤ 5

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

27 ≤ xi ≤ 45, i = 3, 4, 5

where the values of the parameters ai, i = 1, 2, ..., 12, are shown in Table 7.2.

Table 7.2. Data for Example 3

i ai i ai i ai

1 85.334407 5 80.51249 9 0.0047026

2 0.0056858 6 0.0071317 10 0.0012547

3 0.0006262 7 0.0029955 11 0.0019085

4 0.0022053 8 0.0021813 12 0.0019085

The initial point used is x0 = (78, 33, 27, 27, 27). You can call the IPNLP solver
within PROC OPTMODEL to solve this problem by writing the following SAS code:

proc optmodel;
number l {1..5} = [78 33 27 27 27];
number u {1..5} = [102 45 45 45 45];

number a {1..12} =
[85.334407 0.0056858 0.0006262 0.0022053
80.51249 0.0071317 0.0029955 0.0021813
9.300961 0.0047026 0.0012547 0.0019085];

var x {j in 1..5} >= l[j] <= u[j];

minimize obj = 5.35*x[3]^2 + 0.83*x[1]*x[5] + 37.29*x[1]
- 40792.141;

con constr1:
0 <= a[1] + a[2]*x[2]*x[5] + a[3]*x[1]*x[4] -

a[4]*x[3]*x[5] <= 92;
con constr2:

0 <= a[5] + a[6]*x[2]*x[5] + a[7]*x[1]*x[2] +
a[8]*x[3]^2 - 90 <= 20;

con constr3:

826 � Chapter 7. The Interior Point NLP Solver (Experimental)

0 <= a[9] + a[10]*x[3]*x[5] + a[11]*x[1]*x[3] +
a[12]*x[3]*x[4] -20 <= 5;

x[1] = 78;
x[2] = 33;
x[3] = 27;
x[4] = 27;
x[5] = 27;

solve with ipnlp;
print x;

quit;

The summaries and the optimal solution are shown in Output 7.3.1.

Example 7.3. Solving NLP Problems with Range Constraints � 827

Output 7.3.1. Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Quadratic

Number of Variables 5
Bounded Above 0
Bounded Below 0
Bounded Below and Above 5
Free 0
Fixed 0

Number of Constraints 3
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 0
Nonlinear Range 3

The OPTMODEL Procedure

Solution Summary

Solver IPNLP
Objective Function obj
Solution Status Optimal
Objective Value -30689.1889
Iterations 73

Infeasibility 2.664535E-15
Optimality Error 5.9764587E-7

[1] x

1 78.000
2 33.000
3 29.995
4 45.000
5 36.776

828 � Chapter 7. The Interior Point NLP Solver (Experimental)

References
Akrotirianakis, I. and Rustem, B. (2000), “A Primal-Dual Interior Point Algorithm

with an Exact and Differentiable Merit Function for General Nonlinear
Programming Problems,” Optimization Methods and Software, 14(1), 1–35.

Armand, P., Gilbert, J. C., and Jan-Jégou, S. (2002), “A BFGS-IP Algorithm for
Solving Strongly Convex Optimization Problems with Feasibility Enforced by an
Exact Penalty Approach,” Mathematical Programming, 92(3), 393–424.

Forsgren, A., Gill, P. E., and Wright, M. H. (2002), “Interior Methods for Nonlinear
Optimization,” SIAM Review, 44, 525–597.

Hock, W. and Schittkowski, K. (1981), Lecture Notes in Economics and
Mathematical Systems: Test Examples for Nonlinear Programming Codes, Berlin:
Springer-Verlag.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-
Verlag.

Vanderbei, R. J. and Shanno, D. (1999), “An Interior-Point Algorithm for Nonconvex
Nonlinear Programming,” Computational Optimization and Applications, 13, 231–
252.

Wächter, A. and Biegler, L. T. (2006), “On the Implementation of an Interior-
Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming,”
Mathematical Programming, 106 (No. 1), 25–57.

Wright, S. J. (1997), Primal-Dual Interior-Point Methods, SIAM Publications.

Yamashita, H. (1998), “A Globally Convergent Primal-Dual Interior Point Method
for Constrained Optimization,” Optimization Methods and Software, 10, 443–469.

Chapter 8
The Linear Programming Solver

Chapter Contents

OVERVIEW . 831

GETTING STARTED . 832

SYNTAX . 834
Functional Summary . 834
LP Solver Options . 835

DETAILS . 838
Presolve . 838
Pricing Strategies for the Primal Simplex Solver 839
The Interior Point Algorithm: Overview 839
Macro Variable –OROPTMODEL– . 841
Iteration Log for the Simplex Solvers . 843
Iteration Log for the Interior Point Solver 844
Problem Statistics . 844
Data Magnitude and Variable Bounds . 845
Variable and Constraint Status . 846
Irreducible Infeasible Set . 847

EXAMPLES . 847
Example 8.1. Diet Problem . 847
Example 8.2. Reoptimizing the Diet Problem Using BASIS=WARMSTART 849
Example 8.3. Two-Person Zero-Sum Game 853
Example 8.4. Finding an Irreducible Infeasible Set 855

REFERENCES . 859

830

Chapter 8
The Linear Programming Solver
Overview

The OPTMODEL procedure provides a framework for specifying and solving linear
programs (LPs). A standard linear program has the following formulation:

min cTx

subject to Ax {≥,=,≤} b

l ≤ x ≤ u

where

x ∈ Rn is the vector of decision variables

A ∈ Rm×n is the matrix of constraints

c ∈ Rn is the vector of objective function coefficients

b ∈ Rm is the vector of constraints right-hand sides (RHS)

l ∈ Rn is the vector of lower bounds on variables

u ∈ Rn is the vector of upper bounds on variables

The following LP solvers are available in the OPTMODEL procedure:

• primal simplex solver

• dual simplex solver

• interior point solver (experimental)

The simplex solvers implement the two-phase simplex method. In phase I, the solver
tries to find a feasible solution. If no feasible solution is found, the LP is infeasible;
otherwise, the solver enters phase II to solve the original LP. The interior point solver
implements a primal-dual predictor-corrector interior point algorithm. If any of the
decision variables are constrained to be integer-valued, then the relaxed version of
the problem is solved.

832 � Chapter 8. The Linear Programming Solver

Getting Started
The following example illustrates how you can use the OPTMODEL procedure to
solve linear programs. Suppose you want to solve the following problem:

max x1 + x2 + x3

subject to 3x1 + 2x2 − x3 ≤ 1

−2x1 − 3x2 + 2x3 ≤ 1

x1, x2, x3 ≥ 0

You can use the following statement to call the OPTMODEL procedure for solving
linear programs:

proc optmodel;
var x{i in 1..3} >= 0;

max f = x[1] + x[2] + x[3] ;

con c1: 3*x[1] + 2*x[2] - x[3] <= 1;
con c2: -2*x[1] - 3*x[2] + 2*x[3] <= 1;

solve with lp / solver = ps presolver = none printfreq = 1;
print x;

quit;

The optimal solution and the optimal objective value are displayed in Figure 8.1.

Getting Started � 833

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization
Objective Function f
Objective Type Linear

Number of Variables 3
Bounded Above 0
Bounded Below 3
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver Primal Simplex
Objective Function f
Solution Status Optimal
Objective Value 8
Iterations 2

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

[1] x

1 0
2 3
3 5

Figure 8.1. Solution Summary

The iteration log displaying problem statistics, progress of the solution, and the opti-
mal objective value is shown in Figure 8.2.

834 � Chapter 8. The Linear Programming Solver

NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The PRIMAL SIMPLEX solver is called.
NOTE: Objective Entering Leaving

Phase Iteration Value Variable Variable
2 1 0.500000 x[3] c2 (S)
2 2 8.000000 x[2] c1 (S)

NOTE: Optimal.
NOTE: Objective = 8.

Figure 8.2. Log

Syntax
The following statement is available in the OPTMODEL procedure:

SOLVE WITH LP < / options > ;

Functional Summary

Table 8.1 summarizes the list of options available for the SOLVE WITH LP state-
ment, classified by function.

Table 8.1. Options for the LP Solver

Description Option
Solver Options:
enable or disable IIS detection (experimental) IIS=

type of solver SOLVER=

Presolve Option:
type of presolve PRESOLVER=

Control Options:
feasibility tolerance FEASTOL=

maximum number of iterations MAXITER=

upper limit on real time used to solve the problem MAXTIME=

optimality tolerance OPTTOL=

frequency of printing solution progress PRINTFREQ=

use CPU/real time TIMETYPE=

LP Solver Options � 835

Table 8.1. (continued)

Description Option
Simplex Algorithm Options:
type of initial basis BASIS=

type of pricing strategy PRICETYPE=

queue size for determining entering variable QUEUESIZE=

enable or disable scaling of the problem SCALE=

Interior Point Algorithm Options:
stopping criterion based on duality gap STOP–DG=

stopping criterion based on dual infeasibility STOP–DI=

stopping criterion based on primal infeasibility STOP–PI=

LP Solver Options

This section describes the options recognized by the LP solver. These options can
be specified after a forward slash (/) in the SOLVE statement, provided that the LP
solver is explicitly specified using a WITH clause.

If the LP solver terminates before reaching an optimal solution, an intermediate solu-
tion is available. You can access this solution by using the .sol variable suffix in the
OPTMODEL procedure. See the section “Suffixes” on page 767 for details.

Solver Options

IIS=OFF(0) | ON(1) (experimental)
specifies whether the LP solver performs detection of an irreducible infeasible set
(IIS). When IIS=ON, the LP solver tries to identify a set of constraints and vari-
ables that form an IIS. If an IIS is found, information about the infeasibilities can
be found in the .status values of the constraints and variables. If no IIS is detected,
then a solver is called to continue solving the problem. The default value of this
option is OFF. The OPTMODEL option PRESOLVER=NONE should be specified
when IIS=ON is specified; otherwise, the IIS results can be incomplete. See the sec-
tion “Irreducible Infeasible Set” on page 847 for details about the IIS= option. See
“Suffixes” for details about the .status suffix.

SOLVER=option
specifies one of the following LP solvers:

Option Description

PRIMAL (PS) Use primal simplex solver.

DUAL (DS) Use dual simplex solver.

ITERATIVE (II), experimental Use interior point solver.

836 � Chapter 8. The Linear Programming Solver

The valid abbreviated value for each option is indicated in parentheses. By default,
the dual simplex solver is used.

Presolve Options

PRESOLVER=option
specifies one of the following presolve options:

Option Description

NONE (0) Disable presolver.

AUTOMATIC (−1) Apply presolver by using default setting.

BASIC (1) Perform basic presolve like removing empty rows,
columns, and fixed variables.

MODERATE (2) Perform basic presolve and apply other inexpensive
presolve techniques.

AGGRESSIVE (3) Perform moderate presolve and apply other
aggressive (but expensive) presolve techniques.

The default option is AUTOMATIC. See the section “Presolve” on page 838 for de-
tails.

Control Options

FEASTOL=ε
specifies the feasibility tolerance, ε ∈[1E–9, 1E–4], for determining the feasibility of
a variable. The default value is 1E–6.

MAXITER=k
specifies the maximum number of iterations. The value k can be any integer between
one and the largest four-byte signed integer, which is 231 − 1. If you do not specify
this option, the procedure does not stop based on the number of iterations performed.

MAXTIME=k
specifies an upper limit of k seconds of time for the optimization process. The timer
used by this option is determined by the value of the TIMETYPE= option. If you
do not specify this option, the procedure does not stop based on the amount of time
elapsed.

OPTTOL=ε
specifies the optimality tolerance, ε ∈ [1E–9, 1E–4], for declaring optimality. The
default value is 1E–6.

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after
every k iterations. The print frequency, k, is an integer between zero and the largest
four-byte signed integer, which is 231 − 1.

LP Solver Options � 837

The value k = 0 disables the printing of the progress of the solution. If the simplex
algorithms are used, the default value of this option is determined dynamically ac-
cording to the problem size. If the interior point algorithm is used, the default value
of this option is 1.

TIMETYPE=CPU(0) | REAL(1)
sets the timer used by the MAXTIME= option, and controls the type of time reported
by PRESOLVE–TIME and SOLUTION–TIME in the –OROPTMODEL– macro
variable. The “Optimization Statistics” table, an output of PROC OPTMODEL if
option PRINTLEVEL=2 is specified in the PROC OPTMODEL statement, also in-
cludes the same time values for “Presolver Time” and “Solver Time.” The other times
(such as “Problem Generation Time”) in this table are always CPU times. The default
value of this option is CPU.

Simplex Algorithm Options

BASIS=option
specifies the following options for generating an initial basis:

Option Description

CRASH (0) Generate an initial basis by using crash
techniques (Maros 2003). The procedure creates a
triangular basic matrix consisting of both decision
variables and slack variables.

SLACK (1) Generate an initial basis by using all slack variables.

WARMSTART (2) Start the simplex solvers with available basis.

The default option for the primal simplex solver is CRASH (0). The default option
for the dual simplex solver is SLACK(1).

PRICETYPE=option
specifies one of the following pricing strategies for the simplex solvers:

Option Description

HYBRID (0) Use hybrid Devex and steepest-edge pricing
strategies. Available for primal simplex solver only.

PARTIAL (1) Use partial pricing strategy. Optionally, you can
specify QUEUESIZE=. Available for primal
simplex solver only.

FULL (2) Use the most negative reduced cost pricing strategy.

DEVEX (3) Use Devex pricing strategy.

STEEPESTEDGE
(4)

Use steepest-edge pricing strategy.

838 � Chapter 8. The Linear Programming Solver

The default pricing strategy for the primal simplex solver is HYBRID and that for the
dual simplex solver is STEEPESTEDGE. See the section “Pricing Strategies for the
Primal Simplex Solver” on page 839 for details.

QUEUESIZE=k
specifies the queue size, k ∈ [1, n], where n is the number of decision variables. This
queue is used for finding an entering variable in the simplex iteration. The default
value is chosen adaptively based on the number of decision variables. This option is
used only when PRICETYPE=PARTIAL.

SCALE=option
specifies one of the following scaling options:

Option Description

NONE (0) Disable scaling.

AUTOMATIC (−1) Automatically apply scaling procedure if necessary.

The default option is AUTOMATIC.

Interior Point Algorithm Options

STOP–DG=δ
specifies the desired relative duality gap, δ ∈[1E–9, 1E–4]. This is the relative dif-
ference between the primal and dual objective function values and is the primary
solution quality parameter. The default value is 1E–6. See the section “The Interior
Point Algorithm: Overview” on page 839 for details.

STOP–DI=β
specifies the maximum allowed relative dual constraints violation, β ∈ [1E–9, 1E–4].
The default value is 1E–6. See the section “The Interior Point Algorithm: Overview”
on page 839 for details.

STOP–PI=α
specifies the maximum allowed relative bound and primal constraints violation,
α ∈[1E–9, 1E–4]. The default value is 1E–6. See the section “The Interior Point
Algorithm: Overview” on page 839 for details.

Details

Presolve

Presolve in the simplex LP solvers of PROC OPTMODEL uses a variety of tech-
niques to reduce the problem size, improve numerical stability, and detect infeasibil-
ity or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During pre-
solve, redundant constraints and variables are identified and removed. Presolve can
further reduce the problem size by substituting variables. Variable substitution is a
very effective technique, but it might occasionally increase the number of nonzero
entries in the constraint matrix.

The Interior Point Algorithm: Overview � 839

In most cases, using presolve is very helpful in reducing solution times. You can en-
able presolve at different levels or disable it by specifying the PRESOLVER= option.

Pricing Strategies for the Primal Simplex Solver

Several pricing strategies for the simplex solvers are available. Pricing strategies de-
termine which variable enters the basis at each simplex pivot. These can be controlled
by specifying the PRICETYPE= option.

The primal simplex solver has the following five pricing strategies:

PARTIAL scans a queue of decision variables to find an entering variable.
You can optionally specify the QUEUESIZE= option to control
the length of this queue.

FULL uses Dantzig’s most violated reduced cost rule (Dantzig 1963).
It compares the reduced cost of all decision variables, and se-
lects the variable with the most violated reduced cost as the
entering variable.

DEVEX implements the Devex pricing strategy developed by Harris
(1973).

STEEPESTEDGE uses the steepest-edge pricing strategy developed by Forrest
and Goldfarb (1992).

HYBRID uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex solver has only three pricing strategies available: FULL, DEVEX,
and STEEPESTEDGE.

The Interior Point Algorithm: Overview

The interior point LP solver (experimental) in PROC OPTMODEL implements an
infeasible primal-dual predictor-corrector interior point algorithm. To illustrate the
algorithm and the concepts of duality and dual infeasibility, consider the following
LP formulation (the primal):

min cTx

subject to Ax ≥ b

x ≥ 0

The corresponding dual is as follows:

max bTy

subject to ATy + w = c

y ≥ 0

w ≥ 0

840 � Chapter 8. The Linear Programming Solver

where y ∈ Rm refers to the vector of dual variables and w ∈ Rn refers to the vector
of dual slack variables.

The dual makes an important contribution to the certificate of optimality for the pri-
mal. The primal and dual constraints combined with complementarity conditions de-
fine the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker)
conditions, which can be stated as follows:

Ax− s = b (Primal Feasibility)

ATy + w = c (Dual Feasibility)

WXe = 0 (Complementarity)

SYe = 0 (Complementarity)

x, y, w, s ≥ 0

where e ≡ (1, . . . , 1)T of appropriate dimension and s ∈ Rm is the vector of primal
slack variables.

Note: Slack variables (the s vector) are automatically introduced by the solver when
necessary; it is therefore recommended that you not introduce any slack variables
explicitly. This enables the solver to handle slack variables much more efficiently.

The letters X, Y, W, and S denote matrices with corresponding x, y, w, and s on
the main diagonal and zero elsewhere, as in the following example:

X ≡


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xn


If (x∗,y∗,w∗, s∗) is a solution of the previously defined system of equations repre-
senting the KKT conditions, then x∗ is also an optimal solution to the original LP
model.

At each iteration the interior point algorithm solves a large, sparse system of linear
equations as follows: Y−1S A

AT −X−1W

 ∆y

∆x

 =

 Ξ

Θ


where ∆x and ∆y denote the vector of search directions in the primal and dual
spaces, respectively; Θ and Ξ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The interior point solver
uses a preconditioned quasi-minimum residual algorithm to solve this system of equa-
tions efficiently.

Macro Variable –OROPTMODEL– � 841

An important feature of the interior point solver is that it takes full advantage of the
sparsity in the constraint matrix, thereby enabling it to efficiently solve large-scale
linear programs.

The interior point algorithm works simultaneously in the primal and dual spaces.
It attains optimality when both primal and dual feasibility are achieved and when
complementarity conditions hold. Therefore it is of interest to observe the following
four measures:

• Relative primal infeasibility measure α:

α =
‖Ax− b− s‖2

‖b‖2 + 1

• Relative dual infeasibility measure β:

β =
‖c−ATy −w‖2

‖c‖2 + 1

• Relative duality gap δ:

δ =
|cTx− bTy|
|cTx|+ 1

• Absolute complementarity γ:

γ =
n∑

i=1

xiwi +
m∑

i=1

yisi

where ‖v‖2 is the Euclidean norm of the vector v. These measures are displayed in
the iteration log.

Macro Variable –OROPTMODEL–
The OPTMODEL procedure always creates and initializes a SAS macro called
–OROPTMODEL–. This variable contains a character string. After each
PROC OROPTMODEL run, you can examine this macro by specifying %put
&-OROPTMODEL-; and check the execution of the most recently invoked solver
from the value of the macro variable. The various terms of the variable after the LP
solver is called are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK solver terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing of data

842 � Chapter 8. The Linear Programming Solver

SEMANTIC–ERROR evaluation error, such as an invalid operand type

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL solution is optimal, but some infeasibili-
ties (primal, dual or bound) exceed toler-
ances due to scaling or preprocessing

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

BAD–PROBLEM–TYPE problem type is unsupported by solver

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED solver reached its execution time limit

FUNCTION–CALL–LIMIT–REACHED solver reached its limit on function eval-
uations

FAILED solver failed to converge, possibly due to
numerical issues

When SOLUTION–STATUS has a value of OPTIMAL, CONDITIONAL–OPTIMAL,
ITERATION–LIMIT–REACHED, or TIME–LIMIT–REACHED, all terms
of the –OROPTMODEL– macro variable are present; for other values of
SOLUTION–STATUS, some terms do not appear.

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL–INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the primal
solution.

DUAL–INFEASIBILITY
indicates the maximum (absolute) violation of the dual constraints by the dual solu-
tion.

BOUND–INFEASIBILITY
indicates the maximum (absolute) violation of the lower and/or upper bounds by the
primal solution.

DUALITY–GAP
indicates the (relative) duality gap. This term appears only if the option SOLVER=
ITERATIVE–INTERIOR is specified in the SOLVE statement.

Iteration Log for the Simplex Solvers � 843

ITERATIONS
indicates the number of iterations taken to solve the problem.

PRESOLVE–TIME
indicates the time for preprocessing (seconds).

SOLUTION–TIME
indicates the time taken to solve the problem (seconds).

Note: The time reported in PRESOLVE–TIME and SOLUTION–TIME is either
CPU time (default) or real time. The type is determined by the TIMETYPE= option.

When SOLUTION–STATUS has a value of OPTIMAL, CONDITIONAL–OPTIMAL,
ITERATION–LIMIT–REACHED, or TIME–LIMIT–REACHED, all terms
of the –OROPTMODEL– macro variable are present; for other values of
SOLUTION–STATUS, some terms do not appear.

Iteration Log for the Simplex Solvers

The simplex solvers implement a two-phase simplex algorithm. Phase I finds a feasi-
ble solution, which phase II improves to an optimal solution.

When the PRINTFREQ= option has a value of 1, the following information is printed
in the iteration log:

Phase indicates whether the solver is in phase I or phase II of the sim-
plex method.

Iteration indicates the iteration number.

Objective Value indicates the current amount of infeasibility in phase I and the
objective value of the current solution in phase II.

Entering Variable indicates the entering pivot variable. A slack variable entering
the basis is indicated by the corresponding row name followed
by ‘(S)’. If the entering nonbasic variable has distinct, finite
lower and upper bounds, then a “bound swap” takes place. In
other words, if the entering variable is at its upper bound, then it
is “flipped” to its lower bound and is indicated in the log as “To
lower.”

Leaving Variable indicates the leaving pivot variable. A slack variable leaving the
basis is indicated by the corresponding row name followed by
‘(S)’.

When the PRINTFREQ= option is omitted or specified with a value larger than 1,
only the phase, iteration, and objective value information is printed in the iteration
log.

The behavior of objective values in the iteration log depends on both the current phase
and the chosen solver. In phase I, both simplex methods have artificial objective
values that decrease to 0 when a feasible solution is found. For the dual simplex
method, phase II maintains a dual feasible solution, so a minimization problem has

844 � Chapter 8. The Linear Programming Solver

increasing objective values in the iteration log. For the primal simplex method, phase
II maintains a primal feasible solution, so a minimization problem has decreasing
objective values in the iteration log.

During the solution process, some elements of the LP model might be perturbed
to improve performance. After reaching optimality for the perturbed problem, the
LP solver solves the original problem by using the optimal basis for the perturbed
problem. This can occasionally cause the simplex solver to repeat phase I and phase
II in several passes.

Iteration Log for the Interior Point Solver

The interior point solver implements an infeasible primal-dual predictor-corrector
interior point algorithm. The following information is displayed in the iteration
log:

Iter indicates the iteration number

Complement indicates the (absolute) complementarity

Duality Gap indicates the (relative) duality gap

Primal Infeas indicates the (relative) primal infeasibility measure

Bound Infeas indicates the (relative) bound infeasibility measure

Dual Infeas indicates the (relative) dual infeasibility measure

If the sequence of solutions converges to an optimal solution of the problem, you
should see all columns in the iteration log converge to zero or very close to zero. If
they do not, it can be the result of insufficient iterations being performed to reach
optimality. In this case, you might need to increase the value specified in the option
MAXITER= or MAXTIME=. If the complementarity and/or the duality gap do not
converge, the problem might be infeasible or unbounded. If the infeasibility columns
do not converge, the problem might be infeasible.

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models.
Information about data magnitude provides a simple gauge to determine how well
a model is formulated. For example, a model whose constraint matrix contains
one very large entry (on the order of 109) can cause difficulty when the remaining
entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL
procedure causes the ODS table “ProblemStatistics” to be generated when the LP
solver is called. This table provides basic data magnitude information that enables
you to improve the formulation of your models.

The example output in Figure 8.3 demonstrates the contents of the ODS table
“ProblemStatistics.”

Data Magnitude and Variable Bounds � 845

The OPTMODEL Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 6
Maximum Constraint Matrix Coefficient 3
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 2.1666666667

Number of Objective Nonzeros 3
Maximum Objective Coefficient 1
Minimum Objective Coefficient 1
Average Objective Coefficient 1

Number of RHS Nonzeros 2
Maximum RHS 1
Minimum RHS 1
Average RHS 1

Maximum Number of Nonzeros per Column 2
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 3
Minimum Number of Nonzeros per Row 3
Average Number of Nonzeros per Row 3

Figure 8.3. ODS Table ProblemStatistics

The variable names in the ODS table “ProblemStatistics” are Label1, cValue1, and
nValue1.

Data Magnitude and Variable Bounds
Extremely large numerical values might cause computational difficulties for the LP
solver, but the occurrence of such difficulties is hard to predict. For this reason, the
LP solver issues a data error message whenever it detects model data that exceeds
a specific threshold number. The value of the threshold number depends on your
operating environment and is printed in the log as part of the data error message.

The following conditions produce a data error:

• The absolute value of an objective coefficient, constraint coefficient, or range
(difference between the upper and lower bounds on a constraint) is greater than
the threshold number.

• A variable’s lower bound, a ≥ or = constraint’s right-hand side, or a range
constraint’s lower bound is greater than the threshold number.

• A variable’s upper bound, a ≤ or = constraint’s right-hand side, or a range
constraint’s upper bound is smaller than the negative threshold number.

If a variable’s upper bound is larger than 1E20, then the LP solver treats the bound as
∞. Similarly, if a variable’s lower bound is smaller than −1E20, then the LP solver
treats the bound as −∞.

846 � Chapter 8. The Linear Programming Solver

Variable and Constraint Status

Upon termination of the LP solver, the .status suffix of each decision variable and
constraint stores information about the status of that variable or constraint. For more
information about suffixes in the OPTMODEL procedure, see the section “Suffixes”
on page 767.

Variable Status

The .status suffix of a decision variable specifies the status of that decision variable.
The suffix can take one of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

I LP model infeasible (all decision variables have .status equal to I)

For the interior point solver with IIS= OFF, .status is blank.

The following values can appear only if IIS= ON. See the section “Irreducible
Infeasible Set” on page 847 for details.

I–L the lower bound of the variable is violated

I–U the upper bound of the variable is violated

I–F the fixed bound of the variable is violated

Constraint Status

The .status suffix of a constraint specifies the status of the slack variable for that
constraint. The suffix can take one of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

I LP model infeasible (all decision variables have .status equal to I)

The following values can appear only if option IIS= ON. See the section “Irreducible
Infeasible Set” on page 847 for details.

I–L the “GE” (≥) condition of the constraint is violated

I–U the “LE” (≤) condition of the constraint is violated

I–F the “EQ” (=) condition of the constraint is violated

Example 8.1. Diet Problem � 847

Irreducible Infeasible Set

For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible
subset of constraints and variable bounds that will become feasible if any single con-
straint or variable bound is removed. It is possible to have more than one IIS in an
infeasible LP. Identifying an IIS can help to isolate the structural infeasibility in an
LP.

The experimental IIS=ON option directs the LP solver to search for an IIS in a
given LP. The OPTMODEL option PRESOLVER=NONE should be specified when
IIS=ON is specified; otherwise, the IIS results can be incomplete. The LP presolver
is not applied to the problem during the IIS search. If the LP solver detects an IIS,
it updates the .status suffix of the decision variables and constraints, then stops.
Otherwise, the problem is sent on to the LP presolver, followed by the specified
solver.

The IIS= option can add special values to the .status suffixes of variables and con-
straints. (See the section “Variable and Constraint Status” on page 846 for more infor-
mation.) For constraints, a status of “I–L”, “I–U”, or “I–F” indicates, respectively,
the “GE” (≥), “LE” (≤), or “EQ” (=) condition is violated. For range constraints,
a status of “I–L” or “I–U” indicates, respectively, that the lower or upper bound of
the constraint is violated. For variables, a status of “I–L”, “I–U”, or “I–F” indicates,
respectively, the lower, upper, or fixed bound of the variable is violated. From this
information, you can identify names of the constraints (variables) in the IIS as well
as the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding will re-
move the infeasibility from the IIS. In some cases, changing a right-hand side or
bound by a finite amount will remove the infeasibility; however, the only way to guar-
antee removal of the infeasibility is to set the appropriate right-hand side or bound to
∞ or −∞. Since it is possible for an LP to have multiple irreducible infeasible sets,
simply removing the infeasibility from one set might not make the entire problem
feasible.

See Example 8.4 for an example demonstrating the use of the IIS= option in locating
and removing infeasibilities.

Examples

Example 8.1. Diet Problem

Consider the problem of diet optimization. There are six different foods: bread, milk,
cheese, potato, fish, and yogurt. The cost and nutrition values per unit are displayed
in Table 8.2.

Table 8.2. Cost and Nutrition Values

Bread Milk Cheese Potato Fish Yogurt

Cost 2.0 3.5 8.0 1.5 11.0 1.0

Protein, g 4.0 8.0 7.0 1.3 8.0 9.2

848 � Chapter 8. The Linear Programming Solver

Bread Milk Cheese Potato Fish Yogurt

Fat, g 1.0 5.0 9.0 0.1 7.0 1.0

Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0

Calories 90 120 106 97 130 180

The following SAS code creates the data set fooddata of Table 8.2:

data fooddata;
infile datalines;
input name $ cost prot fat carb cal;
datalines;

Bread 2 4 1 15 90
Milk 3.5 8 5 11.7 120
Cheese 8 7 9 0.4 106
Potato 1.5 1.3 0.1 22.6 97
Fish 11 8 7 0 130
Yogurt 1 9.2 1 17 180

;
run;

The objective is to find a minimum-cost diet that contains at least 300 calories, not
more than 10 grams of protein, not less than 10 grams of carbohydrates, and not less
than 8 grams of fat. In addition, the diet should contain at least 0.5 unit of fish and no
more than 1 unit of milk.

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
/* declare index set */
set<str> FOOD;

/* declare variables */
var diet{FOOD} >= 0;

/* objective function */
num cost{FOOD};
min f=sum{i in FOOD}cost[i]*diet[i];

/* constraints */
num prot{FOOD};
num fat{FOOD};
num carb{FOOD};
num cal{FOOD};
num min_cal, max_prot, min_carb, min_fat;
con cal_con: sum{i in FOOD}cal[i]*diet[i] >= 300;
con prot_con: sum{i in FOOD}prot[i]*diet[i] <= 10;
con carb_con: sum{i in FOOD}carb[i]*diet[i] >= 10;
con fat_con: sum{i in FOOD}fat[i]*diet[i] >= 8;

/* read parameters */
read data fooddata into FOOD=[name] cost prot fat carb cal;

Example 8.2. Reoptimizing the Diet Problem Using BASIS=WARMSTART � 849

/* bounds on variables */
diet[’Fish’].lb = 0.5;
diet[’Milk’].ub = 1.0;

/* solve and print the optimal solution */
solve with lp/printfreq=1; /* print each iteration to log */
print diet;

The optimal solution and the optimal objective value are displayed in Output 8.1.1.

Output 8.1.1. Optimal Solution to the Diet Problem

The OPTMODEL Procedure

Solution Summary

Solver Dual Simplex
Objective Function f
Solution Status Optimal
Objective Value 12.081337881
Iterations 4

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

[1] diet

Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000

Example 8.2. Reoptimizing the Diet Problem Using
BASIS=WARMSTART

After an LP is solved, you might want to change a set of the parameters of the LP and
solve the problem again. This can be done efficiently in PROC OPTMODEL. The
warm start technique uses the optimal solution of the solved LP as a starting point
and solves the modified LP problem faster than it can be solved again from scratch.
This example illustrates reoptimizing the diet problem described in Example 8.1.

Assume the optimal solution is found by the SOLVE statement. Instead of quitting
the OPTMODEL procedure, we continue to solve several variations of the original
problem.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish de-
creases from 11 to 7 per serving unit. We change the parameters and solve the modi-
fied problem by submitting the following code:

850 � Chapter 8. The Linear Programming Solver

cost[’Cheese’]=10; cost[’Fish’]=7;
solve with lp/presolver=none

basis=warmstart
solver=ps
printfreq=1;

print diet;

Note that the primal simplex solver is preferred because the primal solution to the
last-solved LP is still feasible for the modified problem in this case. The solution is
shown in Output 8.2.1.

Output 8.2.1. Optimal Solution to the Diet Problem with Modified Objective
Function

The OPTMODEL Procedure

[1] diet

Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000

The following iteration log indicates that it takes the LP solver no more iterations to
solve the modified problem by using BASIS=WARMSTART, since the optimal solu-
tion to the original problem remains optimal after the objective function is changed.

Output 8.2.2. Log

NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The PRIMAL SIMPLEX solver is called.
NOTE: Optimal.
NOTE: Objective = 10.980335514.

Next we restore the original coefficients of the objective function and consider the
case that you need a diet that supplies at least 150 calories. We change the parameters
and solve the modified problem by submitting the following code:

cost[’Cheese’]=8; cost[’Fish’]=11;cal_con.lb=150;
solve with lp/presolver=none

Example 8.2. Reoptimizing the Diet Problem Using BASIS=WARMSTART � 851

basis=warmstart
solver=ds
printfreq=1;

print diet;

Note that the dual simplex solver is preferred because the dual solution to the last-
solved LP is still feasible for the modified problem in this case. The solution is shown
in Output 8.2.3.

Output 8.2.3. Optimal Solution to the Diet Problem with Modified RHS

The OPTMODEL Procedure

[1] diet

Bread 0.00000
Cheese 0.18481
Fish 0.50000
Milk 0.56440
Potato 0.14702
Yogurt 0.00000

The following iteration log indicates that it takes the LP solver just one more phase
II iteration to solve the modified problem by using BASIS=WARMSTART.

Output 8.2.4. Log

NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The DUAL SIMPLEX solver is called.
NOTE: Objective Entering Leaving

Phase Iteration Value Variable Variable
2 1 9.174413 cal_con (S) carb_con (S)

NOTE: Optimal.
NOTE: Objective = 9.1744131985.

Next we restore the original constraint on calories and consider the case that you need
a diet that supplies no more than 550 mg of sodium per day. The following row is
appended to Table 8.2.

Bread Milk Cheese Potato Fish Yogurt

sodium, mg 148 122 337 186 56 132

852 � Chapter 8. The Linear Programming Solver

We change the parameters, add the new constraint, and solve the modified problem
by submitting the following code:

cal_con.lb=300;
num sod{FOOD}=[148 122 337 186 56 132];
con sodium: sum{i in FOOD}sod[i]*diet[i] <= 550;
solve with lp/presolver=none

basis=warmstart
printfreq=1;

print diet;

The solution is shown in Output 8.2.5.

Output 8.2.5. Optimal Solution to the Diet Problem with Additional Constraint

The OPTMODEL Procedure

[1] diet

Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000

The following iteration log indicates that it takes the LP solver no more iterations
to solve the modified problem by using the BASIS=WARMSTART option, since the
optimal solution to the original problem remains optimal after one more constraint is
added.

Output 8.2.6. Log

NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 5 linear constraints (2 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 29 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The DUAL SIMPLEX solver is called.
NOTE: Optimal.
NOTE: Objective = 12.081337881.

Example 8.3. Two-Person Zero-Sum Game � 853

Example 8.3. Two-Person Zero-Sum Game
Consider a two-person zero-sum game (where one person wins what the other person
loses). The players make moves simultaneously, and each has a choice of actions.
There is a payoff matrix that indicates the amount one player gives to the other under
each combination of actions:

Player II plays j

1 2 3 4

Player I plays i

1

2

3


−5 3 1 8

5 5 4 6

−4 6 0 5


If player I makes move i and player II makes move j, then player I wins (and player
II loses) aij . What is the best strategy for the two players to adopt? This example is
simple enough to be analyzed from observation. Suppose player I plays 1 or 3; the
best response of player II is to play 1. In both cases, player I loses and player II wins.
So the best action for player I is to play 2. In this case, the best response for player
II is to play 3, which minimizes the loss. In this case, (2, 3) is a pure-strategy Nash
equilibrium in this game.

For illustration, consider the following mixed strategy case. Assume that player I
selects i with probability pi, i = 1, 2, 3, and player II selects j with probability
qj , j = 1, 2, 3, 4. Consider player II’s problem of minimizing the maximum expected
payout:

min
q

max
i

4∑
j=1

aijqj

 subject to
4∑

j=1

qij = 1, q ≥ 0

This is equivalent to

min
q,v

v subject to
4∑

j=1

aijqj ≤ v ∀ i

4∑
j=1

qj = 1

q ≥ 0

We can transform the problem into a more standard format by making a simple
change of variables: xj = qj/v. The preceding LP formulation now becomes

min
x,v

v subject to
4∑

j=1

aijxj ≤ 1 ∀ i

4∑
j=1

xj = 1/v

q ≥ 0

854 � Chapter 8. The Linear Programming Solver

which is equivalent to

max
x

4∑
j=1

xj subject to Ax ≤ 1, x ≥ 0

where A is the payoff matrix and 1 is a vector of 1’s. It turns out that the correspond-
ing optimization problem from player I’s perspective can be obtained by solving the
dual problem, which can be written as

min
y

3∑
i=1

yi subject to ATy ≥ 1, y ≥ 0

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
num a{1..3, 1..4}=[-5 3 1 8

5 5 4 6
-4 6 0 5];

var x{1..4} >= 0;
max f = sum{i in 1..4}x[i];
con c{i in 1..3}: sum{j in 1..4}a[i,j]*x[j] <= 1;
solve with lp / solver = ps presolver = none printfreq = 1;
print x;
print c.dual;

quit;

The optimal solution is displayed in Output 8.3.1.

Example 8.4. Finding an Irreducible Infeasible Set � 855

Output 8.3.1. Optimal Solutions to the Two-Person Zero-Sum Game

The OPTMODEL Procedure

Solution Summary

Solver Primal Simplex
Objective Function f
Solution Status Optimal
Objective Value 0.25
Iterations 1

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

[1] x

1 0.00
2 0.00
3 0.25
4 0.00

[1] c.DUAL

1 0.00
2 0.25
3 0.00

The optimal solution x∗ = (0, 0, 0.25, 0) with an optimal value of 0.25. Therefore
the optimal strategy for player II is q∗ = x∗/0.25 = (0, 0, 1, 0). You can check
the optimal solution of the dual problem by using the constraint suffix “.dual”. So
y∗ = (0, 0.25, 0) and player I’s optimal strategy is (0, 1, 0). The solution is consistent
with our intuition from observation.

Example 8.4. Finding an Irreducible Infeasible Set

This example demonstrates the use of the experimental IIS= option to locate an ir-
reducible infeasible set. Suppose you want to solve a linear program that has the
following simple formulation:

min x1 + x2 + x3 (cost)

subject to x1 + x2 ≥ 10 (con1)

x1 + x3 ≤ 4 (con2)

4 ≤ x2 + x3 ≤ 5 (con3)

x1, x2 ≥ 0

0 ≤ x3 ≤ 3

856 � Chapter 8. The Linear Programming Solver

It is easy to verify that the following three constraints (or rows) and one variable (or
column) bound form an IIS for this problem:

x1 + x2 ≥ 10 (con1)

x1 + x3 ≤ 4 (con2)

x2 + x3 ≤ 5 (con3)

x3 ≥ 0

You can formulate the problem and call the LP solver by using the following state-
ments:

proc optmodel presolver=none;
/* declare variables */
var x{1..3} >=0;

/* upper bound on variable x[3] */
x[3].ub = 3;

/* objective function */
min obj = x[1] + x[2] + x[3];

/* constraints */
con c1: x[1] + x[2] >= 10;
con c2: x[1] + x[3] <= 4;
con c3: 4 <= x[2] + x[3] <= 5;

solve with lp / iis = on;

print x.status;
print c1.status c2.status c3.status;

The notes printed in the log appear in Output 8.4.1.

Example 8.4. Finding an Irreducible Infeasible Set � 857

Output 8.4.1. Finding an IIS: Log

NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 1 GE, 1 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The IIS option is called.
NOTE: Objective

Phase Iteration Value
1 1 5.000000
1 2 1.000000

NOTE: Processing rows.
1 3 0
1 4 0
1 6 1.000000

NOTE: Processing columns.
1 7 0

NOTE: The IIS option found an IIS set with 3 rows and 1 columns.

The output of the PRINT statements appears in Output 8.4.2. The value of the .status
suffix for the variables x[1] and x[2] is “I,” which indicates an infeasible problem.
The value I is not one of those assigned by the IIS= option to members of the IIS,
however, so the variable bounds for x[1] and x[2] are not in the IIS.

Output 8.4.2. Solution Summary, Variable Status, and Constraint Status

Solution Summary

Solver Dual Simplex
Objective Function obj
Solution Status Infeasible
Objective Value .
Iterations 7

[1] x.STATUS

1
2
3 I_L

c1.STATUS c2.STATUS c3.STATUS

I_L I_U I_U

The value of c3.status is I–U, which indicates that x2 + x3 ≤ 5 is an element of
the IIS. The original constraint is c3, a range constraint with a lower bound of 4. If
you choose to remove the constraint x2 +x3 ≤ 5, you can change the value of c3.ub
to the largest positive number representable in your operating environment. You can

858 � Chapter 8. The Linear Programming Solver

specify this number by using the MIN aggregation expression in the OPTMODEL
procedure. See “MIN Aggregation Expression” for details.

The modified LP problem is specified and solved by adding the following lines to the
original PROC OPTMODEL call.

/* relax upper bound on constraint c3 */
c3.ub = min{{}}0;

solve with lp / iis = on;

/* print solution */
print x;

Because one element of the IIS has been removed, the modified LP problem should
no longer contain the infeasible set. Due to the size of this problem, there should be
no additional irreducible infeasible sets.

The notes shown in Output 8.4.3 are printed to the log.

Output 8.4.3. Infeasibility Removed: Log

NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 2 GE, 0 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The IIS option is called.
NOTE: Objective

Phase Iteration Value
1 2 0

NOTE: The IIS option found this problem to be feasible.
NOTE: The OPTLP presolver value AUTOMATIC is applied.
NOTE: The OPTLP presolver removed 0 variables and 0 constraints.
NOTE: The OPTLP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 3 variables, 3 constraints, and 6 constraint

coefficients.
NOTE: The DUAL SIMPLEX solver is called.
NOTE: Objective

Phase Iteration Value
2 1 10.000000

NOTE: Optimal.
NOTE: Objective = 10.

The solution summary and primal solution are displayed in Output 8.4.4.

References � 859

Output 8.4.4. Infeasibility Removed: Solution

Solution Summary

Solver Dual Simplex
Objective Function obj
Solution Status Optimal
Objective Value 10
Iterations 1

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

[1] x

1 0
2 10
3 0

References
Andersen, E. D. and Andersen, K. D. (1995), “Presolving in Linear Programming,”

Mathematical Programming, 71(2), 221–245.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton, NJ: Princeton
University Press.

Forrest, J. J. and Goldfarb, D. (1992), “Steepest-Edge Simplex Algorithms for Linear
Programming,” Mathematical Programming, 5, 1–28.

Gondzio, J. (1997), “Presolve Analysis of Linear Programs prior to Applying an
Interior Point Method,” INFORMS Journal on Computing, 9 (1), 73–91.

Harris, P. M. J. (1973), “Pivot Selection Methods in the Devex LP Code,”
Mathematical Programming, 57, 341–374.

Maros, I. (2003), Computational Techniques of the Simplex Method, Kluwer
Academic.

860

Chapter 9
The Mixed Integer Linear

Programming Solver

Chapter Contents

OVERVIEW . 863

GETTING STARTED . 864

SYNTAX . 865
Functional Summary . 865
MILP Solver Options . 866

DETAILS . 873
The Branch-and-Bound Algorithm . 873
Controlling the Branch-and-Bound Algorithm 875
Presolve and Probing . 877
Cutting Planes . 878
Primal Heuristics . 879
Node Log . 880
Problem Statistics . 881
Data Magnitude and Variable Bounds . 882
Macro Variable –OROPTMODEL– . 883

EXAMPLES . 885
Example 9.1. Scheduling . 885
Example 9.2. Multicommodity Transshipment Problem with Fixed Charges 889
Example 9.3. Facility Location . 892
Example 9.4. Traveling Salesman Problem 902

REFERENCES . 909

862

Chapter 9
The Mixed Integer Linear

Programming Solver
Overview

The OPTMODEL procedure provides a framework for specifying and solving mixed
integer linear programs (MILPs). A standard mixed integer linear program has the
following formulation:

min cTx

subject to Ax {≥,=,≤} b (MILP)

l ≤ x ≤ u

xi ∈ Z ∀i ∈ S

where

x ∈ Rn is the vector of structural variables

A ∈ Qm×n is the matrix of technological coefficients

c ∈ Qn is the vector of objective function coefficients

b ∈ Qm is the vector of constraints right-hand sides (RHS)

l ∈ Qn is the vector of lower bounds on variables

u ∈ Qn is the vector of upper bounds on variables

S is a nonempty subset of the set {1 . . . , n} of indices

The MILP solver, available in the OPTMODEL procedure, implements an LP-based
branch-and-bound algorithm. This divide-and-conquer approach attempts to solve
the original problem by solving linear programming relaxations of a sequence of
smaller subproblems. The MILP solver also implements advanced techniques such
as presolving, generating cutting planes, and applying primal heuristics to improve
the efficiency of the overall algorithm.

The MILP solver provides various control options and solution strategies. In partic-
ular, you can enable, disable, or set levels for the advanced techniques previously
mentioned. It is also possible to input an incumbent solution; see the section “Warm
Start Option” on page 867 for details.

864 � Chapter 9. The Mixed Integer Linear Programming Solver

Getting Started
The following example illustrates how you can use the OPTMODEL procedure to
solve mixed integer linear programs. For more examples, see the section “Examples”
on page 885. Suppose you want to solve the following problem:

min 2x1 − 3x2 − 4x3

s.t. − 2x2 − 3x3 ≥ −5 (R1)

x1 + x2 + 2x3 ≤ 4 (R2)

x1 + 2x2 + 3x3 ≤ 7 (R3)

x1, x2, x3 ≥ 0

x1, x2, x3 ∈ Z

You can use the following code to call the OPTMODEL procedure for solving mixed
integer linear programs:

proc optmodel;
var x{1..3} >= 0 integer;

min f = 2*x[1] - 3*x[2] - 4*x[3];

con r1: -2*x[2] - 3*x[3] >= -5;
con r2: x[1] + x[2] + 2*x[3] <= 4;
con r3: x[1] + 2*x[2] + 3*x[3] <= 7;

solve with milp / presolver = automatic heuristics = automatic;
print x;

quit;

The PRESOLVER= and HEURISTICS= options specify the levels for presolving
and applying heuristics, respectively. In this example, each option is set to its default
value, AUTOMATIC, meaning that the solver determines the appropriate levels for
presolve and heuristics automatically.

The optimal value of x is shown in Figure 9.1.

The OPTMODEL Procedure

[1] x

1 0
2 1
3 1

Figure 9.1. Solution Output

The solution summary stored in the macro variable –OROPTMODEL– can be
viewed by issuing the following statement:

Functional Summary � 865

%put &_OROPTMODEL_;

This produces the output shown in Figure 9.2.

STATUS=OK SOLUTION_STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRI
MAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0 BEST_BOUND=. N
ODES=1 ITERATIONS=2 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

Figure 9.2. Macro Output

Syntax
The following statement is available in the OPTMODEL procedure:

SOLVE WITH MILP < / options > ;

Functional Summary

Table 9.1 summarizes the options available for the SOLVE WITH MILP statement,
classified by function.

Table 9.1. Options for the MILP Solver

Description Option
Presolve Option
type of presolve PRESOLVER=

Warm Start Option
primal solution input data set (warm start) PRIMALIN

Control Options
stopping criterion based on absolute objective gap ABSOBJGAP=

cutoff value for node removal CUTOFF=

emphasize feasibility or optimality EMPHASIS=

maximum allowed difference between an integer vari-
able’s value and an integer

INTTOL=

maximum number of nodes to be processed MAXNODES=

maximum number of solutions to be found MAXSOLS=

maximum solution time MAXTIME=

frequency of printing node log PRINTFREQ=

detail of solution progress printed in log PRINTLEVEL2=

probing level PROBE=

866 � Chapter 9. The Mixed Integer Linear Programming Solver

Table 9.1. (continued)

Description Option
stopping criterion based on relative objective gap RELOBJGAP=

scale the problem matrix SCALE=

stopping criterion based on target objective value TARGET=

use CPU/real time TIMETYPE=

Heuristics Option
primal heuristics level HEURISTICS=

Search Options
node selection strategy NODESEL=

use of variable priorities PRIORITY=

number of simplex iterations performed on each vari-
able in strong branching strategy

STRONGITER=

number of candidates for strong branching STRONGLEN=

rule for selecting branching variable VARSEL=

Cut Options
overall cut level ALLCUTS=

clique cut level CUTCLIQUE=

flow cover cut level CUTFLOWCOVER=

flow path cut level CUTFLOWPATH=

Gomory cut level CUTGOMORY=

generalized upper bound (GUB) cover cut level CUTGUB=

implied bounds cut level CUTIMPLIED=

knapsack cover cut level CUTKNAPSACK=

lift-and-project cut level CUTLAP=

mixed integer rounding (MIR) cut level CUTMIR=

row multiplier factor for cuts CUTSFACTOR=

MILP Solver Options
This section describes the options recognize by the MILP solver in PROC
OPTMODEL. These options can be specified after a forward slash (/) in the SOLVE
statement, provided that the MILP solver is explicitly specified using a WITH clause.
For example, the following line could appear in PROC OPTMODEL code:

solve with milp / allcuts=aggressive maxnodes=10000 primalin;

Presolve Option

PRESOLVER=option
specifies a presolve option or its corresponding value num, as listed in Table 9.2.

MILP Solver Options � 867

Table 9.2. Values for PRESOLVER= Option

Number Option Description

–1 AUTOMATIC Apply the default level of presolve processing.

0 NONE Disable presolver.

1 BASIC Perform minimal presolve processing.

2 MODERATE Apply a higher level of presolve processing.

3 AGGRESSIVE Apply the highest level of presolve processing.

The default value is AUTOMATIC.

Warm Start Option

PRIMALIN
enables you to input an integer feasible solution in PROC OPTMODEL before invok-
ing the MILP solver. Adding the PRIMALIN option to the SOLVE statement requests
that the MILP solver use the current variable values as a starting integer feasible so-
lution (warm start). If the MILP solver finds that the input solution is valid, then the
input solution provides an incumbent solution and a bound for the branch-and-bound
algorithm. If the solution is not valid, then the PRIMALIN data are ignored. When
it is difficult to find a good integer feasible solution for a problem, warm start can
reduce solution time significantly.

Control Options

ABSOBJGAP=num
specifies a stopping criterion. When the absolute difference between the best integer
objective and the objective of the best node remaining falls below the value of num,
the solver stops. The value of num can be any positive number; the default value is
1E−6.

CUTOFF=num
cuts off any nodes in a minimization (maximization) problem with an objective value
above (below) num. The value of num can be any number; the default value is the
positive (negative) number that has the largest absolute value representable in your
operating environment.

EMPHASIS=option
specifies a search emphasis option or its corresponding value num as listed in Table
9.3.

Table 9.3. Values for EMPHASIS= Option

Number Option Description

0 BALANCE Perform a balanced search.

1 OPTIMAL Emphasize optimality over feasibility.

868 � Chapter 9. The Mixed Integer Linear Programming Solver

Table 9.3. (continued)

Number Option Description

2 FEASIBLE Emphasize feasibility over optimality.

The default value is BALANCE.

INTTOL=num
specifies the amount by which an integer variable value can differ from an integer and
still be considered integer feasible. The value of num can be any number between 0.0
and 1.0; the default value is 1E−5. The MILP solver attempts to find an optimal solu-
tion with integer infeasibility less than num. If you assign a value smaller than 1E−10
to num and the best solution found by the solver has integer infeasibility between num
and 1E−10, then the solver terminates with a solution status of OPTIMAL–COND
(see the section “Macro Variable –OROPTMODEL– ” on page 883).

MAXNODES=num
specifies the maximum number of branch-and-bound nodes to be processed. The
value of num can be any nonnegative integer up to the largest four-byte signed integer,
which is 231 − 1. The default value of num is 231 − 1.

MAXSOLS=num
specifies a stopping criterion. If num solutions have been found, then the solver stops.
The value of num can be any positive integer up to the largest four-byte signed integer,
which is 231 − 1. The default value of num is 231 − 1.

MAXTIME=num
specifies the maximum time allowed for the MILP solver to find a solution. The type
of time, either CPU time or real time, is determined by the value of the TIMETYPE=
option. The value of num can be any positive number; the default value is the positive
number that has the largest absolute value representable in your operating environ-
ment.

PRINTFREQ=num
specifies how often information is printed in the node log. The value of num can be
any nonnegative number up to the largest four-byte signed integer, which is 231 − 1.
The default value of num is 100. If num is set to 0, then the node log is disabled.
If num is positive, then an entry is made in the node log at the first node, at the last
node, and at intervals dictated by the value of num. An entry is also made each time
a better integer solution is found.

PRINTLEVEL2=option
controls the amount of information displayed in the SAS log by the MILP solver,
from a short description of presolve information and summary to details at each node.
Table 9.4 describes the valid values for this option.

MILP Solver Options � 869

Table 9.4. Values for PRINTLEVEL2= Option

Number Option Description

0 NONE Turn off all solver-related messages to SAS log.

1 BASIC Display a solver summary after stopping.

2 MODERATE Print a solver summary and a node log by using
the interval dictated by the PRINTFREQ= option.

3 AGGRESSIVE Print a detailed solver summary and a node log by
using the interval dictated by the PRINTFREQ=
option.

The default value is MODERATE.

PROBE=option
specifies a probing option or its corresponding value num, as listed in the following
table:

Table 9.5. Values for PROBE= Option

Number Option Description

-1 AUTOMATIC Probing strategy determined by the MILP solver.

0 NONE Disable probing.

1 MODERATE Use probing moderately.

2 AGGRESSIVE Use probing aggressively.

The default value is AUTOMATIC.

RELOBJGAP=num
specifies a stopping criterion based on the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound). The relative objective gap is equal
to

| BestInteger− BestBound | / (1E−10 + | BestBound |)

When this value becomes smaller than the specified gap size num, the solver stops.
The value of num can be any number between 0 and 1; the default value is 1E−4.

SCALE=option
indicates whether or not to scale the problem matrix. SCALE= can take either of the
values AUTOMATIC (–1) and NONE (0). SCALE=AUTOMATIC scales the matrix
as determined by the MILP solver; SCALE=NONE disables scaling. The default
value is AUTOMATIC.

TARGET=num
specifies a stopping criterion for minimization (maximization) problems. If the best
integer objective is better than or equal to num, the solver stops. The value of num

870 � Chapter 9. The Mixed Integer Linear Programming Solver

can be any number; the default value is the negative (positive) number that has the
largest absolute value representable in your operating environment.

TIMETYPE=CPU(0) | REAL(1)
specifies the measurement of time used by the MILP solver. Numeric values of time
can be specified in the MAXTIME= option or reported in the –OROPTMODEL–
macro variable. The value of the TIMETYPE= option determines whether CPU time
or real time is used. The default value of this option is CPU.

Heuristics Option

HEURISTICS=option
enables the user to control the level of primal heuristics applied by the MILP solver.
This level determines how frequently primal heuristics are applied during the branch-
and-bound tree search. It also affects the maximum number of iterations allowed in
iterative heuristics. Some computationally expensive heuristics might be disabled by
the solver at less aggressive levels. The values of option and the corresponding values
of num are listed in Table 9.6.

Table 9.6. Values for HEURISTICS= Option

Number Option Description

–1 AUTOMATIC Apply default level of heuristics, similar to
MODERATE.

0 NONE Disable all primal heuristics.

1 BASIC Apply basic primal heuristics at low frequency.

2 MODERATE Apply most primal heuristics at moderate fre-
quency.

3 AGGRESSIVE Apply all primal heuristics at high frequency.

The default value is AUTOMATIC. For details about primal heuristics, see the section
“Primal Heuristics” on page 879.

Search Options

NODESEL=option
specifies the node selection strategy option or its corresponding value num as listed
in Table 9.7.

Table 9.7. Values for NODESEL= Option

Number Option Description

–1 AUTOMATIC Use automatic node selection.

0 BESTBOUND Choose the node with the best relaxed objective
(best-bound-first strategy).

MILP Solver Options � 871

Table 9.7. (continued)

Number Option Description

1 BESTESTIMATE Choose the node with the best estimate of the in-
teger objective value (best-estimate-first strategy).

2 DEPTH Choose the most recently created node (depth-
first strategy).

The default value is AUTOMATIC. For details about node selection, see the section
“Node Selection” on page 875.

PRIORITY=0 | 1
indicates whether or not to use specified branching priorities for integer variables.
PRIORITY=0 ignores variable priorities; PRIORITY=1 uses priorities when they
exist. The default value is 1. See the section “Branching Priorities” on page 877 for
details.

STRONGITER=num
specifies the number of simplex iterations performed for each variable in the candi-
date list when the strong branching variable selection strategy is used. The value of
num can be any positive number; the default value is automatically calculated by the
MILP solver.

STRONGLEN=num
specifies the number of candidates used when the strong branching variable selection
strategy is performed. The value of num can be any positive integer up to the largest
four-byte signed integer, which is 231 − 1. The default value of num is 10.

VARSEL=option
specifies the rule for selecting the branching variable. The values of option and the
corresponding values of num are listed in Table 9.8.

Table 9.8. Values for VARSEL= Option

Number Option Description

–1 AUTOMATIC Use automatic branching variable selection.

0 MAXINFEAS Choose the variable with maximum infeasibility.

1 MININFEAS Choose the variable with minimum infeasibility.

2 PSEUDO Choose a branching variable based on pseudocost.

3 STRONG Use strong branching variable selection strategy.

The default value is AUTOMATIC. For details about variable selection, see the sec-
tion “Variable Selection” on page 876.

872 � Chapter 9. The Mixed Integer Linear Programming Solver

Cut Options

Table 9.9 describes the option and num values for the cut options in the OPTMODEL
procedure.

Table 9.9. Values for Individual Cut Options

Number Option Description

–1 AUTOMATIC Generate cutting planes based on a strategy deter-
mined by the MILP solver.

0 NONE Disable generation of cutting planes.

1 MODERATE Use a moderate cut strategy.

2 AGGRESSIVE Use an aggressive cut strategy.

You can use the ALLCUTS= option to set all cut types to the same level. You
can override the ALLCUTS= value by using the options corresponding to par-
ticular cut types. For example, if you want the MILP solver to generate only
Gomory cuts, specify ALLCUTS=NONE and CUTGOMORY=AUTOMATIC. If
you want to generate all cuts aggressively but generate no lift-and-project cuts, set
ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=option
provides a shorthand way of setting all the cuts-related options in one setting.
In other words, ALLCUTS=num is equivalent to setting each of the individual
cuts parameters to the same value num. Thus, ALLCUTS=–1 has the effect
of setting CUTCLIQUE=–1, CUTFLOWCOVER=–1, CUTFLOWPATH=–1, . . . ,
CUTLAP=–1, and CUTMIR=–1. Table 9.9 lists the values that can be assigned
to option and num. In addition, you can override levels for individual cuts with
the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=,
CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, and CUTMIR= op-
tions. If the ALLCUTS= option is not specified, all the cuts-related options are either
at their individually specified values (if the corresponding option is specified) or at
their default values (if that option is not specified).

CUTCLIQUE=option
specifies the level of clique cuts generated by the MILP solver. Table 9.9 lists the
values that can be assigned to option and num. The CUTCLIQUE= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTFLOWCOVER=option
specifies the level of flow cover cuts generated by the MILP solver. Table 9.9 lists
the values that can be assigned to option and num. The CUTFLOWCOVER= option
overrides the ALLCUTS= option. The default value is AUTOMATIC.

CUTFLOWPATH=option
specifies the level of flow path cuts generated by the MILP solver. Table 9.9 lists
the values that can be assigned to option and num. The CUTFLOWPATH= option
overrides the ALLCUTS= option. The default value is AUTOMATIC.

The Branch-and-Bound Algorithm � 873

CUTGOMORY=option
specifies the level of Gomory cuts generated by the MILP solver. Table 9.9 lists the
values that can be assigned to option and num. The CUTGOMORY= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTGUB=option
specifies the level of generalized upper bound (GUB) cover cuts generated by the
MILP solver. Table 9.9 lists the values that can be assigned to option and num.
The CUTGUB= option overrides the ALLCUTS= option. The default value is
AUTOMATIC.

CUTIMPLIED=option
specifies the level of implied bound cuts generated by the MILP solver. Table 9.9
lists the values that can be assigned to option and num. The CUTIMPLIED= option
overrides the ALLCUTS= option. The default value is AUTOMATIC.

CUTKNAPSACK=option
specifies the level of knapsack cover cuts generated by the MILP solver. Table 9.9
lists the values that can be assigned to option and num. The CUTKNAPSACK=
option overrides the ALLCUTS= option. The default value is AUTOMATIC.

CUTLAP=option
specifies the level of lift-and-project (LAP) cuts generated by the MILP solver. Table
9.9 lists the values that can be assigned to option and num. The CUTLAP= option
overrides the ALLCUTS= option. The default value is NONE.

CUTMIR=option
specifies the level of mixed integer rounding (MIR) cuts generated by the MILP
solver. Table 9.9 lists the values that can be assigned to option and num.
The CUTMIR= option overrides the ALLCUTS= option. The default value is
AUTOMATIC.

CUTSFACTOR=num
specifies a row multiplier factor for cuts. The number of cuts added is limited to num
times the original number of rows. The value of num can be any nonnegative number
less than or equal to 100; the default value is 3.0.

Details

The Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an ef-
fective approach to solving mixed integer linear programs. The following discussion
outlines the approach and explains how to enhance its progress by using several ad-
vanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing
the search space and generating a sequence of subproblems. The search space of a
mixed integer linear program can be represented by a tree. Each node in the tree is
identified with a subproblem derived from previous subproblems on the path leading
to the root of the tree. The subproblem (MILP0) associated with the root is identical

874 � Chapter 9. The Mixed Integer Linear Programming Solver

to the original problem, which we will call (MILP), given in the section “Overview”
on page 863.

The linear programming relaxation (LP0) of (MILP0) can be written as

min cTx

subject to Ax {≥,=,≤} b

l ≤ x ≤ u

The branch-and-bound algorithm generates subproblems along the nodes of the tree
by using the following scheme. Consider x̄0, the optimal solution to (LP0), which
is usually obtained using the dual simplex algorithm. If x̄0

i is integer for all i ∈
S, then x̄0 is an optimal solution to (MILP). Suppose that for some i ∈ S, x̄0

i is
nonintegral. In that case the algorithm defines two new subproblems (MILP1) and
(MILP2), descendants of the parent subproblem (MILP0). The subproblem (MILP1)
is identical to (MILP0) except for the additional constraint

xi ≤ bx̄0
i c

and the subproblem (MILP2) is identical to (MILP0) except for the additional con-
straint

xi ≥ dx̄0
i e

The notation byc represents the largest integer less than or equal to y, and the nota-
tion dye represents the smallest integer greater than or equal to y. The two preceding
constraints can be handled by modifying the bounds of the variable xi rather than by
explicitly adding the constraints to the constraint matrix. The two new subproblems
do not have x̄0 as a feasible solution, but the integer solution to (MILP) must satisfy
one of the preceding constraints. The two subproblems thus defined are called ac-
tive nodes in the branch-and-bound tree, and the variable xi is called the branching
variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes
and attempts to solve the linear programming relaxation of that subproblem. The
relaxation might be infeasible, in which case the subproblem is dropped (fathomed).
If the subproblem can be solved and the solution is integer feasible (that is, xi is
an integer for all i ∈ S), then its objective value provides an upper bound for the
objective value in the minimization problem (MILP); if the solution is not integer
feasible, then it defines two new subproblems. Branching continues in this manner
until there are no active nodes. At this point the best integer solution found is an
optimal solution for (MILP). If no integer solution has been found, then (MILP)
is integer infeasible. You can specify other criteria to stop the branch-and-bound
algorithm before it processes all the active nodes; see the section “Controlling the
Branch-and-Bound Algorithm” on page 875 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active
nodes. Since the objective value of an optimal solution cannot be greater than an

Controlling the Branch-and-Bound Algorithm � 875

upper bound, active nodes with lower bounds higher than an existing upper bound can
be safely deleted. In particular, if z is the objective value of the current best integer
solution, then any active subproblems whose relaxed objective value is greater than
or equal to z can be discarded.

It is important to realize that mixed integer linear programs are NP-hard. Roughly
speaking, this means that the effort required to solve a mixed integer linear program
grows exponentially with the size of the problem. For example, a problem with 10
binary variables can in the worst case generate 210 = 1, 024 nodes in the branch-
and-bound tree. A problem with 20 binary variables can in the worst case generate
220 = 1, 048, 576 nodes in the branch-and-bound tree. Although it is unlikely that
the branch-and-bound algorithm will have to generate every single possible node, the
need to explore even a small fraction of the potential number of nodes for a large
problem can be resource intensive.

A number of techniques can speed up the search progress of the branch-and-bound
algorithm. Heuristics are used to find feasible solutions, which can improve the up-
per bounds on solutions of mixed integer linear programs. Cutting planes can reduce
the search space and thus improve the lower bounds on solutions of mixed integer
linear programs. When using cutting planes, the branch-and-bound algorithm is also
called the branch-and-cut algorithm. Preprocessing can reduce problem size and im-
prove problem solvability. The MILP solver in PROC OPTMODEL employs various
heuristics, cutting planes, preprocessing, and other techniques, which you can control
through corresponding options.

Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound
search (see Linderoth and Savelsbergh 1998, Achterberg, Koch, and Martin 2005).
The MILP solver in PROC OPTMODEL implements the most widely used strategies
and provides several options that enable you to direct the choice of the next active
node and of the branching variable. In the discussion that follows, let (LPk) be the
linear programming relaxation of subproblem (MILPk). Also, let

fi(k) = x̄k
i − bx̄k

i c

where x̄k is the optimal solution to the relaxation problem (LPk) solved at node k.

Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The
valid keywords for this option are AUTOMATIC, BESTBOUND, BESTESTIMATE,
and DEPTH. The following list describes the strategy associated with each keyword.

AUTOMATIC enables the MILP solver to choose the best node selection strat-
egy based on problem characteristics and search progress. This
is the default setting.

876 � Chapter 9. The Mixed Integer Linear Programming Solver

BESTBOUND chooses the node with the smallest (or largest, in the case of
a maximization problem) relaxed objective value. The best-
bound strategy tends to reduce the number of nodes to be pro-
cessed and can improve lower bounds quickly. If there is no
good upper bound, however, the number of active nodes can be
large. This can result in the solver running out of memory.

BESTESTIMATE chooses the node with the smallest (or largest, in the case of a
maximization problem) objective value of the estimated integer
solution. Besides improving lower bounds, the best-estimate
strategy also attempts to process nodes that can yield good fea-
sible solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first
search is effective in locating feasible solutions, since such so-
lutions are usually deep in the search tree. Compared to the
costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The
number of active nodes is generally small, but it is possible that
the depth-first search will remain in a portion of the search tree
with no good integer solutions. This occurrence is computa-
tionally expensive.

Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable.
The valid keywords for this option are AUTOMATIC, MAXINFEAS, MININFEAS,
PSEUDO, and STRONG. The following list describes the action taken in each case
when x̄k, a relaxed optimal solution of (MILPk), is used to define two active sub-
problems. In the following list, “INTTOL” refers to the value assigned using the
INTTOL= option. For details about the INTTOL= option, see the section “Control
Options” on page 867.

AUTOMATIC enables the MILP solver to choose the best variable selection strat-
egy based on problem characteristics and search progress. This is
the default setting.

MAXINFEAS chooses as the branching variable the variable xi such that i maxi-
mizes

{min{fi(k), 1− fi(k)} | i ∈ S and

INTTOL ≤ fi(k) ≤ 1− INTTOL}

MININFEAS chooses as the branching variable the variable xi such that i mini-
mizes

{min{fi(k), 1− fi(k)} | i ∈ S and

INTTOL ≤ fi(k) ≤ 1− INTTOL}

Presolve and Probing � 877

PSEUDO chooses as the branching variable the variable xi such that i maxi-
mizes the weighted up and down pseudocosts. Pseudocost branch-
ing attempts to branch on significant variables first, quickly im-
proving lower bounds. Pseudocost branching estimates signif-
icance based on historical information; however, this approach
might not be accurate for future search.

STRONG chooses as the branching variable the variable xi such that i max-
imizes the estimated improvement in the objective value. Strong
branching first generates a list of candidates, then branches on each
candidate and records the improvement in the objective value. The
candidate with the largest improvement is chosen as the branch-
ing variable. Strong branching can be effective for combinatorial
problems, but it is usually computationally expensive.

Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching
on variables in a specific order. You can accomplish this in PROC OPTMODEL by
attaching branching priorities to the integer variables in your model by using the
.priority suffix. More information about this suffix is available in the section “Integer
Variable Suffixes” in Chapter 6. For an example in which branching priorities are
used, see Example 9.3 on page 892.

Presolve and Probing

The MILP solver in PROC OPTMODEL includes a variety of presolve techniques to
reduce problem size, improve numerical stability, and detect infeasibility or unbound-
edness (Andersen and Andersen 1995; Gondzio 1997). During presolve, redundant
constraints and variables are identified and removed. Presolve can further reduce
the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the
constraint matrix. Presolve might also modify the constraint coefficients to tighten
the formulation of the problem.

In most cases, using presolve is very helpful in reducing solution times. You can
enable presolve at different levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to 0 or 1, then explores
the logical consequences (Savelsbergh 1994). Probing can expedite the solution of a
difficult problem by fixing variables and improving the model. However, probing is
often computationally expensive and can significantly increase the solution time in
some cases. You can enable probing at different levels by specifying the PROBE=
option.

878 � Chapter 9. The Mixed Integer Linear Programming Solver

Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in
n-space can be written as a finite number of half-spaces (equivalently, inequalities).
In our notation, this polyhedron is defined by the set Q = {x ∈ Rn | Ax ≤ b, l ≤
x ≤ u}. After we add the restriction that some variables must be integral, the set of
feasible solutions, F = {x ∈ Q | xi ∈ Z ∀i ∈ S}, no longer forms a polyhedron.

The convex hull of a set X is the minimal convex set containing X . In solving a
mixed integer linear program, in order to take advantage of LP-based algorithms we
want to find the convex hull, conv(F), of F . If we can find conv(F) and describe it
compactly, then we can solve a mixed integer linear program with a linear program-
ming solver. This is generally very difficult, so we must be satisfied with finding
an approximation. Typically, the better the approximation, the more efficiently the
LP-based branch-and-bound algorithm can perform.

As described in the section “The Branch-and-Bound Algorithm” on page 873, the
branch-and-bound algorithm begins by solving the linear programming relaxation
over the polyhedron Q. Clearly, Q contains the convex hull of the feasible region of
the original integer program; that is, conv(F) ⊆ Q.

Cutting plane techniques are used to tighten the linear relaxation to better approxi-
mate conv(F). Assume we are given a solution x̄ to some intermediate linear relax-
ation during the branch-and-bound algorithm. A cut, or valid inequality (πx ≤ π0),
is some half-space with the following characteristics:

• The half-space contains conv(F); that is, every integer feasible solution is fea-
sible for the cut (πx ≤ π0,∀x ∈ F).

• The half-space does not contain the current solution x̄; that is, x̄ is not feasible
for the cut (πx̄ > π0).

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in
their work on the traveling salesman problem. The two major classifications of cut-
ting planes are generic cuts and structured cuts. The first class of cuts is based solely
on algebraic arguments and can be applied to any relaxation of any integer program.
The second class of cuts is specific to certain structures that can be found in some
relaxations of the mixed integer linear program. These structures are automatically
discovered during the cut initialization phase of the MILP solver. Table 9.10 lists the
various types of cutting planes that are built into the MILP solver. Included in each
type are algorithms for numerous variations based on different relaxations and lifting
techniques. For a survey of cutting plane techniques for mixed integer programming,
see Marchand et al. (1999). For a survey of lifting techniques, see Atamturk (2004).

Primal Heuristics � 879

Table 9.10. Cutting Planes in the MILP Solver

Generic Cutting Planes Structured Cutting Planes

Gomory Mixed Integer Cliques

Lift-and-Project Flow Cover

Mixed Integer Rounding Flow Path

Generalized Upper Bound Cover

Implied Bound

Knapsack Cover

You can set levels for individual cuts by using the CUTCLIQUE=,
CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=,
CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, and CUTMIR= options.

The valid levels for these options are listed in Table 9.9.

The cut level determines the internal strategy used by the MILP solver for generating
the cutting planes. The strategy consists of several factors, including how frequently
the cut search is called, the number of cuts allowed, and the aggressiveness of the
search algorithms.

Sophisticated cutting planes, such as those included in the MILP solver, can take a
great deal of CPU time. Typically the additional tightening of the relaxation helps
to speed up the overall process, because it provides better bounds for the branch-
and-bound tree and helps guide the LP solver toward integer solutions. In rare cases
shutting off cutting planes completely might lead to faster overall run times.

The default settings of the MILP solver have been tuned to work well for most in-
stances. However, problem-specific expertise might suggest adjusting one or more of
the strategies. These options give you that flexibility.

Primal Heuristics
Primal heuristics, an important component of the MILP solver in PROC
OPTMODEL, are applied during the branch-and-bound algorithm. They are
used to find integer feasible solutions early in the search tree, thereby improving the
upper bound for a minimization problem. Primal heuristics play a role complemen-
tary to cutting planes in reducing the gap between the upper and lower bounds, thus
reducing the size of the branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following
areas:

• finding a good upper bound early in the tree search; this can lead to earlier
fathoming, resulting in fewer subproblems to be processed.

880 � Chapter 9. The Mixed Integer Linear Programming Solver

• locating a reasonably good feasible solution when that is sufficient; sometimes
a good feasible solution is the best the solver can produce within certain time
or resource limits.

• providing upper bounds for some bound-tightening techniques.

The MILP solver implements several heuristic methodologies. Some algorithms,
such as rounding and iterative rounding (diving) heuristics, attempt to construct an
integer feasible solution by using fractional solutions to the continuous relaxation at
each node of the branch-and-cut tree. Other algorithms start with an incumbent so-
lution and attempt to find a better solution within a neighborhood of the current best
solution.

The HEURISTICS= option enables you to control the level of primal heuristics ap-
plied by the MILP solver. This level determines how frequently primal heuristics are
applied during the tree search. Some expensive heuristics might be disabled by the
solver at less aggressive levels. Setting the HEURISTICS= option to a lower level
also reduces the maximum number of iterations allowed in iterative heuristics.

The valid values for this option are listed in Table 9.6.

Node Log

The following information about the status of the branch-and-bound algorithm is
printed in the node log:

Node indicates the sequence number of the current node in the search
tree.

Active indicates the current number of active nodes in the branch-and-
bound tree.

Sols indicates the number of feasible solutions found so far.

BestInteger indicates the best upper bound (assuming minimization) found
so far.

BestBound indicates the best lower bound (assuming minimization) found
so far.

Gap indicates the relative gap between BestInteger and BestBound,
displayed as a percentage. If the relative gap is larger than 1000,
then the absolute gap is displayed. If there are no active nodes
remaining, the value of Gap is 0.

Time indicates the elapsed real time.

The PRINTFREQ= option can be used to control the amount of information printed
in the node log. By default a new entry is included in the log at the first node, at
the last node, and at 100-node intervals. A new entry is also included each time a
better integer solution is found. The PRINTFREQ= option enables you to change the
interval between entries in the node log. Figure 9.3 shows a sample node log.

Problem Statistics � 881

NOTE: The problem has 10 variables (0 free, 0 fixed).
NOTE: The problem has 0 binary and 10 integer variables.
NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 20 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.
NOTE: The OPTMILP presolver removed 0 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint

coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 0 88.0955497 100.00% 0
0 1 2 83.0000000 88.0626822 5.75% 0
0 1 2 83.0000000 87.9665871 5.65% 0
0 1 2 83.0000000 87.9660825 5.65% 0
0 1 3 85.0000000 87.9331742 3.34% 0
0 1 3 85.0000000 87.9140538 3.31% 0

NOTE: OPTMILP added 3 cuts with 30 cut coefficients at the root.
5 2 4 86.0000000 87.6821242 1.92% 0
8 0 5 87.0000000 . 0.00% 0

NOTE: Optimal.
NOTE: Objective = 87.

Figure 9.3. Sample Node Log

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models.
Information about data magnitude provides a simple gauge to determine how well
a model is formulated. For example, a model whose constraint matrix contains
one very large entry (on the order of 109) can cause difficulty when the remaining
entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL
procedure causes the ODS table “ProblemStatistics” to be generated when the MILP
solver is called. This table provides basic data magnitude information that enables
you to improve the formulation of your models.

The example output in Figure 9.4 demonstrates the contents of the ODS table
“ProblemStatistics.”

882 � Chapter 9. The Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 8
Maximum Constraint Matrix Coefficient 3
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.875

Number of Objective Nonzeros 3
Maximum Objective Coefficient 4
Minimum Objective Coefficient 2
Average Objective Coefficient 3

Number of RHS Nonzeros 3
Maximum RHS 7
Minimum RHS 4
Average RHS 5.3333333333

Maximum Number of Nonzeros per Column 3
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 3
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Figure 9.4. ODS Table ProblemStatistics

The variable names in the ODS table “ProblemStatistics” are Label1, cValue1, and
nValue1.

Data Magnitude and Variable Bounds
Extremely large numerical values might cause computational difficulties for the
MILP solver, but the occurrence of such difficulties is hard to predict. For this rea-
son, the MILP solver issues a data error message whenever it detects model data that
exceeds a specific threshold number. The value of the threshold number depends on
your operating environment and is printed in the log as part of the data error message.

The following conditions produce a data error:

• The absolute value of an objective coefficient, constraint coefficient, or range
(difference between the upper and lower bounds on a constraint) is greater than
the threshold number.

• A variable’s lower bound, a ≥ or = constraint’s right-hand side, or a range
constraint’s lower bound is greater than the threshold number.

• A variable’s upper bound, a ≤ or = constraint’s right-hand side, or a range
constraint’s upper bound is smaller than the negative threshold number.

If a variable’s upper bound is larger than 1E20, then the MILP solver treats the bound
as ∞. Similarly, if a variable’s lower bound is smaller than −1E20, then the MILP
solver treats the bound as −∞.

Macro Variable –OROPTMODEL– � 883

Macro Variable –OROPTMODEL–
The OPTMODEL procedure defines a macro variable named –OROPTMODEL–.
This variable contains a character string that indicates the status of the solver upon
termination. The contents of the macro variable depend on which solver was in-
voked. For the MILP solver, the various terms of –OROPTMODEL– are interpreted
as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK solver terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the solver

IO–ERROR problem in reading or writing data

SEMANTIC–ERROR evaluation error, such as an invalid operand type

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

OPTIMAL–AGAP optimal solution within absolute gap specified
using ABSOBJGAP= option

OPTIMAL–RGAP optimal solution within relative gap specified
using RELOBJGAP= option

OPTIMAL–COND solution is optimal, but some infeasibilities
(primal, bound, or integer) exceed tolerances
due to scaling or choice of small INTTOL=
value

TARGET solution not worse than target specified using
TARGET= option

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

BAD–PROBLEM–TYPE problem type is unsupported by solver

SOLUTION–LIM solver reached maximum number of solutions
specified using option MAXSOLS=

NODE–LIM–SOL solver reached maximum number of nodes
specified using MAXNODES= option and
found a solution

884 � Chapter 9. The Mixed Integer Linear Programming Solver

NODE–LIM–NOSOL solver reached maximum number of nodes
specified using MAXNODES= option and did
not find a solution

TIME–LIM–SOL solver reached the execution time limit speci-
fied using MAXTIME= option and found a so-
lution

TIME–LIM–NOSOL solver reached the execution time limit speci-
fied using MAXTIME= option and did not find
a solution

ABORT–SOL solver was stopped by user but still found a so-
lution

ABORT–NOSOL solver was stopped by user and did not find a
solution

OUTMEM–SOL solver ran out of memory but still found a so-
lution

OUTMEM–NOSOL solver ran out of memory and either did not
find a solution or failed to output solution due
to insufficient memory

FAIL–SOL solver stopped due to errors but still found a
solution

FAIL–NOSOL solver stopped due to errors and did not find a
solution

OBJECTIVE
indicates the objective value obtained by the solver at termination.

RELATIVE–GAP
specifies the relative gap between the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound) upon termination of the MILP
solver. The relative gap is equal to

| BestInteger− BestBound | / (1E−10 + | BestBound |)

ABSOLUTE–GAP
specifies the absolute gap between the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound) upon termination of the MILP
solver. The absolute gap is equal to | BestInteger− BestBound |.

PRIMAL–INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND–INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower and/or upper
bounds.

INTEGER–INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables re-
turned by the MILP solver.

Example 9.1. Scheduling � 885

BEST–BOUND
specifies the best LP objective value of all unprocessed nodes on the branch-and-
bound tree at the end of execution. A missing value indicates that the MILP solver
has processed either all or none of the nodes on the branch-and-bound tree.

NODES
specifies the number of nodes enumerated by the MILP solver by using the branch-
and-bound algorithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

PRESOLVE–TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION–TIME
indicates the time (in seconds) taken to solve the problem.

Note: The time reported in PRESOLVE–TIME and SOLUTION–TIME is either
CPU time (default) or real time. The type is determined by the TIMETYPE= option.

Examples
This section contains examples intended to illustrate the options and syntax of the
MILP solver in PROC OPTMODEL. Example 9.1 illustrates the use of PROC
OPTMODEL to solve an employee scheduling problem. Example 9.2 discusses a
multicommodity transshipment problem with fixed charges. Example 9.3 demon-
strates how to warm start the MILP solver. Example 9.4 shows the solution of an
instance of the traveling salesman problem in PROC OPTMODEL. Other examples
of mixed integer linear programs, along with example SAS code, are given in Chapter
16.

Example 9.1. Scheduling

The following application has been adapted from Example 3.13.

Scheduling is a common application area where mixed integer linear programming
techniques are used. In this example, you have eight one-hour time slots in each of
five days. You have to assign four employees to these time slots so that each slot is
covered on every day. You allow the employees to specify preference data for each
slot on each day. In addition, the following constraints must be satisfied:

• Each employee has some time slots for which he or she is unavailable
(OneEmpPerSlot).

• Each employee must have either time slot 4 or time slot 5 off for lunch
(EmpMustHaveLunch).

• Each employee can work at most two time slots in a row (AtMost2ConSlots).

• Each employee can work only a specified number of hours in the week
(WeeklyHoursLimit).

886 � Chapter 9. The Mixed Integer Linear Programming Solver

To formulate this problem, let i denote a person, j denote a time slot, and k denote
a day. Then, let xijk = 1 if person i is assigned to time slot j on day k, and 0
otherwise. Let pijk denote the preference of person i for slot j on day k. Let hi

denote the number of hours in a week that person i will work. The formulation of
this problem follows:

max
∑
ijk

pijkxijk

s.t.
∑

i

xijk = 1 ∀j, k (OneEmpPerSlot)

xi4k + xi5k ≤ 1 ∀i, k (EmpMustHaveLunch)

xi,`,k + xi,`+1,k + xi,`+2,k ≤ 2 ∀i, k, and l ≤ 6 (AtMost2ConSlots)∑
jk

xijk ≤ hi ∀i (WeeklyHoursLimit)

xijk = 0 ∀i, j, k s.t. pijk > 0

xijk ∈ {0, 1} ∀i, j, k

The following data set preferences gives the preferences for each individual, time
slot, and day. A 10 represents the most desirable time slot, and a 1 represents the least
desirable time slot. In addition, a 0 indicates that the time slot is not available. The
data set maxhours gives the maximum number of hours each employee can work
per week.

data preferences;
input name $ slot mon tue wed thu fri;
datalines;

marc 1 10 10 10 10 10
marc 2 9 9 9 9 9
marc 3 8 8 8 8 8
marc 4 1 1 1 1 1
marc 5 1 1 1 1 1
marc 6 1 1 1 1 1
marc 7 1 1 1 1 1
marc 8 1 1 1 1 1
mike 1 10 9 8 7 6
mike 2 10 9 8 7 6
mike 3 10 9 8 7 6
mike 4 10 3 3 3 3
mike 5 1 1 1 1 1
mike 6 1 2 3 4 5
mike 7 1 2 3 4 5
mike 8 1 2 3 4 5
bill 1 10 10 10 10 10
bill 2 9 9 9 9 9
bill 3 8 8 8 8 8
bill 4 0 0 0 0 0

Example 9.1. Scheduling � 887

bill 5 1 1 1 1 1
bill 6 1 1 1 1 1
bill 7 1 1 1 1 1
bill 8 1 1 1 1 1
bob 1 10 9 8 7 6
bob 2 10 9 8 7 6
bob 3 10 9 8 7 6
bob 4 10 3 3 3 3
bob 5 1 1 1 1 1
bob 6 1 2 3 4 5
bob 7 1 2 3 4 5
bob 8 1 2 3 4 5
;

data maxhours;
input name $ hour;
datalines;

marc 20
mike 20
bill 20
bob 20
;

Using PROC OPTMODEL, you can model and solve the scheduling problem as fol-
lows.

proc optmodel presolver=none;

/* read in the preferences and max hours from the data sets */
set <string,num> DailyEmployeeSlots;
set <string> Employees;

set <num> TimeSlots = (setof {<name,slot> in DailyEmployeeSlots} slot);
set <string> WeekDays = {"mon","tue","wed","thu","fri"};

num WeeklyMaxHours{Employees};
num PreferenceWeights{DailyEmployeeSlots,Weekdays};
num NSlots = card(TimeSlots);

read data preferences into DailyEmployeeSlots=[name slot]
{day in Weekdays} <PreferenceWeights[name,slot,day] = col(day)>;

read data maxhours into Employees=[name] WeeklyMaxHours=hour;

/* declare the binary assignment variable x[i,j,k] */
var Assign{<name,slot> in DailyEmployeeSlots, day in Weekdays} binary;

/* for each p[i,j,k] = 0, fix x[i,j,k] = 0 */
for {<name,slot> in DailyEmployeeSlots, day in Weekdays:

PreferenceWeights[name,slot,day] = 0}
fix Assign[name,slot,day] = 0;

/* declare the objective function */
max TotalPreferenceWeight =

sum{<name,slot> in DailyEmployeeSlots, day in Weekdays}
PreferenceWeights[name,slot,day] * Assign[name,slot,day];

888 � Chapter 9. The Mixed Integer Linear Programming Solver

/* declare the constraints */
con OneEmpPerSlot{slot in TimeSlots, day in Weekdays}:

sum{name in Employees} Assign[name,slot,day] = 1;

con EmpMustHaveLunch{name in Employees, day in Weekdays}:
Assign[name,4,day] + Assign[name,5,day] <= 1;

con AtMost2ConsSlots{name in Employees, start in 1..NSlots-2,
day in Weekdays}:

Assign[name,start,day] + Assign[name,start+1,day]
+ Assign[name,start+2,day] <= 2 ;

con WeeklyHoursLimit{name in Employees}:
sum{slot in TimeSlots, day in Weekdays} Assign[name,slot,day]

<= WeeklyMaxHours[name];

/* solve the model */
solve with milp;

/* clean up the solution */
for {<name,slot> in DailyEmployeeSlots, day in Weekdays}

Assign[name,slot,day] = round(Assign[name,slot,day],1e-6);

create data report from [name slot]={<name,slot> in DailyEmployeeSlots:
max {day in Weekdays} Assign[name,slot,day] > 0}

{day in Weekdays} <col(day)=(if Assign[name,slot,day] > 0
then Assign[name,slot,day] else .)>;

quit;

The following code demonstrates how to use the TABULATE procedure to display a
schedule showing how the eight time slots are covered for the week.

title ’Reported Solution’;
proc format;

value xfmt 1=’ xxx ’;
run;
proc tabulate data=report;

class name slot;
var mon--fri;
table (slot * name), (mon tue wed thu fri)*sum=’ ’*f=xfmt.

/misstext=’ ’;
run;

The output from the preceding code is displayed in Output 9.1.1.

Example 9.2. Multicommodity Transshipment Problem with Fixed Charges � 889

Output 9.1.1. Scheduling Reported Solution

Reported Solution

| | mon | tue | wed | thu | fri |
|------------------+--------+--------+--------+--------+--------|
slot	name					
--------+---------						
1	bill		xxx	xxx	xxx	xxx
	---------+--------+--------+--------+--------+--------					
	bob	xxx				
--------+---------+--------+--------+--------+--------+--------						
2	bob	xxx	xxx			
	---------+--------+--------+--------+--------+--------					
	marc			xxx	xxx	xxx
--------+---------+--------+--------+--------+--------+--------						
3	marc				xxx	xxx
	---------+--------+--------+--------+--------+--------					
	mike	xxx	xxx	xxx		
--------+---------+--------+--------+--------+--------+--------						
4	bob	xxx	xxx	xxx		xxx
	---------+--------+--------+--------+--------+--------					
	mike				xxx	
--------+---------+--------+--------+--------+--------+--------						
5	bill	xxx	xxx	xxx	xxx	xxx
--------+---------+--------+--------+--------+--------+--------						
6	bob	xxx	xxx		xxx	xxx
	---------+--------+--------+--------+--------+--------					
	mike			xxx		
--------+---------+--------+--------+--------+--------+--------						
7	bob			xxx		xxx
	---------+--------+--------+--------+--------+--------					
	mike	xxx	xxx		xxx	
--------+---------+--------+--------+--------+--------+--------						
8	bill	xxx				
	---------+--------+--------+--------+--------+--------					
	mike		xxx	xxx	xxx	xxx

Example 9.2. Multicommodity Transshipment Problem with
Fixed Charges

The following application has been adapted from Example 3.14.

The following example illustrates the use of PROC OPTMODEL to generate a mixed
integer linear program to solve a multicommodity network flow model with fixed
charges. Consider a network with nodes N , arcs A, and a set C of commodities to be
shipped between the nodes. There is a variable shipping cost sijc for each of the four
commodities c across each of the arcs (i, j). In addition, there is a fixed charge fij

for the use of each arc (i, j). The shipping costs and fixed charges are defined in the
data set arcdata, as follows:

890 � Chapter 9. The Mixed Integer Linear Programming Solver

data arcdata;
array c c1-c4;
input from $ to $ c1 c2 c3 c4 fx;
datalines;

farm-a Chicago 20 15 17 22 100
farm-b Chicago 15 15 15 30 75
farm-c Chicago 30 30 10 10 100
farm-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75
Chicago NY 75 75 75 75 200
StLouis NY 80 80 80 80 200
;
run;

The supply (positive numbers) at each of the nodes and the demand (negative num-
bers) at each of the nodes dic for each commodity c are shown in the data set node-
data, as follows:

data nodedata;
array sd sd1-sd4;
input node $ sd1 sd2 sd3 sd4;
datalines;

farm-a 100 100 40 .
farm-b 100 200 50 50
farm-c 40 100 75 100
NY -150 -200 -50 -75
;
run;

Let xijc define the flow of commodity c across arc (i, j). Let yij = 1 if arc (i, j) is
used, and 0 otherwise. Since the total flow on an arc (i, j) must be less than the total
demand across all nodes k ∈ N , we can define the trivial upper bound uijc as

xijc ≤ uijc =
∑

k∈N |dkc<0

(−dkc)

This model can be represented using the following mixed integer linear program:

min
∑

(i,j)∈A

∑
c∈C

sijcxijc +
∑

(i,j)∈A

fijyij

s.t.
∑

j∈N |(i,j)∈A

xijc −
∑

j∈N |(j,i)∈A

xjic ≤ dic ∀i ∈ N, c ∈ C (balance–con)

xijc ≤ uijcyij ∀(i, j) ∈ A, c ∈ C (fixed–charge–con)

xijc ≥ 0 ∀(i, j) ∈ A, c ∈ C

yij ∈ {0, 1} ∀(i, j) ∈ A

Example 9.3. Multicommodity Transshipment Problem with Fixed Charges � 891

Constraint (balance–con) ensures conservation of flow for both supply and demand.
Constraint (fixed–charge–con) models the fixed charge cost by forcing yij = 1 if
xijc > 0 for any commodity c ∈ C.

The PROC OPTMODEL code follows.

proc optmodel presolver=none;
set COMMODITIES = 1..4;
set <str,str> ARCS;
set <str> NODES = (setof {<i,j> in ARCS} i)

union (setof {<i,j> in ARCS} j);

num shipping_cost {ARCS, COMMODITIES};
num fixed_charge {ARCS};
num supply_demand {NODES, COMMODITIES} init 0;
num upper_bound {ARCS, comm in COMMODITIES} init

sum {i in NODES: supply_demand[i,comm] < 0} (-supply_demand[i,comm]);

read data arcdata into ARCS=[from to] {comm in COMMODITIES}
<shipping_cost[from,to,comm] = col("c"||comm)> fixed_charge=fx;

read data nodedata nomiss into [node] {comm in COMMODITIES}
<supply_demand[node,comm] = col("sd"||comm)>;

var Flow {<i,j> in ARCS, comm in COMMODITIES} >= 0 <= upper_bound[i,j,comm];
var UseArc {ARCS} binary;

/* minimize shipping costs plus fixed charges */
min TotalCost =

sum {<i,j> in ARCS, comm in COMMODITIES}
shipping_cost[i,j,comm] * Flow[i,j,comm]

+ sum {<i,j> in ARCS} fixed_charge[i,j] * UseArc[i,j];

/* flow balance constraints: outflow - inflow <= supply_demand */
con balance_con {i in NODES, comm in COMMODITIES}:

sum {j in NODES: <i,j> in ARCS} Flow[i,j,comm]
- sum {j in NODES: <j,i> in ARCS} Flow[j,i,comm]

<= supply_demand[i,comm];

/* fixed charge constraints: if Flow > 0 for some commodity then UseArc = 1 */
con fixed_charge_con {<i,j> in ARCS, comm in COMMODITIES}:

Flow[i,j,comm] <= upper_bound[i,j,comm] * UseArc[i,j];

solve with milp;
print {<i,j> in ARCS, comm in COMMODITIES: Flow[i,j,comm] > 1.0e-5} Flow;
for {<i,j> in ARCS} UseArc[i,j] = round(UseArc[i,j].sol);
print UseArc;

quit;

The solution summary, as well as the output from the two PRINT statements, are
shown in Output 9.2.1.

892 � Chapter 9. The Mixed Integer Linear Programming Solver

Output 9.2.1. Multicommodity Transshipment Problem with Fixed Charges
Solution Summary

The OPTMODEL Procedure

Solution Summary

Solver MILP
Objective Function TotalCost
Solution Status Optimal
Objective Value 42824.999991
Iterations 29
Best Bound .
Nodes 1

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 1.421085E-14
Bound Infeasibility 7.771561E-16
Integer Infeasibility 9E-8

[1] [2] [3] Flow

Chicago NY 1 110
Chicago NY 2 100
Chicago NY 3 50
Chicago NY 4 75
StLouis NY 1 40
StLouis NY 2 100
farm-a Chicago 1 10
farm-a Chicago 2 100
farm-b Chicago 1 100
farm-c Chicago 3 50
farm-c Chicago 4 75
farm-c StLouis 1 40
farm-c StLouis 2 100

Use
[1] [2] Arc

Chicago NY 1
StLouis NY 1
farm-a Chicago 1
farm-a StLouis 0
farm-b Chicago 1
farm-c Chicago 1
farm-c StLouis 1

Example 9.3. Facility Location

Consider the classic facility location problem. Given a set L of customer locations
and a set F of candidate facility sites, you must decide which sites to build facilities
on and assign coverage of customer demand to these sites so as to minimize cost. All
customer demand di must be satisfied, and each facility has a demand capacity limit
C. The total cost is the sum of the distances cij between facility j and its assigned
customer i, plus a fixed charge fj for building a facility at site j. Let yj = 1 represent
choosing site j to build a facility, and 0 otherwise. Also, let xij = 1 represent the

Example 9.3. Facility Location � 893

assignment of customer i to facility j, and 0 otherwise. This model can be formulated
as the following integer linear program:

min
∑
i∈L

∑
j∈F

cijxij +
∑
j∈F

fjyj

s.t.
∑
j∈F

xij = 1 ∀i ∈ L (assign–def)

xij ≤ yj ∀i ∈ L, j ∈ F (link)∑
i∈L

dixij ≤ Cyj ∀j ∈ F (capacity)

xij ∈ {0, 1} ∀i ∈ L, j ∈ F

yj ∈ {0, 1} ∀j ∈ F

Constraint (assign–def) ensures that each customer is assigned to exactly one site.
Constraint (link) forces a facility to be built if any customer has been assigned to that
facility. Finally, constraint (capacity) enforces the capacity limit at each site.

Let us also consider a variation of this same problem where there is no cost for build-
ing a facility. This problem is typically easier to solve than the original problem. For
this variant, let the objective be

min
∑
i∈L

∑
j∈F

cijxij

First, let us construct a random instance of this problem by using the following DATA
steps:

%let NumCustomers = 50;
%let NumSites = 10;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 938;

/* generate random customer locations */
data cdata(drop=i);

length name $8;
do i = 1 to &NumCustomers;

name = compress(’C’||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
demand = ranuni(&seed) * &MaxDemand;
output;

end;
run;

894 � Chapter 9. The Mixed Integer Linear Programming Solver

/* generate random site locations and fixed charge */
data sdata(drop=i);

length name $8;
do i = 1 to &NumSites;

name = compress(’SITE’||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
fixed_charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;

end;
run;

In the following PROC OPTMODEL code, we first generate and solve the model
with the no-fixed-charge variant of the cost function. Next, we solve the fixed-charge
model. Note that the solution to the model with no fixed charge is feasible for the
fixed-charge model and should provide a good starting point for the MILP solver. We
use the PRIMALIN option to provide an incumbent solution (warm start).

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES;

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

min CostNoFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];

min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {j in SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:

Assign[i,j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {i in CUSTOMERS} demand[i] * Assign[i,j] <= &SiteCapacity * Build[j];

/* solve the MILP with no fixed charges */

Example 9.3. Facility Location � 895

solve obj CostNoFixedCharge with milp / printfreq = 500;

/* clean up the solution */
for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
for {j in SITES} Build[j] = round(Build[j]);

call symput(’varcostNo’,put(CostNoFixedCharge,6.1));

/* create a data set for use by GPLOT */
create data CostNoFixedCharge_Data from

[customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
xi=x[i] yi=y[i] xj=x[j] yj=y[j];

/* solve the MILP, with fixed charges with warm start */
solve obj CostFixedCharge with milp / primalin printfreq = 500;

/* clean up the solution */
for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
for {j in SITES} Build[j] = round(Build[j]);

num varcost = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j].sol;
num fixcost = sum {j in SITES} fixed_charge[j] * Build[j].sol;
call symput(’varcost’, put(varcost,6.1));
call symput(’fixcost’, put(fixcost,5.1));
call symput(’totalcost’, put(CostFixedCharge,6.1));

/* create a data set for use by GPLOT */
create data CostFixedCharge_Data from

[customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
xi=x[i] yi=y[i] xj=x[j] yj=y[j];

quit;

The information printed in the log for the no-fixed-charge model is displayed in
Output 9.3.1.

Output 9.3.1. OPTMODEL Log for Facility Location with No Fixed Charges

NOTE: The problem has 510 variables (0 free, 0 fixed).
NOTE: The problem has 510 binary and 0 integer variables.
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 10 variables and 500 constraints.
NOTE: The OPTMILP presolver removed 1010 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 500 variables, 60 constraints, and 1000

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 961.2403449 . 0
0 1 2 966.4832160 966.4832160 0.00% 0
0 0 2 966.4832160 . 0.00% 0

NOTE: OPTMILP added 2 cuts with 94 cut coefficients at the root.
NOTE: Optimal.
NOTE: Objective = 966.483216.

The results from the warm start approach are shown in Output 9.3.2.

896 � Chapter 9. The Mixed Integer Linear Programming Solver

Output 9.3.2. OPTMODEL Log for Facility Location with Fixed Charges, Using
Warm Start

NOTE: The problem has 510 variables (0 free, 0 fixed).
NOTE: The problem has 510 binary and 0 integer variables.
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.
NOTE: The OPTMILP presolver removed 0 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 510 variables, 560 constraints, and 2010

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 18157.3952518 9946.2514269 82.56% 0
0 1 1 18157.3952518 9959.5657588 82.31% 0
0 1 1 18157.3952518 9970.3344501 82.11% 0
0 1 1 18157.3952518 9974.5475193 82.04% 0
0 1 2 11008.3952748 9974.9124195 10.36% 0
0 1 2 11008.3952748 9974.9216211 10.36% 0
0 1 2 11008.3952748 9975.7667099 10.35% 0

NOTE: OPTMILP added 16 cuts with 474 cut coefficients at the root.
1 2 4 10956.3809482 9975.7667099 9.83% 0

21 18 5 10953.9474016 9975.7667099 9.81% 1
500 234 5 10953.9474016 10167.0143000 7.74% 7
1000 282 5 10953.9474016 10236.9627027 7.00% 16
1500 227 5 10953.9474016 10362.9374094 5.70% 23
2000 60 5 10953.9474016 10538.2261872 3.94% 30
2500 143 5 10953.9474016 10946.0479172 0.07% 35
2516 151 6 10952.5054871 10946.1783640 0.06% 35
2518 152 7 10952.5054818 10946.1783640 0.06% 35
2537 78 8 10948.4603468 10946.3393374 0.02% 35
2545 86 9 10948.4603465 10946.3393374 0.02% 35
2630 34 10 10948.4603465 10947.4938478 0.01% 36

NOTE: Optimal within relative gap.
NOTE: Objective = 10948.4603.

The following two SAS programs produce a plot of the solutions for both variants of
the model, using data sets produced by PROC OPTMODEL.

title1 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";
data csdata;

set cdata(rename=(y=cy)) sdata(rename=(y=sy));
run;
/* create Annotate data set to draw line between customer and assigned site */
%annomac;
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostNoFixedCharge_Data(keep=xi yi xj yj);
%LINE(xi, yi, xj, yj, *, 1, 1);

run;
proc gplot data=csdata anno=anno;

axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=1) cv=black;
symbol2 value=diamond interpol=none

Example 9.3. Facility Location � 897

pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;

run;
quit;

The output of the first program is shown in Output 9.3.3.

Output 9.3.3. Solution Plot for Facility Location with No Fixed Charges

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Facility Location Problem
TotalCost = 966.5 (Variable = 966.5, Fixed = 0)

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12
C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

C31

C32

C33

C34

C35

C36

C37

C38 C39

C40

C41

C42

C43

C44

C45

C46

C47

C48

C49

C50

SITE1

SITE2

SITE3

SITE4

SITE5

SITE6

SITE7

SITE8

SITE9

SITE10

The output of the second program is shown in Output 9.3.4.

title1 "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";
/* create Annotate data set to draw line between customer and assigned site */
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostFixedCharge_Data(keep=xi yi xj yj);
%LINE(xi, yi, xj, yj, *, 1, 1);

run;
proc gplot data=csdata anno=anno;

axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=1) cv=black;

898 � Chapter 9. The Mixed Integer Linear Programming Solver

symbol2 value=diamond interpol=none
pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;

plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;
run;
quit;

Output 9.3.4. Solution Plot for Facility Location with Fixed Charges

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Facility Location Problem
TotalCost = 10948 (Variable = 1329.8, Fixed = 9619)

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12
C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

C31

C32

C33

C34

C35

C36

C37

C38 C39

C40

C41

C42

C43

C44

C45

C46

C47

C48

C49

C50

SITE1

SITE2

SITE3

SITE4

SITE5

SITE6

SITE7

SITE8

SITE9

SITE10

The economic trade-off for the fixed-charge model forces us to build fewer sites and
push more demand to each site.

It is possible to expedite the solution of the fixed-charge facility location problem by
choosing appropriate branching priorities for the decision variables. Recall that for
each site j, the value of the variable yj determines whether or not a facility is built
on that site. Suppose you decide to branch on the variables yj before the variables
xij . You can set a higher branching priority for yj by using the .priority suffix for the
Build variables in PROC OPTMODEL, as follows:

for{j in SITES} Build[j].priority=10;

Setting higher branching priorities for certain variables is not guaranteed to speed up
the MILP solver, but it can be helpful in some instances. The following program

Example 9.3. Facility Location � 899

creates and solves an instance of the facility location problem in which giving higher
priority to yj causes the MILP solver to find the optimal solution more quickly. We
use the PRINTFREQ= option to abbreviate the node log.

%let NumCustomers = 45;
%let NumSites = 8;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 2345;

/* generate random customer locations */
data cdata(drop=i);

length name $8;
do i = 1 to &NumCustomers;

name = compress(’C’||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
demand = ranuni(&seed) * &MaxDemand;
output;

end;
run;

/* generate random site locations and fixed charge */
data sdata(drop=i);

length name $8;
do i = 1 to &NumSites;

name = compress(’SITE’||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
fixed_charge = (abs(&xmax/2-x) + abs(&ymax/2-y)) / 2;
output;

end;
run;

proc optmodel;

set <str> CUSTOMERS;
set <str> SITES;

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

900 � Chapter 9. The Mixed Integer Linear Programming Solver

min CostFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j]

+ sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {j in SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:

Assign[i,j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {i in CUSTOMERS} demand[i] * Assign[i,j] <= &SiteCapacity * Build[j];

/* assign priority to Build variables (y) */
for{j in SITES} Build[j].priority=10;

/* solve the MILP with fixed charges, using branching priorities */
solve obj CostFixedCharge with milp / printfreq=1000;

quit;

The resulting output is shown in Output 9.3.5.

Example 9.3. Facility Location � 901

Output 9.3.5. PROC OPTMODEL Log for Facility Location with Branching
Priorities

NOTE: There were 45 observations read from the data set WORK.CDATA.
NOTE: There were 8 observations read from the data set WORK.SDATA.
NOTE: The problem has 368 variables (0 free, 0 fixed).
NOTE: The problem has 368 binary and 0 integer variables.
NOTE: The problem has 413 linear constraints (368 LE, 45 EQ, 0 GE, 0 range).
NOTE: The problem has 1448 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.
NOTE: The OPTMILP presolver removed 0 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 368 variables, 413 constraints, and 1448

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 1727.0208789 . 0
0 1 0 . 1742.9508521 . 0
0 1 0 . 1752.2235082 . 0
0 1 0 . 1774.0288243 . 0
0 1 0 . 1775.9603081 . 0
0 1 0 . 1778.5118008 . 0
0 1 0 . 1780.4356268 . 0
0 1 0 . 1782.2847353 . 0

NOTE: OPTMILP added 31 cuts with 819 cut coefficients at the root.
1 2 2 1897.2016698 1782.2847353 6.45% 0
3 4 4 1845.6411894 1782.2847353 3.55% 1
6 7 5 1836.6772083 1782.2847353 3.05% 1
7 8 6 1836.6772076 1782.2847353 3.05% 1

20 21 7 1823.4483963 1782.2847353 2.31% 1
820 429 8 1823.3287600 1811.3016072 0.66% 6
1000 429 8 1823.3287600 1812.5380697 0.60% 8
1513 235 9 1819.9124342 1817.5781767 0.13% 11
1789 17 9 1819.9124342 1819.7319707 0.01% 14

NOTE: Optimal within relative gap.
NOTE: Objective = 1819.91243.

The output in Output 9.3.6 is generated by running the same program without the
line that assigns higher branching priorities to the Build variables. We again use the
PRINTFREQ= option to abbreviate the node log.

902 � Chapter 9. The Mixed Integer Linear Programming Solver

Output 9.3.6. PROC OPTMODEL Log for Facility Location without Branching
Priorities

NOTE: There were 45 observations read from the data set WORK.CDATA.
NOTE: There were 8 observations read from the data set WORK.SDATA.
NOTE: The problem has 368 variables (0 free, 0 fixed).
NOTE: The problem has 368 binary and 0 integer variables.
NOTE: The problem has 413 linear constraints (368 LE, 45 EQ, 0 GE, 0 range).
NOTE: The problem has 1448 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.
NOTE: The OPTMILP presolver removed 0 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 368 variables, 413 constraints, and 1448

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 1727.0208789 . 0
0 1 0 . 1742.9508521 . 0
0 1 0 . 1752.2235082 . 0
0 1 0 . 1774.0288243 . 0
0 1 0 . 1775.9603081 . 0
0 1 0 . 1778.5118008 . 0
0 1 0 . 1780.4356268 . 0
0 1 0 . 1782.2847353 . 0

NOTE: OPTMILP added 31 cuts with 819 cut coefficients at the root.
1 2 2 1845.6411909 1798.0236457 2.65% 1

99 92 3 1830.2464078 1798.1088996 1.79% 1
130 113 4 1828.3829705 1798.1114430 1.68% 2
178 148 5 1826.5738687 1801.3003022 1.40% 3
252 203 6 1825.5361998 1802.8877583 1.26% 3
1651 779 7 1822.8640271 1813.2363990 0.53% 10
2302 668 8 1821.5115364 1816.1164144 0.30% 15
2362 466 9 1819.9124342 1816.3899402 0.19% 15
2939 17 9 1819.9124342 1819.7324195 0.01% 21

NOTE: Optimal within relative gap.
NOTE: Objective = 1819.91243.

By comparing Output 9.3.5 and Output 9.3.6 you can see that in this instance, increas-
ing the branching priorities of the Build variables results in computational savings.

Example 9.4. Traveling Salesman Problem

The traveling salesman problem (TSP) is that of finding a minimum cost tour in an
undirected graph G with vertex set V = {1, ..., |V |} and edge set E. A tour is a
connected subgraph for which each vertex has degree two. The goal is then to find a
tour of minimum total cost, where the total cost is the sum of the costs of the edges in
the tour. With each edge e ∈ E we associate a binary variable xe, indicating whether
edge e is part of the tour, and a cost ce ∈ R. Let δ(S) = {{i, j} ∈ E | i ∈ S, j /∈ S}.

Example 9.4. Traveling Salesman Problem � 903

Then an integer linear programming (ILP) formulation of the TSP is as follows:

min
∑
e∈E

cexe

s.t.
∑

e∈δ(i)

xe = 2 ∀i ∈ V (two–match)

∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 1 (subtour–elim)

xe ∈ {0, 1} ∀e ∈ E

The equations (two–match) are the matching constraints, which ensure that each ver-
tex has degree two in the subgraph, while the inequalities (subtour–elim) are known
as the subtour elimination constraints (SECs) and enforce connectivity.

Since there is an exponential number O(2|V |) of SECs, it is impossible to explicitly
construct the full TSP formulation for large graphs. An alternative formulation of
polynomial size was introduced by Miller, Tucker, and Zemlin (1960):

min
∑

(i,j)∈E

cijxij

s.t.
∑
j∈V

xij = 1 ∀i ∈ V (assign– i)

∑
i∈V

xij = 1 ∀j ∈ V (assign–j)

ui − uj + 1 ≤ (|V | − 1)(1− xij) ∀(i, j) ∈ V, i 6= 1, j 6= 1 (mtz)

2 ≤ ui ≤ |V | ∀i ∈ {2, .., |V |},

xij ∈ {0, 1} ∀(i, j) ∈ E

In this formulation, we use a directed graph. Constraints (assign–i) and (assign–j)
now enforce that each vertex has degree two (one edge in, one edge out). The MTZ
constraints (mtz) enforce that no subtours exist.

TSPLIB, located at http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html,
is a set of benchmark instances for the TSP. The following DATA step converts a
TSPLIB instance of type EUC–2D into a SAS data set containing the coordinates of
the vertices:

/* convert the TSPLIB instance into a data set */
data tspData(drop=H);

infile "st70.tsp";
input H $1. @;
if H not in (’N’,’T’,’C’,’D’,’E’);
input @1 var1-var3;

run;

904 � Chapter 9. The Mixed Integer Linear Programming Solver

The following PROC OPTMODEL code attempts to solve the TSPLIB instance
st70.tsp by using the MTZ formulation:

/* direct solution using the MTZ formulation */
proc optmodel;

set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i ne j};
num xc {VERTICES};
num yc {VERTICES};

/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[_n_] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer */
num c {<i,j> in EDGES}

init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);

var x {EDGES} binary;
var u {i in 2..card(VERTICES)} >= 2 <= card(VERTICES);

/* each vertex has exactly one in-edge and one out-edge */
con assign_i {i in VERTICES}:

sum {j in VERTICES: i ne j} x[i,j] = 1;
con assign_j {j in VERTICES}:

sum {i in VERTICES: i ne j} x[i,j] = 1;

/* minimize the total cost */
min obj

= sum {<i,j> in EDGES} (if i > j then c[i,j] else c[j,i]) * x[i,j];

/* no subtours */
con mtz {<i,j> in EDGES : (i ne 1) and (j ne 1)}:

u[i] - u[j] + 1 <= (card(VERTICES) - 1) * (1 - x[i,j]);

solve;
quit;

It is well known that the MTZ formulation is much weaker than the subtour formula-
tion. The exponential number of SECs makes it impossible, at least in large instances,
to use a direct call to the MILP solver with the subtour formulation. For this reason,
if you want to solve the TSP with one SOLVE statement, you must use the MTZ
formulation and rely strictly on generic cuts and heuristics. Except for very small
instances, this is unlikely to be a good approach.

A much more efficient way to tackle the TSP is to dynamically generate the subtour
inequalities as cuts. Typically this is done by solving the LP relaxation of the 2-
matching problem, finding violated subtour cuts, and adding them iteratively. The
problem of finding violated cuts is known as the separation problem. In this case,
the separation problem takes the form of a minimum cut problem, which is nontrivial
to implement efficiently. Therefore, for the sake of illustration, we solve an integer
program at each step of the process.

The initial formulation of the TSP will be the integral 2-matching problem. We solve
this by using PROC OPTMODEL to obtain an integral matching, which is not nec-
essarily a tour. In this case, the separation problem is trivial. If the solution is a

Example 9.4. Traveling Salesman Problem � 905

connected graph, then it is a tour, so we have solved the problem. If the solution is a
disconnected graph, then each component forms a violated subtour constraint. These
constraints are added to the formulation and the integer program is re-solved. This
process is repeated until the solution defines a tour.

The following PROC OPTMODEL code solves the TSP by using the subtour formu-
lation and iteratively adding subtour constraints.

/* iterative solution using the subtour formulation */
proc optmodel;

set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i > j};
num xc {VERTICES};
num yc {VERTICES};

num numsubtour init 0;
set SUBTOUR {1..numsubtour};

/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[var1] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer */
num c {<i,j> in EDGES}

init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);

var x {EDGES} binary;

/* minimize the total cost */
min obj =

sum {<i,j> in EDGES} c[i,j] * x[i,j];

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:

sum {j in VERTICES: i > j} x[i,j]
+ sum {j in VERTICES: i < j} x[j,i] = 2;

/* no subtours (these constraints are generated dynamically) */
con subtour_elim {s in 1..numsubtour}:

sum {<i,j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,j] >= 2;

/* this starts the algorithm to find violated subtours */
set <num,num> EDGES1;
set VERTICES1;
set NEIGHBORS;
set <num,num> CLOSURE;
num component {VERTICES};
num numcomp init 2;
num iter init 1;
num numiters init 1;
set ITERS = 1..numiters;
num sol {ITERS, EDGES};

/* initial solve with just matching constraints */
solve;
for {<i,j> in EDGES} do;

x[i,j] = round(x[i,j].sol);

906 � Chapter 9. The Mixed Integer Linear Programming Solver

sol[iter,i,j] = x[i,j];
end;
call symput(compress(’obj’||put(iter,best.)),

trim(left(put(round(obj),best.))));

/* while the solution is disconnected, continue */
do while (numcomp > 1);

iter = iter + 1;
/* find connected components of support graph */
EDGES1 = {<i,j> in EDGES: x[i,j] = 1};
EDGES1 = EDGES1 union {setof {<i,j> in EDGES1} <j,i>};
VERTICES1 = VERTICES;
CLOSURE = EDGES1;
for {i in VERTICES} component[i] = 0;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS);

end;
numcomp = 0;
do while (card(VERTICES1) > 0);

numcomp = numcomp + 1;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
for {j in NEIGHBORS} component[j] = numcomp;
VERTICES1 = VERTICES1 diff NEIGHBORS;
leave;

end;
end;

if numcomp = 1 then leave;
numiters = iter;
for {comp in 1..numcomp} do;

numsubtour = numsubtour + 1;
SUBTOUR[numsubtour]
= {i in VERTICES: component[i] = comp};

end;

solve;
for {<i,j> in EDGES} do;

x[i,j] = round(x[i,j].sol);
sol[iter,i,j] = x[i,j];

end;
call symput(compress(’obj’||put(iter,best.)),

trim(left(put(round(obj),best.))));
end;

/* create a data set for use by gplot */
create data solData from

[iter i j]={it in ITERS, <i,j> in EDGES: sol[it,i,j] = 1}
xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];

call symput(’numiters’,put(numiters,best.));
quit;

Example 9.4. Traveling Salesman Problem � 907

We can generate plots of the solution and objective value at each stage by using the
following code:

%macro plotTSP;
%annomac;
%do i = 1 %to &numiters;
/* create annotate data set to draw subtours */
data anno(drop=iter xi yi xj yj);

%SYSTEM(2, 2, 2);
set solData(keep=iter xi yi xj yj);
where iter = &i;
%LINE(xi, yi, xj, yj, *, 1, 1);

run;

title1 "TSP: Iter = &i, Objective = &&obj&i";
title2;
proc gplot data=tspData anno=anno;

axis1 label=none;
symbol1 value=dot interpol=none
pointlabel=("#var1" nodropcollisions height=1) cv=black;
plot var3*var2 / haxis=axis1 vaxis=axis1;

run;
quit;
%end;
%mend plotTSP;
%plotTSP;

The plot in Output 9.4.1 shows the solution and objective value at each stage. Notice
that at each stage, we restrict some subset of subtours. When we reach the final stage,
we have a valid tour.

Note: An alternative way of approaching the TSP is to use a genetic algorithm. See
Example 1.1 (Chapter 1, SAS/OR User’s Guide: Local Search Optimization) for an
example of how to use PROC GA to solve the TSP.

908 � Chapter 9. The Mixed Integer Linear Programming Solver

Output 9.4.1. Traveling Salesman Problem Iterative Solution

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

TSP: Iter = 1, Objective = 625

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39 40

41
42

43

44

45

46

47

48

49

5051

52 53

54

55

56

57

58 59

60

61

62

63

64

65

6667

68

69

70

TSP: Iter = 2, Objective = 652

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39 40

41
42

43

44

45

46

47

48

49

5051

52 53

54

55

56

57

58 59

60

61

62

63

64

65

6667

68

69

70

TSP: Iter = 3, Objective = 673

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39 40

41
42

43

44

45

46

47

48

49

5051

52 53

54

55

56

57

58 59

60

61

62

63

64

65

6667

68

69

70

TSP: Iter = 4, Objective = 675

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39 40

41
42

43

44

45

46

47

48

49

5051

52 53

54

55

56

57

58 59

60

61

62

63

64

65

6667

68

69

70

References � 909

References
Achterberg, T., Koch, T., and Martin, A. (2005), “Branching Rules Revisited,”

Operations Research Letters, 33(1), 42–54.

Andersen, E. D. and Andersen, K. D. (1995), “Presolving in Linear Programming,”
Mathematical Programming, 71(2), 221–245.

Atamturk, A. (2004), “Sequence Independent Lifting for Mixed-Integer
Programming,” Operations Research, 52, 487–490.

Dantzig, G. B., Fulkerson, R., and Johnson, S. M. (1954), “Solution of a Large-Scale
Traveling Salesman Problem,” Operations Research, 2, 393–410.

Gondzio, J. (1997), “Presolve Analysis of Linear Programs prior to Applying an
Interior Point Method,” INFORMS Journal on Computing, 9 (1), 73–91.

Land, A. H. and Doig, A. G. (1960), “An Automatic Method for Solving Discrete
Programming Problems,” Econometrica, 28, 497–520.

Linderoth, J. T. and Savelsbergh, M. (1998), “A Computational Study of Search
Strategies for Mixed Integer Programming,” INFORMS Journal on Computing,
11, 173–187.

Marchand, H., Martin, A., Weismantel, R., and Wolsey, L. (1999), “Cutting Planes in
Integer and Mixed Integer Programming,” DP 9953, CORE, Université Catholique
de Louvainla-Neuve, 1999.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960), “Integer Programming
Formulations of Traveling Salesman Problems,” Journal of the Association for
Computing Machinery, 7(4), 326–329.

Savelsbergh, M. W. P. (1994), “Preprocessing and Probing Techniques for Mixed
Integer Programming Problems,” ORSA J. on Computing, 6, 445–454.

910

Chapter 10
The NLPC Nonlinear Optimization

Solver

Chapter Contents

OVERVIEW . 913
Optimization Techniques and Types of Problems Solved 914

GETTING STARTED . 915
Introductory Examples . 915

SYNTAX . 925
Functional Summary . 925
NLPC Solver Options . 926

DETAILS . 928
Optimization Algorithms . 928
Conditions of Optimality . 931
Optimality Control . 934
Infeasibility . 935
Feasible Starting Point . 936
Line-Search Method . 937
Computational Problems . 937
Iteration Log . 938
Macro Variable –OROPTMODEL– . 940

EXAMPLES . 942
Example 10.1. Least Squares Problem . 942
Example 10.2. Maximum Likelihood Weibull Model 947
Example 10.3. Simple Pooling Problem . 950

REFERENCES . 952

912

Chapter 10
The NLPC Nonlinear Optimization

Solver
Overview

In nonlinear optimization, we try to minimize or maximize an objective function
that can be subject to a set of constraints. The objective function is typically non-
linear in terms of the decision variables. If the problem is constrained, it can be
subject to bound, linear, or nonlinear constraints. In general, we can classify non-
linear optimization (minimization or maximization) problems into the following four
categories:

• unconstrained

• bound constrained

• linearly constrained

• nonlinearly constrained

Since a maximization problem is equivalent to minimizing the negative of the same
objective function, the general form of nonlinear optimization problems can, without
loss of generality, be mathematically described as follows:

minimize
x∈Rn

f(x)

subject to c(x) {≤ | = | ≥} b

l ≤ x ≤ u

where f(x): Rn 7→ R is the nonlinear objective function; c(x) : Rn 7→ Rm are
the functions of general nonlinear equality and inequality constraints, also referred
to as the body of constraints; b ∈ Rm are the constant terms of the constraints, also
referred to as the right-hand side (RHS); and l and u are lower and upper bounds on
the decision variable x. If c(x) are all linear in x, the nonlinear optimization problem
becomes a linearly constrained problem, which can be expressed as follows:

minimize
x∈Rn

f(x)

subject to Ax {≤ | = | ≥} b

l ≤ x ≤ u

where A ∈ Rm×n. If Ax {≤ | = | ≥} b is not present, we have a bound constrained
problem. If it is also true that li = −∞ and ui = ∞ for all i = 1, . . . , n, we have an
unconstrained problem in which x can take values in the entire Rn space.

914 � Chapter 10. The NLPC Nonlinear Optimization Solver

These different problem classes typically call for different types of algorithms to solve
them. The algorithm(s) devised specifically to solve a particular class of problem
might not be suitable for solving problems in a different class. For instance, there are
algorithms that specifically solve unconstrained and bound constrained problems. For
linearly constrained problems, the fact that the Jacobian of the constraints is constant
enables us to design algorithms that are more efficient for that class.

Optimization Techniques and Types of Problems Solved

The algorithms in the NLPC solver take advantage of the problem characteristics and
automatically select an appropriate variant of an algorithm for a problem. Each of the
optimization techniques implemented in the NLPC solver can handle unconstrained,
bound constrained, linearly constrained, and nonlinearly constrained problems with-
out your explicitly requesting which variant of the algorithm should be used. The
NLPC solver is also designed for backward compatibility with PROC NLP, enabling
you to migrate from PROC NLP to the more versatile PROC OPTMODEL modeling
language. See Chapter 6, “The OPTMODEL Procedure” for details. You can access
several optimization techniques in PROC NLP or their modified versions through the
new interface.

The NLPC solver implements the following optimization techniques:

• conjugate gradient method

• Newton-type method with line search

• trust region method

• quasi-Newton method (experimental)

These techniques assume the objective and constraint functions to be twice continu-
ously differentiable. The derivatives of the objective and constraint functions, which
are provided to the solver by using the PROC OPTMODEL modeling language, are
computed using one of the following two methods:

• automatic differentiation

• finite-difference approximation

For details about automatic differentiation and finite-difference approximation, see
the section “Automatic Differentiation” on page 782.

Introductory Examples � 915

Getting Started
The NLPC solver solves unconstrained nonlinear optimization problems and prob-
lems with a nonlinear objective function subject to bound, linear, or nonlinear con-
straints. It provides several optimization techniques that effectively handle these
classes of problems. Guidelines for choosing a particular optimization technique for
a problem can be found in the section “Optimization Algorithms” on page 928.

To solve a particular problem with a supported optimization technique in the NLPC
solver, you need to specify the problem by using the PROC OPTMODEL model-
ing language. The problem specification typically includes the MIN/MAX statement
for the objective, the CON statement for the constraints, and the VAR statement for
declaring the decision variables and defining bounds. Hence familiarity with the
PROC OPTMODEL modeling language is assumed for requesting a particular opti-
mization technique in the NLPC solver to solve the optimization problem.

After you have specified the nonlinear optimization problem by using the PROC
OPTMODEL modeling language, you can specify the NLPC solver by using the
SOLVE statement as follows:

SOLVE WITH NLPC [/ OPTIONS];

where OPTIONS can specify the optimization technique, termination criteria, and/or
whether to display the iteration log. For details about these options, see the section
“NLPC Solver Options” on page 926.

Introductory Examples

The following introductory examples illustrate how to get started using the NLPC
solver and also provide basic information about the use of PROC OPTMODEL.

An Unconstrained Problem

Consider the following example of minimizing the Rosenbrock function (Rosenbrock
1960):

f(x) = 100(x2 − x2
1)

2 + (1− x1)2

where x = (x1, x2). The minimum function value is f(x∗) = 0 at x∗ = (1, 1). Note
that this problem has no constraints.

The following PROC OPTMODEL statements can be used to solve this problem:

proc optmodel;
number a = 100;
var x{1..2};
min f = a*(x[2] - x[1]^2)^2 + (1 - x[1])^2;

solve with nlpc / tech=newtyp;
print x;

quit;

916 � Chapter 10. The NLPC Nonlinear Optimization Solver

The VAR statement declares the decision variables x1 and x2. The MIN statement
identifies the symbol f that defines the objective function in terms of x1 and x2.
The TECH=NEWTYP option in the SOLVE statement specifies that the Newton-type
method with line search is used to solve this problem. Finally, the PRINT statement
is specified to display the solution to this problem.

The output that summarizes the problem characteristics and the solution obtained by
the solver are displayed in Figure 10.1. Note that the solution has x1 = 1 and x2 = 1,
and an objective value very close to 0.

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 0

Solution Summary

Solver NLPC/Newton-Type
Objective Function f
Solution Status Optimal
Objective Value 6.429583E-18
Iterations 14

Absolute Optimality Error 4.8615356E-8
Relative Optimality Error 4.8615356E-8
Absolute Infeasibility 0
Relative Infeasibility 0

[1] x

1 1
2 1

Figure 10.1. Minimization of the Rosenbrock Function

Bound Constraints on the Decision Variables

Decision variables often have bound constraints of the form

li ≤ xi ≤ ui for i = 1, . . . , n

where n is the number of decision variables. The bounds on the variables can be
specified with the symbols “>=” and “<=” in the VAR statement.

Introductory Examples � 917

Consider the following bound constrained problem (Hock and Schittkowski 1981,
Example 5):

minimize f(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1

subject to −1.5 ≤ x1 ≤ 4

−3 ≤ x2 ≤ 3

Given a starting point at x0 = (0, 0), there is a local minimum at

x∗ = (−π

3
+

1
2
,−π

3
− 1

2
) ≈ (−0.5472,−1.5472)

with the objective value f(x∗) = −
√

3/2 − π/3 ≈ 1.9132. This problem can be
formulated and solved by the following statements:

proc optmodel;
set S = 1..2;
number lb{S} = [-1.5 -3];
number ub{S} = [4 3];
number x0{S} = [0 0];
var x{i in S} >= lb[i] <= ub[i] init x0[i];

min obj = sin(x[1] + x[2]) + (x[1] - x[2])^2
- 1.5*x[1] + 2.5*x[2] + 1;

solve with nlpc / printfreq=1;
print x;

quit;

The starting point is specified with the keyword INIT in the VAR statement. As
usual, the MIN statement identifies the objective function. Since there is no explicit
optimization technique specified (using the TECH= option), the NLPC solver uses
the trust region method, which is the default algorithm for problems of this size.
The PRINTFREQ= option is used to display the iteration log during the optimization
process.

In Figure 10.2, the problem is summarized at the top. Then, the details of the it-
erations are displayed. A message is printed to indicate that the default optimality
criteria (ABSOPTTOL=0.001, RELOPTTOL=1.0E−6) were satisfied. (See the sec-
tion “Optimality Control” on page 934 for more information.) A summary of the
solution shows that the trust region method was used for the optimization and the
solution found is optimal. It also shows the optimal objective value and the number
of iterations taken to find the solution. The optimal solution is displayed at the end.

918 � Chapter 10. The NLPC Nonlinear Optimization Solver

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 0

Iteration Log: Trust Region Method

Trust
Function Objective Optimality Region

Iter Calls Value Error Radius

0 0 1.0000 1.0000 .
1 2 -1.5758 0.8905 2.231
2 4 -1.8962 0.2414 0.546
3 5 -1.9131 0.0127 0.554
4 6 -1.9132 0.0000521 0.149
5 7 -1.9132 9.061E-10 0.0103

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

Solution Summary

Solver NLPC/Trust Region
Objective Function obj
Solution Status Optimal
Objective Value -1.913222955
Iterations 5

Absolute Optimality Error 9.061385E-10
Relative Optimality Error 9.061385E-10
Absolute Infeasibility 0
Relative Infeasibility 0

[1] x

1 -0.5472
2 -1.5472

Figure 10.2. A Bound Constrained Problem

Introductory Examples � 919

Linear Constraints on the Decision Variables

More general linear equality or inequality constraints have the form

n∑
j=1

aijxj {≤ | = | ≥} bi for i = 1, . . . ,m

where n is the number of decision variables and m is the number of constraints, which
can be specified with the CON statement.

Consider, for example, Rosenbrock’s post office problem (Schittkowski 1987, p. 74):

minimize f(x) = −x1x2x3

subject to c1(x) = x1 + 2x2 + 2x3 ≥ 0

c2(x) = 72− x1 − 2x2 − 2x3 ≥ 0

0 ≤ x1 ≤ 20

0 ≤ x2 ≤ 11

0 ≤ x3 ≤ 42

Starting from x0 = (10, 10, 10), you can reach a minimum at x∗ = (20, 11, 15), with
a corresponding objective value f(x∗) = −3300. You can use the following SAS
code to formulate and solve this problem:

proc optmodel;
number ub{1..3} = [20 11 42];
var x{i in 1..3} >= 0 <= ub[i] init 10;

min f = -1*x[1]*x[2]*x[3];
con c1: x[1] + 2*x[2] + 2*x[3] >= 0;
con c2: 72 - x[1] - 2*x[2] - 2*x[3] >= 0;

solve with nlpc / tech=congra printfreq=1;
print x;

quit;

As usual, the VAR statement specifies the bounds on the variables, and the starting
point; the MIN statement identifies the objective function. In addition, the two CON
statements describe the linear constraints c1(x) and c2(x). To solve this problem,
select the conjugate gradient optimization technique by using the TECH=CONGRA
option. The PRINTFREQ= option is used to display the iteration log.

In Figure 10.3, you can find a problem summary and the iteration log. The solution
summary and the solution are printed at the bottom.

920 � Chapter 10. The NLPC Nonlinear Optimization Solver

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 3
Bounded Above 0
Bounded Below 0
Bounded Below and Above 3
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 2
Linear Range 0

Iteration Log: Conjugate Gradient Method

Slope of
Function Objective Optimality Step Search

Iter Calls Value Error Size Direction Restarts

0 0 -1000 1.0000 . . 0
1 2 -1331 1.0000 0.0100 -30000 0
2 4 -3056 0.2952 0.0468 -29282 1
3 6 -3300 0 0.0455 -6722.2 2

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

Solution Summary

Solver NLPC/Conjugate Gradient
Objective Function f
Solution Status Optimal
Objective Value -3300
Iterations 3

Absolute Optimality Error 0
Relative Optimality Error 0
Absolute Infeasibility 3.552714E-15
Relative Infeasibility 4.866731E-17

[1] x

1 20
2 11
3 15

Figure 10.3. Rosenbrock’s Post Office Problem

Introductory Examples � 921

You can formulate linear constraints in a more compact manner. Consider the follow-
ing example (Hock and Schittkowski 1981, test example 24):

minimize f(x) = 1
27
√

3
((x1 − 3)2 − 9)x3

2

subject to x1/
√

3− x2 ≥ 0

x1 +
√

3x2 ≥ 0

−x1 −
√

3x2 ≥ −6

x1, x2 ≥ 0

The minimum function value is f(x∗) = −1 at x∗ = (3,
√

3). Assume a feasible
starting point, x0 = (1, 0.5).

You can specify this model by using the following PROC OPTMODEL statements:

proc optmodel;
number a{1..3, 1..2} = [.57735 -1

1 1.732
-1 -1.732];

number b{1..3} = [0 0 -6];
number x0{1..2} = [1 .5];
var x{i in 1..2} >= 0 init x0[i];

min f = ((x[1] - 3)^2 - 9) * x[2]^3 / (27*sqrt(3));
con cc {i in 1..3}: sum{j in 1..2} a[i,j]*x[j] >= b[i];

solve with nlpc / printfreq=1;
print x;

quit;

Note that instead of writing three individual linear constraints as in Rosenbrock’s
post office problem, we use a two-dimensional array a to represent the coefficient
matrix of the linear constraints and a one-dimensional array b for the right-hand side.
Consequently, all three linear constraints are represented in a single CON statement.
This method is especially useful for larger models and for models in which the con-
straint coefficients are subject to change.

The output showing the problem summary, the iteration log, the solution summary,
and the solution is displayed in Figure 10.4.

922 � Chapter 10. The NLPC Nonlinear Optimization Solver

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 2
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 3
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0

Iteration Log: Trust Region Method

Trust
Function Objective Optimality Region

Iter Calls Value Error Radius

0 0 -0.0134 0.0802 .
1 1 -0.0218 0.0706 1.000
2 7 -1.0000 0 9.166

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

Solution Summary

Solver NLPC/Trust Region
Objective Function f
Solution Status Optimal
Objective Value -1.000043302
Iterations 2

Absolute Optimality Error 0
Relative Optimality Error 0
Absolute Infeasibility 0
Relative Infeasibility 0

[1] x

1 3.0000
2 1.7321

Figure 10.4. A Second Linearly Constrained Problem

Introductory Examples � 923

Nonlinear Constraints on the Decision Variables

General nonlinear equality or inequality constraints have the form

ci(x) {≤ | = | ≥} bi for i = 1, . . . ,m

where ci(x) : Rn 7→ R is a general nonlinear constraint, which can be specified with
the CON statement.

Consider the following nonlinearly constrained problem (Avriel 1976, p. 456):

minimize f(x) = (x1 − 4)2 + (x2 − 4)2

subject to c1(x) = 3x2
1 + x2

2 − 2x1x2 − 4x1 ≤ 12

c2(x) = 3x1 + 4x2 ≤ 28

An initial point is given at x0 = (2, 0). You can use the following SAS code to
formulate and solve this problem:

proc optmodel;
num x0{1..2} = [2 0];
var x{i in 1..2} init x0[i];

min f = (x[1] - 4)^2 + (x[2] - 4)^2;
con c1: 3*x[1]^2 + x[2]^2 - 2*x[1]*x[2] - 4*x[1] <= 12;
con c2: 3*x[1] + 4*x[2] <= 28;

solve with nlpc / tech=qne printfreq=1;
print x;

quit;

Note that c1(x) is a nonlinear constraint and c2(x) is a linear constraint. Both can be
specified by using the CON statement. The PROC OPTMODEL modeling language
automatically recognizes types of constraints to which they belong. The experimental
quasi-Newton method is requested to solve this problem.

A problem summary is shown in Figure 10.5. Figure 10.6 displays the iteration log.
Note that the quasi-Newton method is an infeasible point algorithm; i.e., the iter-
ates remain infeasible to the nonlinear constraints until the optimal solution is found.
The column “Maximum Constraint Violation” displays the infeasibility. The solution
summary and the solution are shown in Figure 10.7.

924 � Chapter 10. The NLPC Nonlinear Optimization Solver

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 2
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 1
Nonlinear EQ (=) 0
Nonlinear GE (>=) 0
Nonlinear Range 0

Figure 10.5. Nonlinearly Constrained Problem: Problem Summary

Iteration Log: Quasi-Newton Method with BFGS Update

Predicted
Function Objective Optimality Step Function

Iter Calls Value Infeasibility Error Size Reduction

0 0 20.0000 0 1.0000 . .
1 1 0.9570 0 1.0275 1.000 1.7256
2 2 0.0942 0.0480 0.1134 1.000 0.0783
3 3 0.1335 0.000538 0.004636 1.000 0.00103
4 4 0.1340 2.9482E-7 0.000336 1.000 5.148E-7
5 5 0.1340 2.1822E-9 2.4734E-6 1.000 4.2E-9
6 6 0.1340 1.159E-13 6.4421E-9 1.000 2.101E-9

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

Figure 10.6. Nonlinearly Constrained Problem: Iteration Log

Functional Summary � 925

Solution Summary

Solver NLPC/Quasi-Newton
Objective Function f
Solution Status Optimal
Objective Value 0.134001789
Iterations 6

Absolute Optimality Error 6.4420693E-9
Relative Optimality Error 6.4420693E-9
Absolute Infeasibility 1.506351E-12
Relative Infeasibility 1.158731E-13

[1] x

1 3.6348
2 3.9748

Figure 10.7. Nonlinearly Constrained Problem: Solution

Syntax
The following PROC OPTMODEL statement is available for the NLPC solver:

SOLVE WITH NLPC < / options > ;

Functional Summary

Table 10.1 outlines the options that can be used with the SOLVE WITH NLPC state-
ment.

Table 10.1. Options for the NLPC Solver

Description Option
Optimization Option:
optimization technique TECH=

Termination Criterion Options:
maximum number of iterations MAXITER=

maximum number of function calls MAXFUNC=

upper limit on optimization time MAXTIME=

upper limit on magnitude of objective value OBJLIMIT=

tolerance for absolute optimality error ABSOPTTOL=

tolerance for relative optimality error RELOPTTOL=

Printed Output Option:
frequency at which to display iteration log PRINTFREQ=

926 � Chapter 10. The NLPC Nonlinear Optimization Solver

NLPC Solver Options

This section describes the options recognized by the NLPC solver. These options can
be specified after a forward slash (/) in the SOLVE statement, provided that the NLPC
solver is explicitly specified using a WITH clause.

The following notation is used in this section and the section “Details” on page 928:

M a nonnegative floating-point number

N a nonnegative integer

δ a small nonnegative floating-point number

m number of general nonlinear constraints, including the linear constraints
but not the bound constraints

n dimension of x, i.e., the number of decision variables

x, xk iterate, i.e., the vector of n decision variables; xk denotes the iterate at
the kth iteration.

f(x) objective function

∇f(x) gradient of the objective function

∇2f(x) Hessian of the objective function

λ, λk Lagrange multiplier vector, λ ∈ Rm; λk denotes the estimate of the
Lagrange multipliers at the kth iteration

L(x, λ) Lagrangian function of constrained problems

∇xL(x, λ) gradient of the Lagrangian function with respect to x

∇2
xL(x, λ) Hessian of the Lagrangian function with respect to x

‖ · ‖∞ infinity norm of a vector; for example, ‖y‖∞ = max
i=1,...,n

{|yi|} for y ∈ Rn

ABSOPTTOL=δ
specifies the tolerance for the absolute optimality error. For the solver to terminate,

‖∇f(xk)‖∞ ≤ δ

must be satisfied for unconstrained problems, or

‖∇xL(xk, λk)‖∞ ≤ δ

must be satisfied for constrained problems. The default value is δ = 1.0E−3 for all
four optimization techniques. The range of valid values for δ is between 0 and 1.

Note: For more information about this termination criterion, see the section
“Optimality Control” on page 934.

MAXFUNC=N
MAXFEVAL=N

specifies that the optimization process stop after a maximum of N function calls. The
value of N can be no larger than the largest four-byte signed integer, which is 231−1.
The default values of N are as follows:

NLPC Solver Options � 927

• for TECH=TRUREG or NEWTYP, N = 3000

• for TECH=QUANEW, N = 5000

• for TECH=CONGRA, N = 6000

The optimization process can be terminated only after completing a full iteration.
Therefore, the number of function calls that are actually performed can exceed the
number that is specified by the MAXFUNC= option. The MAXFUNC= option lim-
its the number of function calls performed during optimization; this number does
not include function calls performed during preprocessing. The number of function
evaluations displayed by the PRINTLEVEL=2 option in the OPTMODEL procedure
includes the function calls performed in both preprocessing and postprocessing.

MAXITER=N
specifies that the optimization process stop after a maximum of N iterations. The
value of N can be no larger than the largest four-byte signed integer, which is 231−1.
The default values of N are as follows:

• for TECH=TRUREG or NEWTYP, N = 500

• for TECH=QUANEW, N = 800

• for TECH=CONGRA, N = 1000

MAXTIME=M
specifies an upper limit of M seconds of real time for the optimization process. If
you do not specify this option, the optimization process does not stop based on the
amount of time elapsed. Note that the time specified by the MAXTIME= option
is checked only at the end of each iteration. The optimization terminates when the
actual running time is greater than or equal to M .

OBJLIMIT=M
specifies an upper limit on the magnitude of the objective value. For a minimization
problem, the algorithm terminates when the objective value becomes less than −M ;
for a maximization problem, the algorithm stops when the objective value exceeds M .
When this happens, it implies that either the problem is unbounded or the algorithm
diverges. If optimization were allowed to continue, numerical difficulty might be
encountered. The default value is M = 1.0E+20. The range of valid values for M is
M ≥ 1.0E+8.

PRINTFREQ=j
specifies that the printing of the solution progress to the iteration log should occur
after every j iterations. The print frequency, j, is an integer between zero and the
largest four-byte signed integer, which is 231 − 1. The value j = 0 disables the
printing of the progress of the solution. Note that iteration 0 and the last iteration are
always displayed for j > 0.

By default, the NLPC solver does not display the iteration log.

RELOPTTOL=δ
specifies the tolerance for the relative optimality error. For the solver to terminate,

‖∇f(xk)‖∞ ≤ δ max{1, |f(xk)|}

928 � Chapter 10. The NLPC Nonlinear Optimization Solver

must be satisfied for unconstrained problems, or

‖∇xL(xk, λk)‖∞ ≤ δ max{1, ‖∇f(xk)‖∞}

must be satisfied for constrained problems. The default value is δ = 1.0E−6 for all
four optimization techniques. The range of valid values for δ is between 0 and 1.

Note: For more information about this termination criterion, see the section
“Optimality Control” on page 934.

TECH=keyword
TECHNIQUE=keyword
SOLVER=keyword

specifies the optimization technique. Valid keywords are as follows:

• CONGRA or CGR
uses a conjugate gradient method.

• NEWTYP or NTY
uses a Newton-type method with line search.

• TRUREG or TRE
uses a trust region method.

• QUANEW or QNE (experimental)
uses a quasi-Newton method with the BFGS update. QUANEW is the opti-
mization technique in the NLPC solver to solve problems with nonlinear con-
straints.

The default technique is CONGRA if there are more than 1000 variables in the prob-
lem (possibly presolved) and TRUREG otherwise. See the section “Presolver” on
page 777 for details about presolver.

Details

Optimization Algorithms

There are four optimization algorithms available in the NLPC solver. A particular
algorithm can be selected by using the TECH= option in the SOLVE statement.

Table 10.2. Algorithmic Options for the NLPC Solver

Algorithm TECH=

Newton-type method with line search NEWTYP

Trust region method TRUREG

Conjugate gradient method CONGRA

Quasi-Newton method (experimental) QUANEW

Different optimization techniques require different derivatives, and computational ef-

Optimization Algorithms � 929

ficiency can be improved depending on the kind of derivatives needed. Table 10.3
summarizes, for each optimization technique, which derivatives are needed (FOD:
first-order derivatives; SOD: second-order derivatives) and what types of constraints
(UNC: unconstrained; BC: bound constraints; LIC: linear constraints; NLC: nonlin-
ear constraints) are supported.

Table 10.3. Types of Derivatives Required and Constraints Supported by
Algorithm

Derivatives Needed Constraints Supported
Algorithm

FOD SOD UNC BC LIC NLC

TRUREG x x x x x -

NEWTYP x x x x x -

CONGRA x - x x x -

QUANEW x - x x x x

Choosing an Optimization Algorithm

Several factors play a role in choosing an optimization technique for a particular
problem. First, the structure of the problem has to be considered: Is it unconstrained,
bound constrained, or linearly constrained? The NLPC solver automatically identifies
the structure and chooses an appropriate variant of the algorithm for the problem.

Next, it is important to consider the type of derivatives of the objective function and
the constraints that are needed, and whether these are analytically tractable or not.
This section provides some guidelines for making the choice. For an optimization
problem, computing the gradient takes more computer time than computing the func-
tion value, and computing the Hessian matrix sometimes takes much more computer
time and memory than computing the gradient, especially when there are many de-
cision variables. Optimization techniques that do not use the Hessian usually require
more iterations than techniques that do use the Hessian. The former tend to be slower
and less reliable. However, the techniques that use the Hessian can be prohibitively
slow for larger problems.

The following guidelines can be used in choosing an algorithm for a particular prob-
lem.

• Without nonlinear constraints:

– Smaller Problems: TRUREG or NEWTYP
if n ≤ 1000 and the Hessian matrix is not expensive to compute.
Sometimes NEWTYP can be faster than TRUREG, but TRUREG is gen-
erally more stable.

– Larger Problems: CONGRA
if n > 1000, the objective function and the gradient can be computed
much more quickly than the Hessian, and too much memory is needed
to store the Hessian. CONGRA in general needs more iterations than
NEWTYP or TRUREG, but each iteration tends to be much faster. Since

930 � Chapter 10. The NLPC Nonlinear Optimization Solver

CONGRA needs less memory, many larger problems can be solved more
efficiently by CONGRA.

• With nonlinear constraints:

– QUANEW (experimental)
QUANEW is the optimization method in the NLPC solver that solves
problems with nonlinear constraints.

Trust Region Method (TRUREG)

The TRUREG method uses the gradient ∇f(xk) and the Hessian matrix ∇2f(xk),
and it thus requires that the objective function f(x) have continuous first- and second-
order partial derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlin-
ear objective function within a hyperelliptic trust region with radius ∆ that constrains
the step length corresponding to the quality of the quadratic approximation. The trust
region method is implemented using the techniques described in Dennis, Gay, and
Welsch (1981), Gay (1983), and Moré and Sorensen (1983).

The trust region method performs well for small to medium-sized problems and
does not require many function, gradient, and Hessian calls. If the evaluation of
the Hessian matrix is computationally expensive in larger problems, the conjugate
gradient algorithm might be more appropriate.

Newton-Type Method with Line Search (NEWTYP)

The NEWTYP technique uses the gradient ∇f(xk) and the Hessian matrix ∇2f(xk),
and it thus requires that the objective function have continuous first- and second-
order partial derivatives inside the feasible region. If second-order partial derivatives
are computed efficiently and precisely, the NEWTYP method can perform well for
medium to large problems.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully.
Otherwise, a combination of ridging and line search is done to compute success-
ful steps. If the Hessian is not positive definite, a multiple of the identity matrix is
added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is done along the search direction to find an approx-
imate optimum of the objective function. The line-search method uses quadratic
interpolation and cubic extrapolation.

Conjugate Gradient Method (CONGRA)

Second-order derivatives are not used by CONGRA. The CONGRA algorithm can
be expensive in function and gradient calls but needs only O(n) memory for un-
constrained optimization. In general, many iterations are needed to obtain a precise
solution by using CONGRA, but each iteration is computationally inexpensive. The
update formula for generating the conjugate directions uses the automatic restart up-
date method of Powell (1977) and Beale (1972).

Conditions of Optimality � 931

The CONGRA method should be used for optimization problems with large n. For
the unconstrained or bound constrained case, CONGRA needs only O(n) bytes of
working memory, whereas all other optimization methods require O(n2) bytes of
working memory. During n successive iterations, uninterrupted by restarts or changes
in the working set, the conjugate gradient algorithm computes a cycle of n conjugate
search directions. In each iteration, a line search is done along the search direction
to find an approximate optimum of the objective function value. The line-search
method uses quadratic interpolation and cubic extrapolation to obtain a step length
α satisfying the Goldstein conditions (Fletcher 1987). Only one of the Goldstein
conditions needs to be satisfied if the feasible region defines an upper limit for the
step length.

Quasi-Newton Method (QUANEW) (Experimental)

The quasi-Newton method uses the gradient to approximate the Hessian. It works
well for medium to moderately large optimization problems where the objective func-
tion and the gradient are much faster to compute than the Hessian, but in general it
requires more iterations than the TRUREG and NEWTYP techniques, which com-
pute the exact Hessian.

The specific algorithms implemented in the QUANEW technique depend on whether
or not there are nonlinear constraints.

Unconstrained or Linearly Constrained Problems

If there are no nonlinear constraints, QUANEW updates the Cholesky factor of the ap-
proximate Hessian. In each iteration, a line search is done along the search direction
to find an approximate optimum. The line-search method uses quadratic interpolation
and cubic extrapolation to obtain a step length satisfying the Goldstein conditions.

Nonlinearly Constrained Problems

The algorithm implemented in the quasi-Newton method is an efficient modification
of Powell’s (1978, 1982) Variable Metric Constrained WatchDog (VMCWD) algo-
rithm. A similar but older algorithm (VF02AD) is part of the Harwell library. Both
VMCWD and VF02AD use Fletcher’s VE02AD algorithm (part of the Harwell li-
brary) for strictly convex quadratic programming. The implementation in the NLPC
solver uses a quadratic programming algorithm that updates the approximation of the
Cholesky factor when the active set changes. The QUANEW method is not a feasible-
point algorithm, and the value of the objective function might not decrease (mini-
mization) or increase (maximization) monotonically. Instead, the algorithm tries to
reduce the value of a merit function, a linear combination of the objective function
and constraint violations.

Conditions of Optimality

To facilitate discussion of the optimality conditions, we rewrite the general form of
nonlinear optimization problems from the section “Overview” on page 913 by group-
ing the equality constraints and inequality constraints. We also rewrite all the general
nonlinear inequality constraints and bound constraints in one form as “≥” inequality

932 � Chapter 10. The NLPC Nonlinear Optimization Solver

constraints. Thus we have the following formulation:

minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

where E is the set of indices of the equality constraints, I is the set of indices of the
inequality constraints, and m = |E|+ |I|.

A point x is feasible if it satisfies all the constraints ci(x) = 0, i ∈ E and ci(x) ≥
0, i ∈ I. The feasible region F consists of all the feasible points. In unconstrained
cases, the feasible region F is the entire Rn space.

A feasible point x∗ is a local solution of the problem if there exists a neighborhood
N of x∗ such that

f(x) ≥ f(x∗) for all x ∈ N ∩ F

Further, a feasible point x∗ is a strict local solution if strict inequality holds in the
preceding case; i.e.,

f(x) > f(x∗) for all x ∈ N ∩ F

A feasible point x∗ is a global solution of the problem if no point in F has a smaller
function value than f(x∗); i.e.,

f(x) ≥ f(x∗) for all x ∈ F

All the algorithms in the NLPC solver find a local solution of an optimization prob-
lem.

Unconstrained Optimization

The following conditions hold true for unconstrained optimization problems:

• First-order necessary conditions: If x∗ is a local solution and f(x) is con-
tinuously differentiable in some neighborhood of x∗, then

∇f(x∗) = 0

• Second-order necessary conditions: If x∗ is a local solution and f(x) is
twice continuously differentiable in some neighborhood of x∗, then∇2f(x∗) is
positive semidefinite.

• Second-order sufficient conditions: If f(x) is twice continuously differen-
tiable in some neighborhood of x∗, ∇f(x∗) = 0, and ∇2f(x∗) is positive defi-
nite, then x∗ is a strict local solution.

Conditions of Optimality � 933

Constrained Optimization

For constrained optimization problems, the Lagrangian function is defined as follows:

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x)

where λi, i ∈ E ∪ I, are called Lagrange multipliers. ∇xL(x, λ) is used to denote
the gradient of the Lagrangian function with respect to x, and ∇2

xL(x, λ) is used to
denote the Hessian of the Lagrangian function with respect to x. The active set at a
feasible point x is defined as

A(x) = E ∪ {i ∈ I : ci(x) = 0}

We also need the following definition before we can state the first-order and second-
order necessary conditions:

• Linear independence constraint qualification and regular point: A point x
is said to satisfy the linear independence constraint qualification if the gradi-
ents of active constraints

∇ci(x), i ∈ A(x)

are linearly independent. Further, we refer to such a point x as a regular point.

We now state the theorems that are essential in the analysis and design of algorithms
for constrained optimization:

• First-order necessary conditions: Suppose that x∗ is a local minimum and
also a regular point. If f(x) and ci(x), i ∈ E ∪ I, are continuously differ-
entiable, there exist Lagrange multipliers λ∗ ∈ Rm such that the following
conditions hold:

∇xL(x∗, λ∗) = ∇f(x∗)−
∑

i∈E∪I
λ∗i∇ci(x∗) = 0

ci(x∗) = 0, i ∈ E
ci(x∗) ≥ 0, i ∈ I

λ∗i ≥ 0, i ∈ I
λ∗i ci(x∗) = 0, i ∈ I

The preceding conditions are often known as the Karush-Kuhn-Tucker condi-
tions, or KKT conditions for short. Also, the first set of equations are referred
to as the stationarity condition, and the last set of equations are referred to as
the complementarity condition.

• Second-order necessary conditions: Suppose x∗ is a local minimum and
also a regular point. Let λ∗ be the Lagrange multipliers that satisfy the KKT

934 � Chapter 10. The NLPC Nonlinear Optimization Solver

conditions. If f(x) and ci(x), i ∈ E ∪ I, are twice continuously differentiable,
the following conditions hold:

zT∇2
xL(x∗, λ∗)z ≥ 0

for all z ∈ Rn that satisfy

∇ci(x∗)Tz = 0, i ∈ A(x∗)

• Second-order sufficient conditions: Suppose there exist a point x∗ and some
Lagrange multipliers λ∗ such that the KKT conditions are satisfied. If the con-
ditions

zT∇2
xL(x∗, λ∗)z > 0

for all z ∈ Rn that satisfy

∇ci(x∗)Tz = 0, i ∈ A(x∗)

hold true, then x∗ is a strict local solution.

Note that the set of all such z’s forms the null space of the matrix[
∇ci(x∗)T

]
i∈A(x∗). Hence we can search for strict local solutions by numer-

ically checking the Hessian of the Lagrangian function projected onto the
null space. For a rigorous treatment of the optimality conditions, see Fletcher
(1987) and Nocedal and Wright (1999).

The optimization algorithms in the NLPC solver apply an iterative process that results
in a sequence of points, x0, ..., xk, ..., that converge to a local solution x∗ satisfying
the first-order conditions. At the solution the NLPC solver performs tests to confirm
that the second-order conditions are also satisfied.

Optimality Control

The ABSOPTTOL= and RELOPTTOL= options are based on satisfying the first-
order necessary conditions. In particular, the stationarity condition requires the gra-
dient of the objective function or Lagrange function to be zero at the optimal point
x∗, i.e.,

∇f(x∗) = 0

in unconstrained cases and
∇xL(x∗, λ∗) = 0

in constrained cases.

Since the computation is carried out in finite-precision arithmetic, rounding errors
prevent the algorithms from exactly satisfying the preceding condition. Instead, we
terminate the algorithms at some small threshold values for the preceding gradients.
These threshold values can be measured in an absolute or relative sense. We define
ξk
1 , the absolute optimality error at xk, as

ξk
1 = ‖∇f(xk)‖∞

Infeasibility � 935

for unconstrained problems, or

ξk
1 = ‖∇xL(xk, λk)‖∞

for constrained problems. We define ξk
2 , the relative optimality error at xk, as

ξk
2 =

‖∇f(xk)‖∞
max{1, |f(xk)|}

for unconstrained problems, or

ξk
2 =

‖∇xL(xk, λk)‖∞
max{1, ‖∇f(xk)‖∞}

for constrained problems.

An optimization algorithm terminates at xk if both termination criteria as specified by
the ABSOPTTOL=δ1 and RELOPTTOL=δ2 options are satisfied—that is, if ξk

1 ≤ δ1

and ξk
2 ≤ δ2. The default value of ABSOPTTOL=1.0E−3 effectively prevents an

algorithm from terminating at some point xk where the absolute optimality error, as
measured by the maximum magnitude of the gradient elements at xk, is large but the
relative optimality error is small.

If you set a very small value for the ABSOPTTOL= or RELOPTTOL= option, de-
pending on the problem, the termination criteria might not be able to be satisfied. This
is especially true when a very small value of the ABSOPTTOL= option is used, and
it often occurs when the magnitudes of the objective value or the gradient elements
are very large. It can also occur when finite-difference approximations of derivatives
are used.

In addition, the complementarity condition must be satisfied at the optimal point x∗.
This condition is checked at the end of the optimization by using the same crite-
ria characterized by the ABSOPTTOL= or RELOPTTOL= option. See the section
“Conditions of Optimality” on page 931 for more information about the optimality
conditions.

Infeasibility

Like any iterative algorithm, an optimization algorithm is carried out in finite-
precision arithmetic and is subject to numerical rounding errors. Thus, when an algo-
rithm terminates, the constraints might not be satisfied exactly. Instead we consider a
constraint to be satisfied if the violation is within some prescribed tolerance. Such a
violation can be measured in an absolute or relative sense.

For an optimization problem of the general form described in the section “Overview”
on page 913, we rewrite the constraints (including bound constraints) in the form

ci(x) = bi, i ∈ E
ci(x) ≥ bi, i ∈ I

936 � Chapter 10. The NLPC Nonlinear Optimization Solver

where E and I denote the sets of equality and inequality constraints, respectively. We
define the absolute infeasibility νk

1 at xk to be the maximum constraint violation in
absolute measure as follows:

νk
1 = max

i∈E,j∈I
{|ci(xk)− bi|, bj − cj(xk)}

We define the relative infeasibility νk
2 at xk to be the maximum constraint violation

in relative measure as follows:

νk
2 = max

i∈E,j∈I

{
|ci(xk)− bi|
max{1, |bi|}

,
bj − cj(xk)
max{1, |bj |}

}
For feasibility control, we choose ε to be the tolerance for the relative infeasibility.
For a solution xk to be considered feasible, we require that the following hold for the
relative infeasibility:

νk
2 ≤ ε

In the NLPC solver, we set ε = 1.0E−6.

Associated with the infeasibility is the conditional optimality. A solution xk is con-
sidered to be conditionally optimal if xk satisfies the optimality criteria described in
the section “Optimality Control” on page 934 and if the following is true:

ε < νk
2 < 1.0E−3

That is, the default tolerance for the relative infeasibility is not satisfied, but the rel-
ative infeasibility is not too large. This is useful for problems whose constraints are
not well scaled.

Feasible Starting Point

You can specify a starting point for the optimization. If the specified point is infea-
sible to linear and/or bound constraints, two schemes are used to obtain a feasible
starting point (feasible to linear and bound constraints only), depending on the type
of problem. They are as follows.

• When only bound constraints are specified:

– If the variable xi, i = 1, . . . , n, violates a two-sided bound constraint
li ≤ xi ≤ ui, the variable is given a new value inside the feasible interval,
as follows:

xi =


li, if ui = li

li + 1
2(ui − li), if ui − li < 4

li + 1
10(ui − li), if ui − li ≥ 4

Computational Problems � 937

– If the variable xi, i = 1, . . . , n, violates a one-sided bound constraint
li ≤ xi or xi ≤ ui, the variable is given a new value near the violated
bound, as follows:

xi =

 li + max{1, 1
10 li}, if xi < li

ui −max{1, 1
10ui}, if xi > ui

• When general linear constraints are specified, the scheme to find a feasible
starting point involves two algorithms that 1) find a feasible point independent
of the starting point or 2) find a feasible point closest to the starting point. Both
algorithms are active set methods.

Line-Search Method

At each iteration k, the conjugate gradient (CONGRA), Newton-type (NEWTYP)
and quasi-Newton (QUANEW) optimization techniques use iterative line-search al-
gorithms. These algorithms try to optimize a quadratic or cubic approximation of
some merit function along the search direction sk by computing an approximately
optimal step length αk that is used as follows:

xk+1 = xk + αksk, αk > 0

A line-search algorithm is an iterative process that optimizes a nonlinear function
of one variable α within each iteration k of the main optimization algorithm, which
itself tries to optimize a quadratic approximation of the nonlinear objective function
f(x). Since the outside iteration process is based only on the approximation of the
objective function, the inside iteration of the line-search algorithm does not have to be
perfect. Usually the appropriate choice of α is one that significantly reduces (in the
case of minimization) the objective function value. Criteria often used for termination
of line-search algorithms are the Goldstein conditions; see Fletcher (1987).

The line-search method in the NLPC solver is implemented as described in Fletcher
(1987).

Computational Problems

First-Iteration Overflows

If you provide bad initial values for the decision variables, the computation of the
value of the objective function (and its derivatives) can lead to arithmetic overflows
in the first iteration. The line-search algorithms that work with cubic extrapolation
are especially sensitive to arithmetic overflows. Hence the starting point x0 must be
a point at which all the functions involved in your problem can be evaluated. In the
event of arithmetic overflow, consider the following corrective actions:

• Provide a new set of initial values.

938 � Chapter 10. The NLPC Nonlinear Optimization Solver

• Scale the variables or functions.

• If possible, use bound or linear constraints to avoid regions where overflows
can happen.

Problems in Evaluating the Objective or Constraint Functions

During the optimization process, the algorithm might iterate to a point xk where the
objective function or nonlinear constraint functions and their derivatives cannot be
evaluated. If you can identify the problematic region, you can prevent the algorithm
from stepping into it by adding some bound or linear constraints to the problem, pro-
vided that adding these constraints does not alter the characteristics of the problem.
As a result, the optimization algorithm reduces the step length and stays closer to the
points at which the functions and their derivatives can be evaluated successfully.

Numerical difficulty is also often encountered when evaluation of the objective func-
tion or nonlinear constraints results in undesirably large function values. In this case,
a possible remedy is to scale the objective functions or nonlinear constraints so that
undesirably large function values do not occur.

Precision of Solution

In some applications the NLPC solver can return solutions that are not precise
enough. Usually this means that the algorithm terminated too early at a point too
far from the optimal point. The termination criteria define the size of the termination
region around the optimal point. Any point inside this region can be accepted for ter-
minating the optimization process. The default values of the termination criteria are
set to satisfy a reasonable compromise between the computational effort (CPU time)
and the precision of the solutions for the most common applications. However, there
can be circumstances in which the default values of the termination criteria specify a
region that is either too large or too small. If the termination region is too large, it can
contain points with low precision. In such cases where the messages in the SAS log
usually give some hints, you can often obtain a solution with higher precision simply
by specifying a smaller value for the termination criterion that was satisfied during
the previous run.

If the termination region is too small, the optimization process can take longer to
find a point inside such a region or might not even find such a point due to rounding
errors in function values and derivatives. This can happen when finite-difference ap-
proximations of derivatives are used or when the RELOPTTOL= or ABSOPTTOL=
termination criteria are too small with respect to rounding errors in the gradient. In
such cases, try specifying larger values for the RELOPTTOL= or ABSOPTTOL=
option.

Iteration Log

The iteration log consists of one line of output containing the most important infor-
mation for each iteration. The iteration log appears in the listing and can be captured
as an ODS output data set. By default the iteration log is not displayed, but the user
can use the PRINTFREQ= option to display it.

Iteration Log � 939

The following columns are common to all four optimization techniques. The words
in parentheses indicate the column headings in long form; the words in angle brackets
indicate the column headings in short form.

• iteration number (Iter)

• cumulative number of function calls, up to the end of the current iteration
(Function Calls) <Func Calls>

• value of the objective function (Objective Value) <Obj Value>

• relative optimality error as described in the section “Optimality Control” on
page 934 (Optimality Error) <Optim Error>

The number displayed under the heading “Function Calls” does not include function
calls performed during preprocessing. The number of function calls displayed by
the PRINTLEVEL=2 option in the OPTMODEL procedure includes function calls
performed in both preprocessing and postprocessing.

In addition to the preceding common columns, there are columns specific to an opti-
mization technique, as follows.

• For the conjugate gradient (CONGRA) method, the following three additional
columns are displayed:

– step size (Step Size)
– slope of the search direction, i.e., inner product of the gradients of the

objective function and the search direction (Slope of Search Direction)
<Slope Search Direc>

– number of iteration restarts (Restarts) <Rest>

• For the Newton-type (NEWTYP) method, the following two additional
columns are displayed:

– step size (Step Size)
– slope of the search direction (Slope of Search Direction) <Slope Search

Direc>

• For the trust region (TRUREG) method, the following additional column is
displayed:

– trust region radius (Trust Region Radius)

• For the quasi-Newton (QUANEW) method, the columns displayed depend on
whether the problem has nonlinear constraints or not. Without nonlinear con-
straints, the same two additional columns as in the Newton-type (NEWTYP)
method are displayed. If there are nonlinear constraints, the following three
additional columns are displayed:

– relative infeasibility as described in the section “Infeasibility” on page
935 (Infeasibility) <Infeas>

– step size (Step Size)

940 � Chapter 10. The NLPC Nonlinear Optimization Solver

– predicted function reduction using the quadratic model (Predicted
Function Reduction) <Pred Func Reduc>

Table 10.4 shows all the column headings that can appear in the ODS table
“IterationLog,” as well as the corresponding variable names in the ODS output data
set.

Table 10.4. ODS Column Headings and Variable Names

Column Heading (Long) Variable Name

Iter Iter

Function Calls Func

Objective Value ObjVal

Optimality Error MxGradRes

Step Size Alpha

Slope of Search Direction SlopeSD

Restarts Rest

Trust Region Radius Radius

Infeasibility MxConViol

Predicted Function Reduction PrFReduc

By default, the SAS list output is accumulated to a full page before it is displayed in
the output window, so you do not see the iteration log immediately as the iteration
proceeds. In order to view the iteration log immediately after every iteration, you
need to set the AUTO SCROLL option to 1 in the SAS session. You can do this in
either of the following two ways:

• Select a list output window. Then enter the command ascroll 1 in the command
line window.

• In the output window, select Tools I Options I Preferences. In the
Preferences window, click the Advanced tab and select Scroll lines from the
Output group. Type 1 in the list box, and click OK to close the window.

Macro Variable –OROPTMODEL–
The OPTMODEL procedure always creates and initializes a SAS macro called
–OROPTMODEL–. This variable contains a character string. After each
PROC OROPTMODEL run, you can examine this macro by specifying %put
–OROPTMODEL–; and check the execution of the most recently invoked solver
from the value of the macro variable. The various terms of the variable after the
NLPC solver is called are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK solver terminated normally

Macro Variable –OROPTMODEL– � 941

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing of data

SEMANTIC–ERROR evaluation error, such as an invalid operand type

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL optimality of the solution cannot be
proven

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

BAD–PROBLEM–TYPE problem type is unsupported by solver

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED solver reached its execution time limit

FUNCTION–CALL–LIMIT–REACHED solver reached its limit on function eval-
uations

FAILED solver failed to converge, possibly due to
numerical issues

OBJECTIVE
indicates the objective value obtained by the solver at termination.

ABS–OPTIMALITY–ERROR
indicates the absolute optimality error at the solution. See the section “Optimality
Control” on page 934 for details.

REL–OPTIMALITY–ERROR
indicates the relative optimality error at the solution. See the section “Optimality
Control” on page 934 for details.

ABS–INFEASIBILITY
indicates the absolute infeasibility at the solution. See the section “Infeasibility” on
page 935 for details.

REL–INFEASIBILITY
indicates the relative infeasibility at the solution. See the section “Infeasibility” on
page 935 for details.

942 � Chapter 10. The NLPC Nonlinear Optimization Solver

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE–TIME
indicates the real time taken for preprocessing (seconds).

SOLUTION–TIME
indicates the real time taken by the NLPC solver to perform iterations for solving the
problem (seconds).

Examples

Example 10.1. Least Squares Problem
Although the current release of the NLPC solver does not implement techniques spe-
cialized for least squares problems, this example illustrates how the NLPC solver can
solve least squares problems by using general nonlinear optimization techniques. The
following Bard function (see Moré, Garbow, and Hillstrom 1981) is a least squares
problem with 3 parameters and 15 residual functions fk:

f(x) =
1
2

15∑
k=1

f2
k (x), x = (x1, x2, x3)

where

fk(x) = yk −
(

x1 +
uk

vkx2 + wkx3

)
with uk = k, vk = 16− k, wk = min{uk, vk}, and

y = (.14, .18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96, 1.34, 2.10, 4.39)

The minimum function value f(x∗) = 4.107E–3 is at the point
x∗ = (0.08, 1.13, 2.34). The starting point x0 = (1, 1, 1) is used.

You can use the following SAS code to formulate and solve this least squares prob-
lem:

proc optmodel;
set S = 1..15;
number u{k in S} = k;
number v{k in S} = 16 - k;
number w{k in S} = min(u[k], v[k]);
number y{S} = [.14 .18 .22 .25 .29 .32 .35 .39 .37 .58

.73 .96 1.34 2.10 4.39];
var x{1..3} init 1;

min f = 0.5*sum{k in S} (y[k] -
(x[1] + u[k]/(v[k]*x[2] + w[k]*x[3]))

)^2;

solve with nlpc / printfreq=1;
print x;

quit;

Example 10.1. Least Squares Problem � 943

A problem summary is displayed in Output 10.1.1. Since there is no explicit opti-
mization technique specified (using the TECH= option), the default algorithm of the
trust region method is used. Output 10.1.2 displays the iteration log. The solution
summary and the solution are shown in Output 10.1.3.

Output 10.1.1. Least Squares Problem Solved with TRUREG: Problem Summary

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 3
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 3
Fixed 0

Number of Constraints 0

Output 10.1.2. Least Squares Problem Solved with TRUREG: Iteration Log

Iteration Log: Trust Region Method

Trust
Function Objective Optimality Region

Iter Calls Value Error Radius

0 0 20.8408 1.2445 .
1 1 2.8333 2.7031 1.000
2 2 0.6302 2.3180 0.989
3 3 0.1077 0.7732 0.998
4 4 0.009011 0.1396 1.007
5 5 0.004134 0.0125 1.042
6 6 0.004107 0.0000805 0.199
7 7 0.004107 4.3523E-8 0.0207

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

944 � Chapter 10. The NLPC Nonlinear Optimization Solver

Output 10.1.3. Least Squares Problem Solved with TRUREG: Solution

Solution Summary

Solver NLPC/Trust Region
Objective Function f
Solution Status Optimal
Objective Value 0.0041074387
Iterations 7

Absolute Optimality Error 4.352335E-8
Relative Optimality Error 4.352335E-8
Absolute Infeasibility 0
Relative Infeasibility 0

[1] x

1 0.082411
2 1.133036
3 2.343696

Alternatively, you can specify the Newton-type method with line search by using the
following statement:

solve with nlpc / tech=newtyp printfreq=1;

You get the output for the NEWTYP method as shown in Output 10.1.4 and Output
10.1.5.

Output 10.1.4. Least Squares Problem Solved with NEWTYP: Iteration Log

Iteration Log: Newton-Type Method with Line Search

Slope of
Function Objective Optimality Step Search

Iter Calls Value Error Size Direction

0 0 20.8408 1.2445 . .
1 1 2.2590 2.6880 1.000 -35.485
2 2 0.6235 2.3158 1.000 -2.577
3 3 0.1116 0.7488 1.000 -0.831
4 4 0.0115 0.1703 1.000 -0.172
5 5 0.004188 0.0167 1.000 -0.0136
6 6 0.004109 0.000427 1.000 -0.0002
7 7 0.004109 0.0000637 1.000 -578E-9
8 8 0.004108 0.0000352 1.000 -95E-8
9 9 0.004107 8.7568E-6 1.000 -52E-8
10 10 0.004107 1.1411E-6 1.000 -33E-9
11 11 0.004107 8.2006E-8 1.000 -63E-11

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

Example 10.1. Least Squares Problem � 945

Output 10.1.5. Least Squares Problem Solved with NEWTYP: Solution

Solution Summary

Solver NLPC/Newton-Type
Objective Function f
Solution Status Optimal
Objective Value 0.0041074387
Iterations 11

Absolute Optimality Error 8.2005644E-8
Relative Optimality Error 8.2005644E-8
Absolute Infeasibility 0
Relative Infeasibility 0

[1] x

1 0.082411
2 1.133059
3 2.343674

You can also select the conjugate gradient method as follows:

solve with nlpc / tech=congra printfreq=2;

Note that the PRINTFREQ= option was used to reduce the number of rows in the
iteration log. As Output 10.1.6 shows, only every other iteration is displayed. Output
10.1.7 gives a summary of the solution and prints the solution.

946 � Chapter 10. The NLPC Nonlinear Optimization Solver

Output 10.1.6. Least Squares Problem Solved with CONGRA: Iteration Log

Iteration Log: Conjugate Gradient Method

Slope of
Function Objective Optimality Step Search

Iter Calls Value Error Size Direction Restarts

0 0 20.8408 1.2445 . . 0
2 4 0.7199 1.1503 0.108 -11.045 1
4 10 0.0119 0.4362 0.150 -0.0010 2
6 14 0.004903 0.008169 35.849 -0.0001 3
8 19 0.004788 0.0819 22.628 -0.0001 4
10 24 0.004233 0.0436 0.679 -0.0034 6
12 28 0.004201 0.0191 0.345 -0.0001 7
14 32 0.004166 0.0161 20.000 -129E-7 8
16 36 0.004160 0.003508 0.112 -205E-8 9
18 40 0.004108 0.001920 9.125 -108E-7 10
20 44 0.004108 0.000637 2.000 -178E-9 12
22 48 0.004107 0.000581 0.291 -245E-9 13
24 52 0.004107 2.5337E-6 2.000 -62E-13 14
25 54 0.004107 7.4262E-8 0.142 -15E-12 14

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

Output 10.1.7. Least Squares Problem Solved with CONGRA: Solution

Solution Summary

Solver NLPC/Conjugate Gradient
Objective Function f
Solution Status Optimal
Objective Value 0.0041074387
Iterations 25

Absolute Optimality Error 7.4261706E-8
Relative Optimality Error 7.4261706E-8
Absolute Infeasibility 0
Relative Infeasibility 0

[1] x

1 0.082411
2 1.133038
3 2.343693

Although the number of iterations required for each optimization technique to con-
verge varies, all three techniques produce the identical solution, given the same start-
ing point.

Example 10.2. Maximum Likelihood Weibull Model � 947

Example 10.2. Maximum Likelihood Weibull Model

This model is obtained from Lawless (1982, pp. 190–194). Suppose you want to
find the maximum likelihood estimates for the three-parameter Weibull model. The
observed likelihood function is

L(µ, α, β) =
βr

αr

[∏
i∈D

(
ti − µ

α

)β−1
]

n∏
i=1

exp

[
−
(

ti − µ

α

)β
]

where n is the number of individuals involved in the experiment, D is the set of
individuals whose lifetimes are observed, and r = |D|. Then the log-likelihood
function is

l(µ, α, β) = r log β − rβ log α + (β − 1)
∑
i∈D

log(ti − µ)−
n∑

i=1

(
ti − µ

α

)β

Note that for β < 1, the logarithmic terms become infinite as µ ↑mini∈D(ti). That
is, l(µ, α, β) is unbounded. Thus our interest is restricted to β values greater than or
equal to 1. Further, for the logarithmic terms to be defined, it is required that α > 0
and µ < mini∈D(ti).

The following data from Pike (1966) represent the number of days it took the rats
painted with the carcinogen DMBA to develop carcinomas:

143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227,
230, 234, 246, 265, 304, 216*, 244*

Note that the last two observations have an asterisk next to them. This indicates that
those two rats did not develop carcinomas. These are referred to as censored data.

For these data, a local maximum of l(µ, α, β) occurs at µ∗ = 122, α∗ = 108.4, and
β∗ = 2.712. You can create the input data set by using the following SAS code:

data pike;
input days cens @@;
datalines;

143 0 164 0 188 0 188 0
190 0 192 0 206 0 209 0
213 0 216 0 220 0 227 0
230 0 234 0 246 0 265 0
304 0 216 1 244 1
;

The first r = 17 observations in the data set correspond to the rats that develop
carcinomas; mini∈D(ti) = 143 in this case. Using the preceding data, you can
formulate the Weibull model as follows:

proc optmodel;
set S; /* set of rats in the experiment */

948 � Chapter 10. The NLPC Nonlinear Optimization Solver

set D; /* set of rats that develop carcinomas */
number r = card(D);
number t{S};
number cens{S};
var alpha >= 0 init 1;
var beta >= 1 init 1;
var mu >= 0 <= min{i in D} t[i] init 10;
max logl = r*log(beta) - r*beta*log(alpha)

+ (beta - 1)*sum{i in D} log(t[i] - mu)
- sum{i in S} ((t[i] - mu)/alpha)^beta;

read data pike into S=[_n_] t=days cens;
D = {i in S : cens[i] = 0};

solve with nlpc / printfreq=1;
print mu alpha beta;

quit;

Assume a starting point at α0 = 1, β0 = 1, and µ0 = 10. The data for all the rats in
the experiment are read using the READ statement. The following statement subsets
D to the set of rats that develop carcinomas:

D = {i in S : cens[i] = 0};

The NLPC solver invokes the default optimization technique (the trust region method)
to solve this problem.

Output 10.2.1 through Output 10.2.3 show the problem summary, iteration log, solu-
tion summary, and solution. As you can see, the solution obtained by the trust region
method matches closely with the local maximum given in Lawless (1982, p. 193).

Output 10.2.1. Maximum Likelihood Weibull Model: Problem Summary

Problem Summary

Objective Sense Maximization
Objective Function logl
Objective Type Nonlinear

Number of Variables 3
Bounded Above 0
Bounded Below 2
Bounded Below and Above 1
Free 0
Fixed 0

Number of Constraints 0

Example 10.3. Maximum Likelihood Weibull Model � 949

Output 10.2.2. Maximum Likelihood Weibull Model: Iteration Log

Iteration Log: Trust Region Method

Trust
Function Objective Optimality Region

Iter Calls Value Error Radius

0 0 -3905 0.1874 .
1 1 -2606 0.1357 1.000
2 2 -1747 0.0990 1.015
3 3 -1235 0.0754 0.954
4 4 -959.2572 0.0620 2.060
5 5 -670.6203 0.0472 1.910
6 6 -520.6900 0.0390 3.942
7 7 -371.3259 0.0305 3.850
8 8 -292.0677 0.0256 3.987
9 9 -219.7420 0.0214 7.985
10 10 -179.8333 0.0192 8.222
11 12 -144.7603 0.0196 18.466
12 13 -125.6711 0.0248 19.148
13 17 -106.4779 1.0000 11.525
14 21 -88.1397 1.0000 15.904
15 22 -87.4005 0.4041 15.904
16 23 -87.3426 0.0115 4.288
17 24 -87.3270 0.006032 4.355
18 25 -87.3243 0.002287 4.355
19 26 -87.3242 0.0000486 2.666
20 27 -87.3242 1.4815E-8 0.359

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

Output 10.2.3. Maximum Likelihood Weibull Model: Solution

Solution Summary

Solver NLPC/Trust Region
Objective Function logl
Solution Status Optimal
Objective Value -87.32424712
Iterations 20

Absolute Optimality Error 1.4815488E-8
Relative Optimality Error 1.4815488E-8
Absolute Infeasibility 0
Relative Infeasibility 0

mu alpha beta

122.03 108.38 2.7115

950 � Chapter 10. The NLPC Nonlinear Optimization Solver

Example 10.3. Simple Pooling Problem

Consider Example 4.7 in the PROC NLP documentation. In this simple pooling prob-
lem, two liquid chemicals, X and Y , are produced by the pooling and blending of
three input liquid chemicals, A, B, and C. There are three group of constraints: 1)
the mass balance constraints, which are linear constraints; 2) the sulfur concentra-
tion constraints, which are nonlinear constraints; and 3) the bound constraints. The
objective is to maximize the profit.

You can formulate this problem in PROC OPTMODEL as follows:

proc optmodel;
num costa = 6, costb = 16, costc = 10,

costx = 9, costy = 15;
var amountx init 1 >= 0 <= 100,

amounty init 1 >= 0 <= 200;
var amounta init 1 >= 0,

amountb init 1 >= 0,
amountc init 1 >= 0;

var pooltox init 1 >= 0,
pooltoy init 1 >= 0;

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >=1 <= 3;

max f = costx*amountx + costy*amounty
- costa*amounta - costb*amountb - costc*amountc;

con mb1: amounta + amountb = pooltox + pooltoy,
mb2: pooltox + ctox = amountx,
mb3: pooltoy + ctoy = amounty,
mb4: ctox + ctoy = amountc;

con sc1: 2.5*amountx - pools*pooltox - 2*ctox >= 0,
sc2: 1.5*amounty - pools*pooltoy - 2*ctoy >= 0,
sc3: 3*amounta + amountb - pools*(amounta + amountb) = 0;

solve with nlpc / tech=quanew printfreq=1;
print amountx amounty amounta amountb amountc;

quit;

The quantities amounta, amountb, amountc, amountx, and amounty are the
amounts to be determined for the liquid chemicals A, B, C, X , and Y , respectively.
pooltox, pooltoy, ctox, ctoy, and pools are intermediate decision variables, whose
values are not printed in the solution. The constraints mb1–mb4 are the mass balance
constraints, and the constraints sc1–sc3 are the sulfur concentration constraints.
For more information about converting PROC NLP models into PROC OPTMODEL
models, see the section “Rewriting NLP Models for PROC OPTMODEL” on page
797.

To solve the optimization problem, the experimental quasi-Newton method
(QUANEW) is invoked. The problem summary is shown in Output 10.3.1. Output
10.3.2 displays the iteration log.

Example 10.3. Simple Pooling Problem � 951

Output 10.3.1. Simple Pooling Problem: Problem Summary

Problem Summary

Objective Sense Maximization
Objective Function f
Objective Type Linear

Number of Variables 10
Bounded Above 0
Bounded Below 7
Bounded Below and Above 3
Free 0
Fixed 0

Number of Constraints 7
Linear LE (<=) 0
Linear EQ (=) 4
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 1
Nonlinear GE (>=) 2
Nonlinear Range 0

Output 10.3.2. Simple Pooling Problem: Iteration Log

Iteration Log: Quasi-Newton Method with BFGS Update

Predicted
Function Objective Optimality Step Function

Iter Calls Value Infeasibility Error Size Reduction

0 0 3.8182 0.6818 0.0527 . .
1 1 -2.6893 0.1731 0.2383 1.000 3.0428
2 2 -1.9376 0.0709 0.2202 1.000 4.6944
3 3 1.2603 0.0541 0.0566 1.000 1.5883
4 4 2.4293 0.008492 0.4107 1.000 1.1871
5 5 3.2903 2.107E-10 0.1666 1.000 2.5714
6 6 5.0987 3.161E-10 0.3283 1.000 4.9682
7 7 10.0669 2.107E-10 2.6895 1.000 63.9047
8 9 28.3332 0.4785 8.3364 0.286 115.6
9 10 103.3932 2.0648 31.3704 1.000 112.7
10 11 159.4438 7.105E-15 11.7888 1.000 376.4
11 12 398.1735 2.2676 9.4167 1.000 29.8946
12 13 397.8877 0.006033 0.8947 1.000 0.0901
13 14 397.9164 5.9666E-6 0.9195 1.000 0.2738
14 15 398.1901 0.000719 0.6228 1.000 2.4290
15 16 400.0000 0.0316 0.0123 1.000 0.3795
16 17 400.0000 7.5712E-7 1.8714E-8 1.000 9.867E-6

NOTE: Optimality criteria (ABSOPTTOL=0.001, RELOPTTOL=1E-6) are satisfied.

952 � Chapter 10. The NLPC Nonlinear Optimization Solver

Output 10.3.3 displays the solution summary and the solution. The optimal solution
shows that to obtain a maximum profit of 400, 200 units of Y should be produced
by blending 100 units of B and 100 units of C. Liquid A should not be used for the
blending. Further, liquid X should not be produced at all.

Output 10.3.3. Simple Pooling Problem: Solution

Solution Summary

Solver NLPC/Quasi-Newton
Objective Function f
Solution Status Optimal
Objective Value 400.00000471
Iterations 16

Absolute Optimality Error 2.9942469E-7
Relative Optimality Error 1.8714043E-8
Absolute Infeasibility 7.5711695E-7
Relative Infeasibility 7.5711695E-7

amountx amounty amounta amountb amountc

-1.8899E-17 200 -1.0537E-10 100 100

References
Avriel, M. (1976), Nonlinear Programming: Analysis and Methods, Englewood

Cliffs, NJ: Prentice-Hall.

Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” in F. A. Lootsma, ed.,
Numerical Methods for Nonlinear Optimization, London: Academic Press.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-
Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.

Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified
Cholesky Factorization,” ACM Transactions on Mathematical Software, 17, 306–
312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester,
UK: John Wiley & Sons.

Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM
Transactions on Mathematical Software, 9, 503–524.

Hock, W. and Schittkowski, K. (1981), Test Examples for Nonlinear Programming
Codes, volume 187 of Lecture Notes in Economics and Mathematical Systems,
Berlin-Heidelberg-New York: Springer-Verlag.

References � 953

Lawless, J. F. (1982), Statistical Methods and Methods for Lifetime Data, New York:
John Wiley & Sons.

Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1981), “Testing Unconstrained
Optimization Software,” ACM Transactions on Mathematical Software, 7, 17–41.

Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM
Journal on Scientific and Statistical Computing, 4, 553–572.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-
Verlag.

Pike, M. C. (1966), “A Method of Analysis of a Certain Class of Experiments in
Carcinogenesis,” Biometrics, 22, 142–161.

Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, 12, 241–254.

Powell, M. J. D. (1978), “Algorithms for Nonlinear Constraints That Use Lagrangian
Functions,” Mathematical Programming, 14, 224–248.

Powell, M. J. D. (1982), “VMCWD: A Fortran Subroutine for Constrained
Optimization,” DAMTP 1982/NA4, cambridge, England.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function,” Computer Journal, 3, 175–184.

Schittkowski, K. (1987), More Test Examples for Nonlinear Programming Codes,
volume 282 of Lecture Notes in Economics and Mathematical Systems, Berlin-
Heidelberg-New York: Springer-Verlag.

954

Chapter 11
The Unconstrained Nonlinear

Programming Solver

Chapter Contents

OVERVIEW . 957

GETTING STARTED . 958

SYNTAX . 960
Functional Summary . 960
NLPU Solver Options . 960

DETAILS . 962
Conditions of Optimality . 962
Line-Search Algorithm . 963
Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm 964
Macro Variable –OROPTMODEL– . 964

EXAMPLES . 965
Example 11.1. Solving a Highly Nonlinear Problem 965
Example 11.2. Solving the Accumulated Rosenbrock Function 967

REFERENCES . 969

956

Chapter 11
The Unconstrained Nonlinear

Programming Solver
Overview

The unconstrained nonlinear programming solver (NLPU) is a component of the
OPTMODEL procedure, and it can be used for solving general unconstrained non-
linear programming (NLP) problems.

Mathematically, an unconstrained nonlinear programming problem can be stated as
follows:

minimize
x∈Rn

f(x)

where x ∈ Rn is the vector of decision variables and f : Rn 7→ R is the nonlinear
objective function. f is assumed to be twice continuously differentiable, meaning
that its second derivatives exist and are continuous in Rn.

For purely unconstrained optimization, PROC OPTMODEL implements the follow-
ing algorithms:

• Fletcher-Reeves nonlinear conjugate gradient algorithm for convex uncon-
strained optimization

• Polak-Ribière nonlinear conjugate gradient algorithm for convex unconstrained
optimization

• Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for general
nonconvex unconstrained optimization (default)

If the objective function is convex, then the optimal solution is a global optimum;
otherwise it is a local optimum. In other words, the optimal solution obtained by the
NLPU solver depends on the starting point. An example of a nonlinear function with
multiple local optima is displayed in Figure 11.1.

958 � Chapter 11. The Unconstrained Nonlinear Programming Solver

Figure 11.1. An Example of Multiple Local Optimal Points

The function displayed in Figure 11.1 is

f(x, y) = sinc (x2 + y2) + sinc ((x− 2)2 + y2)

where sinc(·), also called the “sampling function,” is a function that arises frequently
in signal processing. The function is defined as

sinc(x) ≡

 1 for x = 0,
sin x

x
otherwise

Getting Started
Consider a simple nonlinear problem as follows:

min f = sin(x) + cos(x)

You can formulate and solve the problem by using PROC OPTMODEL as follows:

proc optmodel;
var x;

minimize f = sin(x) + cos(x);

solve with nlpu / tech = lbfgs;

quit;

A problem summary and a solution summary are displayed in Figure 11.2.

Getting Started � 959

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 1
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 1
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver L-BFGS
Objective Function f
Solution Status Optimal
Objective Value -1.414213562
Iterations 5

Optimality Error 1.046407E-6

Figure 11.2. Optimal Solution of the Example Problem

The iteration log is shown in Figure 11.3.

NOTE: The problem has 1 variables (1 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: Using analytic derivatives for objective.
NOTE: The LIMITED MEMORY BFGS solver for unconstrained optimization is called.

Objective Optimality Function
Iter Value Error Calls

0 1.00000000 1.00000000 1
1 -1.36371237 0.10334611 6
2 -1.41417504 0.00310323 9
3 -1.41421338 0.00021392 12
4 -1.41421356 0.00001495429 15
5 -1.41421356 0.00000104641 18

NOTE: Optimal.
NOTE: Objective = -1.41421356.

Figure 11.3. Iteration Log

960 � Chapter 11. The Unconstrained Nonlinear Programming Solver

Syntax
To invoke the NLPU solver, use the following statement:

SOLVE WITH NLPU < / options > ;

Functional Summary

Table 11.1 outlines the options that can be used with the SOLVE WITH NLPU state-
ment.

Table 11.1. Options for the NLPU Solver

Description Option
Optimization Option:
optimization technique TECH=

Solver Options:
unboundedness detection parameter OBJLIMIT=

number of Hessian corrections LBFGSCORR=

Armijo parameter for line search LSARMIJO=

Wolfe parameter for line search LSWOLFE=

Termination Criterion Options:
termination based on relative gradient norm OPTTOL=

maximum number of line-search iterations LSMAXITER=

maximum number of iterations MAXITER=

upper limit (in seconds) on the real time for optimiza-
tion

MAXTIME=

Printed Output Option:
display iteration log PRINTFREQ=

NLPU Solver Options

The following options are supported by the NLPU solver.

LBFGSCORR=n
specifies the number of Hessian corrections for the L-BFGS algorithms. The value of
n can be any integer between 2 and 100. The default value is 7 corrections.

LSARMIJO=c1

specifies the Armijo parameter c1 ∈ (0, 1) for the line-search technique. The default
value is 2.0E–3. See the section “Line-Search Algorithm” on page 963 for details.

Note: The value of the LSARMIJO= option must be less than the value of the
LSWOLFE= option.

NLPU Solver Options � 961

LSWOLFE=c2

specifies the Wolfe parameter c2 ∈ (0, 1) for the line-search technique. The default
value is 0.7. See the section “Line-Search Algorithm” on page 963 for details.

Note: The value of the LSWOLFE= option must be greater than the value of the
LSARMIJO= option.

LSMAXITER=N
specifies the maximum number of line-search iterations within one L-BFGS or con-
jugate gradient method. It can also be viewed as the maximum number of function
evaluations. The value of N can be any number between 20 and 200. The default
value is 200 iterations.

MAXITER=N
specifies that the optimization process stop after a maximum of N iterations. The
value of N cannot exceed the largest four-byte, signed integer, which is 231 − 1. The
default value is 1,000 iterations.

MAXTIME=r
specifies an upper limit of r seconds of real time for the optimization process. If you
do not specify this option, the procedure does not stop based on the amount of time
elapsed. Note that the time specified by the MAXTIME= option is checked only at
the end of each iteration. The optimization terminates when the actual running time
is greater than or equal to r.

OPTTOL=ε
specifies the desired tolerance of the relative gradient norm, which is defined as fol-
lows:

‖∇f(x)‖2

max (‖x‖2, 1)
, x ∈ Rn

The solver terminates when it finds a point where the relative gradient norm of the
objective function is less than ε. See the section “Conditions of Optimality” on page
962 for details. The default value of this option is 1.0E–5.

OBJLIMIT=M
specifies an upper limit on the magnitude of the objective value. For a minimization
problem, the algorithm terminates when the objective value becomes less than −M ;
for a maximization problem, the algorithm stops when the objective value exceeds M .
When this happens, it implies that either the problem is unbounded or the algorithm
diverges. If optimization were allowed to continue, numerical difficulty might be
encountered. The default value is M = 1.0E+20. The minimum acceptable value of
M is 1.0E+8. If the specified value of M is less than 1.0E+8, the value will be reset
to the default value 1.0E+20.

PRINTFREQ=j
specifies that the printing of the solution progress to the iteration log should occur
after every j iterations. The print frequency, j, is an integer between zero and the
largest four-byte, signed integer, which is 231 − 1. The value j = 0 disables the
printing of the progress of the solution. Note that the first and last iterations are also
displayed. The default value for this option is 1.

962 � Chapter 11. The Unconstrained Nonlinear Programming Solver

TECH=keyword
TECHNIQUE=keyword
SOLVER=keyword

specifies the optimization technique. Valid keywords are as follows:

• FLETREEV
uses the Fletcher-Reeves nonlinear conjugate gradient algorithm. See Fletcher
(1987) for details.

• LBFGS
uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. This
is the default solver. See the section “Broyden-Fletcher-Goldfarb-Shanno
(BFGS) Algorithm” on page 964 for details.

• POLRIB
uses the Polak-Ribière nonlinear conjugate gradient algorithm. See Fletcher
(1987) for details.

Details

Conditions of Optimality

Before beginning the discussion, we present the following notation for easy reference:

n dimension of x, i.e., the number of decision variables

x iterate, i.e., the vector of n decision variables

f(x) objective function

∇f(x) gradient of the objective function

∇2f(x) Hessian matrix of the objective function

Denote the feasible region as F . In unconstrained problems, any point x ∈ Rn is a
feasible point. Therefore, the set F is the entire Rn space.

A point x∗ is a local solution of the problem if there exists a neighborhood N of x∗

such that
f(x) ≥ f(x∗) for all x ∈ N ∩ F

Further, a point x∗ is a strict local solution if strict inequality holds in the preceding
case, i.e.,

f(x) > f(x∗) for all x ∈ N ∩ F

A point x∗ ∈ Rn is a global solution of the problem if no point in F has a smaller
function value than f(x∗), i.e.,

f(x) ≥ f(x∗) for all x ∈ F

All the algorithms in the NLPU solver find a local minimum of an optimization prob-
lem.

Line-Search Algorithm � 963

Unconstrained Optimization

The following conditions hold for unconstrained optimization problems:

• First-order necessary conditions: If x∗ is a local solution and f(x) is con-
tinuously differentiable in some neighborhood of x∗, then

∇f(x∗) = 0

• Second-order necessary conditions: If x∗ is a local solution and f(x) is
twice continuously differentiable in some neighborhood of x∗, then∇2f(x∗) is
positive semidefinite.

• Second-order sufficient conditions: If f(x) is twice continuously differen-
tiable in some neighborhood of x∗, and ∇f(x∗) = 0 and ∇2f(x∗) is positive
definite, then x∗ is a strict local solution.

Line-Search Algorithm

The NLPU solver implements an inexact line-search algorithm. Given a search di-
rection d ∈ Rn (produced, e.g., by a quasi-Newton method), each iteration of the line
search selects an appropriate step length α, which would in some sense approximate
α∗, an optimal solution to the following problem:

α∗ = arg min
α≥0

f(x + αd)

Let us define φ(α) as

φ(α) ≡ f(x + αd)

During subsequent line-search iterations, objective function values φ(αi−1), φ(αi)
and their gradients φ′(αi−1), φ′(αi) are used to construct a cubic polynomial inter-
polation, whose minimizer αi+1 over [αi−1, αi] gives the next iterate step length.

An early (economical) line-search termination criterion is given by strong Wolfe con-
ditions:

f(x + αd) ≤ f(x) + c1α〈f ′(x), d〉
|〈f ′(x + αd), d〉| ≤ c2|〈f ′(x), d〉|

where c1 is a sufficient decrease condition constant, known as Armijo’s constant, and
c2 is a strong curvature condition constant, known as Wolfe’s constant. If f(·) is
bounded below, and d is a descent direction at x (such that 〈f ′(x), d〉 < 0), then
there is always a step length α∗, which satisfies strong Wolfe conditions indicated
previously.

964 � Chapter 11. The Unconstrained Nonlinear Programming Solver

Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm

The NLPU solver implements large-scale limited-memory Broyden-Fletcher-
Goldfarb-Shanno algorithms (recursive and matrix forms). The matrix form is
used for bound-constrained optimization, while the recursive loop is used for
unconstrained optimization.

Recursive Hessian matrix update:

Hk = (V T
k−1 . . . V T

k−m)H0
k(Vk−m . . . Vk−1) +

ρk−m(V T
k−1 . . . V T

k−m+1)sk−msT
k−m(Vk−m+1 . . . Vk−1) +

ρk−m+1(V T
k−1 . . . V T

k−m+2)sk−m+1s
T
k−m+1(Vk−m+2 . . . Vk−1) +

· · ·

ρk−1sk−1s
T
k−1

Compact matrix update:

Hk = γkI +
[

Sk γkYk

]
×

×

[
R−T

k (Dk + γkY
T
k Yk)R−1

k −R−T

−R−1 0

][
ST

k

γkY
T
k

]

Macro Variable –OROPTMODEL–
The OPTMODEL procedure always creates and initializes a SAS macro called
–OROPTMODEL–. This variable contains a character string. After each
PROC OROPTMODEL run, you can examine this macro by specifying %put
–OROPTMODEL–; and check the execution of the most recently invoked solver
from the value of the macro variable. The various terms of the variable after the
NLPU solver is called are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK solver terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing of data

SEMANTIC–ERROR evaluation error, such as an invalid operand type

ERROR status that cannot be classified into any of the preceding
categories

Example 11.1. Solving a Highly Nonlinear Problem � 965

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL optimality of the solution cannot be
proven

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

BAD–PROBLEM–TYPE problem type is unsupported by solver

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED solver reached its execution time limit

FUNCTION–CALL–LIMIT–REACHED solver reached its limit on function eval-
uations

FAILED solver failed to converge, possibly due to
numerical issues

OBJECTIVE
indicates the objective value obtained by the solver at termination.

OPTIMALITY–ERROR
relative gradient norm at the solution.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE–TIME
indicates the real time taken for preprocessing (seconds).

SOLUTION–TIME
indicates the real time taken by the NLPU solver to perform iterations for solving the
problem (seconds).

Examples

Example 11.1. Solving a Highly Nonlinear Problem

Consider the following example of minimizing a nonlinear function of three vari-
ables, x, y, and z:

min
x,y,z

x2 + e
y
10

+10 + sin(y z)

You can use the following SAS code to formulate and solve the problem in PROC
OPTMODEL:

966 � Chapter 11. The Unconstrained Nonlinear Programming Solver

proc optmodel;
var x, y, z;

minimize obj = x^2 + exp(y/10 + 10) + sin(z*y);

solve with nlpu / tech = fletreev maxiter = 100
opttol = 1e-7;

print x y z;

quit;

The optimal solution is displayed in Output 11.1.1.

Output 11.1.1. Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 3
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 3
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver Fletcher-Reeves
Objective Function obj
Solution Status Optimal
Objective Value -1
Iterations 7

Optimality Error 2.714258E-10

x y z

0 -2943.7 0.090182

The following iteration log displays information about the type of algorithm used,
and the objective value, relative gradient norm, and number of function evaluations
at each iteration.

Example 11.2. Solving the Accumulated Rosenbrock Function � 967

Output 11.1.2. Iteration Log

NOTE: The problem has 3 variables (3 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: Using analytic derivatives for objective.
NOTE: The FLETCHER-REEVES CONJUGATE GRADIENT solver for unconstrained

optimization is called.
Objective Optimality Function

Iter Value Error Calls
0 22026.5 2202.64657948 1
1 3.2096359E-124 0.99999994 5
2 -0.79979862 0.60026837 16
3 -0.99009673 0.14038682 30
4 -0.99973800 0.02288966 41
5 -0.99999990 0.00045001 48
6 -1.00000000 0.00004279639 52
7 -1.00000000 2.71425843E-10 55

NOTE: Optimal.
NOTE: Objective = -1.

Example 11.2. Solving the Accumulated Rosenbrock
Function

Suppose you want to solve the accumulated Rosenbrock function comprising 1000
variables. For ease of understanding the formulation, define I to be an ordered set of
indices of the decision variables and J to be an ordered set of all indices in I except
the last one. In other words,

I ≡ {1, 2, . . . , 1000}
J ≡ {1, 2, . . . , 999}

The mathematical formulation of the problem is as follows:

min
∑
j∈J

(1− xj)2 + 100(xj+1 − x2
j)

2

You can use the following SAS code to formulate and solve the problem by using
PROC OPTMODEL:

proc optmodel;

set setI = {1 .. 1000}; /* declare index sets */
set setJ = setI diff {1000};
set elementsToPrint = {1 .. 10};

var x {setI};

minimize z = sum{j in setJ} ((1 - x[j])^2 +

968 � Chapter 11. The Unconstrained Nonlinear Programming Solver

100*(x[j + 1] - x[j]^2)^2);

solve with nlpu / printfreq = 0;
print {k in elementsToPrint} x[k];

quit;

The Rosenbrock function has a unique global minimizer (1, . . . , 1). The optimal
solution is displayed in Output 11.2.1.

Output 11.2.1. Optimal Solution to the Accumulated Rosenbrock Function

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Nonlinear

Number of Variables 1000
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 1000
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver L-BFGS
Objective Function z
Solution Status Optimal
Objective Value 5.140353E-11
Iterations 44

Optimality Error 5.2161487E-6

[1]

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1

References � 969

References
Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear Programming:

Theory and Algorithms, New York: John Wiley & Sons.

Byrd, R. H., Nocedal, J., and Schnabel, R. B. (1994), “Representations of Quasi-
Newton Matrices and Their Use in Limited Memory Methods,” Mathematical
Programming, 63, 129–156.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester,
UK: John Wiley & Sons.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-
Verlag.

970

Chapter 12
The Quadratic Programming Solver

(Experimental)

Chapter Contents

OVERVIEW . 973

GETTING STARTED . 974

SYNTAX . 978
Functional Summary . 978
QP Solver Options . 979

DETAILS . 980
Interior Point Algorithm: Overview . 980
Iteration Log . 982
Problem Statistics . 983
Macro Variable –OROPTMODEL– . 984

EXAMPLES . 985
Example 12.1. Linear Least Squares Problem 985
Example 12.2. Portfolio Optimization . 988
Example 12.3. Portfolio Selection with Transactions 991

REFERENCES . 994

972

Chapter 12
The Quadratic Programming Solver

(Experimental)
Overview

The OPTMODEL procedure provides a framework for specifying and solving
quadratic programs.

Mathematically, a quadratic programming (QP) problem can be stated as follows:

min 1
2 xTQx + cTx

subject to Ax {≥,=,≤} b

l ≤ x ≤ u

where

Q ∈ Rn×n is the quadratic (also known as Hessian) matrix

A ∈ Rm×n is the constraints matrix

x ∈ Rn is the vector of decision variables

c ∈ Rn is the vector of linear objective function coefficients

b ∈ Rm is the vector of constraints right-hand sides (RHS)

l ∈ Rn is the vector of lower bounds on the decision variables

u ∈ Rn is the vector of upper bounds on the decision variables

The quadratic matrix Q is assumed to be symmetric; i.e.,

qij = qji, ∀i, j = 1, . . . , n

Indeed, it is easy to show that even if Q 6= QT, then the simple modification

Q̃ =
1
2
(Q + QT)

produces an equivalent formulation xTQx ≡ xTQ̃x; hence symmetry is assumed.
When specifying a quadratic matrix it suffices to list only lower triangular coeffi-
cients.

In addition to being symmetric, Q is also required to be positive semidefinite:

xTQx ≥ 0, ∀x ∈ Rn

974 � Chapter 12. The Quadratic Programming Solver (Experimental)

for minimization type of models; it is required to be negative semidefinite for maxi-
mization type of models. Convexity can come as a result of a matrix-matrix multipli-
cation

Q = LLT

or as a consequence of physical laws, etc. See Figure 12.1 for examples of convex,
concave, and nonconvex objective functions.

Convex f = x*x + y*y Convex (degenerate) f = x*x

Concave f = −x*x − y*y Nonconvex f = x*y + 0.3*y*y

Figure 12.1. Examples of Convex, Concave, and Nonconvex Objective Functions

The order of constraints is insignificant. Some or all components of l or u
(lower/upper bounds) can be omitted.

Getting Started
Consider a small illustrative example. Suppose you want to minimize a two-variable
quadratic function f(x1, x2) on the nonnegative quadrant, subject to two constraints:

min 2x1 + 3x2 + x2
1 + 10x2

2 + 2.5x1x2

subject to x1 − x2 ≤ 1

x1 + 2x2 ≥ 100

x1 ≥ 0

x2 ≥ 0

To use the OPTMODEL procedure, it is not necessary to fit this problem into the
general QP formulation mentioned in the section “Overview” on page 973 and to
compute the corresponding parameters. However, since these parameters are closely
related to the QPS-format data set, which is used by the OPTQP procedure, we com-
pute these parameters for illustrative purposes as follows. The linear objective func-
tion coefficients, vector of right-hand sides, and lower and upper bounds are identified

Getting Started � 975

immediately as

c =

[
2

3

]
, b =

[
1

100

]
, l =

[
0

0

]
, u =

[
+∞
+∞

]

Let us carefully construct the quadratic matrix Q. Observe that you can use symmetry
to separate the main-diagonal and off-diagonal elements:

1
2
xTQx ≡ 1

2

n∑
i,j=1

xi qij xj =
1
2

n∑
i=1

qii x
2
i +

∑
i>j

xi qij xj

The first expression
1
2

n∑
i=1

qii x
2
i

sums the main-diagonal elements. Thus in this case you have

q11 = 2, q22 = 20

Notice that the main-diagonal values are doubled in order to accommodate the 1/2
factor. Now the second term ∑

i>j

xi qij xj

sums the off-diagonal elements in the strict lower triangular part of the matrix. The
only off-diagonal (xi xj , i 6= j) term in the objective function is 2.5 x1 x2, so you
have

q21 = 2.5

Notice that you do not need to specify the upper triangular part of the quadratic ma-
trix.

Finally, the matrix of constraints is as follows:

A =

[
1 −1

1 2

]

The following OPTMODEL program formulates the preceding problem in a manner
that is very close to the mathematical specification of the given problem.

976 � Chapter 12. The Quadratic Programming Solver (Experimental)

/* getting started */
proc optmodel;

var x1 >= 0; /* declare nonnegative variable x1 */
var x2 >= 0; /* declare nonnegative variable x2 */

/* objective: quadratic function f(x1, x2) */
minimize f =

/* the linear objective function coefficients */
2 * x1 + 3 * x2 +

/* quadratic <x, Qx> */
x1 * x1 + 2.5 * x1 * x2 + 10 * x2 * x2;

/* subject to the following constraints */
con r1: x1 - x2 <= 1;
con r2: x1 + 2 * x2 >= 100;

/* specify iterative interior point algorithm (QP)
* in the SOLVE statement */

solve with qp;

/* print the optimal solution */
print x1 x2;
save qps qpsdata;

quit;

The “with qp” clause in the SOLVE statement invokes the QP solver to solve the
problem. The output is shown in Figure 12.2.

Getting Started � 977

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 2
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver QP
Objective Function f
Solution Status Optimal
Objective Value 15018.000761
Iterations 10

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 9.9575984E-8
Complementarity 0.0014952645

x1 x2

34 33

Figure 12.2. Summaries and Optimal Solution

In this example, the SAVE QPS statement is used to save the QP problem in the QPS-
format data set qpsdata, shown in Figure 12.3. The data set is consistent with the
parameters of general quadratic programming previously computed. Also, the data
set can be used as input to the OPTQP procedure.

978 � Chapter 12. The Quadratic Programming Solver (Experimental)

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME qpsdata . .
2 ROWS . .
3 N f . .
4 L r1 . .
5 G r2 . .
6 COLUMNS . .
7 x1 f 2.0 r1 1
8 x1 r2 1.0 .
9 x2 f 3.0 r1 -1
10 x2 r2 2.0 .
11 RHS . .
12 .RHS. r1 1.0 .
13 .RHS. r2 100.0 .
14 QSECTION . .
15 x1 x1 2.0 .
16 x1 x2 2.5 .
17 x2 x2 20.0 .
18 ENDATA . .

Figure 12.3. QPS-Format Data Set

Syntax
The following statement is available in the OPTMODEL procedure:

SOLVE WITH QP < / options > ;

Functional Summary

Table 12.1 summarizes the list of options available for the SOLVE WITH QP state-
ment, classified by function.

Table 12.1. Options for the QP Solver

Description Option
Control Options:
maximum number of iterations MAXITER=

upper limit on real time used to solve the problem MAXTIME=

type of presolve PRESOLVER=

frequency of printing solution progress PRINTFREQ=

Interior Point Algorithm Options:
stopping criterion based on duality gap STOP–DG=

stopping criterion based on dual infeasibility STOP–DI=

stopping criterion based on primal infeasibility STOP–PI=

QP Solver Options � 979

QP Solver Options

This section describes the options recognized by the QP solver. These options can
be specified after a forward slash (/) in the SOLVE statement, provided that the QP
solver is explicitly specified using a WITH clause.

The QP solver does not provide an intermediate solution if the solver terminates be-
fore reaching optimality.

Control Options

MAXITER=k
specifies the maximum number of iterations. The value k can be any integer between
one and the largest four-byte signed integer, which is 231 − 1. If you do not specify
this option, the procedure does not stop based on the number of iterations performed.

MAXTIME=k
specifies an upper limit of k seconds of real time for the optimization process. If you
do not specify this option, the procedure does not stop based on the amount of time
elapsed.

PRESOLVER=option
PRESOL=option

specifies one of the following presolve options:

Option Description

NONE (0) Disable presolver.

AUTOMATIC (−1) Apply presolver by using default setting.

BASIC (1) Apply basic presolver.

MODERATE (2) Apply moderate presolver.

AGGRESSIVE (3) Apply aggressive presolver.

You can also specify the option by integers from −1 to 3. The integer value for each
option is indicated in parentheses. The default option is AUTOMATIC.

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after
every k iterations. The print frequency, k, is an integer between zero and the largest
four-byte signed integer, which is 231 − 1.

The value k = 0 disables the printing of the progress of the solution. The default
value of this option is 1.

Interior Point Algorithm Options

STOP–DG=δ
specifies the desired relative duality gap, δ ∈ [1E–9, 1E–4]. This is the relative
difference between the primal and dual objective function values and is the primary

980 � Chapter 12. The Quadratic Programming Solver (Experimental)

solution quality parameter. The default value is 1E–6. See the section “Interior Point
Algorithm: Overview” on page 980 for details.

STOP–DI=β
specifies the maximum allowed relative dual constraints violation, β ∈ [1E–9, 1E–4].
The default value is 1E–6. See the section “Interior Point Algorithm: Overview” on
page 980 for details.

STOP–PI=α
specifies the maximum allowed relative bound and primal constraints violation, α ∈
[1E–9, 1E–4]. The default value is 1E–6. See the section “Interior Point Algorithm:
Overview” on page 980 for details.

Details

Interior Point Algorithm: Overview

The QP solver implements an infeasible primal-dual predictor-corrector interior point
algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibil-
ity, consider the following QP formulation (the primal):

min 1
2x

TQx + cTx

subject to Ax ≥ b

x ≥ 0

The corresponding dual is as follows:

max −1
2x

TQx + bTy

subject to −Qx + ATy + w = c

y ≥ 0

w ≥ 0

where y ∈ Rm refers to the vector of dual variables and w ∈ Rn refers to the vector
of dual slack variables.

The dual makes an important contribution to the certificate of optimality for the pri-
mal. The primal and dual constraints combined with complementarity conditions de-
fine the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker)

Interior Point Algorithm: Overview � 981

conditions, which can be stated as follows:

Ax− s = b (Primal Feasibility)

−Qx + ATy + w = c (Dual Feasibility)

WXe = 0 (Complementarity)

SYe = 0 (Complementarity)

x, y, w, s ≥ 0

where e ≡ (1, . . . , 1)T of appropriate dimension and s ∈ Rm is the vector of primal
slack variables.

Note: Slack variables (the s vector) are automatically introduced by the solver when
necessary; it is therefore recommended that you not introduce any slack variables
explicitly. This enables the solver to handle slack variables much more efficiently.

The letters X, Y, W, and S denote matrices with corresponding x, y, w, and s on
the main diagonal and zero elsewhere, as in the following example:

X ≡


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xn


If (x∗,y∗,w∗, s∗) is a solution of the previously defined system of equations repre-
senting the KKT conditions, then x∗ is also an optimal solution to the original QP
model.

At each iteration the interior point algorithm solves a large, sparse system of linear
equations as follows:

 Y−1S A

AT −Q−X−1W

 ∆y

∆x

 =

 Ξ

Θ


where ∆x and ∆y denote the vector of search directions in the primal and dual
spaces, respectively; Θ and Ξ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The QP solver uses a
preconditioned quasi-minimum residual algorithm to solve this system of equations
efficiently.

An important feature of the interior point algorithm is that it takes full advantage of
the sparsity in the constraint and quadratic matrices, thereby enabling it to efficiently
solve large-scale quadratic programs.

982 � Chapter 12. The Quadratic Programming Solver (Experimental)

The interior point algorithm works simultaneously in the primal and dual spaces.
It attains optimality when both primal and dual feasibility are achieved and when
complementarity conditions hold. Therefore it is of interest to observe the following
four measures:

• Relative primal infeasibility measure α:

α =
‖Ax− b− s‖2

‖b‖2 + 1

• Relative dual infeasibility measure β:

β =
‖Qx + c−ATy −w‖2

‖c‖2 + 1

• Relative duality gap δ:

δ =
|xTQx + cTx− bTy|
|12xTQx + cTx|+ 1

• Absolute complementarity γ:

γ =
n∑

i=1

xiwi +
m∑

i=1

yisi

where ‖v‖2 is the Euclidean norm of the vector v. These measures are displayed in
the iteration log.

Iteration Log

The following information is displayed in the iteration log:

Iter indicates the iteration number

Complement indicates the (absolute) complementarity

Duality Gap indicates the (relative) duality gap

Primal Infeas indicates the (relative) primal infeasibility measure

Bound Infeas indicates the (relative) bound infeasibility measure

Dual Infeas indicates the (relative) dual infeasibility measure

If the sequence of solutions converges to an optimal solution of the problem, you
should see all columns in the iteration log converge to zero or very close to zero. If
they do not, it can be the result of insufficient iterations being performed to reach
optimality. In this case, you might need to increase the value specified in the option
MAXITER= or MAXTIME=. If the complementarity and/or the duality gap do not
converge, the problem might be infeasible or unbounded. If the infeasibility columns
do not converge, the problem might be infeasible.

Problem Statistics � 983

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models.
Information about data magnitude provides a simple gauge to determine how well
a model is formulated. For example, a model whose constraint matrix contains
one very large entry (on the order of 109) can cause difficulty when the remaining
entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL
procedure causes the ODS table “ProblemStatistics” to be generated when the QP
solver is called. This table provides basic data magnitude information that enables
you to improve the formulation of your models. The variable names in the ODS
table “ProblemStatistics” are Label1, cValue1, and nValue1.

The example output in Figure 12.4 demonstrates the contents of the ODS table
“ProblemStatistics.”

The OPTMODEL Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 4
Maximum Constraint Matrix Coefficient 2
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.25

Number of Linear Objective Nonzeros 2
Maximum Linear Objective Coefficient 3
Minimum Linear Objective Coefficient 2
Average Linear Objective Coefficient 2.5

Number of Lower Triangular Hessian Nonzeros 1
Number of Diagonal Hessian Nonzeros 2
Maximum Hessian Coefficient 20
Minimum Hessian Coefficient 2
Average Hessian Coefficient 6.75

Number of RHS Nonzeros 2
Maximum RHS 100
Minimum RHS 1
Average RHS 50.5

Maximum Number of Nonzeros per Column 2
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 2
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Figure 12.4. ODS Table ProblemStatistics

984 � Chapter 12. The Quadratic Programming Solver (Experimental)

Macro Variable –OROPTMODEL–
The OPTMODEL procedure always creates and initializes a SAS macro called
–OROPTMODEL–. This variable contains a character string. After each
PROC OROPTMODEL run, you can examine this macro by specifying %put
&-OROPTMODEL-; and check the execution of the most recently invoked solver
from the value of the macro variable. The various terms of the variable after the QP
solver is called are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK solver terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing of data

SEMANTIC–ERROR evaluation error, such as an invalid operand type

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL optimality of the solution cannot be
proven

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

BAD–PROBLEM–TYPE problem type is unsupported by solver

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED solver reached its execution time limit

FUNCTION–CALL–LIMIT–REACHED solver reached its limit on function eval-
uations

FAILED solver failed to converge, possibly due to
numerical issues

OBJECTIVE
indicates the objective value obtained by the solver at termination.

Example 12.1. Linear Least Squares Problem � 985

PRIMAL–INFEASIBILITY
indicates the (relative) infeasibility of the primal constraints at the solution. See the
section “Interior Point Algorithm: Overview” on page 980 for details.

DUAL–INFEASIBILITY
indicates the (relative) infeasibility of the dual constraints at the solution. See the
section “Interior Point Algorithm: Overview” on page 980 for details.

BOUND–INFEASIBILITY
indicates the (relative) violation of the optimal solution over the lower and upper
bounds. See the section “Interior Point Algorithm: Overview” on page 980 for de-
tails.

DUALITY–GAP
indicates the (relative) duality gap. See the section “Interior Point Algorithm:
Overview” on page 980 for details.

COMPLEMENTARITY
indicates the (absolute) complementarity at the solution. See the section “Interior
Point Algorithm: Overview” on page 980 for details.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE–TIME
indicates the time for preprocessing (seconds).

SOLUTION–TIME
indicates the time taken by the interior point algorithm to perform iterations for solv-
ing the problem (seconds).

Examples
This section presents examples that illustrate the use of the OPTMODEL procedure
to solve quadratic programming problems. Example 12.1 illustrates how to model a
linear least squares problem and solve it by using PROC OPTMODEL. Example 12.2
and Example 12.3 show in detail how to model the portfolio optimization/selection
problem.

Example 12.1. Linear Least Squares Problem

The linear least squares problem arises in the context of determining a solution to
an over-determined set of linear equations. In practice, these could arise in data
fitting and estimation problems. An over-determined system of linear equations can
be defined as

Ax = b

where A ∈ Rm×n, x ∈ Rn, b ∈ Rm, and m > n. Since this system usually does
not have a solution, we need to be satisfied with some sort of approximate solution.
The most widely used approximation is the least squares solution, which minimizes
‖Ax− b‖2

2.

986 � Chapter 12. The Quadratic Programming Solver (Experimental)

This problem is called a least squares problem for the following reason. Let A, x,
and b be defined as previously. Let ki(x) be the kth component of the vector Ax−b:

ki(x) = ai1x1 + ai2x2 + · · ·+ ainxn − bi, i = 1, 2, . . . ,m

By definition of the Euclidean norm, the objective function can be expressed as fol-
lows:

‖Ax− b‖2
2 =

m∑
i=1

ki(x)2

Therefore the function we minimize is the sum of squares of m terms ki(x); hence
the term least squares. The following example is an illustration of the linear least
squares problem; i.e., each of the terms ki is a linear function of x.

Consider the following least squares problem defined by

A =


4 0

−1 1

3 2

 , b =


1

0

1


This translates to the following set of linear equations:

4x1 = 1, −x1 + x2 = 0, 3x1 + 2x2 = 1

The corresponding least squares problem is

minimize (4x1 − 1)2 + (−x1 + x2)2 + (3x1 + 2x2 − 1)2

The preceding objective function can be expanded to

minimize 26x2
1 + 5x2

2 + 10x1x2 − 14x1 − 4x2 + 2

In addition, we impose the following constraint so that the equation 3x1 + 2x2 = 1
is satisfied within a tolerance of 0.1:

0.9 ≤ 3x1 + 2x2 ≤ 1.1

You can use the following SAS code to solve the least squares problem:

/* example 1: linear least-squares problem */
proc optmodel;

var x1; /* declare free (no explicit bounds) variable x1 */
var x2; /* declare free (no explicit bounds) variable x2 */
/* declare slack variable for ranged constraint */
var w >= 0 <= 0.2;

/* objective function: minimize is the sum of squares */
minimize f = 26 * x1 * x1 + 5 * x2 * x2 + 10 * x1 * x2

- 14 * x1 - 4 * x2 + 2;

/* subject to the following constraint */
con L: 3 * x1 + 2 * x2 - w = 0.9;

Example 12.1. Linear Least Squares Problem � 987

solve with qp;

/* print the optimal solution */
print x1 x2;

quit;

The output is shown in Output 12.1.1.

Output 12.1.1. Summaries and Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 3
Bounded Above 0
Bounded Below 0
Bounded Below and Above 1
Free 2
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 1
Linear GE (>=) 0
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver QP
Objective Function f
Solution Status Optimal
Objective Value 0.0095238096
Iterations 11

Primal Infeasibility 1.449273E-11
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 4.3804698E-7
Complementarity 1.3805642E-6

x1 x2

0.23809 0.1619

988 � Chapter 12. The Quadratic Programming Solver (Experimental)

Example 12.2. Portfolio Optimization

Consider a portfolio optimization example. The two competing goals of investment
are (1) long-term growth of capital and (2) low risk. A good portfolio grows steadily
without wild fluctuations in value. The Markowitz model is an optimization model for
balancing the return and risk of a portfolio. The decision variables are the amounts
invested in each asset. The objective is to minimize the variance of the portfolio’s
total return, subject to the constraints that (1) the expected growth of the portfolio
reaches at least some target level and (2) you do not invest more capital than you
have.

Let x1, . . . , xn be the amount invested in each asset, B be the amount of capital
you have, R be the random vector of asset returns over some period, and r be the
expected value of R. Let G be the minimum growth you hope to obtain, and C be

the covariance matrix of R. The objective function is Var
(

n∑
i=1

xiRi

)
, which can be

equivalently denoted as xTCx.

Assume, for example, n = 4. Let B = 10,000, G = 1000, r = [0.05,−0.2, 0.15, 0.30],
and

C =


0.08 −0.05 −0.05 −0.05

−0.05 0.16 −0.02 −0.02

−0.05 −0.02 0.35 0.06

−0.05 −0.02 0.06 0.35


The QP formulation can be written as

min 0.08x2
1 − 0.1x1x2 − 0.1x1x3 − 0.1x1x4 +

0.16x2
2 − 0.04x2x3 − 0.02x2x4 + 0.35x2

3 +

0.12x3x4 + 0.35x2
4

subject to

(budget) x1 + x2 + x3 + x4 ≤ 10000

(growth) 0.05x1 − 0.2x2 + 0.15x3 + 0.30x4 ≥ 1000

x1, x2, x3, x4 ≥ 0

Use the following SAS code to solve the problem:

Example 12.2. Portfolio Optimization � 989

/* example 2: portfolio optimization */
proc optmodel;

/* let x1, x2, x3, x4 be the amount invested in each asset */
var x{1..4} >= 0;

num coeff{1..4, 1..4} = [0.08 -.05 -.05 -.05
-.05 0.16 -.02 -.02
-.05 -.02 0.35 0.06
-.05 -.02 0.06 0.35];

num r{1..4}=[0.05 -.20 0.15 0.30];

/* minimize the variance of the portfolio’s total return */
minimize f = sum{i in 1..4, j in 1..4}coeff[i,j]*x[i]*x[j];

/* subject to the following constraints */
con BUDGET: sum{i in 1..4}x[i] <= 10000;
con GROWTH: sum{i in 1..4}r[i]*x[i] >= 1000;

solve with qp;

/* print the optimal solution */
print x;

The summaries and the optimal solution are shown in Output 12.2.1.

990 � Chapter 12. The Quadratic Programming Solver (Experimental)

Output 12.2.1. Portfolio Optimization

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 4
Bounded Above 0
Bounded Below 4
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver QP
Objective Function f
Solution Status Optimal
Objective Value 2232313.8093
Iterations 7

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 4.4734294E-7
Complementarity 0.9932470284

[1] x

1 3.4529E+03
2 7.0389E-04
3 1.0688E+03
4 2.2235E+03

Thus, the minimum variance portfolio that earns an expected return of at least 10% is
x1 = 3452, x2 = 0, x3 = 1068, x4 = 2223. Asset 2 gets nothing because its expected
return is −20% and its covariance with the other assets is not sufficiently negative for
it to bring any diversification benefits. What if we drop the nonnegativity assumption?

Financially, that means you are allowed to short-sell—i.e., sell low-mean-return as-
sets and use the proceeds to invest in high-mean-return assets. In other words, you put
a negative portfolio weight in low-mean assets and “more than 100%” in high-mean
assets.

To solve the portfolio optimization problem with the short-sale option, continue to

Example 12.3. Portfolio Selection with Transactions � 991

submit the following SAS code:

/* example 2: portfolio optimization with short-sale option */
/* dropping nonnegativity assumption */
for {i in 1..4} x[i].lb=-x[i].ub;

solve with qp;

/* print the optimal solution */
print x;

quit;

You can see in the optimal solution displayed in Output 12.2.2 that the decision vari-
able x2, denoting Asset 2, is equal to −1563.61, which means short sale of that asset.

Output 12.2.2. Portfolio Optimization with Short-Sale Option

The OPTMODEL Procedure

Solution Summary

Solver QP
Objective Function f
Solution Status Optimal
Objective Value 1907123.1559
Iterations 6

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 6.1120033E-7
Complementarity 1.1690054718

[1] x

1 1684.35
2 -1563.61
3 682.51
4 1668.95

Example 12.3. Portfolio Selection with Transactions
Consider a portfolio selection problem with a slight modification. You are now re-
quired to take into account the current position and transaction costs associated with
buying and selling assets. The objective is to find the minimum variance portfolio. In
order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the
vector c = [200, 300, 500], the amount of asset bought and sold is denoted by bi and
si, respectively, and the net investment in each asset is denoted by xi and is defined
by the following relation:

xi − bi + si = ci, i = 1, 2, 3

992 � Chapter 12. The Quadratic Programming Solver (Experimental)

Let us say that you pay a transaction fee of 0.01 every time you buy or sell. Let the
covariance matrix C be defined as

C =


0.027489 −0.00874 −0.00015

−0.00874 0.109449 −0.00012

−0.00015 −0.00012 0.000766


Assume that you hope to obtain at least 12% growth. Let r = [1.109048, 1.169048,
1.074286] be the vector of expected return on the three assets, and let B=1000 be
the available funds. Mathematically, this problem can be written in the following
manner:

min 0.027489x2
1 − 0.01748x1x2 − 0.0003x1x3 + 0.109449x2

2

−0.00024x2x3 + 0.000766x2
3

subject to

(return)
∑3

i=1 rixi ≥ 1.12B

(budget)
∑3

i=1 xi +
∑3

i=1 0.01(bi + si) = B

(balance) xi − bi + si = ci, i = 1, 2, 3

xi, bi, si ≥ 0, i = 1, 2, 3

The problem can be solved by the following SAS code:

/* example 3: portfolio selection with transactions */
proc optmodel;

/* let x1, x2, x3 be the amount invested in each asset */
var x{1..3} >= 0;
/* let b1, b2, b3 be the amount of asset bought */
var b{1..3} >= 0;
/* let s1, s2, s3 be the amount of asset sold */
var s{1..3} >= 0;

/* current holdings */
num c{1..3}=[200 300 500];
/* covariance matrix */
num coeff{1..3, 1..3} = [0.027489 -.008740 -.000150

-.008740 0.109449 -.000120
-.000150 -.000120 0.000766];

/* returns */
num r{1..3}=[1.109048 1.169048 1.074286];

/* minimize the variance of the portfolio’s total return */
minimize f = sum{i in 1..3, j in 1..3}coeff[i,j]*x[i]*x[j];

/* subject to the following constraints */

Example 12.3. Portfolio Selection with Transactions � 993

con BUDGET: sum{i in 1..3}(x[i]+.01*b[i]+.01*s[i]) <= 1000;
con RETURN: sum{i in 1..3}r[i]*x[i] >= 1120;
con BALANC{i in 1..3}: x[i]-b[i]+s[i]=c[i];

solve with qp;

/* print the optimal solution */
print x;

quit;

The output is displayed in Output 12.3.1.

Output 12.3.1. Portfolio Selection with Transactions

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 9
Bounded Above 0
Bounded Below 9
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 5
Linear LE (<=) 1
Linear EQ (=) 3
Linear GE (>=) 1
Linear Range 0

The OPTMODEL Procedure

Solution Summary

Solver QP
Objective Function f
Solution Status Optimal
Objective Value 19560.725967
Iterations 17

Primal Infeasibility 4.506349E-15
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 5.8692616E-8
Complementarity 0.0011480356

[1] x

1 397.58
2 406.12
3 190.17

994 � Chapter 12. The Quadratic Programming Solver (Experimental)

References
Freund, R. W. (1991), “On Polynomial Preconditioning and Asymptotic Convergence

Factors for Indefinite Hermitian Matrices,” Linear Algebra and Its Applications,
154–156, 259–288.

Freund, R. W. and Jarre, F. (1997), “A QMR-Based Interior Point Algorithm for
Solving Linear Programs,” Mathematical Programming, 76, 183–210.

Freund, R. W. and Nachtigal, N. M. (1996), “QMRPACK: A Package of QMR
Algorithms,” ACM Transactions on Mathematical Software, 22, 46–77.

Vanderbei, R. J. (1999), “LOQO: An Interior Point Code for Quadratic
Programming,” Optimization Methods and Software, 11, 451–484.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

Chapter 13
The Sequential Quadratic

Programming Solver

Chapter Contents

OVERVIEW . 997

GETTING STARTED . 998

SYNTAX . 1000
Functional Summary . 1000
SQP Solver Options . 1001

DETAILS . 1002
Conditions of Optimality . 1002
Solution Techniques . 1006
Solver Termination Messages . 1006
Macro Variable –OROPTMODEL– . 1007

EXAMPLES . 1009
Example 13.1. Solving a Highly Nonlinear Problem 1009
Example 13.2. Using the HESCHECK Option 1011
Example 13.3. Choosing a Good Starting Point 1014
Example 13.4. Using the PENALTY= Option 1017
Example 13.5. Unconstrained NLP Optimization 1020
Example 13.6. Solving Large-Scale NLP Problems 1022

REFERENCES . 1024

996

Chapter 13
The Sequential Quadratic

Programming Solver
Overview

The sequential quadratic programming (SQP) solver is a component of the
OPTMODEL procedure, and it can be used for solving general nonlinear program-
ming (NLP) problems.

The general form of nonlinear optimization problems can be mathematically de-
scribed as follows:

minimize
x∈Rn

f(x)

subject to c(x) {≤ | = | ≥} 0

l ≤ x ≤ u

where f : Rn 7→ R is the nonlinear objective function, c: Rn 7→ Rm is the set of
general nonlinear equality and inequality constraints, and l and u are lower and upper
bounds, respectively, on the decision variable x.

The SQP solver solves NLP problems by using an iterative procedure. An improved
estimate of the solution is obtained at the end of each iteration by taking a step along
a certain search direction. This direction is computed by solving a quadratic pro-
gramming (QP) subproblem (Fletcher 1987).

It has been found that SQP-based algorithms are very efficient for solving NLP prob-
lems. Such a view is based on their strong convergence properties, supported by good
numerical results from test experiments (Conn, Gould, and Toint 1994).

The SQP solver basically adapts the ideas from Bartholomew-Biggs’s work
(Bartholomew-Biggs 1988). It uses an augmented Lagrangian penalty function as
a merit function. The solver solves a QP subproblem to obtain a search direction,
which is an approximation of the Newton direction to the minimum of the merit
function. A line-search algorithm is then implemented along the resulting search
direction. In the SQP solver, the line search is terminated when Wolfe-Powell
conditions are satisfied, thereby ensuring global convergence to a local minimum
(Fletcher 1987).

The SQP solver has several features that make it different from the other NLP solvers
in the SAS/OR suite (see Chapter 10, “The NLPC Nonlinear Optimization Solver,”
and Chapter 11, “The Unconstrained Nonlinear Programming Solver”). To name a
few:

998 � Chapter 13. The Sequential Quadratic Programming Solver

• It can handle general nonlinear constraints.

• It exploits the sparsity (of the Jacobian) in NLP problems. This enables the
SQP solver to solve fairly large NLP problems.

• It finds the negative curvature of the NLP problem at a stationary point of the
problem, thereby giving the solver a better chance of moving away from a
stationary point.

• It tries to find a good estimate of Lagrange multipliers based on a good starting
point for the decision variables.

In general, the SQP solver approaches the solution of a NLP problem through a se-
quence of points that might not be in the feasible region. Therefore it requires that all
the functions in the NLP problem be defined in the entire space, not just at the points
that satisfy the constraints.

Another requirement is that all the functions in NLP problems be smooth. You do not
need to supply the derivatives of these functions; the SQP solver calculates them, if
needed.

Getting Started
Consider a simple example of minimizing the following nonlinear programming
problem:

min (1− x1)2

subject to x2 − x1
2 = 0

Assume the starting point x0 = (−1.2, 1.0). You can use the following SAS code to
solve the problem:

proc optmodel;
var x {1..2};
minimize obj = (1-x[1])^2;

con cons1: x[2] - x[1]^2 = 0;

/*starting point */
x[1] = -1.2;
x[2] = 1;

solve with SQP/ printfreq = 5;
print x;

quit;

The summary of the solver output along with the optimal solution, (1.0, 1.0), is
displayed in Figure 13.1.

Getting Started � 999

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 1
Nonlinear GE (>=) 0
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value 2.736033E-16
Iterations 18

Infeasibility 9.2771104E-7
Optimality Error 1.5590633E-7
Complementarity 0

[1] x

1 1
2 1

Figure 13.1. Optimal Solution

The iteration log in Figure 13.2 displays information about the objective function
value, the norm of the violated constraints, the norm of the gradient of the Lagrangian
function, and the norm of the violated complementarity condition at each iteration.

1000 � Chapter 13. The Sequential Quadratic Programming Solver

NOTE: The problem has 2 variables (2 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1 nonlinear constraints (0 LE, 1 EQ, 0 GE, 0 range).
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The SQP solver is called.

Objective Optimality
Iter Value Infeasibility Error Complementarity

0 4.8400000 0.4400000 0.2892834 0
5 0.7106649 1.2210650 0.8103064 0
10 0.0063019 0.1667028 0.1369754 0
15 0.00000317470 0.0047719 0.0035509 0
18 2.73603275E-16 0.00000092771 0.00000015591 0

NOTE: Converged.
NOTE: Objective = 2.73603275E-16.

Figure 13.2. Iteration Log

Syntax
The following PROC OPTMODEL statement is available for the SQP solver:

SOLVE WITH SQP < / options > ;

Functional Summary

Table 13.1 summarizes the options that can be used with the SOLVE WITH SQP
statement.

Table 13.1. Options for the SQP Solver

Description Option
Solver Options:
check second-order optimality conditions HESCHECK /

NOHESCHECK

maximum number of iterations MAXITER=

upper limit on the real time for optimization MAXTIME=

reduction rate of penalty parameters in the Lagrangian func-
tion

PENALTY=

convergence tolerance for both stationary and complementary
conditions

OPTTOL=

convergence tolerance for feasibility FEASTOL=

Output Option:
print objective function value, norm of violated constraints,
and norm of Lagrangian function gradient at each iteration

PRINTFREQ=

SQP Solver Options � 1001

SQP Solver Options

The following options are supported by the SQP solver.

HESCHECK|NOHESCHECK
specifies that the solver check (or not check, in the case of NOHESCHECK) the
second-order optimality of the solution found—i.e., the nonnegativity of the projected
Hessian of the Lagrangian function at the solution. The option NOHESCHECK is
used by default.

MAXITER=N
specifies that the optimization process is to stop after maximum number of N itera-
tions. The value of this option is an integer between zero and the largest four-byte
signed integer, which is 231 − 1. An iteration in the SQP solver includes obtaining
a search direction and finding a step size along that direction. The default value is
10,000 iterations.

MAXTIME=r
specifies an upper limit of r seconds of real time for the optimization process. The
default value is 7200 seconds. The time specified by the MAXTIME= option is
checked only at the end of each iteration. The optimization terminates when the
actual running time is greater than or equal to r.

PENALTY=γ
specifies the rate at which the penalty parameters used in the Lagrangian function are
reduced. In other words, the real number γ ∈ (0, 1) controls the rate at which the
solver converges. A smaller number often results in the solver taking fewer iterations
to converge to a solution. However, if the number is set too small, it is known to cause
numerical difficulties for the solver. The default value for the PENALTY= option is
0.75.

PRINTFREQ=j
specifies that the printing of the solution progress to the iteration log is to occur after
every j iterations. The print frequency, j, is an integer between zero and the largest
four-byte signed integer, which is 231 − 1. The value j = 0 disables the printing
of the progress of the solution. The first and last iterations are also displayed. The
default value for this option is 1.

Note: The PRINT statement in the OPTMODEL procedure can be used to print the
solution of the decision variables to the output.

OPTTOL=ε
specifies the convergence tolerance for both stationary and complementary condi-
tions. The value of this option is a positive real number. The default value is 1E–5.
See the section “Solver’s Criteria” on page 1004 for details.

FEASTOL=ε
specifies the convergence tolerance for feasibility. The value of this option is a pos-
itive real number. The default value is 1E–6. See the section “Solver’s Criteria” on
page 1004 for details.

1002 � Chapter 13. The Sequential Quadratic Programming Solver

Details

Conditions of Optimality

To facilitate discussion of the optimality conditions, we present the notation to be
used for easy reference:

m number of general nonlinear constraints, which include the linear con-
straints but not the bound constraints

n dimension of x, i.e., the number of decision variables

x iterate, i.e., the vector of n decision variables

f(x) objective function

∇f(x) gradient of the objective function

∇2f(x) Hessian matrix of the objective function

λ Lagrange multiplier vector, λ ∈ Rm

L(x, λ) Lagrangian function of constrained problems

∇xL(x, λ) gradient of the Lagrangian function with respect to x

For x and λ, the superscript k is used to denote the value at the kth iteration, such as
xk, and the superscript ∗ is used to denote their corresponding optimal values, such
as λ∗.

We rewrite the general form of nonlinear optimization problems in the section
“Overview” on page 997 by grouping the equality constraints and inequality con-
straints. We also rewrite all the general nonlinear inequality constraints and bound
constraints in one form as “≥” inequality constraints. Thus we have the following:

minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

where E is the set of indices of the equality constraints, I is the set of indices of the
inequality constraints, and m = |E|+ |I|.

A point x is feasible if it satisfies all the constraints ci(x) = 0, i ∈ E , and ci(x) ≥
0, i ∈ I. The feasible region F consists of all the feasible points. In unconstrained
cases, the feasible region F is the entire Rn space.

A feasible point x∗ is a local solution of the problem if there exists a neighborhood
N of x∗ such that

f(x) ≥ f(x∗) for all x ∈ N ∩ F

Further, a feasible point x∗ is a strict local solution if strict inequality holds in the
preceding case, i.e.,

f(x) > f(x∗) for all x ∈ N ∩ F

Conditions of Optimality � 1003

A feasible point x∗ is a global solution of the problem if no point in F has a smaller
function value than f(x∗), i.e.,

f(x) ≥ f(x∗) for all x ∈ F

The SQP solver finds a local minimum of an optimization problem.

Unconstrained Optimization

The following conditions hold for unconstrained optimization problems:

• First-order necessary conditions: If x∗ is a local solution and f(x) is con-
tinuously differentiable in some neighborhood of x∗, then

∇f(x∗) = 0

• Second-order necessary conditions: If x∗ is a local solution and f(x) is
twice continuously differentiable in some neighborhood of x∗, then∇2f(x∗) is
positive semidefinite.

• Second-order sufficient conditions: If f(x) is twice continuously differen-
tiable in some neighborhood of x∗, and if ∇f(x∗) = 0 and ∇2f(x∗) is positive
definite, then x∗ is a strict local solution.

Constrained Optimization

For constrained optimization problems, the Lagrangian function is defined as follows:

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x)

where λi, i ∈ E ∪ I, are called Lagrange multipliers. ∇xL(x, λ) is used to denote
the gradient of the Lagrangian function with respect to x, and ∇2

xL(x, λ) is used to
denote the Hessian of the Lagrangian function with respect to x. The active set at a
feasible point x is defined as

A(x) = E ∪ {i ∈ I : ci(x) = 0}

We also need the following definition before we can state the first-order and second-
order necessary conditions:

• Linear independence constraint qualification and regular point: A point x
is said to satisfy the linear independence constraint qualification if the gradients
of active constraints

∇ci(x), i ∈ A(x)

are linearly independent. We refer to such a point x as a regular point.

We now state the theorems that are essential in the analysis and design of algorithms
for constrained optimization:

1004 � Chapter 13. The Sequential Quadratic Programming Solver

• First-order necessary conditions: Suppose x∗ is a local minimum and also
a regular point. If f(x) and ci(x), i ∈ E ∪ I, are continuously differentiable,
there exist Lagrange multipliers λ∗ ∈ Rm such that the following conditions
hold:

∇xL(x∗, λ∗) = ∇f(x∗)−
∑

i∈E∪I
λ∗i∇ci(x∗) = 0

ci(x∗) = 0, i ∈ E
ci(x∗) ≥ 0, i ∈ I

λ∗i ≥ 0, i ∈ I
λ∗i ci(x∗) = 0, i ∈ I

The preceding conditions are often known as the Karush-Kuhn-Tucker condi-
tions, or KKT conditions for short.

• Second-order necessary conditions: Suppose x∗ is a local minimum and
also a regular point. Let λ∗ be the Lagrange multipliers that satisfy the KKT
conditions. If f(x) and ci(x), i ∈ E ∪ I, are twice continuously differentiable,
the following conditions hold:

zT∇2
xL(x∗, λ∗)z ≥ 0

for all z ∈ Rn that satisfy

∇ci(x∗)Tz = 0, i ∈ A(x∗)

• Second-order sufficient conditions: Suppose there exist a point x∗ and some
Lagrange multipliers λ∗ such that the KKT conditions are satisfied. If the con-
ditions

zT∇2
xL(x∗, λ∗)z > 0

hold for all z ∈ Rn that satisfy

∇ci(x∗)Tz = 0, i ∈ A(x∗)

then x∗ is a strict local solution.

Note that the set of all such z’s forms the null space of matrix[
∇ci(x∗)T

]
i∈A(x∗). Hence we can numerically check the Hessian of the

Lagrangian function projected onto the null space. For a rigorous treatment of
the optimality conditions, see Fletcher (1987) and Nocedal and Wright (1999).

Solver’s Criteria

The SQP solver declares a solution to be optimal when all the following criteria are
satisfied:

• The relative norm of the gradient of the Lagrangian function is less than
OPTTOL, and the absolute norm of the gradient of the Lagrangian function
is less than 1.0E–2.

Conditions of Optimality � 1005

When the problem is a constrained optimization problem, the relative norm of
the gradient of the Lagrangian function is defined as

‖∇xL(x, λ)‖
1 + ‖∇f(x)‖

When the problem is an unconstrained optimization problem, it is defined as

‖ ∇f(x) ‖
1 + |f(x)|

• The absolute value of each equality constraint is less than FEASTOL.

• The value of each “≥” inequality is greater than the right-hand-side constant
minus FEASTOL.

• The value of each “≤” inequality is less than the right-hand-side constant plus
FEASTOL.

• The value of each Lagrange multiplier for inequalities is greater than
−OPTTOL.

• The minimum of both the values of an inequality and its corresponding
Lagrange multiplier is less than OPTTOL.

The last four points imply that the complementarity error, defined as ‖min(λi, ci)‖,
i ∈ I, approaches zero as the solver progresses.

The SQP solver provides the HESCHECK option to verify that the second-order nec-
essary conditions are also satisfied.

1006 � Chapter 13. The Sequential Quadratic Programming Solver

Solution Techniques

Some of the solution techniques used by the SQP solver are outlined as follows:

• The SQP solver solves QP subproblems to find a search direction. This sub-
problem involves some linear equality and inequality constraints, and an active
set method is used to solve the subproblem.

• An augmented Lagrangian function is employed as a merit function for the line
search. Global convergence is ensured when the Wolfe-Powell conditions are
satisfied.

• A quasi-Newton update formula is used to approximate the inverse of the
Hessian of the Lagrangian function.

• The solver also provides an option, HESCHECK, to verify the second-order
necessary condition for a local optimal solution (see Example 13.2). If the
second-order necessary conditions are not satisfied for a given solution, and the
HESCHECK option is specified, then the solver finds a search direction based
on the second-order information to improve the solution. This feature ensures
that the solver does not terminate at a saddle point, which is not optimal.

• The SQP solver has a built-in procedure to find a good estimate of the Lagrange
multipliers, given the starting points for the decision variables.

• The SQP solver incorporates some strategies to scale an NLP problem so that
the resulting scaled problem is easier to solve than the original one.

Solver Termination Messages

The SQP solver terminates with one of the following messages:

Converged
The SQP solver has found a local minimum within the convergence tolerance speci-
fied.

Maximum number of iterations reached
The SQP solver has reached the limit on the maximum number of iterations, but has
not satisfied the convergence criteria.

Maximum specified time reached
The SQP solver has spent more time than the prespecified maximum real time for the
optimization process, but has not satisfied the convergence criteria.

Line search cannot improve further
The SQP solver cannot make any progress in the line search. One possibility is that a
solution has been found, but the convergence tolerance is set too small.

Out of memory
The NLP problem is too large for the SQP solver to solve. This could be due to a
limitation in the memory allocated to the procedure.

Objective function cannot be evaluated at starting point
The objective function cannot be evaluated at the starting point.

Macro Variable –OROPTMODEL– � 1007

At least one constraint cannot be evaluated at starting point
At least one of the constraints cannot be evaluated at the starting point.

Gradient of objective function cannot be evaluated at starting point
The gradient of the objective function cannot be evaluated at the starting point.

Gradient of at least one constraint cannot be evaluated at starting point
The gradient of at least one of the constraints cannot be evaluated at the starting point.

Did not converge
The NLP problem has not been solved. There could be several reasons why this
happens. For instance, maybe a QP subproblem could not be solved within a preset
number of iterations.

Second order optimality is not satisfied
SQP has located a point satisfying the first-order condition but not the second-order
condition.

Problem may be unbounded
SQP has located a feasible point, but its objective function value is extremely low.
SQP can improve the objective function even further as well.

Problem may be infeasible
SQP cannot locate a feasible point.

Problem is infeasible
SQP has identified an infeasibility in the problem.

Problem solved by the OPTMODEL presolver
The problem was solved by the OPTMODEL presolver.

Macro Variable –OROPTMODEL–
The OPTMODEL procedure always creates and initializes a SAS macro called
–OROPTMODEL–. This variable contains a character string. After each
PROC OROPTMODEL run, you can examine this macro by specifying %put
&–OROPTMODEL–; and check the execution of the most recently invoked solver
from the value of the macro variable. The various terms of the variable after the SQP
solver is called are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK solver terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing of data

SEMANTIC–ERROR evaluation error, such as an invalid operand type

1008 � Chapter 13. The Sequential Quadratic Programming Solver

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL optimality of the solution cannot be
proven

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

BAD–PROBLEM–TYPE problem type is unsupported by solver

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED solver reached its execution time limit

FAILED solver failed to converge, possibly due to
numerical issues

OBJECTIVE
indicates the objective value obtained by the solver at termination.

INFEASIBILITY
indicates the norm of the feasibility error at the solution.

OPTIMALITY–ERROR
indicates the relative norm of the gradient of the Lagrangian function at the solution.

COMPLEMENTARITY
indicates the norm of the complementarity error at the solution. See “Solver’s
Criteria” for more information.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE–TIME
indicates the real time taken for preprocessing (seconds).

SOLUTION–TIME
indicates the real time taken by the SQP solver to perform iterations for solving the
problem (seconds).

Example 13.1. Solving a Highly Nonlinear Problem � 1009

Examples

Example 13.1. Solving a Highly Nonlinear Problem

Consider the following example of minimizing a highly nonlinear problem:

min
∑10

j=1 exj (cj + xj − log
∑10

k=1 exk)

subject to ex1 + 2ex2 + 2ex3 + ex6 + ex10 = 8

ex4 + 2ex5 + ex6 + ex7 = 1

ex3 + ex7 + ex8 + 2ex9 + ex10 = 1

−100 ≤ xi ≤ 100, i = 1, . . . , 10

In this instance, the constants cj are (−6.089,−17.164,−34.054,−5.914,−24.721,
−14.986,−24.100,−10.708,−26.662,−22.179). Assume the starting point x0 =
(−2.3, ...,−2.3, ...,−2.3). You can use the following SAS code to solve the prob-
lem:

proc optmodel;
var x {1..10} >= -100 <= 100 /* variable bounds */

init -2.3; /* starting point */

number c {1..10} = [-6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179];

number a{1..3,1..10}=[1 2 2 0 0 1 0 0 0 1
0 0 0 1 2 1 1 0 0 0
0 0 1 0 0 0 1 1 2 1];

number b{1..3}=[8 1 1];

minimize obj =
sum{j in 1..10}exp(x[j])*(c[j]+x[j]

-log(sum {k in 1..10}exp(x[k])));

con cons{i in 1..3}:
sum{j in 1..10}a[i,j]*exp(x[j])=b[i];

solve with sqp / printfreq = 0;
quit;

The output is displayed in Output 13.1.1.

1010 � Chapter 13. The Sequential Quadratic Programming Solver

Output 13.1.1. OPTMODEL Output

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 10
Bounded Above 0
Bounded Below 0
Bounded Below and Above 10
Free 0
Fixed 0

Number of Constraints 3
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 3
Nonlinear GE (>=) 0
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value -102.086323
Iterations 67

Infeasibility 8.7541812E-7
Optimality Error 1.3610787E-6
Complementarity 0

Example 13.2. Using the HESCHECK Option � 1011

Example 13.2. Using the HESCHECK Option

The following example illustrates how the HESCHECK option could be useful:

min x1
2 + x2

2

subject to x1 + x2
2 ≥ 1

0 ≤ xi ≤ 8, i = 1, 2

Use the following SAS code to solve the problem:

proc optmodel;
var x {1..2} <= 8 >= 0 /* variable bounds */

init 0; /* starting point */

minimize obj = x[1]^2 + x[2]^2;

con cons:
x[1] + x[2]^2 >= 1;

solve with sqp / printfreq = 5;
print x;

quit;

When x0 = (0, 0) is chosen as the starting point, the SQP solver converges to (1, 0),
as displayed in Output 13.2.1. It can be easily verified that (1, 0) is a stationary point
and not an optimal solution.

1012 � Chapter 13. The Sequential Quadratic Programming Solver

Output 13.2.1. Stationary Point

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 1
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value 0.999999372
Iterations 13

Infeasibility 3.1399816E-7
Optimality Error 3.9280672E-6
Complementarity 3.1399816E-7

[1] x

1 1
2 0

To resolve this issue, you can use the HESCHECK option in the SOLVE statement
as follows:

proc optmodel;
...

solve with sqp / printfreq = 1 hescheck;
...
quit;

Example 13.2. Using the HESCHECK Option � 1013

For the same starting point x0 = (0, 0), the SQP solver now converges to the optimal
solution,

(
0.5,

√
2/2
)
, as displayed in Output 13.2.2.

Output 13.2.2. Optimal Solution Using the HESCHECK Option

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 1
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value 0.7500000369
Iterations 31

Infeasibility 0
Optimality Error 1.7653503E-6
Complementarity 3.6904791E-8

[1] x

1 0.50000
2 0.70711

1014 � Chapter 13. The Sequential Quadratic Programming Solver

Example 13.3. Choosing a Good Starting Point

To solve a constrained nonlinear optimization problem, both the optimal primal and
optimal dual variables have to be computed. Therefore, a good estimate of both the
primal and dual variables is essential for fast convergence. An important feature of
the SQP solver is that it computes a good estimate of the dual variables if an estimate
of the primal variables is known.

The following example illustrates how a good initial starting point helps in securing
the desired optimum:

min ex1(4 x2
1 + 2 x2

2 + 4 x1 x2 + 2 x2 + 1)

subject to x1 x2 − x1 − x2 ≤ −1.5

x1 x2 ≥ −10

−10 ≤ xi ≤ 8, i = 1, 2

Assume the starting point x0 = (30, –30). The SAS code is as follows:

proc optmodel;
var x {1..2} <= 8 >= -10; /* variable bounds */

minimize obj =
exp(x[1])*(4*x[1]^2 + 2*x[2]^2 + 4*x[1]*x[2] + 2*x[2] + 1);

con consl:
x[1]*x[2] -x[1] - x[2] <= -1.5;

con cons2:
x[1]*x[2] >= -10;

x[1] = 30; x[2] = -30; /* starting point */
solve with sqp / printfreq = 5 ;
print x;

The solution (a local optimum) obtained by the SQP solver is displayed in Output
13.3.1.

Example 13.3. Choosing a Good Starting Point � 1015

Output 13.3.1. Solution Obtained with the Starting Point (30, –30)

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 1
Nonlinear EQ (=) 0
Nonlinear GE (>=) 1
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value 3.0607750551
Iterations 29

Infeasibility 0
Optimality Error 4.8192866E-6
Complementarity 4.9752912E-7

[1] x

1 1.1825
2 -1.7398

You can find a solution with a smaller objective value by assuming a starting point of
(–10, 1). Continue to submit the following code:

/* starting point */
x[1] = -10;
x[2] = 1;

solve with sqp / printfreq = 5 ;
print x;
quit;

1016 � Chapter 13. The Sequential Quadratic Programming Solver

The corresponding solution is displayed in Output 13.3.2.

Output 13.3.2. Solution Obtained with the Starting Point (–10, 1)

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 1
Nonlinear EQ (=) 0
Nonlinear GE (>=) 1
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value 0.0235504379
Iterations 9

Infeasibility 0
Optimality Error 6.3776225E-8
Complementarity 1.6836318E-6

[1] x

1 -9.5474
2 1.0474

The preceding illustration demonstrates the importance of a good starting point in
obtaining the optimal solution. The SQP solver ensures global convergence only to a
local optimum. Therefore you need to have sufficient knowledge of your problem in
order to be able to get a “good” estimate of the starting point.

Example 13.4. Using the PENALTY= Option � 1017

Example 13.4. Using the PENALTY= Option

The PENALTY= option plays an important role in ensuring a good convergence rate.
Consider the following example:

min (x1 − 10)3 + (x2 − 20)3

subject to (x1 − 5)2 + (x2 − 5)2 ≥ 100

(x1 − 6)2 + (x2 − 5)2 ≤ 82.81

13 ≤ x1 ≤ 16

0 ≤ x2 ≤ 15

Assume the starting point x0 = (14.35, 8.6). You can use the following SAS code
to solve the problem:

proc optmodel;
var x1 >=13 <=16, x2 >=0 <=15;

minimize obj =
(x1-10)^3 + (x2-20)^3;

con cons1:
(x1-5)^2 + (x2-5)^2 - 100 >= 0;

con cons2:
82.81 - (x1-6)^2 - (x2-5)^2 >= 0;

/* starting point */
x1 = 14.35;
x2 = 8.6;

solve with sqp / printfreq = 5;
print x1 x2;

quit;

The optimal solution is displayed in Output 13.4.1.

1018 � Chapter 13. The Sequential Quadratic Programming Solver

Output 13.4.1. Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 2
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value -6961.800335
Iterations 43

Infeasibility 0
Optimality Error 2.2032777E-6
Complementarity 6.9098659E-6

x1 x2

14.095 0.84297

The SQP solver might converge to the optimal solution more quickly if you specify
PENALTY = 0.1 instead of the default value (0.75). You can specify the PENALTY=
option in the SOLVE statement as follows:

proc optmodel;
...

solve with sqp / printfreq=5 penalty=0.1;
...
quit;

Example 13.4. Using the PENALTY= Option � 1019

The optimal solution is displayed in Output 13.4.2.

Output 13.4.2. Optimal Solution Using the PENALTY= Option

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 2
Nonlinear Range 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value -6961.813876
Iterations 31

Infeasibility 1.105604E-11
Optimality Error 1.6225769E-9
Complementarity 1.105604E-11

x1 x2

14.095 0.84296

The iteration log is shown in Output 13.4.3.

1020 � Chapter 13. The Sequential Quadratic Programming Solver

Output 13.4.3. Iteration Log

NOTE: The problem has 2 variables (0 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 2 nonlinear constraints (0 LE, 0 EQ, 2 GE, 0 range).
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The SQP solver is called.

Objective Optimality
Iter Value Infeasibility Error Complementarity

0 -1399.2311250 0 0.9974417 0
5 -22119.5304661 90.4096764 0.9995770 90.4096764
10 -17483.9618903 37.4732872 0.0808863 37.4732872
15 -7949.1564384 1.6899450 0.0321408 1.6899450
20 -6948.7032786 0 0.0911572 0.8546242
25 -6961.8201998 0.0000428 18.1097485 0.0000428
30 -6961.8138753 4.10693701E-12 0.00000067261 2.84700263E-10
31 -6961.8138756 1.1056045E-11 0.00000000162 1.1056045E-11

NOTE: Converged.
NOTE: Objective = -6961.81388.

You can see from Output 13.4.2 that the SQP solver took fewer iterations to converge
to the optimal solution (see Output 13.4.1).

Example 13.5. Unconstrained NLP Optimization

The SQP solver is designed mainly for constrained optimization problems, but it
can be used for solving unconstrained optimization problems as well. Consider the
following example:

min sinx + cos x

Assume the starting point x0 = 0. You can use the following SAS code to solve the
problem:

proc optmodel;
var x init 0; /* starting point */

minimize obj =
sin(x) + cos(x);

solve with sqp/ printfreq = 0;
print x;

quit;

The optimal solution is displayed in Output 13.5.1.

Example 13.5. Unconstrained NLP Optimization � 1021

Output 13.5.1. Optimal Solution Using the SQP Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 1
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 1
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver SQP
Objective Function obj
Solution Status Optimal
Objective Value -1.414213562
Iterations 4

Infeasibility 0
Optimality Error 8.7523537E-7
Complementarity 0

x

-2.3562

You can also solve the same function by using the NLPU solver for unconstrained
NLP problems. The SAS code is as follows:

proc optmodel;
var x init 0; /* starting point */

minimize obj =
sin(x) + cos(x);

solve; /* the default solver is NLPU */
print x;

quit;

1022 � Chapter 13. The Sequential Quadratic Programming Solver

The optimal solution is displayed in Output 13.5.2.

Output 13.5.2. Optimal Solution Using the NLPU Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear

Number of Variables 1
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 1
Fixed 0

Number of Constraints 0

The OPTMODEL Procedure

Solution Summary

Solver L-BFGS
Objective Function obj
Solution Status Optimal
Objective Value -1.414213562
Iterations 5

Optimality Error 1.046407E-6

x

-2.3562

The L-BFGS method is the default technique used in the NLPU solver when a non-
linear programming problem with no variable bounds is specified. See Chapter 11,
“The Unconstrained Nonlinear Programming Solver,” for details.

Example 13.6. Solving Large-Scale NLP Problems

The SQP solver exploits the sparsity of the Jacobian in NLP problems. This enables
the SQP solver to solve reasonably large NLP problems. One such problem is the test
example “porous1” from Vanderbei. It has 5184 variables and 4900 constraints. It is
a known difficult problem to solve. Allocating a large amount of memory (roughly
one gigabyte) might be necessary to achieve convergence; see the section “Memory
Limit” on page 786 for more information.

Example 13.6. Solving Large-Scale NLP Problems � 1023

You can formulate this problem by using PROC OPTMODEL as follows:

proc optmodel;
title ’Vanderbei test example - porous1’;
/*AMPL Model by Hande Y. Benson Copyright (C) 2001 Princeton
*University All Rights Reserved Permission to use, copy, modify,
*and distribute this software and its documentation for any
*purpose and without fee is hereby granted, provided that the
*above copyright notice appear in all copies and that the
*copyright notice and this permission notice appear in all
*supporting documentation.
*Source: example 3.2.4 in S. Eisenstat and H. Walker,
*"Choosing the forcing terms in an inexact Newton
*method" Report 6 / 94 / 75, Dept of Maths, Utah State University,
*1994. SIF input: Ph. Toint, July 1994. classification NOR2 - MN -
*V - V */

number P = 72;
number D = 50.0;
number H = 1 / (P - 1);
var u{i in 1..P,j in 1..P} init 1 - (i - 1) * (j - 1) * H^2;
minimize f = 0;
con cons1{i in 2..P - 1, j in 2..P - 2}: ((u[i + 1,j]^2 + u[i -

1,j]^2 + u[i,j - 1]^2 + u[i,j + 1]^2 - 4 * u[i,j]^2) / H^2 + D *
(u[i + 1,j]^3 - u[i - 1,j]^3) / (2 * H)) = 0;

con cons2{i in 2..P - 2, j in P - 1..P - 1}: ((u[i + 1,j]^2 + u[i -
1,j]^2 + u[i,j - 1]^2 + u[i,j + 1]^2 - 4 * u[i,j]^2) / H^2 + D *
(u[i + 1,j]^3 - u[i - 1,j]^3) / (2 * H)) = 0;

con cons3: ((u[P,P - 1]^2 + u[P - 2,P - 1]^2 + u[P - 1,P - 2]^2 +
u[P - 1,P]^2 - 4 * u[P - 1,P - 1]^2) / H^2 + D * (u[P,P - 1]^3 -
u[P - 2,P - 1]^3) / (2 * H) + 50) = 0;

for {j in 1..P} fix u[1,j] = 1.0;
for {j in 1..P} fix u[P,j] = 0.0;
for {i in 2..P - 1} fix u[i,P] = 1.0;
for {i in 2..P - 1} fix u[i,1] = 0.0;
solve with sqp / printfreq = 5;

quit;

1024 � Chapter 13. The Sequential Quadratic Programming Solver

The iteration log in Output 13.6.1 displays the optimization progress and the optimal
solution.

Output 13.6.1. Iteration Log

Vanderbei test example - porous1

NOTE: The problem has 5184 variables (4900 free, 284 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 4900 nonlinear constraints (0 LE, 4900 EQ, 0 GE, 0 range)
NOTE: The OPTMODEL presolver removed 284 variables, 0 linear constraints, and 0

nonlinear constraints.
NOTE: The OPTMODEL presolved problem has 4900 variables, 0 linear constraints,

and 4900 nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The SQP solver is called.

Objective Optimality
Iter Value Infeasibility Error Complementarity

0 0 11642.1613329 0 0
5 0 47.2114333 366.4648948 0

10 0 0.0286919 0.0057846 0
15 0 0.0003938 0.0055473 0
19 0 0.00000007280 0.00000014145 0

NOTE: Converged.
NOTE: Objective = 0.

References
Bartholomew-Biggs, M. C. (1988), “A Global Convergent Version of REQP for

Constrained Minimization,” IMA Journal of Numerical Analysis, 8, 253–271.

Conn, R., Gould, N. I. M., and Toint, P. L. (1994), “Large-Scale Nonlinear
Constrained Optimization: A Current Survey,” Algorithms for Continuous
Optimization: The State of the Art, 434, 287–332.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester,
UK: John Wiley & Sons.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-
Verlag.

Chapter 14
The MPS-Format SAS Data Set

Chapter Contents

OVERVIEW . 1027
Observations . 1027
Order of Sections . 1027

SECTIONS FORMAT . 1028
NAME Section . 1028
ROWS Section . 1029
COLUMNS Section . 1029
RHS Section (Optional) . 1031
RANGES Section (Optional) . 1032
BOUNDS Section (Optional) . 1033
BRANCH Section (Optional) . 1034
QSECTION Section . 1035
ENDATA Section . 1036

DETAILS . 1036
Converting an MPS/QPS-Format File: %MPS2SASD 1036
Length of Variables . 1037

EXAMPLES . 1037
Example 14.1. MPS-Format Data Set for a Product Mix Problem 1037
Example 14.2. Fixed-MPS-Format File . 1039
Example 14.3. Free-MPS-Format File . 1039
Example 14.4. Using the %MPS2SASD Macro 1040

REFERENCES . 1042

1026

Chapter 14
The MPS-Format SAS Data Set
Overview

The MPS file format is a format commonly used in industry for describing linear pro-
gramming (LP) and integer programming (IP) problems (Murtagh 1981; IBM 1988).
It can be extended to the QPS format (Maros and Meszaros 1999), which describes
quadratic programming (QP) problems. MPS-format and QPS-format files are in text
format and have specific conventions for the order in which the different pieces of
the mathematical model are specified. The MPS-format SAS data set corresponds
closely to the format of an MPS-format or QPS-format file and is used to describe
linear programming, mixed integer programming, and quadratic programming prob-
lems for SAS/OR.

Observations

An MPS-format data set contains six variables: field1, field2, field3, field4, field5,
and field6. The variables field4 and field6 are numeric type; the others are character
type. Among the character variables, only the value of field1 is case-insensitive and
leading blanks are ignored. Values of field2, field3, and field5 are case-sensitive and
leading blanks are NOT ignored. Not all variables are used in a particular observation.

Observations in an MPS-format SAS data set are grouped into sections. Each section
starts with an indicator record, followed by associated data records. Indicator records
specify the names of sections and the format of the following data records. Data
records contain the actual data values for a section.

Order of Sections

Sections of an MPS-format SAS data set must be specified in a fixed order.

Sections of linear programming problems are listed in the following order:

• NAME

• ROWS

• COLUMNS

• RHS (optional)

• RANGES (optional)

• BOUNDS (optional)

• ENDATA

Sections of quadratic programming problems are listed in the following order:

1028 � Chapter 14. The MPS-Format SAS Data Set

• NAME

• ROWS

• COLUMNS

• RHS (optional)

• RANGES (optional)

• BOUNDS (optional)

• QSECTION

• ENDATA

Sections of mixed integer programming problems are listed in the following order:

• NAME

• ROWS

• COLUMNS

• RHS (optional)

• RANGES (optional)

• BOUNDS (optional)

• BRANCH (optional)

• ENDATA

Sections Format
The following subsections describe the format of the records for each section of the
MPS-format data set. Note that each section contains two types of records: an indica-
tor record and multiple data records. The following subsections of this documentation
describe the two different types of records for each section of the MPS data set.

NAME Section

The NAME section contains only a single record identifying the name of the problem.

Field1 Field2 Field3 Field4 Field5 Field6

NAME Blank Input
model
name

. Blank .

COLUMNS Section � 1029

ROWS Section
The ROWS section contains the name and type of the rows (linear constraints or
objectives). The type of each row is specified by the indicator code in field1 as
follows:

• MIN: minimization objective

• MAX: maximization objective

• N: objective

• G: ≥ constraint

• L: ≤ constraint

• E: = constraint

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6

ROWS Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6

Indicator
code

Row
name

Blank . Blank .

Notes:

1. At least one objective row should be specified in the ROWS section. It is possi-
ble to specify multiple objective rows. However, among all the data records in-
dicating the objective, only the first one is regarded as the objective row, while
the rest are ignored. If a type-N row is taken as the objective row, minimization
is assumed.

2. Duplicate entries of field2 in the ROWS section are not allowed. In other
words, row name is unique. The variable field2 in the ROWS section cannot
take a missing value.

COLUMNS Section
The COLUMNS section defines the column (i.e., variable or decision variable) names
of the problem. It also specifies the coefficients of the columns for each row.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6

COLUMNS Blank Blank . Blank .

1030 � Chapter 14. The MPS-Format SAS Data Set

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6

Blank Column
name
(e.g., col)

Row
name
(e.g.,
rowi)

Matrix
element
in row
rowi,
column
col

Row
name
(e.g.,
rowj)

Matrix
element
in row
rowj,
column
col

Notes:

1. All elements belonging to one column must be grouped together.

2. A missing coefficient value is ignored. A data record with missing values in
both field4 and field6 is ignored.

3. Duplicate entries in each pair of column and row are not allowed.

4. When a sequence of data records have an identical value in field2, you can
specify the value in the first occurrence and omit the value by giving a missing
value in the other records. The value in field2 of the first data record in the
section cannot be missing.

Mixed Integer Programs

Mixed integer programming (MIP) problems require you to specify which variables
are constrained to be integers. Integer variables can be specified in the COLUMNS
section with the use of special marker records in the following form:

Field1 Field2 Field3 Field4 Field5 Field6

Blank Marker
name

‘MARKER’
(including
the quotation
marks)

. ‘INTORG’
or
‘INTEND’
(including
the quotation
marks)

.

A marker record with field5 that contains the value ‘INTORG’ indicates the start of
integer variables. In the marker record that indicates the end of integer variables,
field5 must be ‘INTEND’. An alternative way to specify integer variables without
using the marker records is described in the section “BOUNDS Section (Optional)”
on page 1033.

Notes:

1. INTORG and INTEND markers must appear in pairs in the COLUMNS sec-
tion. The marker pairs can appear any number of times.

RHS Section (Optional) � 1031

2. The marker name in field2 should be different from the preceding and follow-
ing column names.

3. All variables between the INTORG and INTEND markers are assumed to be
binary unless you specify a different lower bound and/or upper bound in the
BOUNDS section.

RHS Section (Optional)
The RHS section specifies the right-hand-side value for the rows. Any row unspeci-
fied in this section is considered to have an RHS value of 0. Missing the entire RHS
section implies that all RHS values are 0.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6

RHS Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6

Blank RHS
name

Row
name
(e.g.,
rowi)

RHS
value for
row rowi

Row
name
(e.g.,
rowj)

RHS
value for
row rowj

Notes:

1. The rows that have an RHS element defined in this section need not be speci-
fied in the same order in which the rows were specified in the ROWS section.
However, a row in the RHS section should be defined in the ROWS section.

2. It is possible to specify multiple RHS vectors, which are labeled by different
RHS names. Normally, the first RHS vector encountered in the RHS section is
used, and all other RHS vectors are discarded. All the elements of the selected
RHS vector must be specified before other RHS vectors are introduced. Within
a specific RHS vector, for a given row, duplicate assignments of RHS values
are not allowed.

3. An RHS value assigned to the objective row is ignored by PROC OPTLP and
PROC OPTMILP, while it is taken as a constant term of the objective function
by PROC OPTQP.

4. A missing value in field4 or field6 is ignored. A data record with missing
values in both field4 and field6 is ignored.

5. When a sequence of data records have an identical value in field2, you can
specify the value in the first occurrence and omit the value by giving a missing
value in the other records. If the value in field2 of the first data record in the
section is missing, it means the name of the first vector is the missing value.

1032 � Chapter 14. The MPS-Format SAS Data Set

RANGES Section (Optional)
The RANGES section specifies the range of the RHS value for the constraint rows.
With range specification, a row can be constrained from above and below.

For a constraint row c, if b is the RHS value and r is the range for this row, then the
equivalent constraints are given in Table 14.1, depending on the type of row and the
sign of r.

Table 14.1. Range Effect

Type of Row Sign of r Equivalent Constraints

G ± b ≤ c ≤ b + |r|
L ± b− |r| ≤ c ≤ b

E + b ≤ c ≤ b + r

E − b + r ≤ c ≤ b

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6

RANGES Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6

Blank Range
name

Row
name
(e.g.,
rowi)

Range for
RHS of
row rowi

Row
name
(e.g.,
rowj)

Range for
RHS of
row rowj

Notes:

1. Range assignment for an objective row (i.e., MAX, MIN, or N row) is not
allowed.

2. The rows that have a range element defined in this section need not be specified
in the same order in which the rows were specified in the ROWS or RHS sec-
tion. However, a row in the RANGES section should be defined in the ROWS
section.

3. It is possible to specify multiple range vectors, which are labeled by different
range names. Normally, the first range vector encountered in the RANGES
section is used, and all other range vectors are discarded. All the elements
in a range vector must be specified before other range vectors are introduced.
Within the specific range vector, for a given range, duplicate assignments of
range values are not allowed.

4. A missing value in field4 or field6 is ignored. A data record with missing
values in both field4 and field6 is ignored.

BOUNDS Section (Optional) � 1033

5. When a sequence of data records have an identical value in field2, you can
specify the value in the first occurrence and omit the value by giving a missing
value in the other records. If the value in field2 of the first data record in the
section is missing, it means the name of the first vector is the missing value.

BOUNDS Section (Optional)

The BOUNDS section specifies bounds for the columns.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6

BOUNDS Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6

Bound type Bound
name

Column
name

Bound
for the
column

Blank Blank

Notes:

1. If you do not specify any bound for a column, then the upper bound is +∞
for a continuous variable, and 1 for an integer variable, that is specified in the
COLUMNS section. The lower bound is 0 by default.

2. General bound types include LO, UP, FX, FR, MI, and PL. Suppose the bound
for a column identified in field3 is specified as b in field4. Table 14.2 explains
the effects of different bound types.

Table 14.2. Bound Type Rules

Bound Type Ignore b Resultant Lower Bound Resultant Upper Bound

LO No b unspecified

UP No unspecified b

FX No b b

FR Yes −∞ +∞
MI Yes −∞ unspecified

PL Yes unspecified +∞

If a bound (lower or upper) is not explicitly specified, then it takes the default
values according to Note 1. There is one exception: if the upper bound is
specified as a negative value (b < 0) and the lower bound is unspecified, then
the lower bound is set to −∞.

1034 � Chapter 14. The MPS-Format SAS Data Set

Mixed integer programming problems can specify integer variables in
the BOUNDS section. Table 14.3 shows bound types defined for MIP.

Table 14.3. Bound Type Rules

Bound Type Ignore b Variable Type Value

BV Yes binary 0 or 1

LI No integer [b,∞)

UI No integer (−∞, b]

3. The columns that have bounds do not need to be specified in the same order
in which the columns were specified in the COLUMNS section. However, all
columns in the BOUNDS section should be defined in the COLUMNS section.

4. It is possible to specify multiple bound vectors, which are labeled by different
bound names. Normally, the first bound vector encountered in the BOUNDS
section is used, and all other bound vectors are discarded. All the elements
of the selected bound vector must be specified before other bound vectors are
introduced.

5. When data records in a sequence have an identical value in field2, you can
specify the value in the first occurrence and omit the value by giving a missing
value in the other records. If the value in field2 of the first data record in the
section is missing, it means the name of the first vector is the missing value.

6. Within a particular BOUNDS vector, for a given column, if a bound (lower or
upper) is explicitly specified by the bound type rules listed in Table 14.2, any
other specification is considered to be an error.

7. If the value in field1 is LO, UP, FX, LI, or UI, then a data record with a
missing value in field4 is ignored

BRANCH Section (Optional)
Sometimes you want to specify branching priorities or directions for integer variables
to improve performance. Variables with higher priorities are branched on before
variables with lower priorities. The branch direction is used to decide which branch
to take first at each node. For more information, see the section “Branching Priorities”
on page 1116.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6

BRANCH Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6

Branch
direction

Blank First
column
name

First
column
priority

Second
column
name

Second
column
priority

QSECTION Section � 1035

Notes:

1. Valid directions include UP (up branch), DN (down branch), RD (rounding)
and CB (closest bound). If field1 is blank, the solver automatically decides the
direction.

2. If field4 is missing, then the name defined in field3 is ignored. Similarly, if
field6 is missing, then the name defined in field5 is ignored.

3. The priority value in field4 and field6 must be nonnegative. Zero is the lowest
priority and is also the default.

QSECTION Section
The QSECTION section is needed only to describe quadratic programming problems.
It specifies the coefficients of the quadratic terms in the objective function.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6

QSECTION
or
QUADOBJ

Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6

Blank Column
name

Column
name

Coefficient
in
objective
function

Blank .

Notes:

1. The QSECTION section is required for PROC OPTQP and should not appear
for PROC OPTLP. For PROC OPTQP, there should be at least one valid data
record in the QSECTION section. For PROC OPTLP, an error is reported when
the submitted data set contains a QSECTION section.

2. The variables field2 and field3 contain the names of the columns that form a
quadratic term in the objective function. They must have been defined in the
COLUMNS section. They need not refer to the same column. Zero entries
should not be specified.

3. Duplicate entries of a quadratic term are not allowed. This means the combina-
tion of (field2, field3) must be unique, where (k, j) and (j, k) are considered
to be the same combination.

4. If field4 of one data record is missing or takes a value of zero, then this data
record is ignored.

1036 � Chapter 14. The MPS-Format SAS Data Set

ENDATA Section

The ENDATA section simply declares the end of all records. It contains only one in-
dicator record, where field1 takes the value ENDATA and the values of the remaining
variables are blank or missing.

Details

Converting an MPS/QPS-Format File: %MPS2SASD

As described in the section “Overview” on page 1027, the MPS or QPS format is a
standard file format for describing linear, integer, and quadratic programming prob-
lems. The MPS/QPS format is defined for plain text files, whereas in the SAS System
it is more convenient to read data from SAS data sets. Therefore, a facility is required
to convert MPS/QPS-format text files to MPS-format SAS data sets. The SAS macro
%MPS2SASD serves this purpose.

In the MPS/QPS-format text file, a record refers to a single line of text that is divided
into six fields. MPS/QPS files can be read and printed in both fixed and free format.
In fixed MPS/QPS format, each field of a data record must occur in specific columns:

Field Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

Columns 2–3 5–12 15–22 25–36 40–47 50–61

In free format, fields of a record are separated by a space. Both fixed and free format
have limitations. If users need to use row names or column names longer than 8
characters, then there is not enough space to hold them in fixed format. If users
use a space as a part of a row name or column name, such as “ROW NAME”, then
free-format MPS format interprets this symbol as two fields, “ROW” and “NAME”.

You can insert a comment record, denoted by an asterisk (*) in column 1, anywhere
in an MPS/QPS file. Also, if a dollar sign ($) is the first character in field 3 or field
5 of any record, the information from that point to the end of the record is treated
as a comment. All comments are ignored by the %MPS2SASD macro, described as
follows.

%MPS2SASD Macro Parameters

%MPS2SASD (MPSFILE=‘infilename’, OUTDATA=mpsdata, MAXLEN=n,
FORMAT=FIXED/FREE);

MPSFILE=‘infilename’
specifies the path and name of the input MPS-format file. The input file is a plain text
file, normally with either an “.mps” extension for linear programming problems or a
“.qps” extension for quadratic programming problems. This parameter is required;
there is no default value.

Example 14.1. MPS-Format Data Set for a Product Mix Problem � 1037

OUTDATA=mpsdata
specifies the name of the output MPS-format SAS data set. This parameter is op-
tional; the default value is mpsdata.

MAXLEN=n
specifies length of the variables field2, field3, and field5 in the output MPS-format
SAS data set. This parameter is optional; the default value is 8.

FORMAT=FIXED/FREE
specifies the format of the input MPS file. Valid values can be either FIXED or FREE.
This parameter is optional; the default value is the one, if any, specified by the flat
file and FIXED otherwise.

Length of Variables

In an MPS-format SAS data set, normally the variables field2, field3, and field5 hold
the names of the rows and columns. The length of these character variables is limited
to the maximum size of a SAS character variable. This enables you to use sufficiently
long names for the rows and columns in your model.

In a SAS data set generated by the %MPS2SASD macro, the length of the variables
field2, field3, and field5 is fixed to be 8 ASCII characters by default. This length
fits the fixed-format MPS/QPS file well since field 2, field 3, and field 5 are fixed at
8 characters. However, the free-format MPS/QPS files might have longer row names
or longer column names. The %MPS2SASD macro provides a parameter MAXLEN
= n. Using this parameter, you can set the variables field2, field3, and field5 to have
a length of n characters in the output SAS data set.

The parameter MAXLEN works only when the given MPS file is in free format. For
a fixed-format MPS file, this parameter is ignored and the length of field2, field3,
and field5 is 8 characters by default.

Examples

Example 14.1. MPS-Format Data Set for a Product Mix
Problem

Consider a simple product mix problem where a furniture company tries to find an
optimal product mix of four items: a desk (x1), a chair (x2), a cabinet (x3), and
a bookcase (x4). Each item is processed in a stamping department (STAMP), an
assembly department (ASSEMB), and a finishing department (FINISH). The time
each item requires in each department is given in the input data. Because of resource
limitations, each department has an upper limit on the time available for processing.
Furthermore, because of labor constraints, the assembly department must work at
least 300 hours. Finally, marketing tells you not to make more than 75 chairs, to
make at least 50 bookcases, and to find the range over which the selling price of a
bookcase can vary without changing the optimal product mix.

1038 � Chapter 14. The MPS-Format SAS Data Set

This problem can be expressed as the following linear program:

max 95x1 + 41x2 + 84x3 + 76x4

subject to 3x1 + 1.5x2 + 2x3 + 2x4 ≤ 800 (STAMP)

10x1 + 6x2 + 8x3 + 7x4 ≤ 1200 (ASSEMB)

10x1 + 6x2 + 8x3 + 7x4 ≥ 300 (ASSEMB)

10x1 + 8x2 + 8x3 + 7x4 ≤ 800 (FINISH)

x2 ≤ 75

x4 ≥ 50

xi ≥ 0 i = 1, 2, 3

The following DATA step saves the problem specification as an MPS-format SAS
data set:

data prodmix;
infile datalines;
input field1 $ field2 $ field3$ field4 field5 $ field6;
datalines;

NAME . PROD_MIX . . .
ROWS
N PROFIT
L STAMP
L ASSEMB
L FINISH
N CHNROW
N PRICE
COLUMNS
. DESK STAMP 3.0 ASSEMB 10
. DESK FINISH 10.0 PROFIT -95
. DESK PRICE 175.0 . .
. CHAIR STAMP 1.5 ASSEMB 6
. CHAIR FINISH 8.0 PROFIT -41
. CHAIR PRICE 95.0 . .
. CABINET STAMP 2.0 ASSEMB 8
. CABINET FINISH 8.0 PROFIT -84
. CABINET PRICE 145.0 . .
. BOOKCSE STAMP 2.0 ASSEMB 7
. BOOKCSE FINISH 7.0 PROFIT -76
. BOOKCSE PRICE 130.0 CHNROW 1
RHS
. TIME STAMP 800.0 ASSEMB 1200
. TIME FINISH 800.0 . .
RANGES
. T1 ASSEMB 900.0 . .
BOUNDS
UP BND CHAIR 75.0 . .
LO BND BOOKCSE 50.0 . .
ENDATA
;

Example 14.3. Free-MPS-Format File � 1039

Example 14.2. Fixed-MPS-Format File

The following file, example–fix.mps, contains the data from Example 14.1 in the
form of a fixed-MPS-format file:

* THIS IS AN EXAMPLE FOR FIXED MPS FORMAT.
NAME PROD_MIX
ROWS
N PROFIT
L STAMP
L ASSEMB
L FINISH
N CHNROW
N PRICE

COLUMNS
DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT -95.00000
DESK PRICE 175.00000
CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT -41.00000
CHAIR PRICE 95.00000
CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT -84.00000
CABINET PRICE 145.00000
BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT -76.00000
BOOKCSE PRICE 130.00000 CHNROW 1.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS
UP BND CHAIR 75.00000
LO BND BOOKCSE 50.00000

ENDATA

Example 14.3. Free-MPS-Format File

In free format, fields in data records other than the first record have no predefined
positions. They can be written anywhere except column 1, with each field separated
from the next by one or more blanks (a tab cannot be used as a field separator).
However, the fields must appear in the same sequence as in the fixed format. The
following file, example–free.mps, is an example. It describes the same problem as in
Example 14.2.

1040 � Chapter 14. The MPS-Format SAS Data Set

* THIS IS AN EXAMPLE FOR FREE MPS FORMAT.
NAME PROD_MIX FREE
ROWS
N PROFIT

L STAMP
L ASSEMB
L FINISH

N CHNROW
N PRICE

COLUMNS
DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT -95.00000
DESK PRICE 175.00000

CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT -41.00000
CHAIR PRICE 95.00000

CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT -84.00000
CABINET PRICE 145.00000

BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT -76.00000
BOOKCSE PRICE 130.00000 CHNROW 1.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS
UP BND CHAIR 75.00000
LO BND BOOKCSE 50.00000

ENDATA

Example 14.4. Using the %MPS2SASD Macro

We illustrate the use of the %MPS2SASD macro in this example, assuming the files
example–fix.mps and example–free.mps are in your current SAS working directory.

The MPS2SASD macro function has one required parameter, MPSFILE= ‘infile-
name’, which specifies the path and name of the MPS/QPS-format file. With this
single parameter, the macro reads the file, converts the records, and saves the conver-
sion to the default MPS-format SAS data set MPSDATA.

Running the following statements converts the fixed-format MPS file shown in
Example 14.2 to the MPS-format SAS data set MPSDATA:

%mps2sasd(mpsfile=’example_fix.mps’);
proc print data=mpsdata;
run;

Output 14.4.1 displays the MPS-format SAS data set MPSDATA.

Example 14.4. Using the %MPS2SASD Macro � 1041

Output 14.4.1. The MPS-Format SAS Data Set MPSDATA

Obs field1 field2 field3 field4 field5 field6

1 NAME PROD_MIX . .
2 ROWS . .
3 N PROFIT . .
4 L STAMP . .
5 L ASSEMB . .
6 L FINISH . .
7 N CHNROW . .
8 N PRICE . .
9 COLUMNS . .
10 DESK STAMP 3.0 ASSEMB 10
11 DESK FINISH 10.0 PROFIT -95
12 DESK PRICE 175.0 .
13 CHAIR STAMP 1.5 ASSEMB 6
14 CHAIR FINISH 8.0 PROFIT -41
15 CHAIR PRICE 95.0 .
16 CABINET STAMP 2.0 ASSEMB 8
17 CABINET FINISH 8.0 PROFIT -84
18 CABINET PRICE 145.0 .
19 BOOKCSE STAMP 2.0 ASSEMB 7
20 BOOKCSE FINISH 7.0 PROFIT -76
21 BOOKCSE PRICE 130.0 CHNROW 1
22 RHS . .
23 TIME STAMP 800.0 ASSEMB 1200
24 TIME FINISH 800.0 .
25 RANGES . .
26 T1 ASSEMB 900.0 .
27 BOUNDS . .
28 UP BND CHAIR 75.0 .
29 LO BND BOOKCSE 50.0 .
30 ENDATA . .

Running the following statement converts the free-format MPS file shown in Example
14.3 to the MPS-format SAS data set MPSDATA:

%mps2sasd(mpsfile=’example_free.mps’);

The data set is identical to the one shown in Output 14.4.1.

In the following statement, when the free-format MPS file is converted, the length of
the variables field2, field3, and field5 in the SAS data set MPSDATA is explicitly set
to 10 characters:

%mps2sasd(mpsfile=’example_free.mps’, maxlen=10, format=free);

1042 � Chapter 14. The MPS-Format SAS Data Set

If you want to save the converted data to a SAS data set other than the default data
set MPSDATA, you can use the parameter OUTDATA= mpsdata. The following
statement reads data from the file example–fix.mps and writes the converted data to
the data set PRODMIX:

%mps2sasd(mpsfile=’example_fix.mps’, outdata=PRODMIX);

References
IBM (1988), Mathematical Programming System Extended/370 (MPSX/370) Version

2 Program Reference Manual, volume SH19-6553-0, IBM.

Maros, I. and Meszaros, C. (1999), “A Repository of Convex Quadratic Programming
Problems,” Optimization Methods and Software, 11–12, 671–681.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice,
New York: McGraw-Hill.

Chapter 15
The OPTLP Procedure

Chapter Contents

OVERVIEW: OPTLP PROCEDURE . 1045

GETTING STARTED: OPTLP PROCEDURE 1046

SYNTAX: OPTLP PROCEDURE . 1048
Functional Summary . 1048
PROC OPTLP Statement . 1049
PROC OPTLP Macro Variable . 1053

DETAILS: OPTLP PROCEDURE . 1055
Data Input and Output . 1055
Presolve . 1060
Pricing Strategies for the Simplex Solvers 1060
Warm Start for the Simplex Solvers . 1060
The Interior Point Algorithm: Overview 1061
Iteration Log for the Simplex Solvers . 1063
Iteration Log for the Interior Point Solver 1064
ODS Tables . 1065
Irreducible Infeasible Set . 1068
Memory Limit . 1069

EXAMPLES: OPTLP PROCEDURE . 1070
Example 15.1. Oil Refinery Problem . 1070
Example 15.2. Using the Interior Point Solver 1073
Example 15.3. The Diet Problem . 1075
Example 15.4. Reoptimizing after Modifying the Objective Function 1077
Example 15.5. Reoptimizing after Modifying the Right-Hand Side 1079
Example 15.6. Reoptimizing after Adding a New Constraint 1082
Example 15.7. Finding an Irreducible Infeasible Set 1086

REFERENCES . 1091

1044

Chapter 15
The OPTLP Procedure
Overview: OPTLP Procedure

The OPTLP procedure provides three methods of solving linear programs (LPs). A
linear program has the following formulation:

min cTx

subject to Ax {≥,=,≤} b

l ≤ x ≤ u

where
x ∈ Rn is the vector of decision variables

A ∈ Rm×n is the matrix of constraints

c ∈ Rn is the vector of objective function coefficients

b ∈ Rm is the vector of constraints right-hand sides (RHS)

l ∈ Rn is the vector of lower bounds on variables

u ∈ Rn is the vector of upper bounds on variables

The following LP solvers are available in the OPTLP procedure:

• primal simplex solver

• dual simplex solver

• interior point solver (experimental)

The simplex solvers implement the two-phase simplex method. In phase I, the solver
tries to find a feasible solution. If no feasible solution is found, the LP is infeasible;
otherwise, the solver enters phase II to solve the original LP. The interior point solver
implements a primal-dual predictor-corrector interior point algorithm.

PROC OPTLP requires a linear program to be specified using a SAS data set that
adheres to the MPS format, a widely accepted format in the optimization community.
For details about the MPS format see Chapter 14, “The MPS-Format SAS Data Set.”

You can use the MPSOUT= option to convert typical PROC LP format data sets
into MPS-format SAS data sets. The option is available in the LP, INTPOINT,
and NETFLOW procedures. For details about this option, see Chapter 3, “The
LP Procedure,” Chapter 2, “The INTPOINT Procedure,” and Chapter 5, “The
NETFLOW Procedure.”

1046 � Chapter 15. The OPTLP Procedure

Getting Started: OPTLP Procedure
The following example illustrates how you can use the OPTLP procedure to solve
linear programs. Suppose you want to solve the following problem:

min 2x1 − 3x2 − 4x3

subject to − 2x2 − 3x3 ≥ −5 (R1)

x1 + x2 + 2x3 ≤ 4 (R2)

x1 + 2x2 + 3x3 ≤ 7 (R3)

x1, x2, x3 ≥ 0

The corresponding MPS-format SAS data set is as follows:

data example;
input field1 $ field2 $ field3$ field4 field5 $ field6 ;
datalines;
NAME . EXAMPLE . . .
ROWS
N COST
G R1
L R2
L R3
COLUMNS
. X1 COST 2 R2 1
. X1 R3 1 . .
. X2 COST -3 R1 -2
. X2 R2 1 R3 2
. X3 COST -4 R1 -3
. X3 R2 2 R3 3
RHS
. RHS R1 -5 R2 4
. RHS R3 7 . .
ENDATA
;

You can also create this data set from an MPS-format flat file (examp.mps) by using
the following SAS macro:

%mps2sasd(mpsfile = "examp.mps", outdata = example);

Note: The SAS macro %MPS2SASD is provided in SAS/OR software. See the
section “Converting an MPS/QPS-Format File: %MPS2SASD” on page 1036 for
details.

You can use the following statement to call the OPTLP procedure:

Getting Started: OPTLP Procedure � 1047

proc optlp data = example
objsense = min
presolver = automatic
solver = primal
primalout = expout
dualout = exdout;

run;

Note: The “N” designation for “COST” in the rows section of the data set example
also specifies a minimization problem. See the section “ROWS Section” on page
1029 for details.

The optimal primal and dual solutions are stored in the data sets expout and exdout,
respectively, and are displayed in Figure 15.1.

The OPTLP Procedure
Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 COST RHS X1 N 2
2 COST RHS X2 N -3
3 COST RHS X3 N -4

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 1.7977E308 0.0 L 2.0
2 0 1.7977E308 2.5 B 0.0
3 0 1.7977E308 0.0 L 0.5

The OPTLP Procedure
Dual Solution

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 COST RHS R1 G -5 .
2 COST RHS R2 L 4 .
3 COST RHS R3 L 7 .

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . 1.5 U -5.0
2 . 0.0 B 2.5
3 . 0.0 B 5.0

Figure 15.1. Primal and Dual Solution Output

1048 � Chapter 15. The OPTLP Procedure

For details about the type and status codes displayed for variables and constraints,
see the section “Data Input and Output” on page 1055.

Syntax: OPTLP Procedure
The following statement is available in the OPTLP procedure:

PROC OPTLP < options > ;

Functional Summary

Table 15.1 summarizes the list of options available for the OPTLP procedure, classi-
fied by function.

Table 15.1. Options for the OPTLP Procedure

Description Option
Data Set Options:
input data set DATA=

dual input data set for warm start DUALIN=

dual solution output data set DUALOUT=

objective sense (maximization or minimization) OBJSENSE=

primal input data set for warm start PRIMALIN=

primal solution output data set PRIMALOUT=

save output data sets only if optimal SAVE–ONLY–IF–OPTIMAL

Solver Options:
enable or disable IIS detection (experimental) IIS=

type of solver SOLVER=

Presolve Option:
type of presolve PRESOLVER=

Control Options:
feasibility tolerance FEASTOL=

maximum number of iterations MAXITER=

upper limit on time used to solve the problem MAXTIME=

optimality tolerance OPTTOL=

frequency of printing solution progress PRINTFREQ=

enable/disable printing summary PRINTLEVEL=

use CPU/real time TIMETYPE=

Simplex Algorithm Options:
type of initial basis BASIS=

type of pricing strategy PRICETYPE=

PROC OPTLP Statement � 1049

Table 15.1. (continued)

Description Option
queue size for determining entering variable QUEUESIZE=

enable or disable scaling of the problem SCALE=

Interior Point Algorithm Options:
stopping criterion based on duality gap STOP–DG=

stopping criterion based on dual infeasibility STOP–DI=

stopping criterion based on primal infeasibility STOP–PI=

PROC OPTLP Statement
PROC OPTLP < options > ;

You can specify the following options in the PROC OPTLP statement.

Data Set Options
DATA=SAS-data-set

specifies the input data set corresponding to the LP model. If this option is not speci-
fied, PROC OPTLP will use the most recently created SAS data set. See Chapter 14,
“The MPS-Format SAS Data Set,” for more details about the input data set.

DUALIN=SAS-data-set
DIN=SAS-data-set

specifies the input data set corresponding to the dual solution that is required for
warm starting the simplex solvers. See the section “Data Input and Output” on page
1055 for details.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

specifies the output data set for the dual solution. This data set contains the dual
solution information. See the section “Data Input and Output” on page 1055 for
details.

OBJSENSE=option
specifies whether the LP model is a minimization or a maximization problem. You
specify OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for
a maximization problem. Alternatively, you can specify the objective sense in the
input data set; see the section “ROWS Section” on page 1029 for details. If for some
reason the objective sense is specified differently in these two places, this option
supersedes the objective sense specified in the input data set. If the objective sense is
not specified anywhere, then PROC OPTLP interprets and solves the linear program
as a minimization problem.

PRIMALIN=SAS-data-set
PIN=SAS-data-set

specifies the input data set corresponding to the primal solution that is required for
warm starting the simplex solvers. See the section “Data Input and Output” on page
1055 for details.

1050 � Chapter 15. The OPTLP Procedure

PRIMALOUT=SAS-data-set
POUT=SAS-data-set

specifies the output data set for the primal solution. This data set contains the primal
solution information. See the section “Data Input and Output” on page 1055 for
details.

SAVE–ONLY–IF–OPTIMAL
specifies that the PRIMALOUT= and DUALOUT= data sets be saved only
if the final solution obtained by the solver at termination is optimal. If the
PRIMALOUT= and DUALOUT= options are specified, then by default (that
is, omitting the SAVE–ONLY–IF–OPTIMAL option), PROC OPTLP always
saves the solutions obtained at termination, regardless of the final status. If the
SAVE–ONLY–IF–OPTIMAL option is not specified, the output data sets can
contain an intermediate solution, if one is available.

Solver Options

IIS=OFF(0) | ON(1) (experimental)
specifies whether PROC OPTLP performs detection of an irreducible infeasible set
(IIS). When IIS=ON, PROC OPTLP tries to identify a set of constraints and variables
that form an IIS. If an IIS is found, information about infeasible constraints or variable
bounds can be found in the DUALOUT= and PRIMALOUT= data sets. If no IIS is
detected, then the presolver is applied and a solver is called to continue solving the
problem. The default of this option is OFF. See the section “Irreducible Infeasible
Set” on page 1068 for details.

SOLVER=option
SOL=option

specifies one of the following LP solvers:

Option Description

PRIMAL (PS) Use primal simplex solver.

DUAL (DS) Use dual simplex solver.

ITERATIVE (II), experimental Use interior point solver.

The valid abbreviated value for each option is indicated in parentheses. By default,
the dual simplex solver is used.

Presolve Options

PRESOLVER=option
PRESOL=option

specifies one of the following presolve options:

Option Description

NONE (0) Disable presolver.

PROC OPTLP Statement � 1051

Option Description

AUTOMATIC (−1) Apply presolver by using default setting.

BASIC (1) Perform basic presolve like removing empty rows,
columns, and fixed variables.

MODERATE (2) Perform basic presolve and apply other inexpensive
presolve techniques.

AGGRESSIVE (3) Perform moderate presolve and apply other aggressive
(but expensive) presolve techniques.

You can also specify the option by specifying an integer from −1 to 3. The
integer value for each option is indicated in parentheses. The default option is
AUTOMATIC (−1). See the section “Presolve” on page 1060 for details.

Control Options

FEASTOL=ε
specifies the feasibility tolerance ε ∈[1E–9, 1E–4] for determining the feasibility of
a variable value. The default value is 1E–6.

MAXITER=k
specifies the maximum number of iterations. The value k can be any integer between
one and the largest four-byte signed integer, which is 231 − 1. If you do not specify
this option, the procedure does not stop based on the number of iterations performed.

MAXTIME=k
specifies an upper limit of k seconds of time for reading in the data and performing
the optimization process. The timer used by this option is determined by the value
of the TIMETYPE= option. If you do not specify this option, the procedure does not
stop based on the amount of time elapsed.

OPTTOL=ε
specifies the optimality tolerance ε ∈[1E–9, 1E–4] for declaring optimality. The
default value is 1E–6.

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after
every k iterations. The print frequency, k, is an integer between zero and the largest
four-byte signed integer, which is 231 − 1.

The value k = 0 disables the printing of the progress of the solution.

If the PRINTFREQ= option is not specified, then PROC OPTLP displays the iteration
log with a dynamic frequency according to the problem size if one of the simplex
solvers is used, or with frequency 1 if the interior point solver is used.

PRINTLEVEL=0 | 1 | 2
specifies whether a summary of the problem and solution should be printed.
If PRINTLEVEL=1, then two ODS (Output Delivery System) tables named

1052 � Chapter 15. The OPTLP Procedure

“ProblemSummary” and “SolutionSummary” are produced and printed. If
PRINTLEVEL=2, then the “ProblemSummary” and “SolutionSummary” tables
are produced and printed along with a third table called “ProblemStatistics.” If
PRINTLEVEL=0, then no ODS tables are produced or printed. The default value of
this option is 1.

For details about the ODS tables created by PROC OPTLP, see the section “ODS
Tables” on page 1065.

TIMETYPE=CPU(0) | REAL(1)
specifies type of the time used in a PROC OPTLP call. Numeric values of time can be
specified in the MAXTIME= option or reported in the –OROPTLP– macro variable.
The value of this option determines whether such time is CPU time or real time. The
default value of this option is CPU.

Simplex Algorithm Options

BASIS=option
specifies the following options for generating an initial basis:

Option Description

CRASH (0) Generate an initial basis by using crash techniques (Maros
2003). The procedure creates a triangular basic matrix
consisting of both decision variables and slack variables.

SLACK (1) Generate an initial basis by using all slack variables.

WARMSTART (2) Start the simplex solvers with a user-specified initial basis.
The PRIMALIN= and DUALIN= data sets are required to
specify an initial basis.

You can also specify the option by specifying an integer from 0 to 2. The integer value
for each option is indicated in parentheses. The default option for the primal simplex
solver is CRASH (0). The default option for the dual simplex solver is SLACK(1).

PRICETYPE=option
specifies one of the following pricing strategies for the simplex solvers:

Option Description

HYBRID (0) Use a hybrid of Devex and steepest-edge pricing
strategies. Available for the primal simplex solver
only.

PARTIAL (1) Use the Dantzig’s rule on a queue of decision vari-
ables. Optionally, you can specify QUEUESIZE=.
Available for the primal simplex solver only.

FULL (2) Use the Dantzig’s rule on all decision variables.

DEVEX (3) Use Devex pricing strategy.

PROC OPTLP Macro Variable � 1053

Option Description

STEEPESTEDGE (4) Use steepest-edge pricing strategy.

You can also specify the option by specifying an integer from 0 to 4. The integer value
for each option is indicated in parentheses. The default pricing strategy for the primal
simplex solver is HYBRID (0) and for the dual simplex solver is STEEPESTEDGE
(4). See the section “Pricing Strategies for the Simplex Solvers” on page 1060 for
details.

QUEUESIZE=k
specifies the queue size k ∈ [1, n], where n is the number of decision variables. This
queue is used for finding an entering variable in the simplex iteration. The default
value is chosen adaptively based on the number of decision variables. This option is
used only when PRICETYPE=PARTIAL.

SCALE=option
specifies one of the following scaling options:

Option Description

NONE (0) Disable scaling.

AUTOMATIC (−1) Automatically apply scaling procedure if necessary.

You can also specify the option by specifying the integer −1 or 0. The integer value
for each option is indicated in parentheses. The default option is AUTOMATIC (–1).

Interior Point Algorithm Options
STOP–DG=δ

specifies the desired relative duality gap δ ∈[1E–9, 1E–4]. This is the relative dif-
ference between the primal and dual objective function values and is the primary
solution quality parameter. The default value is 1E–6. See the section “The Interior
Point Algorithm: Overview” on page 1061 for details.

STOP–DI=β
specifies the maximum allowed relative dual constraints violation β ∈[1E–9, 1E–4].
The default value is 1E–6. See the section “The Interior Point Algorithm: Overview”
on page 1061 for details.

STOP–PI=α
specifies the maximum allowed relative bound and primal constraints violation
α ∈[1E–9, 1E–4]. The default value is 1E–6. See the section “The Interior Point
Algorithm: Overview” on page 1061 for details.

PROC OPTLP Macro Variable

The OPTLP procedure defines a macro variable named –OROPTLP–. This variable
contains a character string that indicates the status of the OPTLP procedure upon

1054 � Chapter 15. The OPTLP Procedure

termination. The various terms of the variable are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK procedure terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing of data

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL solution is optimal, but some infeasibilities (pri-
mal, dual or bound) exceed tolerances due to
scaling or preprocessing

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED maximum time limit reached

FAILED solver failed to converge, possibly due to nu-
merical issues

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL–INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the primal
solution.

DUAL–INFEASIBILITY
indicates the maximum (absolute) violation of the dual constraints by the dual solu-
tion.

BOUND–INFEASIBILITY
indicates the maximum (absolute) violation of the lower and/or upper bounds by the
primal solution.

DUALITY–GAP
indicates the (relative) duality gap. This term appears only if the interior point solver
is used.

Data Input and Output � 1055

COMPLEMENTARITY
indicates the (absolute) complementarity. This term appears only if the interior point
solver is used.

ITERATIONS
indicates the number of iterations taken to solve the problem.

PRESOLVE–TIME
indicates the time for preprocessing (seconds).

SOLUTION–TIME
indicates the time taken to solve the problem (seconds).

Note: The time reported in PRESOLVE–TIME and SOLUTION–TIME is either
CPU time (default) or real time. The type is determined by the TIMETYPE= option.

When SOLUTION–STATUS has a value of OPTIMAL, CONDITIONAL–OPTIMAL,
ITERATION–LIMIT–REACHED, or TIME–LIMIT–REACHED, all terms of the
–OROPTLP– macro variable are present; for other values of SOLUTION–STATUS,
some terms do not appear.

Details: OPTLP Procedure

Data Input and Output

This subsection describes the PRIMALIN= and DUALIN= data sets required to warm
start the simplex solvers, and the PRIMALOUT= and DUALOUT= output data sets.

Definitions of Variables in the PRIMALIN= Data Set

The PRIMALIN= data set has two required variables defined as follows:

–VAR–
specifies the name of the decision variable.

–STATUS–
specifies the status of the decision variable. It can take one of the following val-
ues:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

A newly added variable in the modified LP model when using the
BASIS=WARMSTART option

Note: The PRIMALIN= data set is created from the PRIMALOUT= data set obtained
from a previous “normal” run of PROC OPTLP—i.e., using only the DATA= data set
as the input.

1056 � Chapter 15. The OPTLP Procedure

Definitions of Variables in the DUALIN= Data Set

The DUALIN= data set also has two required variables defined as follows:

–ROW–
specifies the name of the constraint.

–STATUS–
specifies the status of the slack variable for a given constraint. It can take one of the
following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

A newly added variable in the modified LP model when using the
BASIS=WARMSTART option

Note: The DUALIN= data set is created from the DUALOUT= data set obtained
from a previous “normal” run of PROC OPTLP—i.e., using only the DATA= data set
as the input.

Definitions of Variables in the PRIMALOUT= Data Set

The PRIMALOUT= data set contains the primal solution to the LP model;
each observation corresponds to a variable of the LP problem. If the
SAVE–ONLY–IF–OPTIMAL option is not specified, the PRIMALOUT= data
set can contain an intermediate solution, if one is available. See Example 15.1 for
an example of the PRIMALOUT= data set. The variables in the data set have the
following names and meanings.

–OBJ–ID–
specifies the name of the objective function. This is particularly useful when there
are multiple objective functions, in which case each objective function has a unique
name.

Note: PROC OPTLP does not support simultaneous optimization of multiple objec-
tive functions in this release.

–RHS–ID–
specifies the name of the variable containing the right-hand-side value of each con-
straint.

–VAR–
specifies the name of the decision variable.

–TYPE–
specifies the type of the decision variable. –TYPE– can take one of the following
values:

N nonnegative

Data Input and Output � 1057

D bounded (with both lower and upper bound)

F free

X fixed

O other (with either lower or upper bound)

–OBJCOEF–
specifies the coefficient of the decision variable in the objective function.

–LBOUND–
specifies the lower bound on the decision variable.

–UBOUND–
specifies the upper bound on the decision variable.

–VALUE–
specifies the value of the decision variable.

–STATUS–
specifies the status of the decision variable. –STATUS– can take one of the following
values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

I LP model infeasible (all decision variables have –STATUS– equal to I)

For the interior point solver with IIS= OFF, –STATUS– is blank.

The following values can appear only if IIS= ON. See the section “Irreducible
Infeasible Set” on page 1068 for details.

I–L the lower bound of the variable is violated

I–U the upper bound of the variable is violated

I–F the fixed bound of the variable is violated

–R–COST–
specifies the reduced cost of the decision variable, which is the amount by which the
objective function is increased per unit increase in the decision variable. The reduced
cost associated with the ith variable is the ith entry of the following vector:(

cT − cT
BB−1A

)
where B ∈ Rm×m denotes the basis (matrix composed of basic columns of the con-
straints matrix A ∈ Rm×n), c ∈ Rn is the vector of objective function coefficients,
and cB ∈ Rm is the vector of objective coefficients of the variables in the basis.

1058 � Chapter 15. The OPTLP Procedure

Definitions of Variables in the DUALOUT= Data Set

The DUALOUT= data set contains the dual solution to the LP model;
each observation corresponds to a constraint of the LP problem. If the
SAVE–ONLY–IF–OPTIMAL option is not specified, the PRIMALOUT= data
set can contain an intermediate solution, if one is available. Information about the
objective rows of the LP problems is not included. See Example 15.1 for an example
of the DUALOUT= data set. The variables in the data set have the following names
and meanings.

–OBJ–ID–
specifies the name of the objective function. This is particularly useful when there
are multiple objective functions, in which case each objective function has a unique
name.

Note: PROC OPTLP does not support simultaneous optimization of multiple objec-
tive functions in this release.

–RHS–ID–
specifies the name of the variable containing the right-hand-side value of each con-
straint.

–ROW–
specifies the name of the constraint.

–TYPE–
specifies the type of the constraint. –TYPE– can take one of the following val-
ues:

L “less than or equals” constraint

E equality constraint

G “greater than or equals” constraint

R ranged constraint (both “less than or equals” and “greater than or equals”)

–RHS–
specifies the value of the right-hand side of the constraint. It takes a missing value
for a ranged constraint.

–L–RHS–
specifies the lower bound of a ranged constraint. It takes a missing value for a non-
ranged constraint.

–U–RHS–
specifies the upper bound of a ranged constraint. It takes a missing value for a non-
ranged constraint.

–VALUE–
specifies the value of the dual variable associated with the constraint.

–STATUS–
specifies the status of the slack variable for the constraint. –STATUS– can take one
of the following values:

Data Input and Output � 1059

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

I LP model infeasible (all decision variables have –STATUS– equal to I)

The following values can appear only if option IIS= ON. See the section “Irreducible
Infeasible Set” on page 1068 for details.

I–L the “GE” (≥) condition of the constraint is violated

I–U the “LE” (≤) condition of the constraint is violated

I–F the “EQ” (=) condition of the constraint is violated

–ACTIVITY–
specifies the left-hand-side value of a constraint. In other words, the value of
–ACTIVITY– for the ith constraint would be equal to aT

i x, where ai refers to the
ith row of the constraints matrix and x denotes the vector of current decision variable
values.

Data Magnitude and Variable Bounds

Extremely large numerical values might cause computational difficulties for the
OPTLP procedure, but the occurrence of such difficulties is hard to predict. For this
reason, the OPTLP procedure issues a data error message whenever it detects model
data that exceeds a specific threshold number. The value of the threshold number
depends on your operating environment and is printed in the log as part of the data
error message.

The following conditions produce a data error:

• The absolute value of an objective coefficient, constraint coefficient, or range
(difference between the upper and lower bounds on a constraint) is greater than
the threshold number.

• A variable’s lower bound, a ≥ or = constraint’s right-hand side, or a range
constraint’s lower bound is greater than the threshold number.

• A variable’s upper bound, a ≤ or = constraint’s right-hand side, or a range
constraint’s upper bound is smaller than the negative threshold number.

If a variable’s upper bound is larger than 1E20, then the OPTLP procedure treats the
bound as ∞. Similarly, if a variable’s lower bound is smaller than −1E20, then the
OPTLP procedure treats the bound as −∞.

1060 � Chapter 15. The OPTLP Procedure

Presolve

Presolve in PROC OPTLP uses a variety of techniques to reduce the problem size,
improve numerical stability, and detect infeasibility or unboundedness (Andersen and
Andersen 1995; Gondzio 1997). During presolve, redundant constraints and vari-
ables are identified and removed. Presolve can further reduce the problem size by
substituting variables. Variable substitution is a very effective technique, but it might
occasionally increase the number of nonzero entries in the constraint matrix.

In most cases, using presolve is very helpful in reducing solution times. You can en-
able presolve at different levels or disable it by specifying the PRESOLVER= option.

Pricing Strategies for the Simplex Solvers

Several pricing strategies for the simplex solvers are available. Pricing strategies de-
termine which variable enters the basis at each simplex pivot. They can be controlled
by specifying the PRICETYPE= option.

The primal simplex solver has the following five pricing strategies:

PARTIAL uses Dantzig’s most violated reduced cost rule (Dantzig 1963).
It scans a queue of decision variables and selects the variable
with the most violated reduced cost as the entering variable.
You can optionally specify the QUEUESIZE= option to control
the length of this queue.

FULL uses Dantzig’s most violated reduced cost rule. It compares the
reduced costs of all decision variables and selects the variable
with the most violated reduced cost as the entering variable.

DEVEX implements the Devex pricing strategy developed by Harris
(1973).

STEEPESTEDGE uses the steepest-edge pricing strategy developed by Forrest
and Goldfarb (1992).

HYBRID uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex solver has only three pricing strategies available: FULL, DEVEX,
and STEEPESTEDGE.

Warm Start for the Simplex Solvers

You can warm start the simplex solvers by specifying the option
BASIS=WARMSTART. Additionally you need to specify the PRIMALIN=
and DUALIN= data sets. The simplex solvers start with the basis thus provided. If
the given basis cannot form a valid basis, the solvers use the basis generated using
their crash techniques.

After an LP model is solved using the simplex solvers, the BASIS=WARMSTART
option enables you to perform sensitivity analysis such as modifying the objective
function, changing the right-hand sides of the constraints, adding and/or deleting

The Interior Point Algorithm: Overview � 1061

constraints and/or decision variables, and combinations of these cases. A faster
solution to such a modified LP model can be obtained by starting with the basis
in the optimal solution to the original LP model. This can be done by using the
BASIS=WARMSTART option, modifying the DATA= input data set, and specifying
the PRIMALIN= and DUALIN= data sets. Example 15.4 and Example 15.5 illustrate
how to reoptimize an LP problem with a modified objective function and/or a modi-
fied right-hand side by using this technique. Example 15.6 shows how to reoptimize
an LP problem after adding a new constraint.

CAUTION: Since the presolver uses the objective function and/or right-hand-side
information, the basis provided by you might not be valid for the presolved model.
It is therefore recommended that you turn the PRESOLVER= option off when using
BASIS=WARMSTART.

The Interior Point Algorithm: Overview

The interior point solver (experimental) in PROC OPTLP implements an infeasible
primal-dual predictor-corrector interior point algorithm. To illustrate the algorithm
and the concepts of duality and dual infeasibility, consider the following LP formu-
lation (the primal):

min cTx

subject to Ax ≥ b

x ≥ 0

The corresponding dual is as follows:

max bTy

subject to ATy + w = c

y ≥ 0

w ≥ 0

where y ∈ Rm refers to the vector of dual variables and w ∈ Rn refers to the vector
of dual slack variables.

The dual makes an important contribution to the certificate of optimality for the pri-
mal. The primal and dual constraints combined with complementarity conditions de-
fine the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker)

1062 � Chapter 15. The OPTLP Procedure

conditions, which can be stated as follows:

Ax− s = b (Primal Feasibility)

ATy + w = c (Dual Feasibility)

WXe = 0 (Complementarity)

SYe = 0 (Complementarity)

x, y, w, s ≥ 0

where e ≡ (1, . . . , 1)T of appropriate dimension and s ∈ Rm is the vector of primal
slack variables.

Note: Slack variables (the s vector) are automatically introduced by the solver when
necessary; it is therefore recommended that you not introduce any slack variables
explicitly. This enables the solver to handle slack variables much more efficiently.

The letters X, Y, W, and S denote matrices with corresponding x, y, w, and s on
the main diagonal and zero elsewhere, as in the following example:

X ≡


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xn


If (x∗,y∗,w∗, s∗) is a solution of the previously defined system of equations repre-
senting the KKT conditions, then x∗ is also an optimal solution to the original LP
model.

At each iteration the interior point algorithm solves a large, sparse system of linear
equations as follows:

 Y−1S A

AT −X−1W

 ∆y

∆x

 =

 Ξ

Θ


where ∆x and ∆y denote the vector of search directions in the primal and dual
spaces, respectively; Θ and Ξ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. PROC OPTLP uses a
preconditioned quasi-minimum residual algorithm to solve this system of equations
efficiently.

An important feature of the interior point solver is that it takes full advantage of the
sparsity in the constraint matrix, thereby enabling it to efficiently solve large-scale
linear programs.

Iteration Log for the Simplex Solvers � 1063

The interior point algorithm works simultaneously in the primal and dual spaces.
It attains optimality when both primal and dual feasibility are achieved and when
complementarity conditions hold. Therefore it is of interest to observe the following
four measures:

• Relative primal infeasibility measure α:

α =
‖Ax− b− s‖2

‖b‖2 + 1

• Relative dual infeasibility measure β:

β =
‖c−ATy −w‖2

‖c‖2 + 1

• Relative duality gap δ:

δ =
|cTx− bTy|
|cTx|+ 1

• Absolute complementarity γ:

γ =
n∑

i=1

xiwi +
m∑

i=1

yisi

where ‖v‖2 is the Euclidean norm of the vector v. These measures are displayed in
the iteration log.

Iteration Log for the Simplex Solvers

The simplex solvers implement a two-phase simplex algorithm. Phase I finds a feasi-
ble solution, which phase II improves to an optimal solution.

When the PRINTFREQ= option has a value of 1, the following information is printed
in the iteration log:

Phase indicates whether the solver is in phase I or phase II of the sim-
plex method.

Iteration indicates the iteration number.

Objective Value indicates the current amount of infeasibility in phase I and the
objective value of the current solution in phase II.

Entering Variable indicates the entering pivot variable. A slack variable entering
the basis is indicated by the corresponding row name followed
by ‘(S)’. If the entering nonbasic variable has distinct, finite
lower and upper bounds, then a “bound swap” takes place. In
other words, if the entering variable is at its upper bound, then it
is “flipped” to its lower bound and is indicated in the log as “To
lower.”

1064 � Chapter 15. The OPTLP Procedure

Leaving Variable indicates the leaving pivot variable. A slack variable leaving the
basis is indicated by the corresponding row name followed by
‘(S)’.

When the PRINTFREQ= option is omitted or specified with a value larger than 1,
only the phase, iteration, and objective value information is printed in the iteration
log.

The behavior of objective values in the iteration log depends on both the current
phase and the chosen solver. In phase I, both simplex method have artificial objective
values that decrease to 0 when a feasible solution is found. For the dual simplex
method, phase II maintains a dual feasible solution, so a minimization problem has
increasing objective values in the iteration log. For the primal simplex method, phase
II maintains a primal feasible solution, so a minimization problem has decreasing
objective values in the iteration log.

During the solution process, some elements of the LP model might be perturbed to
improve performance. After reaching optimality for the perturbed problem, PROC
OPTLP solves the original problem by using the optimal basis for the perturbed prob-
lem. This can occasionally cause the simplex solver to repeat phase I and phase II in
several passes.

Iteration Log for the Interior Point Solver

The interior point solver implements an infeasible primal-dual predictor-corrector
interior point algorithm. The following information is displayed in the iteration
log:

Iter indicates the iteration number

Complement indicates the (absolute) complementarity

Duality Gap indicates the (relative) duality gap

Primal Infeas indicates the (relative) primal infeasibility measure

Bound Infeas indicates the (relative) bound infeasibility measure

Dual Infeas indicates the (relative) dual infeasibility measure

If the sequence of solutions converges to an optimal solution of the problem, you
should see all columns in the iteration log converge to zero or very close to zero. If
they do not, it can be the result of insufficient iterations being performed to reach opti-
mality. In this case, you might need to increase the value specified in the MAXITER=
or MAXTIME= options. If the complementarity and/or the duality gap do not con-
verge, the problem might be infeasible or unbounded. If the infeasibility columns do
not converge, the problem might be infeasible.

ODS Tables � 1065

ODS Tables

PROC OPTLP creates two ODS (Output Delivery System) tables by default unless
you specify a value other than 1 for the PRINTLEVEL= option. One table is a sum-
mary of the input LP problem. The other is a brief summary of the solution status.
PROC OPTLP assigns a name to each table it creates. You can use these names to
reference the table when using the ODS to select tables and create output data sets.
For more information about ODS, see SAS Output Delivery System: User’s Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then a third table,
“ProblemStatistics,” is produced. This table contains information about the problem
data. For more information, see the section “Problem Statistics” on page 1067.

Table 15.2. ODS Tables Produced by PROC OPTLP

ODS Table Name Description PRINTLEVEL=

ProblemSummary Summary of the input LP problem 1 (default)

SolutionSummary Summary of the solution status 1 (default)

ProblemStatistics Description of input problem data 2

A typical output of PROC OPTLP is shown in Figure 15.2.

1066 � Chapter 15. The OPTLP Procedure

The OPTLP Procedure

Problem Summary

Problem Name ADLITTLE
Objective Sense Minimization
Objective Function .Z....
RHS ZZZZ0001

Number of Variables 97
Bounded Above 0
Bounded Below 97
Bounded Above and Below 0
Free 0
Fixed 0

Number of Constraints 56
LE (<=) 40
EQ (=) 15
GE (>=) 1
Range 0

Constraint Coefficients 383

The OPTLP Procedure

Solution Summary

Solver Dual simplex
Objective Function .Z....
Solution Status Optimal
Objective Value 225494.96316

Primal Infeasibility 2.273737E-13
Dual Infeasibility 1.85273E-13
Bound Infeasibility 0

Iterations 88
Presolve Time 0.00
Solution Time 0.00

Figure 15.2. Typical OPTLP Output

You can create output data sets from these tables by using the ODS OUTPUT state-
ment. This can be useful, for example, when you want to create a report to summarize
multiple PROC OPTLP runs. The output data sets corresponding to the preceding
output are shown in Figure 15.3, where you can also find (at the row following the
heading of each data set in display) the variable names that are used in the table
definition (template) of each table.

ODS Tables � 1067

Problem Summary

Obs Label1 cValue1 nValue1

1 Problem Name ADLITTLE .
2 Objective Sense Minimization .
3 Objective Function .Z.... .
4 RHS ZZZZ0001 .
5 .
6 Number of Variables 97 97.000000
7 Bounded Above 0 0
8 Bounded Below 97 97.000000
9 Bounded Above and Below 0 0
10 Free 0 0
11 Fixed 0 0
12 .
13 Number of Constraints 56 56.000000
14 LE (<=) 40 40.000000
15 EQ (=) 15 15.000000
16 GE (>=) 1 1.000000
17 Range 0 0
18 .
19 Constraint Coefficients 383 383.000000

Solution Summary

Obs Label1 cValue1 nValue1

1 Solver Dual simplex .
2 Objective Function .Z.... .
3 Solution Status Optimal .
4 Objective Value 225494.96316 225495
5 .
6 Primal Infeasibility 2.273737E-13 2.273737E-13
7 Dual Infeasibility 1.85273E-13 1.85273E-13
8 Bound Infeasibility 0 0
9 .
10 Iterations 88 88.000000
11 Presolve Time 0.00 0
12 Solution Time 0.00 0

Figure 15.3. ODS Output Data Sets

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models.
Information about data magnitude provides a simple gauge to determine how well
a model is formulated. For example, a model whose constraint matrix contains one
very large entry (on the order of 109) can cause difficulty when the remaining entries
are single-digit numbers. The PRINTLEVEL=2 option in the OPTLP procedure
causes the ODS table “ProblemStatistics” to be generated. This table provides basic
data magnitude information that enables you to improve the formulation of your
models.

The example output in Figure 15.4 demonstrates the contents of the ODS table
“ProblemStatistics.”

1068 � Chapter 15. The OPTLP Procedure

The OPTLP Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 8
Maximum Constraint Matrix Coefficient 3
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.875

Number of Objective Nonzeros 3
Maximum Objective Coefficient 4
Minimum Objective Coefficient 2
Average Objective Coefficient 3

Number of RHS Nonzeros 3
Maximum RHS 7
Minimum RHS 4
Average RHS 5.3333333333

Maximum Number of Nonzeros per Column 3
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 3
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Figure 15.4. ODS Table ProblemStatistics

The variable names in the ODS table “ProblemStatistics” are Label1, cValue1, and
nValue1.

Irreducible Infeasible Set

For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible
subset of constraints and variable bounds that will become feasible if any single con-
straint or variable bound is removed. It is possible to have more than one IIS in an
infeasible LP. Identifying an IIS can help to isolate the structural infeasibility in an
LP.

The presolver in the OPTLP procedure can detect infeasibility, but it only identifies
the variable bound or constraint that triggers the infeasibility.

The experimental IIS=ON option directs the OPTLP procedure to search for an IIS in
a given LP. The presolver is not applied to the problem during the IIS search. If the
OPTLP procedure detects an IIS, it first outputs the IIS to the data sets specified by
the PRIMALOUT= and DUALOUT= options, then stops. Otherwise, the problem is
sent on to the presolver, followed by the specified solver.

The IIS= option can add special values to the –STATUS– variables in the output
data sets. (See the section “Data Input and Output” on page 1055 for more infor-
mation.) For constraints, a status of “I–L”, “I–U”, or “I–F” indicates, respectively,
the “GE” (≥), “LE” (≤), or “EQ” (=) condition is violated. For range constraints,
a status of “I–L” or “I–U” indicates, respectively, that the lower or upper bound of

Memory Limit � 1069

the constraint is violated. For variables, a status of “I–L”, “I–U”, or “I–F” indicates,
respectively, the lower, upper, or fixed bound of the variable is violated. From this
information, you can identify names of the constraints (variables) in the IIS as well
as the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding will re-
move the infeasibility from the IIS. In some cases, changing a right-hand side or
bound by a finite amount will remove the infeasibility; however, the only way to guar-
antee removal of the infeasibility is to set the appropriate right-hand side or bound to
∞ or −∞. Since it is possible for an LP to have multiple irreducible infeasible sets,
simply removing the infeasibility from one set might not make the entire problem
feasible.

Changing different constraints and bounds can require considerably different changes
to the MPS-format SAS data set. For example, if you used the default lower bound
of 0 for a variable but you want to relax the lower bound to −∞, you might need to
add a LB row to the BOUNDS section of the data set. For more information about
changing variable and constraint bounds, see Chapter 14, “The MPS-Format SAS
Data Set.”

See Example 15.7 for an example demonstrating the use of the IIS= option in locating
and removing infeasibilities.

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the
SAS System. If you do not specify a value for this option, then the SAS System
sets a default memory limit. Your operating environment determines the actual size
of the default memory limit, which is sufficient for many applications. However, to
solve most realistic optimization problems, the OPTLP procedure might require more
memory. Increasing the memory limit can reduce the chance of an out-of-memory
condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-
ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For
example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient
to allow the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion book
for your operating system.

1070 � Chapter 15. The OPTLP Procedure

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion book for your operating system.

Examples: OPTLP Procedure

Example 15.1. Oil Refinery Problem

Consider an oil refinery scenario. A step in refining crude oil into finished oil products
involves a distillation process that splits crude into various streams. Suppose there are
three types of crude available: Arabian light (a–l), Arabian heavy (a–h), and Brega
(br). These crudes are distilled into light naphtha (na–l), intermediate naphtha (na–i),
and heating oil (h–o). These in turn are blended into two types of jet fuel. Jet fuel
j–1 is made up of 30% intermediate naphtha and 70% heating oil, and jet fuel j–2
is made up of 20% light naphtha and 80% heating oil. What amounts of the three
crudes maximize the profit from producing jet fuel (j–1, j–2)? This problem can be
formulated as the following linear program:

max − 175 a– l− 165 a–h− 205 br + 350 j–1 + 350 j–2

subject to

(napha– l) 0.035 a– l + 0.03 a–h + 0.045 br = na– l

(napha– i) 0.1 a– l + 0.075 a–h + 0.135 br = na– i

(htg–oil) 0.39 a– l + 0.3 a–h + 0.43 br = h–o

(blend1) 0.3 j–1 ≤ na– i

(blend2) 0.2 j–2 ≤ na– l

(blend3) 0.7 j–1 + 0.8 j–2 ≤ h–o

a– l ≤ 110

a–h ≤ 165

br ≤ 80

a– l, a–h,br,na–1,na– i,h–o, j–1, j–2 ≥ 0

The constraints “blend1” and “blend2” ensure that j–1 and j–2 are made with the
specified amounts of na–i and na–l, respectively. The constraint “blend3” is actually
the reduced form of the following constraints:

h–o1 ≥ 0.7 j–1

h–o2 ≥ 0.8 j–2

h–o1 + h–o2 ≤ h–o

where h–o1 and h–o2 are dummy variables.

You can use the following SAS code to create the input data set ex1:

Example 15.1. Oil Refinery Problem � 1071

data ex1;
input field1 $ field2 $ field3$ field4 field5 $ field6 ;
datalines;
NAME . EX1 . . .
ROWS
N profit
E napha_l
E napha_i
E htg_oil
L blend1
L blend2
L blend3
COLUMNS
. a_l profit -175 napha_l .035
. a_l napha_i .100 htg_oil .390
. a_h profit -165 napha_l .030
. a_h napha_i .075 htg_oil .300
. br profit -205 napha_l .045
. br napha_i .135 htg_oil .430
. na_l napha_l -1 blend2 -1
. na_i napha_i -1 blend1 -1
. h_o htg_oil -1 blend3 -1
. j_1 profit 350 blend1 .3
. j_1 blend3 .7 . .
. j_2 profit 350 blend2 .2
. j_2 blend3 .8 . .
BOUNDS
UP . a_l 110 . .
UP . a_h 165 . .
UP . br 80 . .
ENDATA
;

You can use the following call to PROC OPTLP to solve the LP problem:

proc optlp data=ex1
objsense = max
solver = primal
primalout = ex1pout
dualout = ex1dout
printfreq = 1;

run;
%put &_OROPTLP_;

Note that the OBJSENSE=MAX option is used to indicate that the objective function
is to be maximized.

1072 � Chapter 15. The OPTLP Procedure

The primal and dual solutions are displayed in Output 15.1.1.

Output 15.1.1. Example 1: Primal and Dual Solution Output

The OPTLP Procedure
Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 profit a_l D -175
2 profit a_h D -165
3 profit br D -205
4 profit na_l N 0
5 profit na_i N 0
6 profit h_o N 0
7 profit j_1 N 350
8 profit j_2 N 350

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 110 110.000 U 10.2083
2 0 165 0.000 L -22.8125
3 0 80 80.000 U 2.8125
4 0 1.7977E308 7.450 B 0.0000
5 0 1.7977E308 21.800 B 0.0000
6 0 1.7977E308 77.300 B 0.0000
7 0 1.7977E308 72.667 B 0.0000
8 0 1.7977E308 33.042 B 0.0000

The OPTLP Procedure
Dual Solution

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 profit napha_l E 0 .
2 profit napha_i E 0 .
3 profit htg_oil E 0 .
4 profit blend1 L 0 .
5 profit blend2 L 0 .
6 profit blend3 L 0 .

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . 0.000 L 0.00000
2 . -145.833 U 0.00000
3 . -437.500 U 0.00000
4 . 145.833 L 0.00000
5 . 0.000 B -0.84167
6 . 437.500 L 0.00000

The progress of the solution is printed to the log as follows.

Example 15.2. Using the Interior Point Solver � 1073

Output 15.1.2. Log: Solution Progress

NOTE: The problem EX1 has 8 variables (0 free, 0 fixed).
NOTE: The problem has 6 constraints (3 LE, 3 EQ, 0 GE, 0 range).
NOTE: The problem has 19 constraint coefficients.
WARNING: The objective sense has been changed to maximization.
NOTE: The OPTLP presolver value AUTOMATIC is applied.
NOTE: The OPTLP presolver removed 3 variables and 3 constraints.
NOTE: The OPTLP presolver removed 6 constraint coefficients.
NOTE: The presolved problem has 5 variables, 3 constraints, and 13 constraint

coefficients.
NOTE: The PRIMAL SIMPLEX solver is called.

Objective Entering Leaving
Phase Iteration Value Variable Variable

2 1 1.5411014E-8 j_1 blend1 (S)
2 2 2.6969274E-8 j_2 blend2 (S)
2 3 5.2372044E-8 br blend3 (S)
2 4 1347.916667 blend2 (S) br

NOTE: Optimal.
NOTE: Objective = 1347.91667.

Note that the %put statement immediately after the OPTLP procedure prints value of
the macro variable –OROPTLP– to the log as follows.

Output 15.1.3. Log: Value of the Macro Variable –OROPTLP–

STATUS=OK SOLUTION_STATUS=OPTIMAL OBJECTIVE=1347.9166667
PRIMAL_INFEASIBILITY=2.888315E-15 DUAL_INFEASIBILITY=0
BOUND_INFEASIBILITY=0 ITERATIONS=4 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

The value briefly summarizes the status of the OPTLP procedure upon termination.

Example 15.2. Using the Interior Point Solver

You can also solve the oil refinery problem described in Example 15.1 by using the
interior point solver. You can create the input data set from an external MPS-format
flat file by using the SAS macro %MPS2SASD or SAS DATA step code, both of
which are described in the section “Getting Started: OPTLP Procedure” on page
1046. You can use the following SAS code to solve the problem:

1074 � Chapter 15. The OPTLP Procedure

proc optlp data=ex1
objsense = max
solver = ii
primalout = ex1ipout
dualout = ex1idout
printfreq = 1;

run;

The optimal solution is displayed in Output 15.2.1.

Output 15.2.1. Interior Point Solver: Primal Solution Output

The OPTLP Procedure
Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 profit a_l D -175
2 profit a_h D -165
3 profit br D -205
4 profit na_l N 0
5 profit na_i N 0
6 profit h_o N 0
7 profit j_1 N 350
8 profit j_2 N 350

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 110 110.000 .
2 0 165 0.000 .
3 0 80 80.000 .
4 0 1.7977E308 7.450 .
5 0 1.7977E308 21.800 .
6 0 1.7977E308 77.300 .
7 0 1.7977E308 72.667 .
8 0 1.7977E308 33.042 .

The iteration log is displayed in Output 15.2.2.

Example 15.3. The Diet Problem � 1075

Output 15.2.2. Log: Solution Progress

NOTE: The problem EX1 has 8 variables (0 free, 0 fixed).
NOTE: The problem has 6 constraints (3 LE, 3 EQ, 0 GE, 0 range).
NOTE: The problem has 19 constraint coefficients.
WARNING: The objective sense has been changed to maximization.
NOTE: The OPTLP presolver value AUTOMATIC is applied.
NOTE: The OPTLP presolver removed 3 variables and 3 constraints.
NOTE: The OPTLP presolver removed 6 constraint coefficients.
NOTE: The presolved problem has 5 variables, 3 constraints, and 13 constraint

coefficients.
NOTE: This is an experimental version of the ITERATIVE INTERIOR solver.
NOTE: The ITERATIVE INTERIOR solver is called.

Primal Bound Dual
Iter Complement Duality Gap Infeas Infeas Infeas

0 34958 384.219096 0 0 0
1 2673.363162 29.592780 0 0 0
2 277.996721 5.028437 0 0 0
3 105.556374 3.304951 0 0 0
4 11.839657 5.102811 0 0 0
5 4.437942 0.286014 0 0 0
6 0.315096 0.030434 0 0 0
7 0.017297 0.001519 0 0 0
8 0.000402 0.000075869 0 0 0
9 0.000018868 0.000003793 0 0 0
10 0.000000940 0.000000190 0 0 0

NOTE: Optimal.
NOTE: Objective = 1347.91648.

Example 15.3. The Diet Problem

Consider the problem of diet optimization. There are six different foods: bread, milk,
cheese, potato, fish, and yogurt. The cost and nutrition values per unit are displayed
in Table 15.3.

Table 15.3. Cost and Nutrition Values

Bread Milk Cheese Potato Fish Yogurt

Cost 2.0 3.5 8.0 1.5 11.0 1.0

Protein, g 4.0 8.0 7.0 1.3 8.0 9.2

Fat, g 1.0 5.0 9.0 0.1 7.0 1.0

Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0

Calories 90 120 106 97 130 180

The objective is to find a minimum-cost diet that contains at least 300 calories, not
more than 10 grams of protein, not less than 10 grams of carbohydrates, and not less
than 8 grams of fat. In addition, the diet should contain at least 0.5 unit of fish and no
more than 1 unit of milk.

You can use the following SAS code to create the MPS-format input data set:

1076 � Chapter 15. The OPTLP Procedure

data ex3;
input field1 $ field2 $ field3$ field4 field5 $ field6 ;
datalines;
NAME . EX3 . . .
ROWS
N diet
G calories
L protein
G fat
G carbs
COLUMNS
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 . .
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 . .
. ch diet 8 calories 106
. ch protein 7 fat 9
. ch carbs .4 . .
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 . .
. fi diet 11 calories 130
. fi protein 8 fat 7
. fi carbs 0 . .
. yo diet 1 calories 180
. yo protein 9.2 fat 1
. yo carbs 17 . .
RHS
. . calories 300 protein 10
. . fat 8 carbs 10
BOUNDS
UP . mi 1 . .
LO . fi .5 . .
ENDATA
;

You can solve the diet problem by using PROC OPTLP as follows:

proc optlp data=ex3
presolver = none
solver = ps
primalout = ex3pout
dualout = ex3dout
printfreq = 1;

run;

The solution summary and the optimal primal solution are displayed in Output 15.3.1.

Example 15.4. Reoptimizing after Modifying the Objective Function � 1077

Output 15.3.1. Diet Problem: Solution Summary and Optimal Primal Solution

The OPTLP Procedure

Solution Summary

Solver Primal simplex
Objective Function diet
Solution Status Optimal
Objective Value 12.081337881

Primal Infeasibility 8.881784E-16
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 5
Presolve Time 0.00
Solution Time 0.00

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 diet br N 2.0
2 diet mi D 3.5
3 diet ch N 8.0
4 diet po N 1.5
5 diet fi O 11.0
6 diet yo N 1.0

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0.0 1.7977E308 0.00000 L 1.19066
2 0.0 1 0.05360 B 0.00000
3 0.0 1.7977E308 0.44950 B 0.00000
4 0.0 1.7977E308 1.86517 B 0.00000
5 0.5 1.7977E308 0.50000 L 5.15641
6 0.0 1.7977E308 0.00000 L 1.10849

The cost of the optimal diet is 12.08 units.

Example 15.4. Reoptimizing after Modifying the Objective
Function

Using the diet problem described in Example 15.3, we now illustrate how to reopti-
mize an LP problem after modifying the objective function.

Assume that the optimal solution of the diet problem is found and the optimal solu-
tions are stored in the data sets ex3pout and ex3dout.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish de-
creases from 11 to 7 per serving unit. The COLUMNS section in the input data set

1078 � Chapter 15. The OPTLP Procedure

ex3 is updated (and the data set is saved as ex4) as follows:

COLUMNS
...

. ch diet 10 calories 106
...

. fi diet 7 calories 130
...

RHS
...

ENDATA
;

You can use the following DATA step to create the data set ex4:

data ex4;
input field1 $ field2 $ field3$ field4 field5 $ field6 ;
datalines;
NAME . EX4 . . .
ROWS
N diet
G calories
L protein
G fat
G carbs
COLUMNS
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 . .
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 . .
. ch diet 10 calories 106
. ch protein 7 fat 9
. ch carbs .4 . .
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 . .
. fi diet 7 calories 130
. fi protein 8 fat 7
. fi carbs 0 . .
. yo diet 1 calories 180
. yo protein 9.2 fat 1
. yo carbs 17 . .
RHS
. . calories 300 protein 10
. . fat 8 carbs 10
BOUNDS
UP . mi 1 . .
LO . fi .5 . .

Example 15.5. Reoptimizing after Modifying the Right-Hand Side � 1079

ENDATA
;

You can use the BASIS=WARMSTART option (and the ex3pout and ex3dout data
sets from Example 15.3) in the following call to PROC OPTLP to solve the modified
problem:

proc optlp data=ex4
presolver = none
basis = warmstart
primalin = ex3pout
dualin = ex3dout
solver = primal
primalout = ex4pout
dualout = ex4dout
printfreq = 1;

run;

The following iteration log indicates that it takes the primal simplex solver no ex-
tra iterations to solve the modified problem by using BASIS=WARMSTART, since
the optimal solution to the LP problem in Example 15.3 remains optimal after the
objective function is changed.

Output 15.4.1. Iteration Log

NOTE: The problem EX4 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The PRIMAL SIMPLEX solver is called.
NOTE: Optimal.
NOTE: Objective = 10.9803355.

Note that the primal simplex solver is preferred because the primal solution to the
original LP is still feasible for the modified problem in this case.

Example 15.5. Reoptimizing after Modifying the Right-Hand
Side

You can also modify the right-hand side of your problem and use the
BASIS=WARMSTART option to obtain an optimal solution more quickly.
Since the dual solution to the original LP is still feasible for the modified problem
in this case, the dual simplex solver is preferred. We illustrate this case by using
the same diet problem as in Example 15.3. Assume that you now need a diet that
supplies at least 150 calories. The RHS section in the input data set ex3 is updated
(and the data set is saved as ex5) as follows:

1080 � Chapter 15. The OPTLP Procedure

...
RHS
. . calories 150 protein 10
. . fat 8 carbs 10
BOUNDS

...

You can use the following DATA step to create the data set ex5:

data ex5;
input field1 $ field2 $ field3$ field4 field5 $ field6 ;
datalines;
NAME . EX5 . . .
ROWS
N diet
G calories
L protein
G fat
G carbs
COLUMNS
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 . .
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 . .
. ch diet 8 calories 106
. ch protein 7 fat 9
. ch carbs .4 . .
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 . .
. fi diet 11 calories 130
. fi protein 8 fat 7
. fi carbs 0 . .
. yo diet 1 calories 180
. yo protein 9.2 fat 1
. yo carbs 17 . .
RHS
. . calories 150 protein 10
. . fat 8 carbs 10
BOUNDS
UP . mi 1 . .
LO . fi .5 . .
ENDATA
;

You can use the BASIS=WARMSTART option in the following call to PROC OPTLP
to solve the modified problem:

Example 15.5. Reoptimizing after Modifying the Right-Hand Side � 1081

proc optlp data=ex5
presolver = none
basis = warmstart
primalin = ex3pout
dualin = ex3dout
solver = dual
primalout = ex5pout
dualout = ex5dout
printfreq = 1;

run;

Note that the dual simplex solver is preferred because the dual solution to the last
solved LP is still feasible for the modified problem in this case.

The following iteration log indicates that it takes the dual simplex solver just one more
phase II iteration to solve the modified problem by using BASIS=WARMSTART.

Output 15.5.1. Iteration Log

NOTE: The problem EX5 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The DUAL SIMPLEX solver is called.

Objective Entering Leaving
Phase Iteration Value Variable Variable
2 1 9.174413 calories(S) carbs (S)

NOTE: Optimal.
NOTE: Objective = 9.1744132.

Compare this with the following call to PROC OPTLP:

proc optlp data=ex5
presolver = none
solver = dual
printfreq = 1;

run;

This call to PROC OPTLP solves the modified problem “from scratch” (without using
the BASIS=WARMSTART option) and produces the following iteration log.

1082 � Chapter 15. The OPTLP Procedure

Output 15.5.2. Iteration Log

NOTE: The problem EX5 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The DUAL SIMPLEX solver is called.

Objective Entering Leaving
Phase Iteration Value Variable Variable
2 1 8.650000 mi fat (S)
2 2 8.925676 ch protein (S)
2 3 9.174413 po carbs (S)

NOTE: Optimal.
NOTE: Objective = 9.1744132.

It is clear that using the BASIS=WARMSTART option saves computation time. For
larger or more complex examples, the benefits of using this option are more pro-
nounced.

Example 15.6. Reoptimizing after Adding a New Constraint

Assume that after solving the diet problem in Example 15.3 we need to add a new
constraint on sodium intake of no more than 550 mg/day for adults. The updated
nutrition data are given in Table 15.4.

Table 15.4. Updated Cost and Nutrition Values

Bread Milk Cheese Potato Fish Yogurt

Cost 2.0 3.5 8.0 1.5 11.0 1.0

Protein, g 4.0 8.0 7.0 1.3 8.0 9.2

Fat, g 1.0 5.0 9.0 0.1 7.0 1.0

Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0

Calories, Cal 90 120 106 97 130 180

sodium, mg 148 122 337 186 56 132

The input data set ex3 is updated (and the data set is saved as ex6) as follows:

/* added a new constraint to the diet problem */
data ex6;
input field1 $ field2 $ field3$ field4 field5 $ field6 ;
datalines;
NAME . EX6 . . .
ROWS
N diet
G calories
L protein

Example 15.6. Reoptimizing after Adding a New Constraint � 1083

G fat
G carbs
L sodium
COLUMNS
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 sodium 148
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 sodium 122
. ch diet 8 calories 106
. ch protein 7 fat 9
. ch carbs .4 sodium 337
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 sodium 186
. fi diet 11 calories 130
. fi protein 8 fat 7
. fi carbs 0 sodium 56
. yo diet 1 calories 180
. yo protein 9.2 fat 1
. yo carbs 17 sodium 132
RHS
. . calories 300 protein 10
. . fat 8 carbs 10
. . sodium 550 . .
BOUNDS
UP . mi 1 . .
LO . fi .5 . .
ENDATA
;

For the modified problem we can warm start the simplex solvers to get a solution
faster. The dual simplex solver is preferred because a dual feasible solution can be
readily constructed from the optimal solution to the diet optimization problem.

Since there is a new constraint in the modified problem, you can use the following
SAS code to create a new DUALIN= data set ex6din with this information:

data ex6newcon;
ROW=’sodium ’; _STATUS_=’A’;
output;
;
/* create a new DUALIN= data set to include the new constraint */
data ex6din;
set ex3dout ex6newcon;
run;

Note that this step is optional. In this example, you can still use the data set
ex3dout as the DUALIN= data set to solve the modified LP problem by using
the BASIS=WARMSTART option. PROC OPTLP validates the PRIMALIN= and
DUALIN= data sets against the input model. Any new variable (or constraint) in the

1084 � Chapter 15. The OPTLP Procedure

model is added to the PRIMALIN= (or DUALIN=) data set, and its status is assigned
to be ‘A’. The simplex solvers decide its corresponding status internally. Any variable
in the PRIMALIN= and DUALIN= data sets but not in the input model is removed.

The –ROW– and –STATUS– columns of the DUALIN= data set ex6din are shown
in Output 15.6.1.

Output 15.6.1. DUALIN= Data Set with a Newly Added Constraint

Obs _ROW_ _STATUS_

1 calories U
2 protein L
3 fat U
4 carbs B
5 sodium A

The dual simplex solver is called to solve the modified diet optimization problem
more quickly with the following SAS code:

proc optlp data=ex6
objsense=min
presolver=none
solver=ds
primalout=ex6pout
dualout=ex6dout
scale=none
printfreq=1
basis=warmstart
primalin=ex3pout
dualin=ex6din;

run;

The optimal primal and dual solutions of the modified problem are displayed in
Output 15.6.2.

Example 15.6. Reoptimizing after Adding a New Constraint � 1085

Output 15.6.2. Primal and Dual Solution Output

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 diet br N 2.0
2 diet mi D 3.5
3 diet ch N 8.0
4 diet po N 1.5
5 diet fi O 11.0
6 diet yo N 1.0

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0.0 1.7977E308 0.00000 L 1.19066
2 0.0 1 0.05360 B 0.00000
3 0.0 1.7977E308 0.44950 B 0.00000
4 0.0 1.7977E308 1.86517 B 0.00000
5 0.5 1.7977E308 0.50000 L 5.15641
6 0.0 1.7977E308 0.00000 L 1.10849

Dual Solution

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 diet calories G 300 .
2 diet protein L 10 .
3 diet fat G 8 .
4 diet carbs G 10 .
5 diet sodium L 550 .

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . 0.02179 U 300.000
2 . -0.55360 L 10.000
3 . 1.06286 U 8.000
4 . 0.00000 B 42.960
5 . 0.00000 B 532.941

The iteration log shown in Output 15.6.3 indicates that it takes the dual simplex solver
no more iterations to solve the modified problem by using the BASIS=WARMSTART
option, since the optimal solution to the original problem remains optimal after one
more constraint is added.

1086 � Chapter 15. The OPTLP Procedure

Output 15.6.3. Iteration Log

NOTE: The problem EX6 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 5 constraints (2 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 29 constraint coefficients.
NOTE: The OPTLP presolver value NONE is applied.
NOTE: The DUAL SIMPLEX solver is called.
NOTE: Optimal.
NOTE: Objective = 12.0813379.

Both this example and Example 15.4 illustrate the situation in which the optimal so-
lution does not change after some perturbation of the parameters of the LP problem.
The simplex solver starts from an optimal solution and quickly verifies the optimality.
Usually the optimal solution of the slightly perturbed problem can be obtained after
performing relatively small number of iterations if starting with the optimal solution
of the original problem. In such cases you can expect a dramatic reduction of com-
putation time, for instance, if you want to solve a large LP problem and a slightly
perturbed version of this problem by using the BASIS=WARMSTART option rather
than solving both problems from scratch.

Example 15.7. Finding an Irreducible Infeasible Set

This example demonstrates the use of the experimental IIS= option to locate an ir-
reducible infeasible set. Suppose you want to solve a linear program that has the
following simple formulation:

min x1 + x2 + x3 (cost)

subject to x1 + x2 ≥ 10 (con1)

x1 + x3 ≤ 4 (con2)

4 ≤ x2 + x3 ≤ 5 (con3)

x1, x2 ≥ 0

0 ≤ x3 ≤ 3

The corresponding MPS-format SAS data set is as follows:

data exiis;
input field1 $ field2 $ field3 $ field4 field5 $ field6;

datalines;
NAME
ROWS
N cost
G con1
L con2
G con3

COLUMNS
. x1 cost 1 con1 1

Example 15.7. Finding an Irreducible Infeasible Set � 1087

. x1 con2 1 . .

. x2 cost 1 con1 1

. x2 con3 1 . .

. x3 cost 1 con2 1

. x3 con3 1 . .
RHS
. rhs con1 10 con2 4
. rhs con3 4 . .
RANGES
. r1 con3 1 . .
BOUNDS
UP b1 x3 3 . .
ENDATA
;

It is easy to verify that the following three constraints (or rows) and one variable (or
column) bound form an IIS for this problem.

x1 + x2 ≥ 10 (con1)

x1 + x3 ≤ 4 (con2)

x2 + x3 ≤ 5 (con3)

x3 ≥ 0

You can use the IIS=ON option to detect this IIS by using the following statements:

proc optlp data=exiis
iis=on
primalout=iis_vars
dualout=iis_cons
printfreq=1;

run;

The OPTLP procedure outputs the detected IIS to the data sets specified by the
PRIMALOUT= and DUALOUT= options, then stops. The notes shown in Output
15.7.1 are printed to the log.

1088 � Chapter 15. The OPTLP Procedure

Output 15.7.1. The IIS= Option: Log

Variables in the IIS

NOTE: The IIS option is experimental in this release.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 constraints (1 LE, 0 EQ, 1 GE, 1 range).
NOTE: The problem has 6 constraint coefficients.
NOTE: The IIS option is called.

Objective Entering Leaving
Phase Iteration Value Variable Variable

1 1 5.000000 x2 con3 (S)
1 2 1.000000 x1 con2 (S)

NOTE: Processing rows.
1 3 0 con2 (S) con1 (S)
1 4 0 con3 (S) con1 (S)
1 5 6.000000 x1 con2 (S)
1 6 1.000000 x2 con3 (S)

NOTE: Processing columns.
1 7 0 x3 con1 (S)

NOTE: The IIS option found an IIS set with 3 rows and 1 columns.
NOTE: The data set WORK.IIS_VARS has 3 observations and 10 variables.

The data sets iis–cons and iis–vars are shown in Output 15.7.2.

Example 15.7. Finding an Irreducible Infeasible Set � 1089

Output 15.7.2. Identify Rows and Columns in the IIS

Constraints in the IIS

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 cost rhs con1 G 10 .
2 cost rhs con2 L 4 .
3 cost rhs con3 R . 4

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . 0 I_L 0
2 . 0 I_U 0
3 5 0 I_U 0

Variables in the IIS

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 cost rhs x1 N 1
2 cost rhs x2 N 1
3 cost rhs x3 D 1

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 1.7977E308 0 0
2 0 1.7977E308 0 0
3 0 3 0 I_L 0

The constraint x2+x3 ≤ 5, which is an element of the IIS, is created by the RANGES
section. The original constraint is con3, a “≥” constraint with an RHS value of 4.
If you choose to remove the constraint x2 + x3 ≤ 5, you can accomplish this by
removing con3 from the RANGES section in the MPS-format SAS data set exiis.
Since con3 is the only observation in the section, the identifier observation can also
be removed. The modified LP problem is specified in the following SAS statements:

data exiisf;
input field1 $ field2 $ field3 $ field4 field5 $ field6;

datalines;
NAME
ROWS
N cost
G con1
L con2
G con3

COLUMNS

1090 � Chapter 15. The OPTLP Procedure

. x1 cost 1 con1 1

. x1 con2 1 . .

. x2 cost 1 con1 1

. x2 con3 1 . .

. x3 cost 1 con2 1

. x3 con3 1 . .
RHS
. rhs con1 10 con2 4
. rhs con3 4 . .
BOUNDS
UP b1 x3 3 . .
ENDATA
;

Since one element of the IIS has been removed, the modified LP problem should
no longer contain the infeasible set. Due to the size of this problem, there should
be no additional irreducible infeasible sets. You can confirm this by submitting the
following SAS statements:

proc optlp data=exiisf
pout=po
iis=on;

run;

The notes shown in Output 15.7.3 are printed to the log.

Output 15.7.3. The IIS= Option: Log

NOTE: The IIS option is experimental in this release.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 constraints (1 LE, 0 EQ, 2 GE, 0 range).
NOTE: The problem has 6 constraint coefficients.
NOTE: The IIS option is called.

Objective
Phase Iteration Value
1 2 0

NOTE: The IIS option found the problem to be feasible.
NOTE: The OPTLP presolver value AUTOMATIC is applied.
NOTE: The OPTLP presolver removed 0 variables and 0 constraints.
NOTE: The OPTLP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 3 variables, 3 constraints, and 6 constraint

coefficients.
NOTE: The DUAL SIMPLEX solver is called.

Objective
Phase Iteration Value
2 1 10.000000

NOTE: Optimal.
NOTE: Objective = 10.

The solution summary and the primal solution are displayed in Output 15.7.4.

References � 1091

Output 15.7.4. Infeasibility Removed

Solution Summary

Solver Dual simplex
Objective Function cost
Solution Status Optimal
Objective Value 10

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 1
Presolve Time 0.00
Solution Time 0.00

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 cost rhs x1 N 1
2 cost rhs x2 N 1
3 cost rhs x3 D 1

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 1.7977E308 0 L 0
2 0 1.7977E308 10 B 0
3 0 3 0 L 1

References
Andersen, E. D. and Andersen, K. D. (1995), “Presolving in Linear Programming,”

Mathematical Programming, 71(2), 221–245.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton, NJ: Princeton
University Press.

Forrest, J. J. and Goldfarb, D. (1992), “Steepest-Edge Simplex Algorithms for Linear
Programming,” Mathematical Programming, 5, 1–28.

Gondzio, J. (1997), “Presolve Analysis of Linear Programs prior to Applying an
Interior Point Method,” INFORMS Journal on Computing, 9 (1), 73–91.

Harris, P. M. J. (1973), “Pivot Selection Methods in the Devex LP Code,”
Mathematical Programming, 57, 341–374.

Maros, I. (2003), Computational Techniques of the Simplex Method, Kluwer
Academic.

1092

Chapter 16
The OPTMILP Procedure

Chapter Contents

OVERVIEW: OPTMILP PROCEDURE 1095

GETTING STARTED: OPTMILP PROCEDURE 1096

SYNTAX: OPTMILP PROCEDURE . 1098
Functional Summary . 1098
PROC OPTMILP Statement . 1100
Macro Variable –OROPTMILP– . 1107

DETAILS: OPTMILP PROCEDURE . 1110
Data Input and Output . 1110
Warm Start . 1112
The Branch-and-Bound Algorithm . 1112
Controlling the Branch-and-Bound Algorithm 1114
Presolve and Probing . 1116
Cutting Planes . 1117
Primal Heuristics . 1118
Node Log . 1119
ODS Tables . 1120
Memory Limit . 1124

EXAMPLES: OPTMILP PROCEDURE 1125
Example 16.1. Simple Integer Linear Program 1125
Example 16.2. MIPLIB Benchmark Instance 1128
Example 16.3. Facility Location . 1133

REFERENCES . 1142

1094

Chapter 16
The OPTMILP Procedure
Overview: OPTMILP Procedure

The OPTMILP procedure is a solver for general mixed integer linear programs
(MILPs).

A standard mixed integer linear program has the following formulation:

min cTx

subject to Ax {≥,=,≤} b (MILP)

l ≤ x ≤ u

xi ∈ Z ∀i ∈ S

where

x ∈ Rn is the vector of structural variables

A ∈ Qm×n is the matrix of technological coefficients

c ∈ Qn is the vector of objective function coefficients

b ∈ Qm is the vector of constraints right-hand sides (RHS)

l ∈ Qn is the vector of lower bounds on variables

u ∈ Qn is the vector of upper bounds on variables

S is a nonempty subset of the set {1 . . . , n} of indices

The OPTMILP procedure implements an LP-based branch-and-bound algorithm.
This divide-and-conquer approach attempts to solve the original problem by solv-
ing linear programming relaxations of a sequence of smaller subproblems. The
OPTMILP procedure also implements advanced techniques such as presolving, gen-
erating cutting planes, and applying primal heuristics to improve the efficiency of the
overall algorithm.

The OPTMILP procedure requires a mixed integer linear program to be specified
using a SAS data set that adheres to the MPS format, a widely accepted format in the
optimization community. Chapter 14 discusses the MPS format in detail. It is also
possible to input an incumbent solution in MPS format; see the section “Warm Start”
on page 1112 for details.

You can use the MPSOUT= option to convert typical PROC LP format data sets
into MPS-format SAS data sets. The option is available in the LP, INTPOINT,
and NETFLOW procedures. For details about this option, see Chapter 3, “The
LP Procedure,” Chapter 2, “The INTPOINT Procedure,” and Chapter 5, “The
NETFLOW Procedure.”

1096 � Chapter 16. The OPTMILP Procedure

The OPTMILP procedure provides various control options and solution strategies. In
particular, you can enable, disable, or set levels for the advanced techniques previ-
ously mentioned.

The OPTMILP procedure outputs an optimal solution or the best feasible solution
found, if any, in SAS data sets. This enables you to generate solution reports and
perform additional analyses by using SAS.

Getting Started: OPTMILP Procedure
The following example illustrates the use of the OPTMILP procedure to solve mixed
integer linear programs. For more examples, see the section “Examples: OPTMILP
Procedure” on page 1125. Suppose you want to solve the following problem:

min 2x1 − 3x2 − 4x3

s.t. − 2x2 − 3x3 ≥ −5 (R1)

x1 + x2 + 2x3 ≤ 4 (R2)

x1 + 2x2 + 3x3 ≤ 7 (R3)

x1, x2, x3 ≥ 0

x1, x2, x3 ∈ Z

The corresponding MPS-format SAS data set follows:

data ex_mip;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EX_MIP . . .
ROWS
N COST
G R1
L R2
L R3
COLUMNS
. MARK00 ’MARKER’ . ’INTORG’ .
. X1 COST 2 R2 1
. X1 R3 1 . .
. X2 COST -3 R1 -2
. X2 R2 1 R3 2
. X3 COST -4 R1 -3
. X3 R2 2 R3 3
. MARK01 ’MARKER’ . ’INTEND’ .
RHS
. RHS R1 -5 R2 4
. RHS R3 7 . .
ENDATA
;

You can also create this SAS data set from an MPS-format flat file (ex–mip.mps) by
using the following SAS macro:

Getting Started: OPTMILP Procedure � 1097

%mps2sasd(mpsfile = "ex_mip.mps", outdata = ex_mip);

This problem can be solved by using the following statement to call the OPTMILP
procedure:

proc optmilp data = ex_mip
objsense = min
primalout = primal_out
dualout = dual_out
presolver = automatic
heuristics = automatic;

run;

The DATA= option names the MPS-format SAS data set containing the problem data.
The OBJSENSE= option specifies whether to maximize or minimize the objective
function. The PRIMALOUT= option names the SAS data set containing the optimal
solution or the best feasible solution found by the solver. The DUALOUT= option
names the SAS data set containing the constraint activities. The PRESOLVER= and
HEURISTICS= options specify the levels for presolving and applying heuristics, re-
spectively. In this example, each option is set to its default value AUTOMATIC,
meaning that the solver determines the appropriate levels for presolve and heuristics
automatically.

The optimal integer solution and its corresponding constraint activities, stored in the
data sets primal–out and dual–out, respectively, are displayed in Figure 16.1 and
Figure 16.2.

The OPTMILP Procedure
Primal Integer Solution

Objective
Function RHS Variable Variable Objective Lower Upper Variable

Obs ID ID Name Type Coefficient Bound Bound Value

1 COST RHS X1 B 2 0 1 0
2 COST RHS X2 B -3 0 1 1
3 COST RHS X3 B -4 0 1 1

Figure 16.1. Optimal Solution

1098 � Chapter 16. The OPTMILP Procedure

Constraint Information

Objective
Function RHS Constraint Constraint Constraint

Obs ID ID Name Type RHS

1 COST RHS R1 G -5
2 COST RHS R2 L 4
3 COST RHS R3 L 7

Constraint Constraint
Lower Upper Constraint

Obs Bound Bound Activity

1 . . -5
2 . . 3
3 . . 5

Figure 16.2. Constraint Activities

The solution summary stored in the macro variable –OROPTMILP– can be viewed
by issuing the following statement:

%put &_OROPTMILP_;

This produces the output shown in Figure 16.3.

STATUS=OK SOLUTION_STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE_GAP=0 ABSOLUTE_G
AP=0 PRIMAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0

BEST_BOUND=. NODES=0 ITERATIONS=0 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.0
0

Figure 16.3. Macro Output

See the section “Data Input and Output” on page 1110 for details about the type and
status codes displayed for variables and constraints.

Syntax: OPTMILP Procedure
The following statement is available in the OPTMILP procedure:

PROC OPTMILP < options > ;

Functional Summary
Table 16.1 summarizes the options available for the OPTMILP procedure, classified
by function.

Functional Summary � 1099

Table 16.1. Options for the OPTMILP Procedure

Description Option
Data Set Options
input data set DATA=

constraint activities output data set DUALOUT=

objective sense (maximization or minimization) OBJSENSE=

primal solution input data set (warm start) PRIMALIN=

primal solution output data set PRIMALOUT=

Presolve Option
type of presolve PRESOLVER=

Control Options
stopping criterion based on absolute objective gap ABSOBJGAP=

cutoff value for node removal CUTOFF=

emphasize feasibility or optimality EMPHASIS=

maximum allowed difference between an integer vari-
able’s value and an integer

INTTOL=

maximum number of nodes to be processed MAXNODES=

maximum number of solutions to be found MAXSOLS=

maximum solution time MAXTIME=

frequency of printing node log PRINTFREQ=

toggle ODS output PRINTLEVEL=

detail of solution progress printed in log PRINTLEVEL2=

probing level PROBE=

stopping criterion based on relative objective gap RELOBJGAP=

scale the problem matrix SCALE=

stopping criterion based on target objective value TARGET=

use CPU/real time TIMETYPE=

Heuristics Option
primal heuristics level HEURISTICS=

Search Options
node selection strategy NODESEL=

use of variable priorities PRIORITY=

number of simplex iterations performed on each vari-
able in strong branching strategy

STRONGITER=

number of candidates for strong branching STRONGLEN=

rule for selecting branching variable VARSEL=

Cut Options
overall cut level ALLCUTS=

1100 � Chapter 16. The OPTMILP Procedure

Table 16.1. (continued)

Description Option
clique cut level CUTCLIQUE=

flow cover cut level CUTFLOWCOVER=

flow path cut level CUTFLOWPATH=

Gomory cut level CUTGOMORY=

generalized upper bound (GUB) cover cut level CUTGUB=

implied bounds cut level CUTIMPLIED=

knapsack cover cut level CUTKNAPSACK=

lift-and-project cut level CUTLAP=

mixed integer rounding (MIR) cut level CUTMIR=

row multiplier factor for cuts CUTSFACTOR=

PROC OPTMILP Statement

PROC OPTMILP < options > ;

You can specify the following options in the PROC OPTMILP statement.

Data Set Options

DATA=SAS-data-set
specifies the input data set corresponding to the MILP model. If this option is not
specified, PROC OPTMILP will use the most recently created SAS data set. See
Chapter 14, “The MPS-Format SAS Data Set”, for more details about the input data
set.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

specifies the output data set containing the constraint activities.

OBJSENSE=MIN | MAX
specifies whether the MILP model is a minimization or a maximization problem. You
can use OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for a
maximization problem. Alternatively, you can specify the objective sense in the input
data set. This option supersedes the objective sense specified in the input data set. If
the objective sense is not specified anywhere, then PROC OPTMILP interprets and
solves the MILP as a minimization problem.

PRIMALIN=SAS-data-set
enables you to input an integer feasible solution in a SAS data set. PROC OPTMILP
validates both the data set and the solution stored in the data set. If both are valid,
then the input solution provides an incumbent solution and a bound for the branch-
and-bound algorithm. If either the data set or the solution is not valid, then the
PRIMALIN= data are ignored. See the section “Warm Start” on page 1112 for details.

PROC OPTMILP Statement � 1101

PRIMALOUT=SAS-data-set
POUT=SAS-data-set

specifies the output data set for the primal solution. This data set contains the primal
solution information. See the section “Data Input and Output” on page 1110 for
details.

Presolve Option

PRESOLVER=option
specifies a presolve option or its corresponding value num, as listed in Table 16.2.

Table 16.2. Values for PRESOLVER= Option

Number Option Description

–1 AUTOMATIC Apply the default level of presolve processing.

0 NONE Disable presolver.

1 BASIC Perform minimal presolve processing.

2 MODERATE Apply a higher level of presolve processing.

3 AGGRESSIVE Apply the highest level of presolve processing.

The default value is AUTOMATIC.

Control Options

ABSOBJGAP=num
specifies a stopping criterion. When the absolute difference between the best integer
objective and the objective of the best node remaining falls below the value of num,
the procedure stops. The value of num can be any positive number; the default value
is 1E−6.

CUTOFF=num
cuts off any nodes in a minimization (maximization) problem with an objective value
above (below) num. The value of num can be any number; the default value is the
positive (negative) number that has the largest absolute value representable in your
operating environment.

EMPHASIS=option
specifies a search emphasis option or its corresponding value num as listed in Table
16.3.

Table 16.3. Values for EMPHASIS= Option

Number Option Description

0 BALANCE Perform a balanced search.

1 OPTIMAL Emphasize optimality over feasibility.

2 FEASIBLE Emphasize feasibility over optimality.

1102 � Chapter 16. The OPTMILP Procedure

The default value is BALANCE.

INTTOL=num
specifies the amount by which an integer variable value can differ from an integer and
still be considered integer feasible. The value of num can be any number between 0.0
and 1.0; the default value is 1E−5. PROC OPTMILP attempts to find an optimal
solution with integer infeasibility less than num. If you assign a value smaller than
1E−10 to num and the best solution found by PROC OPTMILP has integer infeasi-
bility between num and 1E−10, then PROC OPTMILP ends with a solution status
of OPTIMAL–COND (see the section “Macro Variable –OROPTMILP– ” on page
1107).

MAXNODES=num
specifies the maximum number of branch-and-bound nodes to be processed. The
value of num can be any nonnegative integer up to the largest four-byte signed integer,
which is 231 − 1. The default value is 231 − 1.

MAXSOLS=num
specifies a stopping criterion. If num solutions have been found, then the procedure
stops. The value of num can be any positive integer up to the largest four-byte signed
integer, which is 231 − 1. The default value is 231 − 1.

MAXTIME=num
specifies the maximum time allowed for PROC OPTMILP to read in the data and
find a solution. The type of time, either CPU time or real time, is determined by the
value of the TIMETYPE= option. The value of num can be any positive number; the
default value is the positive number that has the largest absolute value representable
in your operating environment.

PRINTFREQ=num
specifies how often information is printed in the node log. The value of num can be
any nonnegative integer up to the largest four-byte signed integer, which is 231 − 1.
The default value is 100. If num is set to 0, then the node log is disabled. If num is
positive, then an entry is made in the node log at the first node, at the last node, and
at intervals dictated by the value of num. An entry is also made each time a better
integer solution is found.

PRINTLEVEL=0 | 1 | 2
specifies whether or not a summary of the problem and solution should be
printed. If PRINTLEVEL=1, then two Output Delivery System (ODS) tables
named “ProblemSummary” and “SolutionSummary” are produced and printed. If
PRINTLEVEL=2, then the “ProblemSummary” and “SolutionSummary” tables
are produced and printed along with a third table called “ProblemStatistics.” If
PRINTLEVEL=0, then no ODS tables are produced or printed. The default value
of this option is 1.

For details about the ODS tables created by PROC OPTMILP, see the section “ODS
Tables” on page 1120.

PRINTLEVEL2=option
controls the amount of information displayed in the SAS log by the solver, from a

PROC OPTMILP Statement � 1103

short description of presolve information and summary to details at each node. Table
16.4 describes the valid values for this option.

Table 16.4. Values for PRINTLEVEL2= Option

Number Option Description

0 NONE Turn off all solver-related messages in SAS log.

1 BASIC Display a solver summary after stopping.

2 MODERATE Print a solver summary and a node log by using
the interval dictated by the PRINTFREQ= option.

3 AGGRESSIVE Print a detailed solver summary and a node log by
using the interval dictated by the PRINTFREQ=
option.

The default value is MODERATE.

PROBE=option
specifies a probing option or its corresponding value num, as listed in the following
table:

Table 16.5. Values for PROBE= Option

Number Option Description

-1 AUTOMATIC Probing strategy determined by PROC OPTMILP.

0 NONE Disable probing.

1 MODERATE Use probing moderately.

2 AGGRESSIVE Use probing aggressively.

The default value is AUTOMATIC. See the section “Presolve and Probing” on page
1116 for more information.

RELOBJGAP=num
specifies a stopping criterion based on the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound). The relative objective gap is equal
to

| BestInteger− BestBound | / (1E−10 + | BestBound |)

When this value becomes smaller than the specified gap size num, the procedure
stops. The value of num can be any number between 0 and 1; the default value is
1E−4.

SCALE=option
indicates whether or not to scale the problem matrix. SCALE= can take either of the
values AUTOMATIC (–1) and NONE (0). SCALE=AUTOMATIC scales the matrix

1104 � Chapter 16. The OPTMILP Procedure

as determined by PROC OPTMILP; SCALE=NONE disables scaling. The default
value is AUTOMATIC.

TARGET=num
specifies a stopping criterion for minimization (maximization) problems. If the best
integer objective is better than or equal to num, the procedure stops. The value of
num can be any number; the default value is the negative (positive) number that has
the largest absolute value representable in your operating environment.

TIMETYPE=CPU(0) | REAL(1)
specifies the measurement of time used in a PROC OPTMILP call. Numeric values of
time can be specified in the MAXTIME= option or reported in the –OROPTMILP–
macro variable. The value of the TIMETYPE= option determines whether CPU time
or real time is used. The default value of this option is CPU.

Heuristics Option

HEURISTICS=option
enables the user to control the level of primal heuristics applied by PROC OPTMILP.
This level determines how frequently primal heuristics are applied during the branch-
and-bound tree search. It also affects the maximum number of iterations allowed in
iterative heuristics. Some computationally expensive heuristics might be disabled by
the solver at less aggressive levels. The values of option and the corresponding values
of num are listed in Table 16.6.

Table 16.6. Values for HEURISTICS= Option

Number Option Description

–1 AUTOMATIC Apply default level of heuristics, similar to
MODERATE.

0 NONE Disable all primal heuristics.

1 BASIC Apply basic primal heuristics at low frequency.

2 MODERATE Apply most primal heuristics at moderate fre-
quency.

3 AGGRESSIVE Apply all primal heuristics at high frequency.

The default value is AUTOMATIC. For details about primal heuristics, see the section
“Primal Heuristics” on page 1118.

Search Options

NODESEL=option
specifies the node selection strategy option or its corresponding value num as listed
in Table 16.7.

PROC OPTMILP Statement � 1105

Table 16.7. Values for NODESEL= Option

Number Option Description

–1 AUTOMATIC Use automatic node selection.

0 BESTBOUND Choose the node with the best relaxed objective
(best-bound-first strategy).

1 BESTESTIMATE Choose the node with the best estimate of the in-
teger objective value (best-estimate-first strategy).

2 DEPTH Choose the most recently created node (depth-
first strategy).

The default value is AUTOMATIC. For details about node selection, see the section
“Node Selection” on page 1114.

PRIORITY=0 | 1
indicates whether or not to use specified branching priorities for integer variables.
PRIORITY=0 ignores variable priorities; PRIORITY=1 uses priorities when they
exist. The default value is 1. See the section “Branching Priorities” on page 1116 for
details.

STRONGITER=num
specifies the number of simplex iterations performed for each variable in the candi-
date list when using the strong branching variable selection strategy. The value of
num can be any positive number; the default value is automatically calculated by
PROC OPTMILP.

STRONGLEN=num
specifies the number of candidates used when performing the strong branching vari-
able selection strategy. The value of num can be any positive integer up to the largest
four-byte signed integer, which is 231 − 1. The default value is 10.

VARSEL=option
specifies the rule for selecting the branching variable. The values of option and the
corresponding values of num are listed in Table 16.8.

Table 16.8. Values for VARSEL= Option

Number Option Description

–1 AUTOMATIC Use automatic branching variable selection.

0 MAXINFEAS Choose the variable with maximum infeasibility.

1 MININFEAS Choose the variable with minimum infeasibility.

2 PSEUDO Choose a branching variable based on pseudocost.

3 STRONG Use strong branching variable selection strategy.

1106 � Chapter 16. The OPTMILP Procedure

The default value is AUTOMATIC. For details about variable selection, see the sec-
tion “Variable Selection” on page 1115.

Cut Options

Table 16.9 describes the option and num values for the cut options in PROC
OPTMILP.

Table 16.9. Values for Individual Cut Options

Number Option Description

–1 AUTOMATIC Generate cutting planes based on a strategy deter-
mined by PROC OPTMILP.

0 NONE Disable generation of cutting planes.

1 MODERATE Use a moderate cut strategy.

2 AGGRESSIVE Use an aggressive cut strategy.

You can use the ALLCUTS= option to set all cut types to the same level. You
can override the ALLCUTS= value by using the options corresponding to par-
ticular cut types. For example, if you want PROC OPTMILP to generate only
Gomory cuts, specify ALLCUTS=NONE and CUTGOMORY=AUTOMATIC. If
you want to generate all cuts aggressively but generate no lift-and-project cuts, set
ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=option
provides a shorthand way of setting all the cuts-related options in one setting.
In other words, ALLCUTS=num is equivalent to setting each of the individual
cuts parameters to the same value num. Thus, ALLCUTS=–1 has the effect
of setting CUTCLIQUE=–1, CUTFLOWCOVER=–1, CUTFLOWPATH=–1, . . . ,
CUTLAP=–1, and CUTMIR=–1. Table 16.9 lists the values that can be assigned
to option and num. In addition, you can override levels for individual cuts with
the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=,
CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, and CUTMIR= op-
tions. If the ALLCUTS= option is not specified, all the cuts-related options are either
at their individually specified values (if the corresponding option is specified) or at
their default values (if that option is not specified).

CUTCLIQUE=option
specifies the level of clique cuts generated by PROC OPTMILP. Table 16.9 lists the
values that can be assigned to option and num. The CUTCLIQUE= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTFLOWCOVER=option
specifies the level of flow cover cuts generated by PROC OPTMILP. Table 16.9 lists
the values that can be assigned to option and num. The CUTFLOWCOVER= option
overrides the ALLCUTS= option. The default value is AUTOMATIC.

Macro Variable –OROPTMILP– � 1107

CUTFLOWPATH=option
specifies the level of flow path cuts generated by PROC OPTMILP. Table 16.9 lists
the values that can be assigned to option and num. The CUTFLOWPATH= option
overrides the ALLCUTS= option. The default value is AUTOMATIC.

CUTGOMORY=option
specifies the level of Gomory cuts generated by PROC OPTMILP. Table 16.9 lists the
values that can be assigned to option and num. The CUTGOMORY= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTGUB=option
specifies the level of generalized upper bound (GUB) cover cuts generated by PROC
OPTMILP. Table 16.9 lists the values that can be assigned to option and num.
The CUTGUB= option overrides the ALLCUTS= option. The default value is
AUTOMATIC.

CUTIMPLIED=option
specifies the level of implied bound cuts generated by PROC OPTMILP. Table 16.9
lists the values that can be assigned to option and num. The CUTIMPLIED= option
overrides the ALLCUTS= option. The default value is AUTOMATIC.

CUTKNAPSACK=option
specifies the level of knapsack cover cuts generated by PROC OPTMILP. Table 16.9
lists the values that can be assigned to option and num. The CUTKNAPSACK=
option overrides the ALLCUTS= option. The default value is AUTOMATIC.

CUTLAP=option
specifies the level of lift-and-project (LAP) cuts generated by PROC OPTMILP. Table
16.9 lists the values that can be assigned to option and num. The CUTLAP= option
overrides the ALLCUTS= option. The default value is NONE.

CUTMIR=option
specifies the level of mixed integer rounding (MIR) cuts generated by PROC
OPTMILP. Table 16.9 lists the values that can be assigned to option and num.
The CUTMIR= option overrides the ALLCUTS= option. The default value is
AUTOMATIC.

CUTSFACTOR=num
specifies a row multiplier factor for cuts. The number of cuts added is limited to num
times the original number of rows. The value of num can be any nonnegative number
less than or equal to 100; the default value is 3.0.

Macro Variable –OROPTMILP–
The OPTMILP procedure defines a macro variable named –OROPTMILP–. This
variable contains a character string that indicates the status of the OPTMILP proce-
dure upon termination. The various terms of the variable are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

1108 � Chapter 16. The OPTMILP Procedure

OK procedure terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

IO–ERROR problem in reading or writing data

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

OPTIMAL–AGAP optimal solution within absolute gap specified
using ABSOBJGAP= option

OPTIMAL–RGAP optimal solution within relative gap specified
using RELOBJGAP= option

OPTIMAL–COND solution is optimal, but some infeasibilities
(primal, bound, or integer) exceed tolerances
due to scaling or choice of small INTTOL=
value

TARGET solution not worse than target specified using
TARGET= option

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

SOLUTION–LIM solver reached maximum number of solutions
specified using option MAXSOLS=

NODE–LIM–SOL solver reached maximum number of nodes
specified using MAXNODES= option and
found a solution

NODE–LIM–NOSOL solver reached maximum number of nodes
specified using MAXNODES= option and did
not find a solution

TIME–LIM–SOL solver reached the execution time limit speci-
fied using MAXTIME= option and found a so-
lution

TIME–LIM–NOSOL solver reached the execution time limit speci-
fied using MAXTIME= option and did not find
a solution

ABORT–SOL solver was stopped by user but still found a so-
lution

Macro Variable –OROPTMILP– � 1109

ABORT–NOSOL solver was stopped by user and did not find a
solution

OUTMEM–SOL solver ran out of memory but still found a so-
lution

OUTMEM–NOSOL solver ran out of memory and either did not
find a solution or failed to output solution due
to insufficient memory

FAIL–SOL solver stopped due to errors but still found a
solution

FAIL–NOSOL solver stopped due to errors and did not find a
solution

OBJECTIVE
indicates the objective value obtained by the solver at termination.

RELATIVE–GAP
specifies the relative gap between the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound) upon termination of the MILP
solver. The relative gap is equal to

| BestInteger− BestBound | / (1E−10 + | BestBound |)

ABSOLUTE–GAP
specifies the absolute gap between the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound) upon termination of the MILP
solver. The absolute gap is equal to | BestInteger− BestBound |.

PRIMAL–INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND–INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower and/or upper
bounds.

INTEGER–INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables re-
turned by the MILP solver.

BEST–BOUND
specifies the best LP objective value of all unprocessed nodes on the branch-and-
bound tree at the end of execution. A missing value indicates that the OPTMILP
procedure has processed either all or none of the nodes on the branch-and-bound
tree.

NODES
specifies the number of nodes enumerated by the MILP solver by using the branch-
and-bound algorithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

1110 � Chapter 16. The OPTMILP Procedure

PRESOLVE–TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION–TIME
indicates the time (in seconds) taken to solve the problem.

Note: The time reported in PRESOLVE–TIME and SOLUTION–TIME is either
CPU time (default) or real time. The type is determined by the TIMETYPE= option.

Details: OPTMILP Procedure

Data Input and Output

This subsection describes the PRIMALIN= data set required to warm start PROC
OPTMILP, as well as the PRIMALOUT= and DUALOUT= data sets.

Definitions of Variables in the PRIMALIN= Data Set

The PRIMALIN= data set has two required variables defined as follows:

–VAR–
specifies the variable (column) names of the problem. The values should match the
column names in the DATA= data set for the current problem.

–VALUE–
specifies the solution value for each variable in the problem.

Note: If PROC OPTMILP produces a feasible solution, the primal output data set
from that run can be used as the PRIMALIN= data set for a subsequent run, provided
that the input solution is feasible for the subsequent run.

Definitions of Variables in the PRIMALOUT= Data Set

PROC OPTMILP stores the current best integer feasible solution of the problem in
the data set specified by the PRIMALOUT= option. The variables in this data set are
defined as follows:

–OBJ–ID–
specifies the identifier of the objective function.

–RHS–ID–
specifies the identifier of the right-hand side.

–VAR–
specifies the variable (column) names.

–TYPE–
specifies the variable type. –TYPE– can take one of the following values:

C continuous variable

I general integer variable

B binary variable (0 or 1)

Data Input and Output � 1111

–OBJCOEF–
specifies the coefficient of the variable in the objective function.

–LBOUND–
specifies the lower bound on the variable.

–UBOUND–
specifies the upper bound on the variable.

–VALUE–
specifies the value of the variable in the current solution.

Definitions of the DUALOUT= Data Set Variables

The DUALOUT= data set contains the constraint activities corresponding to the pri-
mal solution in the PRIMALOUT= data set. Information about additional objective
rows of the MILP problem is not included. The variables in this data set are defined
as follows:

–OBJ–ID–
specifies the identifier of the objective function from the input data set.

–RHS–ID–
specifies the identifier of the right-hand side from the input data set.

–ROW–
specifies the constraint (row) name.

–TYPE–
specifies the constraint type. –TYPE– can take one of the following values:

L “less than or equal” constraint

E equality constraint

G “greater than or equal” constraint

R ranged constraint (both “less than or equal” and “greater than or equal”)

–RHS–
specifies the value of the right-hand side of the constraint. It takes a missing value
for a ranged constraint.

–L–RHS–
specifies the lower bound of a ranged constraint. It takes a missing value for a non-
ranged constraint.

–U–RHS–
specifies the upper bound of a ranged constraint. It takes a missing value for a non-
ranged constraint.

–ACTIVITY–
specifies the activity of a constraint for a given primal solution. In other words, the
value of –ACTIVITY– for the ith constraint is equal to aT

i x, where ai refers to the ith
row of the constraint matrix and x denotes the vector of the current primal solution.

1112 � Chapter 16. The OPTMILP Procedure

Data Magnitude and Variable Bounds

Extremely large numerical values might cause computational difficulties for the
OPTMILP procedure, but the occurrence of such difficulties is hard to predict. For
this reason, the OPTMILP procedure issues a data error message whenever it detects
model data that exceeds a specific threshold number. The value of the threshold num-
ber depends on your operating environment and is printed in the log as part of the
data error message.

The following conditions produce a data error:

• The absolute value of an objective coefficient, constraint coefficient, or range
(difference between the upper and lower bounds on a constraint) is greater than
the threshold number.

• A variable’s lower bound, a ≥ or = constraint’s right-hand side, or a range
constraint’s lower bound is greater than the threshold number.

• A variable’s upper bound, a ≤ or = constraint’s right-hand side, or a range
constraint’s upper bound is smaller than the negative threshold number.

If a variable’s upper bound is larger than 1E20, then the OPTMILP procedure treats
the bound as ∞. Similarly, if a variable’s lower bound is smaller than −1E20, then
the OPTMILP procedure treats the bound as −∞.

Warm Start

PROC OPTMILP enables you to input an integer feasible solution by using the
PRIMALIN= option. PROC OPTMILP checks that the decision variables named
in –VAR– are the same as those in the MPS-format SAS data set; the procedure also
checks that the input solution is integer feasible. If either condition is not true, PROC
OPTMILP issues a warning and ignores the input solution. The input solution pro-
vides an incumbent solution as well as an upper (min) or lower (max) bound for the
branch-and-bound algorithm. PROC OPTMILP uses the input solution to reduce the
search space and to guide the search process. When it is difficult to find a good integer
feasible solution for a problem, warm start can reduce solution time significantly.

The Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an ef-
fective approach to solving mixed integer linear programs. The following discussion
outlines the approach and explains how PROC OPTMILP enhances the basic algo-
rithm by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing
the search space and generating a sequence of subproblems. The search space of a
mixed integer linear program can be represented by a tree. Each node in the tree is
identified with a subproblem derived from previous subproblems on the path leading
to the root of the tree. The subproblem (MILP0) associated with the root is identical
to the original problem, which we will call (MILP), given in the section “Overview:
OPTMILP Procedure” on page 1095.

The Branch-and-Bound Algorithm � 1113

The linear programming relaxation (LP0) of (MILP0) can be written as

min cTx

subject to Ax {≥,=,≤} b

l ≤ x ≤ u

The branch-and-bound algorithm generates subproblems along the nodes of the tree
by using the following scheme. Consider x̄0, the optimal solution to (LP0), which
is usually obtained using the dual simplex algorithm. If x̄0

i is integer for all i ∈
S, then x̄0 is an optimal solution to (MILP). Suppose that for some i ∈ S, x̄0

i is
nonintegral. In that case the algorithm defines two new subproblems (MILP1) and
(MILP2), descendants of the parent subproblem (MILP0). The subproblem (MILP1)
is identical to (MILP0) except for the additional constraint

xi ≤ bx̄0
i c

and the subproblem (MILP2) is identical to (MILP0) except for the additional con-
straint

xi ≥ dx̄0
i e

The notation byc represents the largest integer less than or equal to y, and the nota-
tion dye represents the smallest integer greater than or equal to y. The two preceding
constraints can be handled by modifying the bounds of the variable xi rather than by
explicitly adding the constraints to the constraint matrix. The two new subproblems
do not have x̄0 as a feasible solution, but the integer solution to (MILP) must satisfy
one of the preceding constraints. The two subproblems thus defined are called ac-
tive nodes in the branch-and-bound tree, and the variable xi is called the branching
variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes
and attempts to solve the linear programming relaxation of that subproblem. The
relaxation might be infeasible, in which case the subproblem is dropped (fathomed).
If the subproblem can be solved and the solution is integer feasible (that is, xi is
an integer for all i ∈ S), then its objective value provides an upper bound for the
objective value in the minimization problem (MILP); if the solution is not integer
feasible, then it defines two new subproblems. Branching continues in this manner
until there are no active nodes. At this point the best integer solution found is an
optimal solution for (MILP). If no integer solution has been found, then (MILP)
is integer infeasible. You can specify other criteria to stop the branch-and-bound
algorithm before it processes all the active nodes; see the section “Controlling the
Branch-and-Bound Algorithm” on page 1114 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active
nodes. Since the objective value of an optimal solution cannot be greater than an
upper bound, active nodes with lower bounds higher than an existing upper bound can
be safely deleted. In particular, if z is the objective value of the current best integer

1114 � Chapter 16. The OPTMILP Procedure

solution, then any active subproblems whose relaxed objective value is greater than
or equal to z can be discarded.

It is important to realize that mixed integer linear programs are NP-hard. Roughly
speaking, this means that the effort required to solve a mixed integer linear program
grows exponentially with the size of the problem. For example, a problem with 10
binary variables can in the worst case generate 210 = 1, 024 nodes in the branch-
and-bound tree. A problem with 20 binary variables can in the worst case generate
220 = 1, 048, 576 nodes in the branch-and-bound tree. Although it is unlikely that
the branch-and-bound algorithm will have to generate every single possible node, the
need to explore even a small fraction of the potential number of nodes for a large
problem can be resource intensive.

A number of techniques can speed up the search progress of the branch-and-bound
algorithm. Heuristics are used to find feasible solutions, which can improve the upper
bounds on solutions of mixed integer linear programs. Cutting planes can reduce the
search space and thus improve the lower bounds on solutions of mixed integer linear
programs. When using cutting planes, the branch-and-bound algorithm is also called
the branch-and-cut algorithm. Preprocessing can reduce problem size and improve
problem solvability. PROC OPTMILP employs various heuristics, cutting planes,
preprocessing, and other techniques, which you can control through corresponding
options.

Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound
search (see Linderoth and Savelsbergh 1998, Achterberg, Koch, and Martin 2005).
PROC OPTMILP implements the most widely used strategies and provides several
options that enable you to direct the choice of the next active node and of the branch-
ing variable. In the discussion that follows, let (LPk) be the linear programming
relaxation of subproblem (MILPk). Also, let

fi(k) = x̄k
i − bx̄k

i c

where x̄k is the optimal solution to the relaxation problem (LPk) solved at node k.

Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The
valid keywords for this option are AUTOMATIC, BESTBOUND, BESTESTIMATE,
and DEPTH. The following list describes the strategy associated with each keyword.

AUTOMATIC allows PROC OPTMILP to choose the best node selection strat-
egy based on problem characteristics and search progress. This
is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of
a maximization problem) relaxed objective value. The best-
bound strategy tends to reduce the number of nodes to be pro-
cessed and can improve lower bounds quickly. If there is no

Controlling the Branch-and-Bound Algorithm � 1115

good upper bound, however, the number of active nodes can be
large. This can result in the solver running out of memory.

BESTESTIMATE chooses the node with the smallest (or largest, in the case of a
maximization problem) objective value of the estimated integer
solution. Besides improving lower bounds, the best-estimate
strategy also attempts to process nodes that can yield good fea-
sible solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first
search is effective in locating feasible solutions, since such so-
lutions are usually deep in the search tree. Compared to the
costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The
number of active nodes is generally small, but it is possible that
the depth-first search will remain in a portion of the search tree
with no good integer solutions. This occurrence is computa-
tionally expensive.

Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable.
The valid keywords for this option are AUTOMATIC, MAXINFEAS, MININFEAS,
PSEUDO, and STRONG. The following list describes the action taken in each case
when x̄k, a relaxed optimal solution of (MILPk), is used to define two active sub-
problems. In the following list, “INTTOL” refers to the value assigned using the
INTTOL= option. For details about the INTTOL= option, see the section “Control
Options” on page 1101.

AUTOMATIC enables PROC OPTMILP to choose the best variable selection
strategy based on problem characteristics and search progress. This
is the default setting.

MAXINFEAS chooses as the branching variable the variable xi such that i maxi-
mizes

{min{fi(k), 1− fi(k)} | i ∈ S and

INTTOL ≤ fi(k) ≤ 1− INTTOL}

MININFEAS chooses as the branching variable the variable xi such that i mini-
mizes

{min{fi(k), 1− fi(k)} | i ∈ S and

INTTOL ≤ fi(k) ≤ 1− INTTOL}

1116 � Chapter 16. The OPTMILP Procedure

PSEUDO chooses as the branching variable the variable xi such that i maxi-
mizes the weighted up and down pseudocosts. Pseudocost branch-
ing attempts to branch on significant variables first, quickly im-
proving lower bounds. Pseudocost branching estimates signif-
icance based on historical information; however, this approach
might not be accurate for future search.

STRONG chooses as the branching variable the variable xi such that i max-
imizes the estimated improvement in the objective value. Strong
branching first generates a list of candidates, then branches on each
candidate and records the improvement in the objective value. The
candidate with the largest improvement is chosen as the branch-
ing variable. Strong branching can be effective for combinatorial
problems, but it is usually computationally expensive.

Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching
on variables in a specific order. You can accomplish this in PROC OPTMILP by
attaching branching priorities to the integer variables in your model.

There are two ways in which you can set branching priorities for use by PROC
OPTMILP. You can specify the branching priorities directly in the input MPS-format
data set; see the section “BRANCH Section (Optional)” on page 1034 for details. If
you are constructing a model in PROC OPTMODEL, you can set branching priorities
for integer variables by using the .priority suffix. More information about this suffix
is available in the section “Integer Variable Suffixes” in Chapter 6. For an example in
which branching priorities are used, see Example 9.3.

Presolve and Probing

PROC OPTMILP includes a variety of presolve techniques to reduce problem size,
improve numerical stability, and detect infeasibility or unboundedness (Andersen and
Andersen 1995; Gondzio 1997). During presolve, redundant constraints and vari-
ables are identified and removed. Presolve can further reduce the problem size by
substituting variables. Variable substitution is a very effective technique, but it might
occasionally increase the number of nonzero entries in the constraint matrix. Presolve
might also modify the constraint coefficients to tighten the formulation of the prob-
lem.

In most cases, using presolve is very helpful in reducing solution times. You can
enable presolve at different levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to 0 or 1, then explores
the logical consequences (Savelsbergh 1994). Probing can expedite the solution of a
difficult problem by fixing variables and improving the model. However, probing is
often computationally expensive and can significantly increase the solution time in
some cases. You can enable probing at different levels by specifying the PROBE=
option.

Cutting Planes � 1117

Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in
n-space can be written as a finite number of half-spaces (equivalently, inequalities).
In our notation, this polyhedron is defined by the set Q = {x ∈ Rn | Ax ≤ b, l ≤
x ≤ u}. After we add the restriction that some variables must be integral, the set of
feasible solutions, F = {x ∈ Q | xi ∈ Z ∀i ∈ S}, no longer forms a polyhedron.

The convex hull of a set X is the minimal convex set containing X . In solving a
mixed integer linear program, in order to take advantage of LP-based algorithms we
want to find the convex hull, conv(F), of F . If we can find conv(F) and describe it
compactly, then we can solve a mixed integer linear program with a linear program-
ming solver. This is generally very difficult, so we must be satisfied with finding
an approximation. Typically, the better the approximation, the more efficiently the
LP-based branch-and-bound algorithm can perform.

As described in the section “The Branch-and-Bound Algorithm” on page 1112, the
branch-and-bound algorithm begins by solving the linear programming relaxation
over the polyhedron Q. Clearly, Q contains the convex hull of the feasible region of
the original integer program; that is, conv(F) ⊆ Q.

Cutting plane techniques are used to tighten the linear relaxation to better approxi-
mate conv(F). Assume we are given a solution x̄ to some intermediate linear relax-
ation during the branch-and-bound algorithm. A cut, or valid inequality (πx ≤ π0),
is some half-space with the following characteristics:

• The half-space contains conv(F); that is, every integer feasible solution is fea-
sible for the cut (πx ≤ π0,∀x ∈ F).

• The half-space does not contain the current solution x̄; that is, x̄ is not feasible
for the cut (πx̄ > π0).

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954)
in their work on the traveling salesman problem. The two major classifications of
cutting planes are generic cuts and structured cuts. The first class of cuts is based
solely on algebraic arguments and can be applied to any relaxation of any integer
program. The second class of cuts is specific to certain structures that can be found
in some relaxations of the mixed integer linear program. These structures are auto-
matically discovered during the cut initialization phase of PROC OPTMILP. Table
16.10 lists the various types of cutting planes that are built into PROC OPTMILP.
Included in each type are algorithms for numerous variations based on different re-
laxations and lifting techniques. For a survey of cutting plane techniques for mixed
integer programming, see Marchand et al. (1999). For a survey of lifting techniques,
see Atamturk (2004).

1118 � Chapter 16. The OPTMILP Procedure

Table 16.10. Cutting Planes in PROC OPTMILP

Generic Cutting Planes Structured Cutting Planes

Gomory Mixed Integer Cliques

Lift-and-Project Flow Cover

Mixed Integer Rounding Flow Path

Generalized Upper Bound Cover

Implied Bound

Knapsack Cover

You can set levels for individual cuts by using the CUTCLIQUE=,
CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=,
CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, and CUTMIR= options.

The valid levels for these options are given in Table 16.9 on page 1106.

The cut level determines the internal strategy used by PROC OPTMILP for gener-
ating the cutting planes. The strategy consists of several factors, including how fre-
quently the cut search is called, the number of cuts allowed, and the aggressiveness
of the search algorithms.

Sophisticated cutting planes, such as those included in PROC OPTMILP, can take a
great deal of CPU time. Typically the additional tightening of the relaxation helps to
speed up the overall process as it provides better bounds for the branch-and-bound
tree and helps guide the LP solver toward integer solutions. In rare cases shutting off
cutting planes completely might lead to faster overall run times.

The default settings of PROC OPTMILP have been tuned to work well for most
instances. However, problem-specific expertise might suggest adjusting one or more
of the strategies. These options give you that flexibility.

Primal Heuristics
Primal heuristics, an important component of PROC OPTMILP, are applied during
the branch-and-bound algorithm. They are used to find integer feasible solutions early
in the search tree, thereby improving the upper bound for a minimization problem.
Primal heuristics play a role complementary to cutting planes in reducing the gap
between the upper and lower bounds, thus reducing the size of the branch-and-bound
tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following
areas:

• finding a good upper bound early in the tree search; this can lead to earlier
fathoming, resulting in fewer subproblems to be processed.

Node Log � 1119

• locating a reasonably good feasible solution when that is sufficient; sometimes
a good feasible solution is the best the solver can produce within certain time
or resource limits.

• providing upper bounds for some bound-tightening techniques.

The OPTMILP procedure implements several heuristic methodologies. Some algo-
rithms, such as rounding and iterative rounding (diving) heuristics, attempt to con-
struct an integer feasible solution by using fractional solutions to the continuous re-
laxation at each node of the branch-and-cut tree. Other algorithms start with an in-
cumbent solution and attempt to find a better solution within a neighborhood of the
current best solution.

The HEURISTICS= option enables you to control the level of primal heuristics ap-
plied by PROC OPTMILP. This level determines how frequently primal heuristics are
applied during the tree search. Some expensive heuristics might be disabled by the
solver at less aggressive levels. Setting the HEURISTICS= option to a lower level
also reduces the maximum number of iterations allowed in iterative heuristics.

The valid values for this option are listed in Table 16.6 on page 1104.

Node Log

The following information about the status of the branch-and-bound algorithm is
printed in the node log:

Node indicates the sequence number of the current node in the search
tree.

Active indicates the current number of active nodes in the branch-and-
bound tree.

Sols indicates the number of feasible solutions found so far.

BestInteger indicates the best upper bound (assuming minimization) found
so far.

BestBound indicates the best lower bound (assuming minimization) found
so far.

Gap indicates the relative gap between BestInteger and BestBound,
displayed as a percentage. If the relative gap is larger than 1000,
then the absolute gap is displayed. If there are no active nodes
remaining, the value of Gap is 0.

Time indicates the elapsed real time.

The PRINTFREQ= and PRINTLEVEL2= options can be used to control the amount
of information printed in the node log. By default a new entry is included in the log at
the first node, at the last node, and at 100-node intervals. A new entry is also included
each time a better integer solution is found. The PRINTFREQ= option enables you
to change the interval between entries in the node log. Figure 16.4 shows a sample
node log.

1120 � Chapter 16. The OPTMILP Procedure

NOTE: The problem ex1data has 10 variables (0 binary, 10 integer, 0 free, 0
fixed).

NOTE: The problem has 2 constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 20 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.
NOTE: The OPTMILP presolver removed 0 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint

coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 0 88.0955497 100.00% 0
0 1 2 83.0000000 88.0626822 5.75% 0
0 1 2 83.0000000 87.9665871 5.65% 0
0 1 2 83.0000000 87.9660825 5.65% 0
0 1 3 85.0000000 87.9331742 3.34% 0
0 1 3 85.0000000 87.9140538 3.31% 0

NOTE: OPTMILP added 3 cuts with 30 cut coefficients at the root.
5 2 4 86.0000000 87.6821242 1.92% 0
8 0 5 87.0000000 . 0.00% 0

NOTE: Optimal.
NOTE: Objective = 87.
NOTE: The data set WORK.EX1SOLN has 10 observations and 8 variables.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.03 seconds
cpu time 0.01 seconds

Figure 16.4. Sample Node Log

ODS Tables

PROC OPTMILP creates two Output Delivery System (ODS) tables by default unless
you specify a value other than 1 for the PRINTLEVEL= option. The first table,
“ProblemSummary,” is a summary of the input MILP problem. The second table,
“SolutionSummary,” is a brief summary of the attempt to solve the problem. You
can refer to these tables when using ODS. An example output of PROC OPTMILP is
shown in Figure 16.5 (Problem Summary) and Figure 16.6 (Solution Summary). For
more information about ODS, see SAS Output Delivery System: User’s Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then a third table,
“ProblemStatistics,” is produced. This table contains information about the problem
data. See the section “Problem Statistics” on page 1123 for more information.

ODS Tables � 1121

Table 16.11. ODS Tables Produced by PROC OPTMILP

ODS Table Name Description PRINTLEVEL=

ProblemSummary Summary of the input MILP prob-
lem

1 (default)

SolutionSummary Summary of the solution status 1 (default)

ProblemStatistics Description of input problem data 2

The OPTMILP Procedure

Problem Summary

Problem Name EX_MIP
Objective Sense Minimization
Objective Function COST
RHS RHS

Number of Variables 3
Bounded Above 0
Bounded Below 0
Bounded Above and Below 3
Free 0
Fixed 0
Binary 3
Integer 0

Number of Constraints 3
LE (<=) 2
EQ (=) 0
GE (>=) 1
Range 0

Constraint Coefficients 8

Figure 16.5. Example PROC OPTMILP Output: Problem Summary

1122 � Chapter 16. The OPTMILP Procedure

Solution Summary

Objective Function COST
Solution Status Optimal
Objective Value -7

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound .
Nodes 0
Iterations 0
Presolve Time 0.00
Solution Time 0.00

Figure 16.6. Example PROC OPTMILP Output: Solution Summary

You can create output data sets from these tables by using the ODS OUTPUT state-
ment. The output data sets from the preceding example are displayed in Figure 16.7
and Figure 16.8, where you can also find variable names for the tables used in the
ODS template of the OPTMILP procedure.

Problem Summary

Obs Label1 cValue1 nValue1

1 Problem Name EX_MIP .
2 Objective Sense Minimization .
3 Objective Function COST .
4 RHS RHS .
5 .
6 Number of Variables 3 3.000000
7 Bounded Above 0 0
8 Bounded Below 0 0
9 Bounded Above and Below 3 3.000000
10 Free 0 0
11 Fixed 0 0
12 Binary 3 3.000000
13 Integer 0 0
14 .
15 Number of Constraints 3 3.000000
16 LE (<=) 2 2.000000
17 EQ (=) 0 0
18 GE (>=) 1 1.000000
19 Range 0 0
20 .
21 Constraint Coefficients 8 8.000000

Figure 16.7. ODS Output Data Set: Problem Summary

ODS Tables � 1123

Solution Summary

Obs Label1 cValue1 nValue1

1 Objective Function COST .
2 Solution Status Optimal .
3 Objective Value -7 -7.000000
4 .
5 Relative Gap 0 0
6 Absolute Gap 0 0
7 Primal Infeasibility 0 0
8 Bound Infeasibility 0 0
9 Integer Infeasibility 0 0
10 .
11 Best Bound . .
12 Nodes 0 0
13 Iterations 0 0
14 Presolve Time 0.00 0
15 Solution Time 0.00 0

Figure 16.8. ODS Output Data Set: Solution Summary

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models.
Information about data magnitude provides a simple gauge to determine how well
a model is formulated. For example, a model whose constraint matrix contains one
very large entry (on the order of 109) can cause difficulty when the remaining entries
are single-digit numbers. The PRINTLEVEL=2 option in the OPTMILP procedure
causes the ODS table “ProblemStatistics” to be generated. This table provides basic
data magnitude information that enables you to improve the formulation of your
models.

The example output in Figure 16.9 demonstrates the contents of the ODS table
“ProblemStatistics.”

1124 � Chapter 16. The OPTMILP Procedure

The OPTMILP Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 8
Maximum Constraint Matrix Coefficient 3
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.875

Number of Objective Nonzeros 3
Maximum Objective Coefficient 4
Minimum Objective Coefficient 2
Average Objective Coefficient 3

Number of RHS Nonzeros 3
Maximum RHS 7
Minimum RHS 4
Average RHS 5.3333333333

Maximum Number of Nonzeros per Column 3
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 3
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Figure 16.9. ODS Table ProblemStatistics

The variable names in the ODS table “ProblemStatistics” are Label1, cValue1, and
nValue1.

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the SAS
System. If you do not specify a value for this option, then the SAS System sets a
default memory limit. Your operating environment determines the actual size of the
default memory limit, which is sufficient for many applications. However, to solve
most realistic optimization problems, the OPTMILP procedure might require more
memory. Increasing the memory limit can reduce the chance of an out-of-memory
condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-
ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For
example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to
enable the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

Example 16.1. Simple Integer Linear Program � 1125

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion for
your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion for your operating environment.

Examples: OPTMILP Procedure
This section contains examples intended to illustrate the options and syntax of PROC
OPTMILP. Example 16.1 demonstrates a model contained in an MPS-format SAS
data set and finds an optimal solution by using PROC OPTMILP. Example 16.2 illus-
trates the use of standard MPS files in PROC OPTMILP. Example 16.3 demonstrates
how to warm start PROC OPTMILP. More detailed examples of mixed integer linear
programs, along with example SAS code, are given in Chapter 9.

Example 16.1. Simple Integer Linear Program

This example illustrates a model in an MPS-format SAS data set. This data set is
passed to PROC OPTMILP and a solution is found.

Consider a scenario where you have a container with a set of limiting attributes (vol-
ume V and weight W) and a set I of items that you want to pack. Each item type i
has a certain value pi, a volume vi, and a weight wi. You must choose at most four
items of each type so that the total value is maximized and all the chosen items fit into
the container. Let xi be the number of items of type i to be included in the container.
This model can be formulated as the following integer linear program:

max
∑
i∈I

pixi

s.t.
∑
i∈I

vixi ≤ V (volume–con)∑
i∈I

wixi ≤ W (weight–con)

xi ≤ 4 ∀i ∈ I

xi ∈ Z+ ∀i ∈ I

Constraint (volume–con) enforces the volume capacity limit, while constraint
(weight–con) enforces the weight capacity limit. An instance of this problem can
be saved in an MPS-format SAS data set by using the following code:

data ex1data;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME ex1data . .
ROWS . .
MAX z . .
L volume_con . .
L weight_con . .

1126 � Chapter 16. The OPTMILP Procedure

COLUMNS . .
.MRK0 ’MARKER’ . ’INTORG’ .
x[1] z 1 volume_con 10
x[1] weight_con 12 .
x[2] z 2 volume_con 300
x[2] weight_con 15 .
x[3] z 3 volume_con 250
x[3] weight_con 72 .
x[4] z 4 volume_con 610
x[4] weight_con 100 .
x[5] z 5 volume_con 500
x[5] weight_con 223 .
x[6] z 6 volume_con 120
x[6] weight_con 16 .
x[7] z 7 volume_con 45
x[7] weight_con 73 .
x[8] z 8 volume_con 100
x[8] weight_con 12 .
x[9] z 9 volume_con 200
x[9] weight_con 200 .
x[10] z 10 volume_con 61
x[10] weight_con 110 .
.MRK1 ’MARKER’ . ’INTEND’ .

RHS . .
.RHS. volume_con 1000 .
.RHS. weight_con 500 .

BOUNDS . .
UP .BOUNDS. x[1] 4 .
UP .BOUNDS. x[2] 4 .
UP .BOUNDS. x[3] 4 .
UP .BOUNDS. x[4] 4 .
UP .BOUNDS. x[5] 4 .
UP .BOUNDS. x[6] 4 .
UP .BOUNDS. x[7] 4 .
UP .BOUNDS. x[8] 4 .
UP .BOUNDS. x[9] 4 .
UP .BOUNDS. x[10] 4 .
ENDATA . .
;

In the COLUMNS section of this data set, the name of the objective is z, and the
objective coefficients pi appear in field4. The coefficients vi of (volume–con) appear
in field6. The coefficients wi of (weight–con) appear in field4. In the RHS section,
the bounds V and W appear in field4.

This problem can be solved by using the following statement to call the OPTMILP
procedure:

proc optmilp data=ex1data primalout=ex1soln;
run;

The progress of the solver is shown in Output 16.1.1.

Example 16.1. Simple Integer Linear Program � 1127

Output 16.1.1. Simple Integer Linear Program PROC OPTMILP Log

NOTE: The problem ex1data has 10 variables (0 binary, 10 integer, 0 free, 0
fixed).

NOTE: The problem has 2 constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 20 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.
NOTE: The OPTMILP presolver removed 0 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint

coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 0 88.0955497 100.00% 0
0 1 2 83.0000000 88.0626822 5.75% 0
0 1 2 83.0000000 87.9665871 5.65% 0
0 1 2 83.0000000 87.9660825 5.65% 0
0 1 3 85.0000000 87.9331742 3.34% 0
0 1 3 85.0000000 87.9140538 3.31% 0

NOTE: OPTMILP added 3 cuts with 30 cut coefficients at the root.
5 2 4 86.0000000 87.6821242 1.92% 0
8 0 5 87.0000000 . 0.00% 0

NOTE: Optimal.
NOTE: Objective = 87.
NOTE: The data set WORK.EX1SOLN has 10 observations and 8 variables.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.03 seconds
cpu time 0.03 seconds

The data set ex1soln is shown in Output 16.1.2.

Output 16.1.2. Simple Integer Linear Program Solution

Example 1 Solution Data

Objective
Function RHS Variable Variable Objective Lower Upper Variable

ID ID Name Type Coefficient Bound Bound Value

z .RHS. x[1] I 1 0 4 0
z .RHS. x[2] I 2 0 4 0
z .RHS. x[3] I 3 0 4 0
z .RHS. x[4] I 4 0 4 0
z .RHS. x[5] I 5 0 4 0
z .RHS. x[6] I 6 0 4 3
z .RHS. x[7] I 7 0 4 1
z .RHS. x[8] I 8 0 4 4
z .RHS. x[9] I 9 0 4 0
z .RHS. x[10] I 10 0 4 3

1128 � Chapter 16. The OPTMILP Procedure

The optimal solution is x6 = 3, x7 = 1, x8 = 4, and x10 = 3, with a total value
of 87. From this solution, you can compute the total volume used, which is 988
(≤ V = 1000); the total weight used is 499 (≤ W = 500). The problem summary
and solution summary are shown in Output 16.1.3.

Output 16.1.3. Simple Integer Linear Program Summary

Problem Summary

Problem Name ex1data
Objective Sense Maximization
Objective Function z
RHS .RHS.

Number of Variables 10
Bounded Above 0
Bounded Below 0
Bounded Above and Below 10
Free 0
Fixed 0
Binary 0
Integer 10

Number of Constraints 2
LE (<=) 2
EQ (=) 0
GE (>=) 0
Range 0

Constraint Coefficients 20

Solution Summary

Objective Function z
Solution Status Optimal
Objective Value 87

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound .
Nodes 9
Iterations 34
Presolve Time 0.00
Solution Time 0.00

Example 16.2. MIPLIB Benchmark Instance

The following example illustrates the conversion of a standard MPS-format file into
an MPS-format SAS data set. The problem is re-solved several times, each time by
using a different control option. For such a small example, it is necessary to disable
cuts and heuristics in order to see the computational savings gained by using other

Example 16.2. MIPLIB Benchmark Instance � 1129

options. For larger or more complex examples, the benefits of using the various
control options are more pronounced.

The standard set of MILP benchmark cases is called MIPLIB (Bixby et al. 1998,
Achterberg, Koch, and Martin 2003) and can be found at http://miplib.zib.de/. The
following code uses the %MPS2SASD macro to convert an example from MIPLIB
to a SAS data set:

%mps2sasd(mpsfile="p0282.mps", outdata=mpsdata);

The problem can then be solved using PROC OPTMILP on the data set created by
the conversion:

proc optmilp data=mpsdata allcuts=none heuristics=none;
run;

The resulting log is shown in Output 16.2.1.

Output 16.2.1. MIPLIB PROC OPTMILP Log

NOTE: The problem P0282 has 282 variables (282 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 241 constraints (241 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1966 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 80 variables and 80 constraints.
NOTE: The OPTMILP presolver removed 682 constraint coefficients.
NOTE: The OPTMILP presolver modified 46 constraint coefficients.
NOTE: The presolved problem has 202 variables, 161 constraints, and 1284

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 180000 . 0
45 43 1 258993 180000 43.88% 0

100 63 1 258993 254952 1.59% 0
150 84 2 258723 255333 1.33% 0
200 105 2 258723 255541 1.25% 0
300 147 2 258723 255840 1.13% 0
400 141 2 258723 256499 0.87% 0
500 114 2 258723 257311 0.55% 0
581 46 3 258411 258083 0.13% 0
600 29 3 258411 258217 0.08% 0
623 8 3 258411 258387 0.01% 0

NOTE: Optimal within relative gap.
NOTE: Objective = 258411.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.15 seconds
cpu time 0.15 seconds

1130 � Chapter 16. The OPTMILP Procedure

Suppose you do not have a bound for the solution. If there is an objective value that,
even if it is not optimal, satisfies your requirements, then you can save time by using
the TARGET= option. The following PROC OPTMILP call solves the problem with
a target value of 260,000:

proc optmilp data=mpsdata allcuts=none heuristics=none
target=260000;

run;

The relevant results from this run are displayed in Output 16.2.2. In this case, there
is a decrease in CPU time, but the objective value has increased.

Output 16.2.2. MIPLIB PROC OPTMILP Log with TARGET= Option

NOTE: The problem P0282 has 282 variables (282 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 241 constraints (241 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1966 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 80 variables and 80 constraints.
NOTE: The OPTMILP presolver removed 682 constraint coefficients.
NOTE: The OPTMILP presolver modified 46 constraint coefficients.
NOTE: The presolved problem has 202 variables, 161 constraints, and 1284

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 180000 . 0

45 44 1 258993 180000 43.88% 0
NOTE: Target reached.
NOTE: Objective of the best integer solution found = 258993.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.04 seconds
cpu time 0.04 seconds

When the objective value of a solution is within a certain relative gap of the optimal
objective value, the procedure stops. The acceptable relative gap can be changed
using the RELOBJGAP= option, as demonstrated in the following example:

proc optmilp data=mpsdata allcuts=none heuristics=none
relobjgap=0.10;

run;

The relevant results from this run are displayed in Output 16.2.3. In this case, since
the specified RELOBJGAP= value is larger than the default value, the number of

Example 16.2. MIPLIB Benchmark Instance � 1131

nodes as well as the CPU time have decreased from their values in the original run.
Note that these savings are exchanged for an increase in the objective value of the
solution.

Output 16.2.3. MIPLIB PROC OPTMILP Log with RELOBJGAP= Option

NOTE: The problem P0282 has 282 variables (282 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 241 constraints (241 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1966 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 80 variables and 80 constraints.
NOTE: The OPTMILP presolver removed 682 constraint coefficients.
NOTE: The OPTMILP presolver modified 46 constraint coefficients.
NOTE: The presolved problem has 202 variables, 161 constraints, and 1284

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 180000 . 0
45 43 1 258993 180000 43.88% 0
56 42 1 258993 241020 7.46% 0

NOTE: Optimal within relative gap.
NOTE: Objective = 258993.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.06 seconds
cpu time 0.06 seconds

The MAXTIME= option enables you to accept the best solution produced by PROC
OPTMILP in a specified amount of time. The following example illustrates the use
of the MAXTIME= option:

proc optmilp data=mpsdata allcuts=none heuristics=none
maxtime=0.1;

run;

The relevant results from this run are displayed in Output 16.2.4. Once again, a
reduction in solution time is traded for an increase in objective value.

1132 � Chapter 16. The OPTMILP Procedure

Output 16.2.4. MIPLIB PROC OPTMILP Log with MAXTIME= Option

NOTE: The problem P0282 has 282 variables (282 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 241 constraints (241 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1966 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 80 variables and 80 constraints.
NOTE: The OPTMILP presolver removed 682 constraint coefficients.
NOTE: The OPTMILP presolver modified 46 constraint coefficients.
NOTE: The presolved problem has 202 variables, 161 constraints, and 1284

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 180000 . 0

45 43 1 258993 180000 43.88% 0
100 63 1 258993 254952 1.59% 0
150 84 2 258723 255333 1.33% 0
200 105 2 258723 255541 1.25% 0
300 147 2 258723 255840 1.13% 0

NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found = 258723.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.10 seconds
cpu time 0.10 seconds

The MAXNODES= option enables you to limit the number of nodes generated by
PROC OPTMILP. The following example illustrates the use of the MAXNODES=
option:

proc optmilp data=mpsdata allcuts=none heuristics=none
maxnodes=500;

run;

The relevant results from this run are displayed in Output 16.2.5. PROC OPTMILP
displays the best objective value of all the solutions produced.

Example 16.3. Facility Location � 1133

Output 16.2.5. MIPLIB PROC OPTMILP Log with MAXNODES= Option

NOTE: The problem P0282 has 282 variables (282 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 241 constraints (241 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1966 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 80 variables and 80 constraints.
NOTE: The OPTMILP presolver removed 682 constraint coefficients.
NOTE: The OPTMILP presolver modified 46 constraint coefficients.
NOTE: The presolved problem has 202 variables, 161 constraints, and 1284

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 180000 . 0
45 43 1 258993 180000 43.88% 0

100 63 1 258993 254952 1.59% 0
150 84 2 258723 255333 1.33% 0
200 105 2 258723 255541 1.25% 0
300 147 2 258723 255840 1.13% 0
400 141 2 258723 256499 0.87% 0
500 115 2 258723 257310 0.55% 0

NOTE: Node limit reached.
NOTE: Objective of the best integer solution found = 258723.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.14 seconds
cpu time 0.14 seconds

Example 16.3. Facility Location

This advanced example demonstrates how to warm start PROC OPTMILP by using
the PRIMALIN= option. The model is constructed in PROC OPTMODEL and saved
in an MPS-format SAS data set for use in PROC OPTMILP. Note that this problem
can also be solved from within PROC OPTMODEL; see Chapter 9 for details.

Consider the classical facility location problem. Given a set L of customer locations
and a set F of candidate facility sites, you must decide which sites to build facilities
on and assign coverage of customer demand to these sites so as to minimize cost. All
customer demand di must be satisfied, and each facility has a demand capacity limit
C. The total cost is the sum of the distances cij between facility j and its assigned
customer i, plus a fixed charge fj for building a facility at site j. Let yj = 1 represent
choosing site j to build a facility, and 0 otherwise. Also, let xij = 1 represent the
assignment of customer i to facility j, and 0 otherwise. This model can be formulated

1134 � Chapter 16. The OPTMILP Procedure

as the following integer linear program:

min
∑
i∈L

∑
j∈F

cijxij +
∑
j∈F

fjyj

s.t.
∑
j∈F

xij = 1 ∀i ∈ L (assign–def)

xij ≤ yj ∀i ∈ L, j ∈ F (link)∑
i∈L

dixij ≤ Cyj ∀j ∈ F (capacity)

xij ∈ {0, 1} ∀i ∈ L, j ∈ F

yj ∈ {0, 1} ∀j ∈ F

Constraint (assign–def) ensures that each customer is assigned to exactly one site.
Constraint (link) forces a facility to be built if any customer has been assigned to that
facility. Finally, constraint (capacity) enforces the capacity limit at each site.

Let us also consider a variation of this same problem where there is no cost for build-
ing a facility. This problem is typically easier to solve than the original problem. For
this variant, let the objective be

min
∑
i∈L

∑
j∈F

cijxij

First, let us construct a random instance of this problem by using the following DATA
steps:

%let NumCustomers = 50;
%let NumSites = 10;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 938;

/* generate random customer locations */
data cdata(drop=i);

length name $8;
do i = 1 to &NumCustomers;

name = compress(’C’||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
demand = ranuni(&seed) * &MaxDemand;
output;

end;
run;

/* generate random site locations and fixed charge */
data sdata(drop=i);

length name $8;
do i = 1 to &NumSites;

name = compress(’SITE’||put(i,best.));

Example 16.3. Facility Location � 1135

x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
fixed_charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;

end;
run;

In the following PROC OPTMODEL code, we generate the model and define both
variants of the cost function:

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES;

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {j in SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be */
/* built at j */
con link {i in CUSTOMERS, j in SITES}:

Assign[i,j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {i in CUSTOMERS} demand[i] * Assign[i,j]
<= &SiteCapacity * Build[j];

min CostNoFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];

save mps nofcdata;

min CostFixedCharge
= CostNoFixedCharge

+ sum {j in SITES} fixed_charge[j] * Build[j];

save mps fcdata;

quit;

1136 � Chapter 16. The OPTMILP Procedure

We first solve the problem for the model with no fixed charge by using the following
code. The first PROC SQL call populates the macro variables varcostNo. This
macro variable is used to display the objective value when the results are plotted. The
second PROC SQL call generates a data set which is used to plot the results. The
information printed in the log by PROC OPTMILP is displayed in Output 16.3.1.

proc optmilp data=nofcdata primalout=nofcout;
run;

proc sql noprint;
select put(sum(_objcoef_ * _value_),6.1) into :varcostNo
from nofcout;

quit;

proc sql;
create table CostNoFixedCharge_Data as
select

scan(p._var_,2,’[],’) as customer,
scan(p._var_,3,’[],’) as site,
c.x as xi, c.y as yi, s.x as xj, s.y as yj

from
cdata as c,
sdata as s,
nofcout(where=(substr(_var_,1,6)=’Assign’ and

round(_value_) = 1)) as p
where calculated customer = c.name and calculated site = s.name;

quit;

Example 16.3. Facility Location � 1137

Output 16.3.1. PROC OPTMILP Log for Facility Location with No Fixed Charges

NOTE: The problem nofcdata has 510 variables (510 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 560 constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 10 variables and 500 constraints.
NOTE: The OPTMILP presolver removed 1010 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 500 variables, 60 constraints, and 1000

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 961.2403449 . 0
0 1 2 966.4832160 966.4832160 0.00% 0
0 0 2 966.4832160 . 0.00% 0

NOTE: OPTMILP added 2 cuts with 94 cut coefficients at the root.
NOTE: Optimal.
NOTE: Objective = 966.483216.
NOTE: The data set WORK.NOFCOUT has 510 observations and 8 variables.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 0.10 seconds
cpu time 0.10 seconds

Next, we solve the fixed-charge model by using the following code. Note that the
solution to the model with no fixed charge is feasible for the fixed-charge model and
should provide a good starting point for PROC OPTMILP. We use the PRIMALIN=
option to provide an incumbent solution (“warm start”). The two PROC SQL calls
perform the same functions as in the case with no fixed charges. The results from this
approach are shown in Output 16.3.2.

proc optmilp data=fcdata primalin=nofcout;
run;

proc sql noprint;
select put(sum(_objcoef_ * _value_), 6.1) into :varcost
from fcout(where=(substr(_var_,1,6)=’Assign’));
select put(sum(_objcoef_ * _value_), 5.1) into :fixcost
from fcout(where=(substr(_var_,1,5)=’Build’));
select put(sum(_objcoef_ * _value_), 6.1) into :totalcost
from fcout;

quit;

proc sql;
create table CostFixedCharge_Data as
select

scan(p._var_,2,’[],’) as customer,
scan(p._var_,3,’[],’) as site,
c.x as xi, c.y as yi, s.x as xj, s.y as yj

from

1138 � Chapter 16. The OPTMILP Procedure

cdata as c,
sdata as s,
fcout(where=(substr(_var_,1,6)=’Assign’ and

round(_value_) = 1)) as p
where calculated customer = c.name and calculated site = s.name;

quit;

Output 16.3.2. PROC OPTMILP Log for Facility Location with Fixed Charges,
Using Warm Start

NOTE: The problem fcdata has 510 variables (510 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 560 constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 constraint coefficients.
NOTE: The OPTMILP presolver value AUTOMATIC is applied.
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.
NOTE: The OPTMILP presolver removed 0 constraint coefficients.
NOTE: The OPTMILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 510 variables, 560 constraints, and 2010

constraint coefficients.
NOTE: The MIXED INTEGER LINEAR solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 18157.3952518 9946.2514269 82.56% 0
0 1 1 18157.3952518 9959.5657588 82.31% 0
0 1 3 10955.8156144 9970.3344501 9.88% 0
0 1 3 10955.8156144 9974.5475193 9.84% 0
0 1 3 10955.8156144 9974.9124195 9.83% 0
0 1 3 10955.8156144 9974.9216211 9.83% 0
0 1 3 10955.8156144 9975.7667099 9.82% 0

NOTE: OPTMILP added 16 cuts with 474 cut coefficients at the root.
21 18 4 10953.9474016 9975.7667099 9.81% 0

500 224 4 10953.9474016 10172.4076684 7.68% 3
1000 260 4 10953.9474016 10238.7585780 6.99% 7
1500 201 4 10953.9474016 10375.2261761 5.58% 10
2000 73 4 10953.9474016 10604.2672946 3.30% 13
2192 32 5 10950.0345546 10940.5483611 0.09% 13
2381 72 6 10949.9022616 10946.9424488 0.03% 14
2382 72 7 10949.9022584 10946.9424488 0.03% 14
2422 23 8 10948.4603436 10947.6159840 0.01% 14

NOTE: Optimal within relative gap.
NOTE: Objective = 10948.4603.
NOTE: The data set WORK.FCOUT has 510 observations and 8 variables.
NOTE: PROCEDURE OPTMILP used (Total process time):

real time 16.45 seconds
cpu time 16.45 seconds

The following two SAS programs produce a plot of the solutions for both variants
of the model, using data sets produced by PROC SQL from the PRIMALOUT= data
sets produced by PROC OPTMILP.

Note: Execution of this code requires SAS/GRAPH software.

Example 16.3. Facility Location � 1139

title1 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";
data csdata;

set cdata(rename=(y=cy)) sdata(rename=(y=sy));
run;
/* create Annotate data set to draw line between customer and */
/* assigned site */
%annomac;
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostNoFixedCharge_Data(keep=xi yi xj yj);

%LINE(xi, yi, xj, yj, *, 1, 1);
run;
proc gplot data=csdata anno=anno;

axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=0.7) cv=black;
symbol2 value=diamond interpol=none

pointlabel=("#name" nodropcollisions color=blue height=0.7) cv=blue;
plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;

run;
quit;

The output from the first program appears in Output 16.3.3.

1140 � Chapter 16. The OPTMILP Procedure

Output 16.3.3. Solution Plot for Facility Location with No Fixed Charges

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Facility Location Problem
TotalCost = 966.5 (Variable = 966.5, Fixed = 0)

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

C31

C32

C33

C34

C35

C36

C37

C38
C39

C40

C41

C42

C43

C44

C45

C46

C47

C48

C49

C50

SITE1

SITE2

SITE3

SITE4

SITE5

SITE6

SITE7

SITE8

SITE9

SITE10

title1 "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";
/* create Annotate data set to draw line between customer and */
/* assigned site */
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostFixedCharge_Data(keep=xi yi xj yj);
%LINE(xi, yi, xj, yj, *, 1, 1);

run;
proc gplot data=csdata anno=anno;

axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=0.7) cv=black;
symbol2 value=diamond interpol=none

pointlabel=("#name" nodropcollisions color=blue height=0.7) cv=blue;
plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;

run;
quit;

The output from the second program appears in Output 16.3.4.

Example 16.3. Facility Location � 1141

Output 16.3.4. Solution Plot for Facility Location with Fixed Charges

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Facility Location Problem
TotalCost = 10948 (Variable = 1329.8, Fixed = 9619)

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

C31

C32

C33

C34

C35

C36

C37

C38
C39

C40

C41

C42

C43

C44

C45

C46

C47

C48

C49

C50

SITE1

SITE2

SITE3

SITE4

SITE5

SITE6

SITE7

SITE8

SITE9

SITE10

The economic tradeoff for the fixed-charge model forces us to build fewer sites and
push more demand to each site.

1142 � Chapter 16. The OPTMILP Procedure

References
Achterberg, T., Koch, T., and Martin, A. (2003), “MIPLIB 2003,” on the MIPLIB

Web page: http://miplib.zib.de/.

Achterberg, T., Koch, T., and Martin, A. (2005), “Branching Rules Revisited,”
Operations Research Letters, 33(1), 42–54.

Andersen, E. D. and Andersen, K. D. (1995), “Presolving in Linear Programming,”
Mathematical Programming, 71(2), 221–245.

Atamturk, A. (2004), “Sequence Independent Lifting for Mixed-Integer
Programming,” Operations Research, 52, 487–490.

Bixby, R. E., Ceria, S., McZeal, C. M., and Savelsbergh, M. W. P. (1998), “An
Updated Mixed Integer Programming Library: MIPLIB 3.0,” Optima, 58, 12–15.

Dantzig, G. B., Fulkerson, R., and Johnson, S. M. (1954), “Solution of a Large-Scale
Traveling Salesman Problem,” Operations Research, 2, 393–410.

Gondzio, J. (1997), “Presolve Analysis of Linear Programs prior to Applying an
Interior Point Method,” INFORMS Journal on Computing, 9 (1), 73–91.

Land, A. H. and Doig, A. G. (1960), “An Automatic Method for Solving Discrete
Programming Problems,” Econometrica, 28, 497–520.

Linderoth, J. T. and Savelsbergh, M. (1998), “A Computational Study of Search
Strategies for Mixed Integer Programming,” INFORMS Journal on Computing,
11, 173–187.

Marchand, H., Martin, A., Weismantel, R., and Wolsey, L. (1999), “Cutting Planes in
Integer and Mixed Integer Programming,” DP 9953, CORE, Université Catholique
de Louvainla-Neuve, 1999.

Savelsbergh, M. W. P. (1994), “Preprocessing and Probing Techniques for Mixed
Integer Programming Problems,” ORSA J. on Computing, 6, 445–454.

Chapter 17
The OPTQP Procedure

Chapter Contents

OVERVIEW: OPTQP PROCEDURE . 1145

GETTING STARTED: OPTQP PROCEDURE 1146

SYNTAX: OPTQP PROCEDURE . 1151
Functional Summary . 1151
PROC OPTQP Statement . 1151
PROC OPTQP Macro Variable . 1153

DETAILS: OPTQP PROCEDURE . 1155
Output Data Sets . 1155
Interior Point Algorithm: Overview . 1157
Iteration Log for the OPTQP Procedure . 1159
ODS Tables . 1160
Memory Limit . 1163

EXAMPLES: OPTQP PROCEDURE . 1164
Example 17.1. Linear Least Squares Problem 1164
Example 17.2. Portfolio Optimization . 1167
Example 17.3. Portfolio Selection with Transactions 1170

REFERENCES . 1173

1144

Chapter 17
The OPTQP Procedure
Overview: OPTQP Procedure

The OPTQP procedure solves quadratic programs—problems with quadratic objec-
tive function and a collection of linear constraints, including lower and/or upper
bounds on the decision variables.

Mathematically, a quadratic programming (QP) problem can be stated as follows:

min 1
2 xTQx + cTx

subject to Ax {≥,=,≤} b

l ≤ x ≤ u

where

Q ∈ Rn×n is the quadratic (also known as Hessian) matrix

A ∈ Rm×n is the constraints matrix

x ∈ Rn is the vector of decision variables

c ∈ Rn is the vector of linear objective function coefficients

b ∈ Rm is the vector of constraints right-hand sides (RHS)

l ∈ Rn is the vector of lower bounds on the decision variables

u ∈ Rn is the vector of upper bounds on the decision variables

The quadratic matrix Q is assumed to be symmetric; i.e.,

qij = qji, ∀i, j = 1, . . . , n

Indeed, it is easy to show that even if Q 6= QT, the simple modification

Q̃ =
1
2
(Q + QT)

produces an equivalent formulation xTQx ≡ xTQ̃x; hence symmetry is assumed.
When specifying a quadratic matrix it suffices to list only lower triangular coeffi-
cients.

In addition to being symmetric, Q is also required to be positive semidefinite:

xTQx ≥ 0, ∀x ∈ Rn

1146 � Chapter 17. The OPTQP Procedure

for minimization type of models; it is required to be negative semidefinite for the
maximization type of models. Convexity can come as a result of a matrix-matrix
multiplication

Q = LLT

or as a consequence of physical laws, etc. See Figure 17.1 for examples of convex,
concave, and nonconvex objective functions.

Convex f = x*x + y*y Convex (degenerate) f = x*x

Concave f = −x*x − y*y Nonconvex f = x*y + 0.3*y*y

Figure 17.1. Examples of Convex, Concave, and Nonconvex Objective Functions

The order of constraints is insignificant. Some or all components of l or u
(lower/upper bounds) can be omitted.

Getting Started: OPTQP Procedure
Consider a small illustrative example. Suppose you want to minimize a two-variable
quadratic function f(x1, x2) on the nonnegative quadrant, subject to two constraints:

min 2x1 + 3x2 + x2
1 + 10x2

2 + 2.5x1x2

subject to x1 − x2 ≤ 1

x1 + 2x2 ≥ 100

x1 ≥ 0

x2 ≥ 0

The linear objective function coefficients, vector of right-hand sides, and lower and
upper bounds are identified immediately as

c =

[
2

3

]
, b =

[
1

100

]
, l =

[
0

0

]
, u =

[
+∞
+∞

]

Getting Started: OPTQP Procedure � 1147

Let us carefully construct the quadratic matrix Q. Observe that you can use symmetry
to separate the main-diagonal and off-diagonal elements:

1
2
xTQx ≡ 1

2

n∑
i,j=1

xi qij xj =
1
2

n∑
i=1

qii x
2
i +

∑
i>j

xi qij xj

The first expression
1
2

n∑
i=1

qii x
2
i

sums the main-diagonal elements. Thus in this case you have

q11 = 2, q22 = 20

Notice that the main-diagonal values are doubled in order to accommodate the 1/2
factor. Now the second term ∑

i>j

xi qij xj

sums the off-diagonal elements in the strict lower triangular part of the matrix. The
only off-diagonal (xi xj , i 6= j) term in the objective function is 2.5 x1 x2, so you
have

q21 = 2.5

Notice that you do not need to specify the upper triangular part of the quadratic ma-
trix.

Finally, the matrix of constraints is as follows:

A =

[
1 −1

1 2

]

The QPS-format SAS input data set for the preceding problem can be expressed in
the following manner:

data gsdata;
input field1 $ field2 $ field3$ field4 field5 $ field6 @;

datalines;
NAME . EXAMPLE . . .
ROWS
N OBJ
L R1
G R2
COLUMNS
. X1 R1 1.0 R2 1.0
. X1 OBJ 2.0 . .
. X2 R1 -1.0 R2 2.0
. X2 OBJ 3.0 . .
RHS
. RHS R1 1.0 . .
. RHS R2 100 . .
RANGES

1148 � Chapter 17. The OPTQP Procedure

BOUNDS
QUADOBJ
. X1 X1 2.0 . .
. X1 X2 2.5 . .
. X2 X2 20 . .
ENDATA
;

For more details about the QPS-format data set, see Chapter 14, “The MPS-Format
SAS Data Set.”

Alternatively, if you have a QPS-format flat file named gs.qps, then the following
call to the SAS macro %MPS2SASD translates that file into a SAS data set, named
gsdata:

%mps2sasd(mpsfile =gs.qps, outdata = gsdata);

Note: The SAS macro %MPS2SASD is provided in SAS/OR software. See the
section “Converting an MPS/QPS-Format File: %MPS2SASD” on page 1036 for
details.

You can use the following call to PROC OPTQP:

proc optqp data=gsdata
primalout = gspout
dualout = gsdout;

run;

The procedure output is displayed in Figure 17.2.

Getting Started: OPTQP Procedure � 1149

The OPTQP Procedure

Problem Summary

Problem Name EXAMPLE
Objective Sense Minimization
Objective Function OBJ
RHS RHS

Number of Variables 2
Bounded Above 0
Bounded Below 2
Bounded Above and Below 0
Free 0
Fixed 0

Number of Constraints 2
LE (<=) 1
EQ (=) 0
GE (>=) 1
Range 0

Constraint Coefficients 4

Hessian Diagonal Elements 2
Hessian Elements Above the Diagonal 1

The OPTQP Procedure

Solution Summary

Objective Function OBJ
Solution Status Optimal
Objective Value 15018.000761

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 9.9575984E-8
Complementarity 0.0014952645

Iterations 10
Presolve Time 0.00
Solution Time 0.02

Figure 17.2. Procedure Output

The optimal primal solution is displayed in Figure 17.3.

1150 � Chapter 17. The OPTQP Procedure

Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ RHS X1 N 2
2 OBJ RHS X2 N 3

Lower Upper Variable Variable
Obs Bound Bound Value Status

1 0 1.7977E308 34.0000 O
2 0 1.7977E308 33.0000 O

Figure 17.3. Optimal Solution

The SAS log shown in Figure 17.4 provides information about the problem, conver-
gence information after each iteration, and the optimal objective value.

NOTE: The problem EXAMPLE has 2 variables (0 free, 0 fixed).
NOTE: The problem has 2 constraints (1 LE, 0 EQ, 1 GE, 0 range).
NOTE: The problem has 4 constraint coefficients.
NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian

elements above the diagonal.
NOTE: The OPTQP presolver value AUTOMATIC is applied.
NOTE: The OPTQP presolver removed 0 variables and 0 constraints.
NOTE: The OPTQP presolver removed 0 constraint coefficients.
NOTE: The QUADRATIC ITERATIVE solver is called.

Primal Bound Dual
Iter Complement Duality Gap Infeas Infeas Infeas

0 63669937 1.985060 0 0 0
1 12781299 1.952937 0 0 0
2 2189517 1.877587 0 0 0
3 363689 1.669055 0 0 0
4 57278 1.058687 0 0 0
5 5621.204805 0.239307 0 0 0
6 914.397217 0.015841 0 0 0
7 14.822037 0.000796 0 0 0
8 0.605195 0.000039820 0 0 0
9 0.029919 0.000001991 0 0 0
10 0.001495 9.9575984E-8 0 0 0

NOTE: Optimal.
NOTE: Objective = 15018.000761.

Figure 17.4. Iteration Log

See the section “Interior Point Algorithm: Overview” on page 1157 and the section
“Iteration Log for the OPTQP Procedure” on page 1159 for more details about con-
vergence information given by the iteration log.

PROC OPTQP Statement � 1151

Syntax: OPTQP Procedure
The following statement is used in PROC OPTQP:

PROC OPTQP < options > ;

Functional Summary

Table 17.1 outlines the options available for the OPTQP procedure classified by func-
tion.

Table 17.1. Options in the OPTQP Procedure

Description Option
Data Set Options:
QPS-format input SAS data set DATA=

dual solution output SAS data set DUALOUT=

objective sense (maximization or minimization) OBJSENSE=

primal solution output SAS data set PRIMALOUT=

save output data sets only if optimal SAVE–ONLY–IF–OPTIMAL

Control Options:
maximum number of iterations MAXITER=

maximum real time MAXTIME=

type of presolve PRESOLVER=

enable/disable iteration log PRINTFREQ=

enable/disable printing summary PRINTLEVEL=

stopping criterion based on duality gap STOP–DG=

stopping criterion based on dual infeasibility STOP–DI=

stopping criterion based on primal infeasibility STOP–PI=

PROC OPTQP Statement

The following options can be specified in the PROC OPTQP statement.

DATA=SAS-data-set
specifies the input SAS data set. This data set can also be created from a QPS-format
flat file by using the SAS macro %MPS2SASD. If the DATA= option is not specified,
PROC OPTQP will use the most recently created SAS data set. See Chapter 14, “The
MPS-Format SAS Data Set,” for more details.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

1152 � Chapter 17. The OPTQP Procedure

specifies the output data set containing the dual solution. See the section “Output
Data Sets” on page 1155 for details.

MAXITER=k
specifies the maximum number of predictor-corrector iterations performed by the
interior point algorithm (see the section “Interior Point Algorithm: Overview” on
page 1157). The value k is an integer between 1 and the largest four-byte, signed
integer, which is 231 − 1. If you do not specify this option, the procedure does not
stop based on the number of iterations performed.

MAXTIME=k
specifies an upper limit of k seconds of real time for reading in the data and perform-
ing the optimization process. If you do not specify this option, the procedure does
not stop based on the amount of time elapsed.

OBJSENSE=option
specifies whether the QP model is a minimization or a maximization problem. You
specify OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for
a maximization problem. Alternatively, you can specify the objective sense in the
input data set; see the section “ROWS Section” on page 1029 for details. If for some
reason the objective sense is specified differently in these two places, this option
supersedes the objective sense specified in the input data set. If the objective sense
is not specified anywhere, then PROC OPTQP interprets and solves the quadratic
program as a minimization problem.

PRESOLVER=option
PRESOL=option

specifies one of the following presolve options:

Option Description

NONE (0) Disable presolver.

AUTOMATIC (−1) Apply presolver by using default setting.

BASIC (1) Apply basic presolver.

MODERATE (2) Apply moderate presolver.

AGGRESSIVE (3) Apply aggressive presolver.

You can also specify the option by integers from −1 to 3. The integer value for each
option is indicated in parentheses. The default option is AUTOMATIC.

PRIMALOUT=SAS-data-set
POUT=SAS-data-set

specifies the output data set containing the primal solution. See the section “Output
Data Sets” on page 1155 for details.

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log should occur
after every k iterations. The print frequency, k, is an integer between zero and the

PROC OPTQP Macro Variable � 1153

largest four-byte, signed integer, which is 231 − 1. The value k = 0 disables the
printing of the progress of the solution. The default value of this option is 1.

PRINTLEVEL=0 | 1
specifies whether a summary of the problem and solution should be printed.
If PRINTLEVEL=1, then two ODS (Output Delivery System) tables named
“ProblemSummary” and “SolutionSummary” are produced and printed. If
PRINTLEVEL=0, then no ODS tables are produced or printed. The default value of
this option is 1.

For details about the ODS tables created by PROC OPTQP, see the section “ODS
Tables” on page 1160.

SAVE–ONLY–IF–OPTIMAL
specifies that the PRIMALOUT= and DUALOUT= data sets be saved only
if the final solution obtained by the solver at termination is optimal. If the
PRIMALOUT= or DUALOUT= option is specified, and this option is not specified,
then the output data sets will only contain solution values at optimality. If the
SAVE–ONLY–IF–OPTIMAL option is not specified, the output data sets will not
contain an intermediate solution.

STOP–DG=δ
specifies the desired relative duality gap, δ ∈[1E–9, 1E–4]. This is the relative dif-
ference between the primal and dual objective function values and is the primary
solution quality parameter. The default value is 1E–6. See the section “Interior Point
Algorithm: Overview” on page 1157 for details.

STOP–DI=β
specifies the maximum allowed relative dual constraints violation, β ∈[1E–9, 1E–4].
The default value is 1E–6. See the section “Interior Point Algorithm: Overview” on
page 1157 for details.

STOP–PI=α
specifies the maximum allowed relative bound and primal constraints violation,
α ∈[1E–9, 1E–4]. The default value is 1E–6. See the section “Interior Point
Algorithm: Overview” on page 1157 for details.

PROC OPTQP Macro Variable

The OPTQP procedure defines a macro variable named –OROPTQP–. This variable
contains a character string that indicates the status of the procedure. The various
terms of the variable are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK procedure terminated normally

SYNTAX–ERROR incorrect use of syntax

DATA–ERROR inconsistent input data

OUT–OF–MEMORY insufficient memory allocated to the procedure

1154 � Chapter 17. The OPTQP Procedure

IO–ERROR problem in reading or writing of data

ERROR status that cannot be classified into any of the preceding
categories

SOLUTION–STATUS
indicates the solution status at termination. It can take one of the following val-
ues:

OPTIMAL solution is optimal

CONDITIONAL–OPTIMAL optimality of the solution cannot be proven

INFEASIBLE problem is infeasible

UNBOUNDED problem is unbounded

INFEASIBLE–OR–UNBOUNDED problem is infeasible or unbounded

ITERATION–LIMIT–REACHED maximum allowable iterations reached

TIME–LIMIT–REACHED maximum time limit reached

FAILED solver failed to converge, possibly due to nu-
merical issues

NONCONVEX quadratic matrix is nonconvex (minimization)

NONCONCAVE quadratic matrix is nonconcave (maximiza-
tion)

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL–INFEASIBILITY
indicates the (relative) infeasibility of the primal constraints at the optimal solution.
See the section “Interior Point Algorithm: Overview” on page 1157 for details.

DUAL–INFEASIBILITY
indicates the (relative) infeasibility of the dual constraints at the optimal solution. See
the section “Interior Point Algorithm: Overview” on page 1157 for details.

BOUND–INFEASIBILITY
indicates the (relative) violation of the optimal solution over the lower and upper
bounds. See the section “Interior Point Algorithm: Overview” on page 1157 for
details.

DUALITY–GAP
indicates the (relative) duality gap. See the section “Interior Point Algorithm:
Overview” on page 1157 for details.

COMPLEMENTARITY
indicates the (absolute) complementarity at the optimal solution. See the section
“Interior Point Algorithm: Overview” on page 1157 for details.

ITERATIONS
indicates the number of iterations required to solve the problem.

Output Data Sets � 1155

PRESOLVE–TIME
indicates the time for preprocessing (seconds).

SOLUTION–TIME
indicates the time taken by the interior point algorithm to perform iterations for solv-
ing the problem (seconds).

Details: OPTQP Procedure

Output Data Sets

This subsection describes the PRIMALOUT= and DUALOUT= output data sets. If
the SAVE–ONLY–IF–OPTIMAL option is not specified, the output data sets will
not contain an intermediate solution.

Definitions of Variables in the PRIMALOUT= Data Set

The PRIMALOUT= data set contains the primal solution to the QP model. The
variables in the data set have the following names and meanings.

–OBJ–ID–
specifies the name of the objective function. This is particularly useful when there
are multiple objective functions, in which case each objective function has a unique
name. See “ROWS Section” on page 1029 for details.

Note: PROC OPTQP does not support simultaneous optimization of multiple objec-
tive functions in this release.

–RHS–ID–
specifies the name of the variable containing the right-hand-side value of each con-
straint. See “ROWS Section” on page 1029 for details.

–VAR–
specifies the name of the decision variable.

–TYPE–
specifies the type of the decision variable. –TYPE– can take one of the following
values:

N nonnegative variable

D bounded variable with either lower or upper bound

F free variable

X fixed variable

O other

–OBJCOEF–
specifies the coefficient of the decision variable in the linear component of the objec-
tive function.

1156 � Chapter 17. The OPTQP Procedure

–LBOUND–
specifies the lower bound on the decision variable.

–UBOUND–
specifies the upper bound on the decision variable.

–VALUE–
specifies the value of the decision variable.

–STATUS–
specifies the status of the decision variable. –STATUS– can indicate one of the fol-
lowing two cases:

O QP problem is optimal.

I QP problem could be infeasible or unbounded, or PROC OPTQP was not able
to solve the problem.

Definitions of Variables in the DUALOUT= Data Set

The DUALOUT= data set contains the dual solution to the QP model. Information
about the objective rows of the QP problems is not included. The variables in the data
set have the following names and meanings.

–OBJ–ID–
specifies the name of the objective function. This is particularly useful when there
are multiple objective functions, in which case each objective function has a unique
name. See “ROWS Section” on page 1029 for details.

Note: PROC OPTQP does not support simultaneous optimization of multiple objec-
tive functions in this release.

–RHS–ID–
specifies the name of the variable containing the right-hand-side value of each con-
straint. See “ROWS Section” on page 1029 for details.

–ROW–
specifies the name of the constraint. See “ROWS Section” on page 1029 for details.

–TYPE–
specifies the type of the constraint. –TYPE– can take one of the following val-
ues:

L “less than or equals” constraint

E equality constraint

G “greater than or equals” constraint

R ranged constraint (both “less than or equals” and “greater than or equals”)

See “ROWS Section” on page 1029 and “RANGES Section (Optional)” on page 1032
for details.

Interior Point Algorithm: Overview � 1157

–RHS–
specifies the value of the right-hand side of the constraints. It takes a missing value
for a ranged constraint.

–L–RHS–
specifies the lower bound of a ranged constraint. It takes a missing value for a non-
ranged constraint.

–U–RHS–
specifies the upper bound of a ranged constraint. It takes a missing value for a non-
ranged constraint.

–VALUE–
specifies the value of the dual variable associated with the constraint.

–STATUS–
specifies the status of the constraint. –STATUS– can indicate one of the following
two cases:

O QP problem is optimal.

I QP problem could be infeasible or unbounded, or PROC OPTQP was not able
to solve the problem.

–ACTIVITY–
specifies the value of a constraint. In other words, the value of –ACTIVITY– for the
ith constraint would be equal to aT

i x, where ai refers to the ith row of the constraints
matrix and x denotes the vector of current decision variable values.

Interior Point Algorithm: Overview

The interior point solver in PROC OPTQP implements an infeasible primal-dual
predictor-corrector interior point algorithm. To illustrate the algorithm and the con-
cepts of duality and dual infeasibility, consider the following QP formulation (the
primal):

min 1
2x

TQx + cTx

subject to Ax ≥ b

x ≥ 0

The corresponding dual is as follows:

max −1
2x

TQx + bTy

subject to −Qx + ATy + w = c

y ≥ 0

w ≥ 0

1158 � Chapter 17. The OPTQP Procedure

where y ∈ Rm refers to the vector of dual variables and w ∈ Rn refers to the vector
of slack variables in the dual problem.

The dual makes an important contribution to the certificate of optimality for the pri-
mal. The primal and dual constraints combined with complementarity conditions de-
fine the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker)
conditions, which can be stated as follows:

Ax− s = b (Primal Feasibility)

−Qx + ATy + w = c (Dual Feasibility)

WXe = 0 (Complementarity)

SYe = 0 (Complementarity)

x, y, w, s ≥ 0

where e ≡ (1, . . . , 1)T of appropriate dimension and s ∈ Rm is the vector of primal
slack variables.

Note: Slack variables (the s vector) are automatically introduced by the solver when
necessary; it is therefore recommended that you not introduce any slack variables
explicitly. This enables the solver to handle slack variables much more efficiently.

The letters X, Y, W, and S denote matrices with corresponding x, y, w, and s on
the main diagonal and zero elsewhere, as in the following example:

X ≡


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xn


If (x∗,y∗,w∗, s∗) is a solution of the previously defined system of equations repre-
senting the KKT conditions, then x∗ is also an optimal solution to the original QP
model.

At each iteration the interior point algorithm solves a large, sparse system of linear
equations as follows: Y−1S A

AT −Q−X−1W

 ∆y

∆x

 =

 Ξ

Θ


where ∆x and ∆y denote the vector of search directions in the primal and dual
spaces, respectively; Θ and Ξ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. PROC OPTQP uses a
preconditioned quasi-minimum residual algorithm to solve this system of equations
efficiently.

Iteration Log for the OPTQP Procedure � 1159

An important feature of the interior point solver is that it takes full advantage of the
sparsity in the constraint and quadratic matrices, thereby enabling it to efficiently
solve large-scale quadratic programs.

The interior point algorithm works simultaneously in the primal and dual spaces.
It attains optimality when both primal and dual feasibility are achieved and when
complementarity conditions hold. Therefore it is of interest to observe the following
four measures:

• Relative primal infeasibility measure α:

α =
‖Ax− b− s‖2

‖b‖2 + 1

• Relative dual infeasibility measure β:

β =
‖Qx + c−ATy −w‖2

‖c‖2 + 1

• Relative duality gap δ:

δ =
|xTQx + cTx− bTy|
|12xTQx + cTx|+ 1

• Absolute complementarity γ:

γ =
n∑

i=1

xiwi +
m∑

i=1

yisi

where ‖v‖2 is the Euclidean norm of the vector v. These measures are displayed in
the iteration log.

Iteration Log for the OPTQP Procedure

The interior point solver in PROC OPTQP implements an infeasible primal-dual
predictor-corrector interior point algorithm. The following information is displayed
in the iteration log:

Iter indicates the iteration number

Complement indicates the (absolute) complementarity

Duality Gap indicates the (relative) duality gap

Primal Infeas indicates the (relative) primal infeasibility measure

Bound Infeas indicates the (relative) bound infeasibility measure

Dual Infeas indicates the (relative) dual infeasibility measure

1160 � Chapter 17. The OPTQP Procedure

If the sequence of solutions converges to an optimal solution of the problem, you
should see all columns in the iteration log converge to zero or very close to zero. If
they do not, it can be the result of insufficient iterations being performed to reach
optimality. In this case, you might need to increase the value specified in the option
MAXITER= or MAXTIME=. If the complementarity and/or the duality gap do not
converge, the problem might be infeasible or unbounded. If the infeasibility columns
do not converge, the problem might be infeasible.

ODS Tables

PROC OPTQP creates two ODS (Output Delivery System) tables by default unless
you specify a value other than 1 for the PRINTLEVEL= option. The first table,
“ProblemSummary,” is a summary of the input QP problem. The second table,
“SolutionSummary,” is a brief summary of the solution status. PROC OPTQP as-
signs a name to each table it creates. You can use these names to reference the table
when using the ODS to select tables and create output data sets. These names are
listed in Table 17.2. For more information about ODS, see the SAS Output Delivery
System: User’s Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then a third table,
“ProblemStatistics,” is produced. This table contains information about the problem
data. See the section “Problem Statistics” on page 1162 for more information.

Table 17.2. ODS Tables Produced by PROC OPTQP

ODS Table Name Description PRINTLEVEL=

ProblemSummary Summary of the input QP problem 1 (default)

SolutionSummary Summary of the solution status 1 (default)

ProblemStatistics Description of input problem data 2

A typical output of PROC OPTQP is shown in Figure 17.5.

ODS Tables � 1161

The OPTQP Procedure

Problem Summary

Problem Name BANDM
Objective Sense Minimization
Objective Function1
RHS ZZZZ0001

Number of Variables 472
Bounded Above 0
Bounded Below 472
Bounded Above and Below 0
Free 0
Fixed 0

Number of Constraints 305
LE (<=) 0
EQ (=) 305
GE (>=) 0
Range 0

Constraint Coefficients 2494

Hessian Diagonal Elements 25
Hessian Elements Above the Diagonal 16

The OPTQP Procedure

Solution Summary

Objective Function1
Solution Status Optimal
Objective Value 16352.342414

Primal Infeasibility 1.693635E-11
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 1.5407616E-7
Complementarity 0.004075344

Iterations 26
Presolve Time 0.00
Solution Time 0.44

Figure 17.5. Typical OPTQP Output

You can create output data sets from these tables by using the ODS OUTPUT state-
ment. This can be useful, for example, when you want to create a report to summarize
multiple PROC OPTQP runs. The output data sets corresponding to the preceding
output are shown in Figure 17.6, where you can also find (in the row following the
heading of each data set in the display) the variable names that are used in the table
definition (template) of each table.

1162 � Chapter 17. The OPTQP Procedure

Problem Summary

Obs Label1 cValue1 nValue1

1 Problem Name BANDM .
2 Objective Sense Minimization .
3 Objective Function1 .
4 RHS ZZZZ0001 .
5 .
6 Number of Variables 472 472.000000
7 Bounded Above 0 0
8 Bounded Below 472 472.000000
9 Bounded Above and Below 0 0

10 Free 0 0
11 Fixed 0 0
12 .
13 Number of Constraints 305 305.000000
14 LE (<=) 0 0
15 EQ (=) 305 305.000000
16 GE (>=) 0 0
17 Range 0 0
18 .
19 Constraint Coefficients 2494 2494.000000
20 .
21 Hessian Diagonal Elements 25 25.000000
22 Hessian Elements Above the Diagonal 16 16.000000

Solution Summary

Obs Label1 cValue1 nValue1

1 Objective Function1 .
2 Solution Status Optimal .
3 Objective Value 16352.342414 16352
4 .
5 Primal Infeasibility 1.693635E-11 1.693635E-11
6 Dual Infeasibility 0 0
7 Bound Infeasibility 0 0
8 Duality Gap 1.5407616E-7 0.000000154
9 Complementarity 0.004075344 0.004075

10 .
11 Iterations 26 26.000000
12 Presolve Time 0.00 0
13 Solution Time 0.44 0.438000

Figure 17.6. ODS Output Data Sets

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models.
Information about data magnitude provides a simple gauge to determine how well
a model is formulated. For example, a model whose constraint matrix contains one
very large entry (on the order of 109) can cause difficulty when the remaining entries
are single-digit numbers. The PRINTLEVEL=2 option in the OPTQP procedure
causes the ODS table “ProblemStatistics” to be generated. This table provides basic
data magnitude information that enables you to improve the formulation of your
models.

Memory Limit � 1163

The example output in Figure 17.7 demonstrates the contents of the ODS table
“ProblemStatistics.”

The OPTQP Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 4
Maximum Constraint Matrix Coefficient 2
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.25

Number of Linear Objective Nonzeros 2
Maximum Linear Objective Coefficient 3
Minimum Linear Objective Coefficient 2
Average Linear Objective Coefficient 2.5

Number of Lower Triangular Hessian Nonzeros 1
Number of Diagonal Hessian Nonzeros 2
Maximum Hessian Coefficient 20
Minimum Hessian Coefficient 2
Average Hessian Coefficient 6.75

Number of RHS Nonzeros 2
Maximum RHS 100
Minimum RHS 1
Average RHS 50.5

Maximum Number of Nonzeros per Column 2
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 2
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Figure 17.7. ODS Table ProblemStatistics

The variable names in the ODS table “ProblemStatistics” are Label1, cValue1, and
nValue1, similar to those shown in Figure 17.6 (but not shown in Figure 17.7).

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the
SAS System. If you do not specify a value for this option, then the SAS System
sets a default memory limit. Your operating environment determines the actual size
of the default memory limit, which is sufficient for many applications. However, to
solve most realistic optimization problems, the OPTQP procedure might require more
memory. Increasing the memory limit can reduce the chance of an out-of-memory
condition.

Note: The MEMSIZE system option is not available in some operating environments.
See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but
this setting should be used with caution. In most operating environments, it is bet-

1164 � Chapter 17. The OPTQP Procedure

ter to specify an adequate amount of memory than to specify -MEMSIZE 0. For
example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to
enable the procedure to run without an out-of-memory condition. When problems
have millions of variables, -MEMSIZE 1000M or higher might be needed. These are
“rules of thumb”—problems with atypical structure, density, or other characteristics
can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command
line, or in a configuration file. The syntax is described in the SAS Companion for
your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option.
The syntax is described in the SAS Companion for your operating environment.

Examples: OPTQP Procedure
This section contains examples that illustrate the use of the OPTQP procedure.
Example 17.1 illustrates how to model a linear least squares problem and solve it
by using PROC OPTQP. Example 17.2 and Example 17.3 explain in detail how to
model the portfolio optimization/selection problem.

Example 17.1. Linear Least Squares Problem

The linear least squares problem arises in the context of determining a solution to an
over-determined set of linear equations. In practice, these could arise in data fitting
and estimation problems. An 1 system of linear equations can be defined as

Ax = b

where A ∈ Rm×n, x ∈ Rn, b ∈ Rm, and m > n. Since this system usually does
not have a solution, we need to be satisfied with some sort of approximate solution.
The most widely used approximation is the least squares solution, which minimizes
‖Ax− b‖2

2.

This problem is called a least squares problem for the following reason. Let A, x,
and b be defined as previously. Let ki(x) be the kth component of the vector Ax−b:

ki(x) = ai1x1 + ai2x2 + · · ·+ ainxn − bi, i = 1, 2, . . . ,m

By definition of the Euclidean norm, the objective function can be expressed as fol-
lows:

‖Ax− b‖2
2 =

m∑
i=1

ki(x)2

Therefore, the function we minimize is the sum of squares of m terms ki(x); hence
the term least squares. The following example is an illustration of the linear least
squares problem; i.e., each of the terms ki is a linear function of x.

Example 17.1. Linear Least Squares Problem � 1165

Consider the following least squares problem defined by

A =


4 0

−1 1

3 2

 , b =


1

0

1


This translates to the following set of linear equations:

4x1 = 1, −x1 + x2 = 0, 3x1 + 2x2 = 1

The corresponding least squares problem is

minimize (4x1 − 1)2 + (−x1 + x2)2 + (3x1 + 2x2 − 1)2

The preceding objective function can be expanded to

minimize 26x2
1 + 5x2

2 + 10x1x2 − 14x1 − 4x2 + 2

In addition, we impose the following constraint so that the equation 3x1 + 2x2 = 1
is satisfied within a tolerance of 0.1:

0.9 ≤ 3x1 + 2x2 ≤ 1.1

You can create the QPS-format input data set by using the following SAS code:

data lsdata;
input field1 $ field2 $ field3$ field4 field5 $ field6 @;

datalines;
NAME . LEASTSQ . . .
ROWS
N OBJ
G EQ3
COLUMNS
. X1 OBJ -14 EQ3 3
. X2 OBJ -4 EQ3 2
RHS
. RHS OBJ -2 EQ3 0.9
RANGES
. RNG EQ3 0.2 . .
BOUNDS
FR BND1 X1 . . .
FR BND1 X2 . . .
QUADOBJ
. X1 X1 52 . .
. X1 X2 10 . .
. X2 X2 10 . .
ENDATA
;

The decision variables x1 and x2 are free, so they have bound type FR in the
BOUNDS section of the QPS-format data set.

You can use the following SAS code to solve the least squares problem:

1166 � Chapter 17. The OPTQP Procedure

proc optqp data=lsdata
primalout = lspout;

run;

The optimal solution is displayed in Output 17.1.1.

Output 17.1.1. Solution to the least squares Problem

Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ RHS X1 F -14
2 OBJ RHS X2 F -4

Upper Variable Variable
Obs Lower Bound Bound Value Status

1 -1.7977E308 1.7977E308 0.23809 O
2 -1.7977E308 1.7977E308 0.16190 O

The iteration log is shown in Output 17.1.2.

Example 17.2. Portfolio Optimization � 1167

Output 17.1.2. Iteration Log

NOTE: The problem LEASTSQ has 2 variables (2 free, 0 fixed).
NOTE: The problem has 1 constraints (0 LE, 0 EQ, 0 GE, 1 range).
NOTE: The problem has 2 constraint coefficients.
NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian

elements above the diagonal.
NOTE: The OPTQP presolver value AUTOMATIC is applied.
NOTE: The OPTQP presolver removed 0 variables and 0 constraints.
NOTE: The OPTQP presolver removed 0 constraint coefficients.
NOTE: The QUADRATIC ITERATIVE solver is called.

Primal Bound Dual
Iter Complement Duality Gap Infeas Infeas Infeas

0 10001805 2.001029 1052.607895 416.588001 0
1 501893 2.094827 52.630395 20.750266 0
2 26887 34.114879 2.631520 0.958349 0
3 2997.321110 600.993085 0.131576 0 0
4 734.867262 111.975745 0.006579 0 0
5 26.413788 5.701869 0.000329 0 0
6 0.877292 0.287945 0.000016608 0 0
7 0.051222 0.017041 0.000000983 0 0
8 0.007624 0.001934 0.000000103 0 0
9 0.001232 0.000171 5.7776383E-9 0 0
10 0.000047950 0.000008773 2.898554E-10 0 0
11 0.000001381 0.000000438 1.449273E-11 0 0

NOTE: Optimal.
NOTE: Objective = 0.0095238096.

Example 17.2. Portfolio Optimization

Consider a portfolio optimization example. The two competing goals of investment
are (1) long-term growth of capital and (2) low risk. A good portfolio grows steadily
without wild fluctuations in value. The Markowitz model is an optimization model for
balancing the return and risk of a portfolio. The decision variables are the amounts
invested in each asset. The objective is to minimize the variance of the portfolio’s
total return, subject to the constraints that (1) the expected growth of the portfolio
reaches at least some target level and (2) you do not invest more capital than you
have.

Let x1, . . . , xn be the amount invested in each asset, B be the amount of capital
you have, R be the random vector of asset returns over some period, and r be the
expected value of R. Let G be the minimum growth you hope to obtain, and C be

the covariance matrix of R. The objective function is Var
(

n∑
i=1

xiRi

)
, which can be

equivalently denoted as xTCx.

Assume, for example, n = 4. Let B = 10,000, G = 1000, r = [0.05,−0.2, 0.15, 0.30],

1168 � Chapter 17. The OPTQP Procedure

and

C =


0.08 −0.05 −0.05 −0.05

−0.05 0.16 −0.02 −0.02

−0.05 −0.02 0.35 0.06

−0.05 −0.02 0.06 0.35


The QP formulation can be written as follows:

min 0.08x2
1 − 0.1x1x2 − 0.1x1x3 − 0.1x1x4 +

0.16x2
2 − 0.04x2x3 − 0.04x2x4 + 0.35x2

3 +

0.12x3x4 + 0.35x2
4

subject to

(budget) x1 + x2 + x3 + x4 ≤ 10000

(growth) 0.05x1 − 0.2x2 + 0.15x3 + 0.30x4 ≥ 1000

x1, x2, x3, x4 ≥ 0

The corresponding QPS-format input data set is as follows:

data portdata;
input field1 $ field2 $ field3$ field4 field5 $ field6 @;

datalines;
NAME . PORT . . .
ROWS
N OBJ.FUNC
L BUDGET
G GROWTH
COLUMNS
. X1 BUDGET 1.0 GROWTH 0.05
. X2 BUDGET 1.0 GROWTH -.20
. X3 BUDGET 1.0 GROWTH 0.15
. X4 BUDGET 1.0 GROWTH 0.30
RHS
. RHS BUDGET 10000 . .
. RHS GROWTH 1000 . .
RANGES
BOUNDS
QUADOBJ
. X1 X1 0.16 . .
. X1 X2 -.10 . .
. X1 X3 -.10 . .
. X1 X4 -.10 . .
. X2 X2 0.32 . .
. X2 X3 -.04 . .
. X2 X4 -.04 . .
. X3 X3 0.70 . .
. X3 X4 0.12 . .
. X4 X4 0.70 . .
ENDATA
;

Example 17.2. Portfolio Optimization � 1169

Use the following SAS code to solve the problem:

proc optqp data=portdata
primalout = portpout
dualout = portdout;

run;

The optimal solution is shown in Output 17.2.1.

Output 17.2.1. Portfolio Optimization

The OPTQP Procedure
Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ.FUNC RHS X1 N 0
2 OBJ.FUNC RHS X2 N 0
3 OBJ.FUNC RHS X3 N 0
4 OBJ.FUNC RHS X4 N 0

Lower Upper Variable Variable
Obs Bound Bound Value Status

1 0 1.7977E308 3452.86 O
2 0 1.7977E308 0.00 O
3 0 1.7977E308 1068.81 O
4 0 1.7977E308 2223.45 O

Thus, the minimum variance portfolio that earns an expected return of at least 10% is
x1 = 3452.86, x2 = 0, x3 = 1068.81, x4 = 2223.45. Asset 2 gets nothing, because
its expected return is −20% and its covariance with the other assets is not sufficiently
negative for it to bring any diversification benefits. What if we drop the nonnegativity
assumption? You need to update the BOUNDS section in the existing QPS-format
data set to indicate that the decision variables are free.

...
RANGES
BOUNDS
FR BND1 X1 . . .
FR BND1 X2 . . .
FR BND1 X3 . . .
FR BND1 X4 . . .
QUADOBJ
...

Financially, that means you are allowed to short-sell—i.e., sell low-mean-return as-
sets and use the proceeds to invest in high-mean-return assets. In other words, you

1170 � Chapter 17. The OPTQP Procedure

put a negative portfolio weight in low-mean assets and “more than 100%” in high-
mean assets. You can see in the optimal solution displayed in Output 17.2.2 that the
decision variable x2, denoting Asset 2, is equal to −1563.61, which means short sale
of that asset.

Output 17.2.2. Portfolio Optimization with Short-Sale Option

The OPTQP Procedure
Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ.FUNC RHS X1 F 0
2 OBJ.FUNC RHS X2 F 0
3 OBJ.FUNC RHS X3 F 0
4 OBJ.FUNC RHS X4 F 0

Upper Variable Variable
Obs Lower Bound Bound Value Status

1 -1.7977E308 1.7977E308 1684.35 O
2 -1.7977E308 1.7977E308 -1563.61 O
3 -1.7977E308 1.7977E308 682.51 O
4 -1.7977E308 1.7977E308 1668.95 O

Example 17.3. Portfolio Selection with Transactions
Consider a portfolio selection problem with a slight modification. You are now re-
quired to take into account the current position and transaction costs associated with
buying and selling assets. The objective is to find the minimum variance portfolio. In
order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the
vector c = [200, 300, 500], the amount of asset bought and sold is denoted by bi and
si, respectively, and the net investment in each asset is denoted by xi and is defined
by the following relation:

xi − bi + si = ci, i = 1, 2, 3

Let us say that you pay a transaction fee of 0.01 every time you buy or sell. Let the
covariance matrix C be defined as

C =


0.027489 −0.00874 −0.00015

−0.00874 0.109449 −0.00012

−0.00015 −0.00012 0.000766


Assume that you hope to obtain at least 12% growth. Let r = [1.109048, 1.169048,
1.074286] be the vector of expected return on the three assets, and let B=1000 be

Example 17.3. Portfolio Selection with Transactions � 1171

the available funds. Mathematically, this problem can be written in the following
manner:

min 0.027489x2
1 − 0.01748x1x2 − 0.0003x1x3 + 0.109449x2

2

−0.00024x2x3 + 0.000766x2
3

subject to

(return)
∑3

i=1 rixi ≥ 1.12B

(budget)
∑3

i=1 xi +
∑3

i=1 0.01(bi + si) = B

(balance) xi − bi + si = ci, i = 1, 2, 3

xi, bi, si ≥ 0, i = 1, 2, 3

The QPS-format input data set is as follows:

data potrdata;
input field1 $ field2 $ field3$ field4 field5 $ field6 @;

datalines;
NAME . POTRAN . . .
ROWS
N OBJ.FUNC
G RETURN
E BUDGET
E BALANC1
E BALANC2
E BALANC3
COLUMNS
. X1 RETURN 1.109048 BUDGET 1.0
. X1 BALANC1 1.0 . .
. X2 RETURN 1.169048 BUDGET 1.0
. X2 BALANC2 1.0 . .
. X3 RETURN 1.074286 BUDGET 1.0
. X3 BALANC3 1.0 . .
. B1 BUDGET .01 BALANC1 -1.0
. B2 BUDGET .01 BALANC2 -1.0
. B3 BUDGET .01 BALANC3 -1.0
. S1 BUDGET .01 BALANC1 1.0
. S2 BUDGET .01 BALANC2 1.0
. S3 BUDGET .01 BALANC3 1.0
RHS
. RHS RETURN 1120 . .
. RHS BUDGET 1000 . .
. RHS BALANC1 200 . .
. RHS BALANC2 300 . .
. RHS BALANC3 500 . .
RANGES
BOUNDS
QUADOBJ
. X1 X1 0.054978 . .
. X1 X2 -.01748 . .
. X1 X3 -.0003 . .
. X2 X2 0.218898 . .

1172 � Chapter 17. The OPTQP Procedure

. X2 X3 -.00024 . .

. X3 X3 0.001532 . .
ENDATA
;

Use the following SAS code to solve the problem:

proc optqp data=potrdata
primalout = potrpout
dualout = potrdout;

run;

The optimal solution is displayed in Output 17.3.1.

Output 17.3.1. Portfolio Selection with Transactions

The OPTQP Procedure
Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ.FUNC RHS X1 N 0
2 OBJ.FUNC RHS X2 N 0
3 OBJ.FUNC RHS X3 N 0
4 OBJ.FUNC RHS B1 N 0
5 OBJ.FUNC RHS B2 N 0
6 OBJ.FUNC RHS B3 N 0
7 OBJ.FUNC RHS S1 N 0
8 OBJ.FUNC RHS S2 N 0
9 OBJ.FUNC RHS S3 N 0

Lower Upper Variable Variable
Obs Bound Bound Value Status

1 0 1.7977E308 397.584 O
2 0 1.7977E308 406.115 O
3 0 1.7977E308 190.165 O
4 0 1.7977E308 197.584 O
5 0 1.7977E308 106.115 O
6 0 1.7977E308 0.000 O
7 0 1.7977E308 0.000 O
8 0 1.7977E308 0.000 O
9 0 1.7977E308 309.835 O

References � 1173

References
Freund, R. W. (1991), “On Polynomial Preconditioning and Asymptotic Convergence

Factors for Indefinite Hermitian Matrices,” Linear Algebra and Its Applications,
154–156, 259–288.

Freund, R. W. and Jarre, F. (1997), “A QMR-Based Interior Point Algorithm for
Solving Linear Programs,” Mathematical Programming, 76, 183–210.

Freund, R. W. and Nachtigal, N. M. (1996), “QMRPACK: A Package of QMR
Algorithms,” ACM Transactions on Mathematical Software, 22, 46–77.

Vanderbei, R. J. (1999), “LOQO: An Interior Point Code for Quadratic
Programming,” Optimization Methods and Software, 11, 451–484.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

1174

Subject Index

A
active nodes

OPTMILP procedure, 1113
OPTMODEL procedure, MILP solver, 874

active set methods, 362
quadratic programming, 322, 350

–ACTIVITY– variable
DUALOUT= data set, 1059, 1111, 1157

affine step, 38, 40
aggregation operators,

See also index sets
OPTMODEL procedure, 679

arc capacity
INTPOINT procedure, 89
NETFLOW procedure, 475

arc names
INTPOINT procedure, 50, 75, 122
NETFLOW procedure, 470, 479

B
backtracking rules

LP procedure, 177, 208
balancing network problems

INTPOINT procedure, 80
NETFLOW procedure, 475

Bard function, 389, 788, 942
Bartels-Golub decomposition, 469, 496, 537
basis, 837, 1052
BFGS update method, 323
big-M method, 492
blending constraints

INTPOINT procedure, 44
NETFLOW procedure, 441

boundary constraints
NLP procedure, 325

branch-and-bound, 204
branching variable, 208, 209
breadth-first search, 207
control options, 177, 206, 875, 1114
depth-first search, 207

branching priorities
OPTMILP procedure, 1116
OPTMODEL procedure, MILP solver, 877

branching priority
MPS-format SAS data set, 1034

branching variable
OPTMILP procedure, 1113
OPTMODEL procedure, MILP solver, 874

bypass arc

INTPOINT procedure, 71
NETFLOW procedure, 464

C
case sensitivity

INTPOINT procedure, 76, 77, 108
NETFLOW procedure, 470, 471, 485, 529

centering step, 38, 40
central path

INTPOINT procedure, 36
NETFLOW procedure, 573

Cholesky factor, 353
CLOSEFILE statement

OPTMODEL procedure, 756
COBYLA algorithm, 356, 362
coefficients

INTPOINT procedure, 89
LP procedure, 184
NETFLOW procedure, 476

columns, 751,
See also key columns
INTPOINT procedure, 90
LP procedure, 184
NETFLOW procedure, 476

complementarity
INTPOINT procedure, 35, 36, 39, 124
NETFLOW procedure, 572
OPTMODEL procedure, 748

complete pricing
LP procedure, 183

computational problems
NLP procedure, 367–369
NLPC solver, 937, 938

computational resources,
See also memory requirements
NLP procedure, 386–388

confidence intervals, 337
output options, 380, 381
profile confidence limits, 307

conjugate-descent update method, 323
conjugate gradient method, 928
conjugate gradient methods, 322, 355, 930
constrained optimization

overview, 815
constraint bodies

OPTMODEL procedure, 765
constraint declaration

OPTMODEL procedure, 694

1176 � Subject Index

constraint status
LP solver, 846

constraint summary
LP procedure, 223, 233

constraints
OPTMODEL procedure, 670, 763

control flow
OPTMODEL procedure, 755

conversions
OPTMODEL procedure, 784

converting MPS-format file
examples, 1040
MPS2SASD macro, 1036

converting NPSC to LP
INTPOINT procedure, 103

cost function,
See also objective functions

costs
INTPOINT procedure, 90
NETFLOW procedure, 477

covariance matrix, 307, 370, 379
displaying, 319

crossproduct Jacobian matrix, 326, 379
definition, 345
displaying, 319
saving, 318

current tableau
LP procedure, 199

cutting planes
OPTMILP procedure, 1117
OPTMODEL procedure, MILP solver, 878

cycling
NETFLOW procedure, 493, 494, 534

D
data, 1049, 1100
data compression

LP procedure, 180
data flow

NLP procedure, 9
data set input/output

OPTMODEL procedure, 751
data sets,

See also input data sets
See also output data sets

declaration statements
OPTMODEL procedure, 694

demands
INTPOINT procedure, 91
NETFLOW procedure, 477

dense input format
INTPOINT procedure, 51, 58, 93, 96, 98
LP procedure, 161
NETFLOW procedure, 448, 516, 517, 551, 554

derivatives, 344
computing, 290, 345
finite differences, 357

devex method, 181
DFP update method, 323

display iteration log
frequency, 927

displayed output
LP procedure, 175, 185, 221–224
NETFLOW procedure, 479
NLP procedure, 382, 383
NLPC solver, 938

distribution problem, 42
double dogleg method, 322, 354
dual activities

LP procedure, 199
dual BFGS update method, 323
dual DFP update method, 323
dual problem

INTPOINT procedure, 35
NETFLOW procedure, 572

dual value
OPTMODEL procedure, 771

dual variables
INTPOINT procedure, 35
NETFLOW procedure, 534, 572

DUALIN= data set
OPTLP procedure, 1056
variables, 1056

duality gap
INTPOINT procedure, 36, 124
NETFLOW procedure, 572

DUALOUT= data set
OPTLP procedure, 1058, 1059
OPTMILP procedure, 1111
OPTQP procedure, 1156, 1157
variables, 1058, 1059, 1111, 1156, 1157

dynamic pricing
LP procedure, 183

E
efficiency

INTPOINT procedure, 117, 118, 120–122
NETFLOW procedure, 549–554

embedded networks
INTPOINT procedure, 103
NETFLOW procedure, 523

examples,
See also INTPOINT examples
See also LP examples
See also MPS-format examples
See also NETFLOW examples
See also NLP examples
See also NLPC examples
See also NLPU examples
See also OPTLP examples
See also OPTMODEL examples
See also OPTQP examples
See also QP examples
See also SQP examples
See also nonlinear optimization examples
converting MPS-format file, 1040
fixed MPS-format file, 1039
free MPS-format file, 1039

Subject Index � 1177

MPS-format SAS data set, 1037
excess node

INTPOINT procedure, 116, 117
NETFLOW procedure, 544

expressions
OPTMODEL procedure, 682

F
facility location

MILP solver examples, 892
feasibility tolerance, 836, 1051
feasible region, 343, 749, 932, 1002

OPTMODEL procedure, 670
feasible solution, 343, 749, 932, 1002

OPTMODEL procedure, 670
FILE statement

OPTMODEL procedure, 756
finite-difference approximations

central differences, 358
computation of, 310
forward differences, 358
NLP procedure, 309
second-order derivatives, 309

first-order conditions
local minimum, 344

first-order necessary conditions
local minimum, 750, 933, 1004

fixed MPS-format file
examples, 1039

Fletcher-Reeves technique, 962
Fletcher-Reeves update method, 323
flow conservation constraints

INTPOINT procedure, 32, 45, 48
NETFLOW procedure, 437, 446, 560

FOR statement
OPTMODEL procedure, 755

formatted output
OPTMODEL procedure, 755

free MPS-format file
examples, 1039

function convergence
NLP procedure, 305

function expressions
OPTMODEL procedure, 686

functional summary
INTPOINT procedure, 67
LP procedure, 170
NETFLOW procedure, 455
NLP procedure, 302
OPTMODEL procedure, 688

G
global solution, 343, 749, 932, 962, 1003
goal-programming model, 181
Goldstein conditions, 352, 355, 365, 931, 937
gradient vector

checking correctness, 360
convergence, 306
definition, 344

local optimality conditions, 343
projected gradient, 364
specifying, 327

grid points, 306, 317, 318

H
Hessian, 1001
hessian,

See quadratic matrix
Hessian matrix, 379

definition, 345
displaying, 320
finite-difference approximations, 309, 357
initial estimate, 312
local optimality conditions, 343
projected, 364
saving, 318
scaling, 311, 360
specifying, 328
update method, 323

hybrid quasi-Newton methods, 322, 323, 357

I
identifier expressions

OPTMODEL procedure, 685
IF expression, 738,

See also IF statement, OPTMODEL procedure
IIS option

OPTLP procedure, 1068
OPTMODEL procedure, LP solver, 847

impure functions
OPTMODEL procedure, 679

independent variables, OPTMODEL procedure,
See optimization variables, OPTMODEL proce-

dure
index sets, 678

implicit set slicing, 785
index-set-item, 686
OPTMODEL procedure, 686

infeasibility
INTPOINT procedure, 36, 40, 110
LP procedure, 175, 203, 224
NETFLOW procedure, 538

infeasible information summary
LP procedure, 224

infinity
INTPOINT procedure, 74
LP procedure, 181
NETFLOW procedure, 468

initial basic feasible solution
NETFLOW procedure, 463

input data sets
INTPOINT procedure, 69, 97
LP procedure, 174, 221
NETFLOW procedure, 461, 517
NLP procedure, 290, 374, 375

integer iteration log, 205
integer programs, 159, 203
integer variables

1178 � Subject Index

OPTMODEL procedure, 770
interactive processing

LP procedure, 166, 176, 216–218
NETFLOW procedure, 460

interior point algorithm, 5–7
INTPOINT procedure, 34
network problems, 559
options (NETFLOW), 501

interior point methods
overview, 816

intermediate variable, 801
INTPOINT examples, 129

altering arc data, 135, 144
converting PROC INTPOINT format to MPS

format, 154
linear program, 153
MPS format, 153
nonarc variables, 148
production, inventory, distribution problem, 130
side constraints, 139, 144, 148

INTPOINT procedure
affine step, 38, 40
arc names, 75, 122
balancing supply and demand, 80, 116, 117
blending constraints, 44
bypass arc, 71
case sensitivity, 76, 77, 80, 108
centering step, 38, 40
central path, 36
coefficients, 89
columns, 90
complementarity, 35, 36, 39, 124
converting NPSC to LP, 103
costs, 90
data set options, 69
default arc capacity, 72
default arc cost, 72
default constraint type, 72
default lower bound, 72
default objective function, 72
default options, 121
default upper bounds, 72
demands, 91
dense format, 51, 58, 93, 96, 98
details, 97
distribution problem, 42
dual problem, 35
dual variables, 35
duality gap, 36, 124
efficiency, 117, 118, 120–122
embedded networks, 48, 103
excess node, 116, 117
flow conservation constraints, 32, 45, 48
functional summary, 67
general options, 70
infeasibility, 36, 40, 110
input data sets, 69, 97
interior point algorithm, 34
introductory LP example, 58

introductory NPSC example, 51
inventory problem, 42
Karush-Kuhn-Tucker conditions, 35, 39
linear programming problems, 34, 57
loop arcs, 109
macro variable –ORINTPO, 126
maximum cost flow, 74
maximum flow problem, 74
memory limit, 128
memory requirements, 65, 71, 75, 117, 118,

120–122
missing supply and missing demand, 112
missing values, 112
MPS file conversion, 153
multicommodity problems, 46
multiple arcs, 109
multiprocess, multiproduct example, 47
network problems, 42
nonarc variables, 48
NPSC, 32
options classified by function, 67
output data sets, 69, 70, 106
overview, 31
preprocessing, 35, 51, 58, 84
Primal-Dual with Predictor-Corrector algorithm,

34, 38
primal problem, 35
production-inventory-distribution problem, 42
proportionality constraints, 43
scaling input data, 78
shortest path problem, 79
side constraints, 32, 48
sparse format, 51, 58, 90, 99, 104
step length, 36
stopping criteria, 86, 123
supply-chain problem, 42
symbolic factorization, 38
syntax skeleton, 66
table of syntax elements, 67
termination criteria, 86, 123
TYPE variable, 95
upper bounds, 39

inventory problem, 42
IPNLP solver

details, 814
functional summary, 813
solver termination messages, 818

IPNLP solver examples
solving highly nonlinear optimization problems,

821
solving NLP problems with range constraints,

825
solving unconstrained optimization problems,

823
irreducible infeasible set

OPTLP procedure, 1068
OPTMODEL procedure, LP solver, 847

iteration log
integer iteration log (LP), 205

Subject Index � 1179

LP procedure, 175, 225

J
Jacobian matrix, 379

constraint functions, 329
definition, 345
displaying, 320
objective functions, 330
saving, 318, 319
scaling, 360

K
Karush-Kuhn-Tucker conditions, 344, 362, 750, 933,

934, 1004
INTPOINT procedure, 35, 39
NETFLOW procedure, 579

key columns, 751, 753,
See also columns

key set, 706
Kuhn-Tucker conditions,

See Karush-Kuhn-Tucker conditions

L
L-BFGS technique, 962
labels

assigning to decision variables, 331
Lagrange multipliers, 344, 364, 379, 750, 933, 1003
Lagrangian function, 344, 750, 933, 1003
Lagrangian penalty function, 997
–LBOUND– variable

PRIMALOUT= data set, 1057, 1111, 1156
least squares problems

definition of, 289
optimization algorithms, 349

Levenberg-Marquardt minimization, 322
least squares method, 356

line-search methods, 314, 365, 937
step length, 307, 316

line-search, 997
linear complementarity problem, 322

quadratic programming, 350
linear constraints

NLP procedure, 331
linear programming,

See also OPTMODEL procedure
See also OPTLP procedure
OPTMODEL procedure, 671

linear programming problems, 159
Bartels-Golub update, 159
INTPOINT procedure, 34, 57
NETFLOW procedure, 444

linearly constrained optimization, 352, 931
list form

PRINT statement, 720
local minimum

first-order conditions, 344
first-order necessary conditions, 750, 933, 1004
second-order conditions, 344

second-order necessary conditions, 750, 934,
1004

local solution, 343, 749, 932, 962, 1002
loop arcs

INTPOINT procedure, 109
NETFLOW procedure, 530

lower bounds
NETFLOW procedure, 478

LP examples, 228
assignment problem, 266
blending problem, 162, 228
branch-and-bound search, 263
converting PROC LP format to MPS format, 283
fixed charges, 280
goal programming, 245
infeasibilities, 255
integer program, 251
introductory example, 162
mixed-integer program, 166
MPS file conversion, 168
multicommodity transshipment problem, 280
preprocessing, 167
price parametric programming, 240
price sensitivity analysis, 236
product mix problem, 245
range analysis, 238
restarting a problem, 238
restarting an integer program, 257
scheduling problem, 273
sparse data format, 233
special ordered sets, 242

LP procedure
backtracking rules, 177, 208
branch-and-bound, 177, 204, 206
coefficients, 184
columns, 184
complete pricing, 183
constraint summary, 223, 233
current tableau, 199
customizing search heuristics, 210
data compression, 180
data set options, 174
dense format, 161
details, 193
devex method, 181
displayed output, 175, 185, 221–225
dual activities, 199
dynamic pricing, 183
functional summary, 170
infeasible information summary, 224
input data sets, 174, 221
integer iteration log, 205
integer programs, 203
interactive processing, 166, 176, 216–218
introductory example, 162
iteration log, 175, 225
memory limit, 227
memory requirements, 218
missing values, 193

1180 � Subject Index

mixed-integer programs, 203
MPS file conversion, 168, 196
multiple pricing, 182, 201
ODS table names, 225
ODS variable names, 225, 226
options classified by function, 170
–ORLP– macro variable, 200
output data sets, 174, 219–221
Output Delivery System (ODS), 225
overview, 159
parametric programming, 180, 181, 215, 218
partial pricing, 183
pause processing, 176
preprocessing, 167, 177, 203
price parametric programming, 216
price sensitivity analysis, 213, 224
pricing strategies, 201
problem definition statements, 164
problem input, 164
problem summary, 222, 229
projected objective value, 207
projected pseudocost, 207
range analysis, 180, 181, 214
range coefficient, 187
reduced costs, 199
reset options, 188
right-hand-side constants, 188
right-hand-side parametric programming, 215
right-hand-side sensitivity analysis, 212, 224
rows, 184, 189
scaling input data, 183, 202
sensitivity analysis, 180, 212, 217
simplex algorithm control options, 181
solution summary, 222, 230
sparse format, 161, 174, 194
suppress printing, 175
syntax skeleton, 169
table of syntax elements, 170
terminate processing, 187
tolerance, 175, 177, 178, 181–183
TYPE variable, 190, 195, 231
variables, 161, 192, 219–221, 223, 231

LP solver
constraint status, 846
problem statistics, 844
variable status, 846

LP solver examples
diet problem, 847
finding an irreducible infeasible set, 855
two-person zero-sum game, 853

–L–RHS– variable
DUALOUT= data set, 1058, 1111, 1157

M
macro

MPS2SAD, 1148, 1151
macro variable

–ORINTPO, 126
–ORLP–, 200

–ORNETFL, 555
–OROPTLP–, 1053
–OROPTMILP–, 1107
–OROPTMODEL–, 735, 819, 841, 883, 940,

964, 984, 1007
–OROPTQP–, 1153

matrix
definition (NLP), 332, 333
generation, 18

matrix form
PRINT statement, 721

maximum flow problem
INTPOINT procedure, 74
NETFLOW procedure, 469

maximum likelihood Weibull estimation
using PROC NLP, 403
using PROC OPTMODEL, 947

memory requirements
INTPOINT procedure, 65, 71, 75, 117, 118,

120–122
LP procedure, 218
NETFLOW procedure, 464–466, 469, 470, 549–

554
merit function, 353, 931, 997
MILP solver

problem statistics, 881
MILP solver examples

branching priorities, 898
facility location, 892, 1133
miplib, 1128
multicommodity problems, 889
scheduling, 885
simple integer linear program, 1125
traveling salesman problem, 902

missing values
INTPOINT procedure, 112
LP procedure, 193
NETFLOW procedure, 539
NLP procedure, 317, 385

mixed-integer programs, 159
form of, 159
LP procedure, 203

model building, 10
model update

OPTMODEL procedure, 778
Moore-Penrose conditions, 373
MPS file conversion

INTPOINT procedure, 153
LP procedure, 168, 196

MPS format, 730
MPS-format file, 1036
MPS-format SAS data set, 1027

bound type, 1033
branching priority, 1034
converting MPS-format file, 1040
examples, 1037
length of variables, 1037
range, 1032
row type, 1029

Subject Index � 1181

sections, 1028
variables, 1027

MPS2SASD macro
converting MPS-format file, 1036

multicommodity problems
INTPOINT procedure, 46
MILP solver examples, 889
NETFLOW procedure, 442

multiple arcs
INTPOINT procedure, 109
NETFLOW procedure, 530

multiple pricing
LP procedure, 182, 201

N
Nelder-Mead simplex method, 322, 355
NETFLOW examples, 609

constrained solution, 633
converting PROC NETFLOW format to MPS

format, 662
distribution problem, 615
inventory problem, 615
minimum cost flow, 611
nonarc variables, 637
production problem, 615
shortest path problem, 609
side constraints, 626, 637
unconstrained solution, 622
warm start, 614, 622, 626, 633

NETFLOW procedure
arc capacity, 475
arc names, 448, 451, 470, 479
balancing supply and demand, 475, 544
Bartels-Golub decomposition, 469, 496, 537
big-M method, 492
blending constraints, 441
bypass arc, 464
case sensitivity, 470, 471, 485, 529
central path, 573
coefficients, 476
columns, 476
complementarity, 572
costs, 477
cycling, 493, 494, 534
data set options, 461
default arc capacity, 465
default arc cost, 466
default constraint type, 466
default lower flow bound, 466
default options, 553
demands, 466, 477
dense format, 444, 448, 516, 517, 551, 554
details, 517
dual variables, 534, 572
duality gap, 572
efficiency, 549–554
embedded networks, 523
excess node, 544
flow conservation constraints, 437, 446, 560

functional summary, 455
infeasibility, 538
infinity, 468
initial basic feasible solution, 463
input data sets, 461, 517
interactive processing, 460
interior point algorithm, 558
interior point options, 501
introductory example, 449
Karush-Kuhn-Tucker conditions, 579
key arc, 495
linear programming, 444
loop arcs, 530
lower bounds, 478
macro variable –ORNETFL, 555
major iteration, 533
maximum cost flow, 469
maximum flow problem, 469
memory limit, 557
memory requirements, 464–466, 469, 470, 549–

554
minor iteration, 533
missing supply and missing demand, 539
multicommodity problems, 442
multiple arcs, 530
network models, 437
network problems, 559
nonarc variables, 446
nonkey arc, 495
NPSC, 445
options classified by function, 455
output data sets, 461, 463, 490, 526
overview, 437
pivot, 479
preprocessing, 502
pricing strategies, 496, 530
printing cautions, 485
printing options, 479
production-inventory-distribution problem, 438
proportionality constraints, 440
ratio test, 493, 494
reduced costs, 534
scaling input data, 473
shortest path problem, 474
side constraints, 439, 445, 537
sink nodes, 474
source nodes, 474
sparse format, 444, 449, 474, 519, 523, 551, 554
stages, 486
status, 534
stopping criteria, 575
supplies, 475
syntax skeleton, 454
table of syntax elements, 455
termination criteria, 504, 575
tightening bounds, 537
TYPE variable, 515
warm starts, 447, 475, 545, 547, 554
working basis matrix, 466, 468, 475, 494, 536

1182 � Subject Index

wraparound search, 532
network models, 437
network problems, 6

format, 12
interior point algorithm, 559
INTPOINT procedure, 42

Newton-Raphson method, 322
with line search, 351
with ridging, 351

Newton-type method, 928
with line search, 930

NLP examples, 389
approximate standard errors, 396
Bard function, 389
blending problem, 410
boundary constraints, 293
chemical equilibrium, 418
covariance matrix, 396
Hock and Schittkowski problem, 393
introductory examples, 291–294, 296, 298
least squares problem, 292, 389
linear constraints, 294, 393
maximum likelihood Weibull estimation, 403
maximum-likelihood estimates, 298, 397
nonlinear constraints, 296
nonlinear network problem, 423
quadratic programming problem, 391
restarting an optimization, 395
Rosenbrock function, 395
starting point, 393
statistical analysis, 396
trust region method, 395
unconstrained optimization, 291

NLP procedure
active set methods, 350, 362
boundary constraints, 325
choosing an optimization algorithm, 348
computational problems, 367–369
computational resources, 386–388
conjugate gradient methods, 355
convergence difficulties, 368, 369
convergence status, 384
covariance matrix, 307, 319, 370, 372, 379
crossproduct Jacobian, 345, 379
data flow, 9
debugging options, 315, 339
derivatives, 344
display function values, 319
displayed output, 319, 382, 383
double dogleg method, 354
eigenvalue tolerance, 307
feasible region, 343
feasible solution, 343
feasible starting point, 365
finite-difference approximations, 309, 357
first-order conditions, 344
function convergence, 305, 308
functional summary, 302
global solution, 343

Goldstein conditions, 352, 355, 365
gradient, 311, 344
gradient convergence, 306, 310
grid points, 306
Hessian, 312, 345, 357, 379
Hessian scaling, 311, 360
Hessian update method, 323
initial values, 313, 320, 374
input data sets, 290, 374, 375
iteration history, 383
Jacobian, 345, 379
Karush-Kuhn-Tucker conditions, 344
Lagrange multipliers, 344, 379
Lagrangian function, 344
least squares problems, 349
Levenberg-Marquardt method, 356
limiting function calls, 315
limiting number of iterations, 316
line-search methods, 314, 365
linear complementarity, 350
linear constraints, 331, 352
local optimality conditions, 343
local solution, 343
memory limit, 388
memory requirements, 346
missing values, 317, 385
Nelder-Mead simplex method, 355
Newton-Raphson method, 351
nonlinear constraints, 327, 353
optimality criteria, 343
optimization algorithms, 322, 346
optimization history, 320
options classified by function, 302
output data sets, 291, 317, 318, 376, 377, 381
overview, 289
parameter convergence, 306, 324
precision, 306, 310, 359, 370
predicted reduction convergence, 308
profile confidence limits, 307
program statements, 338
projected gradient, 379
projected Hessian matrix, 379
quadratic programming, 348, 349, 353
quasi-Newton methods, 352, 357
rank of covariance matrix, 380
restricting output, 320, 321
restricting step length, 366
second-order conditions, 344
singularity criterion, 306, 317, 324
stationary point, 369
step length, 307
storing model files, 381
suppress printing, 317
table of syntax elements, 302
termination criteria, 361
time limit, 316
trust region method, 351
TYPE variable, 374–376, 378, 380, 381
unconstrained optimization, 352

Subject Index � 1183

variables, 374
NLPC solver

choosing an optimization algorithm, 929
computational problems, 937, 938
conjugate gradient methods, 930
displayed output, 938
feasible region, 932
feasible solution, 932
feasible starting point, 936
first-order necessary conditions, 933
frequency to display iteration log, 927
global solution, 932
Goldstein conditions, 931, 937
infeasibility, 935
iteration log, 938
Karush-Kuhn-Tucker conditions, 933
Lagrange multipliers, 933
Lagrangian function, 933
limiting function calls, 926
limiting number of iterations, 927
line search methods, 937
linear constraints, 931
local solution, 932
Newton-type method, 930
nonlinear constraints, 931
objective value limit, 927
optimality conditions, 931
optimality control, 934
optimization algorithms, 928
optimization technique, 928
precision, 938
quadratic programming, 931
quasi-Newton method, 931
second-order necessary conditions, 934
second-order sufficient conditions, 934
strict local solution, 932
termination criterion, 926, 927
time limit, 927
trust region method, 930
unconstrained optimization, 931

NLPU solver
details, 962
examples, 965
functional summary, 960
getting started, 958
global solution, 962
local solution, 962
optimality conditions, 962
optimization technique, 962
overview, 957
strict local solution, 962
syntax, 960

node selection
OPTMILP procedure, 1114
OPTMODEL procedure, MILP solver, 875

nonarc variables
INTPOINT procedure, 48
NETFLOW procedure, 446

nonlinear optimization, 289,

See also NLP procedure
algorithms, 346, 928
computational problems, 367, 937
conjugate gradient methods, 355, 930
feasible starting point, 365, 936
hybrid quasi-Newton methods, 357
infeasibility, 935
Levenberg-Marquardt method, 356
Nelder-Mead simplex method, 355
Newton-Raphson method with line search, 351
Newton-Raphson method with ridging, 351
Newton-type method with line search, 930
nonlinear constraints, 327, 336, 353, 931
optimization algorithms, 348
quasi-Newton method, 352, 931
trust region method, 351, 930

nonlinear optimization examples, 942
Bard function, 942
boundary constraints, 916
introductory examples, 915, 916, 919, 923
least squares problem, 942
linear constraints, 919
maximum likelihood Weibull model, 947
nonlinear constraints, 923
simple pooling problem, 950
unconstrained optimization, 915

NPSC
INTPOINT procedure, 32
NETFLOW procedure, 445

O
–VAR– variable

PRIMALOUT= data set, 1057, 1111, 1155
objective declarations

OPTMODEL procedure, 672, 695
objective function

INTPOINT procedure, 33, 34, 90
LP procedure, 159
NETFLOW procedure, 445, 571
NLP procedure, 289, 299, 334

objective functions
OPTMODEL procedure, 670, 672, 695

objective value
OPTMODEL procedure, 670

objective value limit
NLPC solver, 927

objectives,
See also objective functions
OPTMODEL procedure, 672

–OBJ–ID– variable
DUALOUT= data set, 1058, 1111, 1156
PRIMALOUT= data set, 1056, 1110, 1155

ODS table names
OPTLP procedure, 1065
OPTMILP procedure, 1120
OPTMODEL procedure, 758
OPTQP procedure, 1160

ODS variable names
LP procedure, 226

1184 � Subject Index

OPTMODEL procedure, 759
operators

OPTMODEL procedure, 683
optimal solution

OPTMODEL procedure, 670
optimal value

OPTMODEL procedure, 670
optimality conditions, 931, 962, 1002

OPTMODEL procedure, 748
optimality control, 934
optimality criteria, 343
optimization

double dogleg method, 354
introduction, 3
linear constraints, 352, 931
nonlinear constraints, 353, 931
unconstrained, 352, 931

optimization algorithms
least squares problems, 349
NLP procedure, 322, 346
NLPC solver, 928
nonlinear optimization, 348
quadratic programming, 348, 349

optimization modeling language, 669,
See also OPTMODEL procedure

optimization technique
NLPC solver, 928
NLPU solver, 962

optimization variable
OPTMODEL procedure, 670

optimization variables
OPTMODEL procedure, 672

options classified by function,
See functional summary

OPTLP examples
diet optimization problem, 1075
finding an irreducible infeasible set, 1086
oil refinery problem, 1070
reoptimizing after adding a new constraint, 1082
reoptimizing after modifying the objective func-

tion, 1077
reoptimizing after modifying the right-hand side,

1079
using the interior point solver, 1073

OPTLP procedure
basis, 1052
data, 1049
definitions of DUALIN= data set variables, 1056
definitions of DUALOUT= data set variables,

1058
definitions of DUALOUT=data set variables,

1058, 1059
definitions of PRIMALIN data set variables,

1055
definitions of PRIMALIN= data set variables,

1055
definitions of PRIMALOUT= data set variables,

1056, 1057
dual infeasibility, 1053

DUALIN= data set, 1056
duality gap, 1053
DUALOUT= data set, 1058, 1059
feasibility tolerance, 1051
functional summary, 1048
IIS option, 1068
interior point algorithm overview, 1061
introductory example, 1046
memory limit, 1069
ODS table names, 1065
–OROPTLP– macro variable, 1053
preprocessing, 1050
presolver, 1050
pricing, 1052
primal infeasibility, 1053
PRIMALIN= data set, 1055
PRIMALOUT= data set, 1056, 1057
problem statistics, 1067
queue size, 1053
scaling, 1053
solver, 1050

OPTMILP procedure
active nodes, 1113
branch-and-bound, 1114
branching priorities, 1116
branching variable, 1113
cutting planes, 1117
data, 1100
definitions of DUALOUT= data set variables,

1111
definitions of DUALOUT=data set variables,

1111
definitions of PRIMALIN= data set variables,

1110
definitions of PRIMALOUT= data set variables,

1110, 1111
DUALOUT= data set, 1111
functional summary, 1098
introductory example, 1096
memory limit, 1124
node selection, 1114
ODS table names, 1120
–OROPTMILP– macro variable, 1107
presolve, 1116
PRIMALIN= data set, 1110
PRIMALOUT= data set, 1110, 1111
probing, 1116
problem statistics, 1123
variable selection, 1115

OPTMODEL examples
matrix square root, 787
model construction, 790
reading from and creating a data set, 788
set manipulation, 795

OPTMODEL expression extensions, 736
aggregation expression, 740

OPTMODEL procedure
aggregation operators, 679
CLOSEFILE statement, 756

Subject Index � 1185

complementarity, 748
constraint bodies, 765
constraints, 763
control flow, 755
conversions, 784
data set input/output, 751
declaration statements, 694
dual value, 771
expressions, 682
feasible region, 749
feasible solution, 749
FILE statement, 756
first-order necessary conditions, 750
FOR statement, 755
formatted output, 755
function expressions, 686
functional summary, 688
global solution, 749
identifier expressions, 685
impure functions, 679
index sets, 686
integer variables, 770
Karush-Kuhn-Tucker conditions, 750
Lagrange multipliers, 750
Lagrangian function, 750
local solution, 749
macro variable –OROPTMODEL–, 735
memory limit, 786
model update, 778
objective declarations, 672, 695
ODS table names, 758
ODS variable names, 759
operators, 683
optimality conditions, 748
optimization variables, 672
options classified by function, 688
overview, 669
parameters, parameter declarations, 696
presolver, 777
primary expressions, 685
PRINT statement, 756
programming statements, 701
PUT statement, 755
range constraints, 773
reduced costs, 776
RESET OPTIONS statement, 781
second-order necessary conditions, 750
second-order sufficient conditions, 751
strict local solution, 749
suffix names, 765, 767
table of syntax elements, 688
variable declaration, 672, 700

OPTMODEL procedure, IPNLP solver
macro variable –OROPTMODEL–, 819

OPTMODEL procedure, LP solver
basis, 837
feasibility tolerance, 836
functional summary, 834
IIS option, 847

introductory example, 832
macro variable –OROPTMODEL–, 841
preprocessing, 836
presolver, 836
pricing, 837
queue size, 838
scaling, 838
solver, 835

OPTMODEL procedure, MILP solver
active nodes, 874
branch-and-bound, 875
branching priorities, 877
branching variable, 874
cutting planes, 878
functional summary, 865
introductory example, 864
node selection, 875
–OROPTMODEL– macro variable, 883
presolve, 877
probing, 877
variable selection, 876

OPTMODEL procedure, NLPC solver
macro variable –OROPTMODEL–, 940

OPTMODEL procedure, NLPU solver
macro variable –OROPTMODEL–, 964

OPTMODEL procedure, QP solver
functional summary, 978
macro variable –OROPTMODEL–, 984

OPTMODEL procedure, SQP solver
macro variable –OROPTMODEL–, 1007

OPTQP examples
covariance matrix, 1167
data fitting, 1164
estimation, 1164
linear least squares, 1164
Markowitz model, 1167
portfolio optimization, 1167
portfolio selection with transactions, 1170
short-sell, 1170

OPTQP procedure
output data sets, 1155
definitions of DUALOUT= data set variables,

1156, 1157
definitions of DUALOUT=data set variables,

1156, 1157
definitions of PRIMALOUT= data set variables,

1155, 1156
dual infeasibility, 1153
duality gap, 1153
DUALOUT= data set, 1156, 1157
examples, 1164
functional summary, 1151
interior point algorithm overview, 1157
iteration log, 1152
memory limit, 1163
%MPS2SASD macro, 1148, 1151
ODS table names, 1160
–OROPTQP– macro variable, 1153
overview, 1145

1186 � Subject Index

primal infeasibility, 1153
PRIMALOUT= data set, 1155, 1156
problem statistics, 1162

–ORINTPO macro variable, 126
–ORLP– macro variable, 200
–ORNETFL macro variable, 555
–OROPTMODEL– macro variable, 819, 841, 940,

964, 984, 1007
output data sets

INTPOINT procedure, 69, 70, 106
LP procedure, 174, 219–221
NETFLOW procedure, 461, 463, 490, 526
NLP procedure, 291, 317, 318, 376, 377, 381

Output Delivery System (ODS)
LP procedure, 225

overview
INTPOINT procedure, 31
LP procedure, 159
NETFLOW procedure, 437
NLP procedure, 289
NLPU solver, 957
optimization, 3
OPTMODEL procedure, 669
OPTQP procedure, 1145
SQP solver, 997

P
parameters, parameter declarations, 681

initialization, 681
OPTMODEL procedure, 677, 696
parameter options, 697

parametric control options
LP procedure, 180

parametric programming, 180, 181, 215, 218
partial pricing

LP procedure, 183
pause processing

LP procedure, 176
PDIGITS= option, 757
Polak-Ribiere update method, 323
positive semidefinite matrix, 974, 1146
Powell-Beale update method, 323
precision

nonlinear constraints, 306, 359
objective function, 310, 359

preprocessing
INTPOINT procedure, 35, 51, 58, 84
LP procedure, 167, 177, 203
NETFLOW procedure, 502

presolve
OPTMILP procedure, 1116
OPTMODEL procedure, MILP solver, 877

presolver, 836, 1050
price parametric programming, 216
price sensitivity analysis, 213, 224
pricing, 837, 1052
pricing strategies

LP procedure, 201
NETFLOW procedure, 496, 530

Primal-Dual with Predictor-Corrector algorithm
INTPOINT procedure, 34, 38

PRIMALIN= data set
OPTLP procedure, 1055
OPTMILP procedure, 1110
variables, 1055, 1110

PRIMALOUT= data set
OPTLP procedure, 1056, 1057
OPTMILP procedure, 1110, 1111
OPTQP procedure, 1155, 1156
variables, 1056, 1057, 1110, 1111, 1155, 1156

primary expressions
OPTMODEL procedure, 685

PRINT statement
list form, 720
matrix form, 721
OPTMODEL procedure, 756

probing
OPTMILP procedure, 1116
OPTMODEL procedure, MILP solver, 877

problem definition statements
LP procedure, 164

problem specification
MPS format, 11
network format, 12

problem summary
LP procedure, 222, 229

production-inventory-distribution problem, 438
INTPOINT procedure, 42

profile confidence limits, 337
parameters for, 307

program statements
NLP procedure, 338

programming statements
control, 701
general, 701
input/output, 701
looping, 701
model, 701
OPTMODEL procedure, 701

projected gradient, 364, 379
projected Hessian matrix, 364, 379
projected objective value

LP procedure, 207
projected pseudocost

LP procedure, 207
proportionality constraints

INTPOINT procedure, 43
NETFLOW procedure, 440

PUT statement
OPTMODEL procedure, 755

PWIDTH= option, 757

Q
QP Solver

examples, 985
interior point algorithm overview, 980
iteration log, 982

QP solver

Subject Index � 1187

problem statistics, 983
QP solver examples

covariance matrix, 988
data fitting, 985
estimation, 985
linear least squares, 985
Markowitz model, 988
portfolio optimization, 988
portfolio selection with transactions, 991
short-sell, 990

QPS format, 732
QPS format file, 1036
quadratic programming, 313, 353, 931,

See also OPTQP procedure
See OPTQP procedure
active set methods, 350
definition, 289
linear complementarity problem, 350
optimization algorithms, 348, 349
quadratic matrix, 973, 1145
specifying the objective function, 334

quasi-Newton method, 928, 931
quasi-Newton methods, 322, 323, 352
queue size, 838, 1053

R
random numbers

seed, 321
range analysis, 181, 214
range coefficient

LP procedure, 187
range constraints

OPTMODEL procedure, 773
ranging control options

LP procedure, 180
ratio test

NETFLOW procedure, 493, 494
–R–COST– variable

PRIMALOUT= data set, 1057
READ DATA statement

trim option, 727
reduced costs

LP procedure, 199
NETFLOW procedure, 534
OPTMODEL procedure, 776

relative gradient norm, 961
report writing, 24, 25
RESET OPTIONS statement

OPTMODEL procedure, 781
–RHS– variable

DUALOUT= data set, 1058, 1111, 1157
–RHS–ID– variable

DUALOUT= data set, 1058, 1111, 1156
PRIMALOUT= data set, 1056, 1110, 1155

right-hand-side constants
LP procedure, 188

right-hand-side parametric programming, 215
right-hand-side sensitivity analysis, 212, 224
Rosenbrock function, 291, 326–328, 330, 915

Rosen-Suzuki problem, 337
–ROW– variable

DUALIN= data set, 1056
DUALOUT= data set, 1058, 1111, 1156

rows
LP procedure, 184, 189

S
saddle point, 1006
scalar types, 680, 696
scaling, 838, 1053
scaling input data

INTPOINT procedure, 78
LP procedure, 183, 202
NETFLOW procedure, 473

scheduling
MILP solver examples, 885

second-order conditions
local minimum, 344

second-order derivatives
finite-difference approximations, 309

second-order necessary conditions, 750, 934, 1004
local minimum, 750, 934, 1004

second-order sufficient conditions, 751, 934, 1004
strict local minimum, 751, 934, 1004

sensitivity analysis, 212, 217
sensitivity control options

LP procedure, 180
sequential quadratic programming,

See also SQP solver
set types, 696,

See also OPTMODEL expression extensions
shortest path problem

INTPOINT procedure, 79
NETFLOW procedure, 474

side constraints
INTPOINT procedure, 32, 48
NETFLOW procedure, 439, 445

simple pooling problem
using PROC OPTMODEL, 950

simplex algorithm control options
LP procedure, 181

singularity, 321, 372
absolute singularity criterion, 306
relative singularity criterion, 317, 324

sink nodes
NETFLOW procedure, 474

solution summary
LP procedure, 222, 230

SOLVE WITH LP statement
dual infeasibility, 838
duality gap, 838
primal infeasibility, 838

SOLVE WITH QP statement
dual infeasibility, 980
duality gap, 979
primal infeasibility, 980

solver, 835
source nodes

1188 � Subject Index

NETFLOW procedure, 474
sparse input format

INTPOINT procedure, 51, 58, 90, 99
LP procedure, 161, 174, 194
NETFLOW procedure, 449, 474, 519, 551, 554
summary (INTPOINT), 104
summary (NETFLOW), 523

special ordered set, 191
SQP solver

details, 1002
examples, 1009
feasible region, 1002
feasible solution, 1002
first-order necessary conditions, 1004
functional summary, 1000
getting started, 998
global solution, 1003
Karush-Kuhn-Tucker conditions, 1004
Lagrange multipliers, 1003
Lagrangian function, 1003
local solution, 1002
optimality conditions, 1002
overview, 997
second-order necessary conditions, 1004
second-order sufficient conditions, 1004
solver termination messages, 1006
strict local solution, 1002
syntax, 1000

standard errors
computing, 320

stationary point, 998, 1011
–STATUS– variable

DUALIN= data set, 1056
DUALOUT= data set, 1058, 1157
PRIMALIN= data set, 1055
PRIMALOUT= data set, 1057, 1156

step length, 366
INTPOINT procedure, 36

strict local minimum
second-order sufficient conditions, 751, 934,

1004
strict local solution, 749, 932, 962, 1002
suffix names

OPTMODEL procedure, 765, 767
suffixes, 753, 767
supplies

NETFLOW procedure, 475
supply-chain problem, 42
symbolic factorization

INTPOINT procedure, 38
syntax skeleton

INTPOINT procedure, 66
LP procedure, 169
NETFLOW procedure, 454
NLP procedure, 302

T
table of syntax elements,

See functional summary

tableau
display current, 199

termination criteria, 361
absolute function convergence, 305
absolute gradient convergence, 306
absolute parameter convergence, 306
INTPOINT procedure, 86, 123
NETFLOW procedure, 504, 575
number of function calls, 315
number of iterations, 316
predicted reduction convergence, 308
relative function convergence, 308
relative gradient convergence, 310
relative parameter convergence, 324
time limit, 316

termination criterion
absolute optimality error, 926
number of function calls, 926
number of iterations, 927
objective value limit, 927
relative optimality error, 927
time limit, 927

tolerance
LP procedure, 175, 177, 178, 181–183
termination criterion, 926, 927

traveling salesman problem
MILP solver examples, 902

trim option
READ DATA statement, 727

trust region method, 928
trust region methods, 323
trust region technique, 962
tuples, 680
–TYPE– variable

DUALOUT= data set, 1058, 1111, 1156
INTPOINT procedure, 95
LP procedure, 190, 195, 231
NETFLOW procedure, 515
NLP procedure, 374–376, 378, 380, 381
PRIMALOUT= data set, 1056, 1110, 1155

U
–UBOUND– variable

PRIMALOUT= data set, 1057, 1111, 1156
unconstrained optimization, 352, 931

OPTMODEL procedure, 670
upper bounds

INTPOINT procedure, 39
–U–RHS– variable

DUALOUT= data set, 1058, 1111, 1157

V
–VALUE– variable

DUALOUT= data set, 1058, 1157
PRIMALIN= data set, 1110
PRIMALOUT= data set, 1057, 1111, 1156

–VAR– variable
PRIMALIN= data set, 1055, 1110
PRIMALOUT= data set, 1056, 1110, 1155

Subject Index � 1189

variable declaration
OPTMODEL procedure, 672, 700

variable selection
OPTMILP procedure, 1115
OPTMODEL procedure, MILP solver, 876

variable status
LP solver, 846

variables
LP procedure, 192, 219–221, 223, 231

VF02AD algorithm, 353, 931
VMCWD algorithm, 353, 931

W
Wald confidence limits, 337, 338
warm starts

NETFLOW procedure, 447, 475, 545, 547, 554
working basis matrix

NETFLOW procedure, 466, 468, 475, 494, 536
wraparound search

NETFLOW procedure, 532

1190

Syntax Index

A
ABORT statement

NLP program statements, 339
ABSCONV= option

PROC NLP statement, 305
ABSFCONV= option

PROC NLP statement, 305
ABSFTOL= option,

See ABSFCONV= option
ABSGCONV= option

PROC NLP statement, 306, 354, 362, 370
ABSGTOL= option,

See ABSGCONV= option
ABSOBJGAP= option

PROC OPTMILP statement, 1101
SOLVE WITH MILP statement, 867

ABSOPTTOL= option
NLPC solver option, 926, 935, 938

ABSTOL= option,
See ABSCONV= option

ABSXCONV= option
PROC NLP statement, 306

ABSXTOL= option,
See ABSXCONV= option

ACTBC keyword
TYPE variable (NLP), 378

ACTIVEIN= option
PROC LP statement, 174, 212, 221

ACTIVEOUT= option
PROC LP statement, 174, 212, 219

ALL keyword
FDINT= option (NLP), 310

ALL option,
See PALL option

ALLART option
PROC NETFLOW statement, 463

AND aggregation expression
OPTMODEL expression extensions, 736

AND–KEEPGOING–C= option
PROC INTPOINT statement, 88, 125
RESET statement (NETFLOW), 506

AND–KEEPGOING–DG= option
PROC INTPOINT statement, 88, 125
RESET statement (NETFLOW), 506

AND–KEEPGOING–IB= option
PROC INTPOINT statement, 88, 125
RESET statement (NETFLOW), 507

AND–KEEPGOING–IC= option

PROC INTPOINT statement, 89, 125
RESET statement (NETFLOW), 507

AND–KEEPGOING–ID= option
PROC INTPOINT statement, 89, 125
RESET statement (NETFLOW), 507

AND–STOP–C= option
PROC INTPOINT statement, 87, 124
RESET statement (NETFLOW), 505

AND–STOP–DG= option
PROC INTPOINT statement, 87, 124
RESET statement (NETFLOW), 505

AND–STOP–IB= option
PROC INTPOINT statement, 87, 124
RESET statement (NETFLOW), 505

AND–STOP–IC= option
PROC INTPOINT statement, 87, 124
RESET statement (NETFLOW), 505

AND–STOP–ID= option
PROC INTPOINT statement, 87, 124
RESET statement (NETFLOW), 505

ANY keyword
PxSCAN= option (NETFLOW), 533

AOUT= option,
See ARCOUT= option

ARCDATA keyword
GROUPED= option (INTPOINT), 73
GROUPED= option (NETFLOW), 467

ARCDATA= option
PROC INTPOINT statement, 50, 51, 57, 58, 65,

69, 97
PROC NETFLOW statement, 448, 449, 462, 517

ARCNAME statement,
See NAME statement

ARCOUT= option
PROC NETFLOW statement, 449, 462, 526
RESET statement (NETFLOW), 490

ARCS option
PRINT statement (NETFLOW), 481

ARC–SINGLE–OBS option
PROC INTPOINT statement, 70
PROC NETFLOW statement, 463

ARCS–ONLY–ARCDATA option
PROC INTPOINT statement, 70, 120
PROC NETFLOW statement, 463, 552

ARRAY statement
NLP procedure, 324

ASING= option,
See ASINGULAR= option

1192 � Syntax Index

ASINGULAR= option
PROC NLP statement, 306, 372

assignment statement
OPTMODEL procedure, 701

AUTO option
PROC LP statement, 177, 210, 211

B
BACKTRACK= option

PROC LP statement, 177, 208
BASIC keyword

TYPE variable (LP), 192
BASIC option

PRINT statement (NETFLOW), 482
BASIS= option

PROC OPTLP statement, 1052
SOLVE WITH LP statement, 837

BEST keyword
PxSCAN= option (NETFLOW), 497, 531, 532
QxFILLSCAN= option (NETFLOW), 497, 533

BEST option
PRINT statement (LP), 185

BEST= option
PROC NLP statement, 306, 327

BFGS keyword
UPDATE= option (NLP), 323, 352, 353

BIGM1 option
RESET statement (NETFLOW), 492

BIGM2 option
RESET statement (NETFLOW), 494

BINARY keyword
TYPE variable (LP), 191

BINFST option
PROC LP statement, 178

BLAND keyword
PRICETYPEx= option (NETFLOW), 496, 531,

534
BOTH keyword

CLPARM= option (NLP), 307
GROUPED= option (INTPOINT), 73
GROUPED= option (NETFLOW), 468
SCALE= option (INTPOINT), 79
SCALE= option (LP), 183, 202
SCALE= option (NETFLOW), 473

BOUNDS statement
NLP procedure, 325, 336, 350

BPD= option,
See BYPASSDIVIDE= option

BY keyword,
See range expression, OPTMODEL expression

extensions
BY statement

NLP procedure, 325
BYPASSDIV= option,

See BYPASSDIVIDE= option
BYPASSDIVIDE= option

PROC INTPOINT statement, 71
PROC NETFLOW statement, 463

BYTES= option

PROC INTPOINT statement, 65, 71, 120
PROC NETFLOW statement, 464, 552

C
CALL statement

OPTMODEL procedure, 702
CANSELECT= option

PROC LP statement, 178, 207, 210, 212
CAPAC keyword

TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 515

CAPAC statement,
See CAPACITY statement

CAPACITY statement
INTPOINT procedure, 89
NETFLOW procedure, 475

CARD function
OPTMODEL expression extensions, 737

CD keyword
UPDATE= option (NLP), 323, 355

CDIGITS= option
PROC NLP statement, 306, 359
PROC OPTMODEL statement, 691

CENTRAL keyword
FD= option (NLP), 309
FDHESSIAN= option (NLP), 309

CF= option,
See COREFACTOR= option

CHI keyword
FORCHI= option (NLP), 338

CHOLTINYTOL= option
PROC INTPOINT statement, 83
RESET statement (NETFLOW), 502

CLOSE keyword
VARSELECT= option (LP), 180, 209

CLOSEFILE statement
OPTMODEL procedure, 702

CLPARM= option
PROC NLP statement, 307, 380, 381

COEF statement
INTPOINT procedure, 89
LP procedure, 184
NETFLOW procedure, 476

COEFS keyword
NON–REPLIC= option (INTPOINT), 78
NON–REPLIC= option (NETFLOW), 472

COL keyword
CREATE DATA statement, 704, 706
READ DATA statement, 727
SCALE= option (INTPOINT), 79
SCALE= option (NETFLOW), 473

COL statement
LP procedure, 184

COLUMN keyword
SCALE= option (INTPOINT), 79
SCALE= option (LP), 183, 202
SCALE= option (NETFLOW), 473

COLUMN option
PRINT statement (LP), 185

Syntax Index � 1193

COLUMN statement
INTPOINT procedure, 90
NETFLOW procedure, 476

COMPLETE keyword
PRICETYPE= option (LP), 183, 202

CON keyword
FDINT= option (NLP), 310
SCALE= option (INTPOINT), 78
SCALE= option (NETFLOW), 473

CON option, EXPAND statement,
See CONSTRAINT option, EXPAND statement

CON statement,
See CONSTRAINT statement

CON–ARCS option
PRINT statement (NETFLOW), 481

CONDATA keyword
GROUPED= option (INTPOINT), 73
GROUPED= option (NETFLOW), 467

CONDATA= option
PROC INTPOINT statement, 50, 51, 57, 58, 65,

69, 98
PROC NETFLOW statement, 448, 449, 462, 517

CONGRA keyword
TECH= option (NLP), 322, 349, 355, 362
TECH= option (NLPC solver), 928–931

CON–NONARCS option
PRINT statement (NETFLOW), 482

CONOPT statement
NETFLOW procedure, 476

CONOUT= option
PROC INTPOINT statement, 51, 58, 65, 70, 106
PROC NETFLOW statement, 449, 462, 526
RESET statement (NETFLOW), 490

CON–SINGLE–OBS option
PROC INTPOINT statement, 72
PROC NETFLOW statement, 464

CONST keyword
TYPE variable (NLP), 375

CONSTRAINT keyword
SCALE= option (INTPOINT), 78
SCALE= option (NETFLOW), 473

CONSTRAINT option
EXPAND statement, 713

CONSTRAINT statement
OPTMODEL procedure, 694

CONSTRAINTS option
PRINT statement (NETFLOW), 481

CONTINUE statement
OPTMODEL procedure, 703

CONTROL= option
PROC LP statement, 177, 178, 211

CONTYPE statement,
See TYPE statement

CON–VARIABLES option
PRINT statement (NETFLOW), 482

COREFACTOR= option
PROC NETFLOW statement, 465

COST keyword
TYPE variable (INTPOINT), 95

TYPE variable (NETFLOW), 515
COST statement

INTPOINT procedure, 90
NETFLOW procedure, 477

COUT= option,
See CONOUT= option

COVx keyword
TYPE variable (NLP), 379

COV= option
PROC NLP statement, 307, 370

COVARIANCE= option,
See COV= option

COVRANK keyword
TYPE variable (NLP), 380

COVSING= option
PROC NLP statement, 307, 373

CREATE DATA . . . FROM . . . statement,
See CREATE DATA statement

CREATE DATA statement
COL keyword, 704, 706
OPTMODEL procedure, 703

CROSS expression
OPTMODEL expression extensions, 737

CRPJAC keyword
TYPE variable (NLP), 379

CRPJAC statement
NLP procedure, 326, 348, 359

CUTCLIQUE= option
PROC OPTMILP statement, 1106
SOLVE WITH MILP statement, 872

CUTFLOWCOVER= option
PROC OPTMILP statement, 1106
SOLVE WITH MILP statement, 872

CUTFLOWPATH= option
PROC OPTMILP statement, 1107
SOLVE WITH MILP statement, 872

CUTGOMORY= option
PROC OPTMILP statement, 1107
SOLVE WITH MILP statement, 873

CUTGUB= option
PROC OPTMILP statement, 1107
SOLVE WITH MILP statement, 873

CUTIMPLIED= option
PROC OPTMILP statement, 1107
SOLVE WITH MILP statement, 873

CUTKNAPSACK= option
PROC OPTMILP statement, 1107
SOLVE WITH MILP statement, 873

CUTLAP= option
PROC OPTMILP statement, 1107
SOLVE WITH MILP statement, 873

CUTMIR= option
PROC OPTMILP statement, 1107
SOLVE WITH MILP statement, 873

CUTOFF= option
PROC OPTMILP statement, 1101
SOLVE WITH MILP statement, 867

CUTSFACTOR= option
PROC OPTMILP statement, 1107

1194 � Syntax Index

SOLVE WITH MILP statement, 873
CYCLEMULT1= option

RESET statement (NETFLOW), 493

D
DAMPSTEP= option

PROC NLP statement, 307, 366, 367
DATA= option

PROC LP statement, 174
PROC NLP statement, 307, 374
PROC OPTLP statement, 1049
PROC OPTMILP statement, 1100
PROC OPTQP statement, 1151

DATASETS option
SHOW statement (NETFLOW), 511

DBFGS keyword
UPDATE= option (NLP), 323, 352, 354, 357

DBLDOG keyword
TECH= option (NLP), 322, 349, 354, 367

DC= option,
See DEFCAPACITY= option

DCT= option,
See DEFCONTYPE= option

DDFP keyword
UPDATE= option (NLP), 323, 352, 354, 357

DECVAR statement
NLP procedure, 327, 369

DEFCAPACITY= option
PROC INTPOINT statement, 72, 121
PROC NETFLOW statement, 465, 553

DEFCONTYPE= option
PROC INTPOINT statement, 72, 121
PROC NETFLOW statement, 466, 553

DEFCOST= option
PROC INTPOINT statement, 72, 121
PROC NETFLOW statement, 466, 553

DEFMINFLOW= option
PROC INTPOINT statement, 72, 121
PROC NETFLOW statement, 466, 553

DEFTYPE= option,
See DEFCONTYPE= option

DELTAIT= option
PROC LP statement, 178

DEMAND statement
INTPOINT procedure, 91
NETFLOW procedure, 477

DEMAND= option
PROC INTPOINT statement, 72, 121
PROC NETFLOW statement, 466, 554

DENSETHR= option
PROC INTPOINT statement, 83
RESET statement (NETFLOW), 502

DESCENDING option
BY statement (NLP), 326

DETAIL keyword
GRADCHECK= option (NLP), 311, 360

DETERMIN keyword
TYPE variable (NLP), 380

DEVEX option

PROC LP statement, 181
DF keyword

VARDEF= option (NLP), 323
DFP keyword

UPDATE= option (NLP), 323, 352, 353
DIAHES option

PROC NLP statement, 307, 326, 328
DIFF expression

OPTMODEL expression extensions, 737
DIN= option,

See DUALIN= option
DMF= option,

See DEFMINFLOW= option
DO statement

END keyword, 708
NLP program statements, 339
OPTMODEL procedure, 708

DO statement, iterative
END keyword, 708
OPTMODEL procedure, 708
UNTIL keyword, 708
WHILE keyword, 708

DO UNTIL statement
END keyword, 710
OPTMODEL procedure, 710

DO WHILE statement
END keyword, 710
OPTMODEL procedure, 710

DOBJECTIVE= option
PROC LP statement, 178

DOUT= option,
See DUALOUT= option

DROP statement
OPTMODEL procedure, 711

DS=option,
See DAMPSTEP= option

DUALFREQ= option
RESET statement (NETFLOW), 533

DUALIN= option,
See NODEDATA= option
PROC OPTLP statement, 1049

DUALOUT= option
PROC LP statement, 174, 220
PROC NETFLOW statement, 449, 462, 527
PROC OPTLP statement, 1049
PROC OPTMILP statement, 1100
RESET statement (NETFLOW), 491

DUALOUT=option
PROC OPTQP statement, 1152

DWIA= option
PROC NETFLOW statement, 466

DYNAMIC keyword
PRICETYPE= option (LP), 183, 202

E
ELSE keyword

IF statement, 717
EMPHASIS= option

PROC OPTMILP statement, 1101

Syntax Index � 1195

SOLVE WITH MILP statement, 867
END keyword

DO statement, 708
DO statement, iterative, 708
DO UNTIL statement, 710
DO WHILE statement, 710

ENDPAUSE option
PROC LP statement, 176, 217

ENDPAUSE1 option
RESET statement (NETFLOW), 491

EPSILON= option
PROC LP statement, 181

EQ keyword
TYPE variable (INTPOINT), 95
TYPE variable (LP), 190
TYPE variable (NETFLOW), 515
TYPE variable (NLP), 375, 376, 379

ERROR keyword
BACKTRACK= option (LP), 177
CANSELECT= option (LP), 178, 208

ESTDATA= option,
See INEST= option

EVERYOBS option
NLINCON statement (NLP), 336

EXCESS= option
PROC NETFLOW statement, 467

EXPAND statement
CONSTRAINT option, 713
FIX option, 712
IIS option, 713
OBJECTIVE option, 713
OPTMODEL procedure, 711
SOLVE option, 712
VAR option, 712

F
F keyword

FORCHI= option (NLP), 338
FACT–METHOD= option

PROC INTPOINT statement, 82
RESET statement (NETFLOW), 501

FAR keyword
VARSELECT= option (LP), 180, 209

FAST keyword
GRADCHECK= option (NLP), 311, 360

FCONV= option
PROC NLP statement, 308

FCONV2= option
PROC NLP statement, 308, 354

FD= option
PROC NLP statement, 309, 357, 360
PROC OPTMODEL statement, 691

FDH= option,
See FDHESSIAN= option

FDHES= option,
See FDHESSIAN= option

FDHESSIAN= option
PROC NLP statement, 309, 357, 360

FDIGITS= option

PROC NLP statement, 310, 359
PROC OPTMODEL statement, 691

FDINT= option
PROC NLP statement, 310, 359, 369

FEASIBLEPAUSE option
PROC LP statement, 176, 217

FEASIBLEPAUSE1 option
RESET statement (NETFLOW), 492

FEASIBLEPAUSE2 option
RESET statement (NETFLOW), 492

FEASRATIO= option
PROFILE statement (NLP), 338

FEASTOL= option
PROC OPTLP statement, 1051
SOLVE WITH LP statement, 836
SQP solver, 1001

FFACTOR= option
PROFILE statement (NLP), 338

FIFO keyword
BACKTRACK= option (LP), 177
CANSELECT= option (LP), 178, 207

FILE statement
OPTMODEL procedure, 713

FIRST keyword
PxSCAN= option (NETFLOW), 497, 531, 532
QxFILLSCAN= option (NETFLOW), 497, 533

FIX option
EXPAND statement, 712

FIX statement
OPTMODEL procedure, 715

FIXED keyword
TYPE variable (LP), 191, 203

FLETREEV keyword
TECH= option (NLPU solver), 962

FLOW option
PROC LP statement, 175

FOR statement
OPTMODEL procedure, 716

FORCHI= option
PROFILE statement (NLP), 338

FORMAT=option
MPS2SASD Macro Parameters, 1037

FORWARD keyword
FD= option (NLP), 309
FDHESSIAN= option (NLP), 309

FP1 option,
See FEASIBLEPAUSE1 option

FP2 option,
See FEASIBLEPAUSE2 option

FR keyword
UPDATE= option (NLP), 323, 355

FREE keyword
TYPE variable (INTPOINT), 95
TYPE variable (LP), 192, 203
TYPE variable (NETFLOW), 515

FROM statement,
See TAILNODE statement

FROMNODE statement,
See TAILNODE statement

1196 � Syntax Index

FSIZE= option
PROC NLP statement, 310

FTOL= option,
See FCONV= option

FTOL2= option,
See FCONV2= option

FUTURE1 option
PROC NETFLOW statement, 546
RESET statement (NETFLOW), 497

FUTURE2 option
PROC NETFLOW statement, 546
RESET statement (NETFLOW), 497

FUZZ= option
PROC LP statement, 175

G
G4= option

PROC NLP statement, 310, 373
GAIN keyword

TYPE variable (NETFLOW), 515
GC= option,

See GRADCHECK= option
GCONV= option

PROC NLP statement, 310, 354, 362, 370
GCONV2= option

PROC NLP statement, 310
GE keyword

TYPE variable (INTPOINT), 95
TYPE variable (LP), 190
TYPE variable (NETFLOW), 515
TYPE variable (NLP), 375, 376, 379

GENNET option
PROC NETFLOW statement, 467

GOALPROGRAM option
PROC LP statement, 181

GRAD keyword
TYPE variable (NLP), 378

GRADCHECK= option
PROC NLP statement, 311, 360

GRADIENT statement
NLP procedure, 327, 331, 348, 359, 361

GRIDPNT keyword
TYPE variable (NLP), 378

GROUPED= option
PROC INTPOINT statement, 73, 119
PROC NETFLOW statement, 467, 551

GTOL= option,
See GCONV= option

GTOL2= option,
See GCONV2= option

H
HEAD statement,

See HEADNODE statement
HEADNODE statement

INTPOINT procedure, 91
NETFLOW procedure, 477

HESCAL= option
PROC NLP statement, 311, 360

HESCHECK option
SQP solver, 1001

HESSIAN keyword
TYPE variable (NLP), 379

HESSIAN statement
NLP procedure, 328, 348, 359

HEURISTICS= option
PROC OPTMILP statement, 1104
SOLVE WITH MILP statement, 870

HS= option,
See HESCAL= option

HYQUAN keyword
TECH= option (NLP), 322, 349, 357, 366

I
ID statement

INTPOINT procedure, 91
LP procedure, 184
NETFLOW procedure, 478

IEPSILON= option
PROC LP statement, 178

IF expression
OPTMODEL expression extensions, 738

IF statement
ELSE keyword, 717
OPTMODEL procedure, 717
THEN keyword, 717

IFEASIBLEPAUSE= option
PROC LP statement, 176, 217

IFP option,
See INFEASIBLE option

IIS option
EXPAND statement, 713

IIS= option
PROC OPTLP statement, 1050
SOLVE WITH LP statement, 835

IMAXIT= option
PROC LP statement, 179

IMAXITERB= option,
See MAXITERB= option

IN expression
OPTMODEL expression extensions, 739

IN keyword
index sets, 686

INCLUDE statement
NLP procedure, 317, 329, 382

index sets
IN keyword, 686
index set expression, 739
index-set-item, 686

INEST= option
PROC NLP statement, 312, 331, 350, 374, 375,

380
INF= option,

See INFINITY= option
INFEASIBLE option

PROC NLP statement, 312, 327
INFINITY= option

PROC INTPOINT statement, 74

Syntax Index � 1197

PROC LP statement, 181
PROC NETFLOW statement, 468

INHESS= option,
See INHESSIAN= option

INHESSIAN= option
PROC NLP statement, 312, 354, 368

INIT keyword
NUMBER statement, 697
SET statement, 697
STRING statement, 697
VAR statement, 700

INITIAL keyword
TYPE variable (NLP), 378

INITIAL= option
PROC NLP statement, 313

INITVAR option
PROC OPTMODEL statement, 691

INQUAD= option
PROC NLP statement, 313, 350, 375, 376

INSTEP= option
PROC NLP statement, 313, 353, 367, 368

INTEGER keyword
TYPE variable (LP), 191, 204

INTEGER–NONZEROS option
PRINT statement (LP), 185

INTEGER option
PRINT statement (LP), 185

INTEGER–ZEROS option
PRINT statement (LP), 185

INTER aggregation expression
OPTMODEL expression extensions, 740

INTER expression
OPTMODEL expression extensions, 740

INTFIRST option
RESET statement (NETFLOW), 495

INTFUZZ= option
PROC OPTMODEL statement, 692

INTO keyword
READ DATA statement, 725

INTPOINT option
PROC NETFLOW statement, 559, 560
RESET statement (NETFLOW), 468

INTPOINT procedure, 66
CAPACITY statement, 89
COEF statement, 89
COLUMN statement, 90
COST statement, 90
DEMAND statement, 91
HEADNODE statement, 91
ID statement, 91
LO statement, 92
NAME statement, 92
NODE statement, 92
PROC INTPOINT statement, 69
QUIT statement, 92
RHS statement, 93
ROW statement, 93
RUN statement, 93
SUPDEM statement, 94

SUPPLY statement, 94
TAILNODE statement, 94
TYPE statement, 95
VAR statement, 96

INTTOL= option
PROC OPTMILP statement, 1102
SOLVE WITH MILP statement, 868

INVAR= option,
See INEST= option

INVD–2D option
PROC NETFLOW statement, 468, 537

INVFREQ= option
PROC LP statement, 182
RESET statement (NETFLOW), 494

INVTOL= option
PROC LP statement, 182

IOBJECTIVE= option
PROC LP statement, 179

IPAUSE= option
PROC LP statement, 176, 217

IPIVOT statement
LP procedure, 185, 217

IPNLP solver
MAXITER= option, 813
MAXTIME= option, 813
OPTTOL= option, 813
PRINTFREQ option, 814

IPRSLTYPE= option,
See PRSLTYPE= option

J
JACNLC statement

NLP procedure, 329, 348
JACOBIAN keyword

TYPE variable (NLP), 379
JACOBIAN statement

NLP procedure, 330, 348, 359, 361

K
KEEPGOING–C= option

PROC INTPOINT statement, 87, 123
RESET statement (NETFLOW), 506

KEEPGOING–DG= option
PROC INTPOINT statement, 88, 123
RESET statement (NETFLOW), 506

KEEPGOING–IB= option
PROC INTPOINT statement, 88, 123
RESET statement (NETFLOW), 506

KEEPGOING–IC= option
PROC INTPOINT statement, 88, 123
RESET statement (NETFLOW), 506

KEEPGOING–ID= option
PROC INTPOINT statement, 88, 123
RESET statement (NETFLOW), 506

L
LABEL statement

NLP procedure, 331
LAGRANGE keyword

1198 � Syntax Index

TYPE variable (NLP), 379
LB keyword

TYPE variable (NLP), 374, 375, 378
LBFGS keyword

TECH= option (NLPU solver), 962
LBFGSCORR= option

NLPU solver, 960
LCD= option,

See LCDEACT= option
LCDEACT= option

PROC NLP statement, 313, 354, 364
LCE= option,

See LCEPSILON= option
LCEPS= option,

See LCEPSILON= option
LCEPSILON= option

PROC NLP statement, 313, 351, 354, 363
LCS= option,

See LCSINGULAR= option
LCSING= option,

See LCSINGULAR= option
LCSINGULAR= option

PROC NLP statement, 314, 354, 363
LE keyword

TYPE variable (INTPOINT), 95
TYPE variable (LP), 190
TYPE variable (NETFLOW), 515
TYPE variable (NLP), 374, 376, 379

LEAVE statement
OPTMODEL procedure, 717

LEVMAR keyword
TECH= option (NLP), 322, 349, 356, 367

LICOMP keyword
TECH= option (NLP), 322, 348, 350, 375

LIFO keyword
BACKTRACK= option (LP), 177
CANSELECT= option (LP), 178, 207, 210

LIFOTYPE= option
PROC LP statement, 179

LINCON statement
NLP procedure, 350, 356

LINEAR keyword
TYPE variable (NLP), 375, 376

LINESEARCH= option
PROC NLP statement, 314, 355, 357, 365

LIS= option,
See LINESEARCH= option

LIST option
PROC NLP statement, 315, 384

LISTCODE option
PROC NLP statement, 315, 384

LO statement
INTPOINT procedure, 92
NETFLOW procedure, 478

LONG option
PRINT statement (NETFLOW), 482

LOSS keyword
TYPE variable (NETFLOW), 515

LOW keyword

TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 515

LOWER= option
RESET statement (LP), 188

LOWERBD keyword
TYPE variable (INTPOINT), 95
TYPE variable (LP), 191
TYPE variable (NETFLOW), 515
TYPE variable (NLP), 374, 375, 378

LOWERBD statement,
See LO statement

LP procedure, 169
COEF statement, 184
COL statement, 184
ID statement, 184
IPIVOT statement, 185
PIVOT statement, 185
PRINT statement, 185
PROC LP statement, 174
QUIT statement, 187
RANGE statement, 187
RESET statement, 188
RHS statement, 188
RHSSEN statement, 189
ROW statement, 189
RUN statement, 190
SHOW statement, 190
TYPE statement, 190
VAR statement, 192

LRATIO1 option
RESET statement (NETFLOW), 493

LRATIO2 option
RESET statement (NETFLOW), 493

LSARMIJO= option
NLPU solver, 960

LSMAXITER= option
NLPU solver, 961

LSP= option,
See LSPRECISION= option

LSPRECISION= option
PROC NLP statement, 315, 366

LSQ statement
NLP procedure, 334

LSWOLFE= option
NLPU solver, 961

LT option, READ DATA statement,
See LTRIM option, READ DATA statement

LTRIM option
READ DATA statement, 727

M
MATRIX option

PRINT statement (LP), 185
MATRIX statement

NLP procedure, 332
MAX aggregation expression

OPTMODEL expression extensions, 740
MAX keyword

TYPE variable (LP), 190

Syntax Index � 1199

MAX option,
See MAXIMIZE option

MAX statement
NLP procedure, 334
OPTMODEL procedure, 695

MAXARRAYBYTES= option
PROC NETFLOW statement, 469, 552

MAXFEVAL= option,
See MAXFUNC= option

MAXFLOW option
PROC INTPOINT statement, 74
PROC NETFLOW statement, 469

MAXFU= option,
See MAXFUNC= option

MAXFUNC= option
NLPC solver option, 926
PROC NLP statement, 315, 386

MAXIMIZE keyword
TYPE variable (NETFLOW), 515

MAXIMIZE option
PROC INTPOINT statement, 74
PROC NETFLOW statement, 469

MAXIT1= option
PROC LP statement, 182
RESET statement (NETFLOW), 492

MAXIT2= option
PROC LP statement, 182
RESET statement (NETFLOW), 492

MAXIT3= option
PROC LP statement, 182

MAXIT= option,
NLP procedure, See MAXITER= option
PROC LP statement, 182

MAXITER= option
IPNLP solver, 813
NLPC solver option, 927
NLPU solver, 961
PROC NLP statement, 316, 386
PROC OPTLP statement, 1051
PROC OPTQP statement, 1152
SOLVE WITH LP statement, 836
SOLVE WITH QP statement, 979
SQP solver, 1001

MAXITERB= option
PROC INTPOINT statement, 86, 123
PROC NETFLOW statement, 575
RESET statement (NETFLOW), 504

MAXL= option
RESET statement (NETFLOW), 495

MAXLABLEN= option
PROC OPTMODEL statement, 692

MAXLEN=option
MPS2SASD Macro Parameters, 1037

MAXLUUPDATES= option
RESET statement (NETFLOW), 495

MAXNODES= option
PROC OPTMILP statement, 1102
SOLVE WITH MILP statement, 868

MAXQUAD statement

NLP procedure, 334, 350
MAXSOLS= option

PROC OPTMILP statement, 1102
SOLVE WITH MILP statement, 868

MAXSTEP= option
PROC NLP statement, 316, 367

MAXTIME= option
IPNLP solver, 813
NLPC solver option, 927
NLPU solver, 961
PROC NLP statement, 316, 386
PROC OPTLP statement, 1051
PROC OPTMILP statement, 1102
PROC OPTQP statement, 1152
SOLVE WITH LP statement, 836
SOLVE WITH MILP statement, 868
SOLVE WITH QP statement, 979
SQP solver, 1001

MAZIMIZE keyword
TYPE variable (INTPOINT), 95

MEMREP option
PROC INTPOINT statement, 75, 120
PROC NETFLOW statement, 470, 552

MF option,
See MAXFLOW option

MIN aggregation expression
OPTMODEL expression extensions, 741

MIN keyword
TYPE variable (LP), 190

MIN statement
NLP procedure, 334
OPTMODEL procedure, 695

MINBLOCK1= option
RESET statement (NETFLOW), 493

MINFLOW statement,
See LO statement

MINIMIZE keyword
TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 515

MINIT= option,
See MINITER= option

MINITER= option
PROC NLP statement, 316

MINQUAD statement
NLP procedure, 334, 350

MISC option
SHOW statement (NETFLOW), 513

MISSCHECK option
PROC OPTMODEL statement, 692

MLUU= option,
See MAXLUUPDATES= option

MOD= option,
See MODEL= option

MODEL= option
PROC NLP statement, 316, 382

MODFILE= option,
See MODEL= option

MOREOPT option
RESET statement (NETFLOW), 497

1200 � Syntax Index

MPS2SASD Macro Parameters
FORMAT=option, 1037
MAXLEN=option, 1037
MPSFILE=option, 1036
OUTDATA=option, 1037

MPSFILE=option
MPS2SASD Macro Parameters, 1036

MPSOUT= option
PROC INTPOINT statement, 70, 107, 108
PROC LP statement, 174, 196, 221
PROC NETFLOW statement, 463, 529

MSING= option,
See MSINGULAR= option

MSINGULAR= option
PROC NLP statement, 317, 372

MULT keyword
TYPE variable (NETFLOW), 515

MULT statement
NETFLOW procedure, 478

MULTIPLIER statement,
See MULT statement

N
N keyword

VARDEF= option (NLP), 323
NACTBC keyword

TYPE variable (NLP), 378
NACTLC keyword

TYPE variable (NLP), 378
NAME statement

INTPOINT procedure, 92
NETFLOW procedure, 479

NAMECTRL= option
PROC INTPOINT statement, 75
PROC NETFLOW statement, 470

NARCS= option
PROC INTPOINT statement, 77, 120
PROC NETFLOW statement, 472, 552

NCOEFS= option
PROC INTPOINT statement, 77, 120
PROC NETFLOW statement, 472, 552

NCONS= option
PROC INTPOINT statement, 78, 120
PROC NETFLOW statement, 472, 552

NEIGNEG keyword
TYPE variable (NLP), 380

NEIGPOS keyword
TYPE variable (NLP), 380

NEIGZER keyword
TYPE variable (NLP), 380

NETFLOW procedure, 454
CAPACITY statement, 475
COEF statement, 476
PROC NETFLOW statement, 461
RESET statement, 486
RHS statement, 507
ROW statement, 507
RUN statement, 508
SAVE statement, 508

SHOW statement, 510
SUPDEM statement, 514
SUPPLY statement, 514
TAILNODE statement, 514
TYPE statement, 515
VAR statement, 516

NEWRAP keyword
TECH= option (NLP), 322, 348, 351

NEWTYP keyword
TECH= option (NLPC solver), 928–930

NLC statement,
See NLINCON statement

NLDACTLC keyword
TYPE variable (NLP), 378

NLINCON statement
NLP procedure, 336, 356

NLP procedure
ARRAY statement, 324
BOUNDS statement, 325, 336, 350
BY statement, 325
CRPJAC statement, 326, 348, 359
DECVAR statement, 327
GRADIENT statement, 327, 331, 348, 359, 361
HESSIAN statement, 328, 348, 359
INCLUDE statement, 317, 329, 382
JACNLC statement, 329, 348
JACOBIAN statement, 330, 348, 359, 361
LABEL statement, 331
LINCON statement, 331, 350, 356
LSQ statement, 334
MATRIX statement, 332
MAX statement, 334
MAXQUAD statement, 334, 350
MIN statement, 334
MINQUAD statement, 334, 350
NLINCON statement, 336, 356
PROC NLP statement, 305
PROFILE statement, 337, 380, 381

NLPU solver
LBFGSCORR= option, 960
LSARMIJO= option, 960
LSMAXITER= option, 961
LSWOLFE= option, 961
MAXITER= option, 961
MAXTIME= option, 961
OBJLIMIT= option, 961
OPTTOL= option, 961
PRINTFREQ option, 961

NMSIMP keyword
TECH= option, 355
TECH= option (NLP), 322, 348, 349

NNAS= option
PROC INTPOINT statement, 78, 120
PROC NETFLOW statement, 472, 552

NNODES= option
PROC INTPOINT statement, 78, 120
PROC NETFLOW statement, 472, 552

NOAUTO option
PROC LP statement, 179

Syntax Index � 1201

NOBIGM1 option,
See TWOPHASE1 option

NOBIGM2 option,
See TWOPHASE2 option

NOBINFST option
PROC LP statement, 179

–NOBS– keyword
TYPE variable (NLP), 378

NODE statement
INTPOINT procedure, 92
NETFLOW procedure, 479

NODEDATA= option
PROC INTPOINT statement, 50, 51, 65, 70
PROC NETFLOW statement, 448, 449, 462

NODEOUT= option
PROC NETFLOW statement, 449, 462, 527
RESET statement (NETFLOW), 491

NODESEL= option
PROC OPTMILP statement, 1104
SOLVE WITH MILP statement, 870

NODEVEX option
PROC LP statement, 182

NOEIGNUM option
PROC NLP statement, 317

NOENDPAUSE option
PROC LP statement, 176

NOENDPAUSE1 option
RESET statement (NETFLOW), 492

NOEP1 option,
See NOENDPAUSE1 option

NOFEASIBLEPAUSE option
PROC LP statement, 176

NOFEASIBLEPAUSE1 option
RESET statement (NETFLOW), 492

NOFEASIBLEPAUSE2 option
RESET statement (NETFLOW), 492

NOFLOW option
PROC LP statement, 175

NOFP1 option,
See NOFEASIBLEPAUSE1 option

NOFP2 option,
See NOFEASIBLEPAUSE2 option

NOFUTURE1 option
RESET statement (NETFLOW), 498

NOFUTURE2 option
RESET statement (NETFLOW), 498

NOHESCHECK option
SQP solver, 1001

NOINITVAR option
PROC OPTMODEL statement, 691

NOINTFIRST option
RESET statement (NETFLOW), 496

NOLRATIO1 option
RESET statement (NETFLOW), 494

NOLRATIO2 option
RESET statement (NETFLOW), 494

NOMISS option
PROC NLP statement, 317, 374, 385

NOMISSCHECK option

PROC OPTMODEL statement, 692
NONARC keyword

SCALE= option (INTPOINT), 79
SCALE= option (NETFLOW), 473

NONARCS option
PRINT statement (NETFLOW), 481

NONBASIC option
PRINT statement (NETFLOW), 482

NONE keyword
GRADCHECK= option (NLP), 311
GROUPED= option (INTPOINT), 74
GROUPED= option (NETFLOW), 468
NON–REPLIC= option (INTPOINT), 78
NON–REPLIC= option (NETFLOW), 472
PRICETYPE= option (LP), 183
SCALE= option (INTPOINT), 79
SCALE= option (LP), 183, 202
SCALE= option (NETFLOW), 473
TECH= option (NLP), 322

NONINTEGER–NONZEROS option
PRINT statement (LP), 186

NONINTEGER option
PRINT statement (LP), 186

NON–REPLIC= option
PROC INTPOINT statement, 78
PROC NETFLOW statement, 472

NONZERO option
PRINT statement (NETFLOW), 482

NONZEROS option
PRINT statement (LP), 186

NOP option,
See NOPRINT option

NOPARAPRINT option
PROC LP statement, 175

NOPERTURB1 option
RESET statement (NETFLOW), 493

NOPOSTPROCESS option
PROC LP statement, 179

NOPREPROCESS option
PROC LP statement, 177

NOPRINT option
PROC LP statement, 175
PROC NLP statement, 317, 384

NOQ keyword
PRICETYPEx= option (NETFLOW), 496, 531

NORANGEPRICE option
PROC LP statement, 180

NORANGERHS option
PROC LP statement, 180

NOSCRATCH option
RESET statement (NETFLOW), 498

NOT IN expression,
See IN expression, OPTMODEL expression ex-

tensions
NOT WITHIN expression,

See WITHIN expression, OPTMODEL expres-
sion extensions

NOTABLEAUPRINT option
PROC LP statement, 175

1202 � Syntax Index

NOTRIM option
READ DATA statement, 727

NOTSORTED option
BY statement (NLP), 326

NOTWOPHASE1 option,
See BIGM1 option

NOTWOPHASE2 option,
See BIGM2 option

NOUT= option,
See NODEOUT= option

NOZTOL1 option
RESET statement (NETFLOW), 498

NOZTOL2 option
RESET statement (NETFLOW), 498

NRRIDG keyword
TECH= option (NLP), 322, 348, 351

NT option, READ DATA statement,
See NOTRIM option, READ DATA statement

null statement
OPTMODEL procedure, 718

NUM statement,
See NUMBER statement

NUMBER statement
INIT keyword, 697
OPTMODEL procedure, 696

O
OBJ keyword

BACKTRACK= option (LP), 177
CANSELECT= option (LP), 178, 207, 210
FDINT= option (NLP), 310

OBJ keyword, SOLVE statement,
See OBJECTIVE keyword, SOLVE statement

OBJ option, EXPAND statement,
See OBJECTIVE option, EXPAND statement

OBJECTIVE keyword
SOLVE statement, 733
TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 515

OBJECTIVE option
EXPAND statement, 713

OBJFN statement,
See COST statement

OBJLIMIT= option
NLPC solver option, 927
NLPU solver, 961

OBJSENSE= option
PROC OPTLP statement, 1049
PROC OPTMILP statement, 1100
PROC OPTQP statement, 1152

OPTCHECK= option
PROC NLP statement, 317, 369

OPTIM–TIMER option
PROC INTPOINT statement, 78
RESET statement (NETFLOW), 498

OPTIONS option
SHOW statement (LP), 190

OPTLP procedure, 1048
OPTMILP procedure, 1098

OPTMODEL expression extensions
AND aggregation expression, 736
CARD function, 737
CROSS expression, 737
DIFF expression, 737
IF expression, 738
IN expression, 739
index set expression, 739
INTER aggregation expression, 740
INTER expression, 740
MAX aggregation expression, 740
MIN aggregation expression, 741
OR aggregation expression, 741
PROD aggregation expression, 741
range expression, 742
set constructor expression, 742
set literal expression, 743
SETOF aggregation expression, 744
SLICE expression, 744
SUM aggregation expression, 745
SYMDIFF expression, 746
tuple expression, 746
UNION aggregation expression, 747
UNION expression, 746
WITHIN expression, 747

OPTMODEL procedure, 687
assignment statement, 701
CALL statement, 702
CLOSEFILE statement, 702
CONSTRAINT statement, 694
CONTINUE statement, 703
CREATE DATA statement, 703
DO statement, 708
DO statement, iterative, 708
DO UNTIL statement, 710
DO WHILE statement, 710
DROP statement, 711
EXPAND statement, 711
FILE statement, 713
FIX statement, 715
FOR statement, 716
IF statement, 717
LEAVE statement, 717
MAX statement, 695
MIN statement, 695
null statement, 718
NUMBER statement, 696
PRINT statement, 718
PUT statement, 723
READ DATA statement, 725
RESET OPTIONS statement, 729
RESTORE statement, 730
SAVE MPS statement, 730
SAVE QPS statement, 731
SET statement, 696
SOLVE statement, 733
STOP statement, 734
STRING statement, 696
UNFIX statement, 734

Syntax Index � 1203

VAR statement, 700
OPTMODEL procedure, LP solver

syntax, 834
OPTMODEL procedure, MILP solver, 865
OPTMODEL procedure, QP solver

syntax, 978
OPTQP procedure, 1151
OPTTOL= option

IPNLP solver, 813
NLPU solver, 961
PROC OPTLP statement, 1051
SOLVE WITH LP statement, 836
SQP solver, 1001

OR aggregation expression
OPTMODEL expression extensions, 741

OTHERWISE statement
NLP program statements, 340

OUT= option
PROC NLP statement, 317, 376

OUTALL option
PROC NLP statement, 317

OUTCRPJAC option
PROC NLP statement, 318

OUTDATA=option
MPS2SASD Macro Parameters, 1037

OUTDER= option
PROC NLP statement, 318, 376

OUTEST= option
PROC NLP statement, 318, 331, 377, 380

OUTGRID option
PROC NLP statement, 318

OUTHES option,
See OUTHESSIAN option

OUTHESSIAN option
PROC NLP statement, 318

OUTITER option
PROC NLP statement, 318

OUTJAC option
PROC NLP statement, 318

OUTM= option,
See OUTMODEL= option

OUTMOD= option,
See OUTMODEL= option

OUTMODEL= option
PROC NLP statement, 318, 329, 381

OUTNCJAC option
PROC NLP statement, 319

OUTTABLE option
PROFILE statement (NLP), 338

OUTTIME option
PROC NLP statement, 319

OUTVAR= option,
See OUTEST= option

P
PxNPARTIAL= option

RESET statement (NETFLOW), 497, 513, 531,
532

PxSCAN= option

PROC NETFLOW statement, 531
RESET statement (NETFLOW), 497, 513, 532,

533
–PAGE– keyword

PRINT statement, 719
PUT statement, 725

PALL option
PROC NLP statement, 319, 384

PARAMETERS statement,
See DECVAR statement

PARAPRINT option
PROC LP statement, 175, 216

PARARESTORE option
PROC LP statement, 182

PARMS keyword
TYPE variable (NLP), 374, 375, 378

PARMS statement,
See DECVAR statement

PARTIAL keyword
PxSCAN= option (NETFLOW), 497, 531, 532
PRICETYPE= option (LP), 183, 202
QxFILLSCAN= option (NETFLOW), 497, 533

PAUSE option
SHOW statement (NETFLOW), 512

PAUSE1= option
RESET statement (NETFLOW), 492

PAUSE2= option
RESET statement (NETFLOW), 492

PAUSE= option
PROC LP statement, 176, 217

PB keyword
UPDATE= option (NLP), 323, 355

PCOV option
PROC NLP statement, 319, 384

PCRPJAC option
PROC NLP statement, 319, 384

PDGAPTOL= option
PROC INTPOINT statement, 86, 123
PROC NETFLOW statement, 576
RESET statement (NETFLOW), 504

PDIGITS= option
PROC OPTMODEL statement, 692

PDSTEPMULT= option
PROC INTPOINT statement, 83
RESET statement (NETFLOW), 502

PEIGVAL option
PROC NLP statement, 319, 373, 384

PENALTY keyword
VARSELECT= option (LP), 179, 180, 209

PENALTY= option
SQP solver, 1001

PENALTYDEPTH= option
PROC LP statement, 179, 209

PEPSILON= option
PROC LP statement, 177

PERROR option
PROC NLP statement, 319

PERTURB1 option
RESET statement (NETFLOW), 493

1204 � Syntax Index

PFUNCTION option
PROC NLP statement, 319, 384

PGRID option
PROC NLP statement, 319, 384

PHASEMIX= option
PROC LP statement, 182

PHES option,
See PHESSIAN option

PHESSIAN option
PROC NLP statement, 320, 384

PHIS option,
See PHISTORY option

PHISTORY option
PROC NLP statement, 320, 384

PICTURE option
PRINT statement (LP), 185

PIN option,
See PINIT option

PIN= option,
See PRIMALIN= option

PINIT option
PROC NLP statement, 320, 384

PIVOT statement
LP procedure, 185, 217
NETFLOW procedure, 479

PJAC option,
See PJACOBI option

PJACOBI option
PROC NLP statement, 320, 384

PJTJ option,
See PCRPJAC option

PL keyword
CLPARM= option (NLP), 307

PL–CL keyword
TYPE variable (NLP), 381

PLC–LOW keyword
TYPE variable (NLP), 381

PLC–UPP keyword
TYPE variable (NLP), 381

PMATRIX= option
PROC OPTMODEL statement, 692

PMAXIT= option
PROC LP statement, 177, 203

PNLCJAC option
PROC NLP statement, 320, 384

POBJECTIVE= option
PROC LP statement, 179

POLRIB keyword
TECH= option (NLPU solver), 962

POSTPROCESS option
PROC LP statement, 179

POUT= option,
See PRIMALOUT= option

PR keyword
UPDATE= option (NLP), 323, 355

PREPROCESS option
PROC LP statement, 177

PRESOL= option,
See PRESOLVER= option

PRESOLVER= option
PROC OPTLP statement, 1050
PROC OPTMILP statement, 1101
PROC OPTMODEL statement, 692
PROC OPTQP statement, 1152
SOLVE WITH LP statement, 836
SOLVE WITH MILP statement, 866
SOLVE WITH QP statement, 979

PRESTOL= option
PROC OPTMODEL statement, 693

PRICE keyword
VARSELECT= option (LP), 180, 209

PRICE= option
PROC LP statement, 182, 201

PRICEPHI= option
PROC LP statement, 180, 186, 216, 218

PRICESEN keyword
TYPE variable (LP), 192, 214

PRICESEN option
PRINT statement (LP), 186

PRICETYPEx= option
RESET statement (NETFLOW), 496, 513, 531,

532, 534
PRICETYPE= option

PROC LP statement, 182, 201
PROC OPTLP statement, 1052
SOLVE WITH LP statement, 837

PRICING option
SHOW statement (NETFLOW), 512

PRIMALIN option
SOLVE WITH MILP statement, 867

PRIMALIN= option
PROC LP statement, 174, 212, 221
PROC OPTLP statement, 1049
PROC OPTMILP statement, 1100

PRIMALOUT= option
PROC LP statement, 174, 212, 219
PROC OPTLP statement, 1050
PROC OPTMILP statement, 1101
PROC OPTQP statement, 1152

PRINT option
PROC LP statement, 175

PRINT statement
LP procedure, 185, 217
NETFLOW procedure, 479
OPTMODEL procedure, 718
–PAGE– keyword, 719

PRINTFREQ option
IPNLP solver, 814
NLPC solver option, 927
NLPU solver, 961
SQP solver, 1001

PRINTFREQ= option
PROC LP statement, 175
PROC OPTLP statement, 1051
PROC OPTMILP statement, 1102
PROC OPTQP statement, 1152
SOLVE WITH LP statement, 836
SOLVE WITH MILP statement, 868

Syntax Index � 1205

SOLVE WITH QP statement, 979
PRINTLEVEL2= option

PROC OPTMILP statement, 1102
SOLVE WITH MILP statement, 868

PRINTLEVEL= option
PROC LP statement, 175
PROC OPTLP statement, 1051
PROC OPTMILP statement, 1102
PROC OPTMODEL statement, 693
PROC OPTQP statement, 1153

PRINTLEVEL2= option
PROC INTPOINT statement, 85, 123
PROC NETFLOW statement, 576
RESET statement (NETFLOW), 503

PRIOR keyword
VARSELECT= option (LP), 180, 209

PRIORITY= option
PROC OPTMILP statement, 1105
SOLVE WITH MILP statement, 871

PROBE= option
PROC OPTMILP statement, 1103
SOLVE WITH MILP statement, 869

PROBLEM option
PRINT statement (NETFLOW), 482

PROC INTPOINT statement,
See also INTPOINT procedure
data set options, 69
general options, 70

PROC LP statement,
See also LP procedure
branch-and-bound control options, 177
data set options, 174
display control options, 175
interactive control options, 176
parametric control options, 180
preprocessing control options, 177
ranging control options, 180
sensitivity control options, 180
simplex algorithm control options, 181

PROC NETFLOW statement,
See also NETFLOW procedure
data set options, 461
general options, 463

PROC NLP statement,
See also NLP procedure
statement options, 305

PROC OPTLP statement,
See OPTLP procedure
BASIS= option, 1052
DATA= option, 1049
DUALIN= option, 1049
DUALOUT= option, 1049
FEASTOL= option, 1051
IIS= option, 1050
MAXITER= option, 1051
MAXTIME= option, 1051
OBJSENSE= option, 1049
OPTTOL= option, 1051
PRESOLVER= option, 1050

PRICETYPE= option, 1052
PRIMALIN= option, 1049
PRIMALOUT= option, 1050
PRINTFREQ= option, 1051
PRINTLEVEL= option, 1051
QUEUESIZE= option, 1053
SAVE–ONLY–IF–OPTIMAL option, 1050
SCALE= option, 1053
SOLVER= option, 1050
STOP–DG= option, 1053
STOP–DI= option, 1053
STOP–PI= option, 1053
TIMETYPE= option, 1052

PROC OPTMILP statement,
See OPTMILP procedure
ABSOBJGAP= option, 1101
CUTCLIQUE= option, 1106
CUTFLOWCOVER= option, 1106
CUTFLOWPATH= option, 1107
CUTGOMORY= option, 1107
CUTGUB= option, 1107
CUTIMPLIED= option, 1107
CUTKNAPSACK= option, 1107
CUTLAP= option, 1107
CUTMIR= option, 1107
CUTOFF= option, 1101
CUTSFACTOR= option, 1107
DATA= option, 1100
DUALOUT= option, 1100
EMPHASIS= option, 1101
HEURISTICS= option, 1104
INTTOL= option, 1102
MAXNODES= option, 1102
MAXSOLS= option, 1102
MAXTIME= option, 1102
NODESEL= option, 1104
OBJSENSE= option, 1100
PRIMALIN= option, 1100
PRIMALOUT= option, 1101
PRINTFREQ= option, 1102
PRINTLEVEL2= option, 1102
PRINTLEVEL= option, 1102
PRIORITY= option, 1105
PROBE= option, 1103
RELOBJGAP= option, 1103
SCALE= option, 1103
STRONGITER= option, 1105
STRONGLEN= option, 1105
TARGET= option, 1104
TIMETYPE= option, 1104
VARSEL= option, 1105

PROC OPTMODEL statement,
See also OPTMODEL procedure
statement options, 691

PROC OPTQP statement,
See OPTQP procedure
DATA= option, 1151
DUALOUT=option, 1152
MAXITER= option, 1152

1206 � Syntax Index

MAXTIME= option, 1152
OBJSENSE= option, 1152
PRESOLVER= option, 1152
PRIMALOUT= option, 1152
PRINTFREQ= option, 1152
PRINTLEVEL= option, 1153
SAVE–ONLY–IF–OPTIMAL option, 1153
STOP–DG= option, 1153
STOP–DI= option, 1153
STOP–PI= option, 1153

PROD aggregation expression
OPTMODEL expression extensions, 741

PROFILE keyword
TYPE variable (NLP), 381

PROFILE statement
NLP procedure, 337, 380, 381

PROJCRPJ keyword
TYPE variable (NLP), 379

PROJECT keyword
BACKTRACK= option (LP), 177
CANSELECT= option (LP), 178, 207

PROJGRAD keyword
TYPE variable (NLP), 379

PROJHESS keyword
TYPE variable (NLP), 379

PROXIMITYPAUSE= option
PROC LP statement, 176, 185, 217

PRSLTYPE= option
INTPOINT procedure, 84
RESET statement (NETFLOW), 502

PSEUDOC keyword
BACKTRACK= option (LP), 177
CANSELECT= option (LP), 178, 207
VARSELECT= option (LP), 180, 209

PSH option,
See PSHORT option

PSHORT option
PROC NLP statement, 320, 384

PSTDERR option
PROC NLP statement, 320, 384

PSUMMARY option
PROC NLP statement, 321, 384

PTIME option
PROC NLP statement, 321

PTYPEx= option,
See PRICETYPEx= option

PUT statement
NLP program statements, 339
–PAGE– keyword, 725

PWIDTH= option
PROC OPTMODEL statement, 693

PWOBJECTIVE= option
PROC LP statement, 179

Q
Q keyword

PRICETYPEx= option (NETFLOW), 496, 531,
532

Qx= option,

See QSIZEx= option
QxFILLNPARTIAL= option

RESET statement (NETFLOW), 497, 513, 533
QxFILLSCAN= option

RESET statement (NETFLOW), 497, 513, 533
QSIZEx= option

RESET statement (NETFLOW), 497, 513, 532,
533

QUAD keyword
TYPE variable (NLP), 375, 376

QUADAS keyword
TECH= option (NLP), 322, 348, 350, 375

QUANEW keyword
TECH= option (NLP), 322, 348, 349, 352–354,

362, 368
TECH= option (NLPC solver), 930, 931

QUEUESIZE= option
PROC OPTLP statement, 1053
SOLVE WITH LP statement, 838

QUIT statement
INTPOINT procedure, 92
LP procedure, 187, 217
NETFLOW procedure, 486

R
RANDOM= option

PROC NLP statement, 321
RANDOMPRICEMULT= option

PROC LP statement, 183
range expression

OPTMODEL expression extensions, 742
RANGE keyword

TYPE variable (LP), 192
RANGE statement

LP procedure, 187
RANGEPRICE option

PRINT statement (LP), 186
PROC LP statement, 181, 215

RANGERHS option
PRINT statement (LP), 186
PROC LP statement, 181, 215

RCHOLTINYTOL= option,
See CHOLTINYTOL= option

RDENSETHR= option,
See DENSETHR= option

READ DATA statement
COL keyword, 727
INTO keyword, 725
LTRIM option, 727
NOTRIM option, 727
OPTMODEL procedure, 725
RTRIM option, 727
TRIM option, 727

READPAUSE option
PROC LP statement, 176, 217

REDUCEQx= option
RESET statement (NETFLOW), 497

REDUCEQSIZEx= option
RESET statement (NETFLOW), 497, 513, 533

Syntax Index � 1207

REFACTFREQ= option
RESET statement (NETFLOW), 496

REFRESHQx= option
RESET statement (NETFLOW), 497, 513, 533

RELEVANT option
SHOW statement (NETFLOW), 513

RELOBJGAP= option
PROC OPTMILP statement, 1103
SOLVE WITH MILP statement, 869

RELOPTTOL= option
NLPC solver option, 927, 935, 938

REPSILON= option
PROC LP statement, 183

RESET OPTIONS statement
OPTMODEL procedure, 729

RESET statement
LP procedure, 188, 217
NETFLOW procedure, 486

REST= option,
See RESTART= option

RESTART= option
PROC NLP statement, 321

RESTORE statement
OPTMODEL procedure, 730

RFF= option,
See REFACTFREQ= option

RHS keyword
TYPE variable (INTPOINT), 95
TYPE variable (LP), 192
TYPE variable (NETFLOW), 515

RHS statement
INTPOINT procedure, 93
LP procedure, 188
NETFLOW procedure, 507

RHSOBS= option
PROC INTPOINT statement, 78
PROC NETFLOW statement, 472

RHSPHI= option
PROC LP statement, 181, 186, 215, 218

RHSSEN keyword
TYPE variable (LP), 192

RHSSEN option
PRINT statement (LP), 186

RHSSEN statement
LP procedure, 189, 213

ROW keyword
SCALE= option (INTPOINT), 78
SCALE= option (LP), 183, 202
SCALE= option (NETFLOW), 473

ROW option
PRINT statement (LP), 186

ROW statement
INTPOINT procedure, 93
LP procedure, 189
NETFLOW procedure, 507

RPDGAPTOL= option,
See PDGAPTOL= option

RPDSTEPMULT= option,
See PDSTEPMULT= option

RT option, READ DATA statement,
See RTRIM option, READ DATA statement

RTOLDINF= option,
See TOLDINF= option

RTOLPINF= option,
See TOLPINF= option

RTOLTOTDINF= option,
See TOLTOTDINF= option

RTOLTOTPINF= option,
See TOLTOTPINF= option

RTRIM option
READ DATA statement, 727

RTTOL= option
PROC INTPOINT statement, 85

RUN statement
INTPOINT procedure, 93
LP procedure, 190, 217
NETFLOW procedure, 508

S
SAME–NONARC–DATA option

PROC NETFLOW statement, 472, 552, 555
SASMPSXS macro function, 168, 196
SAVE MPS statement

OPTMODEL procedure, 730
SAVE option

QUIT statement (LP), 187
SAVE QPS statement

OPTMODEL procedure, 731
SAVE statement

NETFLOW procedure, 508
SAVE–ONLY–IF–OPTIMAL option

PROC OPTLP statement, 1050
PROC OPTQP statement, 1153

SCALE= option
PROC INTPOINT statement, 78
PROC LP statement, 183, 202
PROC NETFLOW statement, 473
PROC OPTLP statement, 1053
PROC OPTMILP statement, 1103
SOLVE WITH LP statement, 838
SOLVE WITH MILP statement, 869

SCDATA option,
See SPARSECONDATA option

SCRATCH option
RESET statement (NETFLOW), 498

SE option,
See PSTDERR option

SELECT statement
NLP program statements, 340

SENSITIVITY option
PRINT statement (LP), 185, 186, 217, 218

set constructor expression
OPTMODEL expression extensions, 742

set literal expression
OPTMODEL expression extensions, 743

SET statement,
See RESET statement
INIT keyword, 697

1208 � Syntax Index

OPTMODEL procedure, 696
SETOF aggregation expression

OPTMODEL expression extensions, 744
SHORT option,

NLP procedure, See PSHORT option
PRINT statement (NETFLOW), 482

SHORTPATH option
PROC INTPOINT statement, 79
PROC NETFLOW statement, 474

SHOW statement
LP procedure, 190, 217
NETFLOW procedure, 510

SIGSQ keyword
TYPE variable (NLP), 380

SIGSQ= option
PROC NLP statement, 321, 372

SIMPLEX option
SHOW statement (NETFLOW), 512

SING= option,
See SINGULAR= option

SINGULAR= option
PROC NLP statement, 321

SINK= option
PROC INTPOINT statement, 79, 121
PROC NETFLOW statement, 474, 554

SINKNODE= option,
See SINK= option

SLICE expression
OPTMODEL expression extensions, 744

SMALL= option
PROC LP statement, 183

SND option,
See SAME–NONARC–DATA option

SOL= option,
See SOLVER= option

SOLUTION option
PRINT statement (LP), 186

SOLVE option
EXPAND statement, 712

SOLVE statement
OBJECTIVE keyword, 733
OPTMODEL procedure, 733
WITH keyword, 733

SOLVE WITH LP statement
BASIS= option, 837
FEASTOL= option, 836
IIS= option, 835
MAXITER= option, 836
MAXTIME= option, 836
OPTTOL= option, 836
PRESOLVER= option, 836
PRICETYPE= option, 837
PRINTFREQ= option, 836
QUEUESIZE= option, 838
SCALE= option, 838
SOLVER= option, 835
STOP–DG= option, 838
STOP–DI= option, 838
STOP–PI= option, 838

TIMETYPE= option, 837
SOLVE WITH MILP statement

ABSOBJGAP= option, 867
CUTCLIQUE= option, 872
CUTFLOWCOVER= option, 872
CUTFLOWPATH= option, 872
CUTGOMORY= option, 873
CUTGUB= option, 873
CUTIMPLIED= option, 873
CUTKNAPSACK= option, 873
CUTLAP= option, 873
CUTMIR= option, 873
CUTOFF= option, 867
CUTSFACTOR= option, 873
EMPHASIS= option, 867
HEURISTICS= option, 870
INTTOL= option, 868
MAXNODES= option, 868
MAXSOLS= option, 868
MAXTIME= option, 868
NODESEL= option, 870
PRESOLVER= option, 866
PRIMALIN option, 867
PRINTFREQ= option, 868
PRINTLEVEL2= option, 868
PRIORITY= option, 871
PROBE= option, 869
RELOBJGAP= option, 869
SCALE= option, 869
STRONGITER= option, 871
STRONGLEN= option, 871
TARGET= option, 869
TIMETYPE= option, 870
VARSEL= option, 871

SOLVE WITH QP statement
MAXITER= option, 979
MAXTIME= option, 979
PRESOLVER= option, 979
PRINTFREQ= option, 979
STOP–DG= option, 979
STOP–DI= option, 980
STOP–PI= option, 980

SOLVER= option
PROC OPTLP statement, 1050
SOLVE WITH LP statement, 835

SOME–ARCS option
PRINT statement (NETFLOW), 481

SOME–CONS option
PRINT statement (NETFLOW), 481

SOME–NONARCS option
PRINT statement (NETFLOW), 481

SOME–VARIABLES option
PRINT statement (NETFLOW), 481

SOSEQ keyword
TYPE variable (LP), 191

SOSLE keyword
TYPE variable (LP), 191

SOURCE= option
PROC INTPOINT statement, 79, 121

Syntax Index � 1209

PROC NETFLOW statement, 474, 553
SOURCENODE= option,

See SOURCE= option
SP option,

See SHORTPATH option
SP2 option,

See SPARSEP2 option
SPARSECONDATA option

PROC INTPOINT statement, 80, 100
PROC NETFLOW statement, 474, 519

SPARSEDATA option
PROC LP statement, 174

SPARSEP2 option
PROC NETFLOW statement, 475

SQP solver
FEASTOL= option, 1001
HESCHECK option, 1001
MAXITER= option, 1001
MAXTIME= option, 1001
NOHESCHECK option, 1001
OPTTOL= option, 1001
PENALTY= option, 1001
PRINTFREQ option, 1001

STAGE option
SHOW statement (NETFLOW), 513

STATUS option
SHOW statement (LP), 190
SHOW statement (NETFLOW), 510

STDERR keyword
TYPE variable (NLP), 378

STDERR option,
See PSTDERR option

STOP statement
OPTMODEL procedure, 734

STOP–DG= option
PROC OPTLP statement, 1053
PROC OPTQP statement, 1153
SOLVE WITH LP statement, 838
SOLVE WITH QP statement, 979

STOP–DI= option
PROC OPTLP statement, 1053
PROC OPTQP statement, 1153
SOLVE WITH LP statement, 838
SOLVE WITH QP statement, 980

STOP–PI= option
PROC OPTLP statement, 1053
PROC OPTQP statement, 1153
SOLVE WITH LP statement, 838
SOLVE WITH QP statement, 980

STOP–C= option
PROC INTPOINT statement, 86, 123
RESET statement (NETFLOW), 504

STOP–DG= option
PROC INTPOINT statement, 86, 123
RESET statement (NETFLOW), 504

STOP–IB= option
PROC INTPOINT statement, 86, 123
RESET statement (NETFLOW), 504

STOP–IC= option

PROC INTPOINT statement, 86, 123
RESET statement (NETFLOW), 504

STOP–ID= option
PROC INTPOINT statement, 86, 123
RESET statement (NETFLOW), 505

STR statement,
See STRING statement

STRING statement
INIT keyword, 697
OPTMODEL procedure, 696

STRONGITER= option
PROC OPTMILP statement, 1105
SOLVE WITH MILP statement, 871

STRONGLEN= option
PROC OPTMILP statement, 1105
SOLVE WITH MILP statement, 871

SUM aggregation expression
OPTMODEL expression extensions, 745

SUM option
See PSUMMARY option, 321

SUMMARY option,
See PSUMMARY option

SUMOBS option
NLINCON statement (NLP), 336

SUPDEM statement
INTPOINT procedure, 94
NETFLOW procedure, 514

SUPPLY statement
INTPOINT procedure, 94
NETFLOW procedure, 514

SUPPLY= option
PROC INTPOINT statement, 80, 121
PROC NETFLOW statement, 475, 553

SYMDIFF expression
OPTMODEL expression extensions, 746

T
TABLEAU option

PRINT statement (LP), 187, 199
TABLEAUOUT= option

PROC LP statement, 174, 221
TABLEAUPRINT option

PROC LP statement, 175, 199
TAIL statement,

See TAILNODE statement
TAILNODE statement

INTPOINT procedure, 94
NETFLOW procedure, 514

TARGET= option
PROC OPTMILP statement, 1104
SOLVE WITH MILP statement, 869

TECH= option
NLPC solver option, 928
NLPU solver option, 962
PROC NLP statement, 322, 369

TECHNIQUE= option,
See TECH= option

TERMINAT keyword
TYPE variable (NLP), 380

1210 � Syntax Index

THEN keyword
IF statement, 717

THRUNET option
PROC INTPOINT statement, 80, 116, 117
PROC NETFLOW statement, 475, 544, 545

–TIME– keyword
TYPE variable (NLP), 380

TIME= option
PROC LP statement, 183

TIMETYPE= option
PROC OPTLP statement, 1052
PROC OPTMILP statement, 1104
SOLVE WITH LP statement, 837
SOLVE WITH MILP statement, 870

TO statement,
See HEADNODE statement

TOLDINF= option
PROC INTPOINT statement, 82
RESET statement (NETFLOW), 501

TOLPINF= option
PROC INTPOINT statement, 82
RESET statement (NETFLOW), 501

TOLTOTDINF= option
PROC INTPOINT statement, 83
RESET statement (NETFLOW), 501

TOLTOTPINF= option
PROC INTPOINT statement, 83
RESET statement (NETFLOW), 501

TONODE statement,
See HEADNODE statement

TR option, READ DATA statement,
See TRIM option, READ DATA statement

TREETYPE= option
PROC LP statement, 180

TRIM option
READ DATA statement, 727

TRUREG keyword
TECH= option (NLP), 323, 348, 351, 367
TECH= option (NLPC solver), 928–930

tuple expression
OPTMODEL expression extensions, 746

TWOPHASE1 option
RESET statement (NETFLOW), 492

TWOPHASE2 option
RESET statement (NETFLOW), 494

TYPE keyword
TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 515

TYPE statement
INTPOINT procedure, 95
LP procedure, 190
NETFLOW procedure, 515

TYPEOBS= option
PROC INTPOINT statement, 80
PROC NETFLOW statement, 475

U
U= option

PROC LP statement, 183

RESET statement (NETFLOW), 496
UB keyword

TYPE variable (NLP), 374, 375, 378
UNFIX statement

OPTMODEL procedure, 734
UNION aggregation expression

OPTMODEL expression extensions, 747
UNION expression

OPTMODEL expression extensions, 746
UNREST keyword

TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 515

UNRSTRT keyword
TYPE variable (LP), 191

UNTIL keyword
DO statement, iterative, 708

UPD= option,
See UPDATE= option

UPDATE= option
PROC NLP statement, 323, 351, 352

UPPCOST keyword
TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 515

UPPER keyword
TYPE variable (INTPOINT), 95
TYPE variable (NETFLOW), 516

UPPER= option
RESET statement (LP), 188

UPPERBD keyword
TYPE variable (LP), 191, 204
TYPE variable (NLP), 374, 375, 378

UPPERBD statement,
See CAPACITY statement

V
VAR option

EXPAND statement, 712
VAR statement,

NLP procedure, See DECVAR statement
INIT keyword, 700
INTPOINT procedure, 96
LP procedure, 192
NETFLOW procedure, 516
OPTMODEL procedure, 700

VARDEF= option
PROC NLP statement, 323, 370

VARFUZZ= option
PROC OPTMODEL statement, 693

VARIABLES option
PRINT statement (NETFLOW), 481

VARNAME statement,
See NAME statement

VARSEL= option
PROC OPTMILP statement, 1105
SOLVE WITH MILP statement, 871

VARSELECT= option
PROC LP statement, 179, 180, 208

VERBOSE= option
PROC INTPOINT statement, 80

Syntax Index � 1211

RESET statement (NETFLOW), 499
VERSION= option

PROC NLP statement, 323, 353, 357, 368
VS= option,

See VERSION= option
VSING= option,

See VSINGULAR= option
VSINGULAR= option

PROC NLP statement, 324, 372

W
WALD keyword

CLPARM= option (NLP), 307
WALD–CL keyword

TYPE variable (NLP), 381
WARM option

PROC NETFLOW statement, 475, 546, 554
WHEN statement

NLP program statements, 340
WHILE keyword

DO statement, iterative, 708
WITH keyword

SOLVE statement, 733
WITHIN expression

OPTMODEL expression extensions, 747
WOBJECTIVE= option

PROC LP statement, 179, 180

X
XCONV= option

PROC NLP statement, 324
XSIZE= option

PROC NLP statement, 324
XTOL= option,

See XCONV= option

Z
Z1= option,

See ZERO1= option
Z2= option,

See ZERO2= option
ZERO option

PRINT statement (NETFLOW), 482
ZERO1= option

RESET statement (NETFLOW), 499
ZERO2= option

PROC INTPOINT statement, 81
RESET statement (NETFLOW), 500

ZEROS option
PRINT statement (LP), 187

ZEROTOL= option
PROC INTPOINT statement, 81
RESET statement (NETFLOW), 500

ZTOL1 option
RESET statement (NETFLOW), 500

ZTOL2 option
RESET statement (NETFLOW), 500

1212

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

• If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents

	Acknowledgments

	What's New in SAS/OR 9.2

	Overview
	The NETFLOW Procedure
	The INTPOINT Procedure
	The LP Procedure
	The OPTLP Procedure
	The OPTMILP Procedure
	The OPTMODEL Procedure
	The OPTQP Procedure
	Earned Value Management Macros
	Microsoft Project Conversion Macros
	The GA Procedure
	The CLP Procedure (Experimental)

	Using This Book

	Purpose
	Organization
	Typographical Conventions
	Conventions for Examples
	Accessing the SAS/OR Sample Library
	Online Help System and Updates
	Additional Documentation for SAS/OR Software

	Chapter 1. Introduction to Optimization
	Overview
	Linear Programming Problems
	PROC OPTLP
	PROC OPTMODEL
	PROC LP
	PROC INTPOINT

	Network Problems
	PROC NETFLOW
	PROC INTPOINT

	Mixed Integer Linear Problems
	PROC OPTMILP
	PROC OPTMODEL
	PROC LP

	Quadratic Programming Problems
	PROC OPTQP
	PROC OPTMODEL

	Nonlinear Problems
	PROC OPTMODEL
	PROC NLP

	Model Building
	PROC OPTLP
	PROC NETFLOW
	PROC OPTMODEL

	Matrix Generation
	Exploiting Model Structure
	Report Writing
	The DATA Step
	Other Reporting Procedures

	References

	Chapter 2. The INTPOINT Procedure
	Overview: INTPOINT Procedure
	Mathematical Description of NPSC
	Mathematical Description of LP
	The Interior Point Algorithm
	Network Models

	Introduction
	Getting Started: NPSC Problems
	Getting Started: LP Problems
	Typical PROC INTPOINT Run

	Syntax: INTPOINT Procedure
	Functional Summary
	PROC INTPOINT Statement
	CAPACITY Statement
	COEF Statement
	COLUMN Statement
	COST Statement
	DEMAND Statement
	HEADNODE Statement
	ID Statement
	LO Statement
	NAME Statement
	NODE Statement
	QUIT Statement
	RHS Statement
	ROW Statement
	RUN Statement
	SUPDEM Statement
	SUPPLY Statement
	TAILNODE Statement
	TYPE Statement
	VAR Statement

	Details: INTPOINT Procedure
	Input Data Sets
	Output Data Sets
	Converting Any PROC INTPOINT Format to an MPS-Format SAS Data Set
	Case Sensitivity
	Loop Arcs
	Multiple Arcs
	Flow and Value Bounds
	Tightening Bounds and Side Constraints
	Reasons for Infeasibility
	Missing S Supply and Missing D Demand Values
	Balancing Total Supply and Total Demand
	How to Make the Data Read of PROC INTPOINT More Efficient
	Stopping Criteria
	Macro Variable _ORINTPO
	Memory Limit

	Examples: INTPOINT Procedure
	Example 2.1. Production, Inventory, Distribution Problem
	Example 2.2. Altering Arc Data
	Example 2.3. Adding Side Constraints
	Example 2.4. Using Constraints and More Alteration to Arc Data
	Example 2.5. Nonarc Variables in the Side Constraints
	Example 2.6. Solving an LP Problem with Data in MPS Format
	Example 2.7. Converting to an MPS-Format SAS Data Set

	References

	Chapter 3. The LP Procedure
	Overview: LP Procedure
	Getting Started: LP Procedure
	An Introductory Example
	An Integer Programming Example
	An MPS Format to Sparse Format Conversion Example

	Syntax: LP Procedure
	Functional Summary
	PROC LP Statement
	COEF Statement
	COL Statement
	ID Statement
	IPIVOT Statement
	PIVOT Statement
	PRINT Statement
	QUIT Statement
	RANGE Statement
	RESET Statement
	RHS Statement
	RHSSEN Statement
	ROW Statement
	RUN Statement
	SHOW Statement
	TYPE Statement
	VAR Statement

	Details: LP Procedure
	Missing Values
	Dense Data Input Format
	Sparse Data Input Format
	Converting Any PROC LP Format to an MPS-Format SAS Data Set
	Converting Standard MPS Format to Sparse Format
	The Reduced Costs, Dual Activities, and Current Tableau
	Macro Variable _ORLP_
	Pricing
	Scaling
	Preprocessing
	Integer Programming
	Sensitivity Analysis
	Range Analysis
	Parametric Programming
	Interactive Facilities
	Memory Management
	Output Data Sets
	Input Data Sets
	Displayed Output
	ODS Table and Variable Names
	Memory Limit

	Examples: LP Procedure
	Example 3.1. An Oil Blending Problem
	Example 3.2. A Sparse View of the Oil Blending Problem
	Example 3.3. Sensitivity Analysis: Changes in Objective Coefficients
	Example 3.4. Additional Sensitivity Analysis
	Example 3.5. Price Parametric Programming for the Oil Blending Problem
	Example 3.6. Special Ordered Sets and the Oil Blending Problem
	Example 3.7. Goal-Programming a Product Mix Problem
	Example 3.8. A Simple Integer Program
	Example 3.9. An Infeasible Problem
	Example 3.10. Restarting an Integer Program
	Example 3.11. Alternative Search of the Branch-and-Bound Tree
	Example 3.12. An Assignment Problem
	Example 3.13. A Scheduling Problem
	Example 3.14. A Multicommodity Transshipment Problem with Fixed Charges
	Example 3.15. Converting to an MPS-Format SAS Data Set

	References

	Chapter 4. The NLP Procedure
	Overview: NLP Procedure
	Getting Started: NLP Procedure
	Introductory Examples

	Syntax: NLP Procedure
	Functional Summary
	PROC NLP Statement
	ARRAY Statement
	BOUNDS Statement
	BY Statement
	CRPJAC Statement
	DECVAR Statement
	GRADIENT Statement
	HESSIAN Statement
	INCLUDE Statement
	JACNLC Statement
	JACOBIAN Statement
	LABEL Statement
	LINCON Statement
	MATRIX Statement
	MIN, MAX, and LSQ Statements
	MINQUAD and MAXQUAD Statements
	NLINCON Statement
	PROFILE Statement
	Program Statements

	Details: NLP Procedure
	Criteria for Optimality
	Optimization Algorithms
	Finite-Difference Approximations of Derivatives
	Hessian and CRP Jacobian Scaling
	Testing the Gradient Specification
	Termination Criteria
	Active Set Methods
	Feasible Starting Point
	Line-Search Methods
	Restricting the Step Length
	Computational Problems
	Covariance Matrix
	Input and Output Data Sets
	Displayed Output
	Missing Values
	Computational Resources
	Memory Limit

	Examples: NLP Procedure
	Example 4.1. Using the DATA= Option
	Example 4.2. Using the INQUAD= Option
	Example 4.3. Using the INEST=Option
	Example 4.4. Restarting an Optimization
	Example 4.5. Approximate Standard Errors
	Example 4.6. Maximum Likelihood Weibull Estimation
	Example 4.7. Simple Pooling Problem
	Example 4.8. Chemical Equilibrium
	Example 4.9. Minimize Total Delay in a Network

	References

	Chapter 5. The NETFLOW Procedure
	Overview: NETFLOW Procedure
	Introduction
	Network Models
	Side Constraints
	Advantages of Network Models over LP Models
	Mathematical Description of NPSC
	Flow Conservation Constraints
	Nonarc Variables
	Warm Starts

	Getting Started: NETFLOW Procedure
	Introductory Example

	Syntax: NETFLOW Procedure
	Functional Summary
	Interactivity
	PROC NETFLOW Statement
	CAPACITY Statement
	COEF Statement
	COLUMN Statement
	CONOPT Statement
	COST Statement
	DEMAND Statement
	HEADNODE Statement
	ID Statement
	LO Statement
	MULT Statement
	NAME Statement
	NODE Statement
	PIVOT Statement
	PRINT Statement
	QUIT Statement
	RESET Statement
	RHS Statement
	ROW Statement
	RUN Statement
	SAVE Statement
	SHOW Statement
	SUPDEM Statement
	SUPPLY Statement
	TAILNODE Statement
	TYPE Statement
	VAR Statement

	Details: NETFLOW Procedure
	Input Data Sets
	Output Data Sets
	Converting Any PROC NETFLOW Format to an MPS-Format SAS Data Set
	Case Sensitivity
	Loop Arcs
	Multiple Arcs
	Pricing Strategies
	Dual Variables, Reduced Costs, and Status
	The Working Basis Matrix
	Flow and Value Bounds
	Tightening Bounds and Side Constraints
	Reasons for Infeasibility
	Missing S Supply and Missing D Demand Values
	Balancing Total Supply and Total Demand
	Warm Starts
	How to Make the Data Read of PROC NETFLOW More Efficient
	Macro Variable _ORNETFL
	Memory Limit

	The Interior Point Algorithm: NETFLOW Procedure
	Introduction
	Network Models: Interior Point Algorithm
	Linear Programming Models: Interior Point Algorithm

	Generalized Networks: NETFLOW Procedure
	What Is a Generalized Network?
	How to Specify Data for Arc Multipliers

	Using the New EXCESS= Option in Pure Networks: NETFLOW Procedure
	Handling Excess Supply or Demand
	Handling Missing Supply and Demand Simultaneously
	Maximum Flow Problems
	Handling Supply and Demand Ranges

	Using the New EXCESS= Option in Generalized Networks: NETFLOW Procedure
	How Generalized Networks Differ from Pure Networks
	The EXCESS=SUPPLY Option
	The EXCESS=DEMAND Option

	Examples: NETFLOW Procedure
	Example 5.1. Shortest Path Problem
	Example 5.2. Minimum Cost Flow Problem
	Example 5.3. Using a Warm Start
	Example 5.4. Production, Inventory, Distribution Problem
	Example 5.5. Using an Unconstrained Solution Warm Start
	Example 5.6. Adding Side Constraints, Using a Warm Start
	Example 5.7. Using a Constrained Solution Warm Start
	Example 5.8. Nonarc Variables in the Side Constraints
	Example 5.9. Pure Networks: Using the EXCESS= Option
	Example 5.10. Maximum Flow Problem
	Example 5.11. Generalized Networks: Using the EXCESS= Option
	Example 5.12. Generalized Networks: Maximum Flow Problem
	Example 5.13. Machine Loading Problem
	Example 5.14. Generalized Networks: Distribution Problem
	Example 5.15. Converting to an MPS-Format SAS Data Set

	References

	Chapter 6. The OPTMODEL Procedure
	Overview: OPTMODEL Procedure
	Getting Started: OPTMODEL Procedure
	An Unconstrained Optimization Example
	The Rosenbrock Problem
	A Transportation Problem

	OPTMODEL Modeling Language: Basic Concepts
	Named Parameters
	Indexing
	Types
	Names
	Parameters
	Expressions
	Identifier Expressions
	Function Expressions
	Index Sets

	Syntax: OPTMODEL Procedure
	Functional Summary
	PROC OPTMODEL Statement
	Declaration Statements
	Programming Statements
	Macro Variable _OROPTMODEL_

	OPTMODEL Expression Extensions
	AND Aggregation Expression
	CARD Function
	CROSS Expression
	DIFF Expression
	IF-THEN/ELSE Expression
	IN Expression
	Index Set Expression
	INTER Expression
	INTER Aggregation Expression
	MAX Aggregation Expression
	MIN Aggregation Expression
	OR Aggregation Expression
	PROD Aggregation Expression
	Range Expression
	Set Constructor Expression
	Set Literal Expression
	SETOF Aggregation Expression
	SLICE Expression
	SUM Aggregation Expression
	SYMDIFF Expression
	Tuple Expression
	UNION Expression
	UNION Aggregation Expression
	WITHIN Expression

	Details: OPTMODEL Procedure
	Conditions of Optimality
	Data Set Input/Output
	Control Flow
	Formatted Output
	ODS Table and Variable Names
	Constraints
	Suffixes
	Integer Variable Suffixes
	Dual Values
	Reduced Costs
	Presolver
	Model Update
	OPTMODEL Options
	Automatic Differentiation
	Conversions
	More on Index Sets
	Memory Limit

	Examples: OPTMODEL Procedure
	Example 6.1. Matrix Square Root
	Example 6.2. Reading from and Creating a Data Set
	Example 6.3. Model Construction
	Example 6.4. Set Manipulation

	Rewriting NLP Models for PROC OPTMODEL
	References

	Chapter 7. The Interior Point Nonlinear Programming Solver
	Overview
	Getting Started
	Syntax
	Functional Summary
	IPNLP Solver Options

	Details
	Basic Definitions and Notation
	Overview of Constrained Optimization
	Overview of Interior Point Methods
	Solver Termination Criterion
	Solver Termination Messages
	Macro Variable _OROPTMODEL_

	Examples
	Example 7.1. Solving Highly Nonlinear Optimization Problems
	Example 7.2. Solving Unconstrained Optimization Problems
	Example 7.3. Solving NLP Problems with Range Constraints

	References

	Chapter 8. The Linear Programming Solver
	Overview
	Getting Started
	Syntax
	Functional Summary
	LP Solver Options

	Details
	Presolve
	Pricing Strategies for the Primal Simplex Solver
	The Interior Point Algorithm: Overview
	Macro Variable _OROPTMODEL_
	Iteration Log for the Simplex Solvers
	Iteration Log for the Interior Point Solver
	Problem Statistics
	Data Magnitude and Variable Bounds
	Variable and Constraint Status
	Irreducible Infeasible Set

	Examples
	Example 8.1. Diet Problem
	Example 8.2. Reoptimizing the Diet Problem Using BASIS=WARMSTART
	Example 8.3. Two-Person Zero-Sum Game
	Example 8.4. Finding an Irreducible Infeasible Set

	References

	Chapter 9. The Mixed Integer Linear Programming Solver
	Overview
	Getting Started
	Syntax
	Functional Summary
	MILP Solver Options

	Details
	The Branch-and-Bound Algorithm
	Controlling the Branch-and-Bound Algorithm
	Presolve and Probing
	Cutting Planes
	Primal Heuristics
	Node Log
	Problem Statistics
	Data Magnitude and Variable Bounds
	Macro Variable _OROPTMODEL_

	Examples
	Example 9.1. Scheduling
	Example 9.2. Multicommodity Transshipment Problem with Fixed Charges
	Example 9.3. Facility Location
	Example 9.4. Traveling Salesman Problem

	References

	Chapter 10. The NLPC Nonlinear Optimization Solver
	Overview
	Optimization Techniques and Types of Problems Solved

	Getting Started
	Introductory Examples

	Syntax
	Functional Summary
	NLPC Solver Options

	Details
	Optimization Algorithms
	Conditions of Optimality
	Optimality Control
	Infeasibility
	Feasible Starting Point
	Line-Search Method
	Computational Problems
	Iteration Log
	Macro Variable _OROPTMODEL_

	Examples
	Example 10.1. Least Squares Problem
	Example 10.2. Maximum Likelihood Weibull Model
	Example 10.3. Simple Pooling Problem

	References

	Chapter 11. The Unconstrained Nonlinear Programming Solver
	Overview
	Getting Started
	Syntax
	Functional Summary
	NLPU Solver Options

	Details
	Conditions of Optimality
	Line-Search Algorithm
	Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm
	Macro Variable _OROPTMODEL_

	Examples
	Example 11.1. Solving a Highly Nonlinear Problem
	Example 11.2. Solving the Accumulated Rosenbrock Function

	References

	Chapter 12. The Quadratic Programming Solver
	Overview
	Getting Started
	Syntax
	Functional Summary
	QP Solver Options

	Details
	Interior Point Algorithm: Overview
	Iteration Log
	Problem Statistics
	Macro Variable _OROPTMODEL_

	Examples
	Example 12.1. Linear Least Squares Problem
	Example 12.2. Portfolio Optimization
	Example 12.3. Portfolio Selection with Transactions

	References

	Chapter 13. The Sequential Quadratic Programming Solver
	Overview
	Getting Started
	Syntax
	Functional Summary
	SQP Solver Options

	Details
	Conditions of Optimality
	Solution Techniques
	Solver Termination Messages
	Macro Variable _OROPTMODEL_

	Examples
	Example 13.1. Solving a Highly Nonlinear Problem
	Example 13.2. Using the HESCHECK Option
	Example 13.3. Choosing a Good Starting Point
	Example 13.4. Using the PENALTY= Option
	Example 13.5. Unconstrained NLP Optimization
	Example 13.6. Solving Large-Scale NLP Problems

	References

	Chapter 14. The MPS-Format SAS Data Set
	Overview
	Observations
	Order of Sections

	Sections Format
	NAME Section
	ROWS Section
	COLUMNS Section
	RHS Section (Optional)
	RANGES Section (Optional)
	BOUNDS Section (Optional)
	BRANCH Section (Optional)
	QSECTION Section
	ENDATA Section

	Details
	Converting an MPS/QPS-Format File: %MPS2SASD
	Length of Variables

	Examples
	Example 14.1. MPS-Format Data Set for a Product Mix Problem
	Example 14.2. Fixed-MPS-Format File
	Example 14.3. Free-MPS-Format File
	Example 14.4. Using the %MPS2SASD Macro

	References

	Chapter 15. The OPTLP Procedure
	Overview: OPTLP Procedure
	Getting Started: OPTLP Procedure
	Syntax: OPTLP Procedure
	Functional Summary
	PROC OPTLP Statement
	PROC OPTLP Macro Variable

	Details: OPTLP Procedure
	Data Input and Output
	Presolve
	Pricing Strategies for the Simplex Solvers
	Warm Start for the Simplex Solvers
	The Interior Point Algorithm: Overview
	Iteration Log for the Simplex Solvers
	Iteration Log for the Interior Point Solver
	ODS Tables
	Irreducible Infeasible Set
	Memory Limit

	Examples: OPTLP Procedure
	Example 15.1. Oil Refinery Problem
	Example 15.2. Using the Interior Point Solver
	Example 15.3. The Diet Problem
	Example 15.4. Reoptimizing after Modifying the Objective Function
	Example 15.5. Reoptimizing after Modifying the Right-Hand Side
	Example 15.6. Reoptimizing after Adding a New Constraint
	Example 15.7. Finding an Irreducible Infeasible Set

	References

	Chapter 16. The OPTMILP Procedure
	Overview: OPTMILP Procedure
	Getting Started: OPTMILP Procedure
	Syntax: OPTMILP Procedure
	Functional Summary
	PROC OPTMILP Statement
	Macro Variable _OROPTMILP_

	Details: OPTMILP Procedure
	Data Input and Output
	Warm Start
	The Branch-and-Bound Algorithm
	Controlling the Branch-and-Bound Algorithm
	Presolve and Probing
	Cutting Planes
	Primal Heuristics
	Node Log
	ODS Tables
	Memory Limit

	Examples: OPTMILP Procedure
	Example 16.1. Simple Integer Linear Program
	Example 16.2. MIPLIB Benchmark Instance
	Example 16.3. Facility Location

	References

	Chapter 17. The OPTQP Procedure
	Overview: OPTQP Procedure
	Getting Started: OPTQP Procedure
	Syntax: OPTQP Procedure
	Functional Summary
	PROC OPTQP Statement
	PROC OPTQP Macro Variable

	Details: OPTQP Procedure
	Output Data Sets
	Interior Point Algorithm: Overview
	Iteration Log for the OPTQP Procedure
	ODS Tables
	Memory Limit

	Examples: OPTQP Procedure
	Example 17.1. Linear Least Squares Problem
	Example 17.2. Portfolio Optimization
	Example 17.3. Portfolio Selection with Transactions

	References

	Subject Index
	Syntax Index

