
SAS® 9.2
Open Metadata Interface
Reference and Usage

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010.
SAS ® 9.2 Open Metadata Interface: Reference and Usage. Cary, NC: SAS Institute Inc.

SAS® 9.2 Open Metadata Interface: Reference and Usage
Copyright © 2010, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2010

2nd electronic book, September 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New ix

Overview ix

P A R T 1 Concepts 1

Chapter 1 � Introduction 3
About This Book 3

Installation Requirements 4

Prerequisites 4

Audience 5

What Is the SAS Open Metadata Architecture? 5

What Can I Do with the SAS Open Metadata Interface? 6

Authentication 6

Authorization Facility 7

Chapter 2 � Client Requirements 9
Types of SAS Open Metadata Interface Clients 9

Important Terms 10

Creating Repositories 10

Creating and Accessing Application Metadata 11

Connecting to the SAS Metadata Server 12

Communicating with the SAS Metadata Server 14

Controlling the SAS Metadata Server 15

P A R T 2 SAS Java Metadata Interface 17

Chapter 3 � Understanding the SAS Java Metadata Interface 19
What’s New in the SAS 9.2 Java Metadata Interface 19

About This Section 20

SAS Java Metadata Interface Overview 21

JRE and JAR Requirements 22

How the SAS Java Metadata Interface Works 22

Chapter 4 � Using the SAS Java Metadata Interface 25
Overview of Creating a SAS Java Metadata Interface Client 25

Advantages Over the IOMI Server Interface 25

Getting Started 26

Instantiating an Object Factory and Connecting to the SAS Metadata Server 26

Getting Information About Repositories 29

Creating Objects 31

Getting and Updating Existing Objects 33

Deleting Objects 35

iv

Sample Program 37

Chapter 5 � Understanding com.sas.metadata.remote Interfaces and Classes 51
Interfaces and Classes Summary 51

Working with the MdFactory Interface 52

Working with the MdOMRConnection Interface 53

Working with the CMetadata Interface 54

Working with the MdOMIUtil Interface 55

Working with the AssociationList Class 56

Working with the MdObjectStore Interface 57

Working with the MdUtil Interface 57

P A R T 3 Server Interfaces 59

Chapter 6 � Metadata Access (IOMI Interface) 61
Overview of the IOMI Server Interface 63

Constructing a Metadata Property String 64

Identifying Metadata 66

Functional Index to IOMI Methods 67

Using IOMI Flags 67

Summary Table of IOMI Flags 68

Summary Table of IOMI Options 74

<DOAS> Option 75

AddMetadata 77

AddResponsibleParty 79

AddUserFolders 81

DeleteMetadata 84

DoRequest 87

GetMetadata 89

GetMetadataObjects 93

GetNamespaces 96

GetRepositories 97

GetResponsibleParty 100

GetSubtypes 102

GetTypeProperties 104

GetTypes 105

GetUserFolders 107

IsSubtypeOf 108

UpdateMetadata 110

Chapter 7 � Authorization (ISecurity Interface) 113
Overview of the ISecurity Server Interface 115

Using the ISecurity Server Interface 116

DeleteInternalLogin 119

FreeCredentials 120

GetApplicationActionsAuthorizations 121

v

GetAuthorizations 123

GetAuthorizationsforObjects 126

GetCredentials 129

GetIdentity 131

GetInfo 132

GetInternalLoginSitePolicies 138

GetInternalLoginUserInfo 140

GetLoginsforAuthDomain 143

IsAuthorized 145

IsInRole 148

SetInternalLoginUserOptions 150

SetInternalPassword 153

Chapter 8 � Security Administration (ISecurityAdmin Interface) 155
Overview of the ISecurityAdmin Server Interface 157

Using the ISecurityAdmin Server Interface 157

Understanding the Transaction Context Methods 158

Understanding the General Authorization Administration Methods 159

Understanding the ACT Administration Methods 159

ApplyACTToObj 159

BeginTransactionContext 161

CreateAccessControlTemplate 163

DestroyAccessControlTemplate 165

EndTransactionContext 167

GetAccessControlTemplatesOnObj 169

GetAccessControlTemplateAttribs 170

GetAccessControlTemplateList 171

GetAuthorizationsOnObj 173

GetIdentitiesOnObj 178

RemoveACTFromObj 181

SetAccessControlTemplateAttribs 182

SetAuthorizationsOnObj 183

Chapter 9 � Server Control (IServer Interface) 187
Overview of the IServer Server Interface 187

Using the IServer Server Interface 188

Pause 189

Refresh 191

Resume 193

Status 194

Stop 200

P A R T 4 IOMI Server Interface Usage 203

Chapter 10 � Adding Metadata Objects 205
Overview of Adding Metadata 205

vi

Using the AddMetadata Method 205

Selecting Metadata Types to Represent Application Elements 210

Example of an AddMetadata Request That Creates an Application Metadata
Object 210

Example of an AddMetadata Request That Creates an Object and an Association to an
Existing Object 211

Example of an AddMetadata Request That Creates Multiple, Related Metadata
Objects 212

Example of an AddMetadata Request That Creates Multiple, Unrelated Metadata
Objects 215

Example of an AddMetadata Request That Creates an Association to an Object in
Another Repository 217

Additional Information 219

Chapter 11 � Updating Metadata Objects 221
Overview of Updating Metadata 221

Using the UpdateMetadata Method 222

Example of an UpdateMetadata Request That Modifies an Object’s Attributes 227

Example of an UpdateMetadata Request That Modifies an Association 228

Example of an UpdateMetadata Request That Merges Associations 229

Example of an UpdateMetadata Request That Deletes an Association 232

Example of an UpdateMetadata Request That Appends Associations 233

Additional Information 234

Chapter 12 � Overview of Querying Metadata 235
Supported Queries 235

Using GetTypes to Get the Metadata Types in a Namespace 237

Using GetRepositories to Get the Registered Repositories 238

Using GetRepositories to Get Repository Access and Status Information 238

Using GetMetadata to Get a Repository’s Regular Attributes 240

Using GetTypes to Get Actual Metadata Types in a Repository 241

Chapter 13 � Using GetMetadata to Get the Properties of a Specified Metadata
Object 243
Introduction to the GetMetadata Method 243

GetMetadata and Cross-Repository References in SAS 9.2 244

Expanding a GetMetadata Request to Get All of An Object’s Attributes 245

Expanding a GetMetadata Request to Get All of an Object’s Properties 246

Expanding a GetMetadata Request to Get Properties of Associated Objects 247

Filtering the Associated Objects That Are Returned By a GetMetadata Request 249

Using GetMetadata to Get Common Properties for Sets of Objects 254

Including Objects from Project Repositories in a Public Query 259

Combining GetMetadata Flags 260

Using Templates 260

Chapter 14 � Using GetMetadataObjects to Get All Metadata of a Specified Metadata
Type 263

vii

Introduction to the GetMetadataObjects Method 263

Expanding a GetMetadataObjects Request to Return Additional Properties 264

Expanding a GetMetadataObjects Request to Include Subtypes 272

Expanding a GetMetadataObjects Request to Include Additional Repositories 273

Using GetMetadataObjects To List Repositories 275

Chapter 15 � Filtering a GetMetadataObjects Request 277
Overview of Filtering a GetMetadataObjects Request 277

<XMLSELECT> Element Form and Search Criteria Syntax 278

Object Component Syntax 279

Attribute Criteria Component Syntax 279

AssociationPath Component Syntax 282

Understanding an Association Path 282

Understanding Concatenated Association Paths 285

Sample Search Strings For Common Filters 286

Using OMI_XMLSELECT with Other Flags 288

Examples of Search Strings That Filter Objects Based on UsageVersion 288

Example of a GetMetadataObjects Request That Specifies an <XMLSELECT>
Element 289

Filtering the Associated Objects That Are Retrieved By a GetMetadataObjects
Request 290

Example of Using XMLSELECT and Template Filter Criteria in the Same Method
Call 292

Chapter 16 � Metadata Locking Options 295
Overview of Metadata Locking Options 295

Using SAS Open Metadata Interface Flags to Lock Objects 295

Chapter 17 � Deleting Metadata Objects 297
Using the DeleteMetadata Method to Delete Application Metadata Objects 297

Deleting Associated Objects Using a User-Defined Template 298

Deleting a Repository 300

Index 301

viii

ix

What’s New

Overview

The SAS Open Metadata Interface documentation has been reorganized. You need
information about this reorganization to successfully use this book.

The SAS 9.2 Open Metadata Interface software has been enhanced to provide
improved metadata access, authorization, and server control functionality. It also offers
a new security administration interface.

See the following topics for information about specific enhancements in each area:

� “Documentation Changes” on page ix

� “Metadata Access Enhancements” on page x

� “Authorization Enhancements” on page xii

� “Server Control Enhancements” on page xiii

� “New Security Administration Server Interface” on page xiii

Documentation Changes

� The content of SAS 9.1.3 Open Metadata Interface: Reference, the SAS 9.1.3 Open
Metadata Interface: User’s Guide, and the SAS 9.1.3 Java Metadata Interface:
User’s Guide has been merged into one document. The new document is the SAS
9.2 Open Metadata Interface: Reference and Usage. For information about the
reorganization, see “About This Book” on page 3.

� Documentation about SAS Metadata Model metadata types is not in the SAS 9.2
Open Metadata Interface: Reference and Usage. This information is provided in a
separate document: the SAS 9.2 Metadata Model: Reference.

� Documentation about PROC METADATA and SAS metadata DATA step functions
is not included in the SAS 9.2 Open Metadata Interface: Reference and Usage. It is
provided in SAS 9.2 Language Interfaces to Metadata.

� SAS 9.2 Open Metadata Interface: Reference and Usage and SAS 9.2 Metadata
Model: Reference are available only online. See Product Documentation in the
Knowledge Base, available at http://support.sas.com.

x What’s New

This What’s New section describes enhancements to the SAS Open Metadata
Interface. For information about enhancements to the SAS 9.2 Java Metadata
Interface, see “What’s New in the SAS 9.2 Java Metadata Interface” on page 19. For
information about enhancements to the SAS 9.2 Metadata Model and SAS language
interfaces to metadata, see their documentation.

Metadata Access Enhancements
The SAS Open Metadata Interface provides the IOMI server interface for creating

and accessing metadata in a SAS Metadata Repository. The IOMI server interface has
been enhanced to improve functionality in several areas. The areas and specific
enhancements are as follows:

� Simplify creating and querying cross-repository references between objects in the
foundation and custom repositories.

� Dependency associations are no longer required to be defined between the
foundation and custom repositories before cross-repository references can be
created between objects in the repositories. Cross-repository references can
now be created between objects in the foundation repository and custom
repositories without preparation or restriction.

� The foundation repository and custom repositories, which contain metadata
for general use, are now referred to as public repositories. Project
repositories, which serve as development playpens, are now referred to as
private repositories.

� Clients no longer need to set directionality flags in a GetMetadata request
that is issued in a public repository to get information about cross-repository
references in other public repositories. A GetMetadata request returns
cross-repository references from all public repositories by default.

� Better separate metadata in public and private repositories.
� Because dependencies are no longer required, a project repository can serve

as a development playpen for any public repository. However, a user needs
CheckinMetadata permission in the public repository’s default ACT to update
the repository with information from a project repository.

� The OMI_DEPENDENCY_USED_BY (16384) flag, which used to specify
directionality for queries in SAS 9.1, has been repurposed. In SAS 9.2,
specify OMI_DEPENDENCY_USED_BY in the GetMetadata method only if
you want to include associated objects from private repositories in a request
that is issued in a public repository. For more information, see
“GetMetadata” on page 89 and “GetMetadata and Cross-Repository
References in SAS 9.2” on page 244.

Specify OMI_DEPENDENCY_USED_BY in the GetMetadataObjects
method to include objects of the specified metadata type from all private
repositories in the method results.

� The OMI_DEPENDENCY_USES (8192) flag has been repurposed. In SAS
9.2, set OMI_DEPENDENCY_USES in the GetMetadataObjects method to
include objects of the specified metadata type from all public repositories in
the method results. For more information, see “GetMetadataObjects” on page
93 and “Expanding a GetMetadataObjects Request to Include Additional
Repositories” on page 273.

� Improve repository management and reporting.
� A repository’s persisted availability is now controlled by using the value in its

Access= attribute. The Access= attribute accepts new values to support

What’s New xi

online, read-only, administrative, and offline states for a repository. For more
information about supported values, see the RepositoryBase metadata type in
SAS 9.2 Metadata Model: Reference.The Access= attribute is set with the
AddMetadata method and modified with the UpdateMetadata method.

� The AddMetadata method creates the file system directory for a new
repository when the <CREATEREPOSCONTAINER/> option is used. For
more information, see “AddMetadata” on page 77.

� The GetRepositories method now returns repository format, current access,
name, path, type, and pause state values when the OMI_ALL (1) flag is set.
For more information, see “GetRepositories” on page 97.

� Improve metadata searching capabilities and selection criteria. The
GetMetadataObjects XMLSELECT search syntax has been enhanced by the
following features:

� GE (greater than or equal to), NE (not equal to), and LE (less than or equal
to) operators have been added for specifying selection criteria.

� GT (greater than) and LT (less than) operators have been extended to operate
on character string values and numeric values.

� Concatenated association paths are supported as selection criteria.
� An object qualifier is supported on search strings that are specified on

association names to filter the associated objects that are selected.

For more information, see Chapter 15, “Filtering a GetMetadataObjects
Request,” on page 277.

� Support a consistent user interface to metadata in client user interfaces through
the following new methods:

AddUserFolders
Creates a home folder and subfolders for a Person. For more information, see
“AddUserFolders” on page 81.

GetUserFolders
Gets the home folder or specified subfolder for a Person. For more
information, see “GetUserFolders” on page 107.

� Support metadata ownership through the following new methods:

AddResponsibleParty
Creates a ResponsibleParty object for a Person or IdentityGroup in the
repository that contains the Person or IdentityGroup object, even if the caller
does not have WriteMetadata permission to the repository. For more
information, see “AddResponsibleParty” on page 79.

GetResponsibleParty
Gets the ResponsibleParty object associated with a Person or IdentityGroup
and responsibility, even if the caller does not have ReadMetadata permission
to the repository. For more information, see “GetResponsibleParty” on page
100.

� Improve metadata delete functionality. The DeleteMetadata method has been
enhanced to delete the specified object and associated objects that are defined in a
user-defined template. For more information, see “DeleteMetadata” on page 84
and Chapter 17, “Deleting Metadata Objects,” on page 297.

� Return information about supported values for metadata type properties from the
SAS Metadata Model. For more information, see “GetTypeProperties” on page 104.

Other changes in the IOMI server interface include:
� The CopyMetadata method is deprecated.

xii What’s New

� The CheckinMetadata, CheckoutMetadata, FetchMetadata, and
UndoCheckoutMetadata methods are retired.

� SAS Metadata Repository auditing is no longer supported. Client requests to store
values for AuditPath=, AuditType=, AuditEngine=, and AuditOptions= attributes
while adding a repository with the AddMetadata method or updating a repository
definition with the UpdateMetadata method are ignored.

� The SAS Metadata Server class factory number has been changed to prevent SAS
9.1.3 clients from accessing a SAS 9.2 Metadata Server without first being updated
to SAS 9.2. For more information, see “Connecting to the SAS Metadata Server”
on page 12.

Authorization Enhancements
The SAS Open Metadata Interface provides the ISecurity server interface for

requesting authorizations on metadata. The ISecurity server interface has been
enhanced as follows:

� The IsAuthorized method now supports a Uniform Resource Name (URN) in the
form REPOSID:_reposID in the RESOURCE parameter. For more information, see
“IsAuthorized” on page 145.

� Several new methods have been added that support authorization based on roles,
multiple authorizations, and internal user authentication.

� The GetApplicationActionsAuthorizations method returns authorizations for
the ApplicationActions in a SoftwareComponent object. For more
information, see “GetApplicationActionsAuthorizations” on page 121.

� The IsInRole method returns the TRUE value when the user indicated in the
CREDHANDLE parameter is in a role. For more information, see “IsInRole”
on page 148.

� The GetAuthorizationsOnObject method returns the permissions that apply
to a resource for all identities or specified identities. For more information,
see “GetAuthorizationsOnObj” on page 173.

� The GetInfo method gets information, depending on the value in the
INFOTYPE parameter, including the origin of a specified identity’s privileges,
the value of active enterprise policies, and so on. For more information, see
“GetInfo” on page 132.

� The GetLoginsforAuthDomain method gets the logins for the connected user
for the specified authentication domain in order of identity precedence. For
more information, see “GetLoginsforAuthDomain” on page 143.

� New internal user authentication methods include:

GetInternalLoginSitePolicies
Returns the active server-level internal authentication policies.

SetInternalPassword
Creates an InternalLogin object for the specified user.

SetInternalLoginUserOptions
Customizes internal authentication policies for the specified user.

GetInternalLoginUserInfo
Gets availability information and internal authentication settings for
the specified user.

DeleteInternalLogin
Deletes the InternalLogin object that is associated with the specified
user.

What’s New xiii

� New functionality is available in the ISecurity 1.1 interface. Clients that do
not want the new SAS 9.2 methods and functionality should call the
ISecurity server interface as they did in SAS 9.1.3. For more information, see
“Using the ISecurity Server Interface” on page 116.

Server Control Enhancements
The SAS Open Metadata Interface provides the IServer server interface for

controlling the SAS Metadata Server and getting server status information. The
IServer server interface has been enhanced as follows:

� The Pause method can no longer be used to downgrade the availability of a
specified SAS Metadata Repository.

� The Pause method operates exclusively on the SAS Metadata Server and can
downgrade the SAS Metadata Server to an ADMIN state (only users who have
administrative user status on the SAS Metadata Server can access repositories) or
the OFFLINE state (the SAS Metadata Server is not available to any users).

� The Pause method now supports a <PAUSECOMMENT> element to enable callers
to include a user-defined text message that specifies the reason for a server pause
for clients. The element is passed to the SAS Metadata Server in the OPTIONS
parameter. For more information, see “Pause” on page 189.

� The Status method has been enhanced to poll the SAS Metadata Server for the
content of the <PAUSECOMMENT> option.

� The Status method has been enhanced to poll the SAS Metadata Server for the
SAS platform version, which includes the repository level, and the server locale.

� The Status method has been enhanced to optionally poll the SAS Metadata Server
for the values of omaconfig.xml options and to provide journaling statistics. For
more information, see “Status” on page 194.

� The Refresh method has been enhanced to support an <OMA
JOURNALPATH="file-name"/> option. This option can change the location of the
journal file on a running SAS Metadata Server. For more information, see
“Refresh” on page 191.

New Security Administration Server Interface
A new server interface, ISecurityAdmin, provides three categories of methods:
� Transaction context methods enable programmers of interactive clients to record

user interactions and return correct effective permissions for authorization
changes, factoring in group memberships, before applying the changes to
authorization metadata on the SAS Metadata Server. The
BeginTransactionContext method creates a transaction context by returning a
handle for a specified object. General authorization administration methods
reference this handle in their requests. The transaction context is closed by using
the EndTransactionContext method, which can commit or discard the changes.

� General authorization administration methods provide a programmatic way to
assign and get permissions for identities on resources, to list authorized identities,
and to apply and remove access control templates (ACTs) from resources.

� ACT administration methods create ACTs, modify the attributes of ACTs, list
ACTs, and destroy ACTs.

For more information, see Chapter 8, “Security Administration (ISecurityAdmin
Interface),” on page 155.

xiv What’s New

1

P A R T1

Concepts

Chapter 1.Introduction 3

Chapter 2.Client Requirements 9

2

3

C H A P T E R

1
Introduction

About This Book 3
Installation Requirements 4

Prerequisites 4

Audience 5

What Is the SAS Open Metadata Architecture? 5

What Can I Do with the SAS Open Metadata Interface? 6
Authentication 6

Authorization Facility 7

About This Book
This book provides reference and usage information about the SAS 9.2 Open

Metadata Interface. It also provides usage information about the SAS 9.2 Java
Metadata Interface.

The SAS Open Metadata Interface is the application programming interface (API)
underlying the SAS Open Metadata Architecture. The SAS Open Metadata
Architecture is a client/server architecture that uses XML as its transport language.
The SAS Open Metadata Interface provides the basic server interfaces for connecting to
the SAS Metadata Server, creating and accessing metadata on the server, securing
metadata on the server, and managing the server.

The SAS Java Metadata Interface is a Java API that provides a Java object interface
to the metadata access functionality that is available through the SAS Open Metadata
Interface. It enables developers to create and access metadata on the SAS Metadata
Server without having to know XML.

Using these APIs with the SAS Metadata Model, which is described in SAS 9.2
Metadata Model: Reference, developers can produce SAS Open Metadata Architecture
clients that create and manage metadata in metadata repositories, secure the
metadata, and manage the SAS Metadata Server.

In SAS 9.2, we encourage the use of the APIs in a Java or a SAS environment.
Instead of using SAS Open Metadata Interface metadata access methods directly, we
encourage Java developers to use the SAS Java Metadata Interface to produce clients
that create, read, and update metadata on the SAS Metadata Server. Direct use of the
server interfaces should be reserved for tasks that cannot be performed with the SAS
Java Metadata Interface.

SAS provides SAS language interfaces to metadata, such as PROC METADATA and
SAS metadata DATA step functions, to enable SAS programmers to submit SAS Open
Metadata Interface method requests either directly or indirectly within SAS.

This book is organized in four parts:

4 Installation Requirements � Chapter 1

Part 1, Concepts, provides an overview of the SAS Open Metadata Architecture and
the SAS Open Metadata Interface server interfaces. It provides information that is
needed by all clients to connect to and communicate with the SAS Metadata Server.

Part 2, SAS Java Metadata Interface, describes how to use the SAS Java Metadata
Interface to produce clients that create, read, and update metadata. Reference
information about SAS Java Metadata Interface methods is provided as class
documentation. You can view a Web-enabled version of SAS Java Metadata Interface
documentation at support.sas.com/92api.

Part 3, Server Interfaces, contains reference information about SAS Open Metadata
Interface server interfaces. There are four server interfaces:

� IOMI — metadata access interface
� ISecurity — metadata authorization interface
� ISecurityAdmin — security administration interface
� IServer — server control interface

IOMI information is provided for PROC METADATA users. PROC METADATA
enables users to submit IOMI method calls that are formatted for the DoRequest
method through its interface.

Part 4, IOMI Server Interface Usage, contains IOMI usage information that is
helpful to all clients issuing metadata access method calls, whether clients are using
the SAS Java Metadata Interface, IOMI methods directly, or one of the SAS language
interfaces to metadata.

Installation Requirements
Both the SAS Open Metadata Interface and SAS Java Metadata Interface are

shipped as part of SAS 9.2 Phase 2 software. The SAS Open Metadata Interface uses
the Integrated Object Model (IOM) to communicate with the SAS Metadata Server.
Currently, this interface supports Java, Windows, and SAS clients.

The following software must be accessible from computers where you will develop
SAS Open Metadata Interface clients:

� SAS 9.2 Versioned Jar Repository (VJR)
� SAS Integration Technologies software appropriate for the client
� software for the intended programming environment

See “JRE and JAR Requirements” on page 22 for information about SAS Java
Metadata Interface requirements.

Both the SAS Open Metadata Interface server interfaces and SAS Java Metadata
Interface are contained in the SAS 9.2 VJR. The VJR is installed when the SAS 9.2
Intelligence Platform Object Framework or SAS Management Console is installed. For
easy access to the SAS 9.2 VJR, we recommend the SAS AppDev Studio development
environment.

SAS language interfaces to metadata such as PROC METADATA and SAS metadata
DATA step functions simply need access to Base SAS 9.2 software.

Prerequisites
� You must have access to a properly configured SAS 9.2 Metadata Server to create

and access metadata. A properly configured metadata server has a foundation
repository that contains standard SAS 9.2 metadata. The SAS 9.2 Deployment

Introduction � What Is the SAS Open Metadata Architecture? 5

Wizard installs and configures a proper SAS 9.2 Metadata Server for you. An
existing SAS 9.1.3 Metadata Server can be migrated to the SAS 9.2 environment
by using the SAS Migration Utility with the SAS 9.2 Deployment Wizard. For
more information, see SAS Intelligence Platform: 9.1.3 to 9.2 Migration Guide.

� To connect to the SAS Metadata Server, you must be able to authenticate to the
server. To create and update metadata, you must have proper authorization to
metadata repositories. For more information, see the SAS Intelligence Platform:
Security Administration Guide.

Audience
This book provides information for developers who are producing or maintaining

clients that access metadata, secure metadata, or manage the SAS Metadata Server.
It is the primary source of information for developers who are producing open clients.
It is a secondary source of information for users of the SAS language interfaces to

metadata. In SAS 9.2, the SAS language interfaces to metadata are described in SAS
Language Interfaces to Metadata. Users of the SAS language interfaces to metadata
need information from this book as background information and to be able to format the
XML method calls that can be submitted with PROC METADATA.

What Is the SAS Open Metadata Architecture?
The SAS Open Metadata Architecture is a general-purpose metadata management

facility that provides common metadata services to SAS applications. Using the
metadata architecture, separate SAS applications can exchange metadata, which makes
it easier for these applications to work together. The metadata architecture saves
development effort because applications no longer have to maintain their own metadata
facilities.

The metadata architecture includes a metadata model, an API, and a metadata
server.

� The metadata model, called the SAS Metadata Model, provides classes and objects
that define repositories, the SAS Repository Manager, and different types of
application metadata.

The SAS Metadata Server uses information that clients store in repository
objects to access the metadata repositories. It uses the SAS Repository Manager to
manage the metadata repositories.

The application metadata types are used in various combinations by clients to
create metadata that describes application data or entities that are used by an
application. The metadata model defines valid relationships between metadata
types, uses the inheritance of attributes and associations to affect common
behaviors, and uses subclassing to extend behaviors.

� The SAS Open Metadata Interface provides methods for reading and writing
metadata objects in repositories. It also provides methods for administering
repositories and the SAS Metadata Server, for defining and administering access
controls on application metadata objects and repositories, and for getting
authorizations based on the metadata access controls.

� The SAS Metadata Server is a server that surfaces metadata from one or more
repositories through the SAS Open Metadata Interface. The SAS Metadata Server
uses the IOM from SAS Integration Technologies. IOM provides distributed object
interfaces to Base SAS software and enables you to use industry-standard

6 What Can I Do with the SAS Open Metadata Interface? � Chapter 1

languages, programming tools, and communication protocols to develop clients
that access Base SAS features on IOM servers. Its purpose is to provide a central,
shared location for accessing metadata.

Display 1.1 SAS Open Metadata Architecture

What Can I Do with the SAS Open Metadata Interface?

The SAS Open Metadata Interface enables clients to read and write the metadata of
applications that comply with the metadata architecture. It also supports the
development of clients to maintain repositories and to control the SAS Metadata Server,
but these tasks are secondary. For the most part, clients use the SAS Open Metadata
Interface to read or write the metadata of applications. For example, a client might use
the SAS Open Metadata Interface to perform the following tasks:

� Store information that is needed to access data stores so that the information is
available centrally and can be maintained independently of the client.

� Return a list of data stores that contain a metadata item that you specify, such as
the column name Salary.

� Return a list of available SAS servers and use their definitions to maintain their
configuration and manage the servers. For example, the definitions could be used
to start, stop, pause, and resume the servers.

� Define access controls on resources and request authorization decisions from the
SAS Open Metadata Architecture authorization facility.

Authentication

The SAS Metadata Server supports a variety of authentication providers to
determine who can access the SAS Metadata Server. It also defines privileged users.
Only a user who has been granted unrestricted user status on the SAS Metadata Server
has unrestricted access to metadata on the SAS Metadata Server. Only a user who has
been granted either unrestricted user status or administrative user status on the SAS
Metadata Server can create and delete repositories, modify a repository’s registrations,
change the state of a repository, and register users. For more information about
metadata server authentication and privileged users, see the SAS Intelligence Platform:
Security Administration Guide.

Introduction � Authorization Facility 7

Authorization Facility

The SAS Metadata Server uses an authorization facility to control access to metadata
repositories and to specific metadata in the metadata repositories. Authorization
processes are insulated from metadata-related processes in the SAS Metadata Server.
The authorization facility provides an interface for querying authorization metadata
that is on the metadata server, and returns authorization decisions based on rules that
are stored in the metadata.

The SAS Metadata Server uses the authorization facility to make queries about
ReadMetadata and WriteMetadata permissions on metadata and enforces the decisions
that are returned by the authorization facility. It is not necessary for SAS Open
Metadata Interface clients to enforce authorization decisions regarding the
ReadMetadata and WriteMetadata permissions.

SAS Open Metadata Interface clients can use the authorization facility to request
authorization decisions on other types of access (for example, to request authorization
decisions on data that is represented by SAS metadata). For example, other SAS IOM
servers define and enforce Read, Write, Create, and Delete permissions on data that is
represented by metadata. Applications that use the authorization facility to request
authorization decisions on application-defined actions and objects must enforce the
authorization decisions themselves.

The authorization facility’s interface consists of a set of methods that are available in
the ISecurity server interface. For more information, see Chapter 7, “Authorization
(ISecurity Interface),” on page 113.

For information about the types of access controls supported by the authorization
facility and how the authorization facility makes authorization decisions, see the SAS
Intelligence Platform: Security Administration Guide.

SAS 9.2 introduces a security administration interface to facilitate the creation and
query of access controls. Security administration methods are available in the
ISecurityAdmin server interface. For more information, see “Overview of the
ISecurityAdmin Server Interface” on page 157.

8

9

C H A P T E R

2
Client Requirements

Types of SAS Open Metadata Interface Clients 9
Important Terms 10

Creating Repositories 10

Creating and Accessing Application Metadata 11

Connecting to the SAS Metadata Server 12

Connecting to the SAS Metadata Server with the SAS Java Metadata Interface 12
Server Connection Properties 13

Communicating with the SAS Metadata Server 14

Standard Interface 14

DoRequest Interface 14

Controlling the SAS Metadata Server 15

Types of SAS Open Metadata Interface Clients
A SAS Open Metadata Interface client is a program that communicates with the SAS

Metadata Server. The SAS Open Metadata Interface provides methods to perform the
following tasks on the SAS Metadata Server:

� Create, read, and update repository objects.
� Create, read and update application metadata objects.
� Control access to the SAS Metadata Server.
� Define access controls on application resources and repositories.
� Request authorizations based on access controls.
� Manage access controls.
� Define and manage internal user accounts.

Most clients create, read, and update application metadata. Clients use repository
objects to register repositories in the SAS Repository Manager, to modify a repository’s
registered access mode, or to get information about repository availability.

A client that controls access to the SAS Metadata Server does so to interrupt client
activity so that external maintenance tasks can be performed, such as running a
backup, recovering memory, or changing certain server configuration and invocation
options while the server is online.

A client that defines access controls does so to control access to data by defining
controls on the metadata that describes the data. Access controls can be defined
directly on the metadata that describes a resource, or they can be defined in an access
control template (ACT) that is associated with many resources.

A client that requests authorizations queries the SAS Open Metadata Architecture
authorization facility to determine if the specified user has appropriate permission to a
requested resource based on active access controls. Then, depending on the decision,

10 Important Terms � Chapter 2

either enforces the decision or allows the SAS Metadata Server to enforce the decision.
The SAS Metadata Server enforces ReadMetadata and WriteMetadata permissions to a
resource. A client that wants to enforce other permissions on a resource must do so
itself. For information about the default access controls supported by the authorization
facility and how the authorization facility works, see the SAS Intelligence Platform:
Security Administration Guide.

SAS 9.2 supports authorization based on role membership. Clients can define roles
that identify application actions that will be controlled as metadata. Administrators
can assign identities to the roles. The GetApplicationActionsAuthorizations method is
provided to enable clients to request decisions based on role membership.

A client that manages access controls lists identities that have permissions on a
resource, lists permissions that are defined directly on a resource, lists ACTs that are
associated with a resource, and applies and removes ACTs from a resource. It can also
create an ACT, modify the attributes of an ACT, and destroy an ACT.

A client that creates and manages internal user accounts creates internal logins and
modifies their authentication settings for the task.

Appropriate identity, permission, resource, ApplicationAction and Role objects must
be defined on the SAS Metadata Server for authorizations to be meaningful. See the
SAS Intelligence Platform: Security Administration Guide for detailed information
about the security features that are available through the SAS Open Metadata
Architecture authorization facility.

Important Terms
To create a metadata client, you must be familiar with the following terms:

metadata type specifies a template that models the metadata for a resource. For
example, the metadata type Column models the metadata for a SAS
table column, and the metadata type RepositoryBase models the
metadata for a repository. The SAS Metadata Model defines
approximately 160 metadata types.

namespace specifies a group of related metadata types. Namespaces are used to
partition metadata into different contexts. The SAS Open Metadata
Interface defines two namespaces: SAS and REPOS. The SAS
namespace contains metadata types that describe application
elements. The REPOS namespace contains metadata types that
describe repositories.

metadata object specifies an instance of a metadata type.

metadata type
property

is a term that collectively refers to the attributes and associations
that are defined for a metadata type in the SAS Metadata Model.
An attribute describes a characteristic of the metadata type. An
association describes a relationship between an object of this
metadata type and an object of another metadata type.

Creating Repositories
Before you can create application metadata in a SAS Metadata Repository, you must

create metadata that defines at least one SAS Metadata Repository. The SAS Open
Metadata Interface can be used to create a SAS Metadata Repository, but this is not the
recommended way in SAS 9.2. Instead, if you perform a SAS 9.2 planned installation to

Client Requirements � Creating and Accessing Application Metadata 11

set up your SAS 9.2 Metadata Server, the SAS Deployment Wizard creates the first
repository — a foundation repository — for you. We recommend that you create
additional repositories with SAS Management Console because it creates default
metadata in the repositories for you.

Creating and Accessing Application Metadata
A SAS Open Metadata Interface client that accesses application metadata has the

following characteristics:
� The client connects to the SAS Metadata Server with a communication standard

that is appropriate for the client and the IOM-based server.
� The client specifies the SAS namespace to access the metadata types for

application elements, such as tables and columns.
� The client issues SAS Open Metadata Interface method calls to create or access

instances of the metadata types that are stored in metadata repositories.

Display 2.1 Accessing Metadata Defined in the SAS Namespace

For server connection information, see “Connecting to the SAS Metadata Server” on
page 12.

For a description of the metadata types in the SAS namespace, see “Alphabetical
Listing of SAS Namespace Metadata Types” in SAS Metadata Model: Reference.

The SAS Open Metadata Interface provides the IOMI server interface for reading
and writing metadata objects. For information about IOMI, see Chapter 6, “Metadata
Access (IOMI Interface),” on page 61.

We recommend that clients use the SAS Java Metadata Interface to read and write
metadata in SAS 9.2 instead of IOMI methods directly. For reference information about
the SAS 9.2 Java Metadata Interface, see the documentation at support.sas.com/92api.
For usage information, see Chapter 4, “Using the SAS Java Metadata Interface,” on
page 25.

Methods that create metadata require you to identify the metadata repository in
which the object is to be created and to submit an XML metadata property that defines
the objects that you want to create. For more information, see Chapter 10, “Adding
Metadata Objects,” on page 205. In addition, see “Understanding Associations” in SAS
Metadata Model: Reference.

For information about the options that are available for accessing existing metadata
objects, see “Querying Metadata Objects” on page 236.

12 Connecting to the SAS Metadata Server � Chapter 2

Connecting to the SAS Metadata Server
The SAS Metadata Server is an object server. It uses the IOM provided by SAS

Integration Technologies to communicate with clients.
SAS Integration Technologies provides interfaces that enable you to connect to the

SAS Metadata Server generically as an IOM server. When you use these interfaces, you
must be familiar with the interfaces and classes that define the SAS Metadata Server
and the SAS Open Metadata Interface server interfaces. In addition, you must know
how to read and write an XML document to use the metadata access functionality of
the IOMI server interface.

As an alternative to the SAS Integration Technologies interfaces, SAS provides the
SAS Java Metadata Interface. The SAS Java Metadata Interface hides the details of
IOM servers and how to create a connection to a SAS Metadata Server from the client.
It provides a Java object interface to the metadata access functionality of the SAS Open
Metadata Interface. This object interface defines an interface for each SAS Metadata
Model metadata type so that clients can use getter or setter methods to read and write
metadata attributes and associations, instead of requiring clients to submit XML
metadata property strings that define values, like the IOMI methods do. In addition, it
provides methods for connecting to the SAS Metadata Server with the ISecurity,
ISecurityAdmin, and IServer server interfaces, so that clients don’t need to know the
details of their implementation.

Because of its ease of use, the SAS Java Metadata Interface is recommended over the
SAS Integration Technologies interfaces, both for performing metadata access tasks and
for connecting to the SAS Metadata Server with the non-metadata server interfaces.

The SAS Integration Technologies interfaces continue to be supported for metadata
clients that already use them. A metadata client that was created before SAS 9.2
should use the latest SAS Integration Technologies interfaces. Because of architectural
changes in the SAS 9.2 Metadata Server, a SAS Open Metadata Interface client created
using SAS 9.1 or earlier technology cannot connect to a SAS 9.2 Metadata Server
without modification. To prevent access, the SAS 9.2 Metadata Server has a new class
factory number, which all clients must specify to connect with a SAS 9.2 Metadata
Server. The latest SAS Integration Technologies interfaces use the new class number.

SAS Integration Technologies provides the SAS Object Manager for SAS 9.2 Windows
client development, and the Java Connection Factory for SAS 9.2 Java client
development. For more information about the interfaces, see the SAS 9.2 Integration
Technologies: Windows Client Developer’s Guide and the SAS 9.2 Integration
Technologies: Java Client Developer’s Guide.

Connecting to the SAS Metadata Server with the SAS Java Metadata
Interface

The SAS Java Metadata Interface and SAS Open Metadata Interface are contained
in JAR files in the SAS 9.2 VJR. For information about the Java Runtime Environment
and JAR files required by the SAS Java Metadata Interface, see “JRE and JAR
Requirements” on page 22. The server interfaces are provided in the sas.oma.omi.jar
file.

A Java client accesses the APIs by importing the appropriate packages, instantiating
an object factory, and connecting to the SAS Metadata Server with a handle to the
interface that is appropriate for the task that it wants to perform. A SAS Java
Metadata Interface client that will perform metadata access tasks imports the
com.sas.metadata.remote package. A client that accesses the ISecurity, ISecurityAdmin,
or IServer server interface imports the com.sas.metadata.remote package and

Client Requirements � Server Connection Properties 13

appropriate interfaces from the com.sas.meta.SASOMI package. For information about
the specific com.sas.meta.SASOMI interfaces that are required, see the server interface
documentation.

The SAS Java Metadata Interface provides the MdFactory interface to instantiate an
object factory for the SAS Metadata Server, and the MdOMRConnection interface for
connecting to the SAS Metadata Server. The MdOMRConnection interface includes the
following methods to enable you to connect to the SAS Metadata Server:

� makeOMIConnection — connects to the SAS Metadata Server with the SAS Java
Metadata Interface. A client uses this interface to read and write metadata.

� makeISecurityConnection — connects to the SAS Metadata Server with ISecurity
server interface. ISecurity contains metadata authorization methods. A client uses
the ISecurity server interface to request user-defined authorization decisions on
access controls that are stored as metadata.

� makeISecurityAdminConnection — connects to the SAS Metadata Server with the
ISecurityAdmin server interface. ISecurityAdmin contains security administration
methods. A client uses the ISecurityAdmin server interface to administer access
controls that are defined directly on resources and to manage ACTs.

� makeIServerConnection — connects to the SAS Metadata Server with the IServer
server interface. IServer contains server control methods. A client uses the
IServer server interface to pause and resume, refresh, get the status of, and stop
the SAS Metadata Server.

For an example of the statements that are required to establish a connection to the
SAS Metadata Server with the SAS Java Metadata Interface, see “Sample Program” on
page 37. The sample program is a metadata access client.

For more information about the SAS Java Metadata Interface, see Chapter 3,
“Understanding the SAS Java Metadata Interface,” on page 19, and Chapter 4, “Using
the SAS Java Metadata Interface,” on page 25.

For more information about connecting with the non-metadata server interfaces, see
Chapter 7, “Authorization (ISecurity Interface),” on page 113, Chapter 8, “Security
Administration (ISecurityAdmin Interface),” on page 155, and Chapter 9, “Server
Control (IServer Interface),” on page 187.

Server Connection Properties
A client must specify the following server connection properties to connect to a SAS

Metadata Server. Optional properties are described in the SAS Integration Technologies
documentation.

host
The IP address of the machine hosting the SAS Metadata Server.

port=number
The TCP port to which the SAS Metadata Server listens for requests, and that
clients will use to connect to the SAS Metadata Server. The number value must be
a unique number from 0 to 65,535. The default port number is 8561.

username
A valid user name on the host machine, or a SAS internal account. For
information about internal authentication, see SAS Intelligence Platform: Security
Administration Guide.

password
the password for the user name.

14 Communicating with the SAS Metadata Server � Chapter 2

Communicating with the SAS Metadata Server
A client must connect to the SAS Metadata Server before sending any requests. After

connecting, using an interface simply involves using its methods.

Standard Interface
A method is typically issued by declaring object variables that represent its

parameters in the client, and then referencing the object variables in the method
request. In this documentation, we refer to this process as the “standard interface.”
The standard interface is supported for the SAS Java Metadata Interface and all of the
SAS Open Metadata Interface server interfaces.

When you issue a method using the standard interface, the SAS Metadata Server
does not require you to use the published parameter names for the object variables.
However, if you use a different name, the name in the object variable declaration must
also be used to represent the parameter in the method request. In addition, the
parameters need to be specified in the order given in the method documentation. As an
example, consider the GetApplicationActionsAuthorizations method, whose documented
syntax is:

GetApplicationActionsAuthorizations(credHandle, applicationContext, options, output);

When declaring object variables for the method’s parameters, you do not have to use
the parameter names CREDHANDLE, APPLICATIONCONTEXT, OPTIONS, and
OUTPUT to represent the parameters. However, whatever names you do use, the object
variable declarations must be specified in the method in the order given in the syntax
statement.

DoRequest Interface
The SAS Open Metadata Interface IOMI server interface and the Status method

from the IServer server interface can be submitted to the SAS Metadata Server using
an alternate interface, called the DoRequest interface. The DoRequest interface is
based on the IOMI DoRequest method. The DoRequest method is a messaging method
whose sole purpose is to submit another method to the SAS Metadata Server. Clients
declare object variables for the DoRequest method’s parameters in the client. Then,
clients submit another method in the DoRequest method’s INMETADATA parameter.
This other method’s parameters are formatted in an XML string.

The DoRequest interface provides a standard way for a client to submit method
requests to the SAS Metadata Server. Instead of the client parsing the submitted
method’s parameters, the SAS Metadata Server parses them. The format of the XML
method string is described in “DoRequest” on page 87. The IOMI reference
documentation includes examples of how to format methods for the DoRequest interface.

Because we encourage the use of the SAS Java Metadata Interface to read and write
metadata over using the IOMI server interface directly in SAS 9.2, a Java client would
not use the DoRequest interface. However, PROC METADATA accepts IOMI methods
that are formatted for the DoRequest method’s INMETADATA parameter as its input.
For an example of how to submit from PROC METADATA an XML string that is
formatted for the DoRequest method, see the PROC METADATA documentation in SAS
Language Interfaces to Metadata.

When creating an XML string for the DoRequest method or PROC METADATA, you
must use published parameter names in the XML elements representing the method
parameters, with one exception. The submitted method’s INMETADATA parameter

Client Requirements � Controlling the SAS Metadata Server 15

should be represented by a <METADATA> element. For an example of how this
element is used, see the DoRequest interface example in “AddMetadata” on page 77.

If a published parameter name is missing from the XML string, the SAS Metadata
Server will return an error. The method parameters do not need to be specified in the
order given in the syntax.

Controlling the SAS Metadata Server

A SAS Metadata Server must be running before any client can access metadata
repositories. At many sites, an administrator starts the SAS Metadata Server, and then
SAS Open Metadata Interface clients simply connect to that server. However, there are
times when the administrator might want to refresh the SAS Metadata Server to
change configuration or invocation options, or to temporarily downgrade the SAS
Metadata Server’s state. For example, the administrator might want to downgrade the
server from an ONLINE state to an ADMINISTRATION state, so that only
administrative users can access the SAS Metadata Server. Or, the administrator might
want to take the server OFFLINE, which halts client activity while maintaining client
connections, or stop the SAS Metadata Server, which halts client activity and
terminates client connections.

The SAS Open Metadata Interface provides the IServer server interface for
controlling the SAS Metadata Server. IServer includes Pause, Refresh, Resume, Status,
and Stop methods. For more information about IServer methods, see Chapter 9, “Server
Control (IServer Interface),” on page 187.

A user must have administrative user status on the SAS Metadata Server to issue all
IServer methods, except the Status method. For more information about the
administrative user status, see SAS Intelligence Platform: Security Administration
Guide.

In SAS 9.2, administrative users are encouraged to use SAS Management Console to
control the SAS Metadata Server. For information about controlling the server using
SAS Management Console, see the SAS Management Console documentation.

16

17

P A R T2

SAS Java Metadata Interface

Chapter 3.Understanding the SAS Java Metadata Interface 19

Chapter 4.Using the SAS Java Metadata Interface 25

Chapter 5.Understanding com.sas.metadata.remote Interfaces and
Classes 51

18

19

C H A P T E R

3
Understanding the SAS Java
Metadata Interface

What’s New in the SAS 9.2 Java Metadata Interface 19
Overview 19

General Enhancements 19

About This Section 20

SAS Java Metadata Interface Overview 21

JRE and JAR Requirements 22
How the SAS Java Metadata Interface Works 22

What’s New in the SAS 9.2 Java Metadata Interface

Overview
The SAS 9.2 Java Metadata Interface was enhanced to be more efficient in a

multi-user environment. In addition, it surfaces new metadata access functionality that
was added to the SAS Open Metadata Interface in a Java environment.

General Enhancements
Specific changes and enhancements are as follows:
� The static and remote versions of the SAS Java Metadata Interface have been

reconciled to use the same methods to perform the same actions. Use of the
remote version is recommended over the use of the static version. This document
addresses the use of the remote version. For more information about the remote
and static versions, see “SAS Java Metadata Interface Overview” on page 21.

� The MdServerStore class is deprecated. Clients should no longer interact directly
with the ServerStore.

� Two new utility classes are available in the MdFactory interface. The
MdSecurityUtil class contains methods that return quick authorizations on the
caller’s ability to read a metadata object, write a metadata object, and add a
metadata object to a folder. The MdRepositoryUtil class contains methods for
getting the repository type, name, and metadata object identifier using the inverse
information.

� The MdObjectFactoryListener is deprecated and replaced by MdFactoryListener.
MdFactoryListener can be used to notify all users of a factory when objects are
added, updated, or deleted on the SAS Metadata Server.

� A new getServerModelVersion() method replaces the getServerVersion() method,
which was used to return the SAS Metadata Model version number in use by the
SAS session.

20 About This Section � Chapter 3

� A new getPlatformVersion() method returns the version number of the active SAS
Metadata Server.

� Several new methods were added to the MdOMIUtil interface:
� The getFoundationRepository() and getFoundationReposID() methods get the

foundation repository.
� The getMetadataNoCache() and getMetadataObjectsNoCache() methods

provide quick retrieval of metadata object attributes and associations in a
map. These two methods do not cache any data within an object store.

� The getObjectPath() method returns the path of an object that resides in the
SAS folder tree.

� The getResponsibleParty() method gets the ResponsibleParty object
associated with the specified Identity and Responsibility.

� The getUserHomeFolders() method retrieves the home folder or specific
subfolder for the specified user, or creates the folder if it cannot be found.

� The MdOMRConnection interface supports a new method,
makeISecurityAdminConnection, to connect to the SAS Metadata Server with the
new SAS 9.2 Open Metadata Interface ISecurityAdmin interface. The
MdOMRConnection interface has methods to connect with the ISecurity and
IServer server interfaces. For information about the
makeISecurityAdminConnection method, see Chapter 8, “Security Administration
(ISecurityAdmin Interface),” on page 155.

To use the SAS 9.2 Java Metadata Interface effectively, you should be familiar with
enhancements to the SAS Open Metadata Interface and SAS 9.2 Metadata Model. See
and “What’s New in the SAS 9.2 Metadata Model” in the SAS 9.2 Metadata Model:
Reference for this information.

About This Section
This section describes how to create, read, and update metadata in metadata

repositories with the SAS 9.2 Java Metadata Interface. Reference information about
the SAS Java Metadata Interface is provided as class documentation. You can view a
Web-enabled version of the documentation at support.sas.com/92api.

The SAS Java Metadata Interface is a Java API that provides a Java object interface
to the metadata access functionality that is available through the SAS Open Metadata
Interface IOMI server interface. In addition, it provides methods for connecting to the
SAS Metadata Server with the non-metadata SAS Open Metadata Interface server
interfaces.

Understanding the SAS Java Metadata Interface � SAS Java Metadata Interface Overview 21

SAS Java Metadata Interface Overview
The SAS Java Metadata Interface provides a way to access metadata repositories

through the use of client Java objects that represent server metadata. This enabless
users to perform metadata access tasks without having to know XML.

The API has interfaces and classes for the following:
� connecting to the SAS Metadata Server
� instantiating an object factory that creates Java objects to represent the SAS

Metadata Model

� creating, reading, and writing Java object instances on the client, and propagating
additions and changes to the SAS Metadata Server

There are two implementations of the SAS Java Metadata Interface:
� A remote version for applications that support single or multiple users. These

applications have objects that need to be sent to a remote environment, such as
the SAS middle tier.

� A static version for single-user applications that do not need to support objects in
the SAS middle tier.

In SAS 9.2, the static and remote versions have been reconciled to use the same
methods to perform the same actions. However, for new applications, the use of the
remote version is recommended over the use of the static version for both single-user
and multi-user applications. The static version is supported for backward compatibility.

The SAS Java Metadata Interface includes the following Java packages:

com.sas.metadata.remote
provides the remote Java object interface to the SAS Metadata Server.

com.sas.metadata
provides the static Java object interface to the SAS Metadata Server.

The com.sas.metadata.remote package is typically used with the
com.sas.services.information package included with SAS Foundation Services software.
The com.sas.services.information package provides a generic interface for interacting
with heterogeneous data repositories, including SAS metadata repositories, Lightweight
Directory Access Protocol (LDAP) repositories, and WebDAV repositories, from client
applications. Using information service methods, a client can submit a single query
that searches all available repositories and returns the results in a smart object that
provides a generic interface to common data elements. The com.sas.services.information
package is described in the SAS Foundation Services class documentation. SAS
Foundation Services is a component of SAS Integration Technologies.

22 JRE and JAR Requirements � Chapter 3

JRE and JAR Requirements
The current release of the Java client software requires Java 2 SDK, Standard

Edition, Version 1.5 (JDK 1.5.0).
The SAS Java Metadata Interface depends on several JAR files. These JAR files are

included in the SAS VJR, which is installed when the SAS Intelligence Platform Object
Framework or SAS Management Console is installed.

The JAR files are:
� sas.oma.joma.jar
� sas.oma.joma.rmt.jar
� sas.oma.omi.jar
� sas.svc.connection.jar
� sas.core.jar
� sas.entities.jar

How the SAS Java Metadata Interface Works
The SAS Java Metadata Interface consists of the following:
� an object factory for creating and controlling the life cycles of objects in the client
� object stores that serve as work unit containers for storing object instances and for

grouping object instances that need to be persisted to the SAS Metadata Server as
a unit

� Java interfaces that correspond to objects in the SAS Metadata Model

The object factory provides an environment for managing Java objects that represent
SAS metadata object instances.

The object store serves as a container for Java objects that users create to add or
modify metadata objects in the SAS Metadata Server. The following figure illustrates
the relationship between the objects in an object store.

Understanding the SAS Java Metadata Interface � How the SAS Java Metadata Interface Works 23

Figure 3.1 Relationship Between Objects in an Object Store

Factory

Server Store

Object Store

Object

AssociationListAssociationList

Object

Work Unit

A SAS Open Metadata Interface metadata object is defined by two types of properties:
� a set of attributes that describe the characteristics of the metadata object instance,

including its name, description, date it was created, and any unique characteristics
� associations that describe its relationships with other metadata objects

Using the SAS Java Metadata Interface, you create a metadata object on the SAS
Metadata Server, or you modify an existing metadata object’s attributes, by creating a

24 How the SAS Java Metadata Interface Works � Chapter 3

Java object representing its SAS metadata type. You then persist the new or modified
Java object to the SAS Metadata Server. A metadata type refers to one of the metadata
types defined in the SAS namespace of the SAS Metadata Model. Metadata objects live
in the SAS Metadata Server. The Java objects in the object store act as proxies for the
metadata objects in the SAS Metadata Server.

Information about associations is managed separately from information about
attributes. Associations are managed by creating AssociationList objects. An
AssociationList object stores information about how two metadata objects are related to
each other through an association name. To determine the associations defined for a
specific metadata type, see the “Alphabetical Listing of SAS Namespace Metadata
Types” in SAS Metadata Model: Reference.

In Figure 3.1 on page 23, the squares named Object represent metadata objects, and
the squares named AssociationList represent the associations between the metadata
objects. Every relationship in the SAS Metadata Model is a two-way association. That
is, there are two sides to each relationship, and each side has a name. For example, if
the metadata objects in the figure represented a PhysicalTable and a Column, the
PhysicalTable object would have a Columns association to the Column object. The
Column object would have a Table association to the PhysicalTable object. For more
information about associations, see “Understanding Associations” in SAS Metadata
Model: Reference.

For an overview of the interfaces used to create the factory, stores, and other objects,
see “Interfaces and Classes Summary” on page 51.

For information about how to write a SAS Java Metadata Interface client that reads
and writes metadata, see “Overview of Creating a SAS Java Metadata Interface Client”
on page 25.

For documentation about specific classes and methods, see the SAS Java Metadata
Interface at support.sas.com/92api.

25

C H A P T E R

4
Using the SAS Java Metadata
Interface

Overview of Creating a SAS Java Metadata Interface Client 25
Advantages Over the IOMI Server Interface 25

Getting Started 26

Instantiating an Object Factory and Connecting to the SAS Metadata Server 26

Example of Connecting to the SAS Metadata Server with the makeOMRConnection Method 27

Getting Information About Repositories 29
Creating Objects 31

Getting and Updating Existing Objects 33

Deleting Objects 35

Sample Program 37

Overview of Creating a SAS Java Metadata Interface Client
The SAS Java Metadata Interface makes it as simple as possible to use the

functionality of the SAS Metadata Server in a Java program. Using the SAS Java
Metadata Interface, you can write Java client programs that create and update SAS
Open Metadata Interface metadata objects as if they were Java objects. There is no
need to learn SAS Open Metadata Interface method calls or XML, although users must
be familiar with the metadata types in the SAS Metadata Model, and with flags and
options that are supported by SAS Open Metadata Interface IOMI server interface
methods. For more information, see “Summary Table of IOMI Flags” and “Summary
Table of IOMI Options” in Chapter 6, “Metadata Access (IOMI Interface),” on page 61.

The SAS Java Metadata Interface follows Java distributed programming standards
such as CORBA and JDBC. When you write a Java client program that uses the SAS
Metadata Server—whether that program is an applet, a stand-alone application, a
servlet, or an enterprise JavaBean—you can focus on exploiting the features of the SAS
Metadata Server, rather than figuring out how to communicate with it.

The SAS Java Metadata Interface includes all of the tools that you need to work with
the SAS Metadata Server from a Java client. Knowledge of distributed programming
standards is not required, and you are not required to license any third-party software.

Advantages Over the IOMI Server Interface
The SAS Java Metadata Interface has the following advantages over the SAS Open

Metadata Interface IOMI server interface:
� It provides a simpler interface for connecting and disconnecting from the SAS

Metadata Server. Clients issue method calls to connect to the SAS Metadata
Server, instead of specifying IOMI connection factory classes.

26 Getting Started � Chapter 4

� The SAS Java Metadata Interface provides a set of generated Java interfaces and
implementation classes that represent the SAS Metadata Model. Once an object is
created, clients can define, read, and update its attributes and associations using
getter or setter methods, instead of submitting XML metadata property strings.
The SAS Java Metadata Interface seamlessly handles all XML creation and
parsing.

� The SAS Java Metadata Interface uses the concept of an object store that acts like
a workunit. Object stores enable clients to make and test multiple changes locally
within the client. Then, object stores persist all of the changes to the SAS
Metadata Server in a single request. IOMI server interface methods typically
support smaller requests and update the SAS Metadata Server directly.

Getting Started
This section provides the steps to construct and execute a SAS Java Metadata

Interface client that reads and writes metadata.
The first step in developing and running a client program is to make sure that you

have access to a properly configured SAS Metadata Server. You should have a properly
configured SAS Metadata Server if your site performed a SAS 9.2 planned installation.

After the SAS Metadata Server has been configured, you can begin developing a SAS
Java Metadata Interface client that uses it. All SAS Java Metadata Interface clients
access a SAS Metadata Server using the following steps:

1 Instantiate an object factory.
2 Connect to the SAS Metadata Server.
3 Create Java object instances that represent SAS Metadata Model metadata objects

and modify attributes and associations as needed.
4 Persist changes to the SAS Metadata Server.

The sections that follow provide example code fragments to illustrate each step. To
see how the fragments are submitted in an actual program, see “Sample Program” on
page 37.

The examples use the remote version of the SAS Java Metadata Interface. If you
recall, the remote version supports single or multiple users and enables clients to
persist objects in a remote environment, such as the SAS middle tier. The static version
of the SAS Java Metadata Interface supports a single user and does not support objects
in the SAS middle tier.

An object factory is needed for each user who will use an application; therefore,
typically, each user will have their own factory instance.

The examples given do not attempt to show how to create multiple object factories.
Their goal is to show how a typical user connects to the SAS Metadata Server and
issues SAS Java Metadata Interface method calls that create, read, and persist
metadata objects on the SAS Metadata Server.

The remote version of the SAS Java Metadata Interface provides the MdFactory
interface for instantiating an object factory. The static version provides an
MdObjectFactory class for that purpose.

Instantiating an Object Factory and Connecting to the SAS Metadata
Server

This section provides an example of the SAS Java Metadata Interface calls necessary
to instantiate an object factory and to connect to the SAS Metadata Server.

Using the SAS Java Metadata Interface � Example of Connecting with the makeOMRConnection Method 27

When using the remote version of the interface, you create an object factory by
instantiating the MdFactory interface. This interface contains all of the methods to
create Java metadata objects and to invoke Java event-handling and messaging
mechanisms.

You create a connection to the SAS Metadata Server using the makeOMRConnection
method from the MdOMRConnection interface. The makeOMRConnection method
connects to the SAS Metadata Server and provides access to com.sas.metadata.remote
methods for reading, writing, and updating metadata objects that represent application
elements. The com.sas.metadata.remote interface is a Java implementation of the SAS
Open Metadata Interface IOMI server interface.

Example of Connecting to the SAS Metadata Server with the
makeOMRConnection Method

An object factory is instantiated once per use. Each user has his own object factory
instance. The following code instantiates an object factory and creates a connection to
the SAS Metadata Server using the makeOMRConnection method:

/**
* The following statements instantiate the object factory.
*/
private MdFactory _factory = null;

/**
* Default constructor
*/
public MdTesterExamples()
{

// Calls the factory’s constructor
initializeFactory();

}

private void initializeFactory()
{

try
{

// Initializes the factory. The Boolean parameter is used to
// determine if the application is running in a remote or local
// environment. If the data does not need to be accessible across
// remote JVMs, then "false" can be used, as shown here.
_factory = new MdFactoryImpl(false);

// Defines debug logging, but does not turn it on.
boolean debug = false;
if (debug)
{

_factory.setDebug(false);
_factory.setLoggingEnabled(false);

// Sets the output streams for logging. The logging output can be
// directed to any OutputStream, including a file.
_factory.getUtil().setOutputStream(System.out);
_factory.getUtil().setLogStream(System.out);

}

28 Example of Connecting with the makeOMRConnection Method � Chapter 4

// To be notified of changes that have been persisted to the SAS Metadata
// Server within this factory (this includes adding objects, updating
// objects, and deleting objects), we can add a listener to the factory
// here. See MdFactory.addMdFactoryListener().
// A listener is not needed for this example.

}
catch (Exception e)
{

e.printStackTrace();
}

}

/**
* The following statements define variables for SAS Metadata Server
* connection properties, instantiate a connection factory, issue
* the makeOMRConnection method, and check exceptions for error conditions.
*
*/
public boolean connectToServer()
{

String serverName = "MACHINE_NAME";
String serverPort = "8561";
String serverUser = "USERNAME";
String serverPass = "PASSWORD";

try
{

MdOMRConnection connection = _factory.getConnection();

// This statement makes the connection to the server.
connection.makeOMRConnection(

serverName,
serverPort,
serverUser,
serverPass
);

// The following statements define error handling and error
// reporting messages.

}
catch (MdException e)
{

Throwable t = e.getCause();
if (t != null)
{

String ErrorType = e.getSASMessageSeverity();
String ErrorMsg = e.getSASMessage();
if (ErrorType == null)
{

// If there is no SAS server message, write a Java/CORBA message.
}
else
{

Using the SAS Java Metadata Interface � Getting Information About Repositories 29

// If there is a message from the server:
System.out.println(ErrorType + ": " + ErrorMsg);

}
if (t instanceof org.omg.CORBA.COMM_FAILURE)
{

// If there is an invalid port number or host name:
System.out.println(e.getLocalizedMessage());

}
else if (t instanceof org.omg.CORBA.NO_PERMISSION)
{

// If there is an invalid user ID or password:
System.out.println(e.getLocalizedMessage());

}
}
else
{

// If we cannot find a nested exception, get message and print.
System.out.println(e.getLocalizedMessage());

}
// If there is an error, print the entire stack trace.
e.printStackTrace();
return false;

}
catch (RemoteException e)
{

// Unknown exception.
e.printStackTrace();
return false;

}
// If no errors occur, then a connection is made.
return true;

}

From this example, we have the following:
� An object factory in which to create Java objects.
� Log and output location definitions that can be turned on and off for debugging.

SAS Java Metadata Interface logging methods should not be used for client-side
logging.

� An available connection to the SAS Metadata Server.

We can now get information about repositories defined on the SAS Metadata Server
and create metadata object instances.

Getting Information About Repositories
Before you can read or write metadata, you must identify the repositories that are

registered on a SAS Metadata Server. You should be familiar with the repository
identifiers to indicate which repository to access. You can list the repositories that are
defined on a SAS Metadata Server by using the getRepositories method. The
getRepositories method exists in the MdOMIUtil interface.

The following code issues a getRepositories method:

/**
* This example retrieves a list of the repositories that are registered

30 Getting Information About Repositories � Chapter 4

* on the SAS Metadata Server.
* @return the list of available repositories (list of CMetadata objects)
*/
public List getRepositories()
{

try
{

// Repositories are listed with the getRepositories method.
System.out.println("\nThe repositories contained on this

SAS Metadata Server are: ");

MdOMIUtil omiUtil = _factory.getOMIUtil();
List reposList = omiUtil.getRepositories();
Iterator iter = reposList.iterator();
while (iter.hasNext())
{

// Print the name and id of each repository.
CMetadata repository = (CMetadata) iter.next();
System.out.println("Repository: " +

repository.getName()
+ " (" + repository.getFQID() +")");

}
return reposList;

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}
return new ArrayList();

}

Here is an example of the output that might be returned by the GetRepositories
method:

The repositories contained on this SAS Metadata Server are:
Repository: Foundation (A0000001.A5PCE796)
Repository: MyProject (A0000001.A5RVLQQ9)
Repository: Custom1 (A0000001.A5T27ER8)
Repository: Custom2 (A0000001.A5IUI1BI)

The two-part number in each line is the repository identifier. The first part of the
number (A0000001) is the SAS Repository Manager identifier and is the same for all
repositories. The second part of the number is the unique repository ID. This is the
identifier that we will use to create and read metadata.

The CMetadata interface is the base interface that is used to describe all metadata
objects. Method parameters take in a CMetadata object to allow the methods to be used
with any SAS Open Metadata Interface metadata object.

Using the SAS Java Metadata Interface � Creating Objects 31

Creating Objects

You can create objects by using the methods in the MdFactory interface. You must
create a Java object instance for every new and existing metadata object that you want
to update or delete in a SAS Metadata Repository. You must also create an object store
in which to hold the metadata objects. The object store maintains a list of the objects
that need to be persisted to the SAS Metadata Server with a single request.

The following code creates a new PhysicalTable object, a new Column object, and a
new TextStore object. The code then creates associations between these objects. After
the metadata objects are created, they are persisted to the SAS Metadata Server.

Notes:

� To persist a metadata object, you must specify a metadata repository in which to
store the object. You can specify a repository identifier directly in the
createComplexMetadataObject method. Or, you can use methods from the
CMetadata interface. The CMetadata interface enables you to determine the
identifier of a target repository, and then reference it in the
createComplexMetadataObject method as a variable.

� Because these are new metadata objects, they are assigned metadata object
identifiers when they are persisted to the SAS Metadata Server. A request that
creates Java objects to represent existing metadata objects needs to determine
their metadata object instance identifiers before persisting changes to the SAS
Metadata Server. For more information, see “Getting and Updating Existing
Objects” on page 33.

/**
* This example creates a table, column, and a note on the column using
* the store methods.
* @param Repository CMetadata object with id of form: A0000001.A5KHUI98
*/
public void createTable(CMetadata repository)
{

if (repository != null)
{

try
{

System.out.println("\nCreating objects on the server...");

// We have a repository object.
// We use the reposFQID method to get its fully qualified ID.
String reposFQID = repository.getFQID();

// We need the short repository ID to create an object.
String shortReposID = reposFQID.substring(reposFQID.indexOf(".") + 1,

reposFQID.length());

// Now we create an object store to hold all our objects.
// This will be used to maintain a list of objects to persist
// to the SAS Metadata Server.
MdObjectStore store = _factory.createObjectStore();

// Create a PhysicalTable object named "TableTest".
PhysicalTable table=(PhysicalTable) _factory.createComplexMetadataObject(

32 Creating Objects � Chapter 4

store,
null,
"TableTest",
MetadataObjects.PHYSICALTABLE,
shortReposID
);

// Create a Column named "ColumnTest".
Column column = (Column) _factory.createComplexMetadataObject(

store,
null,
"ColumnTest",
MetadataObjects.COLUMN,
shortReposID
);

// Set the attributes of the column.
column.setColumnName("MyTestColumnName");
column.setSASColumnName("MyTestSASColumnName");
column.setDesc("This is a description of a column");

// Use the get"AssociationName"() method to associate the column with
// the table. This method creates an AssociationList object for the table
// object. The inverse association will be created automatically.
// The add(MetadataObject) method adds myColumn to the AssociationList.
table.getColumns().add(column);

// Create a note for the column named "NoteTest".
TextStore note = (TextStore) _factory.createComplexMetadataObject(

store,
null,
"NoteTest",
MetadataObjects.TEXTSTORE,
shortReposID
);

// Set the StoredText= attribute for the note
note.setStoredText("Information about the note");

// Associate the note with the column.
column.getNotes().add(note);

// Now, persist all of these changes to the
// SAS Metadata Server
table.updateMetadataAll();

// When finished, clean up the objects in the store if they
// are no longer being used.
store.dispose();

}
catch (MdException e)
{

e.printStackTrace();
}

Using the SAS Java Metadata Interface � Getting and Updating Existing Objects 33

catch (RemoteException e)
{

e.printStackTrace();
}

}
}

For more information about object stores and AssociationList objects, see “SAS Java
Metadata Interface Overview” on page 21.

Getting and Updating Existing Objects
To update an existing metadata object, you must know its metadata object instance

identifier. The SAS Java Metadata Interface provides several ways for getting
information about existing metadata objects. This section provides an example of one
way you can get information about the metadata objects created in “Creating Objects”
on page 31. The example uses the getMetadataObjectsSubset method from the
MdOMIUtil interface.

The getMetadataObjectsSubset method gets a list of metadata objects in the
repository of a specified metadata type. The method supports the use of SAS Open
Metadata Interface flags and options to enable you to specify properties to return in the
request and to filter the objects that are returned by the request. In the example that
follows, the <TEMPLATES> and <XMLSELECT> elements and their corresponding
flags are used to get all PhysicalTable objects named “TableTest,” their associated
Column and Note metadata objects, and specific attributes of all of the objects.

Note: The <TEMPLATES> and <XMLSELECT> elements submit input to the SAS
Metadata Server as a string literal (a quoted string). To ensure that the string is
parsed correctly, you must escape any additional double quotation marks specified in
the input string, such as those used to denote XML attribute values, to indicate that
they should be treated as characters. In this example, additional quotation marks are
escaped by using a backslash (\) character. For example, “”is specified as \"\". �

The objects are returned in an object store and can be edited.

/**
* This example reads the newly created objects from the server.
* @param repository identifies the repository from which to read our objects.
*/
public void readTable(CMetadata repository)
{

if(repository != null)
{

try
{

System.out.println("\nReading objects from the server...");

// First we create an MdObjectStore as a container for the objects
// that we will create/read/persist to the server as one collection.
MdObjectStore store = _factory.createObjectStore();

// The following statements define GetMetadataObjectsSubset options
// strings. These XML strings are used in conjunction with SAS Open
// Metadata Interface flags. The <XMLSELECT> element specifies filter
// criteria. The <TEMPLATES> element specifies the metadata properties

34 Getting and Updating Existing Objects � Chapter 4

// to be returned for each object from the server.
String xmlSelect = "<XMLSELECT Search=\"@Name=’TableTest’\"/>";
String template =

"<Templates>" +
"<PhysicalTable Id=\"\" Name=\"\" Desc=\"\">" +

"<Columns/>" +
"</PhysicalTable>" +
"<Column Id=\"\" Name=\"\" Desc=\"\" ColumnName=\"\">" +

"<Notes/>" +
"</Column>" +
"<TextStore Id=\"\" Name=\"\" Desc=\"\" StoredText=\"\"/>" +

"</Templates>";

// Add the xmlSelect and template strings together
String sOptions = xmlSelect + template;

// The following statements go to the server with a fully qualified
// repository ID and specify the type of object we are searching for
// (MdObjectFactory.PHYSICALTABLE) using the OMI_XMLSELECT,
// OMI_TEMPLATE, and OMI_GET_METADATA flags. OMI_GET_METADATA
// tells the server to get all of the attributes specified in the
// template for each object that is returned. The table, column, and
// note will be read from the server and created within the specified
// object store.
int flags = MdOMIUtil.OMI_XMLSELECT | MdOMIUtil.OMI_TEMPLATE |

MdOMIUtil.OMI_GET_METADATA;
List tableList = _factory.getOMIUtil().getMetadataObjectsSubset(

store,
repository.getFQID(),
MetadataObjects.PHYSICALTABLE,
flags,
sOption
); Iterator iter = tableList.iterator();

while (iter.hasNext())
{

// Print the Id= and Name= of the table returned from the server
PhysicalTable table = (PhysicalTable) iter.next();
System.out.println("Found table: " + table.getName() + " (" +

table.getId() + ")");

// Get the columns for this table.
AssociationList columns = table.getColumns();
for (int i = 0; i < columns.size(); i++)
{

// Print the Id= and Name= of associated columns
Column column = (Column) columns.get(i);
System.out.println("Found column: " + column.getName() + "

(" + column.getId() + ")");
System.out.println("\tDescription: " + column.getDesc());
System.out.println("\tColumnName: " + column.getColumnName());

// Get notes associated with the columns.
AssociationList notes = column.getNotes();
for (int j = 0; j < notes.size(); j++)

Using the SAS Java Metadata Interface � Deleting Objects 35

{
// Print the Id=, Name=, and StoredText= values of associated
// notes
TextStore note = (TextStore) notes.get(j);
System.out.println("Found textstore: " + note.getName() + "

(" +note.getId() + ")");
System.out.println("\tStoredText: " + note.getStoredText());

}
}

}

// When finished, clean up the objects in the store if they
// are no longer being used.
store.dispose();

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}

}
}

Here is the output of the code:

Reading objects from the server...
Found table: TableTest (A5PCE796.B8001K8S)
Found column: ColumnTest (A5PCE796.B5005N66)

Description: This is a description of a column
ColumnName: MyTestColumnName

Found textstore: NoteTest (A5PCE796.A3002BIS)
StoredText: Information about the note

The output prints the metadata type, name, and metadata object identifier of the
PhysicalTable, Column, and TextStore objects. In addition, it prints the values of the
Column object’s Description= and ColumnName= attributes, and it prints the value of
the TextStore object’s StoredText= attribute.

For more information about the search criteria supported in the <XMLSELECT>
element, see Chapter 15, “Filtering a GetMetadataObjects Request,” on page 277. For
more information about the templates supported in the <TEMPLATES> element, see
“Using Templates” on page 260.

Deleting Objects

This section provides an example of how to delete metadata objects. Similar to
updating objects, you must create Java objects that represent the server metadata
objects on the client before you can delete them. When you delete an object, all of its
dependent objects are automatically deleted as well. A dependent object is an object
that has a 1:1 cardinality with the specified object and cannot exist independently of
the object. An example of a dependent object is a Column object. A Column object
cannot exist on the SAS Metadata Server independently of some type of table object.

36 Deleting Objects � Chapter 4

See the DataTable metadata type in SAS 9.2 Metadata Model: Reference for a listing of
the supported table subtypes.

In this example, we use the getMetadataObjectsSubset method to get the objects that
we created and updated in “Creating Objects” on page 31, and in “Getting and Updating
Existing Objects” on page 33. We use the deleteMetadataObjects method to delete
them. The getMetadataObjectsSubset method is in the MdOMIUtil interface. The
deleteMetadataObjects method is in the MdFactory interface.

/**
* This example deletes the objects that we created.
* @param repository
*/
public void deleteTable(CMetadata repository)
{

if(repository != null)
{

try
{

System.out.println("\nDeleting the objects from the server...");
MdObjectStore store = _factory.createObjectStore();

// Create a list of the objects that need to be deleted
// from the server.
List deleteList = new ArrayList();

// Query for the table again
String xmlSelect = "<XMLSELECT Search=\"@Name=’TableTest’\"/>";
String template = "<Templates>" +

"<PhysicalTable>" +
"<Columns/>" +

"</PhysicalTable>" +
"<Column>" +

"<Notes/>" +
"</Column>" +

"</Templates>";

// Add the xmlSelect and template strings together
String sOptions = xmlSelect + template;

int flags = MdOMIUtil.OMI_XMLSELECT | MdOMIUtil.OMI_TEMPLATE |
MdOMIUtil.OMI_GET_METADATA;

List tableList = _factory.getOMIUtil().getMetadataObjectsSubset(
store,
repository.getFQID(),
MetadataObjects.PHYSICALTABLE,
flags,
sOptions
);

// Add the found objects to the delete list
Iterator iter = tableList.iterator();
while (iter.hasNext())
{

PhysicalTable table = (PhysicalTable) iter.next();
deleteList.add(table);

Using the SAS Java Metadata Interface � Sample Program 37

// Get the columns
AssociationList columns = table.getColumns();
for (int i = 0; i < columns.size(); i++)
{

Column column = (Column) columns.get(i);
deleteList.add(column);

// Get the notes
AssociationList notes = column.getNotes();
for (int j = 0; j < notes.size(); j++)
{

TextStore note = (TextStore) notes.get(j);
deleteList.add(note);

}
}

}

// Delete everything that is in the delete list
if (deleteList.size() > 0)
{

System.out.println("Deleting " + deleteList.size() + " objects");
_factory.deleteMetadataObjects(deleteList);

}

// When finished, clean up the objects in the store if they
// are no longer being used.
store.dispose();

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}

}
}

For an executable version of this example, and the examples in “Creating Objects,”
“Getting and Updating Existing Objects,” and a few additional examples, see “Sample
Program.”

Sample Program
The following is an example of an executable file that contains the code examples

from this section.

/**
* Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513
*/

38 Sample Program � Chapter 4

package com.sas.metadata.remote.test;

import java.rmi.RemoteException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.sas.metadata.remote.AssociationList;
import com.sas.metadata.remote.CMetadata;
import com.sas.metadata.remote.Column;
import com.sas.metadata.remote.MdException;
import com.sas.metadata.remote.MdFactory;
import com.sas.metadata.remote.MdFactoryImpl;
import com.sas.metadata.remote.MdOMIUtil;
import com.sas.metadata.remote.MdOMRConnection;
import com.sas.metadata.remote.MdObjectStore;
import com.sas.metadata.remote.MetadataObjects;
import com.sas.metadata.remote.PhysicalTable;
import com.sas.metadata.remote.TextStore;

/**
* This is a test class that contains examples for the SAS Java Metadata Interface.
*/
public class MdTesterExamples
{

/**
* The following statements instantiate the object factory.
*/
private MdFactory _factory = null;

/**
* Default constructor
*/
public MdTesterExamples()
{

// Calls the factory’s constructor
initializeFactory();

}

private void initializeFactory()
{

try
{

// Initializes the factory. The Boolean parameter is used to determine
// if the application is running in a remote or local environment. If
// the data does not need to be accessible across remote JVMs, then
// "false" can be used, as shown here.
_factory = new MdFactoryImpl(false);

// Defines debug logging, but does not turn it on.
boolean debug = false;
if (debug)

Using the SAS Java Metadata Interface � Sample Program 39

{
_factory.setDebug(false);
_factory.setLoggingEnabled(false);

// Sets the output streams for logging. The logging output can be
// directed to any OutputStream, including a file.
_factory.getUtil().setOutputStream(System.out);
_factory.getUtil().setLogStream(System.out);

}

// To be notified of changes that have been persisted to the
// SAS Metadata Server within this factory (this includes adding objects,
// updating objects, and deleting objects), we can add a listener to the
// factory here. See MdFactory.addMdFactoryListener().
// A listener is not needed for this example.

}
catch (Exception e)
{

e.printStackTrace();
}

}

/**
* The following statements define variables for SAS Metadata Server
* connection properties, instantiate a connection factory, issue
* the makeOMRConnection method, and check exceptions for error conditions.
*
*/
public boolean connectToServer()
{

String serverName = "MACHINE_NAME";
String serverPort = "8561";
String serverUser = "USERNAME";
String serverPass = "PASSWORD";

try
{

MdOMRConnection connection = _factory.getConnection();

40 Sample Program � Chapter 4

// This statement makes the connection to the server.
connection.makeOMRConnection(

serverName,
serverPort,
serverUser,
serverPass
);

// The following statements define error handling and error
// reporting messages.

}
catch (MdException e)
{

Throwable t = e.getCause();
if (t != null)
{

String ErrorType = e.getSASMessageSeverity();
String ErrorMsg = e.getSASMessage();
if (ErrorType == null)
{

// If there is no SAS server message, write a Java/CORBA message.
}
else
{

// If there is a message from the server:
System.out.println(ErrorType + ": " + ErrorMsg);

}
if (t instanceof org.omg.CORBA.COMM_FAILURE)
{

// If there is an invalid port number or host name:
System.out.println(e.getLocalizedMessage());

}
else if (t instanceof org.omg.CORBA.NO_PERMISSION)
{

// If there is an invalid user ID or password:
System.out.println(e.getLocalizedMessage());

}
}
else
{

// If we cannot find a nested exception, get message and print.
System.out.println(e.getLocalizedMessage());

}
// If there is an error, print the entire stack trace.
e.printStackTrace();
return false;

}
catch (RemoteException e)
{

// Unknown exception.
e.printStackTrace();
return false;

}

Using the SAS Java Metadata Interface � Sample Program 41

// If no errors occur, then a connection is made.
return true;

}

/**
* This example displays the status of the SAS Metadata Server.
*/
public void displayServerInformation()
{

try
{

MdOMRConnection connection = _factory.getConnection();

// Check the status of the metadata server
System.out.println("\nGetting server status...");
int status = connection.getServerStatus();
switch (status)
{

case MdOMRConnection.SERVER_STATUS_OK:
System.out.println("Server is running");
break;

case MdOMRConnection.SERVER_STATUS_PAUSED:
System.out.println("Server is paused");
break;

case MdOMRConnection.SERVER_STATUS_ERROR:
System.out.println("Server is not running");
break;

}

// Check the version of the SAS Metadata Server
int version = connection.getPlatformVersion();
System.out.println("Server platform version: " + version);

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}

}

/**
* This example retrieves a list of the repositories that are registered
* on the SAS Metadata Server.
* @return the list of available repositories (list of CMetadata objects)
*/
public List getRepositories()
{

try
{

// Repositories are listed with the getRepositories method.
System.out.println("\nThe repositories contained on this server are: ");

42 Sample Program � Chapter 4

MdOMIUtil omiUtil = _factory.getOMIUtil();
List reposList = omiUtil.getRepositories();
Iterator iter = reposList.iterator();
while (iter.hasNext())
{

// Print the Name= and Id= of each repository.
CMetadata repository = (CMetadata) iter.next();
System.out.println("Repository: " + repository.getName() + "

(" + repository.getFQID() +")");
} return reposList;

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}
return new ArrayList();

}

/**
* This example lists the metadata types available on the SAS Metadata Server
* and their descriptions.
*/
public void displayMetadataTypes()
{

try
{

// Metadata types are listed with the getTypes method.
System.out.println("\nThe object types contained on this server are: ");
List nameList = new ArrayList(100);
List descList = new ArrayList(100);
_factory.getOMIUtil().getTypes(nameList, descList);
Iterator iter1 = nameList.iterator();
Iterator iter2 = descList.iterator();
while (iter1.hasNext() && iter2.hasNext())
{

// Print the name and description of each metadata object type
String name = (String) iter1.next();
String desc = (String) iter2.next();
System.out.println("Type: " + name + ", desc: " + desc);

} }
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}

}

Using the SAS Java Metadata Interface � Sample Program 43

/**
* This example creates a table, column, and a note on the column.
* @param Repository CMetadata object with id of form: A0000001.A5KHUI98
*/
public void createTable(CMetadata repository)
{

if (repository != null)
{

try
{

System.out.println("\nCreating objects on the server...");

// We have a repository object.
// We use the reposFQID method to get its fully qualified ID.
String reposFQID = repository.getFQID();

// We need the short repository ID to create an object.
String shortReposID = reposFQID.substring(reposFQID.indexOf(".") + 1,

reposFQID.length());

// Now we create an object store to hold all our objects.
// This will be used to maintain a list of objects to persist
// to the server.
MdObjectStore store = _factory.createObjectStore();

// Create a PhysicalTable object named "TableTest".
PhysicalTable table=(PhysicalTable)_factory.createComplexMetadataObject(

store,
null,
"TableTest",
MetadataObjects.PHYSICALTABLE,
shortReposID
);

// Create a Column named "ColumnTest".
Column column = (Column) _factory.createComplexMetadataObject(

store,
null,
"ColumnTest",
MetadataObjects.COLUMN,
shortReposID
);

// Set the attributes of the column.
column.setColumnName("MyTestColumnName");
column.setSASColumnName("MyTestSASColumnName");
column.setDesc("This is a description of a column");

// Use the get"AssociationName"() method to associate the column with
// the table. This method creates an AssociationList object for the
// table object. The inverse association will be created automatically.
// The add(MetadataObject) method adds myColumn to the AssociationList.
table.getColumns().add(column);

44 Sample Program � Chapter 4

// Create a note for the column named "NoteTest".
TextStore note = (TextStore) _factory.createComplexMetadataObject(

store,
null,
"NoteTest",
MetadataObjects.TEXTSTORE,
shortReposID
);

// Set the StoredText= attribute for the note
note.setStoredText("Information about the note");

// Associate the note with the column.
column.getNotes().add(note);

// Now, persist all of these changes to the server
table.updateMetadataAll();

// When finished, clean up the objects in the store if they
// are no longer being used.
store.dispose();

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}

}
}

/**
* This example reads the newly created objects from the server.
* @param repository identifies the repository from which to read our objects.
*/
public void readTable(CMetadata repository)
{

if(repository != null)
{

try
{

System.out.println("\nReading objects from the server...");

// First we create an MdObjectStore as a container for the
// objects that we will create/read/persist to the server as
// one collection.
MdObjectStore store = _factory.createObjectStore();

// The following statements define GetMetadataObjectsSubset options
// strings. These XML strings are used in conjunction with SAS Open
// Metadata Interface flags. The <XMLSELECT> element specifies
// filter criteria. The <TEMPLATES> element specifies the metadata

Using the SAS Java Metadata Interface � Sample Program 45

// properties to be returned for each object from the server.
String xmlSelect = "<XMLSELECT Search=\"@Name=’TableTest’\"/>";
String template =

"<Templates>" +
"<PhysicalTable Id=\"\" Name=\"\" Desc=\"\">" +

"<Columns/>" +
"</PhysicalTable>" +
"<Column Id=\"\" Name=\"\" Desc=\"\" ColumnName=\"\">" +

"<Notes/>" +
"</Column>" +
"<TextStore Id=\"\" Name=\"\" Desc=\"\" StoredText=\"\"/>" +

"</Templates>";

// Add the xmlSelect and template strings together
String sOptions = xmlSelect + template;

// The following statements go to the server with a fully qualified
// repository ID and specify the type of object we are searching for
// (MdObjectFactory.PHYSICALTABLE) using the OMI_XMLSELECT,
// OMI_TEMPLATE, and OMI_GET_METADATA flags. OMI_GET_METADATA
// tells the server to get all of the attributes specified in the template
// for each object that is returned. The table, column, and note will be
// read from the server and created within the specified object store.
int flags = MdOMIUtil.OMI_XMLSELECT | MdOMIUtil.OMI_TEMPLATE |

MdOMIUtil.OMI_GET_METADATA;
List tableList = _factory.getOMIUtil().getMetadataObjectsSubset(

store,
repository.getFQID(),
MetadataObjects.PHYSICALTABLE,
flags,
sOptions
);

Iterator iter = tableList.iterator();
while (iter.hasNext())
{

// Print the Id= and Name= of the table returned from the server
PhysicalTable table = (PhysicalTable) iter.next();
System.out.println("Found table: " + table.getName() + "

(" + table.getId() + ")");

// Get the columns for this table.
AssociationList columns = table.getColumns();
for (int i = 0; i < columns.size(); i++)
{

// Print the Id= and Name= of associated columns
Column column = (Column) columns.get(i);
System.out.println("Found column: " + column.getName() + "

(" + column.getId() + ")");
System.out.println("\tColumnName: " + column.getColumnName());

// Get notes associated with the columns.
AssociationList notes = column.getNotes();
for (int j = 0; j < notes.size(); j++)
{

46 Sample Program � Chapter 4

// Print the Id=, Name=, and StoredText= values of associated
// notes
TextStore note = (TextStore) notes.get(j);
System.out.println("Found textstore: " + note.getName() + "

("+ note.getId() + ")");
System.out.println("\tStoredText: " + note.getStoredText());

}
}

}

// When finished, clean up the objects in the store if they
// are no longer being used.
store.dispose();

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}

}
}

/**
* This example deletes the objects that we created.
* @param repository
*/
public void deleteTable(CMetadata repository)
{

if(repository != null)
{

try
{

System.out.println("\nDeleting the objects from the server...");
MdObjectStore store = _factory.createObjectStore();

// Create a list of the objects that need to be deleted
// from the server.
List deleteList = new ArrayList();

// Query for the table again
String xmlSelect = "<XMLSELECT Search=\"@Name=’TableTest’\"/>";
String template = "<Templates>" +

"<PhysicalTable>" +
"<Columns/>" +

"</PhysicalTable>" +
"<Column>" +

"<Notes/>" +
"</Column>" +

"</Templates>";

// Add the xmlSelect and template strings together

Using the SAS Java Metadata Interface � Sample Program 47

String sOptions = xmlSelect + template;

int flags = MdOMIUtil.OMI_XMLSELECT | MdOMIUtil.OMI_TEMPLATE |
MdOMIUtil.OMI_GET_METADATA;

List tableList = _factory.getOMIUtil().getMetadataObjectsSubset(
store,
repository.getFQID(),
MetadataObjects.PHYSICALTABLE,
flags,
sOptions
);

// Add the found objects to the delete list
Iterator iter = tableList.iterator();
while (iter.hasNext())
{

PhysicalTable table = (PhysicalTable) iter.next();
deleteList.add(table);

// Get the columns
AssociationList columns = table.getColumns();
for (int i = 0; i < columns.size(); i++)
{

Column column = (Column) columns.get(i);
deleteList.add(column);

// Get the notes
AssociationList notes = column.getNotes();
for (int j = 0; j < notes.size(); j++)
{

TextStore note = (TextStore) notes.get(j);
deleteList.add(note);

}
}

}

// Delete everything that is in the delete list
if (deleteList.size() > 0)
{

System.out.println("Deleting " + deleteList.size() + " objects");
_factory.deleteMetadataObjects(deleteList);

}

// When finished, clean up the objects in the store if they
// are no longer being used.
store.dispose();

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)

48 Sample Program � Chapter 4

{
e.printStackTrace();

}
}

}

/**
* This example displays the PhysicalTable objects in a repository.
* @param repository CMetadata identifies the repository from which to read
* the objects.
*/
public void displayAllTables(CMetadata repository)
{

try
{

// Print a descriptive message about the request.
System.out.println("\nRetrieving all PhysicalTable objects contained in "

+ " repository " + repository.getName());

// Use the short repository ID to pass in the method.
String reposID = repository.getFQID();

// We get a list of PhysicalTable objects.
MdObjectStore store = _factory.createObjectStore();

// Use the OMI_ALL_SIMPLE flag to get all attributes for each table returned
int flags = MdOMIUtil.OMI_GET_METADATA | MdOMIUtil.OMI_ALL_SIMPLE;
List tables = _factory.getOMIUtil().getMetadataObjectsSubset(

store,
reposID, // Repository to search
MetadataObjects.PHYSICALTABLE, // Metadata type to search for
flags,
""
);

// Print information about them.
Iterator iter = tables.iterator();
while(iter.hasNext())
{

PhysicalTable ptable = (PhysicalTable)iter.next();
System.out.println("PhysicalTable: " + ptable.getName() + ",

" + ptable.getFQID() +",
" + ptable.getDesc());

}

// When finished, clean up the objects in the store if they
// are no longer being used.
store.dispose();

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

Using the SAS Java Metadata Interface � Sample Program 49

e.printStackTrace();
}

}

/**
* This example gets information for a specific
* PhysicalTable object.
* @param table the table to retrieve
*/
public void getTableInformation(PhysicalTable table)
{

try
{

// Print a descriptive message about the request.
System.out.println("\nGetting information for a specific PhysicalTable");
// Create a template to get detailed information for this table
String template = "<Templates>" +

"<PhysicalTable>" +
"<Columns/>" +
"<Notes/>" +
"<Keywords/>" +

"</PhysicalTable>" +
"</Templates>";

// Use the OMI_ALL_SIMPLE flag to get all of the table’s attributes.
int flags = MdOMIUtil.OMI_GET_METADATA | MdOMIUtil.OMI_ALL_SIMPLE |

MdOMIUtil.OMI_TEMPLATE;
table = (PhysicalTable) _factory.getOMIUtil().getMetadataAllDepths(

table,
null,
null,
template,
flags
);

// Print information about the table
System.out.println("Table attributes: ");
System.out.println("Name = " + table.getName());
System.out.println("Id = " + table.getId());
System.out.println("Description = " + table.getDesc());
System.out.println("Created Date = " + table.getMetadataCreated());
System.out.println("Table associations: ");
System.out.println("Number of Columns = " + table.getColumns().size());
System.out.println("Number of Keywords = " + table.getKeywords().size());
System.out.println("Number of Notes = " + table.getNotes().size());

}
catch (MdException e)
{

e.printStackTrace();
}
catch (RemoteException e)
{

e.printStackTrace();
}

}

50 Sample Program � Chapter 4

/**
* The main method for the class
*/
public static void main(String[] args)
{

MdTesterExamples tester = new MdTesterExamples();

// Connect to the SAS Metadata Server
boolean connected = tester.connectToServer();
if(connected)
{

System.out.println("Connected...");
}
else
{

System.out.println("Error Connecting...");
return;

}

// Now that we are connected, check the status of the server
tester.displayServerInformation();

// Get the list of repositories on the server
List repositories = tester.getRepositories();
CMetadata repos = (CMetadata) repositories.get(0);

// Get the list of metadata types available on the server
tester.displayMetadataTypes();

// Create a new PhysicalTable object and add it to the server
tester.createTable(repos);

// Query for the PhysicalTable just added to the server
tester.readTable(repos);
// Delete the PhysicalTable
tester.deleteTable(repos);

System.exit(1);
}

}

51

C H A P T E R

5
Understanding
com.sas.metadata.remote
Interfaces and Classes

Interfaces and Classes Summary 51
Working with the MdFactory Interface 52

Instantiating the Object Factory 52

Creating Java Objects 52

Invoking the Event Handling Interface 53

Deleting Objects 53
Disposing of the Object Factory 53

Working with the MdOMRConnection Interface 53

Working with the CMetadata Interface 54

Working with the MdOMIUtil Interface 55

Using the Get Methods 56

Working with the AssociationList Class 56
Working with the MdObjectStore Interface 57

Working with the MdUtil Interface 57

Interfaces and Classes Summary
A SAS Java Metadata Interface client that reads and writes metadata objects

references the following interfaces and classes from the com.sas.metadata.remote
package.

Table 5.1 com.sas.metadata.remote Interfaces and Classes for Reading and
Writing Metadata

Class or Interface Name Description

MdFactory interface The starting point for all Java clients. This
interface enables you to create the other objects
needed to connect to the SAS Metadata Server
and interact with its metadata objects. In the
static version, this interface is called
MdObjectFactory.

MdOMRConnection interface Contains methods for connecting to the SAS
Metadata Server. In the static version, this
interface is called MetadataWorkspace.

CMetadata interface Specifies the base interface that is used to
describe SAS Open Metadata Interface objects.

52 Working with the MdFactory Interface � Chapter 5

Class or Interface Name Description

MdOMIUtil interface Contains methods for getting and setting SAS
Metadata Server objects and their attributes. In
the static version, this interface is called
MetadataUtil.

AssociationList class Contains methods for defining and maintaining
associations.

MdObjectStore interface Specifies the container for created or modified
metadata objects.

MdUtil interface Contains generic methods, such as debugging
methods. In the static version, this interface is
called Util.

Working with the MdFactory Interface
The MdFactory interface instantiates the Java object factory and provides methods

for creating and deleting Java objects, for invoking the SAS Java Metadata Interface
event-handling interface and messaging mechanisms, and for deleting the object factory.

Instantiating the Object Factory
The object factory is instantiated one time only for a SAS Java Metadata Interface

client before any other tasks are performed with the getInstance method:

MdFactory factory = new MdFactoryImpl();

If the object factory does not need to be used in a remote environment—that is, it
does not need to be available to remote Java Virtual Machines (JVMs)—you can pass in
a “false” value to the constructor. In this way, the factory will behave as if it is running
in a local, single JVM environment.

Creating Java Objects
After you have instantiated the object factory and connected to the SAS Metadata

Server (using the makeOMRConnection method of the MdOMRConnection interface),
you can then use the methods in the MdFactory interface to create objects on the client.
MdFactory provides the createComplexMetadataObject method for creating objects. The
createComplexMetadataObject method creates a complex object that stores information
about a metadata object’s attributes and its potential associations. You can use this
method to create an object that represents a new or existing object that will be
persisted to the SAS Metadata Server.

The following are examples of the createComplexMetadataObject method. A method
call that creates a complex object describing a new metadata object has the following
form:

MdFactory.createComplexMetadataObject(myNewObjectName,
metadata_type,
8char_target_repository_identifier)

A method call that creates a complex object representing an existing object on the
SAS Metadata Server has the following form:

Understanding com.sas.metadata.remote Interfaces and Classes � Working with the MdOMRConnection Interface 53

MdFactory.createComplexMetadataObject(myNewObjectName,
metadata_type,
identifier_of_existing_metadata_object)

You can get the identifiers of all repositories registered on the SAS Metadata Server
by using the getRepositories method of the MdOMIUtil interface. You can get the
identifier of an existing object instance by using one of the getMetadataObjects methods
of the MdOMIUtil interface. For more information about repository and object instance
identifiers, see “Identifying Metadata” on page 66.

Invoking the Event Handling Interface
The MdFactoryListener interface includes the MdFactoryEvent class and the

addMdFactoryListener method. MdFactoryListener is a newer version of the SAS 9.1
MdObjectFactoryListener interface, which is deprecated in SAS 9.2.

You can have multiple listeners in a factory. The addMdFactoryListener method can
be instantiated either directly before or after the server connection is made. The
MdFactoryListener interface notifies other users of the factory every time a metadata
object is created, updated, or deleted on the SAS Metadata Server. Notifications are
sent when the changes are persisted to the SAS Metadata Server. Users of the factory
can use the information to make other changes (for example, to refresh their displays to
include the new, modified, or deleted objects).

If a listener is added to a factory, it must be removed at the end of the factory session.

Deleting Objects
To delete an existing metadata object from the SAS Metadata Server, you must

create an object that represents it in the SAS Java Metadata Interface client. Then, you
delete both the server and client metadata objects by calling the deleteMetadataObjects
method of the MdFactory interface. Calling this method removes the object from the
server and client, as well as its object store.

A new object that was created on the client and persisted to the SAS Metadata
Server can also be deleted from its object store by calling the CMetadata delete method.
The CMetadata delete method marks the client object as deleted. The client object is
deleted the next time the updateMetadataAll method is called on the object store.

Disposing of the Object Factory
To remove the object factory from memory, use the MdFactory dispose method before

closing the client application. The dispose method removes the object factory and any
remaining object stores.

Working with the MdOMRConnection Interface
The MdOMRConnection interface contains methods for connecting to and

disconnecting from the SAS Metadata Server. The MdOMRConnection interface can be
retrieved as follows:

MdOMRConnection connection = factory.getConnection();
connection.makeOMRConnection(serverName, serverPort, serverUser,
serverPassword);

54 Working with the CMetadata Interface � Chapter 5

A client that reads and writes metadata uses the makeOMRConnection method to
connect to the SAS Metadata Server. The client disconnects from the server by using
the closeOMRConnection method.

The MdOMRConnection interface also provides methods for connecting to the server
with the SAS Open Metadata Interface IServer, ISecurity, and ISecurityAdmin server
interfaces, and for getting information about the SAS Metadata Server connection. The
following table summarizes the methods in the MdOMRConnection interface.

Table 5.2 Basic MdOMRConnection Methods

Method Name Description

closeOMRConnection Disconnects from the SAS Metadata Server.

getIdentityofUserConnected Gets the Identity object of the connected user.

getPlatformVersion Gets the SAS version of the SAS Metadata
Server as an integer, which when printed as a
decimal number has four digits. For example, a
SAS Metadata Server running SAS 9.2 returns
the value 9200, which represents version 9.2.0.0.

getServerModelVersion Gets the SAS Metadata Model version number
in the form XX.XX. (For example, 11.03.)

makeISecurityConnection Obtains a handle to the ISecurity server
interface, which contains SAS Open Metadata
Interface authorization methods.

makeISecurityAdminConnection Obtains a handle to the ISecurityAdmin server
interface, which contains SAS Open Metadata
Interface security administration methods.

makeIServerConnection Obtains a handle to the IServer server interface,
which contains SAS Open Metadata Interface
server control methods.

makeOMRConnection Obtains a handle to the IOMI server interface,
which contains SAS Open Metadata Interface
metadata access methods.

Working with the CMetadata Interface
The CMetadata interface is the intermediate interface that is used to describe all

metadata objects, such as a PhysicalTable, Column, Person, or LogicalServer. The
CMetadata interface contains the basic attributes for all metadata objects, such as
Name, Description, FQID, MetadataCreated time, and MetadataUpdated time. All
metadata objects inherit these attributes. They also inherit the routines that are used
to get and set these attributes. For example, routines such as getName and setName or
getDesc and setDesc are all inherited from CMetadata.

Other frequently used CMetadata methods are summarized in the following table.

Understanding com.sas.metadata.remote Interfaces and Classes � Working with the MdOMIUtil Interface 55

Table 5.3 Frequently Used CMetadata Methods

Method Name Description

delete Marks an object as deleted in its parent object
store. The object remains available until the
object store is persisted to the SAS Metadata
Server with the updateMetadataAll() method.

dispose Removes the object and all links to an object and
clears it from memory.

getCMetadataType Returns the metadata type of an object.

getObjectStore Gets the object store for an object.

getRepositoryID Returns an object’s repository identifier.

updateMetadataAll Persists new and modified objects in the SAS
Metadata Server.

Working with the MdOMIUtil Interface
The MdOMIUtil interface provides wrapper methods for methods in the SAS Open

Metadata Interface IOMI server interface. MdOMIUtil methods enable you to retrieve
existing metadata objects from the SAS Metadata Server.

The MdOMIUtil interface includes AddMetadata, UpdateMetadata, and DoRequest
methods. The AddMetadata and UpdateMetadata methods enable you to pass
XML-formatted metadata property strings to add and update metadata objects directly
on the SAS Metadata Server, instead of having to create Java objects. The DoRequest
method enables you to pass XML-formatted method calls. Use of these methods is not
recommended. They duplicate functionality provided by Java object interfaces provided
by the SAS Java Metadata Interface.

The following table summarizes the basic methods in the MdOMIUtil interface.

Table 5.4 Basic MdOMIUtil Methods

Method Name Description

getRepositories Gets the ID and name of all repositories registered on
the SAS Metadata Server.

getFoundationRepository Returns the foundation repository for the connected SAS
Metadata Server.

getFoundationReposID Returns the ID of the foundation repository.

getMetadataAllDepths Gets the properties (attributes and associations) of a
specified metadata object.

getMetadataNoCache Issues a GetMetadata request on the specified object,
and then parses the output returned by the SAS
Metadata Server so that it is stored in a HashMap. The
HashMap contains attribute and association values in
key=value pairs.

56 Using the Get Methods � Chapter 5

Method Name Description

getMetadataObjectsNoCache Issues a GetMetadataObjects request on a specified
metadata type, and parses the output returned by the
SAS Metadata Server so that each returned object’s
properties are stored in a HashMap.

getMetadataObjectsSubset Gets a subset of the metadata objects of the requested
metadata type.

getObjectPath Returns the path of an object that resides in the SAS
folder tree.

getUserHomeFolder Gets the user home folder for the specified user.

DoRequest Passes an XML-formatted IOMI method call to the SAS
Metadata Server.

For reference information about each method, see the SAS Java Metadata Interface
documentation at support.sas.com/92api.

Using the Get Methods
The get methods enable you to query metadata.
Most of the get methods require you to specify SAS Open Metadata Interface flags

and options to identify the information that you want to retrieve. For example, the two
getMetadataObjects methods support the OMI_XMLSELECT flag and the
<XMLSELECT> element to pass a search string. All four getMetadata* methods
support the OMI_TEMPLATE flag and the <TEMPLATES> element to enable you to
specify the attributes and associations to retrieve in a property string.

The SAS Java Metadata Interface Get methods support all of the flags and options
that are defined for the SAS Open Metadata Interface IOMI GetMetadataObjects and
GetMetadata methods. For reference information about the IOMI methods, flags, and
options, see Chapter 6, “Metadata Access (IOMI Interface),” on page 61. For usage
information, see Chapter 12, “Overview of Querying Metadata,” on page 235, Chapter
13, “Using GetMetadata to Get the Properties of a Specified Metadata Object,” on page
243, Chapter 14, “Using GetMetadataObjects to Get All Metadata of a Specified
Metadata Type,” on page 263, and Chapter 15, “Filtering a GetMetadataObjects
Request,” on page 277.

To make the flags easier to use, the MdOMIUtil interface defines constant values for
each of the flags. These constants are in the documentation at support.sas.com/92api.
Specify these constant values in your SAS Java Metadata Interface method calls instead
of the numeric values that are documented for the IOMI server interface methods.

Working with the AssociationList Class

The AssociationList class provides methods to manage the associations between
metadata objects. A SAS Open Metadata Interface metadata object instance is defined
by its properties. Attributes describe the characteristics of the object instance, and
associations describe the object’s relationships with other object instances. All
associations on the SAS Metadata Server are bidirectional. An AssociationList object is
required to represent each association name.

An AssociationList object is created by submitting a getAssociationName method on
the metadata object on the SAS Metadata Server. When using this method, substitute a

Understanding com.sas.metadata.remote Interfaces and Classes � Working with the MdUtil Interface 57

valid association name for AssociationName. The following is an example of a
getAssociationName request:

AssociationList columns = tableObject.getColumns();
columns.add(columnObject);

� The first statement specifies to get from the SAS Metadata Server for object
tableObject a list of all the objects in the Columns association. If a Columns
association does not exist, then an AssociationList object is created on the client,
but it is empty.

� The second statement adds object columnObject to the Columns AssociationList
that was retrieved or created.

Whenever you create an AssociationList object for a specified association name, the
SAS Java Metadata Interface automatically creates an AssociationList object that
represents the reverse association. For example, for each column listed by the
getColumns method, the SAS Java Metadata Interface creates AssociationList objects
in the object store representing the reverse association. So, for the preceding example,
the columnObject.setTable(tableObject) is performed for the user by the SAS Java
Metadata Interface.

If you want to clear the contents of an association, you can use the clear method from
the AssociationList class. For the preceding example, you would issue the following:

columns.clear();

The clear method removes all Java objects representing both sides of the
bidirectional association.

Working with the MdObjectStore Interface

All Java objects that you create to read metadata or to add or update metadata on
the SAS Metadata Server must be contained in an MdObjectStore object. The
MdObjectStore object serves as a working container for metadata objects. When you are
ready to apply changes to the SAS Metadata Server, all of the new and modified
metadata objects in the object store are persisted to the SAS Metadata Server as a
group. The object store automatically maintains lists of new, updated, and deleted
metadata objects. These lists are used to persist the updates to the SAS Metadata
Server and by the event handling interface to track changes in object stores.

An object store is created with the statement:

MdObjectStore store = MdFactory.createObjectStore();

An object store is deleted with the MdObjectStore dispose method. The dispose
method removes all objects in the object store from memory.

Working with the MdUtil Interface

The MdUtil interface has utility methods for defining logging messages within the
SAS Java Metadata Interface. There are three different categories of information that
can be logged—client/server XML information, debug messages, and performance times
for measuring client/server communication. Actual logging is turned on or off with the
MdFactory interface. The MdUtil interface controls the output of these log messages.

58

59

P A R T3

Server Interfaces

Chapter 6.Metadata Access (IOMI Interface) 61

Chapter 7.Authorization (ISecurity Interface) 113

Chapter 8.Security Administration (ISecurityAdmin Interface) 155

Chapter 9.Server Control (IServer Interface) 187

60

61

C H A P T E R

6
Metadata Access (IOMI
Interface)

Overview of the IOMI Server Interface 63
Using the IOMI Server Interface 63

Introduction to IOMI Methods 64

Return Code 64

Other Method Output 64

Constructing a Metadata Property String 64
Quotation Marks and Special Characters 65

Identifying Metadata 66

Functional Index to IOMI Methods 67

Using IOMI Flags 67

Specifying a Flag 68

Corresponding XML Elements 68
Flag Behavior When Multiple Flags Are Used 68

Summary Table of IOMI Flags 68

Summary Table of IOMI Options 74

<DOAS> Option 75

Specifying the <DOAS> Option 76
Example 1: Standard Interface 76

Example 2: DoRequest Method 76

AddMetadata 77

Syntax 77

Parameters 77
Details 77

Example 1: Standard Interface 78

Example 2: DoRequest Method 79

Related Methods 79

AddResponsibleParty 79

Syntax 79
Parameters 79

Details 80

Example 81

Related Methods 81

AddUserFolders 81
Syntax 81

Parameters 81

Details 81

Example 83

Related Methods 84
DeleteMetadata 84

Syntax 84

Parameters 84

62 Contents � Chapter 6

Details 85
Example 1: Standard Interface 86

Example 2: DoRequest Method 86

Related Methods 87

DoRequest 87

Syntax 87
Parameters 87

Details 87

Example 89

GetMetadata 89

Syntax 89

Parameters 89
Details 91

Example 1: Standard Interface 92

Example 2: DoRequest Method 92

Related Methods 92

GetMetadataObjects 93
Syntax 93

Parameters 93

Details 94

Example 1: Standard Interface 95

Example 2: DoRequest Method 96
Related Methods 96

GetNamespaces 96

Syntax 96

Parameters 96

Details 97

Example 1: Standard Interface 97
Example 2: DoRequest Method 97

Related Methods 97

GetRepositories 97

Syntax 98

Parameters 98
Details 98

Example 1: Standard Interface 99

Example 2: DoRequest Method 100

GetResponsibleParty 100

Syntax 100
Parameters 101

Details 101

Example 102

Related Methods 102

GetSubtypes 102

Syntax 102
Parameters 102

Details 103

Example 1: Standard Interface 103

Example 2: DoRequest Method 103

Related Methods 104
GetTypeProperties 104

Syntax 104

Parameters 104

Details 105

Example 1: Standard Interface 105

Metadata Access (IOMI Interface) � Using the IOMI Server Interface 63

Example 2: DoRequest Method 105
Related Methods 105

GetTypes 105

Syntax 105

Parameters 106

Details 106
Example 1: Standard Interface 106

Example 2: DoRequest Method 107

Related Methods 107

GetUserFolders 107

Syntax 107

Parameters 107
Details 107

Example 108

Related Methods 108

IsSubtypeOf 108

Syntax 109
Parameters 109

Example 1: Standard Interface 109

Example 2: DoRequest Method 110

Related Methods 110

UpdateMetadata 110
Syntax 110

Parameters 110

Details 111

Example 1: Standard Interface 112

Example 2: DoRequest Method 112

Related Methods 112

Overview of the IOMI Server Interface

The SAS Open Metadata Interface defines a set of methods that read and write
metadata (the IOMI server interface), a set of methods for controlling the SAS
Metadata Server (the IServer server interface), a set of methods for requesting
authorization decisions from the authorization facility (the ISecurity server interface),
and a set of methods for defining and administering access controls (the ISecurityAdmin
server interface). This section describes the methods for reading and writing metadata.

In SAS 9.2, we recommend that Java clients use the SAS Java Metadata Interface to
read and write metadata instead of using the IOMI server interface directly.
Information about IOMI methods is provided for users of PROC METADATA, which
enables users to submit IOMI method calls that are formatted for the DoRequest
method from the IN= argument. This section also provides background information for
users of the SAS Java Metadata Interface and SAS metadata DATA step functions.

Using the IOMI Server Interface
Using the IOMI server interface is a matter of using its methods. To access these

methods, a client must connect to the SAS Metadata Server. A PROC METADATA user
can specify SAS Metadata Server connection options in the procedure, in system
options, or in a dialog box. For more information, see “Connection Options” in SAS
Language Interfaces to Metadata.

64 Introduction to IOMI Methods � Chapter 6

Introduction to IOMI Methods
Each IOMI method has a set of parameters that communicate the details of the

metadata request to the SAS Metadata Server. For example, parameters identify the
namespace to use as the context for the request, the repository in which to process the
request, and the metadata type to reference. In addition, parameters specify flags and
additional options to use when processing the request.

Methods that read and write metadata objects require you to pass a metadata
property string that describes the object to the SAS Metadata Server. This metadata
property string must be formatted in XML. For information about how to define a
metadata property string, see “Constructing a Metadata Property String” on page 64.

Each IOMI method has two output parameters: a return code and a holder for
information received from the SAS Metadata Server.

Return Code
The return code is a Boolean operator that indicates whether the method

communicated with the SAS Metadata Server. A 0 indicates that communication was
established. A 1 indicates that communication was not established. The return code
does not indicate the success or failure of the method call itself. It is the responsibility
of SAS Open Metadata Interface clients to provide error codes.

Other Method Output
All other output received from the SAS Metadata Server is in the form of formatted

XML strings. The output typically mirrors the input, with the exception that requested
values are filled in.

Constructing a Metadata Property String
To read or write a metadata object, you must pass a string of properties that describe

the object to the SAS Metadata Server. This property string is passed to the server in
the INMETADATA parameter of the method call.

A metadata object is described by the following:
� its metadata type
� attributes that are specific to the metadata object, such as its ID, name,

description, and other characteristics
� its associations with other metadata objects

The SAS Open Metadata Interface supports the following XML elements for defining
a metadata property string:

metadata type
identifies the metadata type that you want to read or write, enclosed in angle
brackets. The following example shows the XML element representing the
PhysicalTable metadata type:

<PhysicalTable></PhysicalTable>

A shorthand method of specifying this XML element is as follows:

<PhysicalTable/>

Metadata Access (IOMI Interface) � Quotation Marks and Special Characters 65

metadata type attributes
specifies the attributes of the metadata type as XML attributes (enclosed in the
angle brackets of the metadata type). The following example shows the
PhysicalTable metadata type with "NE Sales" as the Name= attribute.

<PhysicalTable Name="NE Sales"/>

association name and associated metadata type subelements
describe the relationship between the metadata object in the main XML element
and one or more other metadata types as nested XML elements. For example:

<PhysicalTable Name="NE Sales"/>
<Columns>

<Column/>
</Columns>

</PhysicalTable>

In this example, the first nested element, Columns, is the association name.
The association name is a label that describes the relationship between the main
XML element and the subelement. The SAS Metadata Model defines the
association names that are supported for every metadata type.

The second nested element, Column, is the association subelement. The
association subelement specifies the associated metadata type that you are
interested in. The Columns association name supports associated objects of the
metadata types Column and ColumnRange. By specifying Column in the property
string, you indicate to the SAS Metadata Server that you are only interested in
associated objects of this metadata type.

All in all, the nested elements in the example specify that the main metadata
object, PhysicalTable, has a Columns association to an object of metadata type
Column.

CAUTION:
To meet XML parsing rules, the metadata type, attribute, association, and associated
metadata type names that you specify in the metadata property string must exactly match
those published in the metadata type documentation. �

Quotation Marks and Special Characters
The metadata property string is passed as a string literal (a quoted string) in most

programming environments. To ensure that the string is parsed correctly, it is
recommended that any additional double quotation marks, such as those enclosing XML
attribute values in the metadata property string, be marked to indicate that they
should be treated as characters. Here are examples of using escape characters in
different programming environments to mark the additional double quotation marks:

Java "<PhysicalTable Id=\"123\" Name=\"TestTable\" />"

Visual Basic "<PhysicalTable Id=""123"" Name=""TestTable"" />"

Visual C++ "<PhysicalTable Id=\"123\" Name=\"TestTable\" />"

SAS "<PhysicalTable Id=""123"" Name=""TestTable"" />"
"<PhysicalTable Id=’123’ Name=’TestTable’ />"
’<PhysicalTable Id="123" Name="TestTable"/>’

66 Identifying Metadata � Chapter 6

Special characters that are used in XML syntax are specified as follows:

< = <
> = >
& = &

Identifying Metadata
The documentation refers to "general, identifying information" about a metadata

object. This phrase refers to the object’s Id= and Name= attributes.
Each metadata object in a repository, such as the metadata for a particular column in

a SAS table, has a unique identifier assigned to it when the object is created. Each
object also has a name. For example, here is the Id= and Name= for a SAS table
column, as returned by the GetMetadata method.

<Column Id="A2345678.A3000001" Name="New Column"/>

Id=
refers to the unique identifier assigned to a metadata object. It has the form
reposid.instanceid. For example, in the previous example, the Id= for the Column
object is A2345678.A3000001.

The reposid is assigned to a metadata repository by the SAS Metadata Server
when the repository is created. A reposid is a unique character string that
identifies the metadata repository that stores the object.

The instanceid is assigned to a metadata object by the SAS Metadata Server
when the object is created. An instanceid is a unique character string that
distinguishes one metadata object from other metadata objects of the same
metadata type.

Name=
refers to the user-defined name of the metadata object. An object name is a
non-null value up to 60 characters. The name cannot start or end with a white
space character, or contain /, \, or control characters. Names can contain Unicode
characters, subject to the previously noted restrictions. In the previous example,
the Name= value of the table column is New Column.

Note: Because different repository systems use different ID formats, do not make
assumptions about the internal format of the Id= attribute. �

CAUTION:
Do not attempt to assign Id= values in a client application. Let the SAS Metadata
Server assign identifiers to new objects. �

Metadata Access (IOMI Interface) � Using IOMI Flags 67

Functional Index to IOMI Methods

In this book, IOMI methods are described in alphabetical order. This section
categorizes IOMI methods by function.

Category Method Description

Read Methods GetMetadata Gets specified properties for a specified
metadata object

GetMetadataObjects Gets all metadata objects of the specified
metadata type from the specified repository

Repository Methods GetRepositories Gets the metadata repositories on the SAS
Metadata Server

Write Methods AddMetadata Adds metadata objects to a repository

DeleteMetadata Deletes metadata objects from a repository

UpdateMetadata Updates metadata objects in a repository

Messaging Method DoRequest Executes XML-formatted method calls

Management Methods GetNamespaces Gets the namespaces defined on the SAS
Metadata Server

GetSubtypes Gets all possible subtypes for a specified
metadata type

GetTypes Gets all of the metadata types in a
namespace

GetTypeProperties Gets all possible properties for a specified
metadata type

IsSubtypeOf Determines whether one metadata type is a
subtype of another metadata type

User Interface Helper
Methods

AddResponsibleParty Creates a ResponsibleParty object for the
specified identity in the repository that
contains the identity’s metadata definition

AddUserFolders Creates a user’s home folder and subfolders

GetResponsibleParty Gets the ResponsibleParty object associated
with the specified Person or IdentityGroup
and responsibility

GetUserFolders Gets a user’s home folder or subfolders

Using IOMI Flags

Various IOMI methods support flags. The Write methods require that an
OMI_TRUSTED_CLIENT flag be set to authenticate write operations. Other methods
support flags to expand or filter metadata retrieval requests. See “Summary Table of

68 Specifying a Flag � Chapter 6

IOMI Flags” on page 68 for a list of the available flags and the methods for which they
are supported.

Specifying a Flag
IOMI flags are specified as numeric constants in the FLAGS parameter of a method

call. For example, to specify the OMI_ALL (1) flag in a GetMetadata call, specify the
number 1 in the FLAGS parameter. To specify more than one flag, add their numeric
values together and specify the sum in the FLAGS parameter. For example, OMI_ALL
(1) + OMI_SUCCINCT (2048) = 2049. This flag combination gets all properties for the
specified object, excluding properties for which a value has not been defined.

Corresponding XML Elements
Most flags do not require additional input. When a flag does require additional input,

you must supply this input in a special XML element in the OPTIONS parameter. For
example, the OMI_XMLSELECT flag, which invokes search criteria to filter the objects
retrieved by the GetMetadataObjects method, requires you to specify the search criteria
in an <XMLSELECT> element in the OPTIONS parameter. The GetMetadata method
OMI_TEMPLATE flag, which enables you to request additional properties for metadata
objects, requires that you submit a string identifying the additional properties in a
<TEMPLATES> element in the OPTIONS parameter. See “Summary Table of IOMI
Options” on page 74 for a list of these special XML elements.

Flag Behavior When Multiple Flags Are Used
Some methods, like GetMetadata and GetMetadataObjects, support many flags.

GetMetadata flags can be used in the GetMetadataObjects method when the
OMI_GET_METADATA flag is set. When more than one flag is set, each flag is applied
unless a filtering option is used. For example, GetMetadata flags specified in a
GetMetadataObjects request retrieve properties only for objects remaining after any
<XMLSELECT> criteria have been applied. When search criteria are specified in the
INMETADATA parameter of a GetMetadata call to filter the associated objects that are
retrieved and the OMI_ALL flag is set, GetMetadata retrieves properties only about
associated objects that meet the search criteria.

When a template is used, the properties and any search criteria specified in the
template are applied in addition to any properties requested by other GetMetadata
parameters.

Summary Table of IOMI Flags
The following table lists the flags that are supported for the metadata access methods:

Metadata Access (IOMI Interface) � Summary Table of IOMI Flags 69

Flag name Numeric
Indicator

Method Description

OMI_ALL 1 GetMetadata
GetRepositories
GetTypeProperties

In GetMetadata, gets
all of the properties of
the requested object.
This includes all of
the attributes that are
documented for the
requested metadata
type in its Attributes
table, and all of the
associations that are
documented in the
Associations table,
whether they have
values stored for them
or not. The results
include both unique
and inherited
properties. If the
returned XML stream
includes references to
any associated objects,
then GetMetadata
returns only general,
identifying
information for the
associated objects. In
GetRepositories, gets
information about
repository location,
format, type, and
availability in
addition to listing the
repositories. In
GetTypeProperties,
gets a description of
the supported value
for each property.

OMI_ALL_DESCENDANTS 64 GetSubtypes Gets the descendants
of the returned
subtypes and the
subtypes.

OMI_ALL_SIMPLE 8 GetMetadata Gets all of the
attributes of the
requested object.

OMI_CI_DELETE_ALL 33 Obsolete in SAS 9.2.

OMI_CI_NODELETE 524288 Obsolete in SAS 9.2.

70 Summary Table of IOMI Flags � Chapter 6

Flag name Numeric
Indicator

Method Description

OMI_DELETE 32 DeleteMetadata Deletes the contents
of a repository and the
repository’s
registration.

OMI_DEPENDENCY_USED_BY 16384 GetMetadata
GetMetadataObjects

New SAS 9.2 behavior.
When issued in
GetMetadata, specifies
to include associations
to objects that exist in
project repositories in
the method results.
When issued in
GetMetadataObjects,
specifies to include
objects from all project
repositories in the
method results.

OMI_DEPENDENCY_USES 8192 GetMetadataObjects New SAS 9.2
behavior: Specifies to
include associations to
objects from all
production
repositories (the
foundation repository
and all custom
repositories) in the
method results.

OMI_GET_METADATA 256 GetMetadataObjects Executes a
GetMetadata call for
each object that is
returned by the
GetMetadataObjects
method.

OMI_IGNORE_NOTFOUND 134217728 DeleteMetadata
UpdateMetadata

Prevents a delete or
update operation from
being aborted when a
request specifies to
delete or update an
object that does not
exist.

Metadata Access (IOMI Interface) � Summary Table of IOMI Flags 71

Flag name Numeric
Indicator

Method Description

OMI_INCLUDE_SUBTYPES 16 GetMetadata
GetMetadataObjects

Gets specified
properties for
metadata objects that
are subtypes of the
specified metadata
type and the specified
object. In
GetMetadata, this flag
must be used with at
least one template and
the OMI_TEMPLATE
flag.

OMI_LOCK 32768 GetMetadata Locks the specified
object and any
associated objects
selected by
GetMetadata flags
and options from
update by everyone
except the caller.

OMI_LOCK_TEMPLATE 65536 Obsolete in SAS 9.2.

OMI_MATCH_CASE 512 GetMetadataObjects Performs a
case-sensitive search
that is based on
criteria specified in
the <XMLSELECT>
element. The
OMI_MATCH_CASE
flag must be used
with the
OMI_XMLSELECT
flag.

OMI_NO_DEPENDENCY_CHAIN 16777216 Obsolete in SAS 9.2.

OMI_NOFORMAT 67108864 GetMetadata Causes date, time, and
datetime values in the
output XML stream to
be returned as raw
SAS date, SAS time,
and SAS datetime
floating-point values.
Without the
OMI_NOFORMAT
flag, the default
US-English locale is
used to format the
values into
recognizable character
strings.

OMI_PURGE 1048576 Obsolete in SAS 9.2.

72 Summary Table of IOMI Flags � Chapter 6

Flag name Numeric
Indicator

Method Description

OMI_REINIT 2097152 DeleteMetadata Deletes the contents
of a repository, but
does not remove the
repository’s
registration from the
SAS Repository
Manager.

OMI_RETURN_LIST 1024 DeleteMetadata
UpdateMetadata

In DeleteMetadata,
returns the identifiers
of any dependent
objects that were
deleted or of any
subordinate objects
that were deleted in
the method output,
depending on the
method’s usage. In
UpdateMetadata,
returns the identifiers
of any dependent
objects that were
deleted by the update
operation in the
method output.

OMI_SUCCINCT 2048 GetMetadata
GetTypes

In GetMetadata, omits
all properties that do
not contain a value or
that contain a null
value. In GetTypes,
checks the OPTIONS
parameter for a
<REPOSID> element,
and lists the metadata
types of objects that
exist in the specified
repository. For more
information, see
“Using GetTypes to
Get Actual Metadata
Types in a Repository”
on page 241.

Metadata Access (IOMI Interface) � Summary Table of IOMI Flags 73

Flag name Numeric
Indicator

Method Description

OMI_TEMPLATE 4 DeleteMetadata
GetMetadata

In DeleteMetadata,
checks the OPTIONS
parameter for
user-defined
templates that specify
which associated
objects to delete with
the specified metadata
object. In
GetMetadata, checks
the OPTIONS
parameter for
user-defined
templates that define
which metadata
properties to return.
In both methods, the
templates are
submitted in a
metadata property
string in a
<TEMPLATES>
element. For more
information about
GetMetadata usage,
see “Using Templates”
on page 260. For more
information about
DeleteMetadata
usage, see Chapter 17,
“Deleting Metadata
Objects,” on page 297.

OMI_TRUNCATE 4194304 DeleteMetadata Deletes all metadata
objects, but does not
delete the metadata
object containers from
a repository or remove
the repository’s
registration from the
SAS Repository
Manager.

OMI_TRUSTED_CLIENT 268435456 AddMetadata
DeleteMetadata
UpdateMetadata

Determines whether
the client can call this
method.

OMI_UNLOCK 131072 UpdateMetadata Unlocks an object lock
that is held by the
caller.

74 Summary Table of IOMI Options � Chapter 6

Flag name Numeric
Indicator

Method Description

OMI_UNLOCK_FORCE 262144 UpdateMetadata Unlocks an object lock
that is held by
another user.

OMI_XMLSELECT 128 GetMetadataObjects Checks the OPTIONS
parameter for search
criteria that filters the
objects that are
returned. The search
criteria are passed as
a search string in an
<XMLSELECT>
element. For more
information, see
Chapter 15, “Filtering
a GetMetadataObjects
Request,” on page 277.

Summary Table of IOMI Options
The following table lists the optional XML elements that are used with IOMI flags.

Option Flag Method Description

<DOAS> None AddMetadata
DeleteMetadata
GetMetadata
GetMetadataObjects
GetSubtypes
GetTypeProperties
IsSubtypeOf
UpdateMetadata

Enables a client to
make a request on
behalf of another user.
For more information,
see “<DOAS> Option”
on page 75.

<REPOSID> OMI_SUCCINCT
(2048)

GetTypes Specifies the
repository ID of the
repository whose
metadata you want to
evaluate. See “Using
GetTypes to Get
Actual Metadata
Types in a Repository”
on page 241.

Metadata Access (IOMI Interface) � <DOAS> Option 75

Option Flag Method Description

<TEMPLATES> OMI_TEMPLATE
(4)

DeleteMetadata
GetMetadata

In DeleteMetadata,
submits templates
that specify associated
objects to delete with
the specified metadata
object. For more
information, see
Chapter 17, “Deleting
Metadata Objects,” on
page 297. In
GetMetadata,
specifies additional
properties to retrieve
for the specified
metadata object
beyond those specified
in the INMETADATA
parameter and by
GetMetadata flags.
See “Using Templates”
on page 260.

<XMLSELECT> OMI_XMLSELECT
(128) and
OMI_MATCH_CASE
(512)

GetMetadataObjects Specifies a search
string to filter the
objects that are
retrieved. See
Chapter 15, “Filtering
a GetMetadataObjects
Request,” on page 277.

<DOAS> Option

IOMI methods support a <DOAS> element in the OPTIONS parameter that enables
SAS Open Metadata Interface clients to make a metadata request for another user.
Typically, when a metadata request is made, the authorization facility checks the user
ID and credentials of the requesting user to determine whether the request is allowed.
The <DOAS> element permits the request to be made with another user ID, and
authorized using the credentials of this other user.

Credentials refer to the set of metadata identities associated with a user who is
registered in the SAS Metadata Server. The set begins with a principal identity
represented by the Person (or IdentityGroup) object that is mapped directly to an
authenticated user ID. The set also contains references to any IdentityGroup objects in
which the principal identity is either directly or indirectly identified as a member.

The <DOAS> element enables middleware servers to use the identity of their own
clients when making metadata requests. This way, the request is authorized based on
the credentials of the client, rather than basing it on the credentials of the connecting
user. That is, when the <DOAS> element is encountered, metadata is created, returned,
and updated based on the credentials of the specified client, rather than the connecting
user. It is the responsibility of the client to authenticate the user.

76 Specifying the <DOAS> Option � Chapter 6

Specifying the <DOAS> Option
The <DOAS> element is supported in the AddMetadata, DeleteMetadata,

GetMetadata, GetMetadataObjects, GetSubtypes, GetTypeProperties, IsSubtypeOf, and
UpdateMetadata methods.

It is passed in the OPTIONS parameter in the form <DOAS
Credential="CredHandle"/>, where CredHandle is a handle that is returned by the
ISecurity GetCredentials method that represents the other user’s credentials. For more
information, see “GetCredentials” on page 129.

A client must have trusted user status on the SAS Metadata Server to issue the
ISecurity GetCredentials method. A trusted user is a special user whose user ID is
defined in the trustedUsers.txt file.

Example 1: Standard Interface
The following is an example of a GetMetadataObjects request that specifies the

<DOAS> option. The method call is formatted for the standard interface.

<!-- set repository Id and type -->
reposid="A0000001.A4345678";
type="PhysicalTable";
ns="SAS";
flags=0;
options="<DOAS Credential="0000000000235462"/>";

rc = GetMetadataObjects(reposid, type, objects, ns, flags, options);

This request returns only PhysicalTable objects that the user identified in the
credential handle is authorized to read.

Example 2: DoRequest Method
The following is an example of an AddMetadata method that specifies the <DOAS>

option. The method call is formatted for the INMETADATA parameter of the
DoRequest method.

<AddMetadata>
<Metadata>

<PhysicalTable Name="NECust"
Desc="All customers in the northeast region"/>

</Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options>
<DOAS Credential="0000000000235462"/>
</Options>

</AddMetadata>

The requested object is created only if the user who is identified in the credential
handle has WriteMetadata permission to the specified repository.

Metadata Access (IOMI Interface) � Details 77

AddMetadata
Adds metadata objects to a repository.
Category: Write methods

Syntax

rc= AddMetadata(inMetadata,reposid,outMetadata,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

inMetadata C in Metadata property string that defines the object to be added.

reposid C in Target repository ID.

outMetadata C out Returned metadata property string that includes the object as a
result of the add operation.

ns C in Namespace to use as the context for the request.

flags L in OMI_TRUSTED_CLIENT=268435456
Determines whether the client can call this method. This
flag is required.

options C in Passed indicator for options.

<CREATEREPOSCONTAINER/>
When AddMetadata is issued in the REPOS namespace to
create a RepositoryBase object, this option creates the
physical directory specified in the object’s Path= attribute,
if the physical directory does not exist.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

Details
The AddMetadata method creates metadata objects. It is used to create both the

metadata object that defines a repository, and the metadata objects that are within the
repository. To update an existing metadata object, whether it defines a repository or a
metadata object within the repository, use the UpdateMetadata method.

The INMETADATA parameter specifies a metadata property string that defines the
properties to be added for the object. A request that creates a repository defines an

78 Example 1: Standard Interface � Chapter 6

object of the RepositoryBase metadata type and is issued in the REPOS namespace. A
request that adds an object to a repository is issued in the SAS namespace and defines
SAS namespace metadata types. Not all metadata types or their properties can be
added. See the documentation for each metadata type. AddMetadata returns an error
for any metadata type that cannot be added.

An AddMetadata request that creates the metadata object that defines a repository
does not automatically create the physical directory specified in the Path= attribute.
You must create the physical directory specified in Path= in advance, or pass the
<CREATEREPOSCONTAINER/> element in the AddMetadata request to create the
directory. The Path= attribute accepts an absolute or relative pathname; use
backslashes or forward slashes (\ and /) to indicate the directory levels. The
<CREATEREPOSCONTAINER/> element is new in SAS 9.2.

The OUTMETADATA parameter mirrors the content of the INMETADATA
parameter. In addition, it returns identifiers for the requested objects. Any invalid
properties in the INMETADATA metadata property string remain in the
OUTMETADATA metadata property string. For information about the structure of the
metadata property string, see “Constructing a Metadata Property String” on page 64.

The AddMetadata method can be used to create an object only, to create an object
and an association to an existing object, or to create an object, an association, and the
associated object. Associations to objects can be made in the same repository or in a
different repository. The attributes defining the objects indicate the type of operation to
be performed. For more information, see Chapter 10, “Adding Metadata Objects,” on
page 205.

Objects and associations are created subject to security constraints. For example, a
requestor must have administrative status on the SAS Metadata Server to add a
repository. A requestor must have WriteMetadata permission to a repository to add an
object to the repository. When creating an association between a new object and an
existing object, the requestor must have WriteMetadata permission either to the
existing object, or to the repository in which the existing object resides.

The SAS Metadata Server assigns object identifiers after the successful completion of
an AddMetadata request.

Check the return code of an AddMetadata method call. A nonzero return code
indicates that a failure occurred while trying to write the metadata. A nonzero return
code means none of the changes in the method call were made.

Example 1: Standard Interface
The following is an example of how to issue the AddMetadata method regardless of

the programming environment. The request adds a new PhysicalTable object and
provides the Name= and Desc= properties.

<!-- Create a metadata list to be passed to AddMetadata method -->
inMetadata = "<PhysicalTable Name="NECust"

Desc="All customers in the northeast region"/>";

reposid= "A0000001.A2345678";
ns= "SAS";
<!-- OMI_TRUSTED_CLIENT flag -->
flags= 268435456;
options= "";

rc = AddMetadata(inMetadata,reposid,outMetadata,ns,flags,options);

<!-- outMetadata XML string returned -->

Metadata Access (IOMI Interface) � Parameters 79

<PhysicalTable Id="A2345678.A2000001" Name="NECust"
Desc="All customers in the northeast region"/>

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the method

call in example 1 for the INMETADATA parameter of the DoRequest method. A
<METADATA> element, rather than an <INMETADATA> element, specifies the passed
metadata property string.

<AddMetadata>
<Metadata>
<PhysicalTable Name="NECust"

Desc="All customers in the northeast region"/>
</Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

Related Methods
� “UpdateMetadata” on page 110

� “GetRepositories” on page 97

AddResponsibleParty

Creates a ResponsibleParty object for the specified identity in the repository that
contains the identity’s metadata definition.

Category: User interface helper methods

Syntax

rc=DoRequest("<AddResponsibleParty>...</AddResponsibleParty>",outMetadata);

Parameters

Parameter Type Direction Description

<ResponsibleParty/> C in Metadata property string that
creates a ResponsibleParty
object. See the "Details"
section for information about
the format of the metadata
property string.

80 Details � Chapter 6

Details
In SAS 9.2, SAS Management Console and SAS Data Integration Studio allow users

to define a set of responsibilities for an object. These product’s frameworks support two
types of responsibilities — Owner and Administrator. The AddResponsibleParty method
enables a user to easily create a ResponsibleParty object. (For example, a
ResponsibleParty object can be created that defines a user named “John Smith” as the
owner of a particular stored process.) A ResponsibleParty object can be defined for any
object in metadata.

ResponsibleParty objects must be created in the same SAS Metadata Repository as
the metadata definition of the identity that they describe. Metadata definitions for
individual users (Person objects) are always created in the foundation repository.
Metadata definitions for groups (IdentityGroup objects) can be created in the foundation
repository or a custom repository. The AddMetadata method, which is provided to add
objects to a repository, requires a requestor to have WriteMetadata permission to a
repository to create an object. The AddResponsibleParty method is provided to allow
users to create ResponsibleParty objects in the appropriate repository, even if they do
not have WriteMetadata permission to that repository.

The AddResponsibleParty method is available in the DoRequest interface only. The
method and its parameters are specified in an XML input string within the
INMETADATA parameter of the DoRequest method. The method’s output is returned
in the DoRequest method’s OUTMETADATA parameter.

The XML input string consists of an <ADDRESPONSIBLEPARTY> element that
passes a metadata property string that defines a ResponsibleParty object in the
following form:

<ResponsibleParty IdentityName=’name’ Responsibility=’role’/>

IDENTITYNAME=’name’
specifies the name, up to 60 characters, of a Person or IdentityGroup object that is
defined on the SAS Metadata Server. The SAS Metadata Server normalizes the
value before storing it in the ResponsibleParty object’s Name= attribute. A null
value implies the connected user. If the specified identity or connected user is
Public, an error is returned. If the specified identity is not found in the SAS
Metadata Server, an error stating that the object was not found is returned.

RESPONSIBILITY=’role’
specifies a value, up to 100 characters, that is valid for the client. If
RESPONSIBILITY= is omitted or passes a null value, the SAS Metadata Server
returns an error.

If you enter a value that is greater than the maximum character length for either
IDENTITYNAME= or RESPONSIBILITY=, the value is truncated.

Before creating the requested ResponsibleParty object, the AddResponsibleParty
method verifies that an object does not exist that meets the criteria. This causes
additional locks on the repository, so the AddResponsibleParty method should be called
by a client only after verifying the need to add an object with the GetResponsibleParty
method.

The output of the AddResponsibleParty method mirrors the input, except the object
identifier of the new object is returned.

Metadata Access (IOMI Interface) � Details 81

Example
The following is an example of a DoRequest method call that issues an

AddResponsibleParty request.

outMetadata=""
inMetadata =
"<AddResponsibleParty>

<ResponsibleParty IdentityName=’ ’ Responsibility=’Owner’/>
</AddResponsibleParty>";

rc=DoRequest(inMetadata,outMetadata);

In this example, which does not specify an IdentityName= value, the
ResponsibleParty object is created for the caller.

Related Methods
� “DoRequest” on page 87

� “GetResponsibleParty” on page 100

AddUserFolders

Creates a user’s home folder and subfolders.
Category: User interface helper methods

Syntax

rc=DoRequest("<AddUserFolders>...</AddUserFolders>",outMetadata);

Parameters

Parameter Type Direction Description

<Tree/> C in Metadata property string that creates a Tree
object. See the "Details" section for information
about the format of the metadata property
string.

Details
The SAS 9.2 Metadata Server supports the concept of a user folder to enable clients

to provide a consistent user interface to metadata. The user folder is a work area
similar to the My Documents area on a Windows system. Metadata that is created or
accessed by a user is stored in a subfolder of the user folder. This subfolder is named

82 Details � Chapter 6

“My Folder” by default. The work area also includes a subfolder named “Application
Data” that stores system information about the user for the internal use of applications.

The AddUserFolders method can be used to create one or all of these folders for a
specified user.

The AddUserFolders method is available in the DoRequest interface only. The
method and its parameters are specified in an XML input string within the
INMETADATA parameter of the DoRequest method. The method’s output is returned
in the DoRequest method’s OUTMETADATA parameter.

The XML input string consists of an <ADDUSERFOLDERS> element that passes a
metadata property string that defines a Tree object in the following form:

<Tree PersonName=’name’ FolderName=’folder-type’/>

A folder is represented by the Tree metadata type in a SAS Metadata Repository.

PERSONNAME=’name’
specifies the name of the user for whom the folder is created.

The PERSONNAME= value must be the unique name stored in a Person object’s
Name= attribute or be blank. If a name value contains a forwardslash (/) or
backslash (\), the AddUserFolders method changes it to a dash (-) so that it does
not interfere with the folder’s pathname specification. When PERSONNAME= is
blank, the specified folder is created for the connected user. A user folder cannot
be created for an IdentityGroup. If the name specified in PERSONNAME= does
not match the name of the requesting user, the connected user must be an
administrative user of the SAS Metadata Server or the server returns an error.
For more information about administrative user status on the SAS Metadata
Server, see SAS Intelligence Platform: Security Administration Guide.

FOLDERNAME=’folder-type’
specifies the type of user folder to create. Valid values are “Home Folder,” “My
Folder,” or “Application Data.”

When choosing a FOLDERNAME= value for an AddUserFolders request, note
that a request to create a folder named “Home Folder” will not additionally create
subfolders. However, a request to create any of the subfolders (“My Folder” or
“Application Data”) will additionally create a home folder, if one does not exist.

If you specify a SAS Metadata Model metadata type other than Tree in the XML
input string, the SAS Metadata Server returns an error. The name “Folder” is also
accepted in the XML input string, because Folder is the PublicType= value that is
assigned to a Tree object.

Do not specify more than one Tree or Folder definition within the
<ADDUSERFOLDERS> element. If you want to define more than one user folder in a
request, submit multiple <ADDUSERFOLDERS> elements within a
<MULTIPLE_REQUESTS> element. For more information about the
<MULTIPLE_REQUESTS> element, see “DoRequest” on page 87.

The AddUserFolders method uses the security policy defined for the foundation
repository to determine where to create the folders. Beginning in SAS 9.2, the
foundation repository has a Metadata Location for Users’ Folders policy that specifies
the root folder in which to store the user folders. The default security policy is to create
the user folders in the foundation repository in a /Users folder. However, the SAS
Metadata Server supports storing folders in another folder of the foundation repository
or in another repository, if the other repository and folder exist in the folder tree. The
AddUserFolders method will not create a repository or /Users folder for you.

A successful AddUserFolders request creates a subfolder in the /Users folder that has
the name specified in the PERSONNAME= parameter. The request also potentially
creates one or both of the “My Folder” and “Application Data” subfolders. The names
“My Folder” and “Application Data” are localized. For example, if all possible folders

Metadata Access (IOMI Interface) � Example 83

were created for a user using the US-English locale, they would display in the folder
tree as follows:

—Users
—PersonName

—My Folder
—Application Data

If the French locale were active, then “My Folder” and “Application Data” would
display in French. The locale used to create the Tree object’s DisplayName= attribute is
provided to the SAS Metadata Server in the LOCALE server invocation option or in the
sasv9.cfg file.

The AddUserFolders method automatically stores the following attribute values for
each folder:

� PublicType="Folder"
� UsageVersion="1000000"
� TreeType="BIP Folder"
� DisplayName="server-localized-version-of-folder-name”

This attribute is set only for subfolders of the user folder.

The Admin-Only Update ACT grants SAS Metadata Server administrators
WriteMetadata and Write permissions to all user home folders, and denies the Public
group WriteMetadata and Write permissions to user home folders. This enables
administrators only to create and update home folders. The Private User Folder ACT
grants SAS Metadata Server administrators full access to all “My Folder" and
"Application Data" subfolders in the directory, and denies the Public group access to the
subfolders. This ACT contains an access control entry (ACE) for each person indicated
in PERSONNAME= that grants them ReadMetadata, WriteMemberMetadata, and
CheckinMetadata permissions on his or her “My Folder” and “Application Data” folders.
These permissions enable the folder owners to view and create metadata in their user
folders, but not delete the folders.

If the administrator changes the Metadata Location for Users’ Folders policy after
some user folders have been created, then any home folders and subfolders for existing
users in the /Users folder will remain in this folder, and home folders for new users will
be created in the new location.

Example
The following is an example of a DoRequest method call that issues an

AddUserFolders request. The request creates both a “My Folder” and home folder for
user “SAS Web Administrator.”

outMetadata=""
inMetadata=
"<AddUserFolders>
<Tree PersonName=’SAS Web Administrator’ FolderName=’My Folder’/>

</AddUserFolders>";

rc=DoRequest(inMetadata,outMetadata);

If the request is successful, the XML returned in the OUTMETADATA parameter
mirrors the input in the INMETADATA parameter. The output includes the
17–character metadata identifier of the newly created “My Folder” Tree object. A
metadata property string and an Id= value defining the home folder is not returned in
the output. The folder is created, if it did not exist.

84 Related Methods � Chapter 6

The request is rejected with an authorization error if the requesting user is not “SAS
Web Administrator,” is not an administrative user of the SAS Metadata Server, or if
“SAS Web Administrator” is the name of an IdentityGroup.

Related Methods
� “DoRequest” on page 87
� “GetUserFolders” on page 107

DeleteMetadata
Deletes metadata objects from a repository.
Category: Write methods

Syntax

rc=DeleteMetadata(inMetadata,outMetadata,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

inMetadata C in Metadata property string that identifies the object to be deleted.

outMetadata C out Returned metadata property string that includes the results of
the delete operation. The outMetadata parameter is used only if
OMI_RETURN_LIST is specified.

ns C in Namespace to use as the context for the request.

Metadata Access (IOMI Interface) � Details 85

Parameter Type Direction Description

flags L in OMI_DELETE=32
Valid in the REPOS namespace only. Specifies to delete the
contents of a repository and the repository’s registration.

OMI_IGNORE_NOTFOUND=134217728
Prevents a delete operation from being aborted when a
request specifies to delete an object that does not exist.

OMI_REINIT=2097152
Valid in the REPOS namespace only. Specifies to delete the
contents of a repository, but does not remove the
repository’s registration from the SAS Repository Manager.

OMI_RETURN_LIST=1024
Specifies to return the identifiers of any dependent objects
that were deleted, or of any subordinate objects that were
deleted.

OMI_TEMPLATE=4
Valid in the SAS namespace only. Checks the OPTIONS
parameter for user-defined templates that specify
associated objects to delete with the specified metadata
object. The templates are passed in a <TEMPLATES>
element in the OPTIONS parameter.

OMI_TRUNCATE=4194304
Valid in the REPOS namespace only. Specifies to delete all
metadata objects, but does not delete the metadata object
containers from a repository, or remove the repository’s
registration.

OMI_TRUSTED_CLIENT=268435456
Determines whether the client can call this method. This
flag is required.

options C in Passed indicator for options.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

<TEMPLATES>
Submits templates that identify associated objects to delete
with the specified metadata objects. Each template is
submitted in a <TEMPLATE> element within the
<TEMPLATES> element. The <TEMPLATES> option
must be specified with the OMI_TEMPLATE flag.

Details
The DeleteMetadata method deletes metadata objects from a repository. To replace or

modify the properties of a metadata object, use the UpdateMetadata method.

86 Example 1: Standard Interface � Chapter 6

The DeleteMetadata method is typically issued in the SAS namespace to delete
metadata representing application elements. However, it can be issued in the REPOS
namespace on a RepositoryBase object to unregister the repository, to destroy the
repository, or to clear all objects from the repository without harming the repository’s
registration. Flags that are valid only in the REPOS namespace are provided to perform
these tasks. For more information, see “Deleting a Repository” on page 300. You must
have administrative status on the SAS Metadata Server to issue the DeleteMetadata
method in the REPOS namespace. For more information about administrative user
status, see the SAS Intelligence Platform: Security Administration Guide.

Regardless of the namespace in which it is issued (REPOS or SAS), a
DeleteMetadata method call must set the OMI_TRUSTED_CLIENT flag (268435456).
The OMI_TRUSTED_CLIENT flag is required in all method calls that write or remove
metadata.

The object to delete is primarily identified in a metadata property string that is
submitted to the method in the INMETADATA parameter. To delete multiple objects,
stack their metadata property strings in the INMETADATA parameter.

In SAS 9.2, a DeleteMetadata method issued in the SAS namespace deletes the
specified object and associated objects that are specified in a template when the
OMI_TEMPLATE flag is set. A template is submitted in a <TEMPLATE> element
within the <TEMPLATES> element. The use of a <TEMPLATE> element within the
<TEMPLATES> element is unique to DeleteMetadata. It is supported to enable multiple
objects and their associated objects to be deleted by the DeleteMetadata method.

For usage information about deleting SAS namespace metadata objects, see Chapter
17, “Deleting Metadata Objects,” on page 297.

Check the return code of a DeleteMetadata method call. A nonzero return code
indicates that a failure occurred while trying to delete the metadata objects. A nonzero
return code means none of the changes indicated by the method call were made.

Example 1: Standard Interface
The following is an example of how to issue the DeleteMetadata method regardless of

the programming environment. The request deletes a SASLibrary object. When a
SASLibrary object is deleted, any object in the library is deleted as well. The
OMI_RETURN_LIST flag is specified (268435456 + 1024 =268436480) so the
OUTMETADATA parameter returns the identifiers of all deleted objects.

inMetadata="<SASLibrary Id=’A2345678.A2000001’/>";
outMetadata="";
ns= "SAS";
flags= 268436480;
options= "";

rc = DeleteMetadata(inMetadata, outMetadata, ns, flags, options);

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the method

call in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<DeleteMetadata>
<Metadata>
<SASLibrary Id="A2345678.A2000001"/>

Metadata Access (IOMI Interface) � Details 87

</Metadata>
<NS>SAS</NS>
<Flags>268436480</Flags>
<Options/>

</DeleteMetadata>

Related Methods
� “AddMetadata” on page 77

� “UpdateMetadata” on page 110

DoRequest

Executes XML-formatted method calls.
Category: Messaging method

Syntax

rc=DoRequest(inMetadata,outMetadata);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

inMetadata C in XML string that contains a method to execute and the
parameters for the method.

outMetadata C out Returned metadata property string that includes the results of
the method.

Details
The DoRequest method enables you to submit IOMI methods and their parameters to

the SAS Metadata Server in an input XML string. The XML string has the following
form:

<MethodName>
<Parameter1>Value</Parameter1>
<Parameter2>Value</Parameter2>
<Parametern>Value</Parametern>

</MethodName>

88 Details � Chapter 6

where <METHODNAME> is an XML element that contains the name of an IOMI
method. <PARAMETER 1–n> are XML elements that contain the names of the
method’s parameters.

Multiple methods can be submitted in one DoRequest request by placing them within
a <MULTIPLE_REQUESTS> element and stacking the XML method strings. For
example:

<Multiple_Requests>
<MethodName1>

<Parameter1>Value</Parameter1>
<Parameter2>Value</Parameter2>
<Parametern>Value</Parametern>

</MethodName1>
<MethodName2>

<Parameter1>Value</Parameter1>
<Parameter2>Value</Parameter2>
<Parametern>Value</Parametern>

</MethodName2>
</Multiple_Requests>

The published method parameter names must be used for all method parameters
except INMETADATA. A <METADATA> element must be used to represent the
INMETADATA parameter within method calls that support this parameter. For other
parameters, the method returns an error if parameter names other than the published
names are used. For more information about the format of this method string, see the
documentation for the method that you want to execute.

You submit the XML-formatted method calls to the SAS Metadata Server in the
DoRequest method’s INMETADATA parameter. The XML-formatted method calls are
submitted to the server as a string literal (a quoted string). To ensure that the string is
parsed correctly, it is recommended that any additional double quotation marks, such as
those enclosing XML attribute values in the metadata property string, be marked to
indicate that they should be treated as characters. Here are examples of using escape
characters in different programming environments to mark the additional double
quotation marks:

Java "<PhysicalTable Name=\"TestTable\" Desc=\"Sample table\"/>"

Visual Basic "<PhysicalTable Name=""TestTable"" Desc=""Sample table""/>"

Visual C++ "<PhysicalTable Name=\"TestTable\" Desc=\"Sample table\"/>"

SAS "<PhysicalTable Name=""TestTable"" Desc=""Sample table""/>"
"<PhysicalTable Name=’TestTable’ Desc=’Sample table’/>"
’<PhysicalTable Name="TestTable" Desc="Sample table"/>’

Any metadata-related (IOMI server interface) method can be submitted to the SAS
Metadata Server using the DoRequest method. For information about the exact format
of a method request, see the documentation for the method that you want to execute.

The DoRequest method supports requests to metadata objects in both the SAS
namespace and the REPOS namespace. In SAS 9.2, methods that call both the SAS and
REPOS namespaces can be submitted within the same <MULTIPLE_REQUESTS>
element.

The DoRequest method is ACID-compliant. ACID (Atomicity, Consistency, Isolation,
Durability) is a term that refers to the guarantee that all of the tasks of a transaction
are performed or none of them are. In other words, if multiple methods are submitted,
and one method in a DoRequest fails, then all of the methods specified in the XML
input string fail.

Metadata Access (IOMI Interface) � Parameters 89

The DoRequest method’s OUTMETADATA string mirrors the INMETADATA string,
except requested values are provided.

Check the return code of a DoRequest method call. A nonzero return code indicates
that a failure occurred while trying to write metadata. A nonzero return code means
none of the changes in any of the methods in the DoRequest were made.

Example
The DoRequest method is issued in the standard interface. The following is an

example of how to issue a DoRequest method call regardless of the programming
environment.

outMetadata=" ";
inMetadata="XML-method-string";

rc=DoRequest(inMetadata,outMetadata);

GetMetadata
Gets specified properties for the specified metadata object.
Category: Read methods

Syntax

rc=GetMetadata(inMetadata,outMetadata,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

inMetadata C in Metadata property string that identifies the object and properties
to be read.

outMetadata C out Returned metadata property string that includes the results of
the read operation.

ns C in Namespace to use as the context for the request.

90 Parameters � Chapter 6

Parameter Type Direction Description

flags L in OMI_ALL=1
Specifies to get all of the properties of the requested object.
This includes all of the attributes that are documented for
the requested metadata type in its Attributes table, and all
of the associations in its Associations table, whether they
have values stored for them or not. The results include
both unique and inherited properties. If the returned XML
stream includes references to any associated objects,
GetMetadata returns only general, identifying information
for the associated objects.

OMI_ALL_SIMPLE=8
Specifies to get all of the attributes of the requested object.
The results include both unique and inherited attributes.

OMI_DEPENDENCY_USED_BY=16384
Specifies to include associations to objects that exist in all
project repositories in the method results.

OMI_INCLUDE_SUBTYPES=16
Specifies to get the specified properties for metadata
objects that are subtypes of the specified metadata type, in
addition to the specified metadata object. The
OMI_INCLUDE_SUBTYPES flag must be set with the
OMI_TEMPLATE flag and a template, or the flag is
ignored.

OMI_LOCK=32768
Locks the specified object and any associated objects
selected by GetMetadata flags and options from update by
everyone except the caller.

OMI_NOFORMAT=67108864
Causes date, time, and datetime values in the output XML
stream to be returned as raw SAS date, SAS time, and
SAS datetime floating-point values. Without the
OMI_NOFORMAT flag, the default US-English locale is
used to format the values into recognizable character
strings.

OMI_SUCCINCT=2048
Specifies to omit all properties that do not contain a value
or that contain a null value.

OMI_TEMPLATE=4
Checks the OPTIONS parameter for user-defined
templates that define which metadata properties to return.
The user-defined templates are submitted in a
<TEMPLATES> element in the OPTIONS parameter.

Metadata Access (IOMI Interface) � Details 91

Parameter Type Direction Description

options C in Passed indicator for options.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

<TEMPLATES>
Specifies properties to retrieve for the specified metadata
type beyond properties already specified in the
INMETADATA parameter and by GetMetadata flags. The
<TEMPLATES> element must be specified with the
OMI_TEMPLATE flag.

Details
The GetMetadata method gets properties for the specified metadata object.
The method provides several ways to identify the properties that you want to

retrieve. For usage information, see Chapter 13, “Using GetMetadata to Get the
Properties of a Specified Metadata Object,” on page 243.

In previous releases of SAS, when information was requested about associated
objects, the method returned information about associated objects that were stored in
the same repository as the requested object by default, and the user had to set a flag to
get information about associated objects in other repositories. Beginning in SAS 9.2, a
GetMetadata method that requests associated objects that is issued in a public
repository (the foundation or a custom repository) returns associated objects from all
public repositories by default. You set the OMI_DEPENDENCY_USED_BY flag only if
you want to include associated objects that are in project repositories in the results.

When GetMetadata is issued in a project repository, it always returns associated
objects that are in the same repository.

The GetMetadata method uses the US-English locale to format date, time, and
datetime values. Set the OMI_NOFORMAT (67108864) flag to return these values as
SAS floating-point values that you can format.

The OMI_LOCK (32768) flag is one of several multi-user concurrency controls
supported by the SAS Open Metadata Interface. The flag enables you to lock the
specified object and any associated objects selected by GetMetadata flags and options
from use by other users. Metadata objects that are locked with OMI_LOCK are
unlocked by issuing an UpdateMetadata method call that sets the OMI_UNLOCK or
OMI_UNLOCK_FORCE flag. For an overview of the concurrency controls supported by
the SAS Open Metadata Interface, see Chapter 16, “Metadata Locking Options,” on
page 295.

The OMI_INCLUDE_SUBTYPES flag extends template processing to include
associated metadata objects that are subtypes of the specified metadata object. This
functionality is useful when you want to retrieve a common set of properties for
multiple objects. For more information, see “Using GetMetadata to Get Common
Properties for Sets of Objects” on page 254.

Some GetMetadata flags have interdependencies that can affect the metadata that is
returned when more than one flag is set. For more information, see “Using IOMI Flags”
on page 67.

92 Example 1: Standard Interface � Chapter 6

Example 1: Standard Interface
The following is an example of how to issue a GetMetadata method regardless of the

programming environment. The request gets the Name, Description, and Column
values of the PhysicalTable with an Id of A5345678.A5000001.

<!-- Create a metadata list to be passed to GetMetadata method -->

inMetadata= "<PhysicalTable Id="A5345678.A5000001" Name="" Desc="">
<Columns/>

</PhysicalTable>";
ns="SAS";
flags=0;
options="";

rc=GetMetadata(inMetadata, outMetadata, ns, flags, options);

<!-- outMetadata XML string returned -->
<PhysicalTable Id="A5345678.A5000001" Name="New Table" Desc="New Table added
through API">

<Columns>
<Column Id="A5345678.A3000001" Name="New Column" Desc="New Column added

through API"/>
<Column Id="A5345678.A3000002" Name="New Column2" Desc="New Column2 added

through API"/>
</Columns>

</PhysicalTable>

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<GetMetadata>
<Metadata>
<PhysicalTable Id="A5345678.A500001" Name="" Desc="">

<Columns/>
</PhysicalTable>

</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadata>

Related Methods
� “GetMetadataObjects” on page 93

Metadata Access (IOMI Interface) � Parameters 93

GetMetadataObjects
Gets all metadata objects of the specified metadata type in the specified repository.
Category: Read methods

Syntax

rc=GetMetadataObjects(reposid,type,objects,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

reposid C in Target repository identifier.

type C in Metadata type name.

objects C out Returned list of metadata objects.

ns C in Namespace to use as the context for the request.

94 Details � Chapter 6

Parameter Type Direction Description

flags L in OMI_DEPENDENCY_USED_BY=16384
Specifies to include objects from all project repositories in
the method results.

OMI_DEPENDENCY_USES=8192
Specifies to include objects from all public repositories (the
foundation repository and custom repositories) in the
method results.

OMI_NO_DEPENDENCY_CHAIN=16777216
Obsolete in SAS 9.2.

OMI_GET_METADATA=256
Specifies to execute a GetMetadata call for each object that
is returned by the GetMetadataObjects request.

OMI_INCLUDE_SUBTYPES=16
Specifies to get all of the metadata objects that are subtypes
of the specified metadata type and metadata objects of the
specified metadata type. If OMI_XMLSELECT is specified,
it affects the subtypes that are retrieved.

OMI_MATCH_CASE=512
Specifies to perform a case-sensitive search that is based
on criteria specified in the <XMLSELECT> element. The
OMI_MATCH_CASE flag must be used with the
OMI_XMLSELECT flag, or the flag is ignored.

OMI_XMLSELECT=128
Specifies to check the OPTIONS parameter for search
criteria that filters the objects that are returned. The
search criteria are passed as a search string in an
<XMLSELECT> element.

options C in Passed indicator for options.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

<XMLSELECT>
Specifies a search string to filter the objects that are
retrieved. See Chapter 15, “Filtering a GetMetadataObjects
Request,” on page 277 for more information.

Details

The GetMetadataObjects method gets a list of all metadata objects of the metadata
type specified in the TYPE parameter from the repository specified in the REPOSID

Metadata Access (IOMI Interface) � Example 1: Standard Interface 95

parameter. The default behavior is to get identifying information for each metadata
object.

Flags enable you to get additional properties and to expand or filter the objects that
are retrieved:

� OMI_INCLUDE_SUBTYPES expands the request to get subtypes of the specified
metadata type.

� OMI_GET_METADATA enables you to execute a GetMetadata call for each object
that is returned by the GetMetadataObjects request.

� The OMI_DEPENDENCY_USES and OMI_DEPENDENCY_USED_BY flags
specify additional repositories from which to get objects.

� The OMI_XMLSELECT flag and <XMLSELECT> element enable you to filter the
objects that are returned by specifying search criteria.

For usage information, see Chapter 14, “Using GetMetadataObjects to Get All
Metadata of a Specified Metadata Type,” on page 263, and Chapter 15, “Filtering a
GetMetadataObjects Request,” on page 277.

The behavior of the OMI_DEPENDENCY_USED_BY and
OMI_DEPENDENCY_USES flags is different in SAS 9.2 than in previous versions of
SAS. In SAS 9.2, set OMI_DEPENDENCY_USES to get metadata objects from all
public repositories (the foundation repository and all custom repositories) in the method
results, and to get metadata objects from the specified repository. Set
OMI_DEPENDENCY_USED_BY to get metadata objects of the specified metadata type
from all project repositories in the method results, and to get metadata objects from the
specified repository. Setting both flags will return metadata objects from all repositories
that are registered in the SAS Metadata Server (foundation, custom, and project).

When the GetMetadataObjects method is issued in the SAS namespace, the
REPOSID parameter is required, unless the OMI_DEPENDENCY_USED_BY flag or
the OMI_DEPENDENCY_USES flag or both is specified. When you specify a REPOSID
value in addition to one or both of the flags, GetMetadataObjects gets metadata objects
first from the repository specified in the REPOSID parameter, and then gets metadata
objects from the repositories specified by the flags. A request that specifies to get
objects from all registered repositories returns a specified repository first, followed by
the foundation repository, followed by custom repositories in the order they were
registered, and then followed by project repositories in the order they were registered.

When the GetMetadataObjects method is issued in the REPOS namespace, it ignores
the REPOSID parameter and searches the SAS Repository Manager.

Example 1: Standard Interface
The following is an example of how to issue a GetMetadataObjects method regardless

of the programming environment. The request gets all objects defined for metadata
type PhysicalTable in repository A0000001.A5345678, and does not set any flags.

<!-- set repository Id and type -->
reposid="A0000001.A5345678";
type="PhysicalTable";
ns="SAS";
flags=0;
options="";

rc=GetMetadataObjects(reposid,type,objects,ns,flags,options);

<!-- XML string returned in objects parameter -->

96 Example 2: DoRequest Method � Chapter 6

<Objects>
<PhysicalTable Id="A5345678.A5000001" Name="New Table"/>
<PhysicalTable Id="A5345678.A5000002" Name="New Table2"/>

</Objects>

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetMetadataObjects>

<Reposid>A0000001.A5345678</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadataObjects>

Related Methods
� “GetMetadata” on page 89

GetNamespaces

Gets the namespaces defined on the SAS Metadata Server.
Category: Management methods

Syntax

rc=GetNamespaces(namespaces,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

namespaces C out Returned list of namespaces.

flags L in Passed indicator for flags. No flags are currently defined. For no
flags, a 0 should be passed.

options C in Passed indicator for options. No options are currently defined.

Metadata Access (IOMI Interface) � GetRepositories 97

Details
A namespace specifies a group of related metadata types that can be accessed by the

SAS Open Metadata Interface. The NAMESPACES parameter returns the name of the
namespaces that are currently defined in the SAS Repository Manager.

The SAS Open Metadata Interface provides the following namespaces:

� The REPOS namespace contains the repository metadata types.

� The SAS namespace contains metadata types describing application elements.

Example 1: Standard Interface
The following is an example of how to issue the GetNamespaces method regardless of

the programming environment. The request gets the namespaces in the current SAS
Repository Manager.

namespaces="";
flags=0;
options="";
rc=GetNamespaces(ns,flags,options);

<!-- XML string returned in ns parameter -->
<Namespaces>

<Ns Name="SAS"/>
<Ns Name="REPOS"/>

</Namespaces>

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetNamespaces>

<Namespaces/>
<Flags>0</Flags>
<Options/>

</GetNamespaces>

Related Methods
� “GetTypes” on page 105

� “GetSubtypes” on page 102

GetRepositories

Gets the metadata repositories on the SAS Metadata Server.
Category: Repository methods

98 Syntax � Chapter 6

Syntax

rc=GetRepositories(repositories,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

repositories C out Returned list of all repositories that are registered on the SAS
Metadata Server.

flags L in OMI_ALL=1
Gets information about repository location, format, type
and availability in addition to listing repositories.

options C in Passed indicator for options. No options are currently defined.

Details
A repository is a collection of related metadata objects. Each repository is registered

in the SAS Repository Manager, which is also a SAS Metadata Repository. The SAS
Metadata Server can access only those repositories that are registered in the SAS
Repository Manager. There is one SAS Repository Manager for a SAS Metadata Server.

By default, the GetRepositories method gets identifying information, the description,
and the default namespace for the SAS Repository Manager and each repository that is
registered in the SAS Repository Manager.

When issued with the OMI_ALL (1) flag set, the GetRepositories method also gets
the following attributes for each repository:

Path= “string”
the pathname of the physical directory where the repository is located.

RepositoryFormat= “number”
a numeric double value indicating the format level of the repository. (For example,
11.0.)

RepositoryType= “FOUNDATION | CUSTOM | PROJECT”
the repository type.

Access= “OMS_FULL | OMS_READONLY | OMS_ADMIN | OMS_OFFLINE”
a descriptor that indicates the access mode that the administrator set for the
repository.

OMS_FULL
Specifies the repository is available to all users for read and write access.

OMS_READONLY

Metadata Access (IOMI Interface) � Example 1: Standard Interface 99

Specifies the repository is only to be read.

OMS_ADMIN
Specifies the repository is available only to users who have administrative
status on the SAS Metadata Server.

OMS_OFFLINE
Specifies the repository is unavailable to all users.

PauseState= “empty-string | ADMIN | ADMIN(READONLY) | OFFLINE”
Reports a repository state change as the result of a server pause. This attribute is
set by the Pause method and cleared by the Resume method. The value is usually
the server Pause value (ADMIN or OFFLINE), unless the repository is registered
with a less restrictive Access= value.

empty string
Indicates the SAS Metadata Server is online. It has not been paused by the
Pause method. The repository can be accessed in its intended access mode.

ADMIN
Indicates this repository has been downgraded to an ADMIN state by a
server pause. Only users who have administrative status on the server can
read and write to this repository.

ADMIN(READONLY)
Indicates this repository has been downgraded to an ADMIN state by a
server pause. Its intended state is READONLY. It is available for reading
only to users who have administrative status on the server.

OFFLINE
Indicates the repository is not available to any users because the SAS
Metadata Server has been paused to an OFFLINE state or the repository is
registered with Access="OMS_OFFLINE".

CurrentAccess= “READONLY | OFFLINE”
The SAS Metadata Server manages two copies of repositories: a memory version
and a disk version. The memory version enables updates to be made available to
clients before the disk version is updated. This attribute is set by the SAS
Metadata Server on the memory version of the repository when the repository
cannot be updated by the server because the repository has an incompatible
repository format or has encountered an I/O error. This attribute is not stored in
the disk version of the repository. When a problem is encountered, valid values are
READONLY and OFFLINE. When the SAS Metadata Server can access a
repository as intended, GetRepositories returns a CurrentAccess= value that
matches the repository’s Access= attribute.

The additional attributes that are retrieved by OMI_ALL are available in the
standard interface and the DoRequest method when the method is issued on a SAS
Metadata Server that is ONLINE or paused to an ADMIN state. A GetRepositories
method that is issued on a SAS Metadata Server that is paused to an OFFLINE state
returns an error, unless the method is issued in the standard interface.

Example 1: Standard Interface
The following is an example of how to issue the GetRepositories method regardless of

the programming environment. The request has no flags set.

flags=0;
options="";

100 Example 2: DoRequest Method � Chapter 6

rc = GetRepositories(repositories,flags,options);

Here is an example of the output returned by the SAS Metadata Server:

<!-- XML string returned in repositories parameter -->
<Repositories>

<Repository Id="A0000001.A0000001" Name="REPOSMGR"
Desc="The Repository Manager" DefaultNS="REPOS"/>

<Repository Id="A0000001.A5FYFEK5" Name="Foundation"
Desc="Foundation repository" DefaultNS="SAS"/>

<Repository Id="A0000001.A5HZY944" Name="Repository 1"
Desc="First repository created for FULL access"
DefaultNS="SAS"/>

<Repository Id="A0000001.A5G3R7J5" Name="Repository 2"
Desc="Second repository created for READONLY access"
DefaultNS="SAS"/>

<Repository Id="A0000001.A5SAMPL3" Name="Repository 3"
Desc="Third repository created for ADMIN access"
DefaultNS="SAS"/>

<Repository Id="A0000001.A56DZUC5" Name="Repository 4"
Desc="Fourth repository created for OFFLINE access"
DefaultNS="SAS"/>

<Repository Id="A0000001.A5G67U31" Name="Repository 5"
Desc="Project repository" DefaultNS="SAS"/>

</Repositories>

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetRepositories>

<Repositories/>
<Flags>0</Flags>
<Options/>

</GetRepositories>

For an example that sets the OMI_ALL (1) flag, see “Using GetRepositories to Get
Repository Access and Status Information” on page 238.

GetResponsibleParty
Gets the ResponsibleParty object associated with the specified Person or

IdentityGroup and responsibility.
Category: User interface helper methods

Syntax
rc=DoRequest("<GetResponsibleParty>...</GetResponsibleParty>",outMetadata);

Metadata Access (IOMI Interface) � Details 101

Parameters

Parameter Type Direction Description

<GetResponsibleParty/> C in Metadata property string that identifies a
ResponsibleParty object. See the “Details”
section for information about the format of the
metadata property string.

Details
The GetResponsibleParty method enables clients to get a ResponsibleParty object for

a specified identity that might exist in a SAS Metadata Repository to which the
requesting user does not have ReadMetadata permission. The method gets
ResponsibleParty objects associated with both Person and IdentityGroup objects. The
GetMetadata method is typically used to get the ResponsibleParty objects associated
with an identity. However, the GetMetadata method returns only objects which the
requesting user is authorized to read.

The GetResponsibleParty method is available in the DoRequest interface only. The
method and its parameters are specified in an XML input string within the
INMETADATA parameter of the DoRequest method. The method’s output is returned
in the DoRequest method’s OUTMETADATA parameter.

The XML input string consists of a <GETRESPONSIBLEPARTY> element that
passes a metadata property string that identifies a ResponsibleParty object in the
following form:

<ResponsibleParty IdentityName=’name’ Responsibility=’role’/>

The GetResponsibleParty method gets the ResponsibleParty object whose Name= and
Role= attribute values match the specified IDENTITYNAME= and RESPONSIBILITY=
values.

A user who has administrative status on the SAS Metadata Server can get the
ResponsibleParty object of any user and role. A typical user can get only a
ResponsibleParty object for his or her name and role.

The name value comparison is not case sensitive as the security subsystem enforces
name-uniqueness for Person objects in the SAS Metadata Server. A null value in
IDENTITYNAME= implies the connected user. If the specified or implied identity is not
found on the SAS Metadata Server, an error stating that the object was not found is
returned.

The role value comparison is performed as follows:
1 A case-sensitive comparison is performed. If a match is found, then the Id= value

of the ResponsibleParty object is returned.
2 If a match is not found, a case-insensitive comparison is performed. If a match is

found, then the Id= value of the ResponsibleParty object is returned.
3 If a match is not found, then the Id= value of the ResponsibleParty object is not

returned. An error message is not issued.
4 A null value is not accepted in RESPONSIBILITY=. The ResponsibleParty method

returns an error if you omit the RESPONSIBILITY= parameter or if it specifies a
null value.

Although the AddResponsibleParty method does not create a ResponsibleParty object
for the Public IdentityGroup, a user who is connected to the SAS Metadata Server as

102 Example � Chapter 6

Public can use the GetResponsibleParty method to get the ResponsibleParty object of a
valid IdentityGroup. An IdentityGroup is valid if Public is defined as a member.

The output of the GetResponsibleParty method mirrors the input, except the object
identifier of the requested object is included, if a match is found.

Example
The following is an example of a DoRequest method call that issues a

GetResponsibleParty request.

outMetadata=""
inMetadata =
"<GetResponsibleParty>

<ResponsibleParty IdentityName=’ ’ Responsibility=’Owner’/>
</GetResponsibleParty>";

rc=DoRequest(inMetadata,outMetadata);

In this example, the method gets the ResponsibleParty objects that store a Role=
value of “Owner” for the connected user. If the requesting user is connected as Public,
the method returns an error.

Related Methods
� “DoRequest” on page 87

� “AddResponsibleParty” on page 79

GetSubtypes

Gets all possible subtypes for a specified metadata type.
Category: Management methods

Syntax

rc=GetSubtypes(supertype,subtypes,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

supertype C in Name of the metadata type for which you want to get a list of
subtypes.

subtypes C out Returned XML list of all subtypes for the specified metadata type.

ns C in Namespace to use as the context for the request.

Metadata Access (IOMI Interface) � Example 2: DoRequest Method 103

Parameter Type Direction Description

flags L in OMI_ALL_DESCENDANTS=64
Specifies to get the descendants of the returned subtypes
and the subtypes.

options C in Passed indicator for options.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

Details
Subtypes are metadata types that adopt the characteristics of a specified metadata

supertype. In addition, a subtype can have subtypes of its own.
The SUBTYPES parameter returns an XML string that has the Id=, Desc=, and a

HasSubtypes= attribute for each subtype. The HasSubtypes= attribute indicates
whether a subtype has any subtypes of its own. If this attribute has a value of 0, then
the subtype does not have any subtypes of its own. If it has a value of 1, then the
subtype does have subtypes of its own.

The GetSubtypes method does not return metadata about descendants unless the
OMI_ALL_DESCENDANTS flag is set.

Example 1: Standard Interface
The following is an example of how to issue the GetSubtypes method regardless of

the programming environment. The request gets the subtypes for supertype DataTable.

supertype= "DataTable";
ns= "SAS";
flags= 0;
options= "";
rc = GetSubtypes(supertype,subtypes,ns,flags,options);

Here is an example of the output returned by the SAS Metadata Server:

<!-- XML string returned in the Subtypes parameter -->
<subtypes>

<Type Id="PhysicalTable" Desc="Physical Storage Abstract Type" HasSubtypes="0"/>
<Type Id="WorkTable" Desc="Work Tables" HasSubtypes="1"/>
<Type Id="Join" Desc="Table Joins" HasSubtypes="0"/>

</subtypes>

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

104 Related Methods � Chapter 6

<GetSubtypes>
<Supertype>DataTable</Supertype>
<Subtypes/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetSubtypes>

Related Methods
� “GetTypes” on page 105

� “IsSubtypeOf” on page 108

GetTypeProperties

Gets all possible properties for a specified metadata type.
Category: Management methods

Syntax

rc=GetTypeProperties(type,properties,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

type C in Name of the metadata type for which you want to get a list of
properties.

properties C out Returned XML list of the attributes and associations defined for
the specified metadata type in the SAS Metadata Model.

ns C in Namespace to use as the context for the request.

flags L in OMI_ALL=1
New in SAS 9.2. Specifies to get a description of the
supported value for each property.

options C in Passed indicator for options.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

Metadata Access (IOMI Interface) � Syntax 105

Details
The GetTypeProperties method gets an XML list of the attributes and associations

defined for the specified metadata type in the SAS Metadata Model. The metadata type
is specified in the TYPE parameter.

When the OMI_ALL (1) flag is set, the method also gets a description of each property.

Example 1: Standard Interface
The following is an example of how to issue the GetTypeProperties method regardless

of the programming environment. The request gets the properties of the Column
metadata type. No flags are set.

type="Column";
ns="SAS";
flags=0;
options="";

rc=GetTypeProperties(type,properties,ns,flags,options);

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method. The
OMI_ALL (1) flag is set.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<GetTypeProperties>
<Type>Column</Type>
<Properties/>
<NS>SAS</NS>
<Flags>1</Flags>
<Options/>

</GetTypeProperties>

Related Methods
� “GetTypes” on page 105
� “GetSubtypes” on page 102

GetTypes
Gets all of the metadata types in a namespace.
Category: Management methods

Syntax

rc=GetTypes(types,ns,flags,options);

106 Parameters � Chapter 6

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

types C out Returned XML list of metadata types.

ns C in Namespace to use as the context for the request. Valid values
are REPOS or SAS.

flags L in OMI_SUCCINCT=2048
Specifies to check the OPTIONS parameter for a
<REPOSID> element and to list the metadata types for
objects that exist in the specified repository.

options C in Passed indicator for options.

<REPOSID>
Specifies a repository identifier. See the “Details” section
for information on how to format the information in this
element.

Details
The GetTypes method has two behaviors, depending on whether the

OMI_SUCCINCT (2048) flag and its corresponding <REPOSID> element are specified.

� Used without the flag, the method returns an XML string that lists all of the
metadata types defined in the specified namespace.

� Used with the flag in the SAS namespace, the method returns an XML string that
lists only metadata types for which objects exist in the specified repository.

The XML string is returned in the TYPES parameter. Each metadata type listed has
a HasSubtypes= attribute that indicates whether the metadata type has any subtypes.
If this attribute has a value of 0, then the metadata type does not have any subtypes. If
it has a value of 1, then the metadata type does have subtypes.

The <REPOSID> element specifies a repository identifier in the following form:

<Reposid>A0000001.RepositoryId</Reposid>

A0000001 is the SAS Repository Manager identifier. RepositoryId is the unique
8–character identifier of a SAS Metadata Repository. The <REPOSID> element must be
specified with the OMI_SUCCINCT flag.

Example 1: Standard Interface
The following is an example of how to issue the GetTypes method regardless of the

programming environment. The request gets the metadata types defined in the SAS
namespace. For an example of a GetTypes request that sets the OMI_SUCCINCT (2048)
flag, see “Using GetTypes to Get Actual Metadata Types in a Repository” on page 241.

Metadata Access (IOMI Interface) � Details 107

ns= "SAS";
flags= 0;
options= "";

rc=GetTypes(types,ns,flags,options);

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetTypes>

<Types/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetTypes>

Related Methods
� “GetNamespaces” on page 96

� “GetSubtypes” on page 102

GetUserFolders

Gets a user’s home folder or subfolders.
Category: User interface helper methods

Syntax
rc=DoRequest("<GetUserFolders>...</GetUserFolders>",outMetadata);

Parameters

Parameter Type Direction Description

<Tree/> C in Metadata property string that gets a home folder
or subfolder. See the “Details” section for
information about the format of the metadata
property string.

Details
The GetUserFolders method is available in the DoRequest interface only. The

method and its parameters are specified in an XML input string within the

108 Example � Chapter 6

INMETADATA parameter of the DoRequest method. The method’s output is returned
in the DoRequest method’s OUTMETADATA parameter.

User folders are represented in the SAS Metadata Server as Tree metadata objects.
The XML input string consists of a <GETUSERFOLDERS> element that passes a
metadata property string that identifies a Tree object in the following form:

<Tree PersonName=’name’ FolderName=’folder-type’/>

The PERSONNAME= value must specify the Name= attribute value of a Person
object or be blank. If PERSONNAME= is blank and the requesting user has a metadata
identity, the user folder belonging to the requesting user is returned. If an
IdentityGroup name is specified, the method will return an error. User folders are not
supported for IdentityGroups at this time.

The FOLDERNAME= value must be one of “Home Folder”, “My Folder”, or
“Application Data”, or the method will return an error.

The method uses the AssociatedHomeFolder association defined for the Person object
identified by PERSONNAME= to locate the folder requested by FOLDERNAME=. The
method returns the Tree object’s 17–character metadata identifier and DisplayName=
attribute value. The locale used to create the DisplayName= value is provided to the
SAS Metadata Server in the LOCALE server invocation option or in the sasv9.cfg file.

Example

The following is an example of a DoRequest method that issues a GetUserFolders
request. The method requests to get the “My Folder” folder of a person named “SAS
Web Administrator.”

outMetadata=""
inMetadata =
"<GetUserFolders>
<Tree PersonName=’SAS Web Administrator’ FolderName=’My Folder’/>
</GetUserFolders>";

rc=DoRequest(inMetadata,outMetadata);

If the request is successful, the XML returned in the OUTMETADATA parameter
mirrors the input in the INMETADATA parameter. The output includes the Id= and
DisplayName= values of the specified folder.

The request is rejected with an authorization error if the requesting user is not “SAS
Web Administrator,” is not an administrative user of the SAS Metadata Server, or if
“SAS Web Administrator” is the name of an IdentityGroup.

Related Methods

� “DoRequest” on page 87

� “AddUserFolders” on page 81

IsSubtypeOf

Determines whether one metadata type is a subtype of another metadata type.
Category: Management methods

Metadata Access (IOMI Interface) � Example 1: Standard Interface 109

Syntax

rc=IsSubTypeOf(type,supertype,result,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

type C in Name of the metadata type that might be a subtype of
SUPERTYPE.

supertype C in Name of the metadata type that might be a supertype of TYPE.

result N out Returned indicator. 0 indicates that TYPE is not a subtype of
SUPERTYPE. 1 indicates that it is a subtype.

ns C in Namespace to use as the context for the request.

flags L in Passed indicator for flags. No flags are currently defined.

options B in Passed indicator for options.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

Example 1: Standard Interface
The following is an example of how to issue the IsSubtypeOf method regardless of

the programming environment. The request determines whether WorkTable is a
subtype of DataTable.

ns="SAS";
flags=0;
options="";

rc = IsSubtypeOf(WorkTable, DataTable, result, ns, flags, options);

110 Example 2: DoRequest Method � Chapter 6

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<IsSubtypeOf>
<Type>WorkTable</Type>
<Supertype>DataTable</Supertype>
<Result/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</IsSubtypeOf>

Related Methods
� “GetSubtypes” on page 102

UpdateMetadata
Updates specified metadata objects in a repository.
Category: Write methods

Syntax

rc=UpdateMetadata(inMetadata,outMetadata,ns,flags,options);

Parameters

Parameter Type Direction Description

rc N out Return code for the method. For more information, see “Return
Code” on page 64.

inMetadata C in Metadata property string that specifies the object and properties
to be updated.

outMetadata C out Returned metadata property string that includes the results of
the update operation.

ns C in Namespace to use as the context for the request.

Metadata Access (IOMI Interface) � Details 111

Parameter Type Direction Description

flags L in OMI_IGNORE_NOTFOUND = 134217728
Prevents an update operation from being aborted when a
request specifies to update an object that does not exist.

OMI_RETURN_LIST = 1024
Specifies to return the identifiers of any dependent objects
that were deleted as a result of the update operation.

OMI_TRUSTED_CLIENT = 268435456
Determines whether the client can call this method. This
flag is required.

OMI_UNLOCK=131072
Unlocks an object lock that is held by the caller.

OMI_UNLOCK_FORCE=262144
Unlocks an object lock that is held by another user.

options C in Passed indicator for options.

<DOAS Credential="credHandle"/>
Enables a client to make a metadata request for another
user. For more information, see “<DOAS> Option” on page
75.

Details
The UpdateMetadata method enables you to update the properties of existing

metadata objects. It returns an error if the metadata object to be updated does not
exist, unless the OMI_IGNORE_NOTFOUND (134217728) flag is set.

You can modify an object’s attributes and associations, unless the association is
designated as "required for add" in the metadata type documentation.

When modifying an association, you must specify a directive in the association name
element in the input metadata property string. This directive indicates whether the
association is being appended, modified, removed, or replaced in the object’s association
list. Different directives are supported for single and multiple associations. For
information about these directives and general UpdateMetadata usage, see Chapter 11,
“Updating Metadata Objects,” on page 221.

You must have a metadata identity defined on the SAS Metadata Server to set the
OMI_UNLOCK (131072) and OMI_UNLOCK_FORCE (262144) flags. These flags
unlock objects that were previously locked by the OMI_LOCK flag. The OMI_LOCK
flag is set in the GetMetadata method to provide basic concurrency controls in
preparation for an update. For an overview of multi-user concurrency controls
supported by the SAS Open Metadata Interface, see Chapter 16, “Metadata Locking
Options,” on page 295. When OMI_UNLOCK or OMI_UNLOCK_FORCE is set, only
specified objects are unlocked. Associated objects are not unlocked.

Check the return code of an UpdateMetadata method call. A nonzero return code
indicates that a failure occurred while trying to write the metadata. A nonzero return
code means none of the changes in the method call were made.

112 Example 1: Standard Interface � Chapter 6

Example 1: Standard Interface
The following is an example of how to issue the UpdateMetadata method regardless

of the programming environment. The specified attribute values replace values stored
for the object of the specified metadata type and object instance identifier.

<!-- Create a metadata list to be passed to UpdateMetadata -->

inMetadata= "<PhysicalTable Id="A2345678.A2000001" Name="Sales Table" DataName="Sales"
Desc="Sales for first quarter"/>";

ns= "SAS";
<!- OMI_TRUSTED_CLIENT flag ->
flags= 268435456;
options= "";

rc=UpdateMetadata(inMetadata,outMetadata,ns,flags,options);

Example 2: DoRequest Method
The following is an example of an XML string that shows how to format the request

in example 1 for the INMETADATA parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<UpdateMetadata>
<Metadata>

<PhysicalTable Id="A2345678.A2000001" Name="Sales Table"
DataName="Sales" Desc="Sales for first quarter"/>

</Metadata>
<NS>SAS</NS>
<!- OMI_TRUSTED_CLIENT flag ->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

Related Methods
� “DeleteMetadata” on page 84

� “GetMetadata” on page 89

113

C H A P T E R

7
Authorization (ISecurity
Interface)

Overview of the ISecurity Server Interface 115
Using the ISecurity Server Interface 116

Calling the Server Interface 116

Identifying Resources to ISecurity Methods 116

Identifying Users 117

Understanding the ISecurity 1.0 Interface 117
Understanding the ISecurity 1.1 Interface 118

DeleteInternalLogin 119

Syntax 119

Parameters 119

Details 119

Exceptions Thrown 119
Examples 119

Related Methods 120

FreeCredentials 120

Syntax 120

Parameters 120
Details 120

Exceptions Thrown 120

Example 121

Related Methods 121

GetApplicationActionsAuthorizations 121
Syntax 121

Parameters 121

Details 122

Exceptions Thrown 123

Related Methods 123

GetAuthorizations 123
Syntax 123

Parameters 123

Details 124

Exceptions Thrown 124

Examples 125
Related Methods 126

GetAuthorizationsforObjects 126

Syntax 126

Parameters 126

Details 128
Exceptions Thrown 129

Related Methods 129

GetCredentials 129

114 Contents � Chapter 7

Syntax 129
Parameters 130

Details 130

Exceptions Thrown 130

Example 130

Related Methods 131
GetIdentity 131

Syntax 131

Parameters 131

Details 131

Exceptions Thrown 132

Examples 132
Related Methods 132

GetInfo 132

Syntax 133

Parameters 133

Details 134
“GetIdentityInfo” 134

“EnterprisePolicies” 135

“SASPW_Alias” 136

Exceptions Thrown 136

Examples 136
Related Methods 138

GetInternalLoginSitePolicies 138

Syntax 138

Parameters 138

Details 139

Exceptions Thrown 139
Examples 139

Related Methods 139

GetInternalLoginUserInfo 140

Syntax 140

Parameters 140
Details 141

Exceptions Thrown 141

Examples 142

Related Methods 143

GetLoginsforAuthDomain 143
Syntax 143

Parameters 143

Details 144

Exceptions Thrown 145

Related Methods 145

IsAuthorized 145
Syntax 145

Parameters 145

Details 146

Exceptions Thrown 147

Example 147
Related Methods 148

IsInRole 148

Syntax 148

Parameters 148

Details 149

Authorization (ISecurity Interface) � Overview of the ISecurity Server Interface 115

Exceptions Thrown 149
Examples 149

Related Methods 150

SetInternalLoginUserOptions 150

Syntax 151

Parameters 151
Details 152

Exceptions Thrown 152

Examples 152

Related Methods 153

SetInternalPassword 153

Syntax 153
Parameters 153

Details 154

Exceptions Thrown 154

Examples 154

Related Methods 154

Overview of the ISecurity Server Interface

The methods described in this section are provided in the ISecurity server interface.
The methods can be used in a SAS Open Metadata Interface client that you create to
request authorizations on SAS Metadata Server resources. The methods can be used to
get authorizations on both metadata and on the data that is represented by the
metadata.

ISecurity methods are available only through the standard interface. For more
information, see “Communicating with the SAS Metadata Server” on page 14.

In SAS 9.2, two versions of the ISecurity server interface are supported.

� ISecurity 1.0 enables SAS 9.1 clients to work the same way they worked in SAS
9.1. Only methods that were supported in SAS 9.1 are available in ISecurity 1.0.

� ISecurity 1.1 provides versions of the SAS 9.1 methods that work in a SAS 9.2
environment. It also offers several new methods.

The following information applies to all of the ISecurity methods.

� Errors are surfaced through the exception-handling in IOM. Each method returns
a set of documented exceptions. Use TRY and CATCH logic in your Java programs
to determine when an exception is returned.

� The methods make authorization decisions based on user and access control
metadata that is stored in metadata repositories. Appropriate metadata must be
defined for authorization decisions to be meaningful.

User metadata is defined by using the SAS Management Console User Manager
plug-in or by extracting user and group definitions from an enterprise source with
macros. For information about the plug-ins, see SAS Management Console
documentation.

Access control metadata is defined by using the SAS Management Console
Authorization Manager plug-in or by using ISecurityAdmin methods. For
information about ISecurityAdmin methods, which are new in SAS 9.2, see
Chapter 8, “Security Administration (ISecurityAdmin Interface),” on page 155.

For information about access controls supported by the SAS Open Metadata
Architecture authorization facility and enterprise user import macros, see the SAS
Intelligence Platform: Security Administration Guide.

116 Using the ISecurity Server Interface � Chapter 7

� The methods assume the calling user and any user IDs specified by the calling
program have been authenticated before calling the SAS Metadata Server, and
that the calling user is a trusted user of the SAS Metadata Server.

� In the examples, iSecurity is an instantiation of the ISecurity interface.

Using the ISecurity Server Interface

Calling the Server Interface
The ISecurity interface is called by connecting to the SAS Metadata Server and

obtaining a handle to the ISecurity server interface.
A SAS Java Metadata Interface client accesses the ISecurity server interface by

importing the appropriate packages, instantiating an object factory, and connecting to
the SAS Metadata Server with a handle to the interface that is appropriate for the task
that it wants to perform.

The ISecurity server interface is provided in the sas.oma.omi.jar file in the SAS 9.2
Platform VJR. A Java client accesses the ISecurity server interface by importing the
appropriate com.sas.meta.SASOMI packages.

The ISecurity interface versions are designed so that existing SAS clients can
continue to work unchanged.

� To use SAS 9.1 methods, import com.sas.meta.SASOMI.ISecurity and
com.sas.meta.SASOMI.ISecurityPackage.

� To use SAS 9.2 methods, import com.sas.meta.SASOMI.ISecurity_1_1 and
com.sas.meta.SASOMI.ISecurity_1_1Package.

The SAS 9.2 Java Metadata Interface provides the MdFactory interface to instantiate
an object factory for the SAS Metadata Server and the MdOMRConnection interface for
connecting to the SAS Metadata Server. Use the MdOMRConnection interface’s
makeISecurityConnection method to connect to the server with the ISecurity server
interface.

Identifying Resources to ISecurity Methods
Many ISecurity methods have a resource parameter. A resource is a metadata object

that represents the entity on which authorization or another action is requested.
A resource is identified by a URN in one of two forms:

OMSOBJ:MetadataType/ObjectId

REPOSID:_reposID

OMSOBJ indicates that the request is to the SAS namespace of the SAS Metadata
Model. The SAS namespace contains metadata types that describe application
elements. MetadataType is one of the SAS namespace metadata types. For a list of
supported metadata types, see the SAS Metadata Model documentation. ObjectId is the
requested object’s 17–character metadata object identifier. The first eight characters of
the object identifier are a repository identifier; the remaining eight characters are the
unique object instance identifier.

REPOSID indicates the request is to the REPOS namespace of the SAS Metadata
Model. The REPOS namespaces contains metadata types that describe a repository.
The first eight characters of a repository ID are the SAS Repository Manager identifier

Authorization (ISecurity Interface) � Understanding the ISecurity 1.0 Interface 117

A0000001, which is the same for all repositories. Therefore, you need specify only a
repository’s unique 8–character object instance identifier in _reposID.

Identifying Users
The SAS Metadata Server supports user identities of metadata type Person,

IdentityGroup, and in SAS 9.2, Role.
Most ISecurity methods accept a credential handle or use the user ID of the calling

user to identify the identity for which to return an authorization or information. A
credential handle is a token representing an identity’s authorizations on the SAS
Metadata Server. A handle is obtained with the GetCredentials method. For more
information, see “GetCredentials” on page 129.

The following methods support additional ways to specify the identity for which to
process a request:

� The GetApplicationActionsAuthorizations method supports submission of the
string ROLE_rolename to specify a Role. For more information, see
“GetApplicationActionsAuthorizations” on page 121.

� The GetIdentity method supports submission of the string LOGINID: userid to
identity a Person or IdentityGroup. For more information, see “GetIdentity” on
page 131.

� The GetInfo method supports the submission of an identity resource identifier in
the form IdentityType: Name, where IdentityType can be Person, IdentityGroup, or
Role. For more information, see “GetInfo” on page 132.

Methods that create and manage internal user accounts use a different convention to
identify a user. Internal user accounts are supported only for identities of metadata
type Person. These accounts rely on the Person object’s Name= value to identify the
account. Therefore, methods that create and operate on internal user accounts require
you to identify the internal user by name. For more information, see
“SetInternalPassword” on page 153, “SetInternalLoginUserOptions” on page 150,
“GetInternalLoginUserInfo” on page 140, and “DeleteInternalLogin” on page 119.

Understanding the ISecurity 1.0 Interface
The ISecurity 1.0 interface includes the following authorization methods:

GetCredentials
Returns a handle to a provider-specific credential.

FreeCredentials
Frees the handle returned by GetCredentials.

GetAuthorizations
Gets authorization information for a resource, depending on the type of
authorization requested.

GetIdentity
Gets identity metadata for the specified user.

IsAuthorized
Determines whether an authenticated user is authorized to access a resource with
a specific permission.

118 Understanding the ISecurity 1.1 Interface � Chapter 7

Understanding the ISecurity 1.1 Interface
The ISecurity 1.1 interface contains three categories of methods:
� ISecurity 1.0 authorization methods that were updated for the SAS 9.2

environment
� Internal authentication methods
� Generalized authorization methods

The SAS 9.2 methods support internal SAS Metadata Server authentication when
new internal user accounts are used, in addition to the traditional external
authentication.

In order of use, the internal authentication methods are the following:

GetInternalLoginSitePolicies
Returns the active server-level internal authentication policies.

SetInternalPassword
Creates an InternalLogin object for the specified user.

SetInternalLoginUserOptions
Customizes internal authentication policies for the specified user.

GetInternalLoginUserInfo
Gets availability information and internal authentication settings for the specified
user.

DeleteInternalLogin
Deletes the InternalLogin object that is associated with the specified user.

In alphabetical order, the generalized authorization methods are the following:

GetApplicationActionsAuthorizations
Returns authorizations for ApplicationActions in a SoftwareComponent object.

GetAuthorizationsforObjects
Gets authorizations for a specified set of objects and permissions.

GetInfo
Retrieves identity information, depending on the value in the INFOTYPE
parameter, including the origin of a specified identity’s privileges, the value of
active enterprise policies, and so on.

GetLoginsforAuthDomain
Retrieves the logins for the connected user for the specified authentication domain
in order of identity precedence.

IsInRole
Returns the TRUE value when the user specified in CREDHANDLE is in a role.

For more information, see the documentation for the individual methods.

Authorization (ISecurity Interface) � Examples 119

DeleteInternalLogin

Deletes the InternalLogin object that is associated with the specified user.
Category: Internal authentication methods
Interface version: ISecurity 1.1

Syntax

DeleteInternalLogin(personName);

Parameters

Parameter Type Direction Description

personName string in Specifies the Name= attribute value of the Person
object whose InternalLogin you want to delete.
Unlike in other security methods, the Name=
value is specified as simplyName.

Details

You must have user administration capabilities on the SAS Metadata Server to
delete an InternalLogin object. For information about user administration capabilities,
see “Users, Groups, and Roles: Main Administrative Roles” in the SAS Intelligence
Platform: Security Administration Guide.

The DeleteInternalLogin method deletes the InternalLogin object that is associated
with the specified user. Use the DeleteMetadata method to delete the Person object that
is associated with the InternalLogin object.

Exceptions Thrown

The DeleteInternalLogin method does not return any exceptions.

Examples

The following is a Java example of a DeleteInternalLogin method call:

// Assumes a Person object with Name=’testId’ exists
// and has an InternalLogin object associated with it
String personName = "testId";

iSecurity.DeleteInternalLogin(personName);

120 Related Methods � Chapter 7

Related Methods

� “SetInternalLoginUserOptions” on page 150

FreeCredentials
Frees the handle returned by GetCredentials.
Category: Authorization methods
Interface version: ISecurity 1.0

Syntax

FreeCredentials(credHandle);

Parameters

Parameter Type Direction Description

credHandle string in Credential handle to free.

Details
The FreeCredentials method frees the SAS Metadata Server credentials associated

with the handle returned by the GetCredentials method. Each handle returned by the
GetCredentials method should be freed.

Exceptions Thrown
The FreeCredentials method does not return any exceptions.

Authorization (ISecurity Interface) � Parameters 121

Example
The following is a Java example of a FreeCredentials method call:

// Assumes parameter is a valid credential handle that
// was previously obtained with the GetCredentials method
iSecurity.FreeCredentials(credHandle.value);

Related Methods
� “GetCredentials” on page 129

GetApplicationActionsAuthorizations
Returns authorizations for ApplicationActions in a SoftwareComponent object.
Category: Generalized authorization methods
Interface version: ISecurity 1.1

Syntax

GetApplicationActionsAuthorizations(credHandle,applicationContext,options,output);

Parameters

Parameter Type Direction Description

credHandle string in Credentials handle identifying a user identity,
an empty string, or the Name= of a Role in the
form ROLE_rolename.

applicationContext string in The 17-character metadata object identifier of
the SoftwareComponent object representing the
application on which the actions are registered.

122 Details � Chapter 7

Parameter Type Direction Description

options string
array

in Two-dimensional string array with two input
columns. Specifies additional properties to
return about granted ApplicationActions.
Supported options are an empty string and the
keyword-only options:

PERMCOND
requests to return any permission
conditions that are defined.

ALLATTRS
requests to return all attributes.

An empty string indicates that no additional
properties are requested.

output string
array

out Two-dimensional string array with a varying
number of output columns, depending on which
OPTIONS are set.

Possible columns include the following:

Column 0: ActionIdentifier

Column 1: PermissionCondition

Column 2: ’Y’ - user is granted; otherwise, an
empty string

Column 3: Name

Column 4: ActionType

Column 5: ObjectIdentifier

Details
The GetApplicationActionsAuthorizations method returns authorizations based on

ApplicationAction objects that are associated with a SoftwareComponent object. These
authorizations indicate the actions that a user can perform in the application that is
represented by the SoftwareComponent object.

The expected use is that applications define ApplicationAction objects that are valid
for their application, as well as for a user context. The
GetApplicationActionAuthorizations method lists the ApplicationActions for which the
specified user has been granted Execute permission.

When a credential handle is used, the method returns authorizations for the identity
that corresponds to the specified handle. If the CREDHANDLE parameter is an empty
string, the method returns authorizations for the calling user.

If authorization is requested based on role membership, you should specify the Role
name in the form ROLE_rolename. In the string ROLE_rolename:

� ROLE_ is a character constant prefix.
� rolename is the Name= value of a Role object on the SAS Metadata Server.

The PERMCOND option returns any PermissionCondition objects that have been
defined to qualify an authorization.

The ALLATTRS option returns the following attributes about each granted
ApplicationAction:

Authorization (ISecurity Interface) � Parameters 123

ActionIdentifier fixed system name of the ApplicationAction

Name localizable name of the ApplicationAction

ActionType optional application-specific descriptor for the ApplicationAction

ObjectIdentifier metadata identifier of the ApplicationAction object

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetApplicationActionsAuthorizations method:
� NotTrustedUser
� InvalidCredHandle—This exception is also returned when the ROLE_rolename

value is invalid or does not exist.
� InvalidResourceSpec

Related Methods
“IsInRole” on page 148

GetAuthorizations
Gets authorization information for a resource, depending on the type of authorization

requested.
Category: Authorization methods
Interface version: ISecurity 1.0

Syntax

GetAuthorizations(authType,credHandle,resource,permission,authorizations);

Parameters

Parameter Type Direction Description

authType string in The type of authorization to perform.

credHandle string in Credential handle identifying a user identity, or an empty
string.

resource string in Passed resource identifier.

124 Details � Chapter 7

Parameter Type Direction Description

permission string in Mnemonic representation of the permission for which
authorization is being requested. This parameter can be an
empty string for some AUTHTYPE values.

authorizations string
array

out Returned two-dimensional string array. The content and
structure of the array varies depending on the
authorization type specified in the AUTHTYPE parameter.

Details
The GetAuthorizations method performs authorization queries. The input for

processing the query, and the format and content of the information returned, are
determined by the AUTHTYPE parameter. Currently, the only supported AUTHTYPE
value is Cube.

Cube returns an array of strings[*][4]. The number of rows depends on the structure
of the cube. Each row has the following four columns:

Type
Indicates the metadata type in the row. This is either Hierarchy, Dimension,
Measure, or Level.

Name
Returns the Name= attribute of the metadata type instance.

Authorized
Returns a Y or N, indicating whether the permission being requested has been
granted to the user in this cube component.

PermissionCondition
When the Authorized column has a value of Y, this column returns a condition
that must be enforced on the cube component to allow access. For more
information, see the description of the PERMISSIONCONDITION parameter in
“IsAuthorized” on page 145.

If the CREDHANDLE parameter is an empty string, the method returns
authorizations for the calling user.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetAuthorizations method:

� NotTrustedUser
� InvalidCredHandle
� InvalidResourceSpec
� InvalidAuthType

Authorization (ISecurity Interface) � Examples 125

Examples

The following is a Java example of a GetAuthorizations method. The method call
gets authorizations for a cube. Code is included that formats and prints the results of
the request.

public void getAuthorizationsforCube() throws Exception {
try
{

// Issue GetAuthorizations on a predefined cube. The value ‘‘Cube’’ is
// the only supported authType. ‘‘Read’’ is the permission being sought.

iSecurity.GetAuthorizations("Cube", credHandle.value, cube_URN, "Read", auths);

System.out.println();
// Specifies to print a title and parameter values.
System.out.println("<<<<<< getAuthorizations() call parameters

(Read Permission) with results >>>>>>");
System.out.println("credHandle=" + credHandle.value);
System.out.println("resourceURN=" + cube_URN);
System.out.println("permission=Read");

// Defines a string array to store method output
String[][] returnArray = auths.value;
for (int i=0; i < returnArray.length; i++)
{

String[] returnRow = returnArray[i];
// Return values are in fixed column positions:
// Type | Name | Authorized (Y/N) | PermissonCondition
System.out.print("Type="+returnRow[0] + ", ");
System.out.print("Name="+returnRow[1] + ", ");
System.out.print("Authorized="+returnRow[2] + ", ");
System.out.print("PermissonCondition="+returnRow[3]);
System.out.println(); // force NewLine

}

System.out.println
("<<<< End getAuthorizationsForCube() >>>>");

}
// Catch the method’s exceptions.
catch (Exception e) {

System.out.println("GetAuthorizations: GetInfo: other Exception");
e.printStackTrace();
throw e;

}

}

Here is the output from the request:

<<<<<< getAuthorizations() call parameters (Read Permission) with results >>>>>>
credHandle=33f824f400000003
resourceURN=OMSOBJ:Cube/A5CY5BIY.AS000001
permission=Read
Type=Hierarchy, Name=testHier1, Authorized=Y, PermissonCondition=

126 Related Methods � Chapter 7

Type=Dimension, Name=testDim1, Authorized=Y, PermissonCondition=
Condition for an OLAP Dimension
Type=Dimension, Name=testDim2, Authorized=N, PermissonCondition=

<<<< End getAuthorizationsForCube() >>>>

Related Methods
� “IsAuthorized” on page 145

GetAuthorizationsforObjects
Gets authorizations for a specified set of objects and permissions.
Category: Generalized authorization methods
Interface version: ISecurity 1.1

Syntax

GetAuthorizationsforObjects(credHandle,permissions,resources,permMask,GRANT,
conditionNDXs,conditionPermMasks,conditions);

Parameters

Parameter Type Direction Description

credHandle string in Credential handle identifying a user
identity, or an empty string.

permissions string
array

in Permissions for which authorizations are
requested for the resources in the
RESOURCES parameter. See the "Details"
section for an example.

resources string
array

in A one-dimensional string array containing
passed resource identifiers. See the
"Details" section for an example.

Authorization (ISecurity Interface) � Parameters 127

Parameter Type Direction Description

permMask integer
array

in A one-dimensional integer array, where
each element corresponds positionally to
each resource in the RESOURCES array,
and each bit in an element corresponds
positionally to each permission in the
PERMISSIONS array. Each PERMMASK
element is a bit pattern where 1 in a bit
position means that the permission in the
PERMISSIONS array is enforced for the
corresponding object. A 0 in a bit position
means that the GetAuthorizationsforObjects
method should ignore the corresponding
permission. See the "Details" section for an
example.

GRANT integer
array

out A one-dimensional integer array, where
each element corresponds positionally to
each resource in the RESOURCES array,
and each bit in an element corresponds
positionally to each permission in the
PERMISSIONS array. Each GRANT
element is a bit pattern, where 1 in a bit
position means that the permission in the
PERMISSIONS array is granted for the
corresponding object. A 0 in a bit position
means that the permission is denied or not
selected for enforcement in the
PERMMASK for the corresponding object.

conditionNDXs integer
array

out A one-dimensional integer array, where each
element corresponds positionally to each
PermissionCondition in the CONDITIONS
array. Each CONDITIONNDXS element
value is the index into the RESOURCES
array for which the PermissionCondition in
the CONDITIONS array corresponds. If no
PermissionConditions are returned for any
of the resources, then the
CONDITIONNDXS array is empty.

128 Details � Chapter 7

Parameter Type Direction Description

conditionPermMasks integer
array

out A one-dimensional integer array, where
each element corresponds positionally to
each index in the CONDITIONNDXS and
CONDITIONS arrays. Each
CONDITIONPERMMASKS element is a bit
pattern, where 1 in a bit position means
that the corresponding permission in the
PERMISSIONS array has a
PermissionCondition. If no
PermissionCondition objects are returned
for any of the resources, then the
CONDITIONPERMMASKS array is empty.
The CONDITIONPERMMASKS array lists
the permissions for which
PermissionCondition objects were returned
for the resource referenced in the
corresponding element in the
CONDITIONNDXS array.

conditions string
array

out A one-dimensional string array, where each
element corresponds positionally to each
permission in the CONDITIONNDXs and
CONDITIONPERMMASKS arrays and
contains a returned PermissionCondition
value. If no PermissionCondition objects are
returned for any of the resources, then the
CONDITIONS array is empty.

Details
The GetAuthorizationsforObject method reduces the number of calls to the SAS

Metadata Server for authorization decisions that require permissions on multiple
metadata objects to be evaluated. For the specified set of metadata objects and a
corresponding set of permissions (which can be different for each object), the method
returns GRANT or a null value, and any PermissionCondition objects that are
associated with a GRANT. A null value indicates that the permission was denied or not
specified for the object.

When an empty string is passed in CREDHANDLE, the method evaluates
authorizations for the calling user.

This is an example of a PERMISSIONS array:

{ "Read", "Write", "Create Table", "Select" }

For information about the format of a resource identifier, see “Identifying Resources
to ISecurity Methods” on page 116.

This is an example of a RESOURCES array:

{
"OMSOBJ:Library/A5DRX6L4.AQ000001",
"OMSOBJ:Table/A5DRX6L4.AT000001",

"OMSOBJ:Column/A5DRX6L4.AU000006",

Authorization (ISecurity Interface) � Syntax 129

"OMSOBJ:Column/A5DRX6L4.AU000007"
}

This is an example of a PERMMASK array:

{ 7, 15, 1, 2 }

Using information from the previous examples, the PERMMASK array indicates the
following:

� the Read, Write, and Create Table permissions are enforced for OMSOBJ:Library/
A5DRX6L4.AQ000001

� the Read, Write, Create Table, and Select permissions are enforced for
"OMSOBJ:Table/A5DRX6L4.AT000001"

� the Read permission is enforced for OMSOBJ:Column/A5DRX6L4.AU000006
� the Write permission is enforced for OMSOBJ:Column/A5DRX6L4.AU000007

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetAuthorizationsforObjects method:

� InvalidCredHandle
� PermissionDoesNotExist
� InvalidObjectSpecification
� ObjectDoesNotExist
� InvalidPermMask

Related Methods

� “GetAuthorizations” on page 123
� “GetApplicationActionsAuthorizations” on page 121

GetCredentials
Returns a handle to a provider-specific credential.
Category: Authorization methods
Interface version: ISecurity 1.0

Syntax

GetCredentials(userid,credHandle);

130 Parameters � Chapter 7

Parameters

Parameter Type Direction Description

userid string in Passed user ID of the authenticated user for whom a credential
is requested, or an empty string.

credHandle string out Returned credential handle identifying a user.

Details
The GetCredentials method returns a credential handle for the user identified in the

USERID parameter. If the USERID parameter contains an empty string, a credential
handle is returned for the user making the request.

A credential handle is a token representing an identity’s authorizations on the SAS
Metadata Server. Clients get and use the handle to reduce the number of authorization
requests made to the SAS Metadata Server on behalf of a user.

Every credential handle that is returned by the GetCredentials method should be
freed using the FreeCredentials method when it is no longer needed.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetCredentials method:

� NoCredential

� NotTrustedUser

Example
The following is a Java example of a GetCredentials method call:

public void getCredentials() throws Exception {
try
{

String testUserId = new String(‘‘myDomain\myUserID’’);
StringHolder credHandle = new StringHolder();

iSecurity.GetCredentials(testUserId,credHandle);
}

catch (Exception e) {
System.out.println(’’GetCredentials: Exceptions’’);
e.printStackTrace();
throw e;
}

}

Authorization (ISecurity Interface) � Details 131

Related Methods
� “FreeCredentials” on page 120

� “GetIdentity” on page 131

GetIdentity
Gets identity metadata for the specified user.
Category: Authorization methods
Interface version: ISecurity 1.0

Syntax

GetIdentity(credHandle,identity);

Parameters

Parameter Type Direction Description

credHandle string in Credential handle identifying a user identity, an empty string, or
a user ID in the form LOGINID:userid.

identity string out Resource identifier describing the identity represented by the
credential handle.

Details
By specifying a credential handle to the GetIdentity method, it returns a URN-like

string describing the identity that corresponds to the specified handle. An identity
refers to a Person or IdentityGroup object describing a user in a SAS Metadata
Repository. The URN-like string is in the following form:

OMSOBJ: MetadataType/ObjectId

where
� MetadataType is Person or IdentityGroup.

� ObjectId is a unique metadata object instance identifier in the form
Reposid.ObjectId.

If the CREDHANDLE parameter is an empty string, the output is identity metadata
for the requesting user.

If the call is being made on behalf of a user whose user ID is known, specify it in the
form LOGINID:userid to eliminate the need to issue GetCredentials and
FreeCredentials calls before GetIdentity. In the LOGINID:userid string:

� LOGINID is a keyword that specifies to search Login objects.

132 Exceptions Thrown � Chapter 7

� userid is the value of a Login object’s UserID= attribute.

Exceptions Thrown

The SAS Open Metadata Interface explicitly returns the following exception for the
GetIdentity method:

� InvalidCredHandle

Examples

The following are Java examples that show the three ways a GetIdentity call can be
issued:

// GetIdentity() returns a URN-like string representing the metadata object
// identifier of an identity specified in the first parameter. The first
// parameter can be specified in one of three ways:

StringHolder identityValue = new org.omg.CORBA.StringHolder();

// 1) The first parameter is an empty string:
// GetIdentity() returns the Identity associated with
// the current connection to the SAS Metadata Server.

iSecurity.GetIdentity("",identityValue);

// 2) The first parameter is a valid credential handle:
// Here the returned Identity corresponds to the credential handle
// obtained in the previous call to GetCredentials().

iSecurity.GetIdentity(credHandle.value,identityValue);

// 3) The first parameter is a user ID with the prefix: ’LOGINID:’
// Here the returned Identity corresponds to specified user ID.

String loginId = new String("LOGINID:myUserID");
iSecurity. GetIdentity(loginId.value,identityValue);

Related Methods

� “GetCredentials” on page 129

GetInfo

Retrieves identity information, depending on the value in the INFOTYPE parameter,
including the origin of a specified user’s privileges, the value of active enterprise
policies, and so on.

Category: Generalized authorization methods
Interface version: ISecurity 1.1

Authorization (ISecurity Interface) � Parameters 133

Syntax

GetInfo("infoType",identity,options,output);

Parameters

Table 7.1

Parameters Type Direction Description

infoType string in Specifies the identity information to get. Valid
values are:

� GetIdentityInfo

� EnterprisePolicies

� SASPW_Alias

� ALL

identity string in A string that identifies the user identity for
which information is requested. Valid values
are:

� A credential handle obtained by calling
the GetCredentials method.

� An empty string.

� When INFOTYPE is "GetIdentityInfo",
a valid URN for an identity or simply
IdentityType:Name. In
IdentityType:Name, IdentityType is
Person, IdentityGroup, or Role. Name is
the Name= value of the identity.

134 Details � Chapter 7

Parameters Type Direction Description

options string array in Options submitted in a two-dimensional
string array. Options are specific to the
INFOTYPE value. The first column in the
array must contain an option keyword. The
second column contains the keyword value, if
there is one. See the “Details” section for
information about valid option values.

output string array out A two-dimensional string array containing the
output for the requested INFOTYPE. The first
column has the name of the attribute whose
value is being returned in the second column.
See the “Details” section for information about
the output for each INFOTYPE.

Details
If IDENTITY is an empty string, then “INFOTYPE” requests information for the

connected user. If IDENTITY is a credential handle or URN-like identifier, and the
connected user is a trusted user, then information is returned for the specified identity.
For information about the format of a URN, see “Identifying Resources to ISecurity
Methods” on page 116.

The IdentityType:Name form enables clients to obtain identity information when a
credential cannot be obtained. This can happen because the associated login is not
known or is not available in a particular scenario. An example of this type of scenario is
when a client needs to determine whether an identity has extended privileges as a
result of membership in the Unrestricted, User Administrator, or Operator roles, but
has no way to authenticate the identity using any of the identity’s logins. A connected
user must have ReadMetadata permission to the requested Identity object in order to
obtain information about it. The following are examples of how the IdentityType:Name
form is used:

’Person:Jane’
’IdentityGroup:AccountingDept’
’Role:AccountsPayableClerks’

A description of each “INFOTYPE” value and its options follows.

“GetIdentityInfo”
The “GetIdentityInfo” value supports the following option keywords:

ReturnUnrestrictedSource
Returns an additional row in the output array if the specified user is an
unrestricted user. Otherwise, an additional row is not returned. When a row is
returned, the valid values are the following:

Role
Indicates the user identity is a member of the SAS Metadata Server:
Unrestricted role.

ConfigFile
Indicates the user has a login user ID that matches a *userID entry in the
adminUsers.txt file.

Authorization (ISecurity Interface) � Details 135

Role, ConfigFile
Indicates the user is unrestricted from both the Role and ConfigFile sources.

UserClass
Returns one or more of the following values that describe the source of the
identity’s privileges. When Unrestricted is returned, all of the privileges of
Administrator and Operator are assumed. The privileges of Trusted are not
assumed.

Unrestricted
Indicates the privilege comes from a *userID entry in the adminUsers.txt file,
or from a metadata identity that has membership in the SAS Metadata
Server: Unrestricted role.

Administrator
Indicates the privilege comes from a user ID entry in the adminUsers.txt file
that does not have an asterisk.

IdentityAdmin
Indicates the privilege comes from a metadata identity that has membership
in the SAS Metadata Server: User and Group Administrators role.

Operator
Indicates the privilege comes from a metadata identity that has membership
in the SAS Metadata Server: Operator role.

Normal
Indicates the user does not have any special privileges.

Trusted
Indicates the privilege comes from a user ID entry in the trustedUsers.txt file.

AuthenticatedUserid
Returns the domain-qualified user ID used to make the connection to the SAS
Metadata Server, or the domain-qualified user ID corresponding to the specified
CREDHANDLE.

IdentityName
Returns the Name= value of the Person or IdentityGroup object that corresponds
to the authenticated user ID.

IdentityType
Returns Person or IdentityGroup.

IdentityObjectID
Returns the 17–character metadata object identifier of the specified identity.

UnrestrictedSource
Valid values are Role, ConfigFile, or ’Role, ConfigFile’.

“EnterprisePolicies”
The “EnterprisePolicies” value requests enterprise policies. It supports the following

option keywords:

ALL
Specifies to return all enterprise policies and their values.

SASSEC_LOCAL_PW_SAVE
Specifies to return the value of the SASSEC_LOCAL_PW_SAVE= server
configuration option. This server configuration option specifies whether users can

136 Exceptions Thrown � Chapter 7

create a local copy of the user ID and password that they submit when they log on
to a SAS desktop application. A value of 0 indicates Yes. A value of 1 indicates No.

“SASPW_Alias”
The “SASPW_Alias” value has no option keywords. It returns the

AuthenticationDomain alias of the SASPassword authentication provider. The default
value is saspw. However, if the AUTHPROVIDERDOMAIN startup option is used to
specify a different alias, then this INFOTYPE value returns the alias.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetInfo method:
� InvalidCredHandle
� InvalidInfoType
� InvalidOptionName
� InvalidOptionValue

Examples
The following is a Java example of a GetInfo method call. The method is issued

twice. The first time it is issued, it gets identity information for the connected user. The
second time, it gets identity information for a credentialed user. The example includes
code that formats and prints the information returned by the two requests:

public void getInfo() throws Exception {
try
{

// Defines the GetIdentityInfo ‘‘ReturnUnrestrictedSource’’ option.
final String[][] options ={{"ReturnUnrestrictedSource",""}};

System.out.println(""); // Skip a line
System.out.println("<<<< Begin getInfo() >>>>");

// Defines a stringholder for the info output parameter.
VariableArray2dOfStringHolder info = new VariableArray2dOfStringHolder();

// Issues the GetInfo method for the current iSecurity connection user.
iSecurity.GetInfo("GetIdentityInfo","", options, info);
String[][] returnArray = info.value;

System.out.println();
// Specifies a title for the output.

System.out.println("<<<<<< getInfo() for ISecurity Connection User >>>>>>");
System.out.println("credHandle=’’");
for (int i=0; i< returnArray.length; i++)
{
System.out.println(returnArray[i][0] + "=" + returnArray[i][1]);
}

// Defines a stringholder for the credential handle.
StringHolder credHandle = new StringHolder();

Authorization (ISecurity Interface) � Examples 137

// Issues the GetCredentials method.
iSecurity.GetCredentials(testUserId, credHandle);

// Issues the GetInfo method for the credentialed user
iSecurity.GetInfo("GetIdentityInfo",credHandle.value, options, info);
returnArray = info.value;

System.out.println();
// Skip one line
// Specifies a title to print in the output.

System.out.println("<<<<<< getInfo() for Credentialed User >>>>>>");
System.out.println("credHandle=" + credHandle.value);
for (int i=0; i< returnArray.length; i++)
{
System.out.println(returnArray[i][0] + "=" + returnArray[i][1]);
}

// Issues the FreeCredentials method.
iSecurity.FreeCredentials(credHandle.value);

System.out.println("");
// Skip a line

System.out.println("<<<< End getInfo() >>>>");
}
// The following code catches the method’s exceptions.

catch (Exception e) {
System.out.println("GetInfo: Exceptions");
e.printStackTrace();
throw e;

}

}

Here is the output from the requests:

<<<< Begin getInfo() >>>>

<<<<<< getInfo() for ISecurity Connection User >>>>>>
credHandle=’’
UserClass=Unrestricted, Trusted
AuthenticatedUserid=TESTUSR7@CARYNT
IdentityName=PUBLIC
IdentityType=IdentityGroup
IdentityObjectID=A5CY5BIY.A3000002
UnrestrictedSource=ConfigFile

<<<<<< getInfo() for Credentialed User >>>>>>
credHandle=2d91581c00000000
UserClass=IdentityAdmin
AuthenticatedUserid=TESTUSER@SASPW
IdentityName=testUser
IdentityType=Person
IdentityObjectID=A5CY5BIY.AN000003

<<<< End getInfo() >>>>

138 Related Methods � Chapter 7

Related Methods
� “GetInternalLoginUserInfo” on page 140

GetInternalLoginSitePolicies
Returns the active server-level internal authentication policies.
Category: Internal authentication methods
Interface version: ISecurity 1.1

Syntax

GetInternalLoginSitePolicies(siteMinPasswordLength,siteIsDigitRequired,
siteIsMixedCaseRequired,siteSizeHistoryList,sitePasswordChangeDelayInMinutes,
siteExpirationDays,siteNumFailuresForLockout,siteLockoutInMinutes,
siteDaysToSuspension);

Parameters

Parameter Type Direction Description

siteMinPasswordLength int out Specifies the minimum length for
passwords in characters.

siteIsDigitRequired boolean out Specifies whether passwords must
include at least one digit.

siteIsMixedCaseRequired boolean out Specifies whether passwords must
include at least one uppercase letter
and at least one lowercase letter.

siteSizeHistoryList int out Specifies the number of previous
passwords that are required to be saved
before a password value can be reused.

sitePasswordChangeDelayInMinutesint out Specifies the number of minutes that
must elapse between password
changes.

siteExpirationDays int out Specifies the number of days after a
password is set that the password
expires.

siteNumFailuresForLockout int out Specifies the number of consecutive
unsuccessful logon attempts after
which an account to be locked.

Authorization (ISecurity Interface) � Related Methods 139

Parameter Type Direction Description

siteLockoutInMinutes int out Specifies the number of minutes for
which an account is locked following
excessive login failures.

siteDaysToSuspension int out Specifies the number of days after
which an unused account is suspended.

Details
Parameters are holders for receiving output values, and all parameters are required.

That is, the caller must specify all parameters to get values back. A caller cannot leave
any variables empty to indicate that he or she doesn’t want a value for that parameter.

Exceptions Thrown
The GetInternalLoginSitePolicies method does not return any exceptions.

Examples
The following is a Java example of a GetInternalLoginSitePolicies method call:

IntHolder siteMinPasswordLength = new IntHolder();
BooleanHolder siteIsDigitRequired = new BooleanHolder();
BooleanHolder siteIsMixedCaseRequired = new BooleanHolder();
IntHolder siteSizeHistoryList = new IntHolder();
IntHolder sitePasswordChangeDelayInMinutes = new IntHolder();
IntHolder siteExpirationDays = new IntHolder();
IntHolder siteNumFailuresForLockout = new IntHolder();
IntHolder siteLockoutInMinutes = new IntHolder();
IntHolder siteDaysToSuspension = new IntHolder();

iSecurity.GetInternalLoginSitePolicies(siteMinPasswordLength,
siteIsDigitRequired,
siteIsMixedCaseRequired,
siteSizeHistoryList,
sitePasswordChangeDelayInMinutes,
siteExpirationDays,
siteNumFailuresForLockout,
siteLockoutInMinutes,
siteDaysToSuspension);

Related Methods

� “GetInternalLoginUserInfo” on page 140

� “SetInternalLoginUserOptions” on page 150

140 GetInternalLoginUserInfo � Chapter 7

GetInternalLoginUserInfo
Gets availability information and internal authentication settings for the specified

user.
Category: Internal authentication methods
Interface version: ISecurity 1.1

Syntax

GetInternalLoginUserInfo(personName,hasInternalLogin,isDisabled,bypassStrength,
bypassHistory,useStdExpirationDays,expirationDays,bypassLockout,
bypassInactivitySuspension,doesAccountExpire,accountExpirationDate,
lastPasswordChange,lastLogin,numFailuresSinceLogin,
lastLockout,isLockedOut,isExpired,isSuspend,isAccountExpired);

Parameters

Parameter Type Direction Description

personName string in Specifies the Name= value of the Person
object for which the InternalLogin is
defined. Unlike in other security
methods, the Name= value is specified
as simplyName.

hasInternalLogin boolean out Returns T or F, indicating whether the
specified user has an InternalLogin
object defined.

bypassStrength boolean out Returns T or F, indicating whether a
custom password complexity policy is
defined.

bypassHistory boolean out Returns T or F, indicating whether a
custom history requirement is defined.

useStdExpirationDays boolean out Returns T or F, indicating whether the
InternalLogin has a password expiration
date.

expirationDays int out Specifies the expiration period.

bypassLockout boolean out Returns T or F, indicating whether a
custom lockout policy is defined.

bypassInactivitySuspension boolean out Returns T or F, indicating whether a
custom inactivity suspension policy is
defined.

doesAccountExpire boolean out Returns T or F, indicating whether the
internal account has an expiration date.

accountExpirationDate datetime out Returns the account expiration date if
one is defined.

Authorization (ISecurity Interface) � Exceptions Thrown 141

Parameter Type Direction Description

lastPasswordChange datetime out Returns a datetime value, indicating
when the password was last changed.

lastLogin datetime out Returns a datetime value, indicating the
last time the login was used.

numFailuresSinceLogin int out Returns a number, indicating the
number of unsuccessful login attempts
since the last successful login.

lastLockout datetime out Returns a datetime value, indicating the
last time the account was locked because
of consecutive unsuccessful login
attempts.

isLockedOut boolean out Returns T or F, indicating whether the
account is currently locked because of
login failures.

isExpired boolean out Returns T or F, indicating whether the
password is currently expired.

isSuspended boolean out Returns T or F, indicating whether the
account is currently suspended because
of inactivity.

isAccountExpired boolean out Returns T or F, indicating whether the
account is currently expired.

Details
Except for PERSONNAME, parameters are holders for receiving output values.
If an internal user account suddenly becomes unavailable, use the

GetInternalLoginUserInfo method to determine why the account is unavailable. In
addition to returning the specified Person object’s internal authentication policy
settings, output parameters indicate whether the account is active, disabled, expired,
locked out because of unsuccessful authentication, or suspended because of inactivity.

Exceptions Thrown
The GetInternalLoginUserInfo method does not return any exceptions.

142 Examples � Chapter 7

Examples
The following is a Java example of a GetInternalLoginUserInfo method call:

// Assumes a Person object with Name=’Test1’ exists
// and has an InternalLogin object associated with it
String personName ="Test1"’;
BooleanHolder hasInternalLogin = new BooleanHolder();
BooleanHolder isDisabled = new BooleanHolder();
BooleanHolder bypassStrength = new BooleanHolder();
BooleanHolder bypassHistory = new BooleanHolder();
BooleanHolder useStdExpirationDays = new BooleanHolder();
IntHolder expirationDays = new IntHolder();
BooleanHolder bypassLockout = new BooleanHolder();
BooleanHolder bypassInactivitySuspension = new BooleanHolder();
BooleanHolder doesAccountExpire = new BooleanHolder();
DateTimeHolder accountExpirationDate = new DateTimeHolder();
DateTimeHolder lastPasswordChange = new DateTimeHolder();
DateTimeHolder lastLogin = new DateTimeHolder();
IntHolder numFailuresSinceLogin = new IntHolder();
DateTimeHolder lastLockout = new DateTimeHolder();
BooleanHolder isLockedOut = new BooleanHolder();
BooleanHolder isExpired = new BooleanHolder();
BooleanHolder isSuspended = new BooleanHolder();
BooleanHolder isAccountExpired = new BooleanHolder();

GetInternalLoginUserInfo(personName,
hasInternalLogin,
isDisabled,
bypassStrength,
bypassHistory,
useStdExpirationDays,
expirationDays,
bypassLockout,
bypassInactivitySuspension,
doesAccountExpire,
accountExpirationDate,
lastPasswordChange,
lastLogin,
numFailuresSinceLogin,
lastLockout,
isLockedOut,
isExpired,
isSuspended,
isAccountExpired);

Authorization (ISecurity Interface) � Parameters 143

Related Methods

� “SetInternalLoginUserOptions” on page 150
� “GetInternalLoginSitePolicies” on page 138

GetLoginsforAuthDomain
Retrieves the logins for the connected user for the specified authentication domain in

order of identity precedence.
Category: Generalized authorization methods
Interface version: ISecurity 1.1

Syntax

GetLoginsforAuthDomain(credHandle,authDomain,options,output);

Parameters

Parameter Type Direction Description

credHandle string in A credential handle identifying a user
identity, or an empty string.

authDomain string in The name of an AuthenticationDomain, such
as DefaultAuth or saspw.

144 Details � Chapter 7

Parameter Type Direction Description

options string array in A two-dimensional string array. Each row
contains an option keyword in column zero,
and a corresponding value in column one, as
described:

MaxListLen
An integer that indicates the maximum
number of logins to return. The default
value is 1.

IncludeBlankPasswords
A value of Yes specifies to include
logins that do not have passwords. A
value of No (the default value) specifies
to exclude logins that do not have
passwords.

PrimaryOnly
A value of Yes specifies to return only
logins that are directly associated to
the primary identity. A value of No (the
default value if this option is omitted)
specifies to return logins from group
memberships as well.

IdentityInfo
A value of Yes specifies to also return
output columns containing the
OwnerName, OwnerType, and OwnerId
for the owning identity. A value of No
(the default value if this option is
omitted) specifies not to return this
information.

output string array out A two-dimensional string array in which each
row represents the information for a login.
The default column values returned are the
following:

Column 0: Userid

Column 1: Password

Column 2: ObjectId

When IdentityInfo=Yes, also:

Column 3: OwnerName

Column 4: OwnerType

Column 5: OwnerId

Details
CREDHANDLE identifies the user identity for whom logins are being requested.

When this value is an empty string, the user identity of the caller is used.

Authorization (ISecurity Interface) � Parameters 145

Logins are returned in priority order following identity precedence. For information
about identity precedence, see the SAS Intelligence Platform: Security Administration
Guide.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetLoginsforAuthDomain method:

� InvalidCredHandle

� InvalidOptionName

� InvalidOptionValue

� AuthDomainDoesNotExist

Related Methods
� “GetCredentials” on page 129

� “GetInfo” on page 132

IsAuthorized

Determines whether an authenticated user is authorized to access a resource with a
specific permission.

Category: Authorization methods
Interface version: ISecurity 1.0

Syntax

IsAuthorized(credHandle,resource,permission,permissionCondition,authorized);

Parameters

Parameter Type Direction Description

credHandle string in Credential handle identifying a user identity, or an
empty string.

resource string in Passed resource identifier.

permission string in Passed user access permission.

permissionCondition string out Returned permission conditions associated with
access to the resource.

authorized boolean out A Boolean value that indicates whether access to a
resource is granted or denied.

146 Details � Chapter 7

Details
If the CREDHANDLE parameter is an empty string, authorization is returned for

the requesting user.
The RESOURCE parameter identifies the object to which access is requested. The

parameter accepts two types of input:

� A URN that specifies an application element in the following form:

OMSOBJ: MetadataType/ObjectId

� Beginning in SAS 9.2, a URN that specifies a repository in the following form:

REPOSID:_reposID

_reposID is the unique, 8-character identifier of a repository. (This is the 8
characters following the period in a RepositoryBase object’s 17–character metadata
identifier.)

Use of a repository URN causes the IsAuthorized method to check the specified
repository’s default ACT for information to make the authorization decision. The
repository ACT controls whether a user can create objects in the repository. A client can
use the URN to determine whether the user represented by the CREDHANDLE
parameter is granted or denied WriteMetadata, which determines whether the user can
create objects in the repository. Group memberships are evaluated when making the
decision. For example, if the requesting user is not specifically denied WriteMetadata
permission in the repository ACT, and a group to which he belongs is granted
WriteMetadata permission in the repository ACT, then he is allowed to create objects in
the repository. For more information about identity precedence, see SAS Intelligence
Platform: Security Administration Guide.

The PERMISSION parameter specifies the permission to check for. A single
permission value can be passed to the IsAuthorized method.

The PERMISSIONCONDITION parameter is used with data permissions, such as
Read and Write. A value returned in this parameter indicates that a permission is
granted, but only if the condition specified in an associated PermissionCondition object
is met. The syntax of a permission condition is not defined. It is specific to the resource
being protected and to the technology responsible for enforcing the security of the
resource. For example, a PermissionCondition object for a table would contain a SQL
WHERE clause, but for an OLAP dimension, it would contain an MDX expression
identifying the level members that can be accessed in the OLAP dimension.

It is possible for a user to have multiple permission conditions associated with his or
her access to a resource. In this case, the PERMISSIONCONDITION parameter is
returned with multiple strings embedded. Each embedded condition is separated from
the preceding condition by the string <!–CONDITION–>. If you receive a
PERMISSIONCONDITION output string, you must check to see whether it contains
multiple permission conditions by searching for <!–CONDITION–> in the returned
string. If multiple permission conditions are found, then they should be used to filter
data so the resulting data is a union of the data returned for each permission condition
individually. In other words, the permission conditions would have the OR operation
performed on them.

Authorization (ISecurity Interface) � Example 147

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

isAuthorized method:

� NotTrustedUser
� InvalidCredHandle
� InvalidResourceSpec

Example
The following is a Java example of the IsAuthorized method. The method is issued to

determine whether the credentialed user has Read permission to the requested table.
The example includes code that formats and prints the results of the request.

public void isAuthorized() throws Exception {

try
{

System.out.println("");
// Skip a line
System.out.println("<<<< Begin isAuthorized() >>>>");

// These statements define holders for the credHandle,
// permissionCondition, and authorized parameters. Assume the
// requested resource, a table, was defined earlier. Also
// that a credential handle was obtained earlier.
StringHolder credHandle = new StringHolder();
StringHolder permCond = new StringHolder();
BooleanHolder isAuth = new BooleanHolder();

// Issues the isAuthorized method specifying the Read permission.
iSecurity.IsAuthorized(

credHandle.value,
table_URN,
"Read",
permCond,
isAuth
);

System.out.println();
// Specify a title for the output and to print parameter
// values along with the isAuthorized result.
System.out.println("<<<<<< isAuthorized() call parameters with

(Read Permission) results >>>>>>");
System.out.print("credHandle=" + credHandle.value + ", ");
System.out.print("resourceURN=" + table_URN + ", ");
System.out.print("permission=Read, ");
System.out.print("permissonCondition=" + permCond.value + ", ");
System.out.print("isAuth=" + isAuth.value);
System.out.println();
// force NewLine

System.out.println("<<<< End isAuthorized() >>>>");

148 Related Methods � Chapter 7

}
// The following statement catches the method’s exceptions.
catch (Exception e) {

System.out.println("IsAuthorized: Exceptions");
e.printStackTrace();
throw e;

}

}

Here is the output from the request:

<<<< Begin isAuthorized() >>>>

<<<<<< isAuthorized() call parameters with (Read Permission) results >>>>>>
credHandle=1e11e9ff00000002, resourceURN=OMSOBJ:PhysicalTable/A5CY5BIY.AO000003,
permission=Read, permissonCondition=Based on this condition, isAuth=true

<<<< End isAuthorized() >>>>

The user represented by the credential handle has Read permission to PhysicalTable
A5CY5BIY.AO000003.

Related Methods
� “GetAuthorizations” on page 123

IsInRole
Returns the TRUE value when the user specified in CREDHANDLE is in a role.
Category: Generalized authorization methods
Interface version: ISecurity 1.1

Syntax

IsInRole(credHandle,roleSpec,options,inRole);

Parameters

Parameter Type Direction Description

credHandle string in Credential handle identifying a user identity, or an empty string.

roleSpec string in A role specification in one of the following forms:

ROLE_OBJNAME : Role-Object-Name

ROLE_OBJID: Role-Object-Identifier

Authorization (ISecurity Interface) � Examples 149

Parameter Type Direction Description

options string
array

in Two-dimensional string array for options. No options are
currently defined.

inRole C out A Boolean value indicating whether the user is in the specified
role.

TRUE - User is in the specified role.

FALSE - User is not in the specified role.

Details
The IsInRole method determines whether a user is in the specified role. The role is

identified by the value in the Role object’s Name= attribute or by its metadata object
identifier.

This method is most appropriate for static role implementations.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

IsInRole method:

� NotTrustedUser
� InvalidCredHandle
� InvalidResourceSpec

Examples
The following is a Java example of the IsInRole method. The method requests to

know if the Person object named testUser has membership in the User and Group
Administrators role. The example includes code that formats and prints the results of
the request.

public void isInRole() throws Exception {

try
{

// Define a two-dimensional string array for options
final String[][] options ={{"",""}};

System.out.println("");
// Skip a line

System.out.println("<<<< Begin isInRole() >>>>");

// Define a holder for the credential handle
StringHolder credHandle = new StringHolder();
// Define a holder for the method output

BooleanHolder inRole = new BooleanHolder();

// Get a credential handle

150 Related Methods � Chapter 7

iSecurity.GetCredentials(testUserId, credHandle);
// Execute the method

iSecurity.IsInRole(
credHandle.value,
"ROLE_OBJNAME:" + UGAdminRole,
options,
inRole
);

// Print information about the method call and results
System.out.println();

System.out.println("<<<<<< isInRole() call parameters with results >>>>>>");
System.out.print("credHandle=" + credHandle.value + ", ");
System.out.print("roleSpecification=" + "ROLE_OBJNAME:" + UGAdminRole + ", ");
System.out.print("isInRole=" + inRole.value);
System.out.println();

// force NewLine

// Free the credentials
iSecurity.FreeCredentials(credHandle.value);

System.out.println("");
// Skip a line

System.out.println("<<<< End isInRole() >>>>");
}
// Catch the method’s exceptions.
catch (Exception e) {

System.out.println("IsInRole: GetInfo: Exceptions");
e.printStackTrace();
throw e;
}

}

Here is the output from the request:

<<<< Begin isInRole() >>>>

<<<<<< isInRole() call parameters with results >>>>>>
credHandle=71cedcb300000001, roleSpecification=ROLE_OBJNAME:META: User
and Group Administrators Role, isInRole=true

<<<< End isInRole() >>>>

Related Methods
� “GetApplicationActionsAuthorizations” on page 121

SetInternalLoginUserOptions

Customizes internal authentication policies for the specified user.
Category: Internal authentication methods
Interface version: ISecurity 1.1

Authorization (ISecurity Interface) � Parameters 151

Syntax

SetInternalLoginUserOptions(personName,isDisabled,bypassStrength,bypassHistory,
useStdPasswordExpirationDate,passwordExpirationDays,bypassLockout,
bypassInactivitySuspension,expireAccount,accountExpirationDate);

Parameters

Parameters Type Direction Description

personName string in Specifies the Name= value of the Person
object whose InternalLogin object will be
modified. The Name= value is specified
as simply Name.

isDisabled boolean in Specifies whether the account is
disabled. To disable the account, specify
T. The default value is F.

bypassStrength boolean in Specifies whether to exempt the login
from the site’s policies about minimum
password length and complexity. To
exempt the login, specify T. The default
value is F.

bypassHistory boolean in Specifies whether to exempt the login
from the site’s password history policy.
To exempt the login, specify T. The
default value is F.

useStdPasswordExpirationDays boolean in Specifies whether to enforce a password
expiration period. The default value is T.
Specify F if you do not want the
password to expire.

passwordExpirationDays integer in Specifies the password expiration period
in days from the day the password was
initially set. A number from 0 to 32767
is supported. The default password
expiration period is 30 days.

bypassLockout boolean in Specifies whether to exempt the login
from the site’s account lockout policy.
The default value is F.

bypassInactivitySuspension boolean in Specifies whether to exempt the login
from the site’s inactivity suspension
policy. The default value is F.

152 Details � Chapter 7

expireAccount boolean in Specifies whether to enforce an
expiration date on the account. To
enforce an expiration date, specify T. The
default value is F.

accountExpirationDate int in Specifies the number of days from the
day the account was created that the
account will expire. A number from
0-32767 is supported. The default value
is 0.

Details
You must have user administration capabilities on the SAS Metadata Server to

modify the properties of an internal user account. For information about user
administration capabilities, see “Users, Groups, and Roles: Main Administrative Roles”
in the SAS Intelligence Platform: Security Administration Guide.

An internal account has a Person object with a simple name value. For example,
Name=“Joe”. It also has an associated InternalLogin object, whose Name= attribute is
person@saspw. For example, Name=“Joe@saspw.” All SAS internal accounts must use
the suffix @saspw.

The Person object is created with the AddMetadata method. Its attributes are
modified with the UpdateMetadata method. An InternalLogin object is created with the
SetInternalPassword method. Its attributes are modified with the
SetInternalLoginUserOptions method.

By default, new InternalLogin objects are created with the active server-level internal
account policies. The active server-level account policies are the system defaults as
modified by omaconfig.xml options. The SetInternalLoginUserOptions method enables
you to customize the server-level policies for a particular internal account.

For information about system defaults, see “How to Change Internal Account
Policies” in the SAS Intelligence Platform: Security Administration Guide. To determine
what the active policy settings are after the omaconfig.xml options are applied, use the
GetInternalLoginSitePolicies method.

New InternalLogin objects are created with a 30–day password expiration period. If
you change the USESTDPASSWORDEXPIRATIONDAYS parameter to F, then the
password does not expire and the integer value in passwordExpirationDays is ignored.

To view the policy settings on an existing internal account, use the
GetInternalLoginUserInfo method. The GetInternalLoginUserInfo method also reports
the status of the internal account. For example, returned values indicate whether the
account is active, disabled, locked out because of unsuccessful authentication, or
suspended because of inactivity.

Exceptions Thrown
The SetInternalLoginUserOptions method does not return any exceptions.

Examples
The following is a Java example of a SetInternalLoginUserOptions method call:

Authorization (ISecurity Interface) � Parameters 153

// Assumes a Person object with Name=’testId’ already exists
// and has an InternalLogin object associated with it
iSecurity.SetInternalLoginUserOptions(testId, // username

false, // isDisabled
false, // bypassStrength
true, // bypassHistory
false, // useStdPasswordExpirationDays
30, // passwordExpirationDays
false, // bypassLockout
true, // bypassInactivitySuspension
false, // expireAccount
0 // accountExpirationDate);

Related Methods

� “GetInternalLoginSitePolicies” on page 138

� “GetInternalLoginUserInfo” on page 140

� “DeleteInternalLogin” on page 119

SetInternalPassword

Creates an InternalLogin object for the specified user.
Category: Internal authentication methods
Interface version: ISecurity 1.1

Syntax

SetInternalPassword(personName,passwordValue);

Parameters

Parameter Type Direction Description

personName string in Specifies the Name= value of the Person
object for which the InternalLogin object
will be created. Person objects that are
used for internal accounts have a
one-word name, and are identified by
this name.

passwordValue string in A password that meets the site’s
password authentication policies.

154 Details � Chapter 7

Details
You must have user administration capabilities on the SAS Metadata Server to

create an InternalLogin object. For information about user administration capabilities,
see “Users, Groups, and Roles: Main Administrative Roles” in the SAS Intelligence
Platform: Security Administration Guide.

Internal logins are not intended for regular users. They are intended for metadata
administrators and some service identities. For more information, see “SAS Internal
Authentication” in the SAS Intelligence Platform: Security Administration Guide.

The SetInternalPassword method creates an InternalLogin object and associates it
with the specified Person object. Together, the two objects define an internal account.
The new InternalLogin object is created with the site’s internal authentication policies.
To determine what the active policy settings are, use the GetInternalLoginSitePolicies
method. Or, use the GetInternalLoginUserInfo method to list the new object’s
properties.

New InternalLogin objects are created with a 30–day password expiration period. To
deactivate the password expiration period or customize its length, or to customize other
internal authentication settings, use the SetInternalLoginUserOptions method. If the
ExpirePasswordonReset option is set in the site’s omaconfig.xml file, the user will have
to reset the initial password before the internal account can be used.

Exceptions Thrown
The SetInternalPassword method does not return any exceptions.

Examples
The following is a Java example of a SetInternalPassword method call:

// Defines parameters personName and passwordValue assuming
// a Person object with Name=’testId’ already exists
String personName = "testId";
String passwordValue = "pw1234";

iSecurity.SetInternalPassword(personName,passwordValue);

Related Methods

� “GetInternalLoginSitePolicies” on page 138

� “GetInternalLoginUserInfo” on page 140
� “SetInternalLoginUserOptions” on page 150

155

C H A P T E R

8
Security Administration
(ISecurityAdmin Interface)

Overview of the ISecurityAdmin Server Interface 157
Using the ISecurityAdmin Server Interface 157

Calling the Server Interface 157

Identifying Resources to ISecurityAdmin Methods 158

Understanding the Transaction Context Methods 158

Understanding the General Authorization Administration Methods 159
Understanding the ACT Administration Methods 159

ApplyACTToObj 159

Syntax 160

Parameters 160

Details 160

Exceptions Thrown 160
Examples 161

Related Methods 161

BeginTransactionContext 161

Syntax 162

Parameters 162
Details 162

Exceptions Thrown 162

Examples 162

Related Methods 163

CreateAccessControlTemplate 163
Syntax 163

Parameters 163

Details 164

Exceptions Thrown 164

Examples 164

Related Methods 165
DestroyAccessControlTemplate 165

Syntax 165

Parameters 165

Details 165

Exceptions Thrown 166
Examples 166

Related Methods 167

EndTransactionContext 167

Syntax 167

Parameters 167
Details 167

Exceptions Thrown 168

Examples 168

156 Contents � Chapter 8

Related Methods 168
GetAccessControlTemplatesOnObj 169

Syntax 169

Parameters 169

Details 169

Exceptions Thrown 170
Related Methods 170

GetAccessControlTemplateAttribs 170

Syntax 170

Parameters 170

Details 171

Exceptions Thrown 171
Related Methods 171

GetAccessControlTemplateList 171

Syntax 171

Parameters 171

Details 172
Exceptions Thrown 172

Examples 173

Related Methods 173

GetAuthorizationsOnObj 173

Syntax 174
Parameters 174

Details 177

Exceptions Thrown 177

Examples 178

Related Methods 178

GetIdentitiesOnObj 178
Syntax 179

Parameters 179

Details 180

Exceptions Thrown 180

Related Methods 181
RemoveACTFromObj 181

Syntax 181

Parameters 181

Details 181

Exceptions Thrown 181
Examples 182

Related Methods 182

SetAccessControlTemplateAttribs 182

Syntax 182

Parameters 183

Details 183
Exceptions Thrown 183

Related Methods 183

SetAuthorizationsOnObj 183

Syntax 184

Parameters 184
Details 185

Exceptions Thrown 185

Examples 185

Related Methods 186

Security Administration (ISecurityAdmin Interface) � Calling the Server Interface 157

Overview of the ISecurityAdmin Server Interface
The methods described in this section are provided in the ISecurityAdmin server

interface, and can be used in a SAS Open Metadata Interface client that you create to
administer authorizations on metadata resources and to manage ACTs.

ISecurityAdmin methods are available only in the standard interface. For more
information, see “Communicating with the SAS Metadata Server” on page 14.

ISecurityAdmin contains three categories of methods:
� Transaction context methods enable programmers of interactive clients to record

user interactions and return correct effective permissions for authorization
changes, factoring in group memberships, before applying the changes to
authorization metadata on the SAS Metadata Server. The
BeginTransactionContext method creates a transaction context by returning a
handle for a specified object. General authorization administration methods
reference this handle in their requests. The transaction context is closed by using
the EndTransactionContext method, which can commit or discard the changes.

� General authorization administration methods enable programmers to easily set
and get authorizations on resources, list authorized identities on resources, and
apply and remove ACTs from resources.

� ACT administration methods create, modify, list, and destroy ACTs.

The following information applies to all of the ISecurityAdmin methods.
� Errors are surfaced through exception-handling in IOM. Each method returns a

set of documented exceptions. Use TRY and CATCH logic in your Java program to
determine when an exception is returned. If your client does not need to handle
specific exceptions for an ISecurityAdmin method, then the generic Java exception
might be caught.

� The methods define and get authorizations on user and resource metadata that is
defined in SAS Metadata Repositories. User metadata is defined by using the SAS
Management Console User Manager plug-in or by extracting user and group
definitions from an enterprise source with import macros. Resource metadata can
be created with the SAS Java Metadata Interface or other SAS Open Metadata
Architecture clients.

� The requesting user must have ReadMetadata permission on the target resource
to use ISecurityAdmin methods that read access control information. The
requesting user must have ReadMetadata and WriteMetadata permissions on the
target resource to use ISecurityAdmin methods that modify access control
information. These methods include SetAuthorizationsOnObj(),
ApplyAccessControlTemplateToObj(), RemoveAccessControlTemplateFromObj(),
DestroyAccessControlTemplate(), and SetAccessControlTemplateAttribs(). The
requesting user must have WriteMetadata permission on the default ACT of the
specified repository to use CreateAccessControlTemplate().

� In the examples, iSecurityAdmin is an instantiation of the ISecurityAdmin
interface.

Using the ISecurityAdmin Server Interface

Calling the Server Interface
The ISecurityAdmin interface is called by connecting to the SAS Metadata Server

and obtaining a handle to the ISecurityAdmin server interface.

158 Identifying Resources to ISecurityAdmin Methods � Chapter 8

A SAS Java Metadata Interface client accesses the ISecurityAdmin interface by
importing the appropriate packages, instantiating an object factory, and connecting to
the SAS Metadata Server with a handle to the interface that is appropriate for the task
that it wants to perform.

The ISecurityAdmin interface is provided in the sas.oma.omi.jar file in the SAS 9.2
VJR. A Java client accesses the ISecurityAdmin interface by importing the appropriate
com.sas.meta.SASOMI packages. Import com.sas.meta.SASOMI.ISecurityAdmin,
com.sas.meta.SASOMI.ISecurityAdminPackage, and com.sas.metadata.remote into your
client.

The SAS 9.2 Java Metadata Interface provides the MdFactory interface to instantiate
an object factory for the SAS Metadata Server and the MdOMRConnection interface for
connecting to the SAS Metadata Server. Use the MdOMRConnection interface’s
makeISecurityAdminConnection method to connect to the server with the
ISecurityAdmin interface.

Identifying Resources to ISecurityAdmin Methods
ISecurityAdmin general authorization administration and ACT administration

methods can be issued on a transaction context, or directly on a resource.
When you specify a transaction context, do not include a target resource identifier in

the method call, unless you are issuing the EndTransactionContext method. The
changes that are requested by ISecurityAdmin methods that are invoked with a
transaction context are persisted to the metadata server (or discarded) with the
EndTransactionContext method. An EndTransactionContext method call that persists
changes to the SAS Metadata Server specifies a transaction context handle, the
resource on which to apply the changes indicated in the handle, and sets the
SECAD_COMMIT_TC flag.

Changes that are requested by an ISecurityAdmin method that specifies a resource
identifier are persisted on the SAS Metadata Server immediately. A resource is
identified with a URN, as described in “Identifying Resources to ISecurity Methods” on
page 116.

Understanding the Transaction Context Methods

With interactive clients, a well-defined set of interactions between the client and
server are required to support evaluating and changing Permission values for an object.
To facilitate these tasks, a server-side transaction context is now supported to maintain
state during client requests. ISecurityAdmin methods that get or set Permission values
can request a handle for a transaction context. This transaction context is a server-side
structure that tracks incremental Permission changes, so that IdentityGroup
memberships can be factored in for the client. For example, in the SAS Management
Console Authorization window, a user can select grant or deny on different permissions
for the identities displayed. The state of all currently persisted and effective Permission
values, along with incremental Permission changes pending from selections in the GUI,
are maintained by the transaction context on the server. If the user clicks OK, the
client commits the changes on the SAS Metadata Server. If the user clicks Cancel, the
changes in the transaction context are discarded.

A transaction context is created by using the BeginTransactionContext method. It is
committed or discarded by using the EndTransactionContext method. For more
information, see “BeginTransactionContext” on page 161 and “EndTransactionContext”
on page 167.

Security Administration (ISecurityAdmin Interface) � ApplyACTToObj 159

Understanding the General Authorization Administration Methods
The general authorization administration methods set and get authorizations on

metadata resources. An authorization associates an identity, a permission, and a grant
or denial of that permission with a resource. The authorizations can be set directly on a
resource, or applied to the resource in an ACT. Authorizations can also be set on ACTs
to control who is authorized to modify the ACT.

The general authorization administration methods include the following:

ApplyACTToObj
Applies the authorizations defined in an ACT to the specified resource.

GetAccessControlTemplatesOnObj
Lists the ACTs that are associated with a resource.

GetAuthorizationsOnObj
Returns the authorizations that apply to a resource for specified identities and
permissions.

GetIdentitiesOnObj
Returns Person, IdentityGroup, and Role objects associated with a specified
resource.

RemoveACTFromObj
Removes the authorizations defined by an ACT from the specified resource.

SetAuthorizationsOnObj
Sets permissions for identities on a resource.

Understanding the ACT Administration Methods
The ACT administration methods create and manage ACTs. They cannot be used to

add or modify authorizations in an ACT. To modify the authorizations in an ACT, use
the SetAuthorizationsOnObj method.

The ACT administration methods include the following:

CreateAccessControlTemplate
Creates an ACT.

DestroyAccessControlTemplate
Destroys an ACT and removes references to it from all associated objects.

GetAccessControlTemplateAttribs
Retrieves the attributes of an ACT.

GetAccessControlTemplateList
Lists all ACTs in the specified repository or in all public repositories.

SetAccessControlTemplateAttribs
Changes the attributes of an ACT.

ApplyACTToObj
Applies the authorizations defined in an ACT to the specified resource.
Category: General authorization administration methods

160 Syntax � Chapter 8

Syntax

ApplyACTToObj(tCtxt,resource,flags,ACTresource);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a server-side
transaction context.

resource string in Optional resource identifier of the object to
which the ACT should be applied. If TCTXT
is used, do not specify a value in RESOURCE.

flags int in Currently unused. Callers should set this
parameter to 0.

ACTresource string in Passed resource identifier of an ACT.

Details
The ACT must exist before you can apply it with the ApplyACTToObj method. You

can create an ACT with the CreateAccessControlTemplate method.
When TCTXT is set to a valid value, the permanent application of the ACT is

deferred until the EndTransactionContext method is invoked on a resource with the
SECAD_COMMIT_TC flag. However, a subsequent call to the
GetAccessControlTemplatesOnObj method with the TCTXT value returns the applied
ACT for the object represented by TCTXT.

When TCTXT is null and RESOURCE is set to a valid value, the ACT is applied to
the specified resource immediately by the SAS Metadata Server.

The method fails if the caller does not have WriteMetadata permission on the target
resource, and ReadMetadata permission for the ACT being applied.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

ApplyACTToObj method:

� SECAD_INVALID_TC_HANDLE

� SECAD_INVALID_RESOURCE_SPEC

� SECAD_INVALID_ACTION

� SECAD_OBJECT_NOT_ACT

� SECAD_ACT_DOES_NOT_EXIST

� SECAD_ACT_IN_DEPENDENT_REPOSITORY

� SECAD_NOT_AUTHORIZED

Security Administration (ISecurityAdmin Interface) � BeginTransactionContext 161

Examples

The following code fragment shows how the ApplyACTToObj method is issued in a
Java environment:

public void applyAccessControlTemplateToObj(String transCtxt, String resource,
int options, String ACTspec) throws Exception {

try
{
iSecurityAdmin.ApplyACTToObj(transCtxt, resource, options, ACTspec);
}

catch (Exception e)
{

System.out.println("ApplyACTToObj: Exceptions");
e.printStackTrace();
throw e;

}
}

The following example issues the ApplyACTToObj method to apply a predefined ACT
to an existing Tree object that represents a folder. The ACT is identified by ACTSPEC:

public void ApplyACTToObj() throws Exception {
// Define an object variable for the Tree

Tree_URN = "OMSOBJ:Tree/metadata-identifier";

// Apply the ACT to a Tree. Because a value is specified in the
// resource parameter, the tCtxt parameter is null.
iSecurityAdmin.ApplyAccessControlTemplateToObj("",Tree_URN, 0, ACTspec);

//If we had submitted a tCtxt value, resource would be null.

}
catch (Exception e)
{

throw e;
}

}

Related Methods

� “CreateAccessControlTemplate” on page 163

� “RemoveACTFromObj” on page 181

� “DestroyAccessControlTemplate” on page 165

BeginTransactionContext

Creates a transaction context for an authorization request.
Category: Transaction context methods

162 Syntax � Chapter 8

Syntax

BeginTransactionContext(resource,flags,tCtxt);

Parameters

Parameter Type Direction Description

resource string in Passed resource identifier for the object
for which a transaction context is to be
started, or an empty string.

flags int in Currently unused. Callers should set
this parameter to 0.

tCtxt string out Returned handle representing a
server-side transaction context.

Details
The BeginTransactionContext method gets a transaction context for the metadata

object specified in RESOURCE. A handle to the new transaction context is returned in
the output TCTXT parameter. Use this handle to identify the pertinent transaction
context in general authorization administration methods and ACT administration
methods.

If the target resource is not immediately known, submit the method with an empty
string in the RESOURCE parameter. You can identify the target resource for the
authorization changes in the EndTransactionContext method.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

BeginTransactionContext method:
� SECAD_INVALID_RESOURCE_SPEC
� SECAD_NOT_AUTHORIZED

Examples
The following code fragment shows how the BeginTransactionContext method is

issued in a Java environment:

public void beginTransactionContext (String obj,StringHolder tCtxt) throws Exception
{
try
{
iSecurityAdmin.BeginTransactionContext (obj, 0, tCtxt);
}
catch (Exception e)

Security Administration (ISecurityAdmin Interface) � Parameters 163

{
System.out.println("BeginTransactionContext: Exceptions");
e.printStackTrace();
throw e;
}

}

The following example issues the BeginTransactionContext method to begin a
transaction context on a preexisting Tree object defined by the object variable
Tree_URN:

// Define a holder for the transaction context
StringHolder tCtxt = new StringHolder();

// Begin a transaction context on the Tree object.
iSecurityAdmin.BeginTransactionContext(Tree_URN, tCtxt);

Related Methods
� “EndTransactionContext” on page 167

CreateAccessControlTemplate

Creates an ACT.
Category: ACT administration methods

Syntax

CreateAccessControlTemplate(tCtxt,REPOSresource,ACT_attributes);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a
server-side transaction context.

REPOSresource string in Optional resource identifier for the
repository in which the ACT is
created. If TCTXT is used, do not
specify a value in RESOURCE.

ACT_attributes string array in Passed two-dimensional string array
that defines ACT attributes in two
columns. Column 1 specifies the
attribute name. Column 2 specifies
the attribute value.

164 Details � Chapter 8

Details
The CreateAccessControlTemplate method creates an ACT object. You must use the

SetAuthorizationOnObjs method with the SETACTCONTENTS parameter set to TRUE
to add or remove authorizations on the ACT object.

Only the Name= attribute is required to be defined in ACT_ATTRIBUTES to create
an ACT object. The Name= value must be unique in the target repository.

Two other attributes are supported in ACT_ATTRIBUTES:

Desc= specifies a description of the ACT. A string up to 200 characters is
supported.

Use= specifies an empty string or the value REPOS. An empty string
indicates the ACT is applied to one or more objects in the repository.
The value REPOS sets the ACT as the repository default ACT.

To change the attributes of an existing ACT, use the
SetAccessControlTemplateAttribs method.

TCTXT identifies an optional transaction context in which to execute the request.
When TCTXT is null, the ACT is immediately persisted to the SAS Metadata Server
instead of being cached in a transaction context.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

CreateAccessControlTemplate method:
� SECAD_INVALID_TC_HANDLE
� SECAD_INVALID_REPOS_SPEC
� SECAD_ACT_ALREADY_EXISTS
� SECAD_NOT_AUTHORIZED

Examples
The following code fragment shows how the CreateAccessControlTemplate method is

issued in a Java environment:

public void createAccessControlTemplate(String transCtxt, String repository,
String[][] ACTattributes) throws Exception {

try
{
iSecurityAdmin.CreateAccessControlTemplate(transCtxt, repository, ACTattributes);
}
catch (Exception e) {
System.out.println("CreateAccessControlTemplate: Exceptions");
e.printStackTrace();
throw e;
}

}

The following example issues the CreateAccessControlTemplate method to create an
ACT in the repository defined in REPOSRESOURCE:

public void createAccessControlTemplate() throws Exception {

Security Administration (ISecurityAdmin Interface) � Details 165

// Name= and Desc= values for ACT
final String[][] ActAttribs =
{

{"NAME", testUserACTname},
{"DESC", "ACT to project testUser’s resources"}

};
// Repository in which the ACT will be created

StringHolder REPOSresource = new StringHolder(REPOSID:_reposid);
try {

iSecurityAdmin. createAccessControlTemplate("", REPOSresource.value,
ActAttribs);

}
catch (Exception e){

throw e;
}

}

Related Methods

� “SetAuthorizationsOnObj” on page 183
� “SetAccessControlTemplateAttribs” on page 182
� “DestroyAccessControlTemplate” on page 165

DestroyAccessControlTemplate
Destroys an ACT and removes references to it from all associated objects.
Category: ACT administration methods

Syntax

DestroyAccessControlTemplate(tCtxt,ACTresource);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a server-side
transaction context.

ACTresource string in Optional resource identifier of an ACT object.
If TCTXT is used, do not specify a value in
ACTRESOURCE.

Details
The DestroyAccessControlTemplate method destroys an ACT object and removes all

references to it from all associated objects.

166 Exceptions Thrown � Chapter 8

When TCTXT is set to a valid value, the destruction of the ACT and removal of its
references is deferred until the EndTransactionControl method is invoked on a resource
with the SECAD_COMMIT_TC flag.

When TCTXT is null and ACTRESOURCE is set to a valid value, the ACT is
destroyed immediately, along with all references. For instructions on how to format a
URN for the ACTRESOURCE parameter, see “Using the ISecurityAdmin Server
Interface” on page 157.

Exceptions Thrown

The SAS Open Metadata Interface explicitly returns the following exceptions for the
DestroyAccessControlTemplate method:

� OK

� SECAD_INVALID_TC_HANDLE

� SECAD_INVALID_RESOURCE_SPEC

� SECAD_OBJECT_NOT_ACT

� SECAD_ACT_DOES_NOT_EXIST

� SECAD_NOT_AUTHORIZED

Examples

The following code fragment shows how the DestroyAccessControlTemplate method is
issued in a Java environment:

public void destroyAccessControlTemplate(String transCtxt, String ACTSpec)
throws Exception {

try
{
iSecurityAdmin.DestroyAccessControlTemplate(transCtxt, ACTSpec);
}
catch (Exception e) {
System.out.println("DestroyAccessControlTemplate: Exceptions");
e.printStackTrace();
throw e;
}

}

The following example destroys the ACT identified by ACTSPEC:

public void termACT() throws Exception {

try {
iSecurityAdmin.destroyAccessControlTemplate("", ACTspec);
}
catch (Exception e)
{
throw e;
}
}

Security Administration (ISecurityAdmin Interface) � Details 167

Related Methods

� “CreateAccessControlTemplate” on page 163
� “RemoveACTFromObj” on page 181

EndTransactionContext
Terminates the transaction context for the specified TCTXT handle.
Category: Transaction context methods

Syntax

EndTransactionContext(tCtxt,resource,flags);

Parameters

Parameter Type Direction Description

tCtxt string in Passed handle representing a server-side transaction
context.

resource string in Passed resource identifier for the object for which the
transaction context is to be terminated, if TCTXT
was obtained using a null value.

flags int in SECAD_COMMIT_TC
Specifies to persist the security changes in the
transaction context to the SAS Metadata
Server.

SECAD_DISCARD_TC
Specifies to discard the security changes in the
transaction context and cancel the security
update.

Details
The EndTransactionContext method terminates the transaction context on the

specified resource.
If a valid existing resource was specified when the corresponding

BeginTransactionContext() method was called, then RESOURCE should be an empty
string.

SECAD_COMMIT_TC and SECAD_DISCARD_TC are symbols representing the valid
values for the FLAGS parameter.

� Set SECAD_COMMIT_TC to commit changes in the transaction context before
terminating the transaction context. The changes in the transaction context are

168 Exceptions Thrown � Chapter 8

written to the SAS Metadata Server as authorization metadata objects that are
associated with the specified resource.

� Set SECAD_DISCARD_TC to discard the changes.

The caller must have WriteMetadata permission on the target resource to commit the
changes to the SAS Metadata Server.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

EndTransactionContext method:
� SECAD_INVALID_TC_HANDLE
� SECAD_INVALID_ACTION
� SECAD_NOT_AUTHORIZED

Examples
The following code fragment shows how the EndTransactionContext method is issued

in a Java environment:

public void endTransactionContext (String transCtxt, int options) throws
Exception

{
try
{
iSecurityAdmin.EndTransactionContext(transCtxt, "", options);
}
catch (Exception e)
{
System.out.println("EndTransactionContext: Exceptions");
e.printStackTrace();
throw e;
}

}

The following example issues an EndTransactionContext method to specify to commit
the changes indicated in tCtxt.value:

iSecurityAdmin.EndTransactionContext(tCtxt.value, ISecurityAdmin.SECAD_COMMIT_TC);

Related Methods
� “BeginTransactionContext” on page 161

Security Administration (ISecurityAdmin Interface) � Details 169

GetAccessControlTemplatesOnObj
Lists the ACTs that are associated with a resource.
Category: General authorization administration methods

Syntax

GetAccessControlTemplatesOnObj(tCtxt,resource,flags,ACT_list);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a
server-side transaction context.

resource string in Passed resource identifier for the object
for which ACTs are requested. If
TCTXT is used, do not specify a value
in RESOURCE.

flags int in Currently unused. Callers should set
this parameter to 0.

ACT_list string array out Returned two-dimensional string array
with three columns. Each row in the
array represents an ACT. See the
“Details” section for more information.

Column 0:
Contains the ACT metadata
object identifier.

Column 1:
Contains the ACT Name= value.

Column 2:
Contains the ACT Description=
value.

Details
The GetAccessControlTemplatesOnObj method returns ACT_LIST when TCTXT or

RESOURCE is specified, even if there are no ACTs (an empty list is returned).
When TCTXT is specified and previous calls to the ApplyACTToObj or

RemoveACTFromObj method on this TCTXT modified the list of ACTs protecting the
resource, then the modified list is returned. Until the EndTransactionContext method is
executed on the TCTXT with SECAD_COMMIT_TC, the content of ACT_LIST might
not reflect the actual ACTs currently protecting the resource.

When RESOURCE is specified in the GetAccessControlTemplatesOnObj method,
then ACT_LIST returns the actual ACTs protecting the resource.

170 Exceptions Thrown � Chapter 8

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetAccessControlTemplatesOnObj method:
� SECAD_INVALID_TC_HANDLE
� SECAD_INVALID_RESOURCE_SPEC
� SECAD_INVALID_ACTION
� SECAD_NOT_AUTHORIZED

Related Methods
� “ApplyACTToObj” on page 159
� “RemoveACTFromObj” on page 181
� “CreateAccessControlTemplate” on page 163

GetAccessControlTemplateAttribs
Retrieves the attributes of an ACT.
Category: ACT administration methods

Syntax

GetAccessControlTemplateAttribs(tCtxt,ACTresource,ACT_attributes);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a
server-side transaction context.

ACTresource string in Passed resource identifier of an ACT
object. If TCTXT is used, do not specify
a value for ACTRESOURCE.

ACT_attributes string array out Returned two-dimensional string array
containing ACT attributes.

Security Administration (ISecurityAdmin Interface) � Parameters 171

Details
The GetAccessControlTemplateAttribs method retrieves the attributes of the

specified ACT object. The requested attributes are returned in the ACT_ATTRIBUTES
parameter. For a description of ACT attributes, see “CreateAccessControlTemplate” on
page 163.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetAccessControlTemplateAttribs method:
� SECAD_INVALID_TC_HANDLE
� SECAD_INVALID_RESOURCE_SPEC
� SECAD_OBJECT_NOT_ACT
� SECAD_ACT_DOES_NOT_EXIST
� SECAD_NOT_AUTHORIZED

Related Methods

� “SetAccessControlTemplateAttribs” on page 182

GetAccessControlTemplateList
Lists all ACTs in the specified repository or in all public repositories.
Category: ACT administration methods

Syntax

GetAccessControlTemplateList(tCtxt,REPOSresource,flags,ACT_list);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a server-side
transaction context.

REPOSresource string in Passed resource identifier for the repository from
which you want to get ACTs. If TCTXT is used, do
not specify a value for REPOSRESOURCE.

172 Details � Chapter 8

Parameter Type Direction Description

flags int in Passed indicator for options. Valid values are
SECAD_REPOSITORY_DEPENDENCY_USES or
0.

SECAD_REPOSITORY_DEPENDENCY_USES
Expands the request to return ACTs from all
public repositories (the foundation repository
and all custom repositories).

ACT_list string
array

out Returned two-dimensional string array with five
columns. Each row describes an ACT. See the
“Details” section for more information.

Column 0: Contains the Name= of the
repository where the ACT
resides.

Column 1: Contains the ACT’s
17–character metadata
object identifier.

Column 2: Contains the ACT’s Name=
value.

Column 3: Contains the ACT’s
Description= value.

Column 4: Contains the ACT’s Use=
value. Valid values are
REPOS, which indicates the
ACT is enforced on the
repository, or an empty
string, which indicates the
ACT is enforced on objects
within the repository.

Details
The GetAccessControlTemplateList method can return a large number of objects,

especially if the SECAD_REPOSITORY_DEPENDENCY_USES flag is set. Use of this
method within a transaction context is not recommended because of the overhead
associated with the method.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetAccessControlTemplateList method:

� OK

� SECAD_INVALID_TC_HANDLE

� SECAD_INVALID_RESOURCE_SPEC

� SECAD_NOT_AUTHORIZED

Security Administration (ISecurityAdmin Interface) � GetAuthorizationsOnObj 173

Examples
The following code fragment shows how the GetAccessControlTemplateList method is

issued in a Java environment:

public void getAccessControlTemplateList(String transCtxt, String repositorySpec,
int options, VariableArray2dOfStringHolder ACTlist) throws Exception {

try
{
iSecurityAdmin.GetAccessControlTemplateList(

transCtxt,
repositorySpec,
options,
ACTlist
);

} catch (Exception e) {
System.out.println("GetAccessControlTemplateList: Exceptions");
e.printStackTrace();
throw e;
}

}

The following example lists the ACTs in REPOSID:

public void GetAccessControlTemplateList() throws Exception {
// Define a holder for ACTlist
VariableArray2dOfStringHolder ACTlist = new VariableArray2dOfStringHolder;

{
try
{
iSecurityAdmin.GetAccessControlTemplateList("", "REPOSID:" + reposId, 0, ACTlist);
}
catch (Exception e) {
e.printStackTrace();
throw e;
}
}

Related Methods
� “GetAccessControlTemplateAttribs” on page 170

GetAuthorizationsOnObj
Returns the authorizations that apply to a resource for specified identities and

permissions.
Category: General authorization administration methods

174 Syntax � Chapter 8

Syntax

GetAuthorizationsOnObj(tCtxt,resource,flags,identities,permissions,authorizations);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a server-side
transaction context.

resource string in Passed resource identifier for the object from
which the active permissions are requested. If
TCTXT is used, do not specify a value for
RESOURCE.

flags int in Passed indicator for optional functionality.

SECAD_ACT_CONTENTS
When TCTXT or RESOURCE references
an ACT, this flag returns the
authorizations that are defined in the
ACT, rather than authorizations that
protect the ACT.

SECAD_DO_NOT_RETURN_PERMCOND
Omits PermissionCondition values from
column 5 of the AUTHORIZATIONS
output array, if associated
PermissionCondition objects are found.

SECAD_RETURN_DISPLAY_NAME
Returns the value of each identity’s
DisplayName= attribute in column 6 of
the AUTHORIZATIONS output array.

SECAD_RETURN_ROLE_TYPE
When an IdentityGroup has a
GroupType= value of Role, this flag
returns the word “Role” in column 1 of the
AUTHORIZATIONS output array.

Security Administration (ISecurityAdmin Interface) � Parameters 175

Parameter Type Direction Description

identities string
array

in Passed two-dimensional string array with two
columns. Each row in the array specifies an
identity for which permissions are to be queried
and returned in the array referenced by the
AUTHORIZATIONS parameter. If
IDENTITIES is empty, then permissions for all
associated identities are returned in the
AUTHORIZATIONS output array.

Column 1:
Specify Person, IdentityGroup or Role to
indicate the identity type.

Column 2:
Specify the identity’s Name= value.

permissions string in Passed string containing zero or more
comma-delimited permission names for which
authorizations are being queried. If
PERMISSIONS is empty, then authorizations
on all relevant permissions are returned in the
AUTHORIZATIONS output array.

176 Parameters � Chapter 8

Parameter Type Direction Description

authorizations any array out Returned two-dimensional array with five or six
columns. A row is returned for each identity.
The order of the rows corresponds to the order
of the permissions in the PERMISSIONS
parameter. See the “Details” section for more
information.

Column 0:
Contains the value Person, IdentityGroup,
or Role, indicating the identity type.

Column 1:
Contains the Name= of the identity.

Column 2:
Contains an integer that represents a
symbol that indicates Deny or Grant and
the origin of the authorization. See the
table in the “Details” section for an
explanation of the returned values.

Column 3:
Contains a Permission name. For
example, ReadMetadata, WriteMetadata,
and so on.

Column 4:
Contains a PermissionCondition value for
the identity and permission, unless the
SECAD_DO_NOT_RETURN_PERMCOND
flag is set. If this flag is set, the column is
empty or contains the results of the
SECAD_RETURN_DISPLAY_NAME, if
the SECAD_RETURN_DISPLAY_NAME
flag is set.

Column 5:
Contains the DisplayName= value of the
identity, if the
SECAD_RETURN_DISPLAY_NAME flag
is set, and the
SECAD_DO_NOT_RETURN_PERMCOND
flag is not set. If
SECAD_DO_NOT_RETURN_PERMCOND
is set, the column is empty.

Security Administration (ISecurityAdmin Interface) � Exceptions Thrown 177

Details
The GetAuthorizationsOnObj method returns authorizations for the resource

specified by the TCTXT or RESOURCE parameter.
Grant or denial of a permission for an identity is indicated by an integer in column 2

of the array that is returned in the AUTHORIZATIONS parameter. Nine integer values
are supported, which correspond with a symbol that indicates the origin of the
authorization and whether the permission is granted. The integer values are described
in the following table.

Table 8.1 Authorization Integer Translation Table

Integer Symbol Permission Type Description

1 SECAD_PERM_EXPD Explicit Deny Deny was specified
directly on the object.

2 SECAD_PERM_EXPG Explicit Grant Grant was specified
directly on the object.

0x03 SECAD_PERM_EXPM Explicit Mask Mask to extract explicit
value.

4 SECAD_PERM_ACTD ACT Deny Deny from an ACT other
than the default ACT.

8 SECAD_PERM_ACTG ACT Grant Grant from an ACT other
than the default ACT.

0x0C SECAD_PERM_ACTM ACT Mask Mask to extract ACT
value.

16 SECAD_PERM_NDRD Indirect Deny Deny from IdentityGroup
inheritance or from the
default ACT.

32 SECAD_PERM_NDRG Indirect Grant Grant from IdentityGroup
inheritance or from the
default ACT.

0X30 SECAD_PERM_NDRM Indirect Mask Mask to extract indirect
value.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

GetAuthorizationsOnObj method:

� SECAD_INVALID_TC_HANDLE

� SECAD_INVALID_RESOURCE_SPEC

� SECAD_INVALID_ACTION

� SECAD_INVALID_IDENTITY_SPEC

� SECAD_IDENTITY_DOES_NOT_EXIST

� SECAD_INVALID_PERMISSION_SPEC

� SECAD_NOT_AUTHORIZED

178 Examples � Chapter 8

Examples
The following code fragment shows how the GetAuthorizationsOnObj method is

issued in a Java environment:

public void getAccessControlTemplateList(String transCtxt, String repositorySpec,
int options, VariableArray2dOfStringHolder ACTlist) throws Exception {

try
{
iSecurityAdmin.GetAccessControlTemplateList(

transCtxt,
repositorySpec,
options,
ACTlist
);

}
catch (Exception e) {
System.out.println("GetAccessControlTemplateList: Exceptions");
e.printStackTrace();
throw e;
}

}

The example issues the GetAuthorizationsOnObj method to get the inherited
authorizations on a table that is identified by Table_URN.

public void testAuthsOnTable() throws Exception {
try {
// Get existing authorizations on the table.
iSecurityAdmin.GetAuthorizationsOnObj(

"",
Table_URN,
0,
Identities,
Permissions,
authRslt
);

}
catch (Exception e)

{
throw e;

}
}

Related Methods
� “SetAuthorizationsOnObj” on page 183

GetIdentitiesOnObj
Returns Person, IdentityGroup, and Role objects associated with a specified resource.
Category: General authorization administration methods

Security Administration (ISecurityAdmin Interface) � Parameters 179

Syntax

GetIdentitiesOnObj(tCtxt,resource,flags,id_List);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a server-side transaction
context.

resource string in Passed resource identifier for the object for which
identities are being queried. If TCTXT is used, do not
specify a value for RESOURCE.

flags int in SECAD_ACT_CONTENTS
When TCTXT or RESOURCE references an
ACT, this flag specifies to return the identities
that have permissions defined in the ACT, rather
than permissions defined to protect the ACT.

SECAD_RETURN_DISPLAY_NAME
Returns the value of the DisplayName=
attribute of each identity.

SECAD_RETURN_ROLE_TYPE
When a returned IdentityGroup has a
GroupType= value of Role, this flag returns the
word “Role” in column 1 of the ID_LIST output
array.

SECAD_RETURN_IDENTITY_ORIGIN
Returns one or two characters that indicate the
origin of each identity.

� D—indicates the origin was a direct ACE
or ACT defined on the object.

� I—indicates an inherited identity, or an
identity set in the default ACT.

� DI—indicates the identity comes from
both direct and inherited origins.

180 Details � Chapter 8

Parameter Type Direction Description

id_List string
array

out Returned two-dimensional string array of identity
values with two to four columns. Each row in the
array represents an identity. The content of the
columns depends on which flags were set. See the
“Details” section for more information.

Column 0:
Contains the value Person, IdentityGroup or
Role, indicating the identity type.

Column 1:
Contains the Name= value of the identity.

Column 2:
If both the
SECAD_RETURN_IDENTITY_ORIGIN and
SECAD_RETURN_DISPLAY_NAME flags are
set, contains the DisplayName= value of the
identity. If SECAD_RETURN_DISPLAY_NAME
is not set and
SECAD_RETURN_IDENTITY_ORIGIN is set,
contains a value indicating the origin of the
permission.

Column 3:
Contains a value indicating the origin of an
identity’s permission, or is empty, depending on
which flags are set in the GetIdentitiesOnObj
request.

Details

The GetIdentitiesOnObj method returns Person, IdentityGroup, and Role objects that
have permissions defined on a specified resource. Flags can be set to return the
identity’s DisplayName= value and a value describing the origin of the permission.

When the specified resource is an ACT object, the method lists the identities that are
assigned permissions to protect the ACT, unless the SECAD_ACT_CONTENTS flag is
set. When this flag is set, the method lists identities that have permissions defined in
the ACT.

Exceptions Thrown

The SAS Open Metadata Interface explicitly returns the following exceptions for the
GetIdentitiesOnObj method:

� SECAD_INVALID_TC_HANDLE

� SECAD_INVALID_RESOURCE_SPEC

� SECAD_INVALID_ACTION

� SECAD_NOT_AUTHORIZED

Security Administration (ISecurityAdmin Interface) � Exceptions Thrown 181

Related Methods
� “GetAuthorizationsOnObj” on page 173

RemoveACTFromObj
Removes the authorizations defined by an ACT from the specified resource.
Category: General authorization administration methods

Syntax

RemoveACTFromObj(tCtxt,resource,flags,ACTresource);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a server-side
transaction context.

resource string in Passed resource identifier for the object from which
the ACT should be removed. If TCTXT is used, do not
specify a value in RESOURCE.

flags int in Currently unused. Callers should set this parameter
to 0.

ACTresource string in Resource identifier of an ACT object.

Details
The RemoveACTFromObj method disassociates an ACT from a resource, while

leaving the ACT intact. Use the DestroyAccessControlTemplate method to destroy the
ACT.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

RemoveACTFromObj method:
� SECAD_INVALID_TC_HANDLE
� SECAD_INVALID_RESOURCE_SPEC
� SECAD_INVALID_ACTION

� SECAD_OBJECT_NOT_ACT
� SECAD_ACT_DOES_NOT_EXIST
� SECAD_ACT_NOT_REMOVED

182 Examples � Chapter 8

� SECAD_NOT_AUTHORIZED

Examples
The following code fragment shows how the RemoveACTFromObj method is issued

from a Java environment:

public void removeAccessControlTemplateFromObj(String transCtxt, String resource,
int options, String ACTspec) throws Exception {

try
{
iSecurityAdmin.RemoveACTFromObj(transCtxt, resource, options, ACTspec);
}
catch (Exception e) {
System.out.println("RemoveACTFromObj: Exceptions");
e.printStackTrace();
throw e;
}

}

The following example removes the ACT identified by ACTspec from a Tree object
identified by Tree_URN:

public void RemoveAccessControlTemplateFromObj() throws Exception {
try
{
// Remove the ACT from the Tree to see the impact on authorizations
iSecurityAdmin.RemoveAccessControlTemplateFromObj("",Tree_URN, 0, ACTspec);
}
catch(Exception e)

{
e.printStackTrace();
throw e;

}
}

Related Methods

� “DestroyAccessControlTemplate” on page 165
� “ApplyACTToObj” on page 159

SetAccessControlTemplateAttribs
Changes the attributes of an ACT.
Category: ACT administration methods

Syntax

SetAccessControlTemplateAttribs(tCtxt,ACTresource,ACT_attributes);

Security Administration (ISecurityAdmin Interface) � SetAuthorizationsOnObj 183

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a
server-side transaction context.

ACTresource string in Passed resource identifier for an
ACT object. If TCTXT is used, do not
specify a value in ACTRESOURCE.

ACT_attributes string array in Two-dimensional string array that
defines ACT attributes in two
columns. Column 1 specifies the
attribute name. Column 2 specifies
the attribute value.

Details
The SetAccessControlTemplateAttribs method can be used to rename an ACT, modify

its description, and add or remove the ACT as the current default repository ACT. These
changes are made by specifying new values for the Name=, Desc=, and Use= attributes.

The specified values replace the current values for the ACT identified by TCTXT or
in ACTRESOURCE. For information about the attributes, see
“CreateAccessControlTemplate” on page 163.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

SetAccessControlTemplateAttribs method:
� SECAD_INVALID_TC_HANDLE
� SECAD_INVALID_RESOURCE_SPEC
� SECAD_OBJECT_NOT_ACT
� SECAD_ACT_ALREADY_EXISTS
� SECAD_ACT_DOES_NOT_EXIST
� SECAD_NOT_AUTHORIZED

Related Methods

� “CreateAccessControlTemplate” on page 163
� “GetAccessControlTemplateAttribs” on page 170

SetAuthorizationsOnObj
Sets permissions for identities on a resource.
Category: General authorization administration methods

184 Syntax � Chapter 8

Syntax

SetAuthorizationsOnObj(tCtxt,resource,flags,authorizations);

Parameters

Parameter Type Direction Description

tCtxt string in Optional handle representing a server-side
transaction context.

resource string in Passed resource identifier for the object for
which authorizations are defined. If TCTXT is
used, do not specify a value for RESOURCE.

flags int in SECAD_ACT_CONTENTS
When TCTXT or RESOURCE references
an ACT, this flag specifies to apply the
authorizations to the ACT’s content,
rather than to the authorizations that
protect the ACT.

authorizations string
array

in Passed two-dimensional string array with five
columns. Each row in the array represents a
permission being set for an identity. See the
“Details” section for more information.

Column 0:
Specify Person, IdentityGroup, or Role,
indicating the identity’s type.

Column 1:
Specify the identity’s Name= value.

Column 2:
Specify a permission directive: D for Deny,
G for Grant, or R for Remove.

Column 3:
Specify a Permission name. For example,
Read, Write, and so on. Caution: If you
specify R in column 2 and leave column 3
empty, then all permissions will be
removed for the identity that is identified
in columns 0 and 1.

Column 4:
Specify a permission condition for the
identity and permission, or leave empty.

Security Administration (ISecurityAdmin Interface) � Examples 185

Details
The SetAuthorizationsOnObj method adds or removes permissions for an identity on

a resource. The TCTXT or RESOURCE parameter and the AUTHORIZATIONS
parameter are required. Other parameters can have a null value.

TCTXT or RESOURCE can specify an application metadata object or an ACT. When
RESOURCE is an ACT, be aware that the SECAD_ACT_CONTENTS flag changes the
behavior of the method. When this flag is set, the permission changes that you specified
in AUTHORIZATIONS are applied to the contents that define the ACT. As a result, the
changes affect all objects with which the ACT is associated. When this flag is not set,
the permission changes are applied to the authorizations that protect the ACT object.

Use the AUTHORIZATIONS string to specify which identities are affected and the
permissions that should be added or removed. The method uses this input to define or
modify ACT and ACE objects on the SAS Metadata Server. Any permission conditions
that you specify define or modify PermissionCondition objects.

The SetAuthorizationsOnObj method fails if the requesting user does not have
ReadMetadata and WriteMetadata permissions on the target resource.

Exceptions Thrown
The SAS Open Metadata Interface explicitly returns the following exceptions for the

SetAuthorizationsOnObj method:

� SECAD_INVALID_TC_HANDLE

� SECAD_INVALID_RESOURCE_SPEC

� SECAD_INVALID_ACTION

� SECAD_INVALID_IDENTITY_SPEC

� SECAD_IDENTITY_DOES_NOT_EXIST

� SECAD_INVALID_PERMISSION_SPEC

� SECAD_NOT_AUTHORIZED

Examples
The following code fragment shows how the SetAuthorizationsOnObj method is

issued in a Java environment:

public void setAuthorizationsOnObj(String transCtxt, String resource, int options,
String[][] auths) throws Exception {

try
{
iSecurityAdmin.SetAuthorizationsOnObj(transCtxt, resource, options, auths);
}
catch (Exceptions e) {
System.out.println("SetAuthorizationsOnObj: Exceptions");
e.printStackTrace();
throw e;
}

}

The following example issues the SetAuthorizationsOnObj to define authorizations in
a predefined ACT identified as ACTspec.

186 Related Methods � Chapter 8

public void defineACT() throws Exception {
// Authorizations to place in the ACT
final String[][] ACTauths =

{{"IdentityGroup", Public, "D", "ReadMetadata", ""},
{"IdentityGroup", Public, "D", "WriteMetadata", ""},
{"Person", testUserName, "G", "ReadMetadata", ""},
{"Person", testUserName, "G", "WriteMemberMetadata",""},
{"Person", testUserName, "G", "CheckinMetadata", ""}};

try {
// Set the authorizations defined in ACTauths on the ACT identified
// by ACTspec. Note that tCtxt is null, because resource has a value.

iSecurityAdmin. setAuthorizationsOnObj(
"",
ACTspec,
ISecurityAdmin.SECAD_ACT_CONTENTS,
ACTauths
);

}
catch (Exception e){

throw e;
}

}

Related Methods

� “GetAuthorizationsOnObj” on page 173

� “CreateAccessControlTemplate” on page 163

187

C H A P T E R

9
Server Control (IServer
Interface)

Overview of the IServer Server Interface 187
Using the IServer Server Interface 188

Calling the Server Interface 188

Understanding the IServer Server Interface 188

Pause 189

Syntax 189
Details 189

Examples 190

Refresh 191

Syntax 191

Details 192

Examples 193
Resume 193

Syntax 193

Details 194

Example 194

Status 194
Syntax 194

Details 196

Standard Status Elements 196

Requesting omaconfig.xml Values 197

Requesting Server Invocation Options 197
Requesting Journaling Statistics 197

Examples 199

Standard Interface Example 199

DoRequest Examples 199

Related Methods 200

Stop 200
Syntax 200

Details 201

Example 201

Overview of the IServer Server Interface
The methods described in this section are provided in the IServer server interface,

and can be used in a SAS Open Metadata Interface client that you create to perform
server administrative tasks.

Except for Status, IServer methods are available only in the standard interface. For
more information, see “Communicating with the SAS Metadata Server” on page 14.

The following information applies to all of the IServer methods.

188 Using the IServer Server Interface � Chapter 9

� The variable RC captures the return code of the method.
� A user must have administrative user status on the SAS Metadata Server to issue

all methods except Status. For more information about administrative user status,
see the SAS Intelligence Platform: Security Administration Guide.

� In the examples, serverObject is an instantiation of the IServer interface.

Using the IServer Server Interface

Calling the Server Interface
The IServer server interface is called by connecting to the SAS Metadata Server and

obtaining a handle to the IServer interface.
A SAS Java Metadata Interface client accesses the IServer interface by importing the

appropriate packages, instantiating an object factory, and connecting to the SAS
Metadata Server with a handle to the interface that is appropriate for the task that it
wants to perform.

The IServer interface is provided in the sas.oma.omi.jar file in the SAS 9.2 Platform
VJR. A Java client accesses the IServer interface by importing the appropriate
com.sas.meta.SASOMI packages. Import com.sas.meta.SASOMI.IServer and
com.sas.metadata.remote into your client.

The SAS 9.2 Java Metadata Interface provides the MdFactory interface to instantiate
an object factory for the SAS Metadata Server and the MdOMRConnection interface for
connecting to the SAS Metadata Server. Use the MdOMRConnection interface’s
makeIServerConnection method to connect to the server with the IServer interface.

Understanding the IServer Server Interface
The IServer interface includes the following server control methods:

Pause
Temporarily limits the availability of the SAS Metadata Server.

Refresh
Changes certain SAS Metadata Server invocation and configuration options on a
running server.

Resume
Returns a paused SAS Metadata Server to an ONLINE state.

Status
Polls the SAS Metadata Server for status, platform version, SAS Metadata Model
version, server locale, server configuration information, and journaling statistics.

Stop
Shuts down the SAS Metadata Server.

Server Control (IServer Interface) � Details 189

Pause

Temporarily limits the availability of the SAS Metadata Server.
Category: Server control methods

Syntax

rc=Pause(options);

Parameter Type Direction Description

rc N out Return code for the method. Indicates whether the SAS
Metadata Server ran the method call. RC=0 means it did, RC=1
means it did not.

options C in <PAUSECOMMENT>
Used with the <SERVER> element, this option enables
administrators to set a free-form text comment that is
retrieved with server status queries.

<REPOSITORY>
Deprecated in SAS 9.2.

<SERVER State="value"/>
Specifies to limit the availability of the SAS Metadata
Server and the desired server state. See the “Details”
section for more information.

Details
A user must have administrative user status on the SAS Metadata Server to issue

the Pause method.
The Pause method is issued on a running SAS Metadata Server to temporarily

change the server to a more restrictive state. A running SAS Metadata Server supports
three states:

ONLINE This is the normal state of a running SAS Metadata Server. It
indicates the server is available for reading and writing to all users.

ADMIN New in SAS 9.2. Indicates the SAS Metadata Server is available for
reading and writing, but only to users who have administrative user
status on the SAS Metadata Server. The server is unavailable to
other users.

OFFLINE Indicates the SAS Metadata Server is running, but is temporarily
unavailable to all users.

The <SERVER> element is specified as follows:

<SERVER State="ADMIN|OFFLINE"/>

The State attribute specifies the state to apply to the SAS Metadata Server.

190 Details � Chapter 9

If the Pause method is issued without options, the SAS Metadata Server changes to
an OFFLINE state. To change the server to an ADMIN state, you must specify
<SERVER State="ADMIN"/> when you issue the method.

The <PAUSECOMMENT> element can be used with the <SERVER> element to
enable administrators to set a free-form text comment that is retrieved with server
status queries. The <PAUSECOMMENT> element is specified as follows:

<PauseComment>This is a test of the Pause method. </PauseComment>

The state of the metadata server is obtained by issuing the Status method. For more
information, see “Status” on page 194. The <PAUSECOMMENT> element can be added
to any exception returned by a method that rejects a user request because of a paused
status.

A paused SAS Metadata Server is returned to the ONLINE state by issuing the
Resume method. Resume clears the text in the <PAUSECOMMENT> element. When a
paused SAS Metadata Server is stopped and restarted, it restarts in an ONLINE state.
A server pause is not persisted between server sessions.

In SAS 9.2, the Pause method can no longer be used to limit the availability of
specific metadata repositories. To limit a metadata repository’s availability, use the
UpdateMetadata method to change the value in the repository’s Access= attribute. If a
Pause method is issued that specifies the <REPOSITORY> option, the SAS Metadata
Server returns an error.

Examples
The following example pauses the SAS Metadata Server to an OFFLINE state:

<! --- Pause the server to OFFLINE --->
options=’ ’;

rc=serverObject.Pause(options);

OFFLINE is the default value when the Pause method is issued without options
specified.

The following example pauses the SAS Metadata Server to an ADMIN state:

<! --- Pause the server to ADMIN --->
options=’<Server State="ADMIN"/>’;

rc=serverObject.Pause(options);

The following example shows how the <PAUSECOMMENT> element is used:

<! --- Pause the server to OFFLINE with a comment --->
options=’<PauseComment>This is a test of the Pause method. Client "+
"activity on the SAS Metadata Server will be resumed shortly.</PauseComment>’;

rc=serverObject.Pause(options);

Server Control (IServer Interface) � Syntax 191

Refresh
Changes certain SAS Metadata Server invocation and configuration options on a

running server. This method can also be used to quickly recover memory on the server.
Category: Server control methods

Syntax

rc=Refresh(options);

Parameter Type Direction Description

rc N out Return code for the method. Indicates whether the SAS
Metadata Server ran the method call. RC=0 means it did, RC=1
means it did or not.

options C in <ARM system-option(s)/>
Invokes specified ARM logging system options.

<OMA JOURNALPATH="filename"/>
Specifies to stop writing journal entries to the journal file
in the current location and resume writing journal entries
in a new file in the specified location. This option is ignored
if journaling is not enabled on the SAS Metadata Server.

<REPOSITORY Id="repository-identifier"/>
Specifies to close and reopen the specified metadata
repository to recover memory.

<RPOSMGR Access="ONLINE"/>
Specifies to resume the SAS Repository Manager to an
ONLINE state. When the SAS Repository Manager is
resumed, metadata repositories are returned to their
registered Access value.

<SERVER/>
Specifies to close and reopen all of the metadata
repositories that are managed by the SAS Metadata Server
to recover memory.

192 Details � Chapter 9

Details
A user must have administrative user status on the SAS Metadata Server to issue

the Refresh method.
Issuing the Refresh method without options has no effect.
When executed with the <SERVER/> element, the Refresh method pauses the SAS

Metadata Server to an OFFLINE state, and then resumes it to an ONLINE state, in
one step. This process unloads all metadata repositories that are managed by the SAS
Metadata Server and the SAS Repository Manager from memory, and closes all
repository containers on disk. Memory on the SAS Metadata Server host is quickly
recovered.

The <SERVER/> element does not have any attributes. It is specified in the
OPTIONS parameter as follows:

<SERVER/>

Issuing the Refresh method with the <ARM system-option/> or <OMA
JOURNALPATH="filename"/> element reconfigures a feature on the running SAS
Metadata Server.

� When issued with the <ARM system-option/> element, Refresh enables or disables
ARM logging for all repositories on the metadata server. The option specifies ARM
logging system options as follows:

<ARM ARMSUBSYS="(ARM_NONE|ARM_OMA)" ARMLOC="fileref|filename"/>

"(ARM_NONE)” disables ARM logging on the server. When specified together,
"(ARM_OMA)" and ARMLOC="filename” start ARM logging in the specified
location. If ARM logging is already enabled, specifying just ARMLOC=“filename”
writes the ARM log to the specified location. Absolute and relative pathnames are
read as different locations. For more information about ARM logging, see “Using
the ARM_OMA Subsystem” in the SAS Intelligence Platform: System
Administration Guide.

� The <OMA JOURNALPATH= “filename”/> element redirects journaling entries to
a new journal file in the specified location. The option cannot turn journaling on
and off.

The <ARM system-option/> and <OMA JOURNALPATH=" filename"/> elements do
not close and reopen repositories. They do not affect memory usage.

The <REPOSITORY/> element unloads the specified metadata repository (or
metadata repositories) from memory, closes their containers on disk, and then reopens
them. The <REPOSITORY/> element is specified as follows:

<REPOSITORY Id="Reposid|REPOSMGR|ALL"/>

REPOSID Specifies the unique 8–character or two–part 17–character metadata
identifier of a metadata repository. Multiple repositories can be
refreshed at once by stacking <REPOSITORY/> elements in the
OPTIONS parameter.

Note: The foundation repository should not be refreshed without
also refreshing all metadata repositories that depend on it. �

REPOSMGR specifies the SAS Repository Manager.

ALL Includes all metadata repositories, including the SAS Repository
Manager. In SAS releases before 9.2, ALL excluded the SAS
Repository Manager. ALL is the default value if <REPOSITORY/> is
specified without an Id= value and has the same effect as specifying
the <SERVER/> element.

Server Control (IServer Interface) � Syntax 193

In previous SAS releases, the Refresh method supported a State= attribute in the
<REPOSITORY/> element. The State= attribute is deprecated in SAS 9.2. Repositories
are always paused to an OFFLINE state and resumed to their current Access= value.

The SAS Metadata Server must refresh repositories when there is no other activity
on the server, so it automatically delays other client requests until the Refresh method
completes. This might have a small effect on server performance.

Examples
The following example shows how ARM_OMA logging is enabled:

options=’<ARM armbsubsys="(ARM_OMA)" armloc="myARM.log"/>’;
rc=serverObject.Refresh(options);

The following example shows how ARM_OMA logging is disabled:

options=’<ARM armbsubsys="(ARM_NONE)")/>’;
rc=serverObject.Refresh(options);

The following example shows how to pause and resume a metadata repository to
recover memory:

options=’<Repository Id="A5H9YT45"/> ’;
rc=serverObject.Refresh(options);

Resume
Returns a paused SAS Metadata Server to an ONLINE state.
Category: Server control methods

Syntax

rc=Resume(options);

Parameter Type Direction Description

rc N out Return code for the method. Indicates whether the SAS
Metadata Server ran the method call. RC=0 means it did, RC=1
means it did not.

options C in <REPOSITORY/>
Deprecated in SAS 9.2.

<SERVER/>
Specifies to return the SAS Metadata Server to an
ONLINE state.

194 Details � Chapter 9

Details
A user must have administrative user status on the SAS Metadata Server to issue

the Resume method.
The Resume method returns a SAS Metadata Server that has been paused to an

ONLINE state. The ONLINE state makes the server available to process client
requests.

Beginning in SAS 9.2, the Resume method cannot be used to change the availability
of specific metadata repositories. If the Resume method is issued with the
<REPOSITORY/> element, the SAS Metadata Server returns an error.

If the Resume method is issued without options, the method operates as if the
<SERVER/> element was specified.

Example
The following example returns the SAS Metadata Server to an ONLINE state:

<! --- Resume the server to its normal access mode --->
options=’ ’;

rc=serverObject.Resume(options);

Status
Polls the SAS Metadata Server for status, platform version, SAS Metadata Model

version, server locale, server configuration information, and journaling statistics.
Category: Server control methods

Syntax

rc=Status(inmeta,outmeta,options);

Server Control (IServer Interface) � Syntax 195

Parameter Type Direction Description

rc N out Return code for the method. Indicates whether the SAS Metadata
Server ran the method call. RC=0 means it did, RC=1 means it did
not.

inmeta string in An XML element that requests additional information to be
returned from the SAS Metadata Server. One or more elements
can be specified. If no elements are specified, the Status method
returns <MODELVERSION/>, <PLATFORMVERSION/>,
<SERVERSTATE/>, <PAUSECOMMENT/>, and
<SERVERLOCALE/>, by default.

<MODELVERSION/>
Requests the SAS Metadata Model version number.

<OMA AttributeName=" "/>
Requests the value that is active for the specified <OMA>
attribute in the server’s default configuration or in the
omaconfig.xml file.

<OMA JournalStatistic=" "/>
Returns the specified journal statistic about the SAS
Metadata Server journal file. See “Requesting Journaling
Statistics” on page 197 for information about the available
statistics.

<PLATFORMVERSION/>
Requests the SAS Metadata Server version number.

<PAUSECOMMENT/>
Used with <SERVERSTATE/>, this option returns a
user-defined text comment describing why the server is
unavailable if the server is in an ADMIN or OFFLINE state.

<RPOSMGR AttributeName=" "/>
Requests the value that is active for the specified
<RPOSMGR> attribute in the server’s default configuration
or in the omaconfig.xml file.

<SERVERLOCALE/>
Requests the server locale that is active for the SAS
Metadata Server session.

<SERVERSTATE/>
Requests information about the SAS Metadata Server’s
current state.

<STATE/>
Deprecated in SAS 9.2. Use <SERVERSTATE/> instead.

<VERSION/>
Deprecated in SAS 9.1.3, Service Pack 3. Use
<MODELVERSION/> and <PLATFORMVERSION/> instead.

outmeta string out Mirrors the INMETA parameter with the exception that return
values are filled in.

options C in No options are supported at this time.

196 Details � Chapter 9

Details
Any user who has access to the SAS Metadata Server can use the Status method.
The INMETA parameter is a string containing one or more XML elements that

requests information. If a null string is passed, the Status method returns values for
<MODELVERSION/>, <PLATFORMVERSION/>, <SERVERSTATE/>,
<PAUSECOMMENT/>, and <SERVERLOCALE/>, by default. These options are
considered the standard elements.

The other elements in the INMETA parameter are optional and can be used to return
the following information:

� the values of specified server configuration options that are set in the
omaconfig.xml file.

� journaling statistics for installations that have journaling enabled. In SAS 9.2, the
default server configuration has journaling enabled.

For more information, see “Requesting omaconfig.xml Values” on page 197 and
“Requesting Journaling Statistics” on page 197.

Standard Status Elements
The following is a more detailed description of the standard Status elements:

<MODELVERSION/>
Returns the SAS Metadata Model version number in the form X.XX. For example,
11.03. The model version is incremented when there is a change to the SAS
Metadata Model or to the repository format used by metadata repositories. The
integer part of the version number is the repository format number. When this
number is incremented, as it was between SAS 9.1.3 and SAS 9.2, it indicates that
the underlying data structure has changed and a conversion of the repository
tables is highly recommended. It is possible for a SAS Metadata Server that was
written for one repository format to use repositories that were created with an
earlier repository format. However, there will likely be a performance penalty, and
some features will not be available.

The decimal part of the version number indicates that a SAS Metadata Model
change was made, but there is no need for conversion of the repository tables. A
model change includes the addition or modification of metadata types, attributes,
or associations.

<PAUSECOMMENT/>
When the SAS Metadata Server is paused to an ADMIN or OFFLINE state, this
option returns a user-defined text comment set by the administrator describing
why the server is unavailable. If the SAS Metadata Server is online, it returns an
empty string.

<PLATFORMVERSION/>
Returns the SAS Metadata Server version number in the form X.X.X.X. For
example, for a SAS Metadata Server that is running SAS 9.2, the platform version
number is 9.2.0.0. For a SAS Metadata Server that is still running SAS 9.1.3,
Service Pack 4, the platform version number is 9.1.3.4.

<SERVERSTATE/>
Returns the SAS Metadata Server’s current state. Valid values are ONLINE,
ADMIN, or OFFLINE. No response means that the server is down.

<STATE/>
Returns the same information as <SERVERSTATE/>.

Server Control (IServer Interface) � Details 197

<STATUS/>
This is the default option if the method is issued without options. This option
returns values for <MODELVERSION/>, <PLATFORMVERSION/>,
<SERVERSTATE/>, <PAUSECOMMENT/>, and <SERVERLOCALE/> in one
request.

<VERSION/>
Returns the same information as <MODELVERSION/>.

Note: The Status method reports the availability of the SAS Metadata Server to
client requests. It cannot be used to check the state of specific metadata repositories. If
you need to know why a specific metadata repository is not available, check the
repository’s Access= and State= values in the SAS Management Console Metadata
Manager plug-in, or issue a GetRepositories method that sets the OMI_ALL (1) flag.
For more information, see “GetRepositories” on page 97. �

Requesting omaconfig.xml Values
The omaconfig.xml file requests changes to the standard SAS Metadata Server

configuration. A configuration option is included in this file only to configure a setting
that is a departure from the standard configuration, or to provide a value that is
required by the standard configuration. The file does not provide a definitive listing of
all server configuration settings.

The omaconfig.xml file supports options in three categories.
� General server control, where each option is specified as an XML attribute of an

<OMA> element.
� Repository manager control, where each option is specified as an XML attribute of

an <RPOSMGR> element.
� Internal authentication control, where each option is specified as an XML attribute

of an <InternalAuthenticationPolicy> element. This category is new in SAS 9.2.

The Status method obtains values for specified <OMA> and <RPOSMGR> elements,
if attributes for these elements exist in the omaconfig.xml file. If the requested attribute
is missing from the omaconfig.xml file, the Status method returns a blank value. A
blank value indicates that the option is operating with a standard configuration setting.

To request an attribute value, submit an XML element of the appropriate category
(<OMA> or <RPOSMGR>) that specifies the name of the attribute whose value you’d
like to read in the INMETA parameter. To determine the attribute names available in
each category and learn their standard configuration settings, see “Configuration Files:
Reference for omaconfig.xml” in the SAS Intelligence Platform: System Administration
Guide. Capitalize both the category name and the attribute name in the input XML
element. The Status method is case sensitive.

To determine the settings of <InternalAuthenticationPolicy> options, use the
GetInternalLoginSitePolicies method. For more information, see
“GetInternalLoginSitePolicies” on page 138.

Requesting Server Invocation Options
The only server invocation option that is returned by the Status method is LOCALE,

which specifies the server language encoding for the server session. To get the active
server LOCALE value, specify <SERVERLOCALE/> in the Status method.

Requesting Journaling Statistics
Journaling is a SAS Metadata Server performance feature that makes updates

available in memory before they are written to disk. For more information about SAS

198 Details � Chapter 9

Metadata Server journaling, see the SAS Intelligence Platform: System Administration
Guide.

<OMA JOURNALDATAAVAILABLE=""/>
Returns the number of bytes of data that are in the journal file in memory and
have yet to be applied to metadata repositories on disk.

<OMA JOURNALENTRYCOUNTER=""/>
Returns a sequence number that indicates the number of transactions that have
been processed since the SAS Metadata Server was started with journaling
enabled. The number includes transactions that are still in the journal file, and
transactions that have been applied to metadata repositories on disk. This number
is reset when the server is paused to an OFFLINE state and then resumed, and
when the server is stopped and then restarted.

<OMA JOURNALHISTORICALDATA=""/>
Returns the number of transactions that have been processed to the disk data sets
since the SAS Metadata Server was started.

<OMA JOURNALMAXDATAAVAILABLE=""/>
Returns the number of bytes of data that has been written to the journal file. This
number grows through the life of the journal file. It is not reset when the server is
stopped and then restarted.

<OMA JOURNALQUEUELENGTH=""/>
Returns the number of transactions in the journal file that are waiting to be
applied to metadata repositories on disk.

<OMA JOURNALSPACEAVAILABLE=""/>
Returns either the number of bytes of space left in the journal file if the file is a
fixed size, or 999999999 if the file is not a fixed size.

<OMA SERVERSTARTPATH=""/>
Returns the pathname of the directory where the SAS Metadata Server was
started.

<OMA JOURNALSTATE=""/>
Returns a keyword indicating the internal status of journal entry processing for
troubleshooting. Valid keywords are the following:

Uninitialized Indicates that journaling is not enabled on the SAS Metadata
Server.

IDLE Indicates that journaling is enabled. However, there are no
journal entries being processed.

BUSY Indicates that journaling is enabled, and the SAS Metadata
Server is processing journal entries.

DOTERM Indicates that the SAS Metadata Server is accepting journal
entries. However, the process that applies the updated
transactions to repositories on disk will be terminated after the
current transaction is processed. It is a good idea to check
journal messages in the server log when you receive this
keyword.

FORCETERM Indicates that the SAS Metadata Server is accepting journal
entries. However, the process that applies the updated
transactions to repositories on disk is in the process of being
forcefully terminated, perhaps in the middle of a transaction. It
is a good idea to check journal messages in the server log when
you receive this keyword.

Server Control (IServer Interface) � Examples 199

TERMDONE Indicates that a DOTERM or FORCETERM was successfully
processed. The SAS Metadata Server continues to accept
entries in the journal file. However, it is not applying
transactions to repositories on disk. It is a good idea to check
journal messages in the server log when you receive this
keyword.

WAIT_IDLE Indicates that the SAS Metadata Server is waiting to perform a
request (such as changing a repository’s properties) that cannot
occur until all outstanding journal entries have been applied to
repositories on disk. When all pending transactions have been
applied, journaling is returned to an IDLE state.

CRASH_RECOVERY Indicates that the SAS Metadata Server is using journal
entries to recover from a server crash.

Although these journaling statistics are requested like omaconfig.xml options, they
are not documented the same way because they do not configure the SAS Metadata
Server— they return statistics only.

Examples

Standard Interface Example
The following example shows how the Status method is issued in the standard

interface:

<! --- Default values returned by Status method in SAS 9.2 --->
inmeta=’ ’;
outmeta=’ ’;
options=’ ’;

rc=serverObject.Status(inmeta,outmeta,options);

The Status method is issued without specifying options in the INMETA parameter to
show the default behavior of the method. The following is the output from the request:

<ModelVersion>11.03</ModelVersion>
<PlatformVersion>9.2.0.0</PlatformVersion>
<ServerState>ONLINE</ServerState>
<PauseComment/>
<ServerLocale>en_US</ServerLocale>

DoRequest Examples
The following examples are formatted for the INMETADATA parameter of the

DoRequest interface.
This is the same method call that was issued in the standard interface example:

<!--- Default values returned by the Status method in SAs 9.2 --->
<Status>
<Metadata/>
<Options/>
</Status>

The Status method call that follows requests omaconfig.xml values and
<SERVERLOCALE/>:

200 Related Methods � Chapter 9

<!-- Get omaconfig.xml values -->

<Status>
<Metadata>
<OMA MAXACTIVETHREADS=""/>
<OMA JOURNALPATH=""/>
<OMA ALERTEMAIL=""/>
<RPOSMGR
LIBREF=""
ENGINE=""
PATH=""
OPTIONS=""/>
<SERVERLOCALE/>
</Metadata>
<Options/>
</Status>

This Status method call requests the value of the omaconfig.xml <OMA
JOURNALPATH="filename"/> server configuration option and journaling statistics:

<!-- Get journaling statistics-->

<Status>
<Metadata>
<OMA JOURNALPATH=""

JOURNALSTATE=""
JOURNALQUEUELENGTH=""
JOURNALDATAAVAILABLE=""
JOURNALSPACEAVAILABLE=""
JOURNALENTRYCOUNTER=""/>

</Metadata>
<Options/>
</Status>

The value returned for the JOURNALPATH attribute, which can be an absolute or
relative pathname or a blank string, indicates whether journaling is enabled on the
SAS Metadata Server. The other attributes return statistics about journaling, if
journaling is enabled.

Related Methods

� “GetInternalLoginSitePolicies” on page 138

Stop
Shuts down the SAS Metadata Server.
Category: Server control methods

Syntax

rc=Stop(options);

Server Control (IServer Interface) � Details 201

Parameter Type Direction Description

options C in No options are supported at this time.

Details
A return code of 0 indicates that the SAS Metadata Server was successfully stopped.

A return code other than 0 indicates that the SAS Metadata Server failed to stop.
The Stop method is available only in the standard interface.
A user must have administrative user status on the SAS Metadata Server to stop the

server.

Example
<!--Stops the metadata server-->
options=’’

rc=serverObject.Stop(options);

202

203

P A R T4

IOMI Server Interface Usage

Chapter 10.Adding Metadata Objects 205

Chapter 11.Updating Metadata Objects 221

Chapter 12.Overview of Querying Metadata 235

Chapter 13.Using GetMetadata to Get the Properties of a Specified
Metadata Object 243

Chapter 14.Using GetMetadataObjects to Get All Metadata of a
Specified Metadata Type 263

Chapter 15.Filtering a GetMetadataObjects Request 277

Chapter 16.Metadata Locking Options 295

Chapter 17.Deleting Metadata Objects 297

204

205

C H A P T E R

10
Adding Metadata Objects

Overview of Adding Metadata 205
Using the AddMetadata Method 205

Creating a Metadata Object 206

Creating Associations While Creating an Object 207

Creating Cross-Repository References 207

Symbolic Names 208
Example Metadata Property Strings 208

Creating Multiple, Unrelated Metadata Objects in an AddMetadata Request 209

Creating Multiple Associated Objects 209

Selecting Metadata Types to Represent Application Elements 210

Example of an AddMetadata Request That Creates an Application Metadata Object 210

Example of an AddMetadata Request That Creates an Object and an Association to an Existing
Object 211

Example of an AddMetadata Request That Creates Multiple, Related Metadata Objects 212

Example of an AddMetadata Request That Creates Multiple, Unrelated Metadata Objects 215

Example of an AddMetadata Request That Creates an Association to an Object in Another
Repository 217

Additional Information 219

Overview of Adding Metadata
The SAS Open Metadata Interface enables you to create metadata objects and their

associations directly, or to create the metadata objects first, and then add associations
to them later.

You create metadata objects with the AddMetadata method. With AddMetadata, you
can do the following:

� create an object
� create an object and an association to an existing object
� create an object, an association, and the associated object

You add associations to an existing object by using the UpdateMetadata method. For
information about using the UpdateMetadata method, see Chapter 11, “Updating
Metadata Objects,” on page 221.

Using the AddMetadata Method
The AddMetadata method enables you to create metadata objects that describe both

metadata repositories and application elements. Adding a metadata object that

206 Creating a Metadata Object � Chapter 10

describes a metadata repository defines the repository in the SAS Metadata Server’s
SAS Repository Manager. A SAS Metadata Repository must be defined before you can
define metadata objects describing application elements in the repository.

Note: The SAS 9.2 deployment process creates the initial SAS Metadata Repository
for you, so direct use of the SAS Open Metadata Interface to define repositories is no
longer necessary nor recommended. �

An application element is an item such as a table, a column, a key, or a SAS library.
You create objects representing application elements to describe a data source or other
entity used by your application.

Creating a Metadata Object
To create a metadata object with the AddMetadata method, you must provide the

following information:

� A metadata property string that defines the object to be created.

� An identifier that indicates the metadata repository in which the object will be
stored.

� The namespace in which to process the request.

� The OMI_TRUSTED_CLIENT (268435456) flag. The OMI_TRUSTED_CLIENT
flag is required to create and update a metadata object in a SAS Metadata
Repository.

This information is passed as AddMetadata parameters. The parameters are
displayed here as XML elements that can be submitted to the SAS Metadata Server in
the INMETADATA parameter of the DoRequest method:

<AddMetadata>
<Metadata>metadata_property_string</Metadata>
<Reposid>repository_identifier</Reposid>
<NS>namespace</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

To create a metadata object describing a metadata repository, you specify the
following information:

� a metadata property string that defines the repository’s properties in the
<METADATA> element

� the SAS Repository Manager identifier A0000001.A0000001 in the <REPOSID>
element

� the REPOS namespace in the <NS> element

� the OMI_TRUSTED_CLIENT (268435456) flag in the <FLAGS> element

To create a metadata object describing an application component, you specify the
following information:

� a metadata property string that defines the application element’s properties in the
<METADATA> element

� a metadata repository identifier in the <REPOSID> element

� the SAS namespace in the <NS> element

� the OMI_TRUSTED_CLIENT (268435456) flag in the <FLAGS> element

Adding Metadata Objects � Creating Cross-Repository References 207

The metadata property string must be formatted in XML as described in
“Constructing a Metadata Property String” on page 64. At a minimum, the metadata
property string must specify the metadata type and any required properties of the
object to be created. Most metadata types have required attributes. Some metadata
types also have required associations. For information about required and optional
properties of the application metadata types, see “Alphabetical Listing of SAS
Namespace Metadata Types” in the SAS 9.2 Metadata Model: Reference.

Although it is not required, it is recommended that you provide values for all of an
object’s attributes, and for as many associations as possible in the metadata property
string to make your metadata meaningful. Before creating objects, see “Selecting
Metadata Types to Represent Application Elements” on page 210.

Creating Associations While Creating an Object
The metadata property string that defines a metadata object describing an

application element can also define associations to metadata objects describing related
application elements.

An association is defined by including XML subelements in the metadata property
string that defines the application element:

� the first XML subelement specifies the association name
� the second element, nested within the first element, specifies a metadata property

string that either references or defines the associated metadata object

The following is an example of a metadata property string that includes XML
subelements that define an association:

<MetadataType Name="Name-of-primary-object"
Desc="New object created using AddMetadata">

<AssociationName>
<AssociatedMetadataType Name="Name-of-associated-object"
Desc="New associated object that is created by AddMetadata"/>

</AssociationName>
</MetadataType>

The AddMetadata method creates a new object for every property string that is
submitted in the <METADATA> element, unless the ObjRef= attribute is included in
the property string. ObjRef= is supported only in a nested property string. It specifies
that the object instance is an existing metadata object. It instructs the SAS Metadata
Server to create an object reference to the specified object without modifying the
specified object’s other properties.

The SAS Metadata Server creates a new associated object in all of the following cases:

� When you omit the Id= attribute from the metadata property string.

� When you specify the Id= attribute with a null value (Id=" ").
� When you specify a symbolic name in the Id= attribute (Id="$Table").

� When you specify a real value in the Id= attribute (Id="A53TPPVI"), in either the
main element or in an association subelement.

Creating Cross-Repository References
The default behavior of the AddMetadata method is to create the primary metadata

object and all references to new and existing objects in the repository specified in the

208 Symbolic Names � Chapter 10

<REPOSID> element. You can also create associations that reference new and existing
objects in other repositories. Associations between objects that exist in different
repositories are referred to as cross-repository references. A cross-repository reference
is created by including the appropriate repository identifier in the associated object
definition.

� To create a cross-repository reference to an existing object, specify its 17–character
metadata identifier in the form Reposid.Instanceid in the ObjRef= attribute of the
XML subelements defining the association. The Reposid portion of the metadata
identifier specifies the other repository.

� To create a cross-repository reference and a new object in another repository,
specify the target repository identifier and a symbolic name for the object using
the Id= attribute. For example, Id="Reposid.$Table". Use of the Id= attribute with
a symbolic name is equivalent to passing a null value in the Id= attribute: it
indicates to the SAS Metadata Server that a new object is to be created.

Symbolic Names
A symbolic name is an alias that is preceded by a dollar sign ($). You assign a

symbolic name to a metadata object to reference it before it is created. Symbolic names
are used to create associations and new associated objects in other repositories. They
also enable you to create references between multiple, unrelated metadata objects in a
single XML request. For more information about this type of usage, see “Example of an
AddMetadata Request That Creates Multiple, Unrelated Metadata Objects” on page 215.

When used to create an association and a new associated object in another repository,
the symbolic name has the form Reposid.$Alias. It is specified in the Id= attribute of
the association subelement.

When used to create multiple, unrelated metadata objects in the same repository, the
form $Alias is used.

The alias can be any name, as long as it is preceded by a dollar sign ($). After the
successful completion of AddMetadata or UpdateMetadata processing, the alias and any
references to it are automatically replaced with a real object identifier.

Example Metadata Property Strings
The following is an example of a metadata property string that creates an application

metadata object and an association to an existing object in another repository:

<MetadataType Name="Name-of-primary-object"
Desc="New object created using AddMetadata">

<AssociationName>
<AssociatedMetadataType Objref="Reposid.Objectid"/>

</AssociationName>
</MetadataType>

Note the use of the Objref= attribute and the fact that no other attributes are
specified. When ObjRef= is used, the SAS Metadata Server ignores any additional
attributes that might be specified. The object identifier in the ObjRef= attribute includes
both the repository identifier and the object instance identifier of the target object.

The following is an example of a metadata property string that creates an object, an
association, and a new associated object in another repository:

<MetadataType Name="Name-of-primary-object"
Desc="New object created using AddMetadata">

Adding Metadata Objects � Creating Multiple Associated Objects 209

<AssociationName>
<AssociatedMetadataType Id="Reposid.$SymbolicName"

Name="Name-of-associated-object"
Desc="Associated object that is created by AddMetadata"/>

</AssociationName>
</MetadataType>

The portion of the property string that identifies the associated object specifies the
Id= attribute with the repository identifier and a symbolic name for the new object.
(You can determine the available repositories and their unique identifiers by issuing the
GetRepositories method. For more information, see “Using GetRepositories to Get the
Registered Repositories” on page 238.) Because a new object is created, you must
specify at least a Name= value for the associated object and you should include values
for other attributes.

Creating Multiple, Unrelated Metadata Objects in an AddMetadata
Request

To create multiple, unrelated metadata objects in an AddMetadata request, stack the
metadata property strings that define the metadata objects in the <METADATA>
element as follows:

<Metadata>
<MetadataType1 Name="String" Desc="String">
<AssociationName>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName>
</MetadataType1>
<MetadataType2 Name="String" Desc="String">

<AssociationName>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName>
</MetadataType2>
</Metadata>

Creating Multiple Associated Objects
To define multiple associations for an object, stack the associated object definitions

within the primary object definition as follows:

<MetadataType Name="String" Desc="String">
<AssociationName1>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName1>
<AssociationName2>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName2>
</MetadataType>

210 Selecting Metadata Types to Represent Application Elements � Chapter 10

Selecting Metadata Types to Represent Application Elements
The SAS 9.2 Metadata Model defines approximately 160 metadata types that

represent application elements. The metadata types are intended to be used in
combination by clients to create metadata describing application data or entities used
by an application.

The metadata programmer begins by selecting a metadata type that most closely
describes the entity for which he wants to store metadata. For example, when creating
metadata describing a data source, a metadata programmer might select the
SASLibrary metadata type to represent data in a SAS library. This becomes the
primary or top-level object in the metadata definition. He then needs to examine the
SAS Metadata Model to select metadata types that more closely describe the data
source, and he might need to provide supporting information. For example, if the SAS
library he is describing contains SAS tables that exist in a physical file system, he
might select the PhysicalTable metadata type to describe the tables. If the tables are
transient, he might use the WorkTable or QueryTable metadata types to describe the
tables. To describe each table’s columns, he might use the Column metadata type. If
the tables have passwords, he might use the SASPassword metadata type, and so on.

Once he has identified all of the metadata types necessary to fully describe the data
source, he can use the AddMetadata method to create metadata objects representing
each application element, and to associate the objects with one another.

To assist metadata programmers in building consistent metadata definitions, the SAS
9.2 Metadata Model categorizes metadata types as being either primary or secondary:

� Metadata types that are subtypes of the PrimaryType supertype are intended to be
used as the topmost object in a metadata definition, or to describe an application
element that provides supporting information, but can be referenced, secured, and
deleted independently of the primary object that it supports.

� Metadata types that are subtypes of the SecondaryType supertype provide
supporting information for a primary type and are never referenced directly within
a SAS application.

For a list of the metadata types in each category, see PrimaryType and
SecondaryType in SAS 9.2 Metadata Model: Reference.

The PrimaryType metadata type defines attributes and associations that support the
management of the entities described by the metadata definitions. For more
information about these attributes and associations, see “PrimaryType and
SecondaryType Abstract Types” in SAS 9.2 Metadata Model: Reference. .

Example of an AddMetadata Request That Creates an Application
Metadata Object

The following AddMetadata request creates an application metadata object
describing a SAS library. A SAS library is represented in the SAS Metadata Model by
the SASLibrary metadata type.

<AddMetadata>
<Metadata>

<SASLibrary
Name="NW Sales"
Desc="NW region sales data"
Engine="base"
IsDBMSLibname="0"

Adding Metadata Objects � Example of an AddMetadata Request That Creates an Object and an Association to an Existing Object 211

Libref="nwsales"
IsPreassigned="0"
PublicType="Library"/>

</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In this method call, consider the following:
� The <METADATA> element specifies the metadata property string. In this string,

SASLibrary is the metadata type and Name=, Desc=, Engine=, IsDBMSLibname=,
Libref=, and PublicType= are attributes of the SASLibrary metadata type.

� The <REPOSID> element specifies the unique identifier of the repository in which
to create the metadata object.

� The <NS> element identifies the namespace to process the request. The SAS
namespace contains metadata types that define application elements.

� The <FLAGS> element specifies the OMI_TRUSTED_CLIENT (268435456) flag.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the ADDMETADATA method. -->

<SASLibrary Name="NW Sales" Desc="NW region sales data" Engine="base"
IsDBMSLibname="0" Libref="nwsales" IsPreassigned="0" PublicType="Library"

Id="A53TPPVI.A1000001"/>

The output string mirrors the input string, with the exception that a two-part object
instance identifier is assigned to the new object in the form:

Reposid.Objectid

Reposid is the unique repository identifier. Objectid is the unique object instance
identifier. You will use this unique object identifier any time that you need to reference
the metadata object. In “Example of an AddMetadata Request That Creates an Object
and an Association to an Existing Object” on page 211, this identifier is used to create
an association to the object.

Example of an AddMetadata Request That Creates an Object and an
Association to an Existing Object

The following AddMetadata request creates a ResponsibleParty object, and then
associates it with the SASLibrary object created in “Example of an AddMetadata
Request That Creates an Application Metadata Object” on page 210. The
ResponsibleParty metadata type is used to associate a set of Person objects with a role
or responsibility. This ResponsibleParty object is created with the role of "Owner".

<AddMetadata>
<Metadata>

<ResponsibleParty Name="LibraryAdministrator"
Desc="NW Region Sales Data"
Role="Owner">
<Objects>

<SASLibrary ObjRef="A53TPPVI.A1000001"/>

212 Example of an AddMetadata Request That Creates Multiple, Related Metadata Objects � Chapter 10

</Objects>
</ResponsibleParty>

</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In this method call, the <REPOSID>, <NS>, and <FLAGS> elements contain the same
values as in “Example of an AddMetadata Request That Creates an Application
Metadata Object” on page 210. In the <METADATA> property string, note the following:

� <RESPONSIBLEPARTY> is the metadata type. Name=, Desc=, and Role= are
attributes of the ResponsibleParty metadata type. Name= and Role= are required
attributes.

� <OBJECTS> is the association name and is specified as a subelement of
<RESPONSIBLEPARTY>.

� <SASLIBRARY> is the metadata type of the associated metadata object and is
specified as a subelement of <OBJECTS>. The ObjRef= attribute in the
<SASLIBRARY> subelement informs the SAS Metadata Server that the
SASLibrary object is an existing object. The server creates the association without
modifying any of the object’s other properties.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the ADDMETADATA method. -->

<ResponsibleParty Name="LibraryAdministrator" Desc="NW Region Sales Data"
Role="Owner" Id="A53TPPVI.A2000001">
<Objects>
<SASLibrary ObjRef="A53TPPVI.A1000001"/>

</Objects>
</ResponsibleParty>

The output string mirrors the input string with the exception that a two-part
metadata object identifier is assigned to the ResponsibleParty object.

Example of an AddMetadata Request That Creates Multiple, Related
Metadata Objects

The following AddMetadata request creates a table object, column objects, and an
association to the previously defined SASLibrary object in a single method call. The
SAS Metadata Model supports several metadata types for describing tables. In this
example, the PhysicalTable metadata type is used to represent a table that is
materialized in a file system. A PhysicalTable object is associated to a Column object
with a Columns association. A PhysicalTable object is associated to a SASLibrary object
with a TablePackages association.

<AddMetadata>
<Metadata>

<PhysicalTable Name="Sales Offices" Desc="Sales offices in NW region"
PublicType="Table">
<TablePackages>

<SASLibrary ObjRef="A53TPPVI.A1000001"/>

Adding Metadata Objects � Example of an AddMetadata Request That Creates Multiple, Related Metadata Objects 213

</TablePackages>
<Columns>

<Column
Name="City"
Desc="City of Sales Office"
ColumnName="City"
SASColumnName="City"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."

PublicType="Column"/>
<Column

Name="Address"
Desc="Street Address of Sales Office"
ColumnName="Address"
SASColumnName="Street_Address"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."

PublicType="Column"/>
<Column

Name="Manager"
Desc="Name of Operations Manager"
ColumnName="Manager"
SASColumnName="Manager"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."

PublicType="Column"/>
<Column
Name="Employees"
Desc="Number of employees"
ColumnName="Employees"
SASColumnName="Employees"
ColumnType="6"
SASColumnType="N"
ColumnLength="3"
SASColumnLength="3"
SASFormat="3.2"
SASInformat="3.2"
PublicType="Column"/>

</Columns>
</PhysicalTable>

</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>

214 Example of an AddMetadata Request That Creates Multiple, Related Metadata Objects � Chapter 10

<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In the request, the <REPOSID>, <NS>, and <FLAGS> elements contain the same
values as in “Example of an AddMetadata Request That Creates an Application
Metadata Object” on page 210. In the <METADATA> property string, note the following:

� <PHYSICALTABLE> is the metadata type. Name=, Desc=, and PublicType= are
attributes of the PhysicalTable metadata type.

� <TABLEPACKAGES> is the association name that creates the association to the
SASLibrary object. The Objref= attribute in the <SASLIBRARY> subelement
informs the SAS Metadata Server that the association is being created to an
existing object.

� <COLUMNS> is the association name that creates the associations to the Column
objects. The column definitions are nested under the Columns association name.

� Four Column objects are created. For each object, consider the following:
� Name= is a required attribute.
� The ColumnName=, ColumnType=, and ColumnLength= attributes describe

the names and values of the items in a DBMS.
� The SASColumnName=, SASColumnType=, and SASColumnLength=

attributes indicate their corresponding values in a SAS table.
� A ColumnType= value of 12 indicates VARCHAR. A ColumnType= value of 6

indicates FLOAT.

For more information about the properties for the PhysicalTable and Column
metadata types, see the SAS Metadata Model documentation.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the ADDMETADATA method. -->

<PhysicalTable Name="Sales Offices" Desc="Sales offices in NW region"
Id="A53TPPVI.A4000001">
<TablePackages>
<SASLibrary ObjRef="A53TPPVI.A1000001"/>

</TablePackages>
<Columns>
<Column Name="City" Desc="City of Sales Office" ColumnName="City"
SASColumnName="City" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
PublicType="Column" Id="A53TPPVI.A5000001">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
<Column Name="Address" Desc="Street Address of Sales Office"
ColumnName="Address" SASColumnName="Street_Address" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32." PublicType="Column" Id="A53TPPVI.A5000002">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
<Column Name="Manager" Desc="Name of Operations Manager" ColumnName="Manager"

Adding Metadata Objects � Example of an AddMetadata Request That Creates Multiple, Unrelated Metadata Objects 215

SASColumnName="Manager" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
PublicType="Column" Id="A53TPPVI.A5000003">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
<Column Name="Employees" Desc="Number of employees" ColumnName="Employees"

SASColumnName="Employees" ColumnType="6" SASColumnType="N" ColumnLength="3"
SASColumnLength="3" SASFormat="3.2" SASInformat="3.2" PublicType="Column"
Id="A53TPPVI.A5000004">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
</Columns>
</PhysicalTable>

The output string mirrors the input string, with the exception that a two-part
metadata object identifier is assigned to each new metadata object.

Example of an AddMetadata Request That Creates Multiple, Unrelated
Metadata Objects

The following method call shows another way to format an AddMetadata request
that creates multiple objects. The request creates a second table object, named Sales
Associates, and creates objects representing the table’s columns by stacking their
metadata property strings. A Column object cannot be created without an association to
a table object. Therefore, a symbolic name is assigned to the PhysicalTable object to
enable the Column objects to reference the PhysicalTable object before it is created.

<AddMetadata>
<Metadata>
<PhysicalTable Id="$Employees" Name="Sales Associates"

Desc="Sales associates in NW region" PublicType="Table">
<TablePackages>

<SASLibrary ObjRef="A53TPPVI.A1000001"/>
</TablePackages>

</PhysicalTable>

<Column
Name="Name"
Desc="Name of employee"
ColumnName="Employee_Name"
SASColumnName="Employee"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."
PublicType="Column" >
<Table>

216 Example of an AddMetadata Request That Creates Multiple, Unrelated Metadata Objects � Chapter 10

<PhysicalTable ObjRef="$Employees"/>
</Table>

</Column>

<Column
Name="Address"
Desc="Home Address"
ColumnName="Employee_Address"
SASColumnName="Home_Address"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."
PublicType="Column">
<Table>

<PhysicalTable ObjRef="$Employees"/>
</Table>

</Column>

<Column
Name="Title"
Desc="Job grade"
ColumnName="Title"
SASColumnName="Title"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."
PublicType="Column">
<Table>

<PhysicalTable ObjRef="$Employees"/>
</Table>

</Column>

</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In this method call, the <REPOSID>, <NS>, and <FLAGS> elements contain the
same values as in “Example of an AddMetadata Request That Creates an Application
Metadata Object” on page 210. In the <METADATA> element, note the following:

� There are multiple metadata property strings, stacked one on top of the other.
� The metadata property string defining the PhysicalTable object is the topmost

string. This property string includes an Id= attribute that assigns the symbolic
name $Employees. Name= and PublicType= are required attributes.

� Separate metadata property strings define each Column object. Each string
defines the unique attributes of the column and the global Name= and
PublicType= attributes.

Adding Metadata Objects � Example of an AddMetadata Request That Creates an Association to an Object in Another Repository 217

� Each Column definition defines a Table association to the PhysicalTable object by
specifying the Objref= attribute and referencing the symbolic name $Employees.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the ADDMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"
Desc="Sales associates in NW region" PublicType="Table">
<TablePackages>
<SASLibrary ObjRef="A53TPPVI.A1000001"/>
</TablePackages>
</PhysicalTable>
<Column Name="Name" Desc="Name of employee" ColumnName="Employee_Name"
SASColumnName="Employee" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32." PublicType="Column"
Id="A53TPPVI.A5000005">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>

</Table>
</Column>
<Column Name="Address" Desc="Home Address" ColumnName="Employee_Address"
SASColumnName="Home_Address" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
PublicType="Column" Id="A53TPPVI.A5000006">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>

</Table>
</Column>
<Column Name="Title" Desc="Job grade" ColumnName="Title" SASColumnName="Title"
ColumnType="12" SASColumnType="C" ColumnLength="32" SASColumnLength="32"
SASFormat="$Char32." SASInformat="$32." PublicType="Column" Id="A53TPPVI.A5000007">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>

</Table>
</Column>

The symbolic name is replaced with the PhysicalTable object’s unique object
identifier in the output everywhere that it was used.

Example of an AddMetadata Request That Creates an Association to an
Object in Another Repository

This example contains two AddMetadata method calls:

� The first method call creates a second repository.

� The second method call creates a Document object in the new repository and
associates the Document object with the SASLibrary object created in “Example of
an AddMetadata Request That Creates an Application Metadata Object” on page
210. A Document object has an Objects association to a SASLibrary object.

This method call creates the second repository:

<AddMetadata>
<Metadata>

218 Example of an AddMetadata Request That Creates an Association to an Object in Another Repository � Chapter 10

<RepositoryBase
Name="Test repository 2"
Desc="Second test repository."
Path="C:\testdat\repository2"
RepositoryType="Custom">

</RepositoryBase>
</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

In the method call, note the following:

� The <METADATA> element submits a property string that defines a
RepositoryBase object. Path= and RepositoryType= are required attributes.

� The <REPOSID> element specifies the SAS Repository Manager identifier.

� The <NS> element specifies the REPOS namespace.

� The <FLAGS> parameter specifies the OMI_TRUSTED_CLIENT flag (268435456).

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the ADDMETADATA method. -->

<RepositoryBase Name="Test repository 2" Desc="Second test repository."
Path="C:\testdat\repository2" Id="A0000001.A5KD78HW" Access="0"

RepositoryType="Custom"/>

Test repository 2 is assigned the unique repository identifier A0000001.A5KD78HW.
This AddMetadata method call creates the Document object in Test repository 2:

<AddMetadata>
<Metadata>

<Document Name="Sales Summary" Desc="Summary of Sales Activity in the NW Region"
PublicType="Document">

<Objects>
<SASLibrary ObjRef="A53TPPVI.A1000001"/>
</Objects>

</Document>
</Metadata>
<Reposid>A0000001.A5KD78HW</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In this method call, note the following:

� The <METADATA> subelement that defines the Objects association to the
SASLibrary object specifies the Objref= attribute. The value in the Objref=
attribute is in the form Reposid.ObjectId, where Reposid is the repository identifier
of Test repository 1 and ObjectId is the SASLibrary object’s 8–character identifier.

� The <REPOSID> element specifies the unique repository identifier assigned to
Test repository 2.

Here is an example of the output returned by the SAS Metadata Server:

Adding Metadata Objects � Additional Information 219

<!-- Using the ADDMETADATA method. -->

<Document Name="Sales Summary" Desc="Summary of Sales Activity in the NW Region"
PublicType="Document" Id="A5KD78HW.A1000001">
<Objects>

<SASLibrary ObjRef="A53TPPVI.A1000001"/>
</Objects>
</Document>

Document object A5KD78HW.A1000001 was successfully created in repository
A0000001.A5KD78HW.

Additional Information

For more information about the metadata types used in these examples and other
SAS Metadata Model metadata types, see the “Alphabetical Listing of SAS Namespace
Metadata Types” in SAS Metadata Model: Reference. For reference information about
the AddMetadata method, see “AddMetadata” on page 77.

220

221

C H A P T E R

11
Updating Metadata Objects

Overview of Updating Metadata 221
Using the UpdateMetadata Method 222

Function= Attribute 223

How the Function Directives Affect Association Ordering 224

Summary of Function Directives 225

Associated Object Identifier and Value 225
Examples of How the Object Identifiers Work 226

Deleting Associations 227

Example of an UpdateMetadata Request That Modifies an Object’s Attributes 227

Example of an UpdateMetadata Request That Modifies an Association 228

Example of an UpdateMetadata Request That Merges Associations 229

Example of an UpdateMetadata Request That Deletes an Association 232
Example of an UpdateMetadata Request That Appends Associations 233

Additional Information 234

Overview of Updating Metadata

The SAS Open Metadata Interface provides the UpdateMetadata method for
updating existing metadata objects. With UpdateMetadata, you can do the following:

� modify an existing metadata object’s attributes

� add an association between two existing metadata objects

� add an association between an existing metadata object and a new metadata object

� modify an associated object’s properties

� remove an association

The UpdateMetadata method does not allow you to create new objects. For
information about creating a metadata object, see Chapter 10, “Adding Metadata
Objects,” on page 205. UpdateMetadata can create associated objects indirectly as a
result of defining an association.

The UpdateMetadata method cannot delete a metadata object. To delete a metadata
object, you must use the DeleteMetadata method. For more information, see Chapter
17, “Deleting Metadata Objects,” on page 297. The UpdateMetadata method might
indirectly delete dependent objects to enforce cardinality rules when an association is
deleted. For example, if a table is updated to remove an association to a column, then
the Column object, which is dependent on the table, is deleted as well. However, a
Column object cannot be updated to remove its association to a table and, as a result,
be deleted.

222 Using the UpdateMetadata Method � Chapter 11

Using the UpdateMetadata Method
The UpdateMetadata method enables you to add or modify any attribute or

association that is not designated as required in the metadata type documentation. For
information about which metadata types have required attributes and associations, see
“Required Attributes and Associations” in “Creating a Logical Metadata Definition” in
the SAS 9.2 Metadata Model: Reference. An association that is designated as required
typically indicates that the object is a dependent object. To remove a required
association, you must delete the dependent object with the DeleteMetadata method.
However, a dependent object’s other attributes and associations can be modified with
UpdateMetadata.

To modify an object’s attributes, specify the metadata object, the attributes that you
want to modify, and their new values in a metadata property string. Submit the
metadata property string to the UpdateMetadata method in the INMETADATA
parameter. The following is an example of an UpdateMetadata method call that is
formatted for the DoRequest interface:

<UpdateMetadata>
<Metadata>
<Metadata_Type Id="reposid.objectid" Attribute1="new_value"

Attribute2="new_value" Attribute3="new_value"/>
</Metadata>
<NS>SAS</NS>
<--- OMI_TRUSTED_CLIENT Flag --->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In this method call, note the following:
� The <METADATA> element specifies the metadata type, the object instance, and

the attributes that you want to modify. The first part of the two-part object
identifier in the object definition identifies the repository in which to execute the
request. Attribute1=, Attribute2=, and Attribute3= are metadata type attributes.
The new values specified for these attributes replace any existing values in the
repository. Unmodified attributes remain unchanged.

� The OMI_TRUSTED_CLIENT (268435456) flag enables the SAS Metadata Server
to write to the metadata object.

To add, modify, or delete an association, or to modify an associated object’s attributes,
include an association name subelement and associated object definition in the
metadata property string. In the association name subelement, include the Function=
attribute. In the associated object definition, include the appropriate identifier and
value. For example:

<Metadata>
<MetadataType Id="reposid.objectid">

<AssociationName Function="directive">
<AssociatedMetadataType Id |ObjRef="value"/>

</AssociationName>
</MetadataType>

</Metadata>

In this metadata property string, note the following:
� The <METADATA> parameter identifies the metadata type, the object instance,

the association name, and the associated object definition that you want to modify.

Updating Metadata Objects � Function= Attribute 223

� The association name subelement specifies a Function= attribute and a directive
that specifies how the SAS Metadata Server should process the associated object
definition, depending on whether the association name supports a single or a
multiple association.

� The associated object definition has a choice of object identifiers and values. The
identifier attribute and value that you specify in the associated object definition
determine whether a new associated object is created, whether an existing
associated object’s attributes are modified, or whether the request adds an
association to an existing object.

Function= Attribute
The Function= attribute specifies how the SAS Metadata Server should process the

associated object definition submitted for the association name, depending on whether
the association name supports a single or a multiple association. This attribute is
supported only in the association name element of a metadata property string that is
passed to the UpdateMetadata method.

A single association refers to an association name that has a 0:1 or 1:1 cardinality
defined for it in the metadata type documentation. Only one association of that name is
supported between the specified metadata types.

A multiple association refers to an association name that has a 0 to many or 1 to
many cardinality. This is denoted as 0:* and 1:* in the metadata type documentation. A
multiple association supports many associations between the specified metadata types.

The Function= attribute supports the directives shown in the following table. If the
Function= attribute is omitted from an UpdateMetadata request, MODIFY is the
default directive for a single association, and MERGE is the default directive for a
multiple association.

Table 11.1 Function Directives Supported by the UpdateMetadata Method

Directive
Supported for
Single Associations?

Supported for
Multiple
Associations? Description

Append No Yes Adds the specified
associations to the
specified object’s
association list
without modifying any
of the other
associations.

Merge Yes Yes Adds or modifies
associations in the
specified object’s
association list.

Modify Yes No Modifies an existing
association or adds the
association if the
association does not
exist.

224 Function= Attribute � Chapter 11

Directive
Supported for
Single Associations?

Supported for
Multiple
Associations? Description

Replace Yes Yes Single: Overwrites an
existing association
with the specified
association. Multiple:
Replaces the existing
association list with
the specified
association list, listing
any new associations
first. Any existing
associations that are
not represented in the
new association list
are deleted.

Remove Yes Yes Deletes the specified
associations from the
specified object’s
association list
without modifying any
of the other
associations.

How the Function Directives Affect Association Ordering

This example shows how the UpdateMetadata method applies the various Function=
directives. Assume that a Column object exists that has an Extensions association to
several objects. The Extensions association name enables an association to be created
to any type of object. For the purpose of this example, the number of associations and
their order in the association list is important, so they are identified numerically. For
example:

extension1
extension2
extension3
extension4

If we were to execute an UpdateMetadata method call that modified extension1 and
added extension5 with Function=“APPEND,” the directive causes the following changes
to the association list:

extension1
extension2
extension3
extension4
extension5
extension6

APPEND never modifies existing associations. Any new associations are added to the
end of the existing association list. Any associations that you attempt to modify are
treated as new and listed as truly new associations. Extension1 was copied, assigned a
new ID value, and added to the end of the list as extension6.

Updating Metadata Objects � Associated Object Identifier and Value 225

If we were to issue the same UpdateMetadata method call, except with
Function=“MERGE,” the directive would change the association list as follows:

extension2
extension3
extension4
extension5
extension1

Like APPEND, MERGE adds new associations to the end of the existing association
list. Unlike APPEND, however, it modifies and moves specified existing associations
instead of just copying them. Extension1 is moved to the end of the association list.

Function="MODIFY" would have no effect in this UpdateMetadata method call.
MODIFY is not supported for multiple associations.

If we were to issue the same UpdateMetadata method call, except with
Function=“REPLACE,” the directive would cause the following changes to the
association list:

extension5
extension1

The existing association list is deleted and replaced with a new list that lists new
associations first, and any existing associations in the order that is specified. The old
extension1 is replaced with the modified extension1.

If we were to issue the same UpdateMetadata method call with Function=“REMOVE,”
the directive would cause the following changes to the association list:

extension2
extension3
extension4

The extension1 association is removed from the association list. The UpdateMetadata
method returns an error message regarding extension5, because it was not in the list.

Summary of Function Directives

� To add associations to an existing association list without modifying the properties
of the existing associated objects, specify Function="APPEND".

� To add new associations and modify the properties of the existing associated
objects, specify Function="MERGE".

� To delete an existing association or association list with a new association or
association list, specify Function="REPLACE".

� To remove an association without modifying any of the other associations in an
existing association list, specify Function="REMOVE".

� To modify the properties of the associated object in a single association, specify
Function="MODIFY".

Associated Object Identifier and Value
The following table lists the identifiers and values that are supported in an associated

object definition and their behaviors when used in the UpdateMetadata method.

226 Associated Object Identifier and Value � Chapter 11

Table 11.2 Identifiers and Values Supported in an Associated Object Definition

Identifier and Value Result

Id=""

Id="$SymbolicName"

or no identifier

Create an association and the associated object. For more information
about symbolic names, see “Symbolic Names” on page 208.

Id="real_value" Modifies the specified object with the specified properties, if the object
is found. If the object is not found, the update fails.

ObjRef="real_value" Creates an association to, but does not modify the properties of the
specified object, if the object is found. If the object is not found, the
update fails.

Examples of How the Object Identifiers Work

The following is an example of an association name and an associated object
definition that adds an association to an existing object in the same repository:

<AssociationName Function="Directive">
<AssociatedMetadataType ObjRef="Objectid"/>

</AssociationName>

Note the use of the ObjRef= attribute and an object identifier in the associated object
definition. If you specify additional attributes, the method ignores them.

The following is an example of an association name and an associated object
definition that adds an association and a new object in the same repository:

<AssociationName Function="Directive">
<AssociatedMetadataType Id="" Name="Name"/>

</AssociationName>

Note the use of the Id= attribute with a null value in the associated object definition.
Another way to create the associated object is to omit an object identifier from the
associated object definition.

The following is an example of an association name and an associated object
definition that modifies an existing associated object in the same repository:

<AssociationName Function="Directive">
<AssociatedMetadataType Id="Objectid" Name="Name"
Desc="This is a new description for this associated object."/>

</AssociationName>

Note the use of the Id= attribute with a real object identifier in the associated object
definition.

To create an association to an existing object in another repository using the
UpdateMetadata method, specify the ObjRef= attribute and include the object’s
repository identifier in the object instance identifier of the associated object definition.
For example:

<AssociationName Function="Directive">
<AssociatedMetadataType ObjRef="Reposid.Objectid"/>

</AssociationName>

To create an association and a new object in another repository, specify the Id=
attribute, a repository identifier, and a symbolic name in the object instance identifier of
the associated object definition. For example:

Updating Metadata Objects � Example of an UpdateMetadata Request That Modifies an Object’s Attributes 227

<AssociationName Function="Directive">
<AssociatedMetadataType Id="Reposid.$SymbolicName" Name="Name"/>

</AssociationName>

Deleting Associations
To delete an association, specify the REPLACE or REMOVE directives in the

Function= attribute of the association name element.

� The REPLACE directive replaces any existing associations with the specified
associated object definition or list of associated object definitions. Use this
directive with caution to prevent accidentally overwriting associations that you
want to keep.

� The REMOVE directive removes the specified associated object definition from the
list of associations maintained for that association name without affecting other
associations.

Deleting an association does not delete the associated object, unless the associated
object is a dependent object. A dependent object requires an association to another
object to exist. Metadata types that have required associations are noted in the
metadata type documentation as having a 1: 1 cardinality in their Associations table.

If you want to delete an object’s associated objects and its associations, you must
delete each associated object individually using the DeleteMetadata method. For more
information, see Chapter 17, “Deleting Metadata Objects,” on page 297.

The UpdateMetadata method does not include dependent objects that it might have
deleted in its output by default. To include the dependent objects deleted by an update
operation in the output, set the OMI_RETURN_LIST (1024) flag in the
UpdateMetadata method call.

For an example of deleting an association, see “Example of an UpdateMetadata
Request That Deletes an Association” on page 232.

Example of an UpdateMetadata Request That Modifies an Object’s
Attributes

The following is an example of an UpdateMetadata request that modifies an object’s
attributes. The specified attributes and values replace attribute values stored for the
object of the specified metadata type and object instance identifier. Examples in this
section are formatted for submission in the INMETADATA parameter of the DoRequest
method.

<UpdateMetadata>
<Metadata>

<SASLibrary
Id="A53TPPVI.A1000001"
Engine="oracle"
IsDBMSLibname="1"/>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

228 Example of an UpdateMetadata Request That Modifies an Association � Chapter 11

In the request, note the following:
� The Id= attribute is used in the main element and specifies a real value. If the

object is not found, the request fails.
� The request submits new values for SASLibrary object A53TPPVI.A1000001’s

Engine= and IsDBMSLibname= attributes. Unmodified attributes remain
unchanged.

Example of an UpdateMetadata Request That Modifies an Association
The following is an example of an UpdateMetadata request that adds a single

association (one that has a 0:1 or 1:1 cardinality in the metadata type documentation).
PhysicalTable object A53TPPVI.A4000001 is updated to add a PrimaryPropertyGroup
association to a PropertyGroup object. A PhysicalTable object has a 0:1 cardinality to a
PropertyGroup object in a PrimaryPropertyGroup association.

<UpdateMetadata>
<Metadata>

<PhysicalTable Id="A53TPPVI.A4000001">
<PrimaryPropertyGroup Function="Modify">

<PropertyGroup Id="" Name="Read Options"/>
</PrimaryPropertyGroup>

</PhysicalTable>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the request, note the following:
� The Id= attribute is used in the main element and specifies a real value.
� The association name element (PrimaryPropertyGroup) specifies the Function=

attribute with the MODIFY directive, which is required to modify single
associations.

� Use of the Id= attribute in the associated object definition with a null value
instructs the SAS Metadata Server to create the PrimaryPropertyGroup
association and the required PropertyGroup object if they do not exist, and to
modify the properties of the PropertyGroup object if it does exist.

To replace an existing PrimaryPropertyGroup association with a new association, you
need to specify Function="REPLACE".

Updating Metadata Objects � Example of an UpdateMetadata Request That Merges Associations 229

Example of an UpdateMetadata Request That Merges Associations
The following UpdateMetadata examples illustrate the use of the MERGE directive.

MERGE is the default directive for multiple associations when the Function= attribute
is omitted from an UpdateMetadata request. MERGE adds and modifies associations
without overwriting existing associations.

The first example adds UniqueKeys and ForeignKeys associations to the table objects
created in Chapter 10, “Adding Metadata Objects,” on page 205. The UpdateMetadata
request consists of two main parts:

� It adds a UniqueKeys association to PhysicalTable A53TPPVI.A4000002 and
identifies the table’s Name column (A53TPPVI.A5000005) as the key column.

� It associates the UniqueKey object with PhysicalTable A53TPPVI.A4000001 by
creating a ForeignKeys association. The ForeignKey object identifies the table’s
Employees column (A53TPPVI.A5000004) as its key column.

<UpdateMetadata>
<Metadata>

<PhysicalTable Id="A53TPPVI.A4000002">
<UniqueKeys Function="Merge">

<UniqueKey Id="" Name="Sales Associates in NW Region">
<KeyedColumns Function="Merge">

<Column ObjRef="A53TPPVI.A5000005"/>
</KeyedColumns>
<ForeignKeys Function="Merge">

<ForeignKey Id="" Name="Link to Sales Associates table">
<Table>

<PhysicalTable ObjRef="A53TPPVI.A4000001"
Name="Sales offices in NW Region"/>

</Table>
<KeyedColumns Function="Merge">

<Column ObjRef="A53TPPVI.A5000004"/>
</KeyedColumns>

</ForeignKey>
</ForeignKeys>

</UniqueKey>
</UniqueKeys>

</PhysicalTable>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

230 Example of an UpdateMetadata Request That Merges Associations � Chapter 11

In the request, note the following:
� The Id= attribute in the main element specifies a real value.

� The Function= directives in the <UNIQUEKEYS>, <KEYEDCOLUMNS>, and
<FOREIGNKEYS> association elements specify to merge the new associations
with any existing associations defined in the association lists of the specified tables
and columns. MERGE is the default directive for multiple associations, so the
directives could have been omitted from the request and MERGE would be used.

� The null Id= values in the <UNIQUEKEY> and <FOREIGNKEY> subelements
instruct the SAS Metadata Server to create new associated objects.

� The ObjRef= attribute in the <COLUMN> element specifies to create an
association to an existing object.

� The Table association is a single association. The default directive for single
associations is MODIFY, which modifies an existing association or adds it if the
association does not exist. Use of the ObjRef= attribute prevents the table’s other
attributes from being modified.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the UPDATEMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002">
<UniqueKeys>
<UniqueKey Id="A53TPPVI.A8000001" Name="Sales Associates in NW Region">
<KeyedColumns>
<Column ObjRef="A53TPPVI.A5000005"/>
</KeyedColumns>
<ForeignKeys>
<ForeignKey Id="A53TPPVI.A9000001" Name="Link to Sales Associates table">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>
<KeyedColumns>
<Column ObjRef="A53TPPVI.A5000004"/>
</KeyedColumns>
<PartnerUniqueKey>
<UniqueKey ObjRef="A53TPPVI.A8000001"/>
</PartnerUniqueKey>
</ForeignKey>
</ForeignKeys>
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>
</Table>
</UniqueKey>
</UniqueKeys>
</PhysicalTable>

The request created seven associations and two new objects (UniqueKey and
ForeignKey).

Updating Metadata Objects � Example of an UpdateMetadata Request That Merges Associations 231

The following example updates the UniqueKey object created in the previous request.
It modifies the Name= attribute of the key column and adds an association to a second
key column.

<UpdateMetadata>
<Metadata>

<UniqueKey Id="A53TPPVI.A8000001">
<KeyedColumns>

<Column Id="A53TPPVI.A5000005" Name="EmployeeName"/>
<Column ObjRef="A53TPPVI.A5000006"/>

</KeyedColumns>
</UniqueKey>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the request, note the following:

� A Function= directive is omitted from the request because KeyedColumns is a
multiple association and the default value of MERGE is appropriate for the
operation.

� Use of the Id= attribute to identify the original keyed column allows the column’s
properties to be updated.

� Use of the ObjRef= attribute to identify the newly associated column creates the
association and does not modify any of the column’s other attributes.

Here are the results of a GetMetadata request that lists the UniqueKey object’s
KeyedColumns associations:

<!-- Using the GETMETADATA method. -->

<UniqueKey Id="A53TPPVI.A8000001" Name="Sales Associates in NW Region">
<KeyedColumns>
<Column Id="A53TPPVI.A5000005" Name="EmployeeName" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
</KeyedColumns>
</UniqueKey>

Two Column objects are returned. Column A53TPPVI.A5000005’s Name= attribute
was changed from Name to EmployeeName.

232 Example of an UpdateMetadata Request That Deletes an Association � Chapter 11

Example of an UpdateMetadata Request That Deletes an Association
The following UpdateMetadata request deletes the KeyedColumns association added

in the second example in “Example of an UpdateMetadata Request That Merges
Associations” on page 229:

<UpdateMetadata>
<Metadata>

<UniqueKey Id="A53TPPVI.A8000001">
<KeyedColumns Function="Remove">

<Column Id="A53TPPVI.A5000006" Name="Address"/>
</KeyedColumns>

</UniqueKey>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

The Function="REMOVE" directive instructs the SAS Metadata Server to remove the
specified association from the UniqueKey object’s KeyedColumns association list. If
Function="REPLACE" had been specified, the existing KeyedColumns association list
would have been replaced with the specified association.

Here are the results of a GetMetadata call that gets a revised KeyedColumns
associations list:

<!-- Using the GETMETADATA method. -->

<UniqueKey Id="A53TPPVI.A8000001" Name="Sales Associates in NW Region">
<KeyedColumns>
<Column Id="A53TPPVI.A5000005" Name="EmployeeName" Desc="Name of employee"/>
</KeyedColumns>
</UniqueKey>

Updating Metadata Objects � Example of an UpdateMetadata Request That Appends Associations 233

Example of an UpdateMetadata Request That Appends Associations
The following UpdateMetadata request adds an association and a new Column object

to PhysicalTable A53TPPVI.A4000002 using the APPEND directive:

<UpdateMetadata>
<Metadata>

<PhysicalTable Id="A53TPPVI.A4000002">
<Columns Function="Append">

<Column Id="" Name="Salary" PublicType="Column"/>
</Columns>

</PhysicalTable>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the example, the null Id= value in the associated object definition indicates the
associated object is to be created. Here is an example of the output returned by the SAS
Metadata Server:

<!-- Using the UPDATEMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002">
<Columns Function="Append">
<Column Id="A53TPPVI.A500002U" Name="Salary">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>
</Table>
</Column>
</Columns>
</PhysicalTable>

The association to the new Column object is added to the existing association list
without affecting other associated objects. Here are the results of a GetMetadata
request that lists the Column objects associated with PhysicalTable
A53TPPVI.A4000002:

<!-- Using the GETMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates">
<Columns>
<Column Id="A53TPPVI.A5000005" Name="EmployeeName" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
<Column Id="A53TPPVI.A5000007" Name="Title" Desc="Job grade"/>
<Column Id="A53TPPVI.A500002U" Name="Salary" Desc=""/>
</Columns>
</PhysicalTable>

234 Additional Information � Chapter 11

Additional Information

For more information about the UpdateMetadata method, see “UpdateMetadata” on
page 110.

235

C H A P T E R

12
Overview of Querying Metadata

Supported Queries 235
Querying Server Availability and Configuration 235

Querying Namespaces 235

Querying Repositories 236

Querying Metadata Objects 236

Using GetTypes to Get the Metadata Types in a Namespace 237
Using GetSubtypes to Get a Metadata Type’s Subtypes 237

Using GetRepositories to Get the Registered Repositories 238

Using GetRepositories to Get Repository Access and Status Information 238

Using GetMetadata to Get a Repository’s Regular Attributes 240

Using GetTypes to Get Actual Metadata Types in a Repository 241

Supported Queries
The SAS Open Metadata Interface provides methods to get information about the

SAS Metadata Server’s availability and configuration, namespaces, metadata
repositories, and metadata objects.

Querying Server Availability and Configuration
In SAS 9.2, the IServer server interface Status method has been enhanced to get

more information about the SAS Metadata Server. Using the Status method, you can
get the following information about the SAS Metadata Server:

� the server’s current state
� SAS Metadata Model and platform version numbers
� the server locale
� the value of specific server configuration options that are set in the omaconfig.xml

file and server invocation command
� journaling statistics

For more information, see “Status” on page 194.

Querying Namespaces
A namespace refers to the set of metadata types that can be accessed by the SAS

Metadata Server. The SAS Open Metadata Interface defines two namespaces:
� The REPOS namespace contains metadata types that describe metadata

repositories.

236 Querying Repositories � Chapter 12

� The SAS namespace contains all metadata types that describe application
elements.

The GetNamespaces method enables you to get the namespaces programmatically.
The GetTypes method gets all of the metadata types in a namespace. The
GetTypeProperties method gets all possible properties for the specified metadata type.
The SAS Metadata Model is a hierarchical model. The GetSubtypes method gets
subtypes of a specified metadata type. The IsSubtypeOf method method determines
whether one metadata type is a subtype of another metadata type. Together, these
methods are referred to as management methods because they enable you to get
information about the metadata environment. This information provides useful
background information when creating metadata objects. For more information, see
“GetNamespaces” on page 96, “GetTypes” on page 105, “GetTypeProperties” on page
104, “GetSubtypes” on page 102, and “IsSubtypeOf” on page 108.

Querying Repositories
When a repository is created, it is registered in a SAS Repository Manager. The SAS

Repository Manager is itself a repository, which maintains information that enables the
SAS Metadata Server to access the repositories, metadata programmers to create
metadata in the repositories, and administrators to administer the availability of the
repositories.

You can determine the repositories that have been registered in a SAS Repository
Manager by using the GetRepositories method. The GetRepositories method lists the
Id=, Name=, Desc=, and DefaultNS= attributes of the repositories registered in the SAS
Repository Manager. A repository identifier is required to add metadata to a repository.
For usage information, see “Using GetRepositories to Get the Registered Repositories”
on page 238.

The SAS Repository Manager also stores Path=, RepositoryType=,
RepositoryFormat=, Access=, PauseState= and CurrentAccess= attributes for a
repository. To get the values of these attributes, you can issue the GetRepositories
method with the OMI_ALL (1) flag set. For usage information, see “Using
GetRepositories to Get Repository Access and Status Information” on page 238.

A repository is described by a metadata type just like any other metadata object. To
get values for global attributes that are stored for all metadata types, you can use the
same methods that you use to read application objects. For more information, see
“Querying Metadata Objects” below. Issue the GetMetadata and GetMetadataObjects
method calls on the REPOS namespace and specify the RepositoryBase metadata type.
For more information, see “Using GetMetadata to Get a Repository’s Regular
Attributes” on page 240.

Querying Metadata Objects
A metadata object consists of attributes and associations that uniquely describe the

object instance. The object instance can be an application element or a repository. The
SAS Open Metadata Interface provides two methods for reading metadata objects:

� The GetMetadata method gets specified properties of a specific metadata object.

� The GetMetadataObjects method method gets all metadata objects of a specified
metadata type from the specified repository.

The methods support flags and options that enable you to expand or to filter your
requests.

Overview of Querying Metadata � Using GetSubtypes to Get a Metadata Type’s Subtypes 237

For information about the read methods, see “GetMetadata” on page 89 and
“GetMetadataObjects” on page 93.

For usage information, see Chapter 13, “Using GetMetadata to Get the Properties of
a Specified Metadata Object,” on page 243, Chapter 14, “Using GetMetadataObjects to
Get All Metadata of a Specified Metadata Type,” on page 263, and Chapter 15,
“Filtering a GetMetadataObjects Request,” on page 277.

Using GetTypes to Get the Metadata Types in a Namespace
The SAS Open Metadata Interface provides the GetTypes method to get all of the

metadata types defined in a namespace. The following is an example of a GetTypes
request that gets the metadata types that are defined in the SAS namespace of the SAS
Metadata Model. The request is formatted for the INMETADATA parameter of the
DoRequest method:

<GetTypes>
<Types/>
<NS>SAS</NS>
<Flags/>
<Options/>

</GetTypes>

The <NS>, <FLAGS>, and <OPTIONS> elements are input parameters. This
example does not specify any flags or options. The <TYPES> element is an output
parameter. The <TYPES> element lists the metadata types in the specified namespace.

To get all of the metadata types in the SAS Metadata Model, issue the GetTypes
method on both the SAS and REPOS namespaces.

The following is an example of the method output. Only the first line of the output is
shown:

<Type Id="AbstractExtension" Desc="Abstract Extension" HasSubtypes="1"/>

In the output, note the following:
� Id= is a metadata type name.
� Desc= is a system-supplied description of the metadata type.
� HasSubtypes= is a Boolean indicator that identifies whether a metadata type has

subtypes. A value of 1 indicates that the type has subtypes. A value of 0 indicates
that it does not.

Using GetSubtypes to Get a Metadata Type’s Subtypes
To identify a metadata type’s subtypes, use the GetSubtypes method. The following

is an example of a GetSubtypes request that lists the subtypes of the AbstractExtension
metadata type:

<GetSubtypes>
<Supertype>AbstractExtension</Supertype>
<Subtypes/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetSubtypes>

The <SUPERTYPE>, <NS>, <FlAGS>, and <OPTIONS> elements are input
parameters. In the request, the <SUPERTYPE> element specifies the

238 Using GetRepositories to Get the Registered Repositories � Chapter 12

AbstractExtension metadata type. The <NS> element specifies the SAS namespace.
This example doesn’t specify any flags or options. The <SUBTYPES> element is an
output parameter.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETSUBTYPES method. -->

<SubTypes>
<Type Id="Extension" Desc="Object Extensions" HasSubtypes="0"/>
<Type Id="NumericExtension" Desc="Numeric Extension" HasSubtypes="0"/>
</SubTypes>

The AbstractExtension metadata type has two subtypes: Extension and
NumericExtension. The HasSubtypes= attribute indicates these metadata types do not
have any subtypes of their own.

Using GetRepositories to Get the Registered Repositories

You can get the repositories that are registered on a SAS Metadata Server by issuing
the GetRepositories method. The following is an example of a GetRepositories request
that is formatted for the INMETADATA parameter of the DoRequest method.

<GetRepositories>
<Repositories/>
<Flags>0</Flags>
<Options/>

</GetRepositories>

The request gets the Id=, Name=, Desc= and DefaultNS= attributes of all
repositories registered on the SAS Metadata Server. Here is an example of the output
returned by the SAS Metadata Server:

<!-- Using the GETREPOSITORIES method. -->

<GetRepositories>
<Repositories>
<Repository Id="A0000001.A55WR3E8" Name="Foundation" Desc=" " DefaultNS="SAS"/>
<Repository Id="A0000001.A59XXOKF" Name="Custom" Desc=" " DefaultNS="SAS"/>
<Repository Id="A0000001.A5NJI601" Name="Custom2" Desc=" " DefaultNS="SAS"/>
<Repository Id="A0000001.A5J5NMEG" Name="Custom3" Desc=" " DefaultNS="SAS"/>
<Repository Id="A0000001.A5G61RLY8" Name="Project" Desc=" " DefaultNS="SAS"/>

</Repositories>
</GetRepositories>

The current SAS Repository Manager has five repositories registered in it:
Foundation, Custom, Custom2, Custom3, and Project.

Using GetRepositories to Get Repository Access and Status Information

To list the values of the repositories Path=, RepositoryType=, RepositoryFormat=,
Access=, PauseState=, and CurrentAccess= attributes, issue the GetRepositories
method with the OMI_ALL (1) flag set.

The following is an example of a method call that sets this flag:

Overview of Querying Metadata � Using GetRepositories to Get Repository Access and Status Information 239

<GetRepositories>
<Repositories/>

<!-- OMI_ALL flag -->
<Flags>1</Flags>
<Options/>

</GetRepositories>

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETREPOSITORIES method. -->

<GetRepositories>
<Repositories>

<Repository Id="A0000001.A0000001" Name="REPOSMGR" Desc="The Repository Manager"
DefaultNS="SAS" RepositoryType=" " RepositoryFormat=" 11"
Access="OMS_FULL" CurrentAccess="OMS_FULL" PauseState=" " Path="rposmgr" />

<Repository Id="A0000001.A55WR3E8" Name="Foundation" Desc=" "
DefaultNS="SAS"
RepositoryType="FOUNDATION " RepositoryFormat=" 11" Access="OMS_FULL"
CurrentAccess="OMS_FULL" PauseState=" " Path="C:\SAS\FoundationServers\Lev1\
SASMain\MetadataServer\MetadataRepositories\Foundation"/>

<Repository Id="A0000001.A59XXOKF" Name="Custom" Desc=" " DefaultNS="SAS"
RepositoryType="CUSTOM" RepositoryFormat=" 11" Access="OMS_READONLY"
CurrentAccess="OMS_READONLY" PauseState="READONLY" Path="C:\SAS\FoundationServers\
Lev1\SASMain\MetadataServer\MetadataRepositories\Custom"/>

<Repository Id="A0000001.A5NJI601" Name="Custom2" Desc=" " DefaultNS="SAS"
RepositoryType="CUSTOM" RepositoryFormat=" 11" Access="OMS_ADMIN"
CurrentAccess="OMS_ADMIN" PauseState="ADMIN" Path="C:\SAS\FoundationServers\Lev1\
SASMain\MetadataServer\MetadataRepositories\Custom2"/>

<Repository Id="A0000001.A5J5NMEG" Name="Custom3" Desc=" " DefaultNS="SAS"
RepositoryType="CUSTOM" RepositoryFormat=" 11" Access="OMS_OFFLINE"
CurrentAccess="OMS_OFFLINE" PauseState="OFFLINE" Path="C:\SAS\FoundationServers\
Lev1\SASMain\MetadataServer\MetadataRepositories\Custom3"/>

<Repository Id="A0000001.A5G61RLY8" Name="Project" Desc=" " DefaultNS="SAS"
RepositoryType="PROJECT " RepositoryFormat=" 11" Access="OMS_FULL"
CurrentAccess="OMS_FULL" PauseState=" " Path="C:\SAS\FoundationServers\Lev1\
SASMain\MetadataServer\MetadataRepositories\Project"/>

</Repositories>
</GetRepositories>

In the output, note the following:

� There are five repositories registered in addition to the SAS Repository Manager.
The SAS Repository Manager is the first repository listed.

� A blank value in the SAS Repository Manager’s PauseState= attribute indicates
the SAS Metadata Server is online. The Pause method affects all repositories
uniformly in SAS 9.2, so you can expect all of the repositories to be available,
depending on their registered access values.

� The foundation repository is listed next and is registered with an Access= value of
OMS_FULL (full access). There are three custom repositories and one project
repository. The repository named Custom is registered with read-only access. The
repository named Custom2 is registered with administrative access. The
repository named Custom3 is registered as offline. The Project repository is
registered with full access.

� All of the repositories have the same format (11).

240 Using GetMetadata to Get a Repository’s Regular Attributes � Chapter 12

� The fact that the CurrentAccess= value for each repository matches the Access=
value indicates that the SAS Metadata Server is able to access all repositories
without a problem. The CurrentAccess= value changes only if the SAS Metadata
Server cannot access a repository in its intended state for a reason other than a
server pause. For example, if the repository’s format is not compatible with the
current SAS Metadata Server. In that case, the CurrentAccess= value might
return a value of READONLY or OFFLINE.

Here is an example of the output from a GetRepositories method call that was issued
on a SAS Metadata Server paused to an ADMIN state:

<!-- Using the GETREPOSITORIES method. -->

<GetRepositories>
<Repositories>

<Repository Id="A0000001.A0000001" Name="REPOSMGR"
Desc="The Repository Manager" DefaultNS="SAS" RepositoryType=" "RepositoryFormat=" 11"
Access="OMS_FULL" CurrentAccess="OMS_FULL" PauseState="ADMIN" Path="rposmgr"/>

<Repository Id="A0000001.A55WR3E8" Name="Foundation" Desc=" " DefaultNS="SAS"
RepositoryType="FOUNDATION" RepositoryFormat=" 11" Access="OMS_FULL"
CurrentAccess="OMS_FULL" PauseState="ADMIN" Path="C:\SAS\FoundationServers\
Lev1\SASMain\MetadataServer\MetadataRepositories\Foundation"/>

<Repository Id="A0000001.A59XXOKF" Name="Custom" Desc=" " DefaultNS="SAS"
RepositoryType="CUSTOM" RepositoryFormat=" 11" Access="OMS_READONLY"
CurrentAccess="OMS_READONLY" PauseState="ADMIN(READONLY)" Path="C:\SAS\
FoundationServers\Lev1\SASMain\MetadataServer\MetadataRepositories\Custom" />

<Repository Id="A0000001.A5NJI601" Name="Custom2" Desc=" " DefaultNS="SAS"
RepositoryType="CUSTOM" RepositoryFormat=" 11" Access="OMS_ADMIN"
CurrentAccess="OMS_ADMIN" PauseState="ADMIN" Path="C:\SAS\FoundationServers\
Lev1\SASMain\MetadataServer\MetadataRepositories\Custom2"/>

<Repository Id="A0000001.A5J5NMEG" Name="Custom3" Desc=" " DefaultNS="SAS"
RepositoryType="CUSTOM" RepositoryFormat=" 11" Access="OMS_OFFLINE"
CurrentAccess="OMS_OFFLINE" PauseState="OFFLINE" Path="C:\SAS\FoundationServers\Lev1\
SASMain\MetadataServer\MetadataRepositories\Custom3"/>

<Repository Id="A0000001.A5G61RLY8" Name="Project" Desc=" " DefaultNS="SAS"
RepositoryType="PROJECT " RepositoryFormat=" 11" Access="OMS_FULL"
CurrentAccess="OMS_FULL" PauseState="ADMIN" Path="C:\SAS\FoundationServers\Lev1\
SASMain\MetadataServer\MetadataRepositories\Project"/>

</Repositories>
</GetRepositories>

In this output, note the following:

� The PauseState= attribute of all repositories except Custom3, which has a value of
OFFLINE, have the word ADMIN added. A server pause is intended to change the
repository’s registered availability to a more restrictive state. A repository cannot
be changed to a less restrictive state than OFFLINE.

� The Custom repository was changed to ADMIN(READONLY), meaning it is still in
read-only mode. However, only administrators can read it.

Using GetMetadata to Get a Repository’s Regular Attributes

To get general information about a repository, such as its Engine=,
MetadataCreated=, and MetadataUpdated= values, use the GetMetadata method and
set the OMI_ALL (1) flag.

Overview of Querying Metadata � Using GetTypes to Get Actual Metadata Types in a Repository 241

The following GetMetadata method call, which is formatted for the INMETADATA
parameter of the DoRequest method, requests information about the Foundation
repository:

<GetMetadata>
<Metadata>

<RepositoryBase Id="A0000001.A55WR3E8" Name="Foundation" />
</Metadata>

<NS>REPOS</NS>
<Flags>1</Flags>
<Options/>

</GetMetadata>

In the method call, note the following:
� the <METADATA> element specifies the metadata type RepositoryBase, not

Repository.
� the <NS> element specifies the REPOS namespace.
� the <FLAGS> element specifies a 1, setting the OMI_ALL flag. If this flag were

not set, the GetMetadata method would return only the Id= and Name= attributes
of the repository, which we already know.

Here is an example of the output returned from the request:

<!-- Using the GETMETADATA method. -->

<GetMetadata>
<Metadata>

<RepositoryBase Id="A0000001.A55WR3E8" Name="Foundation" Access="0"
Desc=" " Engine="BASE" MetadataCreated=’’09Apr2008:18:06:57" MetadataUpdated=
"18Sep2008:18:47:54" Options=" " Path="C:\SAS\FoundationServers\Lev1\SASMain\
MetadataServer\MetadataRepositories\Foundation"
RepositoryFormat="11" RepositoryType="FOUNDATION">

<DependencyUsedBy/>
<DependencyUses/>

</RepositoryBase>
</Metadata>

<NS>REPOS</NS>
<Flags>1</Flags>
<Options/>

</GetMetadata>

The GetMetadata method returns the following attribute values that are not
returned by the GetRepositories method: Engine=, MetadataCreated=,
MetadataUpdated=, and Options=. The value Access="0" is comparable to OMS_FULL
and means ONLINE with full access.

A GetMetadataObjects method that is issued in the REPOS namespace on the
RepositoryBase metadata type with the OMI_GET_METADATA (256) flag and
OMI_ALL (1) flag set will get this same information for all registered repositories.

Using GetTypes to Get Actual Metadata Types in a Repository
After adding metadata objects, you can get all metadata types defined in a repository

by using the GetTypes method with the OMI_SUCCINCT (2048) flag set. When used
with OMI_SUCCINCT and its <REPOSID> element, the GetTypes method returns the
metadata types for which metadata has been defined in a specific repository.

242 Using GetTypes to Get Actual Metadata Types in a Repository � Chapter 12

Here is an example of a GetTypes request that sets the OMI_SUCCINCT flag:

<GetTypes>
<Types/>
<NS>SAS</NS>
<!-- specify the OMI_SUCCINCT flag -->
<Flags>2048</Flags>
<Options>
<!-- include <REPOSID> XML element and a repository identifier -->
<Reposid>A0000001.A53TPPVI</Reposid>

</Options>
</GetTypes>

The <NS>, <FLAGS>, <OPTIONS>, and <REPOSID> elements are input parameters.

� The <NS> element specifies the namespace.
� The <FLAGS> element sets the OMI_SUCCINCT flag (2048).
� The <OPTIONS> element passes the <REPOSID> element to the SAS Metadata

Server.
� The <REPOSID> element specifies the target repository identifier.

The <TYPES> element is an output parameter. Here is an example of the output
returned by the SAS Metadata Server:

<!-- Using the GETTYPES method. -->

<Types>
<Type Id="Column" Desc="Columns" HasSubtypes="0"/>
<Type Id="PhysicalTable" Desc="Physical Table" HasSubtypes="1"/>
<Type Id="ResponsibleParty" Desc="Responsible Party" HasSubtypes="0"/>
<Type Id="SASLibrary" Desc="SAS Library" HasSubtypes="0"/>
</Types>

The repository contains metadata objects of four metadata types: Column,
PhysicalTable, ResponsibleParty, and SASLibrary.

� Id= specifies the metadata type.
� Desc= returns a system-supplied description of the metadata type.
� When OMI_SUCCINCT is set, the HasSubtypes= attribute has no meaning.

To list the actual metadata objects of each metadata type, you must use the
GetMetadataObjects method. See “GetMetadataObjects” on page 93.

243

C H A P T E R

13 Using GetMetadata to Get the
Properties of a Specified
Metadata Object

Introduction to the GetMetadata Method 243
GetMetadata and Cross-Repository References in SAS 9.2 244

Expanding a GetMetadata Request to Get All of An Object’s Attributes 245

Expanding a GetMetadata Request to Get All of an Object’s Properties 246

Expanding a GetMetadata Request to Get Properties of Associated Objects 247

Filtering the Associated Objects That Are Returned By a GetMetadata Request 249
Specifying Search Criteria in the <METADATA> Element 249

Specifying Search Criteria in the <TEMPLATES> Element 251

Specifying Search Criteria in Both Elements 252

Using GetMetadata to Get Common Properties for Sets of Objects 254

Including Objects from Project Repositories in a Public Query 259

Combining GetMetadata Flags 260
Using Templates 260

Creating a Template 260

Specifying Search Criteria in a Template to Filter Associated Objects 261

Introduction to the GetMetadata Method

To get properties for a metadata object, the SAS Open Metadata Interface provides
the GetMetadata method. The default behavior of the GetMetadata method is to get the
metadata object with whatever properties are specified in the INMETADATA
parameter. The properties can include the XML attributes of the specified metadata
object and association names. For example, consider the following GetMetadata
request, which is formatted for the DoRequest interface:

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001" Name="" Desc="" ColumnType="" SASFormat="">
<Table/>
</Column>

</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>
</GetMetadata>

In the <METADATA> element, the property string specifies to get the following:

� The Column object with the metadata identifier A53TPPVI.A5000001. The
A53TPPVI portion of the identifier indicates the repository to look in. A5000001 is
the unique object instance identifier.

244 GetMetadata and Cross-Repository References in SAS 9.2 � Chapter 13

� The Name=, Desc=, ColumnType=, and SASFormat= attributes of the Column
object.

� Any objects that are associated to the Column object through the Table association
name. A Column object can have one table object associated with it. For a list of
the table metadata types supported under the Table association name, as well as
other association names defined for the Column metadata type and other
metadata types, see the “Alphabetical Listing of SAS Namespace Metadata Types”
in the SAS Metadata Model: Reference. .

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"
ColumnType="12" SASFormat="$Char32.">
<Table>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"/>
</Table>

</Column>

The SAS Metadata Server returns values for the requested attributes of the specified
Column object, and general, identifying information (Id= and Name=) about the
associated PhysicalTable object.

To get additional properties for the specified Column object and its associated objects,
the GetMetadata method supports the following flags:

� OMI_ALL (1)—Gets all of the attributes and associations of the specified object,
and general, identifying information about any associated objects.

� OMI_ALL_SIMPLE (8)—Gets all of the attributes of the specified object.

� OMI_SUCCINCT (2048)—Omits properties that do not contain a value or that
contain a null value.

� OMI_TEMPLATE (4)—Instructs the SAS Metadata Server to check the
<OPTIONS> element for user-defined templates which define additional metadata
properties to return. The templates can request additional properties for the
specified metadata object, as well as attributes and associations for associated
metadata objects. Templates are specified in a <TEMPLATES> element.

� OMI_INCLUDE_SUBTYPES (16)—When set with the OMI_TEMPLATE flag, gets
properties for metadata objects that are subtypes of the specified metadata type,
and gets the properties of the specified metadata object.

GetMetadata and Cross-Repository References in SAS 9.2

The SAS Metadata Server enables clients to create associations between objects in
different repositories. An association that is defined between objects that exist in
different repositories is referred to as a cross-repository reference. Between SAS 9.1.3
and SAS 9.2, the way that cross-repository references are retrieved has changed.

In SAS 9.1.3, the SAS Metadata Server relied on a dependency model that defined
which repositories could have cross-repository references created between them. This
dependency model required that a directionality be specified for queries requesting
cross-repository references. Repositories that had dependencies defined existed in a
repository chain. The default behavior of the GetMetadata method was to return
cross-repository references from the specified repository and from repositories above it
in the repository chain. To get cross-repository references under the specified repository
in the repository chain, a client had to set the OMI_DEPENDENCY_USED_BY (16384)

Using GetMetadata to Get the Properties of a Specified Metadata Object � Getting All of An Object’s Attributes 245

flag. The output included cross-repository references to objects that were in custom and
project repositories.

In SAS 9.2, the SAS Metadata Server has been changed to support an independent
repository model. In this model, the following is true:

� Repository dependencies are ignored.
� Cross-repository references can be created between the foundation repository and

any custom repositories. The foundation repository and custom repositories are
considered public repositories because their content is intended for general use by
clients.

� A GetMetadata method issued on an object in a public repository that requests
information about associated objects automatically returns associated objects from
all public repositories.

� The OMI_DEPENDENCY_USED_BY flag is set only if you want to include
cross-repository references to objects in project repositories in the results. Project
repositories are considered private unless specifically requested.

A GetMetadata request that is issued in a project repository returns associated
objects that are in the project repository, and returns cross-repository references from
all of the public repositories that the project repository services.

Expanding a GetMetadata Request to Get All of An Object’s Attributes
To get all of a metadata object’s attributes, set the OMI_ALL_SIMPLE (8) flag in the

GetMetadata request. The OMI_ALL_SIMPLE flag gets only an object’s attributes; it
does not get any associations. The following is an example of a GetMetadata request
that sets the OMI_ALL_SIMPLE flag:

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001"/>
</Metadata>
<NS>SAS</NS>
<!--OMI_ALL_SIMPLE flag -->
<Flags>8</Flags>
<Options/>
</GetMetadata>

In the request, note the following:
� The <METADATA> element specifies a metadata type and an object instance

identifier.
� The <NS> parameter specifies the namespace in which to process the request.
� The <FLAGS> element specifies the OMI_ALL_SIMPLE (8) flag.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" BeginPosition="0" ColumnLength="32"
ColumnName="City" ColumnType="12" Desc="City of Sales Office"
EndPosition="0" IsDiscrete="0" IsNullable="0" LockedBy=""
MetadataCreated="05Feb2002:09:37:00" MetadataUpdated="05Feb2002:09:37:00"
Name="City" SASAttribute="" SASColumnLength="32" SASColumnName="City"
SASColumnType="C" SASExtendedColumnType="" SASExtendedLength="0"

246 Expanding a GetMetadata Request to Get All of an Object’s Properties � Chapter 13

SASFormat="$Char32." SASInformat="$32." SASPrecision="0" SASScale="0"
SortOrder="" SummaryRole=""/>

The GetMetadata method gets all attributes for the specified Column object,
including attributes for which values have not been defined. The output does not
include any associations. To limit the output to attributes that have values defined, also
set the OMI_SUCCINCT (2048) flag. Add the value of OMI_SUCCINCT to
OMI_ALL_SIMPLE (2048 + 8 = 2056) and specify the sum in the <FLAGS> element.
The OMI_SUCCINCT flag instructs the SAS Metadata Server to omit any attributes
that do not contain a value or that contain a null value from the output.

Expanding a GetMetadata Request to Get All of an Object’s Properties
To get all of a metadata object’s properties (attributes and associations), set the

OMI_ALL (1) flag in the GetMetadata request. The following is an example of a
GetMetadata request that sets the OMI_ALL flag:

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001"/>
</Metadata>
<NS>SAS</NS>
<!--OMI_ALL flag -->
<Flags>1</Flags>
<Options/>
</GetMetadata>

In the request, note the following:
� The <METADATA> element specifies a metadata type and an object instance

identifier.
� The <NS> parameter specifies the namespace.
� The <FLAGS> element specifies the OMI_ALL (1) flag.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" BeginPosition="0" ColumnLength="32"
ColumnName="City" ColumnType="12" Desc="City of Sales Office" EndPosition="0"
IsDiscrete="0" IsNullable="0" LockedBy="" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" Name="City" SASAttribute=""
SASColumnLength="32" SASColumnName="City" SASColumnType="C" SASExtendedColumnType=""
SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32." SASPrecision="0"
SASScale="0" SortOrder="" SummaryRole="">

<AccessControls/>
<AnalyticColumns/>
<Changes/>
<DisplayForKey/>
<Documents/>
<Extensions/>
<ExternalIdentities/>
<ForeignKeyAssociations/>
<Groups/>
<Implementors/>
<Indexes/>

Using GetMetadata to Get the Properties of a Specified Metadata Object � Getting Properties of Associated Objects 247

<Keys/>
<Keywords/>
<MLAggregations/>
<Notes/>
<PrimaryPropertyGroup/>
<Properties/>
<PropertySets/>
<QueryClauses/>
<ResponsibleParties/>
<SourceFeatureMaps/>
<SourceTransformations/>
<SpecSourceTransformations/>
<SpecTargetTransformations/>
<Table>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"
Desc="Sales offices in NW region"/>

</Table>
<TargetFeatureMaps/>
<TargetTransformations/>
<Timestamps/>
<Trees/>

<UniqueKeyAssociations/>
<UsedByPrototypes/>
<UsingAggregations/>
<UsingPrototype/>
</Column>

The GetMetadata method gets all attributes and associations for the specified
Column object, including attributes and associations for which values have not been
defined. To limit the output to attributes and associations that have values, also set the
OMI_SUCCINCT (2048) flag. The OMI_SUCCINCT flag instructs the SAS Metadata
Server to omit any attributes and associations that do not contain a value or that
contain a null value from the output.

This Column object has one associated object defined. A PhysicalTable object is
associated to the Column through the Table association name. The OMI_ALL flag
returns the Id=, Name=, and Desc= values for associated objects.

Expanding a GetMetadata Request to Get Properties of Associated
Objects

A GetMetadata request gets requested attributes for the specified object and only the
Id=, Name= and Desc= attributes of any associated objects that are requested directly
in the <METADATA> element, or indirectly by the OMI_ALL (1) flag. To get additional
attributes for associated objects, you must set the OMI_TEMPLATE (4) flag and specify
a template in the GetMetadata request. A template is an additional property string
that is specified in the OPTIONS parameter of the GetMetadata method within a
<TEMPLATES> element.

The template can request additional attributes for the object specified in the
<METADATA> element of the GetMetadata request, it can request specific attributes
for associated objects requested in the <METADATA> element, and it can request
additional associated objects. The attributes that are requested in the template are
retrieved, in addition to the attributes that are requested in the <METADATA> element

248 Getting Properties of Associated Objects � Chapter 13

or that are requested by other GetMetadata flags. For information on how to create a
template, see “Using Templates” on page 260.

The following is an example of a GetMetadata request that sets the
OMI_TEMPLATE flag and specifies a template to request additional attributes for both
the specified object and associated objects requested in the <METADATA> element:

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001" Name="" Desc="" ColumnType="" SASFormat="">
<Table/>
</Column>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TEMPLATE -->
<Flags>4</Flags>
<Options>
<Templates>
<Column Id="" ColumnLength="" BeginPosition="" EndPosition=""/>
<PhysicalTable Id="" Name="" Desc="" DBMSType="" MemberType=""/>

</Templates>
</Options>
</GetMetadata>

In the request, note the following:

� The <METADATA> element specifies the metadata type, an object instance
identifier, four of the metadata type’s attributes, and the association name Table.

� The <NS> element specifies the namespace.

� The <FLAGS> element specifies the number representing the OMI_TEMPLATE
flag.

� The <OPTIONS> element contains a <TEMPLATES> element and two templates.
The first template specifies additional attributes to retrieve for the Column object
identified in the <METADATA> element. The second template specifies additional
attributes to retrieve for the PhysicalTable object that is associated with the
Column object through the Table association name that was requested in the
<METADATA> element.

Here is an example of the output that is returned by the SAS Metadata Server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"
ColumnType="12" SASFormat="$Char32." ColumnLength="32" BeginPosition="0"
EndPosition="0">

<Table>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"

Desc="Sales offices in NW region" DBMSType="" MemberType=""/>
</Table>
</Column>

The GetMetadata method gets the values of the Name=, Desc=, ColumnType=,
SASFormat=, ColumnLength=, BeginPosition=, and EndPosition= attributes of the
specified Column object. In addition, it gets the Id=, Name=, Desc=, DBMSType=, and
MemberType= attributes of the Column object’s associated PhysicalTable object.

Using GetMetadata to Get the Properties of a Specified Metadata Object � Search Criteria in the <METADATA> Element 249

Filtering the Associated Objects That Are Returned By a GetMetadata
Request

The GetMetadata method supports search criteria to filter the associated objects that
it returns. The search criteria can be specified in both the <METADATA> element and
in the <TEMPLATES> element. The search criteria enable you to retrieve only
associated objects that are of a specified metadata type, or are of a specified metadata
type and meet specified attribute criteria.

The search criteria is specified in a string in the association name element of the
XML property string in one of the following forms:

<AssociationName search="Object"/>

<AssociationName search="Object[AttributeCriteria]"/>

� Object can be an * (asterisk) or a SAS Metadata Model metadata type that is a
valid associated object for the specified association name.

Specifying an * instructs the SAS Metadata Server to get objects of all metadata
types that are valid for <ASSOCIATIONNAME>.

Specifying a metadata type name instructs the SAS Metadata Server to get only
associated objects of the specified metadata type.

� [AttributeCriteria] is an attribute specification that conforms to the syntax
documented for the <XMLSELECT> option in “Attribute Criteria Component
Syntax” on page 279. When attribute criteria are specified, GetMetadata retrieves
only associated objects indicated by Object that also meet the specified attribute
criteria.

This syntax has changed from SAS 9.1, which supported search criteria in the
following form:

<AssociationName search="AttributeCriteria"/>

The SAS 9.2 syntax improves performance by enabling users to limit the number of
metadata types on which the attribute criteria are evaluated. The older syntax form is
still supported. It is the same as specifying the following:

"*[AttributeCriteria]"

Specifying Search Criteria in the <METADATA> Element
When specified in the <METADATA> element, the search criteria string looks like

one of the following:

<Metadata>
<MetadataType>

<AssociationName search="Object"/>
</MetadataType>

</Metadata>

<Metadata>
<MetadataType>

<AssociationName search="Object[AttributeCriteria]"/>

250 Search Criteria in the <METADATA> Element � Chapter 13

</MetadataType>
</Metadata>

To understand the filtering that occurs, consider the following requests. In the first
request, the <METADATA> element specifies to get the Document metadata object that
has Id="A52WE4LI.AT0000RZ" and all objects that are associated with it through the
Objects association name (all metadata types):

<GetMetadata>
<Metadata>

<Document Id="A52WE4LI.AT0000RZ">
<Objects search="*"/>

</Document>
</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadata>

The request is the same as specifying the association name without search criteria:

<GetMetadata>
<Metadata>

<Document Id="A52WE4LI.AT0000RZ">
<Objects/>

</Document>
</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadata>

In both requests, the GetMetadata method specifies to get requested attributes for
the specified Document object (Id= only in this case) and all objects that are associated
with it through the Objects association name. Here is an example of the output from
the requests:

<!-- Using the GETMETADATA method. -->

<Document Id="A52WE4LI.AT0000RZ">
<Objects>
<PhysicalTable Id="A52WE4LI.B60000RT" Name="Table1" Desc="Sales table"/>
<PhysicalTable Id="A52WE4LI.B60000RU" Name="Table2" Desc="Human Resources table"/>
<ExternalTable Id="A52WE4LI.BA000001" Name="Oracle Sales" Desc="Sales information
from Oracle database"/>

<ExternalTable Id="A52WE4LI.BA000002" Name="Oracle HR" Desc="Human Resources
information from Oracle database"/>

</Objects>
</Document>

The specified Document object has four objects associated with it through the Objects
association name: two PhysicalTable objects and two ExternalTable objects. By default,
the GetMetadata method returns the Id=, Name= and Desc= values of the associated
objects.

In this second request, a search string is used in the Objects association name of the
<METADATA> element to filter the request to get only PhysicalTable objects that are
associated with the specified Document object through the Objects association:

Using GetMetadata to Get the Properties of a Specified Metadata Object � Search Criteria in the <TEMPLATES> Element 251

<GetMetadata>
<Metadata>

<Document Id="A52WE4LI.AT0000RZ">
<Objects search="PhysicalTable"/>

</Document>
</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadata>

Here is an example of the output from the request:

<!-- Using the GETMETADATA method. -->

<Document Id="A52WE4LI.AT0000RZ">
<Objects>

<PhysicalTable Id="A52WE4LI.B60000RT" Name="Table1" Desc="Sales table"/>
<PhysicalTable Id="A52WE4LI.B60000RU" Name="Table2" Desc="Human Resources table"/>

</Objects>
</Document>

The ExternalTable objects that were returned in the first example are excluded from
the output of this example.

In this third request, attribute criteria are added to the search criteria string in the
<METADATA> element to further filter the request. The request specifies to get
PhysicalTable objects that are associated with the specified Document object through
the Objects association whose Desc= attribute value has the word Sales in it:

<GetMetadata>
<Metadata>

<Document Id="A52WE4LI.AT0000RZ">
<Objects search="PhysicalTable[@Desc ? ’Sales’]"/>

</Document>
</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadata>

Here is an example of the output from the request:

<!-- Using the GETMETADATA method. -->

<Document Id="A52WE4LI.AT0000RZ">
<Objects>
<PhysicalTable Id="A52WE4LI.B60000RT" Name="Table1" Desc="Sales table"/>

</Objects>
</Document>

Specifying Search Criteria in the <TEMPLATES> Element
Templates are submitted to the GetMetadata method in the OPTIONS parameter in

a <TEMPLATES> element. To submit a template, you must set the OMI_TEMPLATE
(4) flag.

To understand how search criteria are processed in a template, consider the following
request.

252 Specifying Search Criteria in Both Elements � Chapter 13

<GetMetadata>
<Metadata>

<Document Id="A52WE4LI.AT0000RZ"/>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TEMPLATE -->
<Flags>4</Flags>
<Options>

<Templates>
<Document MetadataCreated="" MetadataUpdated="">

<Objects search="ExternalTable[@Desc= ? ’Human Resources’]"/>
</Document>

</Templates>
</Options>
</GetMetadata>

In the method call, note the following:
� The <METADATA> element specifies to get the Document metadata object that

has Id="A52WE4LI.AT0000RZ".
� The OMI_TEMPLATE flag (4) instructs the SAS Metadata Server to check for a

template in the <OPTIONS> element.
� The <TEMPLATES> element includes a template for the Document metadata type

that specifies to get the Name=, Desc=, MetadataCreated= and MetadataUpdated=
attributes of the Document object, and any ExternalTable objects that are
associated to the specified Document through the Objects association and whose
Desc= attribute has the words Human Resources in it.

Here is an example of the output from the request:

<!-- Using the GETMETADATA method. -->

<Document Id="A52WE4LI.AT0000RZ" MetadataCreated="22Aug2008:14:52:24"
MetadataUpdated="22Aug2008: 16:08:45">

<Objects>
<ExternalTable Id="A52WE4LI.BA000002"/>

</Objects>
</Document>

Note: When the OMI_TEMPLATE flag is set, GetMetadata gets only the Id=
attribute for associated objects. If you want to get additional attributes, you need to
specify them in another template, or set a flag such as OMI_ALL_SIMPLE (8), which
gets all attributes for the specified object and all associated objects. �

Specifying Search Criteria in Both Elements
When search criteria are specified in both the <METADATA> and <TEMPLATES>

elements, the following rules apply:
� If the search criteria strings specify different association names, both are applied.
� If the search criteria strings specify the same association name, the search criteria

string in the <TEMPLATES> element is ignored.

For example, consider this request:

<GetMetadata>
<Metadata>

Using GetMetadata to Get the Properties of a Specified Metadata Object � Search Criteria in Both Elements 253

<Document Id="A52WE4LI.AT0000RZ">
<Objects search="ExternalTable[@Desc ? ’Sales’]"/>

</Document>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TEMPLATE flag -->
<Flags>12</Flags>
<Options>
<Templates>
<Document>

<Objects search="PhysicalTable[@Desc ? ’Sales’]"/>
</Document>

</Templates>
</Options>
</GetMetadata>

Before any metadata is retrieved, the properties in the <METADATA> and
<TEMPLATES> elements are merged into one list that is used to get the metadata
objects. The properties in the <METADATA> element take priority over properties in
the <TEMPLATES> element. As a result, additional properties that are specified in the
template are added to the list. However, any properties that are duplicated in the
template are ignored.

In this example, although the search criteria in the <METADATA> element and in
the <TEMPLATES> element specify different metadata types, they specify the same
association name (Objects), so the search criteria in the <TEMPLATES> element is
ignored. Because the OMI_TEMPLATE flag is set, the SAS Metadata Server returns
only the Id= value of the specified object and its associated objects.

Now, consider the following request:

<GetMetadata>
<Metadata>
<Document Id="A52WE4LI.AT0000RZ">

<ResponsibleParties search="ResponsibleParty[@Name ? ’Writer’]"/>
</Document>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TEMPLATE + OMI_ALL_SIMPLE + OMI_SUCCINCT flags -->
<Flags>2060</Flags>
<Options>
<Templates>
<ResponsibleParty>

<Persons search="*"/>
</ResponsibleParty>

</Templates>
</Options>
</GetMetadata>

In this request, note the following:
� The <METADATA> element specifies to get Document A52WE4LI.AT0000RZ and

a search criteria string on the ResponsibleParties association. The search criteria
string specifies to get ResponsibleParty objects that are associated to the specified
Document object. The search criteria further specify to get only ResponsibleParty
objects that have the word Writer in their Name= attribute.

� The sum of the OMI_TEMPLATE (4) + OMI_ALL_SIMPLE (8) + OMI_SUCCINCT
(2048) flags instructs the SAS Metadata Server to check for a <TEMPLATES>
element in the <OPTIONS> element, get all attributes for the specified object and

254 Using GetMetadata to Get Common Properties for Sets of Objects � Chapter 13

associated objects, and to omit attributes that do not contain a value or that
contain a null value from the results.

� The <OPTIONS> element includes a template in the <TEMPLATES> element that
specifies to get objects associated with the returned ResponsibleParty objects
through the Persons association.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETMETADATA method. -->

<Document Id="A52WE4LI.AT0000RZ" Name="AugustPerformance" Desc="Summary report of
NW Region production activity, HR expense, and sales" MetadataCreated=
"22Aug2008:14:52:24" MetadataUpdated="22Aug2008: 16:08:45" PublicType="Document"
URI="Text" UsageVersion="1000000">

<ResponsibleParties search="ResponsibleParty[@Name ? ’Writer’]">
<ResponsibleParty Id="A52WE4LI.BN000003" Name="Technical Writer"

MetadataCreated="22Aug2008:14:52:24" MetadataUpdated="22Aug2008: 16:08:45"
UsageVersion="1000000" >

<Persons SEARCH="*">
<Person Id="A52WE4LI.AR0002BE" Desc="Primary Writer" MetadataCreated=

"22Aug2008:14:52:24" MetadataUpdated="22Aug2008: 16:08:45" Name="Melissa Mark"
PublicType="User" UsageVersion="1000000" />

</Persons>
</ResponsibleParty>

</ResponsibleParties>
</Document>

The results show that one ResponsibleParty object is associated with Document
A52WE4LI.AT0000RZ through the ResponsibleParties association that has the word
Writer in its Name= attribute. In turn, this ResponsibleParty object has one object
associated with it through the Persons association that describes a person named
Melissa Mark.

Using GetMetadata to Get Common Properties for Sets of Objects
If you have a set of objects for which you want to get common properties, you can use

the GetMetadata method and set the OMI_INCLUDE_SUBTYPES (16) and
OMI_TEMPLATE (4) flags.

In the request:
� Specify the metadata type and Id= values of the objects for which you want to get

properties in the <METADATA> element.
� Specify additional properties that you want to get in one or more templates in a

<TEMPLATES> element within the <OPTIONS> element. The templates that you
specify must reference a metadata type that either matches or is a supertype of
the metadata types specified in the <METADATA> element, as defined in the SAS
Metadata Model.

The OMI_TEMPLATE flag instructs the GetMetadata method to get the properties
specified in the templates for the objects specified in the <METADATA> element. The
OMI_INCLUDE_SUBTYPES flag applies the templates to objects that are subtypes of
the metadata types specified in the templates.

The following is an example of a GetMetadata method call that requests common
properties from multiple objects. It is simple because it specifies one template:

Using GetMetadata to Get the Properties of a Specified Metadata Object � Getting Common Properties for Sets of Objects 255

<GetMetadata>
<Metadata>
<PhysicalTable Id="A58SW16P.B1000001"/>
<Person Id="A58SW16P.AP0001JL"/>
<Event Id="A58SW16P.B3000001"/>
<WorkTable Id="A58SW16P.B4000001"/>
<Document Id="A58SW16P.AY0000RT"/>
</Metadata>

<NS>SAS</NS>
<!-- OMI_TEMPLATE + OMI_INCLUDE_SUBTYPES -->
<Flags>20</Flags>
<Options>
<Templates>

<Root Name="" Desc="" UsageVersion="">
<Extensions/>
</Root>

</Templates>
</Options>
</GetMetadata>

In the method call, note the following:

� The <METADATA> element specifies five metadata objects from which to get
properties.

� The <NS> element specifies the namespace.

� The <FLAGS> element specifies the OMI_TEMPLATE and
OMI_INCLUDE_SUBTYPES (4 +16 = 20) flags.

� The <OPTIONS> element includes a <TEMPLATES> element and specifies a
template that instructs the method to get attributes and associations for the Root
metadata type. The Root metadata type is the supertype of all of the metadata
types defined in the SAS Metadata Model. Therefore, the properties requested for
the Root object are returned for all of the objects specified in the <METADATA>
element.

The following is an example of the output returned by the SAS Metadata Server:

<Metadata>
<PhysicalTable Id="A58SW16P.B1000001" Name="Patient Information"
Desc="Information describing an individual patient." UsageVersion="0">
<Extensions/>

</PhysicalTable>
<Person Id="A58SW16P.AP0001JL" Name="Created Person 1" Desc="Person created for
GetMetadata" UsageVersion="0">
<Extensions>

<Extension Id="A58SW16P.AC0001JL" Name="Attrib 1" Desc="First attribute"
UsageVersion="0"><Extensions/></Extension>
<Extension Id="A58SW16P.AC0001JM" Name="Attrib 2" Desc="Second attribute"
UsageVersion="0"><Extensions/></Extension>

</Extensions>
</Person>
<Event Id="A58SW16P.B3000001" Name="Event 1 for GetMetadata" Desc="Event added"
UsageVersion="0">
<Extensions>

<Extension Id="A58SW16P.AC0001JN" Name="Attrib 1" Desc="First attribute"
UsageVersion="0"><Extensions/></Extension>
<Extension Id="A58SW16P.AC0001JO" Name="Attrib 2" Desc="Second attribute"

256 Getting Common Properties for Sets of Objects � Chapter 13

UsageVersion="0"><Extensions/></Extension>
</Extensions>

</Event>
<WorkTable Id="A58SW16P.B4000001" Name="WorkTable 1 for getmet"
Desc="WorkTable added" UsageVersion="0">

<Extensions>
<Extension Id="A58SW16P.AC0001JP" Name="Attrib 1" Desc="First attribute"
UsageVersion="0"><Extensions/></Extension>
<Extension Id="A58SW16P.AC0001JQ" Name="Attrib 2" Desc="Second attribute"
UsageVersion="0"><Extensions/></Extension>

</Extensions>
</WorkTable>
<Document Id="A58SW16P.AY0000RT" Name="Document 1 for getmet" Desc="doc added"
UsageVersion="0">

<Extensions>
<Extension Id="A58SW16P.AC0001JR" Name="Attrib 1" Desc="First attribute"
UsageVersion="0"><Extensions/></Extension>
<Extension Id="A58SW16P.AC0001JS" Name="Attrib 2" Desc="Second attribute"
UsageVersion="0"><Extensions/></Extension>

</Extensions>
</Document>
</Metadata>

In the output, note the following:

� The GetMetadata method returned the Name=, Desc=, and UsageVersion=
attribute values for all of the objects specified in the <METADATA> element.

� The PhysicalTable object had no Extension objects associated with it through the
Extensions association. The Person, Event, WorkTable, and Document objects each
had two Extension objects defined through the Extensions association.

� The method attempted to list Extension objects that were associated to the
Extension objects (because Extension is a subtype of Root), but none were found.

� The values of Name=, Desc=, and UsageVersion= attributes were also returned for
the Extension objects (because Extension is a subtype of Root).

The following is an example of a GetMetadata method call that sets the
OMI_INCLUDE_SUBTYPES flag and specifies multiple templates in the
<TEMPLATES> element. When you specify more than one template in the
<TEMPLATES> element, the order in which the templates are specified is important.
The templates are applied in the order specified. If two or more templates apply to the
same metadata type, the first template found is applied. The other templates are
ignored. For example:

<GetMetadata>
<Metadata>
<PhysicalTable Id="A58SW16P.B1000001"/>
<Person Id="A58SW16P.AP0001JL"/>
<Event Id="A58SW16P.B3000001"/>
<WorkTable Id="A58SW16P.B4000001"/>
<Document Id="A58SW16P.AY0000RT"/>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TEMPLATE + OMI_INCLUDE_SUBTYPES -->

<Flags>20</Flags>
<Options>

<Templates>

Using GetMetadata to Get the Properties of a Specified Metadata Object � Getting Common Properties for Sets of Objects 257

<DataTable Name="" UsageVersion="">
<Documents/>
<Columns/>

</DataTable>
<Root Name="" Desc="" UsageVersion="">
<Extensions/>
</Root>
<Document Name="" Desc=""/>

</Templates>
</Options>
</GetMetadata

This method call specifies three templates in the <TEMPLATES> element. One
template is for the DataTable metadata type. One template is for the Root metadata
type. And, one template is for the Document metadata type. Because
OMI_INCLUDE_SUBTYPES is set, the GetMetadata method processes the templates
as follows:

1 DataTable is the supertype of the PhysicalTable and WorkTable metadata types.
Therefore, the method returns the requested Name= and UsageVersion= attributes
for all of these objects, and any objects associated to them through the Documents
and Columns associations.

2 Because the first template did not specify what properties to get for any associated
Document and Column objects, the method consults the second template. Because
the Root metadata type is the supertype of all metadata types, the properties
requested for the Root object are retrieved for the Document and Column objects
that were retrieved by the first template. The properties are also retrieved for the
remaining objects identified in the <METADATA> element.

3 Because the third template specifies a metadata object that has already been
processed by the second template, it is ignored.

The following is an example of the output returned by the SAS Metadata Server:

<Metadata>
<PhysicalTable Id="A58SW16P.B1000001" Name="Patient Information"
UsageVersion="0">
<Documents/>
<Columns>

<Column Id="A58SW16P.B2000001" Name="Patient ID" Desc="Patient Information"
UsageVersion="0"><Extensions/></Column><Column Id="A58SW16P.B2000002"
Name="Initials" Desc="Patient Initials" UsageVersion="0">
<Extensions/>

</Column>
<Column Id="A58SW16P.B2000003" Name="Sex" Desc="Sex of Patient"
UsageVersion="0"><Extensions/></Column>
<Column Id="A58SW16P.B2000004" Name="Date Of Birth" Desc="Date Of Birth"

UsageVersion="0">
<Extensions/>

</Column>
<Column Id="A58SW16P.B2000005" Name="Sponsor Patient ID"
Desc="Sponsor Patient Information" UsageVersion="0">

<Extensions/>
</Column>
<Column Id="A58SW16P.B2000006" Name="Weight In Pounds" Desc="Patient
Weight In Pounds" UsageVersion="0">

<Extensions/>

258 Getting Common Properties for Sets of Objects � Chapter 13

</Column>
<Column Id="A58SW16P.B2000007" Name="Weight In Kilograms" Desc="Patient
Weight In Kilograms" UsageVersion="0">
<Extensions>

<Extension Id="A58SW16P.AC0000RU" Name="Algorithm" Desc="Algorithm
for column." UsageVersion="0">
<Extensions/>

</Extension>
</Extensions>

</Column>
</Columns>

</PhysicalTable>
<Person Id="A58SW16P.AP0001JL" Name="Created Person 1 for getmet"
Desc="getmet07" UsageVersion="0">

<Extensions>
<Extension Id="A58SW16P.AC0001JL" Name="Attrib 1" Desc="First attribute"
UsageVersion="0">

<Extensions/>
</Extension>
<Extension Id="A58SW16P.AC0001JM" Name="Attrib 2" Desc="Second attribute"
UsageVersion="0">

<Extensions/>
</Extension>

</Extensions>
</Person>
<Event Id="A58SW16P.B3000001" Name="Event 1 for getmet" Desc="Event added"
UsageVersion="0">

<Extensions>
<Extension Id="A58SW16P.AC0001JN" Name="Attrib 1" Desc="First attribute"
UsageVersion="0">

<Extensions/>
</Extension>
<Extension Id="A58SW16P.AC0001JO" Name="Attrib 2" Desc="Second attribute"
UsageVersion="0">
<Extensions/>
</Extension>

</Extensions>
</Event>
<WorkTable Id="A58SW16P.B4000001" Name="WorkTable 1 for getmet"
UsageVersion="0">

<Documents/>
<Columns/>

</WorkTable>
<Document Id="A58SW16P.AY0000RT" Name="Document 1 for getmet" Desc="doc added"
UsageVersion="0">

<Extensions>
<Extension Id="A58SW16P.AC0001JR" Name="Attrib 1" Desc="First attribute"
UsageVersion="0">

<Extensions/>
</Extension>
<Extension Id="A58SW16P.AC0001JS" Name="Attrib 2" Desc="Second attribute"
UsageVersion="0">

<Extensions/>
</Extension>

Using GetMetadata to Get the Properties of a Specified Metadata Object � Including Objects from Project Repositories 259

</Extensions>
</Document>
</Metadata>
<Ns>SAS</Ns>
<Flags>20</Flags>
<Options>
<Templates>
<DataTable Name="" usageVersion=""><Documents/><Columns/></DataTable>
<Root Name="" Desc="" usageVersion=""><Extensions/></Root>
<Document Name="" Desc=""/>
</Templates>
</Options>
</GetMetadata>

In the output, the PhysicalTable object has no associated Document objects and has
seven associated Column objects. One of the Column objects has an Extension object
defined for it. The WorkTable object has no associated Document or Column objects.
The method returned the properties requested for the Root metadata type for all
remaining objects. If the OMI_INCLUDE_SUBTYPES flag had not been set in the
method call, the results would have been different. In that case, the templates would
have been applied in the order given, but the templates that specify the DataTable and
Root metadata types would have been ignored.

Including Objects from Project Repositories in a Public Query

In SAS 9.2, a GetMetadata method call that requests associated objects and is issued
in the foundation repository or a custom repository returns information about
cross-repository references to objects in other public repositories, by default. If you have
a need to include cross-repository references to objects in project repositories (for
example, to determine whether any of an object’s associated objects are checked out for
development), you can set the OMI_DEPENDENCY_USED_BY (16384) flag in the
method call. The following is an example of a GetMetadata request that gets
cross-repository references to objects in project repositories:

<GetMetadata>
<Metadata>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"/>

</Metadata>
<NS>SAS</NS>
<!-- OMI_ALL (1) + OMI_DEPENDENCY_USED_BY (16384)
+ OMI_SUCCINCT (2048) flags -->
<Flags>18433</Flags>
<Options/>

</GetMetadata>

In the request, note the following:

� The OMI_ALL flag instructs the method to return all properties (attributes and
associations) that are defined for PhysicalTable A53TPPVI.A4000001.

� The OMI_DEPENDENCY_USED_BY flag instructs the method to include
cross-repository references to objects in project repositories in the results. The
method returns associated objects from all project repositories. There is no way to
search specific project repositories.

260 Combining GetMetadata Flags � Chapter 13

� The OMI_SUCCINCT flag instructs the method to include only properties that
contain a value in them in the results.

Combining GetMetadata Flags
When OMI_SUCCINCT (2048) is added to any flag combination, only attributes that

are not null and only associations that have associated objects defined are returned.
When OMI_ALL (1) and OMI_ALL_SIMPLE (8) are set together, the SAS Metadata

Server gets all attributes and associations for the requested object, and all attributes of
the associated objects returned by OMI_ALL.

When OMI_ALL_SIMPLE (8) is set with OMI_TEMPLATE (4), the SAS Metadata
Server gets all attributes for the specified object and all attributes for associated objects
that are returned by the template.

When OMI_ALL (1) is set with OMI_TEMPLATE (4), the SAS Metadata Server gets
all possible attributes and associations for the specified object and the Id= attribute of
associated objects returned by the OMI_ALL flag or template.

When OMI_INCLUDE_SUBTYPES (16) is set without OMI_TEMPLATE and a
template, it is ignored. When OMI_INCLUDE_SUBTYPES is set with
OMI_TEMPLATE (4) and a template, the SAS Metadata Server gets the properties
requested in the <TEMPLATES> element for the objects specified in the <METADATA>
element if they are the same metadata type or a subtype of the metadata type specified
in the template.

Using Templates
A template is a property string that you specify in a <TEMPLATES> element. In a

GetMetadata or GetMetadataObjects method call, the <TEMPLATES> element is
passed in the <OPTIONS> element to request additional properties for the metadata
type specified in the main element of the method call, its subtypes, or its associated
objects. The purpose of the template is to expand or to filter the properties requested by
other GetMetadata and GetMetadataObjects parameters.

This section describes how to create a template and contains examples of
GetMetadata and GetMetadataObjects requests that specify templates.

Creating a Template
A template is an XML property string that specifies the information that should be

returned for a metadata type. The string includes the attributes and associations that
should be returned for the metadata type. The string should not request properties for
associated objects. Instead, additional templates should be created to request properties
for associated objects.

For example, the following is a template for a PhysicalTable object that gets the
object’s ID, the date when the table was created, and the Column objects associated
with the table:

<PhysicalTable Id="" MetadataCreated="">
<Columns/>

</PhysicalTable>

To get properties for the requested Column objects, you should submit an additional
template that looks like the following:

Using GetMetadata to Get the Properties of a Specified Metadata Object � Specifying Search Criteria in a Template 261

<Column Name="" SASFormat=""/>

The SAS Metadata Server gets the Name= and SASFormat= values for the Column
objects requested by the first template.

Templates are passed to the SAS Metadata Server in a <TEMPLATES> element in
the <OPTIONS> element of a method call. When the <TEMPLATES> element is used
in a GetMetadata method call, the OMI_TEMPLATE (4) flag must also be set to
instruct the SAS Metadata Server to check for the <TEMPLATES> element.

When the <TEMPLATES> element is used in a GetMetadataObjects method call,
both the OMI_GET_METADATA (256) flag and the OMI_TEMPLATE (4) flag must be
set. The OMI_GET_METADATA flag instructs the SAS Metadata Server to issue a
GetMetadata call for each object that is returned by the GetMetadataObjects method to
apply the templates specified in the <TEMPLATES> element.

The following is an example of a <TEMPLATES> element that passes the two
templates previously described:

<Templates>
<PhysicalTable Id="" MetadataCreated="">
<Columns/>

</PhysicalTable>
<Column Name="" SASFormat=""/>

</Templates>

The metadata type specified in a template can be the same metadata type specified
in the <METADATA> element of the GetMetadata request (or the <TYPE> element of a
GetMetadataObjects request), a subtype, or the metadata type of an associated object.
In the preceding examples, the object requested in the main element is assumed to be a
PhysicalTable metadata object.

The order of the templates in the <TEMPLATES> element is not important unless
the OMI_INCLUDE_SUBTYPES (16) flag is also set. The default behavior of the SAS
Metadata Server is to search for objects of every metadata type listed in the
<TEMPLATES> element, and to get the specified properties if objects are found. When
OMI_INCLUDE_SUBTYPES is set, the SAS Metadata Server cycles through the
templates iteratively, beginning with the first template and proceeding in order to the
last template, and gets the specified properties of the specified metadata type and its
subtypes. If a template for a subtype is found before a template for its supertype, then
the subtype’s template is applied, and there is no more searching for the supertype.

Specifying Search Criteria in a Template to Filter Associated Objects
Both the GetMetadata and GetMetadataObjects methods support specifying search

criteria for the association names in the <METADATA> element and in the
<TEMPLATE> element to filter the associated objects that are retrieved by a request.
The search criteria enable you to get only associated objects that are the specified
metadata type, or are the specified metadata type and also meet specified attribute
criteria.

For information about using search criteria strings in the GetMetadata method, see
“Filtering the Associated Objects That Are Returned By a GetMetadata Request” on
page 249. For information about using search criteria strings in the
GetMetadataObjects method, see “Filtering the Associated Objects That Are Retrieved
By a GetMetadataObjects Request” on page 290.

262

263

C H A P T E R

14 Using GetMetadataObjects to
Get All Metadata of a Specified
Metadata Type

Introduction to the GetMetadataObjects Method 263
Expanding a GetMetadataObjects Request to Return Additional Properties 264

Specifying the GetMetadata Flags 265

Combining GetMetadata and GetMetadataObjects Flags 265

Example of Retrieving All Properties for All Objects 265

Suppressing Properties That Do Not Store Values from GetMetadataObjects Output 268
Example of Retrieving Only Attributes of Objects 268

Example of Retrieving Specified Attributes of All Objects 270

Example of Retrieving Associated Objects for All Objects 270

Expanding a GetMetadataObjects Request to Include Subtypes 272

Expanding a GetMetadataObjects Request to Include Additional Repositories 273

Example of a GetMetadataObjects Request That Includes All Public Repositories 273
Example of a GetMetadataObjects Request That Includes All Project Repositories 274

Example of a GetMetadataObjects Request That Includes All Repositories 275

Using GetMetadataObjects To List Repositories 275

Introduction to the GetMetadataObjects Method

To get all metadata objects of a specified metadata type, the SAS Open Metadata
Interface provides the GetMetadataObjects method. The default behavior of the
GetMetadataObjects method is to get general, identifying information for each object of
the metadata type specified in the TYPE parameter from the repository specified in the
REPOSID parameter. The method supports flags and options that enable you to expand
the request to get additional properties for each object, to search additional repositories,
and to filter the objects that are returned by the request.

The following is an example of a GetMetadataObjects request that does not contain
flags or options. The request gets a list of all objects of the PhysicalTable metadata type
in Test repository 1, and their Id= and Name= attributes. The method call is formatted
for the INMETADATA parameter of the DoRequest method.

<GetMetadataObjects>
<!--Reposid specifies Test repository 1 -->
<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>
</GetMetadataObjects>

264 Expanding a GetMetadataObjects Request to Return Additional Properties � Chapter 14

In the request, note the following:

� The <REPOSID> element specifies the repository from which to get the objects.

� The <TYPE> element specifies the metadata type whose objects you want to list.

� The <NS> element specifies the namespace.

� The <FLAGS> and <OPTIONS> elements, although blank in this request, support
flags and additional XML elements that expand or filter the GetMetadataObjects
request.

� The <OBJECTS> element is an output parameter. Here is an example of the
output returned by the SAS Metadata Server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"/>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"/>
</Objects>

Test repository 1 has two objects of metadata type PhysicalTable defined.

A GetMetadataObjects request can be expanded to get additional attributes, to get
associated objects, to include subtypes, and to get objects from additional repositories.

A GetMetadataObjects request can be filtered to get only objects that have specific
attributes and associations. You can also filter the associated objects that are returned
in a request.

For more information, see:

� “Expanding a GetMetadataObjects Request to Return Additional Properties” on
page 264

� “Expanding a GetMetadataObjects Request to Include Subtypes” on page 272

� “Expanding a GetMetadataObjects Request to Include Additional Repositories” on
page 273

� Chapter 15, “Filtering a GetMetadataObjects Request,” on page 277

� “Filtering the Associated Objects That Are Retrieved By a GetMetadataObjects
Request” on page 290

The GetMetadataObjects method is typically used to list application objects in a
repository. But, it can also be used to list repositories. For more information, see “Using
GetMetadataObjects To List Repositories” on page 275.

Expanding a GetMetadataObjects Request to Return Additional
Properties

You can expand a GetMetadataObjects method call to get additional properties by
setting the OMI_GET_METADATA (256) flag and specifying flags defined for the
GetMetadata method in the GetMetadataObjects request.

The OMI_GET_METADATA flag issues a GetMetadata request for each metadata
object that is returned by the GetMetadataObjects method. Like the
GetMetadataObjects method, when OMI_GET_METADATA is set without specifying
any other GetMetadata flags, the GetMetadata method returns the Id= and Name=
attributes for each metadata object that is returned by GetMetadataObjects. Specifying
one or more other GetMetadata flags with OMI_GET_METADATA enables you to get
specific properties or categories of properties for each metadata object.

Getting All Metadata of a Specified Metadata Type � Example of Retrieving All Properties for All Objects 265

The GetMetadataObjects method supports the following GetMetadata flags for
requesting additional properties:

� OMI_ALL (1)—Gets all of the attributes and associations of the specified object,
and general, identifying information about any associated objects. For more
information, see “Example of Retrieving All Properties for All Objects” on page 265.

� OMI_SUCCINCT (2048)—Omits all properties that do not contain a value or that
contain a null value from the output. For more information, see “Suppressing
Properties That Do Not Store Values from GetMetadataObjects Output” on page
268.

� OMI_ALL_SIMPLE (8)—Gets all of the attributes of the specified object and any
associated objects requested by other flags. For more information, see “Example of
Retrieving Only Attributes of Objects” on page 268.

� OMI_TEMPLATE (4) — Instructs the SAS Metadata Server to check the
<OPTIONS> element for user-defined templates that define which metadata
properties to return. The templates can request additional properties for the
specified metadata objects, as well as attributes and associations for associated
metadata objects. Templates are specified in a <TEMPLATES> element. For more
information, see “Example of Retrieving Specified Attributes of All Objects” on page
270 and “Example of Retrieving Associated Objects for All Objects” on page 270.

Specifying the GetMetadata Flags
To specify a GetMetadata flag in a GetMetadataObjects request, add the flag’s value

to the OMI_GET_METADATA flag and to any other GetMetadataObjects flags that you
have set. For example, if OMI_XMLSELECT (128) is already set, and you want to
specify OMI_GET_METADATA (256) and OMI_ALL_SIMPLE (8) to get all of the
attributes of each object, add their values together (128+256+8=392) and specify the
sum in the <FLAGS> element.

Combining GetMetadata and GetMetadataObjects Flags
The flags in this section can be combined with other GetMetadataObjects flags.

� When GetMetadata flags are used with the OMI_INCLUDE_SUBTYPES (16) flag,
the GetMetadataObjects method gets the specified properties for all subtypes of the
specified metadata type, in addition to all objects of the specified metadata type.

� When GetMetadata flags are used with the OMI_XMLSELECT (128) flag, the
GetMetadataObjects method gets the specified properties only for metadata objects
that meet <XMLSELECT> search criteria.

� When GetMetadata flags are used with the OMI_DEPENDENCY_USES (8192)
flag, the GetMetadataObjects method gets the specified properties for objects of the
specified metadata type in all public repositories (the foundation repository and all
custom repositories). When GetMetadata flags are used with the
OMI_DEPENDENCY_USED_BY (16384) flag, the GetMetadataObjects method
gets the specified properties for objects of the specified metadata type in the
current repository and all project repositories.

Example of Retrieving All Properties for All Objects
The following is an example of a GetMetadataObjects request that sets the

OMI_GET_METADATA (256) and OMI_ALL (1) flags. The OMI_ALL flag lists all

266 Example of Retrieving All Properties for All Objects � Chapter 14

attributes and associations for all PhysicalTable objects returned by the
GetMetadataObjects request.

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify OMI_GET_METADATA(256) + OMI_ALL (1) flags -->
<Flags>257</Flags>
<Options/>

</GetMetadataObjects>

In the request, note the following:

� The <REPOSID> element specifies to issue the request in Test repository 1.

� The <Type> element specifies to get all objects of the PhysicalTable metadata type.

� The <FLAGS> element specifies a number representing the sum of the
OMI_GET_METADATA and OMI_ALL flags.

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices" DBMSType=""

Desc="Sales offices in NW region" IsCompressed="0" IsEncrypted="0"
LockedBy="" MemberType="" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" NumRows="-1" SASTableName="" TableName="">

<AccessControls/>
<Aggregations/>
<AnalyticTables/>
<Changes/>
<Columns>
<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"/>
<Column Id="A53TPPVI.A5000002" Name="Address" Desc="Street Address of Sales Office"/>
<Column Id="A53TPPVI.A5000003" Name="Manager" Desc="Name of Operations Manager"/>
<Column Id="A53TPPVI.A5000004" Name="Employees" Desc="Number of employees"/>
</Columns>
<Documents/>
<Extensions/>
<ExternalIdentities/>
<ForeignKeys/>
<Groups/>
<Implementors/>
<Indexes/>
<Keywords/>
<ModelResults/>
<Notes/>
<PrimaryPropertyGroup/>
<Properties/>
<PropertySets/>
<ReachThruCubes/>
<ResponsibleParties/>
<Roles/>
<SASPasswords/>

Getting All Metadata of a Specified Metadata Type � Example of Retrieving All Properties for All Objects 267

<SourceClassifierMaps/>
<SourceTransformations/>
<SpecSourceTransformations/>
<SpecTargetTransformations/>
<TablePackage/>
<TargetClassifierMaps/>
<TargetTransformations/>
<Timestamps/>
<TrainedModelResults/>
<Trees/>
<UniqueKeys/>
<UsedByPrototypes/>
<UsingPrototype/>
</PhysicalTable>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates" DBMSType=""
Desc="Sales associates in NW region" IsCompressed="0" IsEncrypted="0"
LockedBy="" MemberType="" MetadataCreated="05Feb2002:09:50:56"
MetadataUpdated="05Feb2002:09:50:56" NumRows="-1" SASTableName="" TableName="">

<AccessControls/>
<Aggregations/>
<AnalyticTables/>
<Changes/>
<Columns>
<Column Id="A53TPPVI.A5000005" Name="Name" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
<Column Id="A53TPPVI.A5000007" Name="Title" Desc="Job grade"/>
</Columns>
<Documents/>
<Extensions/>
<ExternalIdentities/>
<ForeignKeys/>
<Groups/>
<Implementors/>
<Indexes/>
<Keywords/>
<ModelResults/>
<Notes/>
<PrimaryPropertyGroup/>
<Properties/>
<PropertySets/>
<ReachThruCubes/>
<ResponsibleParties/>
<Roles/>
<SASPasswords/>
<SourceClassifierMaps/>
<SourceTransformations/>
<SpecSourceTransformations/>
<SpecTargetTransformations/>
<TablePackage/>
<TargetClassifierMaps/>
<TargetTransformations/>
<Timestamps/>
<TrainedModelResults/>
<Trees/>

268 Suppressing Properties That Do Not Store Values from GetMetadataObjects Output � Chapter 14

<UniqueKeys/>
<UsedByPrototypes/>
<UsingPrototype/>
</PhysicalTable>
</Objects>

The OMI_ALL flag gets all of the attributes and associations for each object,
including attributes and associations for which no value has been defined. This is
useful when you want to get both actual and potential properties for all of the objects.

Suppressing Properties That Do Not Store Values from
GetMetadataObjects Output

To limit a GetMetadataObjects request to get only properties that have values
defined, set the OMI_SUCCINCT (2048) flag. Here is an example of the output of the
previous GetMetadataObjects request when OMI_SUCCINCT is set:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"

Desc="Sales offices in NW region" IsCompressed="0" IsEncrypted="0"
MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" NumRows="-1">

<Columns>
<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"/>
<Column Id="A53TPPVI.A5000002" Name="Address" Desc="Street Address of Sales Office"/>
<Column Id="A53TPPVI.A5000003" Name="Manager" Desc="Name of Operations Manager"/>
<Column Id="A53TPPVI.A5000004" Name="Employees" Desc="Number of employees"/>
</Columns>
</PhysicalTable>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"

Desc="Sales associates in NW region" IsCompressed="0" IsEncrypted="0"
MetadataCreated="05Feb2002:09:50:56" MetadataUpdated="05Feb2002:09:50:56"
NumRows="-1">

<Columns>
<Column Id="A53TPPVI.A5000005" Name="Name" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
<Column Id="A53TPPVI.A5000007" Name="Title" Desc="Job grade"/>
</Columns>
</PhysicalTable>
</Objects>

Example of Retrieving Only Attributes of Objects
The following is an example of a GetMetadataObjects request that sets the

OMI_GET_METADATA (256), OMI_ALL_SIMPLE (8), and OMI_SUCCINCT (2048)
flags. When OMI_ALL_SIMPLE is set in a GetMetadataObjects request, the flag
instructs the method to get only the attribute values of the returned objects.

This request specifies to get all attributes of all Column objects in Test repository 1:

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

Getting All Metadata of a Specified Metadata Type � Example of Retrieving Only Attributes of Objects 269

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>Column</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify OMI_GET_METADATA (256) + OMI_ALL_SIMPLE (8)

+ OMI_SUCCINCT (2048) flags -->
<Flags>2312</Flags>
<Options/>

</GetMetadataObjects>

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<Column Id="A53TPPVI.A5000001" Name="City" BeginPosition="0" ColumnLength="32"
ColumnName="City" ColumnType="12" Desc="City of Sales Office" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="32" SASColumnName="City"
SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000002" Name="Address" BeginPosition="0" ColumnLength="32"
ColumnName="Address" ColumnType="12" Desc="Street Address of Sales Office"
EndPosition="0" IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="32"
SASColumnName="Street_Address" SASColumnType="C" SASExtendedLength="0"
SASFormat="$Char32." SASInformat="$32." SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000003" Name="Manager" BeginPosition="0" ColumnLength="32"
ColumnName="Manager" ColumnType="12" Desc="Name of Operations Manager"
EndPosition="0" IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="32" SASColumnName="Manager"
SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000004" Name="Employees" BeginPosition="0" ColumnLength="3"
ColumnName="Employees" ColumnType="6" Desc="Number of employees" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="3" SASColumnName="Employees"
SASColumnType="N" SASExtendedLength="0" SASFormat="3.2" SASInformat="3.2"
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000005" Name="Name" BeginPosition="0" ColumnLength="32"
ColumnName="Employee_Name" ColumnType="12" Desc="Name of employee" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:50:56"
MetadataUpdated="05Feb2002:09:50:56" SASColumnLength="32" SASColumnName="Employee"
SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000006" Name="Address" BeginPosition="0" ColumnLength="32"
ColumnName="Employee_Address" ColumnType="12" Desc="Home Address" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:50:56"
MetadataUpdated="05Feb2002:09:50:56" SASColumnLength="32" SASColumnName="Home_Address"
SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000007" Name="Title" BeginPosition="0" ColumnLength="32"
ColumnName="Title" ColumnType="12" Desc="Job grade" EndPosition="0" IsDiscrete="0"
IsNullable="0" MetadataCreated="05Feb2002:09:50:56"
MetadataUpdated="05Feb2002:09:50:56" SASColumnLength="32" SASColumnName="Title"

270 Example of Retrieving Specified Attributes of All Objects � Chapter 14

SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

</Objects>

Example of Retrieving Specified Attributes of All Objects
The following is an example of a GetMetadataObjects request that gets specifed

attributes of all objects of the specified metadata type. The GetMetadataObjects request
sets the OMI_GET_METADATA (256) and OMI_TEMPLATE (4) flags and submits a
template that specifies which attributes to get in a <TEMPLATES> element within the
<OPTIONS> element.

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify OMI_GET_METADATA(256) + OMI_TEMPLATE (4) flags -->
<Flags>260</Flags>
<Options>
<Templates>

<PhysicalTable DBMSType="" IsCompressed="" IsEncrypted=""
MemberType=""/>
</Templates>

</Options>
</GetMetadataObjects>

In the request, the template specifies to get the DBMSType=, IsCompressed=,
IsEncrypted=, and MemberType= attributes for each of the PhysicalTable objects in
repository A53TPPVI. Here is an example of the output from the request:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices" DBMSType=""

IsCompressed="0" IsEncrypted="0" MemberType=""/>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates" DBMSType=""

IsCompressed="0" IsEncrypted="0" MemberType=""/>
</Objects>

The SAS Metadata Server gets the requested properties and the Id= and Name=
attributes that are returned by default.

For information about how to create a template, see “Using Templates” on page 260.

Example of Retrieving Associated Objects for All Objects
The following is an example of a GetMetadataObjects request that uses a template to

retrieve associated objects of the specified metadata type. The GetMetadataObjects
request sets the OMI_GET_METADATA (256) and OMI_TEMPLATE (4) flags and
submits a template that specifies which associations to get in a <TEMPLATES>
element in the <OPTIONS> element. The template specifies the metadata type and the
association name for which associated objects should be returned.

Getting All Metadata of a Specified Metadata Type � Example of Retrieving Associated Objects for All Objects 271

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify OMI_GET_METADATA(256) + OMI_TEMPLATE (4) flags -->
<Flags>260</Flags>
<Options>
<Templates>
<PhysicalTable>

<Columns/>
<Extensions/>
<Indexes/>

</PhysicalTable>
</Templates>
</Options>

</GetMetadataObjects>

In the request, the template specifies to get objects that are associated with the
requested PhysicalTable objects through the Columns, Extensions, and Indexes
association names.

Here is an example of the output from the request:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices">

<Columns>
<Column Id="A53TPPVI.B7000001"/>
<Column Id="A53TPPVI.B7000002"/>
<Column Id="A53TPPVI.B7000003"/>
<Column Id="A53TPPVI.B7000004"/>

</Columns>
<Extensions/>
<Indexes/>

</PhysicalTable>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates">

<Columns>
<Column Id="A53TPPVI.B7000005"/>
<Column Id="A53TPPVI.B7000006"/>
<Column Id="A53TPPVI.B7000007"/>
<Column Id="A53TPPVI.B7000008"/>

</Columns>
<Extensions/>
<Indexes/>

</Objects>

In this example, the returned PhysicalTable objects have associated Column objects.
But, they do not have associated objects through the Extensions and Indexes
association names.

In the request, note the following:

� By default, the GetMetadataObjects method returns only the Id= value of
associated objects. To get additional attributes, you must set a flag, such as
OMI_ALL_SIMPLE (8), to get all attributes for the specified object and the

272 Expanding a GetMetadataObjects Request to Include Subtypes � Chapter 14

associated objects. Or, you can include additional templates that request specific
attributes of the associated objects.

� When an association name is specified in a template (<Columns/>, <Extensions/>,
and <Indexes/> in the previous example), the GetMetadataObjects method gets
associated objects of all metadata types that are valid for the specified association
name. This example does not show objects of these associated metadata types
because no objects of the additional metadata types were found. However, the
Columns association name supports associations to two metadata types: Column
and ColumnRange. The Extensions association name supports associations to two
metadata types: Extension and NumericExtension. The Indexes association name
has one valid metadata type: Index. This GetMetadataObjects request could have
retrieved associated objects of all of these metadata types.

The GetMetadataObjects method also supports search criteria that enable you to
filter the associated objects that are retrieved. For more information, see “Filtering the
Associated Objects That Are Retrieved By a GetMetadataObjects Request” on page 290.

Expanding a GetMetadataObjects Request to Include Subtypes

The GetMetadataObjects method supports the OMI_INCLUDE_SUBTYPES (16) flag
to enable you to list subtypes of the metadata type specified in the <TYPE> element. A
subtype is a metadata type that inherits properties from a supertype. A supertype can
have many subtypes. You can view the supertype and subtype relationships defined in
the SAS Metadata Model in the “Hierarchical Listing of SAS Namespace Metadata
Types” in the SAS Metadata Model: Reference.

When OMI_INCLUDE_SUBTYPES is set, the GetMetadataObjects method gets all
objects of all subtypes of the specified metadata type, in addition to all objects of the
specified metadata type. This enables you to avoid querying for each subtype. If you
want to get information about some subtypes, but not others, use the hierarchical
listing to assess the hierarchical level at which to target your request.

The following is an example of a GetMetadataObjects request that sets
OMI_INCLUDE_SUBTYPES and specifies to get all subtypes of supertype DataTable:

<GetMetadataObjects>
<! -- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>DataTable</Type>
<Objects/>
<NS>SAS</NS>
<! -- Specify OMI_INCLUDE_SUBTYPES (16) flag -->
<Flags>16</Flags>
<Options/>

</GetMetadataObjects>

The DataTable supertype has the following subtypes defined for it in the SAS
Metadata Model: ExternalTable, PhysicalTable, QueryTable, RelationalTable,
TableCollection, and WorkTable. OMI_INCLUDE_SUBTYPES gets all objects of these
subtypes that are defined in Test repository 1.

Getting All Metadata of a Specified Metadata Type � Example of Including Public Repositories 273

Here is an example of the output returned by the SAS Metadata Server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"/>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"/>
</Objects>

Test repository 1 has two objects of subtype PhysicalTable and no objects of the other
subtypes.

The default behavior of the GetMetadataObjects method is to get the Id= and Name=
values for all objects that are found. When OMI_INCLUDE_SUBTYPES is set with
OMI_GET_METADATA (256) and GetMetadata flags, the GetMetadataObjects method
gets the requested properties for all subtype objects. For more information, see
“Expanding a GetMetadataObjects Request to Return Additional Properties” on page
264.

Expanding a GetMetadataObjects Request to Include Additional
Repositories

The GetMetadataObjects method supports the OMI_DEPENDENCY_USES (8192)
and OMI_DEPENDENCY_USED_BY (16384) flags to enable you to get objects from
other repositories.

The behavior of these flags has changed between SAS 9.1.3 and SAS 9.2. In SAS
9.1.3, the flags specified to include objects from repositories that existed either above or
below the specified repository in the repository chain. In SAS 9.2, their behavior is
much simpler and is as follows:

� Set OMI_DEPENDENCY_USES to include objects from all public repositories in
the method results. The foundation repository and all custom repositories are
public repositories.

� Set OMI_DEPENDENCY_USED_BY to include objects from all private repositories
in the method results. Project repositories are considered to be private repositories.

� To get objects from all repositories on the SAS Metadata Server, set both flags.

Example of a GetMetadataObjects Request That Includes All Public
Repositories

The following is an example of a GetMetadataObjects request that sets the
OMI_DEPENDENCY_USES (8192) flag:

<GetMetadataObjects>
<!-- Reposid parameter specifies host repository -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>

274 Example of a GetMetadataObjects Request That Includes All Project Repositories � Chapter 14

<!-- Specify OMI_DEPENDENCY_USES (8192) flag -->
<Flags>8192</Flags>
<Options/>

</GetMetadataObjects>

This request returns all objects of the PhysicalTable metadata type from the specified
repository and all other public repositories.

In the request, note the following:

� The <REPOSID> element specifies a repository to search. When the
OMI_DEPENDENCY_USES flag is set, specifying a value for the <REPOSID>
element is optional. When a <REPOSID> value is omitted, the method gets objects
of the specified metadata type first from the foundation repository, and then
second from all custom repositories in the order that they were registered.

When a repository identifier is specified in the <REPOSID> element, the SAS
Metadata Server gets objects from the specified repository first, before it gets
objects from the foundation repository and custom repositories. The specified
repository can be the foundation repository, a custom repository, or a project
repository.

� The <TYPE> element specifies the metadata type of the objects to list.

� The OMI_DEPENDENCY_USES flag is expressed as a numeric value in the
<FLAGS> element.

� Output is returned in the <OBJECTS> element.

Example of a GetMetadataObjects Request That Includes All Project
Repositories

A GetMetadataObjects request can be expanded to include objects from all project
repositories by setting the OMI_DEPENDENCY_USED_BY (16384) flag. The following
is an example of a GetMetadataObjects request that sets the
OMI_DEPENDENCY_USED_BY (16384) flag:

<GetMetadataObjects>
<!-- Reposid parameter specifies host repository -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>

<!-- Specify OMI_DEPENDENCY_USED_BY (16384) flag -->
<Flags>16384</Flags>
<Options/>

</GetMetadataObjects>

In the request, note the following:

� The <REPOSID> element specifies a repository to search. When the
OMI_DEPENDENCY_USED_BY flag is set, specifying a value for the <REPOSID>
element is optional. When is <REPOSID> value is omitted, the method gets
objects of the specified metadata type from all project repositories in the order that
the repositories were registered. When a repository identifier is specified in the
<REPOSID> element, the SAS Metadata Server gets objects from the specified
repository first, and then gets objects from the project repositories. The specified
repository can be the foundation repository, a custom repository, or a project
repository.

� The <TYPE> element specifies the metadata type of the objects to list.

Getting All Metadata of a Specified Metadata Type � Using GetMetadataObjects To List Repositories 275

� The OMI_DEPENDENCY_USED_BY flag is expressed as a numeric value in the
<FLAGS> element.

� Output is returned in the <OBJECTS> element.

Example of a GetMetadataObjects Request That Includes All
Repositories

To get objects from all repositories that are registered on the SAS Metadata Server
(foundation, custom, and project), set both the OMI_DEPENDENCY_USES (8192) and
OMI_DEPENDENCY_USED_BY (16384) flags.

The following is an example of a GetMetadataObjects request that gets objects of
metadata type PhysicalTable from all repositories:

<GetMetadataObjects>
<!-- Reposid parameter specifies host repository -->

<Reposid></Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>

<!-- Specify OMI_DEPENDENCY_USES (8192) and
OMI_DEPENDENCY_USED_BY (16384) flags -->

<Flags>24576</Flags>
<Options/>

</GetMetadataObjects>

In the request, note the following:
� It is not necessary to specify a target repository in the <REPOSID> element.

When the <REPOSID> element is blank, the method gets objects from all
repositories, beginning with the foundation repository, then custom repositories,
and then project repositories. Within each category, the repositories are listed in
the order that they were registered. When a repository identifier is specified in the
<REPOSID> parameter, the SAS Metadata Server gets objects from that
repository before it gets objects from other repositories. The specified repository
can be the foundation repository, a custom repository, or a project repository.

� The <TYPE> element specifies the metadata type of the objects to list.
� The <FLAGS> element specifies the sum of the numeric values representing the

OMI_DEPENDENCY_USES and OMI_DEPENDENCY_USED_BY flags (8192 +
16384 = 24576).

� Output is returned in the <OBJECTS> element.

Using GetMetadataObjects To List Repositories
The GetMetadataObjects method is typically issued in the SAS namespace to get all

metadata objects of a specifed application metadata type. However, the method can also
be issued in the REPOS namespace to get repositories.

The following is an example of a GetMetadataObjects request that gets repositories:

<GetMetadataObjects>
<Reposid></Reposid>
<Type>RepositoryBase</Type>
<Objects/>
<NS>REPOS</NS>
<Flags>0</Flags>

276 Using GetMetadataObjects To List Repositories � Chapter 14

<Options/>
</GetMetadataObjects>

In the request, note the following:

� Specifying a value in the <REPOSID> element is optional. A GetMetadataObjects
request that is issued in the REPOS namespace queries the SAS Repository
Manager. Any other value entered in the <REPOSID> element is ignored and does
not return an error.

� The <TYPE> element specifies the RepositoryBase metadata type. RepositoryBase
is the valid value for listing repositories. Specifying a metadata type that describes
an application metadata object in the REPOS namespace returns an error.

� The <NS> element specifies the REPOS namespace.

� The <FLAGS> and <OPTIONS> elements are blank. However, with the exception
of the OMI_DEPENDENCY_USED_BY and OMI_DEPENDENCY_USES flags,
flags and options that are supported in the SAS namespace that get additional
properties and filter objects can be specified in the REPOS namespace as well.

� Output is returned in the <OBJECTS> element.

277

C H A P T E R

15
Filtering a GetMetadataObjects
Request

Overview of Filtering a GetMetadataObjects Request 277
<XMLSELECT> Element Form and Search Criteria Syntax 278

Object Component Syntax 279

Attribute Criteria Component Syntax 279

AssociationPath Component Syntax 282

Understanding an Association Path 282
Effect of OMI_INCLUDE_SUBTYPES Flag on an Association Path 284

Understanding Concatenated Association Paths 285

Sample Search Strings For Common Filters 286

Single Attribute Search on the Metadata Type in the <TYPE> Element 286

Single Attribute Search on a Subtype of the <TYPE> Element 286

Selecting Objects Whose Attributes Begin With a Value 286
Selecting Objects Whose Attributes Have a Missing Value or Blank String 286

Specifying Concatenated Attributes 287

Searching By Association Name 287

Searching by Association Name and Attribute Criteria 287

Specifying Multiple Association Levels in an Association Path 287
Specifying Concatenated Association Paths 288

Using OMI_XMLSELECT with Other Flags 288

Examples of Search Strings That Filter Objects Based on UsageVersion 288

Example of a GetMetadataObjects Request That Specifies an <XMLSELECT> Element 289

Filtering the Associated Objects That Are Retrieved By a GetMetadataObjects Request 290
Example of Using XMLSELECT and Template Filter Criteria in the Same Method Call 292

Overview of Filtering a GetMetadataObjects Request
The GetMetadataObjects method enables you to filter both the initial set of objects

and the associated objects that are selected in the GetMetadataObjects request. This
topic describes how to filter the initial set of objects selected by GetMetadataObjects.
For information to filter the associated objects, see “Filtering the Associated Objects
That Are Retrieved By a GetMetadataObjects Request” on page 290.

The GetMetadataObjects method supports an OMI_XMLSELECT (128) flag to enable
you to filter the initial set of objects that are retrieved by the SAS Metadata Server.
The OMI_XMLSELECT flag instructs the server to check the <OPTIONS> element for
search criteria specified in an <XMLSELECT> element. The <XMLSELECT> search
syntax enables you to filter objects based on the following:

� attribute criteria

� association path criteria

� a combination of the two criteria

278 <XMLSELECT> Element Form and Search Criteria Syntax � Chapter 15

� a concatenation of each criteria

Attribute criteria enable you to select only objects that contain specified attribute
values. For example:

� You can specify to select only Person objects that have a Name= attribute value of
John Doe.

By concatenating attribute criteria with the logical operators AND or OR, you can
perform exclusive or inclusive filtering based on the attribute criteria. For example:

� You can specify to select objects that have a Name= attribute value of John Doe or
Jane Doe (exclusive search).

� You can specify to select objects that have the attribute=value pairs Name="John
Doe" and Title="Manager" (inclusive search).

Association path criteria enables you to select objects that have a specific association
and whose associated objects meet association and attribute criteria. For example:

� You can specify to select only Document objects that have a Reports association to
a Report object.

� You can specify to select only Document objects that have a ResponsibleParties
association to a ResponsibleParty object that has a Persons association to a Person
object that has the Name= attribute value of John Doe.

In both examples, the Document objects that are retrieved are filtered by one
association path criteria. In the first example, the filtering association path starts with
the association Reports. Documents that do not have a Reports association are ignored.
In the second example, the filtering association path starts with the association
ResponsibleParties. Documents that do not have a ResponsibleParties association are
ignored. In addition, the ResponsibleParty objects found through the
ResponsibleParties association are filtered to include only objects that have a Persons
association to a Person object that has the attribute value Name="John Doe".

When you concatenate association path criteria, the method filters the objects that
are selected based on two or more associations that are directly defined for the specified
metadata type. It joins the association paths using an implicit AND operator. As a
result, the method selects only objects that meet all of the criteria specified in all of the
association paths.

� An example of a concatenated association path is specifying to select Document
objects that have a Reports association to a Report object that has a Name=
attribute value of Sales, as well as a ResponsibleParties association to a
ResponsibleParty object that has a Persons association to a Person object that has
a Name= value of John Doe.

The method ignores any objects that do not have both a Reports association and a
ResponsibleParties association and meet the criteria in both association paths.

The ability to concatenate association path criteria is new in SAS 9.2.

<XMLSELECT> Element Form and Search Criteria Syntax
The <XMLSELECT> element is specified within the <OPTIONS> element in the

following form:

<XMLSELECT search="criteria"/>

The syntax of criteria varies depending on whether you are specifying attribute
criteria, association path criteria, or both.

Filtering a GetMetadataObjects Request � Attribute Criteria Component Syntax 279

A statement that specifies only attribute criteria on the metadata type defined in the
GetMetadataObjects <TYPE> element can be specified as one of the following:

Object[AttributeCriteria]
AttributeCriteria
(AttributeCriteria)

A statement that concatenates attribute criteria is specified as one of the following:

Object[AttributeCriteria and|or AttributeCriteria]

AttributeCriteria and|or AttributeCriteria

(AttributeCriteria and|or AttributeCriteria)

In a statement that specifies only attribute criteria, the brackets and parentheses
around the criteria are optional.

For all other syntax combinations, the brackets and parentheses must be specified as
shown.

A statement that specifies both attribute criteria and an association path as criteria
is specified as follows:

Object[AttributeCriteria][AssociationPath]

A statement that specifies only an association path as criteria is specified as follows:

Object[AssociationPath]

A statement that specifies an association path that has multiple association levels
defined is specified as follows:

Object[AssociationPathLevel1/AssociationPathLevel2/AssociationPathLeveln]

A statement that concatenates association path criteria is specified as:

Object[AssociationPath1][AssociationPath2][AssociationPath3]

A description of each syntax component is provided in the following sections.

Object Component Syntax
The Object component is required for all searches except simple attribute criteria

searches. It specifies the object class type. Valid values are a metadata type name or an
asterisk (*).

� The metadata type name can be the same metadata type name that is specified in
the GetMetadataObjects TYPE parameter or a subtype of the metadata type. To
determine the subtypes of a metadata type, see the metadata type descriptions in
SAS Metadata Model: Reference.

� An * (asterisk) is a shorthand method of referring to the metadata type specified
in the TYPE parameter.

Attribute Criteria Component Syntax
The AttributeCriteria component is optional. It enables you to filter the objects that

are selected to objects matching a specified attribute=value pair. The syntax of
AttributeCriteria is as follows:

280 Attribute Criteria Component Syntax � Chapter 15

[@attrname cop ’value’ lop AttributeCriteria]

� @attrname specifies an attribute name; for example, @Name or @Desc.

� cop is a comparison operator. The supported comparison operators are described in
the following table:

Symbol or Mnemonic Description

=, eq, or EQ Equal to the specified character string,
numeric, datetime, or MISSING value.

ne, NE Not equal to the specified character string,
numeric, datetime, or MISSING value.

gt, GT Greater than the character string, numeric,
or datetime value. MISSING value not
supported.

ge, GE Greater than or equal to the character string,
numeric, or datetime value. MISSING value
not supported.

lt, LT Less than the character string, numeric, or
datetime value. MISSING value not
supported.

le, LE Less than or equal to the character string,
numeric, or datetime value. MISSING value
not supported.

?, contains, or CONTAINS Contains the specified character string.
Numeric and datetime values are not
supported. MISSING character value is
supported.

=: Begins with the specified character string.
Numeric and datetime values are not
supported. MISSING character value is
supported.

Note: The NE, GE, and LE operators (and their lowercase aliases) are new in
SAS 9.2. Also in SAS 9.2, GT and LT have been expanded to operate on character
string values and numeric values. The expanded functionality allows comparisons
to be performed on ranges of character string and numeric values. �

� ’value’ is a character or numeric string enclosed within single quotation marks.

Character Strings:

Searches of character strings compare the <XMLSELECT> search pattern value
with the attribute data value and determine which string appears first in a sorted
list. The sort order is based on the collation sequence for the specified locale. If
either the data or pattern values contain any characters that are not in the locale’s
collation list, the locale determines how to order the unknown characters.

Missing Values:

� To search for a MISSING numeric or datetime attribute value, specify a
period enclosed within single quotation marks.

Filtering a GetMetadataObjects Request � Attribute Criteria Component Syntax 281

� To search for a MISSING character attribute value, specify two adjacent
single quotation marks.

Datetime Values:
In the current release, searches by date or by time are not supported. However,

the SAS Metadata Server supports datetime queries on the MetadataCreated= and
MetadataUpdated= attributes. The supported DATETIME formats are the
following:

� ddmmmyyyy:hh:mm:ss.s
� ddmmmyyyy:hh:mm:ss
� a SAS date value that represents a ddmmmyyyy:hh:mm:ss value
� a MISSING datetime ’.’ value

The DATE format ddmmmyyyy is not supported.
Datetime queries are supported only in the standard interface. For more

information about how to issue SAS Open Metadata Interface methods, see
“Communicating with the SAS Metadata Server” on page 14.

Note: Objects are persisted to disk with a GMT datetime value. Therefore, an
object created in local time might have a different datetime value on disk. For
example, an object created at ’30May2003:16:20:01’ CST could have a persisted
datetime value of ’30May2003:21:20:01’. To accommodate the storage conversion,
the SAS Metadata Server converts values that you specify in an <XMLSELECT>
search string to GMT values for you. However, the datetime values returned by the
server look different than the values that you submitted in the search string. �

The following are examples of queries in the supported formats:
<XMLSELECT search="*[@MetadataCreated GT ’27May2003:09:20:17.2’]"/>
<XMLSELECT search="*[@MetadataCreated LT ’27May2010:09:20:17’]"/>
<XMLSELECT search="*[@MetadataCreated GT ’1309907400’]"/>
<XMLSELECT search="*[@MetadataUpdated EQ ’.’]"/>

In the third example, ’1309907400’ is the SAS date value for
’30May2003:19:03:11’ GMT.

� lop is the logical operator AND or OR. It enables you to specify an additional
AttributeCriteria string that is appended to and concatenated with the first
AttributeCriteria string. AND specifies that both conditions must be met for an
object to be selected for retrieval. OR specifies that either condition can be met for
an object to be selected. An example of an OR comparison is the following:

[@Name = ’John Doe’ or @Name = ’Jane Doe’]

Compound attribute criteria are also supported. Use parentheses to control
evaluation order. For example:

search="*[@ProductName=’SAS/CONNECT’ and
(@Name contains ’test - SAS/CONNECT Server’ or @Name=’test’)]"

In this example, the expression enclosed within the parenthesis is evaluated
first.

Note: Whether single, concatenated, or compound attribute criteria are used, the
attribute test is applied only if all of the specified attribute names are valid for the
object. That is, if one of the attribute names in the attribute string is misspelled, then
no objects are selected.

If the OMI_INCLUDE_SUBTYPES flag is set with OMI_XMLSELECT, the metadata
type and subtype objects to be tested might support a different set of attribute names.
Only objects that contain all of the specified attribute names are tested for a match. �

282 AssociationPath Component Syntax � Chapter 15

AssociationPath Component Syntax
The AssociationPath component enables you to specify one or more associations as

search criteria. To be selected, the objects specified in the Object component must have
an association that meets the criteria in AssociationPath.

The syntax of AssociationPath is as follows:

Object[AssociationPath][AssociationPathn]

Each AssociationPath is the following:

[AssociationPathLevel/AssociationPathLeveln]

And, AssociationPathLevel is the following:

AssociationName/AssociatedObject[AttributeCriteria]

In the syntax, Object can be a metadata type name or an asterisk, as described in
“Object Component Syntax” on page 279.

Each AssociationPath specifies one association of Object to evaluate. Specifying two
AssociationPath components concatenates the criteria and indicates that two
associations will be evaluated. Specifying a third AssociationPath indicates that three
associations will be evaluated. The brackets enclosing each AssociationPath are
required and function like an AND operator.

An AssociationPath specification can include one or more association path levels. The
first AssociationPathLevel identifies the association of Object that will be evaluated.
Subsequent levels are supported to enable you to filter the objects that are returned for
this first association by specifying additional associations, associated metadata types,
and attribute criteria that the first set of objects must match in order to be selected.
For more information, see “Understanding an Association Path” on page 282. Each
AssociationPathLevel within the AssociationPath is separated from the other levels by a
slash (/).

AttributeCriteria is optional in a AssociationPathLevel.

Understanding an Association Path
To understand how an association path is evaluated, we must consider each

association path level that is specified. The AssociationPathLevel specifies an
association and an associated object that is evaluated, as well as optional attribute
criteria that the associated objects must meet to be selected.

The first AssociationPathLevel in AssociationPath sets the context for the request. It
specifies the association that an object must have defined to be evaluated. When
considered in the context of Object, the syntax of the first AssociationPathLevel looks
like the following:

Object[AssociationName/AssociatedObject[AttributeCriteria]]

Object can be the same metadata type name that is specified in the
GetMetadataObjects TYPE parameter, a subtype of the metadata type in TYPE, or an
asterisk, which defaults to the value in the TYPE parameter. The value that you
specify in Object indicates what association names are valid. In the first
AssociationPathLevel, the following is true:

Filtering a GetMetadataObjects Request � Understanding an Association Path 283

� If Object is a metadata type, then AssociationName must be an association name
that is valid for that metadata type as defined in the SAS Metadata Model. For
example, if Object is Report, then AssociationName must be an association name
that is defined for the Report metadata type in the SAS Metadata Model.

� If Object is an *, then AssociationName must be an association name that is valid
for the metadata type specified in the TYPE parameter.

The AssociatedObject in AssociationPathLevel specification can also be a metadata
type name or an asterisk. However, in this position, the specified value stipulates
whether associated objects of one metadata type should be evaluated, or, that associated
objects of all of the potential associated metadata types defined for the association name
should be evaluated. For example:

� When AssociatedObject is a metadata type, this says, “Give me only object
instances of this metadata type that are related under the specified association
name.”

� When AssociatedObject is an asterisk, this says “Give me object instances of all
potential metadata types that are defined for the specified association name.”

Consider the following AssociationPathLevel specifications to understand how the
asterisk and metadata type names are evaluated in the Object and AssociatedObject
positions. For these examples, assume that Report is the metadata type specified in the
TYPE parameter.

[ReportLocation/]

Report[ReportLocation/Email]

The first specification selects objects of the metadata type specified in the TYPE
parameter (Report) that have a ReportLocation association and associated objects of
any of the metadata types that are valid for the ReportLocation association name. The
ReportLocation association name supports associations to objects of 19 metadata types.

The second specification selects Report objects that have a ReportLocation
association to an Email object. (Email is one of the 19 supported metadata types.)

If a subtype were specified in either the Object or AssociatedObject positions, then the
SAS Metadata Server would select only objects and associated objects of the specified
subtypes. Report is a subtype of the Classifier metadata type. If Classifier were the
metadata type specified in the TYPE parameter, the first specification above would
apply to the Classifier metadata type. The second specification would still only apply to
Report objects.

The AttributeCriteria component in AssociationPathLevel further limits the Objects
that are selected to objects whose associated objects meet the specified attribute
criteria. For example, consider the following request:

Report[ReportLocation/Document[@TextType=’XML’]]

The attribute criteria limit the Report objects that are selected to objects that have
associated Document objects that have the attribute TextType="XML". When attribute
criteria are specified in a query that has an * in the AssociatedObject component, the
attribute criteria are applied to all associated objects.

Subsequent AssociationPathLevel components in an AssociationPath get their context
from the AssociatedObject in the preceding level.

� When the preceding associated object is a metadata type, then AssociationName
must be an association name that is valid for that metadata type.

� When the preceding associated object is an *, then AssociationName can be any
association name defined for one of the metadata types supported by the preceding
association name.

284 Effect of OMI_INCLUDE_SUBTYPES Flag on an Association Path � Chapter 15

Consider the following AssociationPathLevel:

Report[ReportLocation/Document[@TextType=’XML’]]

AssociationName in a second AssociationPathLevel specification must be an
association that is valid for the Document metadata type. The AssociatedObject in the
second AssociationPathLevel must be a metadata type that is supported by the second
AssociationName or an *.

Consider the following AssociationPathLevel:

Report[ReportLocation/*]

AssociationName in a second AssociationPathLevel specification can be an association
name that is valid for any of the 19 metadata types supported by the ReportLocation
association. The AssociatedObject in the second AssociationPathLevel must be a
metadata type that is supported by the second AssociationName or an *.

The following is an example of an AssociationPath that specifies multiple
AssociationPathLevel components and specifies metadata types in the AssociatedObject
positions:

Report[ResponsibleParties/ResponsibleParty /Persons/Person/
Locations/Location[Area=’New York’]]

The request selects Report objects that have a ResponsibleParties association to a
ResponsibleParty object that has a Persons association to a Person who has a Locations
association to a Location object that has the attribute value Area=“New York”. It has
three AssociationPathLevel components:

1 ResponsibleParties/ResponsibleParty

2 Persons/Person

3 Locations/Location

The following is an example of an AssociationPath that specifies multiple
AssociationPathLevel components and specifies asterisks in the AssociatedObject
positions:

Report[ResponsibleParties/*[@Role=’OWNER’]/Persons/*[@Name=’John Doe’]]

The request selects Report objects that have a ResponsibleParties association to any
object that has a Role= attribute value of Owner and a Persons association to any object
that has a Name= attribute value of John Doe. It has two AssociationPathLevel
components:

1 ResponsibleParties/*

2 Persons/*

Effect of OMI_INCLUDE_SUBTYPES Flag on an Association Path
Setting the OMI_INCLUDE_SUBTYPES (16) flag with OMI_XMLSELECT in the

GetMetadataObjects method can drastically alter the results. When
OMI_INCLUDE_SUBTYPES is set, the SAS Metadata Server applies the specified
selection criteria to objects of the metadata types specified in Object and
AssociatedObject, and to all of their subtypes.

If the metadata types have no subtypes defined for them in the SAS Metadata Model
(neither Report nor Person have subtypes defined), the flag has no effect. However,
some metadata types, such as Classifier, have many subtypes. The ability to get
subtypes is useful when you want to get objects of similar metadata types that have
common properties. Consider the following request:

Filtering a GetMetadataObjects Request � Understanding Concatenated Association Paths 285

Classifier[ResponsibleParties/*[@Role=’OWNER’]/Persons/*[@Name=’John Doe’]]

When OMI_INCLUDE_SUBTYPES is set, this request returns all Classifier objects,
and objects of its subtypes Cube, Dimension, ExternalTable, PhysicalTable, QueryTable,
Report, SharedDimension, TableCollection, and WorkTable objects that are owned by
John Doe.

To determine what metadata types have subtypes, see the SAS Metadata Model
documentation.

Understanding Concatenated Association Paths
An <XMLSELECT> search string that includes concatenated AssociationPath criteria

must specify an association name that is valid for the Object component in each
AssociationPath.

� If Object is a metadata type, then all association paths must begin with an
association name that is valid for that metadata type.

� If Object is an *, then each association path must begin with an association name
that is valid for the metadata type specified in the TYPE parameter.

� If Object is an * and the OMI_INCLUDE_SUBTYPES flag is set, then each
association path must begin with an association name that is valid for the
metadata type specified in the TYPE parameter or one of its subtypes.

The AssociationPath components are joined by an implied AND operator. Therefore,
only objects that meet the criteria in the combined AssociationPath components will be
selected. When the OMI_INCLUDE_SUBTYPES flag is set, only objects that have all of
the specified attribute names are tested for a match.

Example 1:
Object 1 and Object 2 are subtypes of *. Object 1 has valid associations to

associationname1 and associationname2. Object 2 has valid associations to
associationname3 and associationname4.

Query:

search="*[associationname1/object][associationname2/object]"

Result: Only Object 1 is returned.
Query:

search="*[associationname3/object][associationname4/object]"

Result: Only Object 2 is returned.
Query:

search="*[associationname1/object][associationname4/object]"

Result: Neither object is returned.

286 Sample Search Strings For Common Filters � Chapter 15

Example 2:
Object 1 and Object 2 are subtypes of *. Object 1 has valid associations to

associationname1, associationname2, and associationname3. Object 2 has valid
associations to associationname2, associationname3, and associationname4.

Query:

search="*[associationname2/object][associationname3/object]"

Result: Selects Object 1 and Object 2.

Sample Search Strings For Common Filters

Single Attribute Search on the Metadata Type in the <TYPE> Element
Both of the following <XMLSELECT> elements select all objects that have a Name=

attribute value of John Doe:

<XMLSelect search="*[@Name=’John Doe’]"/>
<XMLSelect search="Person[@Name=’John Doe’]"/>

Single Attribute Search on a Subtype of the <TYPE> Element
The following <XMLSELECT> element selects PhysicalTable objects that have a

DBMSType= attribute value of Oracle:

<Type>RelationalTable</Type>
...
<XMLSELECT search="PhysicalTable[@DBMSType=’Oracle’]"/>

Selecting Objects Whose Attributes Begin With a Value
The following <XMLSELECT> element selects Person objects that have a Name=

value that begins with John:

<XMLSELECT search="Person[@Name =:’John’]"/>

Selecting Objects Whose Attributes Have a Missing Value or Blank
String

The following <XMLSELECT> element selects WorkTable objects that have a
missing numeric value in the NumRows= attribute:

<XMLSELECT search="WorkTable[@NumRows=’.’]"/>

The following <XMLSELECT> element selects WorkTable objects that have a blank
string in the MemberType= attribute:

<XMLSelect search="WorkTable[@MemberType=’’]"/>

Filtering a GetMetadataObjects Request � Specifying Multiple Association Levels in an Association Path 287

Specifying Concatenated Attributes
The following <XMLSELECT> element selects objects that have either the Name=

attribute value of John Doe or Jane Doe:

<XMLSELECT search="*[@Name=’John Doe’ OR @Name=’Jane Doe’]"/>

The logical operator can be specified in uppercase or lowercase letters.

Searching By Association Name
The following <XMLSELECT> element selects objects that have any objects

associated with them through the ResponsibleParties association:

<XMLSELECT search="*[ResponsibleParties/*]"/>

Searching by Association Name and Attribute Criteria
The following <XMLSELECT> element selects any objects that have a Role= attribute

value of OWNER associated with them through the ResponsibleParties association:

<XMLSELECT search="*[ResponsibleParties/*[@Role=’OWNER’]]"/>

Specifying Multiple Association Levels in an Association Path
The following <XMLSELECT> element selects objects that have a Role= attribute

value of OWNER associated with them through the ResponsibleParties association. The
ResponsibleParties association has a Persons association to a Person object that has a
Name= attribute value of John Doe.

<XMLSELECT search="*[ResponsibleParties/*[@Role=’OWNER’]/
Persons/Person[@Name=’John Doe’]]"/>

The following <XMLSELECT> element selects objects owned by any type of object
with a Name= attribute value of John Doe:

<XMLSELECT search="*[ResponsibleParties/*[@Role=’OWNER’]/
Persons/*[@Name=’John Doe’]]"/>

This request is identical to the preceding request, except that an asterisk is
substituted for the Person object to specify any object in the second path level. The
Persons association supports associations to Person and IdentityGroup objects.
Specifying an asterisk in this position causes the SAS Metadata Server to evaluate
IdentityGroup objects and Person objects in its search.

288 Specifying Concatenated Association Paths � Chapter 15

Specifying Concatenated Association Paths
The following <XMLSELECT> element selects objects that have objects associated to

them through the ResponsibleParties and Reports associations that meet the criteria
specified for those association names.

<XMLSelect search="*[ResponsibleParties/*[@Role=’Owner’]/
Persons/*[@Name=’Joe Accountant’]]
[Reports/Report[@Name=’Sales’]/
Groups/Group[@Name=’Accountant’]]"/>

Each association path is enclosed within a pair of left and right square bracket
delimiters. An object is returned when all path levels of each association path are
successfully searched using the object as the starting point for each search.

This request returns objects that are owned by a Person or IdentityGroup named Joe
Accountant and also have a Reports association to a Report with a name of Sales that
belongs to a Group named Accountant.

Using OMI_XMLSELECT with Other Flags
By default, XML searches are not case sensitive. A case-sensitive search can be

performed by specifying the OMI_MATCH_CASE (512) flag with the
OMI_XMLSELECT flag.

Examples of Search Strings That Filter Objects Based on UsageVersion
The SAS 9.2 Metadata Model defines an optional UsageVersion= attribute for all

metadata types to enable version management of metadata definitions. A
UsageVersion= value consists of a major version number (0<=major<=999), a minor
version number (0<=minor<=99), and a build number (0<=build<=9999). The build
number is reserved for future use. UsageVersion= values are persisted in metadata as a
double value in the form MMMmmbbbb.0.

Major version zero is reserved to indicate that an object was created before SAS 9.2,
or that the object is not versioned. Most SAS 9.2 Phase 2 objects are versioned as 1.0,
unless there is a reason (such as an existing versioning scheme) to start at a higher
version number.

The following examples show how the new SAS 9.2 comparison operators described
in “Attribute Criteria Component Syntax” on page 279 can be used to specify version
criteria for the UsageVersion= attribute.

In the <XMLSELECT> search string, the UsageVersion= value can be expressed
without the leading zeros in the MMM part of the MMMmmbbbb.0 format. These three
examples all refer to version 1.1:

@UsageVersion LE ’1010000.0’
@UsageVersion LE ’01010000.0’
@UsageVersion LE ’001010000.0’

Filtering a GetMetadataObjects Request � Example of a GetMetadataObjects Request That Specifies an <XMLSELECT> Element 289

The following are examples of search strings that execute common queries:

Find version 0 or non-versioned objects:

<XMLSELECT search="*[@UsageVersion EQ ’0.0’]"/>

Find version 1.0 objects:

<XMLSELECT search="*[@UsageVersion EQ ’1000000.0’]"/>

Find version 1.1 objects:

<XMLSELECT search="*[@UsageVersion EQ ’1010000.0’]"/>

Find version 1.10 objects:

<XMLSELECT search="*[@UsageVersion EQ ’1100000.0’]"/>

Find all major version 1 objects less than or equal to version 1.1:

<XMLSELECT search="*[@UsageVersion GE ’1000000.0’ and
@UsageVersion LE ’1010000.0’]"/>

Find all major version 1 objects:

<XMLSELECT search="*[@UsageVersion GE ’1000000.0’ and
@UsageVersion LT ’2000000.0’]"/>

Example of a GetMetadataObjects Request That Specifies an
<XMLSELECT> Element

The following example shows how the <XMLSELECT> element is specified in a
GetMetadataObjects method call. The <XMLSELECT> element specifies concatenated
AssociationPath criteria.

<GetMetadataObjects>
<Reposid>A0000001.A52WE4LI</Reposid>
<Type>Document</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify the OMI_XMLSELECT (128) flag -->
<Flags>128</Flags>

<!-- Include the <XMLSELECT> element and a search string -->
<Options>

<XMLSelect search="*[ResponsibleParties/*[@Role=’Owner’]/Persons/*
[@Name=’Joe Accountant’]][Reports/Report[@Name=’Sales’]/Groups/Group
[@Name=’Accountant’]]"/>

</Options>
</GetMetadataObjects>

The request sets the OMI_XMLSELECT (128) flag and specifies the <XMLSELECT>
search string in the <OPTIONS> element. Output is returned in the <OBJECTS>
element.

290 Filtering the Associated Objects That Are Retrieved By a GetMetadataObjects Request � Chapter 15

Filtering the Associated Objects That Are Retrieved By a
GetMetadataObjects Request

Search criteria that are specified in the <XMLSELECT> element of a
GetMetadataObjects method call filters the initial set of metadata objects that are
retrieved. You can filter the associated objects that are retrieved by
GetMetadataObjects by setting the OMI_GETMETADATA (256) and OMI_TEMPLATE
(4) flags and specifying a search criteria string in the association name subelement of a
template that requests associated objects.

The search criteria specified in an association name subelement supports a reduced
form of the XMLSELECT syntax. The search criteria string supports object and
attribute criteria in the following forms:

<AssociationName search="Object"/>

<AssociationName search="Object[AttributeCriteria]"/>

� Object can be an * or a SAS Metadata Model metadata type. The metadata type
must be a valid associated object for the specified <ASSOCIATIONNAME>.

When Object is an *, the GetMetadataObjects method selects for retrieval all
metadata types that are valid for <ASSOCIATIONNAME>, similar to specifying
<ASSOCIATIONNAME/> without search criteria.

When Object is a metadata type, the GetMetadataObjects method gets only
associated objects of the specified metadata type.

� [AttributeCriteria] is an attribute specification that conforms to the syntax
documented in “Attribute Criteria Component Syntax” on page 279. When
attribute criteria are specified, GetMetadataObjects gets only associated objects
specified by Object, which also meet the specified attribute criteria.

This syntax is a change from SAS 9.1, which supported search criteria in the
following form:

<AssociationName search="AttributeCriteria"/>

The SAS 9.2 syntax improves performance by enabling users to limit the number of
metadata types on which the attribute criteria are evaluated. The older syntax is still
supported in SAS 9.2, and is the same as specifying "*[AttributeCriteria]".

The following is an example of a GetMetadataObjects request that specifies search
criteria on an association name. The request specifies to get Document objects and
ExternalTable objects that are associated with the Document objects through the
Objects association and have the words Human Resources in their Desc= attribute.

<GetMetadataObjects>
<Reposid>A0000001.A5DQTZY5</Reposid>
<Type>Document</Type>
<Objects/>
<NS>SAS</NS>
<!-- OMI_GET_METADATA(256) + OMI_TEMPLATE (4) + OMI_ALL_SIMPLE (8) -->
<Flags>268</Flags>
<Options>

<Templates>
<Document>

<Objects search="ExternalTable[@Desc ? ’Human Resources’]"/>
</Document>

</Templates>

Filtering a GetMetadataObjects Request � Filtering the Associated Objects That Are Retrieved By a GetMetadataObjects Request 291

</Options>
</GetMetadataObjects>

In the request, note the following:

� The <REPOSID> element identifies the repository from which to get the objects.

� The <TYPE> element specifies to get objects of metadata type Document.

� The <FLAGS> element specifies the sum of the OMI_GET_METADATA,
OMI_TEMPLATE and OMI_ALL_SIMPLE flags (256 + 4 + 8 = 268). The
OMI_GET_METADATA and OMI_TEMPLATE flags are required to process the
request. OMI_ALL_SIMPLE is optional and is used here to show the filtering that
occurs. When the required flags are used alone, the GetMetadataObjects method
gets only the Id= attribute of selected associated objects.

� The <OPTIONS> element includes a <TEMPLATES> element that contains a
template. The template specifies to get ExternalTable objects that are associated
with the Document objects through the Objects association and have the words
Human Resources in their Desc= attribute.

Here is an example of the output from the request:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<Document Id="A5DQTZY5.B9000001" Name="MyDocument" ChangeState=""

Desc="Document object created to do search string tests" LockedBy="" MetadataCreated=
"07Aug2008:14:04:35" MetadataUpdated="07Aug2008: 18:40:11" PublicType="Document"
TextRole="" TextType="" URI="text file" URIType="" UsageVersion="1000000">

<Objects SEARCH="ExternalTable[@Desc ? ’Human Resources’]">
<ExternalTable Id="A5DQTZY5.BA000002" ChangeState="" Desc="Human Resources

information from Oracle database" LockedBy="" MetadataCreated="07Aug2008:14:04:35"
MetadataUpdated="07Aug2008: 18:40:36" Name="Oracle HR" NumRows="-1" PublicType=
"ExternalFile" TableName="" UsageVersion="1000000"/>

<ExternalTable Id="A5DQTZY5.BA000004" ChangeState="" Desc="Human Resources
information from Sybase database" LockedBy="" MetadataCreated="07Aug2008:14:04:35"
MetadataUpdated="07Aug2008: 18:40:36" Name="Sybase HR" NumRows="-1" PublicType=
"ExternalFile" TableName="" UsageVersion="1000000"/>

</Objects>
</Document>
</Objects>

Two ExternalTable objects were found that met the selection criteria.

292 Example of Using XMLSELECT and Template Filter Criteria in the Same Method Call � Chapter 15

Example of Using XMLSELECT and Template Filter Criteria in the Same
Method Call

The following is an example of a GetMetadataObjects request that uses an
<XMLSELECT> element to filter the initial set of objects that are retrieved, and a
template to filter the associated objects:

<GetMetadataObjects>
<Reposid>A00000001.A5DQTZY5</Reposid>
<Type>Document</Type>
<Objects/>
<NS>SAS</NS>

<!-- OMI_XMLSELECT(128) + OMI_GET_METADATA(256) + OMI_TEMPLATE (4)
+ OMI_ALL_SIMPLE (8) -->

<Flags>396</Flags>
<Options>

<XMLSelect search="*[@Name ? ’Customer’]"/>
<Templates>

<Document Id="" Name="" TextType="">
<ResponsibleParties search="ResponsibleParty[@Role=’OWNER’]"/>

</Document>
</Templates>

</Options>
</GetMetadataObjects>

In the request, note the following:

� The <REPOSID> element identifies the repository from which to get the objects.

� The <TYPE> element specifies to get objects of metadata type Document.

� The <FLAGS> element specifies the sum of the OMI_XMLSELECT,
OMI_GET_METADATA, OMI_TEMPLATE, and OMI_ALL_SIMPLE flags (128 +
256 + 4 + 8 = 396).

� The <OPTIONS> element includes both an <XMLSELECT> element and a
<TEMPLATES> element. The <XMLSELECT> element specifies to get only
Document objects that contain the word Customer in the Name= attribute. The
<TEMPLATES> element specifies to get only associated ResponsibleParty objects
that have the Role= attribute value of OWNER.

Here is an example of the output from the request:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<Document Id="A5DQTZY5. BN000002" Name="2008 New Customers"

ChangeState=" " Desc="New customers in the Southwest Region in 2008" LockedBy=""
MetadataCreated="21Aug2008:21:11:32" MetadataUpdated="21Aug2008:21:11:32"
PublicType="" TextRole= "" TextType="HTML" URI="" URIType=""
UsageVersion="0">
<ResponsibleParties SEARCH="ResponsibleParty[@Role=’OWNER’]">
<ResponsibleParty Id="A5DQTZY5. BE000004" ChangeState=" " Desc=" " LockedBy=""
MetadataCreated="21Aug2008:21:11:32" MetadataUpdated="21Aug2008:21:11:32"
Name="Manager" Role="Owner" UsageVersion="0"/></ResponsibleParties>
</Document>
</Objects>

Filtering a GetMetadataObjects Request � Example of Using XMLSELECT and Template Filter Criteria in the Same Method Call 293

One Document object was found that included the name Customer in the Name=
attribute. One ResponsibleParty object was found that had the Role= attribute value of
OWNER.

294

295

C H A P T E R

16
Metadata Locking Options

Overview of Metadata Locking Options 295
Using SAS Open Metadata Interface Flags to Lock Objects 295

Overview of Metadata Locking Options

The SAS Open Metadata Interface enables you to control concurrent access to
metadata in two ways:

� You can perform object-level locking within a repository by setting the SAS Open
Metadata Interface OMI_LOCK and OMI_UNLOCK flags.

� You can impose a change management process in which objects are locked and
checked from a primary repository to a project repository by using the SAS Open
Metadata Interface change management facility.

The change management functionality is implemented in SAS Data Integration
Studio. For more information, see the SAS Data Integration Studio documentation.

To use these mechanisms, a user must have a registered identity on the SAS
Metadata Server. For more information, see “User and Group Management” in the SAS
Intelligence Platform: Security Administration Guide.

Using SAS Open Metadata Interface Flags to Lock Objects

The SAS Open Metadata Interface provides the OMI_LOCK, OMI_UNLOCK, and
OMI_UNLOCK_FORCE flags to lock metadata objects. The flags represent the simplest
concurrency control provided by the SAS Open Metadata Architecture. Before making
an update, issue a GetMetadata method call with the OMI_LOCK flag on the objects
that you wish to modify. The specified object and any associated objects specified by
GetMetadata flags and options are locked. Each objects’ LockedBy= attribute is
updated with the metadata identifier representing the caller. The objects remain locked
from update by users other than the calling identity until an UpdateMetadata method
is issued with the OMI_UNLOCK or OMI_UNLOCK_FORCE flags.

OMI_UNLOCK unlocks a lock held by the caller and is the recommended method of
unlocking a lock. OMI_UNLOCK_FORCE unlocks a lock held by another user and is
intended to be used as an emergency override mechanism. While locked, objects can be
read by other users. They cannot be updated by other users until the user holding the
lock completes his update.

The LockedBy= attribute is set and cleared automatically by the lock flags. It can be
queried to determine whether an object is locked and who holds the lock. The

296 Using SAS Open Metadata Interface Flags to Lock Objects � Chapter 16

LockedBy= attribute cannot be changed or cleared directly with the UpdateMetadata
method.

For more information, see “GetMetadata” on page 89 and “UpdateMetadata” on page
110.

297

C H A P T E R

17
Deleting Metadata Objects

Using the DeleteMetadata Method to Delete Application Metadata Objects 297
Using DeleteMetadata to Delete a Specified SAS Metadata Model Object 297

Deleting Associated Objects Using a User-Defined Template 298

Deleting a Repository 300

Using the DeleteMetadata Method to Delete Application Metadata
Objects

The DeleteMetadata method removes metadata from a SAS Metadata Repository. In
SAS 9.2, a DeleteMetadata method that is issued in the SAS namespace removes the
specified object. If the OMI_TEMPLATES (4) flag is set, DeleteMetadata also deletes
associated objects that are specified in a user-defined template. The template is passed
to the SAS Metadata Server in a <TEMPLATE> element within a <TEMPLATES>
element in the OPTIONS parameter.

Using DeleteMetadata to Delete a Specified SAS Metadata Model
Object

The default behavior of the DeleteMetadata method is to delete the metadata object
specified in the INMETADATA parameter. Submit a metadata property string that
identifies the object to be deleted in the INMETADATA parameter. Identify the object to
delete by its metadata type and 17–character metadata identifier. It is not necessary to
specify the object’s Name= value. Set the OMI_TRUSTED_CLIENT flag in the FLAGS
parameter. The OMI_TRUSTED_CLIENT flag must be set in all requests that add,
delete, or update metadata on the SAS Metadata Server.

In addition to the specified object, the DeleteMetadata method automatically deletes
any associated objects that have a 1:1 cardinality to the specified metadata object as
defined in the SAS Metadata Model. A 1:1 cardinality indicates a dependent
relationship between two objects.

The DeleteMetadata does not list the Id= values of deleted associated objects in its
output. Set the OMI_RETURN_LIST (1024) flag to include these Id= values in the
output.

To delete multiple objects at once, stack their property strings in the INMETADATA
parameter. When deleting multiple objects, do not specify associated objects that have a
1:1 cardinality in the DeleteMetadata method. If you specify them, the SAS Metadata
Server attempts to locate objects that have already been deleted, and it aborts the
delete operation when they are not found. You can prevent the delete operation from

298 Deleting Associated Objects Using a User-Defined Template � Chapter 17

being aborted by setting the OMI_IGNORE_NOTFOUND (134217728) flag. However, it
is recommended that you do not specify the associated objects instead.

The following is an example of a DeleteMetadata request that deletes an individual
metadata object, in this case, a SASLibrary object. The OMI_RETURN_LIST (1024)
flag is set with the OMI_TRUSTED_CLIENT (268435456) flag so that the
OUTMETADATA parameter returns the identifiers of any dependent objects that might
be deleted with the SASLibrary object. The request is formatted for the INMETADATA
parameter of the DoRequest method.

<DeleteMetadata>
<Metadata>

<SASLibrary Id=’A2345678.A2000001’/>
</Metadata>
<NS>SAS</NS>
<Flags>268436480</Flags>
<Options/>

</DeleteMetadata>

For a listing of SAS Metadata Model metadata types that can be deleted with the
DeleteMetadata method, see the SAS 9.2 Metadata Model documentation.

For information about how to also delete associated objects in a DeleteMetadata
request, see “Deleting Associated Objects Using a User-Defined Template” on page 298.

Deleting Associated Objects Using a User-Defined Template
A DeleteMetadata request that specifies associated objects to delete has the following

characteristics:

1 It identifies the primary or top-level metadata object to delete in the
INMETADATA parameter.

2 In addition to the metadata type and Id= value of the target object, the
INMETADATA property string specifies a TemplateName= attribute that specifies
the name of a user-defined template. For example, TemplateName="MyTemplate".

3 It sets the OMI_TEMPLATE (4) and OMI_TRUSTED_CLIENT (268435456) flags
in the FLAGS parameter.

4 It submits a <TEMPLATE> element within a <TEMPLATES> element in the
OPTIONS parameter that specifies the metadata type from the INMETADATA
parameter and identifies the associations that you want to delete.

5 The opening <TEMPLATE> tag includes a TemplateName= attribute and value
that matches the TemplateName= value in the INMETADATA parameter.

The following is an example of a DeleteMetadata request that submits a user-defined
template. The request is formatted for the INMETADATA parameter of the DoRequest
method.

<DeleteMetadata>
<Metadata>

<MetadataType Id="reposid.objectid" TemplateName="myassns"/>
</Metadata>

<NS>SAS</NS>
<!--OMI_TEMPLATE + OMI_TRUSTED_CLIENT + OMI_RETURN_LIST -->
<Flags>268436484</Flags>
<Options>

<Templates>

Deleting Metadata Objects � Deleting Associated Objects Using a User-Defined Template 299

<Template TemplateName="myassns">
<MetadataType>

<AssociationName1/>
<AssociationName2/>
<AssociationName3/>

</MetadataType>
</Template>
</Templates>

</Options>
</DeleteMetadata>

Note the inclusion of the attribute TemplateName="myassns" in both the metadata
property string in the <METADATA> element and the <TEMPLATE> element in the
OPTIONS parameter. The content of the template specifies the same metadata type as
the property string in the <METADATA> element and specifies the names of the
associations that you want to delete.

Note how the <TEMPLATE> element is enclosed within a <TEMPLATES> element in
the OPTIONS parameter. The use of a <TEMPLATE> element within a <TEMPLATES>
element is unique to the DeleteMetadata method. It is supported to enable multiple
objects and their associated objects to be deleted in a DeleteMetadata request. The
property strings in the <METADATA> element are scoped to the appropriate template
in the OPTIONS parameter using the value in the TemplateName= attribute.

The following is an example of a DeleteMetadata request that specifies to delete two
objects and their associated objects:

<DeleteMetadata>
<Metadata>

<MetadataType1 Id="reposid.objectid" TemplateName="Template1"/>
<MetadataType2 Id="reposid.objectid" TemplateName="Template2"/>

</Metadata>
<NS>SAS</NS>
<!--OMI_TEMPLATE + OMI_TRUSTED_CLIENT + OMI_RETURN_LIST-->
<Flags>268436484</Flags>
<Options>

<Templates>
<Template TemplateName="Template1">

<MetadataType1>
<AssociationName1/>
<AssociationName2/>
<AssociationName3/>

</MetadataType1>
</Template>
<Template TemplateName="Template2">

<MetadataType2>
<AssociationName1/>
<AssociationName2/>
<AssociationName3/>

</MetadataType2>
</Template>
</Templates>

</Options>
</DeleteMetadata>

The second example specifies two property strings in the <METADATA> element.
Note how the TemplateName= value in each string maps to a <TEMPLATE> element
with a matching TemplateName= value in the OPTIONS parameter.

300 Deleting a Repository � Chapter 17

For more information about how to create a template, see “Using Templates” on page
260.

Deleting a Repository
The DeleteMetadata method call for deleting a repository is formatted similarly to a

DeleteMetadata method call for deleting an application metadata object, with two
exceptions. To delete a repository, specify the following:

� The REPOS namespace.
� One of several flags that indicate whether you want to delete the whole repository,

simply clear the repository’s contents, or you only want to unregister the repository.

Keep in mind the following things when using the REPOS namespace flags:
� You should not unregister or delete the foundation repository if you have other

repositories defined.
� You should not combine REPOS namespace flags in a request.
� Do not attempt to clear the objects from a project repository using the

DeleteMetadata method. Use SAS Data Integration Studio to manage all objects
in project repositories.

A repository is unregistered by executing the DeleteMetadata method with the
OMI_TRUSTED_CLIENT (2097152) flag on a repository object in the REPOS
namespace.

Set the OMI_REINIT and the OMI_TRUSTED_CLIENT flags to clear a repository if
you want to repopulate it completely with different metadata.

Set the OMI_DELETE (32) and the OMI_TRUSTED_CLIENT flags to delete a
repository. OMI_DELETE deletes the contents of a repository and removes the whole
registration from the SAS Repository Manager.

You must have administrative user status on the SAS Metadata Server to unregister,
clear, or delete a repository. For more information about administrative user status, see
the SAS Intelligence Platform: Security Administration Guide.

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

	Contents
	What’s New
	Overview
	Documentation Changes
	Metadata Access Enhancements
	Authorization Enhancements
	Server Control Enhancements
	New Security Administration Server Interface

	Concepts
	Introduction
	About This Book
	Installation Requirements
	Prerequisites
	Audience
	What Is the SAS Open Metadata Architecture?
	What Can I Do with the SAS Open Metadata Interface?
	Authentication
	Authorization Facility

	Client Requirements
	Types of SAS Open Metadata Interface Clients
	Important Terms
	Creating Repositories
	Creating and Accessing Application Metadata
	Connecting to the SAS Metadata Server
	Connecting to the SAS Metadata Server with the SAS Java Metadata Interface
	Server Connection Properties

	Communicating with the SAS Metadata Server
	Standard Interface
	DoRequest Interface

	Controlling the SAS Metadata Server

	SAS Java Metadata Interface
	Understanding the SAS Java Metadata Interface
	What’s New in the SAS 9.2 Java Metadata Interface
	Overview
	General Enhancements

	About This Section
	SAS Java Metadata Interface Overview
	JRE and JAR Requirements
	How the SAS Java Metadata Interface Works

	Using the SAS Java Metadata Interface
	Overview of Creating a SAS Java Metadata Interface Client
	Advantages Over the IOMI Server Interface
	Getting Started
	Instantiating an Object Factory and Connecting to the SAS Metadata Server
	Example of Connecting to the SAS Metadata Server with the makeOMRConnection Method

	Getting Information About Repositories
	Creating Objects
	Getting and Updating Existing Objects
	Deleting Objects
	Sample Program

	Understanding com.sas.metadata.remote Interfaces and Classes
	Interfaces and Classes Summary
	Working with the MdFactory Interface
	Instantiating the Object Factory
	Creating Java Objects
	Invoking the Event Handling Interface
	Deleting Objects
	Disposing of the Object Factory

	Working with the MdOMRConnection Interface
	Working with the CMetadata Interface
	Working with the MdOMIUtil Interface
	Using the Get Methods

	Working with the AssociationList Class
	Working with the MdObjectStore Interface
	Working with the MdUtil Interface

	Server Interfaces
	Metadata Access (IOMI Interface)
	Overview of the IOMI Server Interface
	Using the IOMI Server Interface
	Introduction to IOMI Methods
	Return Code
	Other Method Output

	Constructing a Metadata Property String
	Quotation Marks and Special Characters

	Identifying Metadata
	Functional Index to IOMI Methods
	Using IOMI Flags
	Specifying a Flag
	Corresponding XML Elements
	Flag Behavior When Multiple Flags Are Used

	Summary Table of IOMI Flags
	Summary Table of IOMI Options
	<DOAS> Option
	Specifying the <DOAS> Option
	Example 1: Standard Interface
	Example 2: DoRequest Method

	AddMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	AddResponsibleParty
	Syntax
	Parameters
	Details
	Example
	Related Methods

	AddUserFolders
	Syntax
	Parameters
	Details
	Example
	Related Methods

	DeleteMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	DoRequest
	Syntax
	Parameters
	Details
	Example

	GetMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetMetadataObjects
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetNamespaces
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetRepositories
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method

	GetResponsibleParty
	Syntax
	Parameters
	Details
	Example
	Related Methods

	GetSubtypes
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetTypeProperties
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetTypes
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetUserFolders
	Syntax
	Parameters
	Details
	Example
	Related Methods

	IsSubtypeOf
	Syntax
	Parameters
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	UpdateMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	Authorization (ISecurity Interface)
	Overview of the ISecurity Server Interface
	Using the ISecurity Server Interface
	Calling the Server Interface
	Identifying Resources to ISecurity Methods
	Identifying Users
	Understanding the ISecurity 1.0 Interface
	Understanding the ISecurity 1.1 Interface

	DeleteInternalLogin
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	FreeCredentials
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Example
	Related Methods

	GetApplicationActionsAuthorizations
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Related Methods

	GetAuthorizations
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetAuthorizationsforObjects
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Related Methods

	GetCredentials
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Example
	Related Methods

	GetIdentity
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetInfo
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetInternalLoginSitePolicies
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetInternalLoginUserInfo
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetLoginsforAuthDomain
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Related Methods

	IsAuthorized
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Example
	Related Methods

	IsInRole
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	SetInternalLoginUserOptions
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	SetInternalPassword
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	Security Administration (ISecurityAdmin Interface)
	Overview of the ISecurityAdmin Server Interface
	Using the ISecurityAdmin Server Interface
	Calling the Server Interface
	Identifying Resources to ISecurityAdmin Methods

	Understanding the Transaction Context Methods
	Understanding the General Authorization Administration Methods
	Understanding the ACT Administration Methods
	ApplyACTToObj
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	BeginTransactionContext
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	CreateAccessControlTemplate
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	DestroyAccessControlTemplate
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	EndTransactionContext
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetAccessControlTemplatesOnObj
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Related Methods

	GetAccessControlTemplateAttribs
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Related Methods

	GetAccessControlTemplateList
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetAuthorizationsOnObj
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	GetIdentitiesOnObj
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Related Methods

	RemoveACTFromObj
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	SetAccessControlTemplateAttribs
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Related Methods

	SetAuthorizationsOnObj
	Syntax
	Parameters
	Details
	Exceptions Thrown
	Examples
	Related Methods

	Server Control (IServer Interface)
	Overview of the IServer Server Interface
	Using the IServer Server Interface
	Calling the Server Interface
	Understanding the IServer Server Interface

	Pause
	Syntax
	Details

	Refresh
	Syntax
	Details
	Examples

	Resume
	Syntax
	Details

	Status
	Syntax
	Details
	Examples
	Related Methods

	Stop
	Syntax
	Details

	IOMI Server Interface Usage
	Adding Metadata Objects
	Overview of Adding Metadata
	Using the AddMetadata Method
	Creating a Metadata Object
	Creating Associations While Creating an Object
	Creating Cross-Repository References
	Symbolic Names
	Example Metadata Property Strings
	Creating Multiple, Unrelated Metadata Objects in an AddMetadata Request
	Creating Multiple Associated Objects

	Selecting Metadata Types to Represent Application Elements
	Example of an AddMetadata Request That Creates an Application Metadata Object
	Example of an AddMetadata Request That Creates an Object and an Association to an Existing Object
	Example of an AddMetadata Request That Creates Multiple, Related Metadata Objects
	Example of an AddMetadata Request That Creates Multiple, Unrelated Metadata Objects
	Example of an AddMetadata Request That Creates an Association to an Object in Another Repository
	Additional Information

	Updating Metadata Objects
	Overview of Updating Metadata
	Using the UpdateMetadata Method
	Function= Attribute
	Associated Object Identifier and Value
	Deleting Associations

	Example of an UpdateMetadata Request That Modifies an Object’s Attributes
	Example of an UpdateMetadata Request That Modifies an Association
	Example of an UpdateMetadata Request That Merges Associations
	Example of an UpdateMetadata Request That Deletes an Association
	Example of an UpdateMetadata Request That Appends Associations
	Additional Information

	Overview of Querying Metadata
	Supported Queries
	Querying Server Availability and Configuration
	Querying Namespaces
	Querying Repositories
	Querying Metadata Objects

	Using GetTypes to Get the Metadata Types in a Namespace
	Using GetSubtypes to Get a Metadata Type’s Subtypes

	Using GetRepositories to Get the Registered Repositories
	Using GetRepositories to Get Repository Access and Status Information
	Using GetMetadata to Get a Repository’s Regular Attributes
	Using GetTypes to Get Actual Metadata Types in a Repository

	Using GetMetadata to Get the Properties of a Specified Metadata Object
	Introduction to the GetMetadata Method
	GetMetadata and Cross-Repository References in SAS 9.2
	Expanding a GetMetadata Request to Get All of An Object’s Attributes
	Expanding a GetMetadata Request to Get All of an Object’s Properties
	Expanding a GetMetadata Request to Get Properties of Associated Objects
	Filtering the Associated Objects That Are Returned By a GetMetadata Request
	Specifying Search Criteria in the <METADATA> Element
	Specifying Search Criteria in the <TEMPLATES> Element
	Specifying Search Criteria in Both Elements

	Using GetMetadata to Get Common Properties for Sets of Objects
	Including Objects from Project Repositories in a Public Query
	Combining GetMetadata Flags
	Using Templates
	Creating a Template
	Specifying Search Criteria in a Template to Filter Associated Objects

	Using GetMetadataObjects to Get All Metadata of a Specified Metadata Type
	Introduction to the GetMetadataObjects Method
	Expanding a GetMetadataObjects Request to Return Additional Properties
	Specifying the GetMetadata Flags
	Combining GetMetadata and GetMetadataObjects Flags
	Example of Retrieving All Properties for All Objects
	Suppressing Properties That Do Not Store Values from GetMetadataObjects Output
	Example of Retrieving Only Attributes of Objects
	Example of Retrieving Specified Attributes of All Objects
	Example of Retrieving Associated Objects for All Objects

	Expanding a GetMetadataObjects Request to Include Subtypes
	Expanding a GetMetadataObjects Request to Include Additional Repositories
	Example of a GetMetadataObjects Request That Includes All Public Repositories
	Example of a GetMetadataObjects Request That Includes All Project Repositories
	Example of a GetMetadataObjects Request That Includes All Repositories

	Using GetMetadataObjects To List Repositories

	Filtering a GetMetadataObjects Request
	Overview of Filtering a GetMetadataObjects Request
	<XMLSELECT> Element Form and Search Criteria Syntax
	Object Component Syntax
	Attribute Criteria Component Syntax
	AssociationPath Component Syntax
	Understanding an Association Path
	Effect of OMI_INCLUDE_SUBTYPES Flag on an Association Path

	Understanding Concatenated Association Paths
	Sample Search Strings For Common Filters
	Single Attribute Search on the Metadata Type in the <TYPE> Element
	Single Attribute Search on a Subtype of the <TYPE> Element
	Selecting Objects Whose Attributes Begin With a Value
	Selecting Objects Whose Attributes Have a Missing Value or Blank String
	Specifying Concatenated Attributes
	Searching By Association Name
	Searching by Association Name and Attribute Criteria
	Specifying Multiple Association Levels in an Association Path
	Specifying Concatenated Association Paths

	Using OMI_XMLSELECT with Other Flags
	Examples of Search Strings That Filter Objects Based on UsageVersion
	Example of a GetMetadataObjects Request That Specifies an <XMLSELECT> Element
	Filtering the Associated Objects That Are Retrieved By a GetMetadataObjects Request
	Example of Using XMLSELECT and Template Filter Criteria in the Same Method Call

	Metadata Locking Options
	Overview of Metadata Locking Options
	Using SAS Open Metadata Interface Flags to Lock Objects

	Deleting Metadata Objects
	Using the DeleteMetadata Method to Delete Application Metadata Objects
	Using DeleteMetadata to Delete a Specified SAS Metadata Model Object

	Deleting Associated Objects Using a User-Defined Template
	Deleting a Repository

