
SAS® 9.2 Providers for
OLE DB
Cookbook

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS® 9.2
Providers for OLE DB: Cookbook. Cary, NC: SAS Institute Inc.

SAS® 9.2 Providers for OLE DB: Cookbook

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-59994-311-4

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008
2nd electronic book, February 2009
3rd electronic book, October 2009
4th electronic book, May 2010

1st printing, March 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing

Contents

What's New in the SAS 9.2 Providers for OLE DB . vii

PART 1 Introduction 1

Chapter 1 • Introduction to the SAS Providers for OLE DB . 3
About the SAS Providers for OLE DB: Cookbook . 3
About the SAS Providers for OLE DB . 4
Data Sources and File Types Supported by the SAS Providers . 4
Features Supported by the SAS Providers . 6
Tips for 64-bit Programming . 8

Chapter 2 • System Requirements and Installation . 9
System Requirements . 9
SAS Provider for OLE DB Installation . 10
Accessibility Features of the SAS Providers for OLE DB . 11

PART 2 Getting Started 13

Chapter 3 • Finding Recipes . 15
Using This Recipe Guide . 15
Local Provider Recipes . 15
IOM Provider Recipes . 16
SAS/SHARE Provider Recipes . 18
Base SAS Provider Recipes . 19
OLAP Provider Recipes . 20

Chapter 4 • Learning about SAS Connections . 23
What You Need to Know about SAS Connections . 23
How to Identify the SAS Providers . 24
ADO Connection Properties for the SAS Providers . 24
Three Ways to Open an ADO Connection Object . 28
Using the Data Source Property to Specify All Connection-Related Properties 29

PART 3 Connection Recipes 33

Chapter 5 • Opening an ADO Connection Object . 35
Basic Connection Recipes . 35
Connecting to Local Data . 36
Connecting to Local Data (Single-User Server) . 37
Connecting to a Remote SAS/SHARE Server . 39
Connecting to a Remote SAS Workspace Server . 40
Connecting to a Remote SAS Workspace Server Using SAS Objects 42

Connecting to a Remote SAS OLAP Server . 44

Chapter 6 • Managing Connections . 47
Supplemental Connection Recipes . 47
Prompting Users for Connection Information by Displaying the

Data Link Properties Dialog Box . 48
Using a Microsoft Data Link (.udl) File to Provide Persistent

Connection Information . 54
Controlling Data Access Permissions with a Connection . 55
Managing File Formats with the Local Provider . 58
Reusing an Existing IOM Workspace . 61
Connecting to a Specific SAS/SHARE Server Version . 62

PART 4 Data Management Recipes 63

Chapter 7 • Accessing Specific or Protected Data . 65
Data Access Recipes . 65
Identifying a Data Set and Returning Results . 66
Specifying a Libref to Use with the IOM Provider . 67
Opening a Password-Protected Data Set . 69
Accessing Third-Party Data through SAS/ACCESS Engines . 70
Displaying Metadata That Is Specific to SAS Data Sets . 71
Reading SAS OLAP Cubes . 73

Chapter 8 • Creating, Subsetting, and Deleting Data Sets . 77
Creating, Subsetting, and Deleting Data Sets Recipes . 77
Creating and Deleting Data Sets . 78
Subsetting Data Sets for Read-Only Sequential Access . 83
Subsetting Data Sets for Random and Update Access . 87

Chapter 9 • Specifying How to Display Data . 89
Displaying Data Recipes . 89
Using SAS Formats When You Read Data . 90
Using SAS Informats When You Write Data . 92
Reading User-Defined SAS Formats and Informats . 94
Padding Character Data with Blanks . 95

Chapter 10 • Managing Missing Values . 97
Missing Value Recipes . 97
Reading Missing Values from a Data Set . 98
Reading Special Numeric Missing Values from a Data Set . 101
Writing Missing Values to a Data Set . 104

Chapter 11 • Managing Updates . 107
Updating and Locking Recipes . 107
Updating Recordsets . 107
Implementing a Locking Strategy . 109

PART 5 Tips and Best Practices 113

Chapter 12 • Tuning the Providers for Performance . 115

iv Contents

Properties That Affect Performance . 115
How the "CacheSize" Property Affects Performance . 116
How the "Maximum Open Rows" Property Affects Performance 116
How the SAS Page Size Property Affects Performance . 117
How the SAS Data Set Options Property Affects Performance 118

Chapter 13 • Writing Code That Returns Provider Information . 119
How to Generate a List of Supported ADO Properties . 119
How to Retrieve Version Information for a Provider . 121

PART 6 Troubleshooting 123

Chapter 14 • Handling Error Objects . 125
Using ADO to Handle Errors . 125
Using OLE DB to Handle Errors . 127

Chapter 15 • Known Issues . 129
Known Issues for All Providers . 129
Known Issues for the IOM Provider . 130
Known Issues for the Local Provider . 131
Known Issues for the SAS/SHARE Provider . 132

PART 7 Appendixes 133

Appendix 1 • ADO: Supported Cursor and Lock Type Combinations . 135
Working with Cursor and Lock Type Combinations . 135
Server-Side Cursor Combinations . 135
Client-Side Cursor Combinations . 137

Appendix 2 • ADO: Supported Methods and Properties . 139

Appendix 3 • OLE DB Properties . 143
OLE DB Properties: Introduction . 145
OLE DB Properties: Descriptions . 149
OLE DB Properties: Sorted by ADO Name . 195
OLE DB Properties: Sorted by Data Provider . 199
OLE DB Properties: Sorted by Group . 205

Appendix 4 • OLE DB Interfaces . 211
About OLE DB Interfaces . 211
Standard OLE DB Interfaces . 212
OLE DB for OLAP Interfaces . 213
Custom Interfaces . 213
Data Set Management Using the ITableDefinition Interface . 221

Appendix 5 • Schema Rowsets . 225
About Schema Rowsets . 226
CATALOGS Schema Rowset . 228
COLUMNS Schema Rowset . 228
CUBES Schema Rowset . 231
DIMENSIONS Schema Rowset . 232

Contents v

FUNCTIONS Schema Rowset . 234
HIERARCHIES Schema Rowset . 235
LEVELS Schema Rowset . 236
MEASURES Schema Rowset . 238
MEMBERS Schema Rowset . 239
PROPERTIES Schema Rowset . 241
PROVIDER_TYPES Schema Rowset . 243
SETS Schema Rowset . 245
TABLES Schema Rowset . 245

Appendix 6 • OLE DB: Format Processing . 249
About Format and Informat Processing with OLE DB . 249
How to Specify Format Processing When Binding Columns 251
Using Formats for Input Operations . 252
Overriding Formats for Input Operations . 254
Processing Informats for Output Operations . 256
How to Simultaneously Bind Columns to Formats and Informats 257

Appendix 7 • OLE DB: Column Mapping and Binding . 259
About the Mapping and Binding Process . 259
Returning Column Metadata . 259
Mapping to SAS Constructs . 260
Binding to Rowset Columns . 261

Appendix 8 • Customized User Help for the Data Link Properties Dialog Box 265
Data Link Properties Dialog Box (Connection Tab) . 265
Data Link Properties Dialog Box (Advanced Tab) . 266

Glossary . 269
Index . 277

vi Contents

What's New in the SAS 9.2
Providers for OLE DB

Overview

The SAS Providers for OLE DB have the following changes and enhancements:

• a new data provider provides access to a local installation of Base SAS

• an enhanced Data Link Properties dialog box

• three new properties for managing SAS code before a data source is initialized

• support for reading multilingual data from a data set with UTF-8 encoding

• 64-bit versions of providers

• references to 64-bit programming tips

• a new property for the IOM provider

• new properties for the local provider

A New Data Provider Provides Access to a Local
Installation of Base SAS

The new Base SAS data provider provides access to Base SAS data sets that are available
through a local installation of Base SAS. In this context, the Base SAS installation functions
as a local, single-user server. Access to third-party relational data sources (with licensed
SAS/ACCESS engines) is also supported. Previously, this capability was available through
the SAS/SHARE provider.

An Enhanced Data Link Properties Dialog Box

The version of the Data Link Properties dialog box that is used with the IOM and OLAP
providers now enables you to make the following choices:

• specify any SAS Metadata Server

• select from a list of workspace and OLAP servers that are defined in that metadata
server

vii

Previously, only the default metadata server could be used. No list of available OLAP and
workspace servers was provided.

Three New Properties for Managing SAS Code
Before a Data Source Is Initialized

The IOM provider supports three new properties for managing SAS code before a data
source is initialized.

• "SAS Workspace Init Script" (DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT)
enables you to specify SAS code to be submitted to a SAS Workspace Server
immediately after a connection to the server is established.

• "SAS Workspace Init List" (DBPROP_SAS_WORKSPACE_INIT_LIST) enables you
to capture the SAS listing from the SAS code that you submitted using the "SAS
Workspace Init Script" property.

• "SAS Workspace Init Log" (DBPROP_SAS_WORKSPACE_INIT_LOG) enables you
to capture the SAS log from the SAS code submitted using the "SAS Workspace Init
Script" property.

Support for Reading Multilingual Data from a Data
Set with UTF-8 Encoding

The SAS/SHARE provider and local provider now support reading multilingual data from
a data set with UTF-8 encoding.

64-bit Versions of the Providers

In the third maintenance release for SAS 9.2, SAS offers the SAS/SHARE provider and
OLAP provider in 64-bit versions. You can use a 64-bit provider to read SAS data sets
from 64-bit applications. Both the 32-bit and 64-bit versions are installed at install time.
In addition to these two providers, the IOM and Local providers were offered in 64-bit
versions during the second maintenance release for SAS 9.2.

References to 64-bit Programming Tips

The interfaces to the 64-bit providers remain the same as the interfaces to the 32-bit
versions. Applications that are 32-bit can continue to run on Windows 64-bit operating
systems by using the 32-bit providers. However, 32-bit applications must be migrated to
64-bit in order to run natively in Windows for x64. In the second maintenance release for

viii What's New in the SAS 9.2 Providers for OLE DB

SAS 9.2, this document includes a section that provides references to 64-bit programming
tips.

New Property for the IOM Provider

In the second maintenance release for SAS 9.2, this document provides information for the
SAS Data Set Options property, DBPROPS_SAS_DATASETOPTS. This property is used
to specify SAS data set options.

New Properties for the Local Provider

In the third maintenance release for SAS 9.2, this document provides information for the
following properties:

• DBPROP_SAS_DATASET_ENCODING

• DBPROP_SAS_DATASET_LABEL

• DBPROP_SAS_DATASET_TYPE

• DBPROP_SAS_GET_MISSING_VALUES

• DBPROP_SAS_USE_TKMANAGER_SEARCHPATH

New Properties for the Local Provider ix

x What's New in the SAS 9.2 Providers for OLE DB

Part 1

Introduction

Chapter 1
Introduction to the SAS Providers for OLE DB . 3

Chapter 2
System Requirements and Installation . 9

1

2

Chapter 1

Introduction to the SAS Providers
for OLE DB

About the SAS Providers for OLE DB: Cookbook . 3
How the Cookbook Can Help You Write Applications . 3
What You Should Know in Order to Use This Cookbook . 3

About the SAS Providers for OLE DB . 4

Data Sources and File Types Supported by the SAS Providers 4

Features Supported by the SAS Providers . 6

Tips for 64-bit Programming . 8

About the SAS Providers for OLE DB: Cookbook

How the Cookbook Can Help You Write Applications
The SAS Providers for OLE DB: Cookbook provides programming recipes that are designed
to jump-start your development efforts in these ways:

• by providing ready-to-use sample code

• by encouraging best practices

• by answering frequently asked questions

You can use the recipes directly or modify them to fit your needs.

Sample code for ADO is written in Visual Basic 6. Sample code for OLE DB is written in
Visual C++.

Note: Unless otherwise noted, all of the recipes can be implemented by using either ADO
or OLE DB. This statement is true even if the OLE DB method is not discussed in the
recipe.

What You Should Know in Order to Use This Cookbook
The cookbook assumes that the following statements are true:

• You know how to program by using ADO.

• You are familiar with the OLE DB architecture and specifications.

• You know how to program in an object-oriented or object-based language such as
Visual C++ and Visual Basic.

3

• You are familiar with the information in resources such as these:

• Microsoft Corporation. 1998. OLE DB Programmer's Reference and Data Access
SDK. Redmond, WA: Microsoft Press.

• The Microsoft Developers Network (MSDN) Library.

• Sussman, David, and Homer, Alex. 1999. ADO 2.1 Programmer's Reference.
Chicago: Wrox Press Inc.

• Wood, Chuck. 1999. OLE DB and ODBC Developer's Guide. Foster City, CA: IDG
Books Worldwide.

• Either you know how to start up the SAS server that you want to access or the server
has been started for you.

About the SAS Providers for OLE DB
The SAS providers for OLE DB implement data access interfaces that conform to the OLE
DB specification from Microsoft, which is built on the OLE Component Object Model
(COM).

• The SAS local provider supports access to Base SAS data sets that are stored on a
Windows system. If you can find a Base SAS data set by using the Windows Explorer,
then you can read it by using the SAS local provider. The local provider is available in
32-bit and 64-bit versions. On a Windows x64 system, you can install both versions.

• The SAS/SHARE provider supports access to Base SAS data sets and Scalable
Performance Data (SPD) server data sets via a SAS/SHARE server, as well as third-
party relational data sources (with licensed SAS/ACCESS engines). The
SAS/SHARE provider is available in 32-bit and 64-bit versions. On a Windows x64
system, you can install both versions.

• The SAS IOM provider supports access to Base SAS and SPD Server data sets that are
managed by SAS Workspace Servers, as well as third-party relational data sources
(with licensed SAS/ACCESS engines). The IOM provider is available in 32-bit and
64-bit versions. On a Windows x64 system, you can install both versions.

• The SAS OLAP provider implements the OLE DB for OLAP (ODBO) interface to
enable access to cubes that are managed by SAS OLAP Servers. The OLAP provider
is available in 32-bit and 64-bit versions. On a Windows x64 system, you can install
both versions.

• The Base SAS provider supports access to Base SAS data sets available through a local
installation of Base SAS, as well as third-party relational data sources (with licensed
SAS/ACCESS engines). In this context, the Base SAS installation functions as a local,
single-user server. The Base SAS provider is available in 32-bit. If access is needed to
data sets with a local installation of SAS from a 64-bit application, then, SAS
recommends using the 64-bit version of the SAS/SHARE provider instead.

Data Sources and File Types Supported by the SAS
Providers

The following table describes the different data sources and file types that are supported
by the SAS providers.

4 Chapter 1 • Introduction to the SAS Providers for OLE DB

Table 1.1 Supported Data

File Type/Data Source and
Description

Local
Provider

IOM
Provider

OLAP
Provider

SAS/SHARE
Provider

Base SAS
Provider

SAS data files

Contain both the data and the
descriptor information. SAS data
files have a member type of DATA.

Yes Yes No Yes Yes

SAS data views

A virtual data set that points to data
from other sources. SAS data views
have a member type of VIEW.

No Yes No Yes Yes

Temporary SAS data sets

A data set that exists only for the
duration of the current program or
interactive SAS session.
Temporary SAS data sets are not
available for future SAS sessions.

No Yes No Yes Yes

SAS index

An auxiliary file that is a summary
of a SAS data set. Indexes are never
accessed directly, but they can
provide faster access to specific
observations during SQL
evaluation, particularly when your
data set is large.

No Yes No Yes Yes

SAS audit and backup files

Auxiliary files that are used to audit
the changes made to a data file.

No No (Changes
to the base
data set are
logged.)

No No (Changes to
the base data
set are logged.)

No (Changes
to the base
data set are
logged.)

Interface files

Files created by other programs,
such as ORACLE, DB2, or Sybase.
SAS uses special engines to read
and write the data.

No Yes No Yes Yes

Generation data sets

Historical copies of a SAS data set.

Yes, when
using
libbname.
memname
#gennum in a
direct open.

Yes, when
using
libname.m
emname
#gennum in
a direct open.

(Not valid in
SQL
statements.)

No Yes, when
using
libname.m
emname
#gennum in a
direct open.

(Not valid in
SQL
statements.)

Yes, when
using
libname.
memname
#gennum in
a direct open.

(Not valid in
SQL
statements.)

Data Sources and File Types Supported by the SAS Providers 5

File Type/Data Source and
Description

Local
Provider

IOM
Provider

OLAP
Provider

SAS/SHARE
Provider

Base SAS
Provider

SAS OLAP cubes

A logical set of data that is
organized and structured in a
hierarchical, multidimensional
arrangement.

No No Yes No No

Note: For more information about SAS file types, see SAS Language Reference:
Concepts and the SAS Procedures Guide.

For rectangular data sources, if you can launch SAS and access a file, then that file can be
accessed by the SAS/SHARE and IOM providers with the proper server configuration.

In addition, if the file is a SAS data set created on one of the supported platforms and you
can access the file from Windows Explorer, then that file can be accessed by the local
provider. The platforms must be compatible with your PC platform in the following ways:

• They must use the same character set as the PC: ASCII.

• They must not require floating point conversion. PC floating point numbers are IEEE.

Note: When working with data sets that were created in a different environment, the local
provider translates numeric values but not character values.

The following operating environments meet the local provider's cross-platform
requirements and are supported:

• Solaris

• HP-UX

• RS 6000 AIX

• MIPS ABI

• Intel ABI

• Windows

• OS/2

• AlphaVMS

The following operating environments do not meet the local provider's cross-platform
requirements and are not supported:

• ALPHA_OSF

• CMS (ebcdic)

• MVS (ebcdic)

• VAX_VMS (dfloat)

Features Supported by the SAS Providers
These features are common to all of the SAS providers:

• integrated SAS formatting services, which are the included core set of SAS formats
used when reading or modifying data

6 Chapter 1 • Introduction to the SAS Providers for OLE DB

• use of basic OLE DB schema rowsets, which enable consumers to obtain metadata
about the data source that they use

The following table lists provider-specific functionality.

Table 1.2 Feature Comparison

Provider-Specific Features
Local
Provider IOM Provider

OLAP
Provider

SAS/SHARE
Provider

Base SAS
Provider

supports random access by
using the ADO
(adOpenDynamic) cursor type
and recordset bookmarks

yes yes no yes yes

supports simultaneous user
updates

no yes no yes yes

supports SQL processing no yes no yes yes

provides read and update
access to all data sets available
in a SAS session

no yes no yes yes

provides a choice of either
exclusive access (member-
level lock) or multiple user
access (record-level lock) to
SAS data files, selectable on a
per-rowset open basis

no* yes no yes yes

provides access to SAS data
files via Version 7 and later
SAS/SHARE servers

no no no yes no

provides access to SAS data
files on Version 8 and later
SAS Workspace Servers

no yes no no no

provides access to SAS cubes
on SAS 9.1 and later SAS
OLAP Servers

no no yes no no

provides access to SAS data
files via Version 7 and later
Base SAS installations

no no no no yes

provides read-only access to
Version 6 and later SAS data
sets created on a Windows
system without a SAS session

yes no no no no

Features Supported by the SAS Providers 7

Provider-Specific Features
Local
Provider IOM Provider

OLAP
Provider

SAS/SHARE
Provider

Base SAS
Provider

provides read-only access to
transport files and data sets
created by SAS Version 7 or
later on any of the following
platforms: Solaris, HP-UX, RS
6000 AIX, MIPS Intel ABI,
Windows, OS/2, OpenVMS.
Does not require a SAS
session.

yes no no no no

supports MDX processing no no yes no no

* The local provider always enforces member-level locking.

Tips for 64-bit Programming
The Local provider, IOM provider, OLAP provider, and SAS/SHARE provider are
available in both 32-bit and 64-bit versions. On a 32-bit Windows system, the 32-bit version
of a provider is used. On a 64-bit Windows system, a 64-bit application uses the 64-bit
version of a provider. For customers that choose to leave applications in 32-bit, but run
them on a 64-bit Windows system, the 32-bit application uses the 32-bit provider version,
and both run in the WOW64 compatibility environment.

The Base SAS provider remains 32-bit. For customers in a 64-bit environment that want
to use the Base SAS provider for local data access, SAS recommends using the 64-bit
version of the SAS/SHARE provider instead. The SAS/SHARE provider offers all the
features of the Base SAS provider. When using the SAS/SHARE provider to access local
data, you need to use PROC ODBCSERV to start a single-user server. A license for
SAS/SHARE is not required when using the SAS/SHARE provider and PROC
ODBCSERV. For more information, see “Connecting to Local Data (Single-User Server)”
on page 37.

For customers that are programming to the OLE DB interface (as opposed to ADO or .NET
Framework), Microsoft made a change to the OLE DB header file to accommodate 64-bit
environments. This change might require revision to the application code if you plan to
migrate the application to the 64-bit environment. For more information about the change
to the OLE DB header file, see INFO: OLE DB Header File Changes for 64-
Bit Platform Programming.

For applications that are programmed to the ADO and .NET Framework interfaces,
migration challenges are largely overcome. The data access interfaces are designed to avoid
the details of 32-bit and 64-bit programming. Use the latest software development tools
available from Microsoft when migrating your application from 32-bit to the 64-bit
environment.

The following list identifies Microsoft resources that you might find valuable for
understanding the WOW64 compatibility environment and for migrating your applications:

• 64-bit Applications

• Migration Tips

8 Chapter 1 • Introduction to the SAS Providers for OLE DB

http://support.microsoft.com/kb/298883
http://support.microsoft.com/kb/298883
http://msdn.microsoft.com/en-us/library/ms241064.aspx
http://msdn.microsoft.com/en-us/library/aa384214(VS.85).aspx

Chapter 2

System Requirements and
Installation

System Requirements . 9

SAS Provider for OLE DB Installation . 10

Accessibility Features of the SAS Providers for OLE DB . 11

System Requirements
This documentation assumes that you have an existing SAS environment that includes any
SAS server that you use to access data. The server determines which provider that you use
in your application. The following table lists the SAS servers and their associated data
providers, with the exception of the local provider, which does not require a SAS
installation.

Table 2.1 SAS Servers and Their Associated Data Providers

SAS Server SAS Provider for OLE DB

SAS Workspace Server IOM Provider

SAS OLAP Server OLAP Provider

SAS/SHARE server SAS/SHARE Provider

Base SAS* Base SAS Provider

* In this context, Base SAS functions as a local server that is accessed via a client that uses the Base SAS
provider. This configuration requires that Base SAS is licensed and installed on the local machine.

For information about how to start the SAS servers, see the following SAS documentation:

9

Table 2.2 Documentation Resources for Starting SAS Servers

Server Documentation Title Section

SAS Workspace
Server

SAS Intelligence Platform: System
Administration Guide

"Using SAS Management Console
to Operate SAS Servers" (refer to
the information about the SAS
Object Spawner because it creates
the SAS Workspace Server
process)

SAS OLAP Server SAS Intelligence Platform: System
Administration Guide

"Using SAS Management Console
to Operate SAS Servers"

SAS/SHARE server SAS/SHARE: User's Guide "Starting a Server: A Fast-Track
Approach"

These documents are available on the Web at http://support.sas.com.

Here are some additional system requirements:

• Windows operating system:

• Windows XP Professional

• Windows Server 2003 (Standard and Enterprise)

• Windows Server 2008 (Standard and Enterprise)

• Windows Vista (Home editions are not supported.)

• Windows 7 (Home editions are not supported.)

• For Windows XP and Windows Server 2003, Microsoft Data Access Components
(MDAC) Version 2.7 or later must be installed. (MDAC is available from the Microsoft
Web site.)

• You must have TCP/IP network connectivity. (Only the Local provider can be used
without TCP/IP network connectivity.)

SAS Provider for OLE DB Installation
You can install the SAS 9.2 Providers for OLE DB from the SAS Deployment Wizard.

You can download the most current versions of the SAS Providers for OLE DB from
http://www.sas.com/apps/demosdownloads/setupintro.jsp. Click SAS
Providers for OLE DB.

The providers can also be installed with applications such as SAS Enterprise Guide, SAS
Add-in for Microsoft Office, and SAS Stat Studio. The IOM provider is part of the Itech
Windows client install.

10 Chapter 2 • System Requirements and Installation

Accessibility Features of the SAS Providers for
OLE DB

The SAS Providers for OLE DB includes accessibility and compatibility features that
improve usability of the product for users with disabilities. These features are related to
accessibility standards for electronic information technology adopted by the U.S.
Government under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. If you
have questions or concerns about the accessibility of SAS products, send e-mail to
accessibility@sas.com.

Accessibility Features of the SAS Providers for OLE DB 11

12 Chapter 2 • System Requirements and Installation

Part 2

Getting Started

Chapter 3
Finding Recipes . 15

Chapter 4
Learning about SAS Connections . 23

13

14

Chapter 3

Finding Recipes

Using This Recipe Guide . 15

Local Provider Recipes . 15

IOM Provider Recipes . 16

SAS/SHARE Provider Recipes . 18

Base SAS Provider Recipes . 19

OLAP Provider Recipes . 20

Using This Recipe Guide
After you determine which SAS server your application will access, you will also know
which provider to use. For example, if your data is hosted on a SAS Workspace Server,
then you need to use the IOM provider.

Different recipes apply to different providers. This chapter provides a list of recipes for
each provider.

• “Local Provider Recipes” on page 15

• “IOM Provider Recipes” on page 16

• “SAS/SHARE Provider Recipes” on page 18

• “Base SAS Provider Recipes” on page 19

• “OLAP Provider Recipes” on page 20

Local Provider Recipes
The following table lists recipes that apply to the local provider.

Table 3.1 Recipes and Descriptions

Recipe Task

“Connecting to Local Data” on page
36

Open an ADO Connection object to access locally stored data.

15

Recipe Task

“Prompting Users for Connection
Information by Displaying the Data Link
Properties Dialog Box” on page 48

Prompt users for connection information at run time by displaying the Data Link
Properties dialog box.

“Using a Microsoft Data Link (.udl) File
to Provide Persistent Connection
Information ” on page 54

Reference connection information that is stored in a Microsoft Data Link (.udl)
file.

“Controlling Data Access Permissions
with a Connection” on page 55

Set permissions on your data source.

“Managing File Formats with the Local
Provider” on page 58

Specify which SAS file format to use to access a data source and access different
file formats simultaneously.

“Identifying a Data Set and Returning
Results” on page 66

Open a specific data set and return either static or dynamic results. Your options
depend on which SAS provider you are using.

“Opening a Password-Protected Data
Set” on page 69

Open a password-protected data set.

“Displaying Metadata That Is Specific to
SAS Data Sets” on page 71

Display metadata that is specific to SAS data sets.

“Using SAS Formats When You Read
Data ” on page 90

Use SAS formats to read data.

“Padding Character Data with Blanks”
on page 95

Preserve trailing blanks.

“Reading Missing Values from a Data
Set” on page 98

Test for missing values.

IOM Provider Recipes
The following table lists recipes that apply to the IOM provider.

Table 3.2 Recipes and Descriptions

Recipe Task

“Connecting to Local Data” on page
36

Open an ADO Connection object to access locally stored data.

“Connecting to a Remote SAS
Workspace Server” on page 40

Connect to a remote SAS Workspace Server using a method that enables you to
use ADO objects exclusively.

“Connecting to a Remote SAS
Workspace Server Using SAS Objects”
on page 42

Connect to a remote SAS Workspace Server by using the SAS Integration
Technologies Object Factory.

16 Chapter 3 • Finding Recipes

Recipe Task

“Prompting Users for Connection
Information by Displaying the Data Link
Properties Dialog Box” on page 48

Prompt users for connection information at run time by displaying the Data Link
Properties dialog box.

“Using a Microsoft Data Link (.udl) File
to Provide Persistent Connection
Information ” on page 54

Reference connection information that is stored in a Microsoft Data Link (.udl)
file.

“Controlling Data Access Permissions
with a Connection” on page 55

Set permissions on your data source.

“Reusing an Existing IOM Workspace”
on page 61

Reuse an existing IOM Workspace.

“Identifying a Data Set and Returning
Results” on page 66

Open a specific data set and return either static or dynamic results. Your options
depend on which SAS provider you are using.

“Specifying a Libref to Use with the IOM
Provider” on page 67

Specify (assign) a libref.

“Opening a Password-Protected Data
Set” on page 69

Open a password-protected data set.

“Accessing Third-Party Data through
SAS/ACCESS Engines” on page 70

Access third-party data stores that are available through your licensed
SAS/ACCESS engines.

“Displaying Metadata That Is Specific to
SAS Data Sets” on page 71

Display metadata that is specific to SAS data sets.

“Creating and Deleting Data Sets” on
page 78

Create and delete data sets.

“Subsetting Data Sets for Read-Only
Sequential Access” on page 83

Execute SQL queries and commands in order to subset data sets for read-only,
sequential access.

“Using SAS Formats When You Read
Data ” on page 90

Use SAS formats when reading data.

“Reading User-Defined SAS Formats
and Informats” on page 94

Read user-defined SAS formats and informats.

“Using SAS Informats When You Write
Data” on page 92

Use SAS informats when writing data.

“Padding Character Data with Blanks”
on page 95

Preserve trailing blanks.

“Reading Missing Values from a Data
Set” on page 98

Test for missing values.

“Writing Missing Values to a Data Set”
on page 104

Write missing values to a data set.

“Updating Recordsets” on page 107 Perform recordset updates, including batch updates.

IOM Provider Recipes 17

Recipe Task

“Implementing a Locking Strategy” on
page 109

Lock records, especially during update access.

SAS/SHARE Provider Recipes
The following table lists SAS/SHARE provider recipes and their descriptions.

Table 3.3 Recipes and Descriptions

Recipe Task

“Connecting to Local Data” on page
36

Open an ADO Connection object to access locally stored data.

“Connecting to a Remote SAS
Workspace Server” on page 40

Connect to a remote SAS/SHARE server.

“Prompting Users for Connection
Information by Displaying the Data Link
Properties Dialog Box” on page 48

Prompt users for connection information at run time by displaying the Data Link
Properties dialog box.

“Using a Microsoft Data Link (.udl) File
to Provide Persistent Connection
Information ” on page 54

Reference connection information that is stored in a Microsoft Data Link (.udl)
file.

“Controlling Data Access Permissions
with a Connection” on page 55

Set permissions on your data source.

“Connecting to a Specific SAS/SHARE
Server Version” on page 62

Explicitly request access to a Version 7 or Version 8 SAS/SHARE server.

“Identifying a Data Set and Returning
Results” on page 66

Open a specific data set and return either static or dynamic results. Your options
depend on which SAS provider you are using.

“Opening a Password-Protected Data
Set” on page 69

Open a password-protected data set.

“Accessing Third-Party Data through
SAS/ACCESS Engines” on page 70

Access third-party data stores that are available through your licensed
SAS/ACCESS engines.

“Displaying Metadata That Is Specific to
SAS Data Sets” on page 71

Display metadata that is specific to SAS data sets.

“Creating and Deleting Data Sets” on
page 78

Create and delete data sets.

“Subsetting Data Sets for Read-Only
Sequential Access” on page 83

Execute SQL queries and commands in order to create subsets of data sets for
read-only, sequential access.

18 Chapter 3 • Finding Recipes

Recipe Task

“Subsetting Data Sets for Random and
Update Access” on page 87

Use the WHERE clause with the SAS SQL procedure to subset data sets for
random and update access.

“Using SAS Formats When You Read
Data ” on page 90

Use SAS formats when reading data.

“Using SAS Informats When You Write
Data” on page 92

Use SAS informats when writing data.

“Reading User-Defined SAS Formats
and Informats” on page 94

Read user-defined SAS formats and informats.

“Padding Character Data with Blanks”
on page 95

Preserve trailing blanks.

“Reading Missing Values from a Data
Set” on page 98

Test for missing values.

“Writing Missing Values to a Data Set”
on page 104

Write missing values to a data set.

“Updating Recordsets” on page 107 Perform recordset updates, including batch updates.

“Implementing a Locking Strategy” on
page 109

Lock records, especially during update access.

Base SAS Provider Recipes
The following table lists the Base SAS provider recipes and their descriptions.

Table 3.4 Recipes and Descriptions

Recipe Task

“Connecting to Local Data (Single-User
Server)” on page 37

Start a local server for a single user. In this context, a local installation of Base
SAS functions as the server.

“Prompting Users for Connection
Information by Displaying the Data Link
Properties Dialog Box” on page 48

Prompt users for connection information at run time by displaying the Data Link
Properties dialog box.

“Using a Microsoft Data Link (.udl) File
to Provide Persistent Connection
Information ” on page 54

Reference connection information that is stored in a Microsoft Data Link (.udl)
file.

“Controlling Data Access Permissions
with a Connection” on page 55

Set permissions on your data source.

Base SAS Provider Recipes 19

Recipe Task

“Identifying a Data Set and Returning
Results” on page 66

Open a specific data set and return either static or dynamic results. Your options
depend on which SAS provider you are using.

“Opening a Password-Protected Data
Set” on page 69

Open a password-protected data set.

“Accessing Third-Party Data through
SAS/ACCESS Engines” on page 70

Access third-party data stores that are available through your licensed
SAS/ACCESS engines.

“Displaying Metadata That Is Specific to
SAS Data Sets” on page 71

Display metadata that is specific to SAS data sets.

“Creating and Deleting Data Sets” on
page 78

Create and delete data sets.

“Subsetting Data Sets for Read-Only
Sequential Access” on page 83

Execute SQL queries and commands in order to subset data sets for read-only,
sequential access.

“Subsetting Data Sets for Random and
Update Access” on page 87

Use the WHERE clause with the SAS SQL procedure to subset data sets for
random and update access.

“Using SAS Formats When You Read
Data ” on page 90

Use SAS formats when you read data.

“Using SAS Informats When You Write
Data” on page 92

Use SAS informats when you write data.

“Padding Character Data with Blanks”
on page 95

Preserve trailing blanks.

“Reading Missing Values from a Data
Set” on page 98

Test for missing values.

“Writing Missing Values to a Data Set”
on page 104

Write missing values to a data set.

“Updating Recordsets” on page 107 Perform recordset updates, including batch updates.

“Implementing a Locking Strategy” on
page 109

Lock records, especially during update access.

OLAP Provider Recipes
The following table provides a list of SAS OLAP provider recipes and their descriptions.

20 Chapter 3 • Finding Recipes

Table 3.5 Recipes and Descriptions

Recipe Task

“Connecting to a Remote SAS OLAP
Server ” on page 44

Connect to a remote SAS OLAP Server.*

“Prompting Users for Connection
Information by Displaying the Data Link
Properties Dialog Box” on page 48

Prompt users for connection information at run time by displaying the Data Link
Properties dialog box.

“Using a Microsoft Data Link (.udl) File
to Provide Persistent Connection
Information ” on page 54

Reference connection information that is stored in a Microsoft Data Link (.udl)
file.

“Controlling Data Access Permissions
with a Connection” on page 55

Set permissions on your data source.

“Reading SAS OLAP Cubes” on page
73

Read SAS OLAP cubes.

* Although it is technically possible to make a local connection to a SAS OLAP Server, typically the connection is remote.

OLAP Provider Recipes 21

22 Chapter 3 • Finding Recipes

Chapter 4

Learning about SAS Connections

What You Need to Know about SAS Connections . 23

How to Identify the SAS Providers . 24

ADO Connection Properties for the SAS Providers . 24
Local Provider Properties . 24
Base SAS Provider Properties . 25
SAS/SHARE Provider Properties . 26
IOM Provider Properties . 26
OLAP Provider Properties . 27

Three Ways to Open an ADO Connection Object . 28

Using the Data Source Property to Specify All Connection-
Related Properties . 29

What Is the Data Source URI Format? . 29
Data Source URI Protocols . 30
Using a dataSourceString to Hold Connection Information 30

What You Need to Know about SAS Connections
In most cases, you can use the SAS providers for OLE DB to perform the tasks that are
described in the OLE DB specification. The only difference is the connection information.
This chapter contains the following connection information that is specific to the SAS
providers:

• how to identify each provider.

• a list of ADO connection properties for each provider.

• sample code that illustrates three ways to open an ADO Connection object. The sample
code uses the ProgIDs and connection properties that are discussed in this chapter.

• an explanation of what the Data Source URI format is and how to use it when making
connections. The Data Source URI format is the recommended way to specify
connection information if you are running SAS 9.2 and accessing data via a 9.2 SAS
Workspace or SAS OLAP server.

T I P Refer to the information in this chapter when you are writing your application.

23

See Also
“Basic Connection Recipes” on page 35

How to Identify the SAS Providers
To specify the provider in your application, you enter its ProgID, which is a unique name
that identifies a COM component. All providers support both version-dependent and
version-independent ProgIDs. You can install different versions of the providers on the
same system and write applications that use specific versions.

Table 4.1 ProgIDs and Examples

Type of Application Form to Use Examples*

Always uses the latest version
of the provider that is installed
on a machine.

"sas.provider" "sas.LocalProvider"

"sas.ShareProvider"

"sas.BaseSASProvider"

"sas.IOMProvider"

"sas.OLAPProvider"

Only uses a specific version of
a provider.

"sas.provider.major version.minor
version"

"sas.LocalProvider.9.2"

* The ProgIDs are not case-sensitive.

To maintain compatibility with previous releases, the special ProgID "sas.provider.1" as a
synonym for the version-independent ProgID. For example, the last IOM provider that was
installed on the system can be identified in either of these two ways:

• "sas.IOMProvider"

• "sas.IOMProvider.1"

The IOM provider for SAS 9.2 can be specifically identified as "sas.IOMProvider.9.2".

See Also
“Basic Connection Recipes” on page 35

ADO Connection Properties for the SAS Providers

Local Provider Properties
This table lists the properties that the local provider supports on the ADO Connection
object.

24 Chapter 4 • Learning about SAS Connections

Table 4.2 Connection Properties for the Local Provider

Property Description/Value Required?

"Data Source" A directory that contains the Base SAS data set that you want to access
with the connection. The directory specification can be a local drive,
a mounted drive, or a network drive. If you want to specify a fully
qualified file path when you open a record set, set this property to
"_LOCAL_".

Yes

"Mode" The access permissions for the "Data Source." Valid values are
adModeRead or adModeReadWrite. The default is adModeReadWrite
in conjunction with adModeShareDenyNone.

No

"SAS File Format" The SAS file format to associate with the "Data Source" value.

If this property is not explicitly set, then the provider examines the
value of the "Data Source" property to determine which file format to
use. If the provider cannot determine the format, then it uses the "SAS
Default File Format" property.

"V9" can be used for Version 7 and Version 8 SAS data sets. For
Version 6 data sets, use "V6". The 64-bit version of the local provider
only works with "V9."

No

Base SAS Provider Properties
This table lists the properties that the Base SAS provider supports on the ADO Connection
object.

Table 4.3 Connection Properties for the Base SAS Provider

Property Description/Value Required?

"Data Source" The server ID that is established by the value of the "SAS Parameters"
property.

Yes

"SAS Executable" The fully qualified path that includes the SAS executable file (sas.exe).
The default value for this property is the standard installation path of
the latest major SAS release. To start different server versions, set the
path to the version that you want to start.

Yes

"SAS Parameters" The command line options that are used to start the SAS executable.
This command line must include code to start the local server—for
example:

-initstmt %sasodbc(sdplserv) -icon -nosplash

Yes

"Mode" The access permissions for the "Data Source." Valid values are
adModeRead or adModeReadWrite. The default is adModeReadWrite
in conjunction with adModeShareDenyNone.

No

Base SAS Provider Properties 25

Property Description/Value Required?

"SAS Working
Directory"

The fully qualified path to the default directory for the SAS session.
This directory usually contains your SAS program files and
documents.

The default value for this property is the standard installation path of
the latest major SAS release.

No

"SAS Server Release" The major release number of the Base SAS installation that you are
using. Valid values are 7, 8, and 9 (the default).

No

SAS/SHARE Provider Properties
This table lists the properties that the SAS/SHARE provider supports on the ADO
Connection object.

Table 4.4 Connection Properties for the SAS/SHARE Provider

Property Description/Value Required?

"Data Source" The server ID that is established by the server administrator when the
SAS/SHARE server is started.

Yes

"Mode" The access permissions for the "Data Source." Valid values are
adModeRead or adModeReadWrite. The default is
adModeReadWrite in conjunction with adModeShareDenyNone.

No

"Location" The node that the server is running on. Only if the node is not
the one that is running
the ADO application.
For example,
"Location" is required
for remote-server
access.

"User ID" The user ID that the user provides to access a server that requires
authentication.

Might be required by
the server.

"Password" The password that the user provides to access a server that requires
authentication.

Yes, if the "User ID"
is required.

"SAS Server Access
Password"

The server-access password if one was established by the server
administrator when the SAS/SHARE server was started.

Might be required by
the server.

"SAS Server Release" The major release number of the server that you are using. Valid values
are 7, 8, and 9 (the default).

No

IOM Provider Properties
This table lists the properties that the IOM provider supports on the ADO Connection
object.

26 Chapter 4 • Learning about SAS Connections

Table 4.5 Connection Properties for the IOM Provider

Property Description/Value Required?

"Data Source" Use the "_LOCAL_" keyword to indicate a new, locally instantiated
SAS Workspace Server. To specify a remote server, set this property
to any string that you want to associate with the connection.

Yes

"User ID" The ID that the user provides to access a server that requires
authentication.

Might be required by
the server.

"Password" The password that the user provides to access a server that requires
authentication.

Yes, if the "User ID"
is required.

"SAS Workspace ID" In the IOM model, a workspace represents a single SAS session. For
each workspace, the SAS Workspace Manager generates a unique ID
that can be used to explicitly identify the workspace.

No

"SAS Port" The TCP/IP port number of a remote SAS Workspace Server. For a remote
connection, you must
specify either this
property or the "SAS
Service Name"
property.

"SAS Service Name" A logical reference to the TCP/IP port number associated with a remote
SAS Workspace Server.

For a remote
connection, yes,
unless "SAS Port" is
specified.

"SAS Machine DNS
Name"

The network DNS name of a remote SAS Workspace Server or the IP
address of the server.

Yes, for remote
connections.

"SAS Protocol" The protocol to use when you connect to a remote SAS Workspace
Server. Valid values are ProtocolBridge, ProtocolCom, or
ProtocolCorba.

Yes, for remote
connections.

"SAS Server Type" The type of server. For a SAS Workspace Server, the correct value is
DBPROPVAL_DST_TDP, which identifies a tabular data server.

No

OLAP Provider Properties
This table lists the properties that the OLAP provider supports on the ADO Connection
object.

Table 4.6 Connection Properties for the OLAP Provider

Property Description/Value Required?

"Data Source" The name of the SAS OLAP server to which you are connecting.
Typically, the value is the IP address of the remote SAS OLAP server.
(Local SAS OLAP Server connections are uncommon.)

Yes

OLAP Provider Properties 27

Property Description/Value Required?

"User ID" The ID that the user provides to access a server that requires
authentication.

Might be required by
the server.

"Password" The password that the user provides to access a server that requires
authentication.

Yes, if the "User ID"
is required.

"SAS Port" The TCP/IP port number of a remote SAS OLAP Server. Must specify either
this property or the
"SAS Service Name"
property.

"SAS Service Name" A logical reference to the TCP/IP port number that is associated with
a remote SAS OLAP Server.

Yes, unless "SAS
Port" is specified.

"SAS Protocol" The protocol to use when you connect to a remote SAS OLAP Server.
Valid values are ProtocolBridge, ProtocolCom, or ProtocolCorba.

Yes, for remote
connections.

See Also
“Basic Connection Recipes” on page 35

Three Ways to Open an ADO Connection Object
In each connection recipe, one of the following methods is used to open the ADO
Connection object. This topic uses connection scenarios and sample code to introduce you
to each method.

Table 4.7 Samples That Illustrate Three ADO Connection Methods

Method Connection Scenario and Sample Code

Specify the Connection
object properties in a one-
line, quoted connection
string.

You are using the most recently installed version of the SAS/SHARE provider to open a
read-only connection to a remote server that requires user authentication.

Dim obConnection As New ADODB.Connection

 obConnection.Open "Provider=sas.ShareProvider; _
 Data Source=shr1;Mode=adModeRead; _
 Location=ShareServer.example.com; _
 User ID=tjones;Password=e7tjb"

Set the Connection object
ConnectionString property
and then call the Open
method without specifying
any parameters.

The SAS 9.2 version of the IOM provider is being used to open a bridge connection to a
remote server with host authentication.*

Dim obConnection As New ADODB.Connection

 obConnection.ConnectionString = "Provider=SAS.IOMProvider.9.2; _
 Data Source=iom-bridge://workspace.example.com:8591; _
 User ID=tjones;Password=e7tjb"
 obConnection.Open

28 Chapter 4 • Learning about SAS Connections

Method Connection Scenario and Sample Code

Set the Connection object
Provider property and then
set individual property values
by using the Connection
objects Properties collection.

You are using the most recently installed version of the local provider to open a local
connection to a SAS Version 6 data set located in c:\v6data.

Dim obConnection As New ADODB.Connection

 obConnection.Provider = "sas.LocalProvider"
 obConnection.Properties("Data Source") = "c:\v6data"
 obConnection.Properties("SAS File Format") = "V6"
 obConnection.Open

* This sample code uses the Data Source URI format.

See Also
• “How to Identify the SAS Providers” on page 24

• “ADO Connection Properties for the SAS Providers” on page 24

• “What Is the Data Source URI Format?” on page 29

• “Basic Connection Recipes” on page 35

Using the Data Source Property to Specify All
Connection-Related Properties

What Is the Data Source URI Format?
The Data Source URI format enables you to use the "Data Source" property to specify all
connection-related properties. You can use this format with the IOM and OLAP providers
in order to access SAS Workspace and OLAP servers, respectively. You must be running
SAS 9.2.

You can use this format in two ways:

• You can assign the connection information directly to the "Data Source" property as
shown in this sample connection string.

Dim obConnection As New ADODB.Connection
connectionString = "Provider=sas.OLAPProvider.9.2; _
 Data Source=iom-com://olap.example.com; _
 User ID=myuserid; _
 Password=mypassword"

Note: For more examples, see “Basic Connection Recipes” on page 35.

• You can define a dataSourceString to hold the connection information. You then
specify the dataSourceString as the value of the "Data Source" property as shown in
this sample code:

Dim obConnection As New ADODB.Connection
connection.Properties("Data Source") = dataSourceString

Note: For more examples, see “Using a dataSourceString to Hold Connection
Information” on page 30.

What Is the Data Source URI Format? 29

Note: If you need to use the characters % or =, you must replace them with their URL-
encoded values. The value for % is %25. The value for = is %3D. There are no other
URL requirements.

Data Source URI Protocols
The Data Source URI format supports the following protocols, which you specify in your
code.

Table 4.8 Data Source URI Protocols

URI Scheme Protocol

iom-bridge Bridge

iom-com COM

iom-name Not specified. The name is extracted from the metadata server.

iom-id Not specified. An existing connection is used.

iom Bridge or COM. This scheme is the only way to use Integrated
Windows Authentication (IWA)*. However, you are not
required to use IWA.

* For information about how IWA is used in SAS 9.2, see "Integrated Windows Authentication" in the SAS
Intelligence Platform: Security Administration Guide.

Using a dataSourceString to Hold Connection Information
You construct the dataSourceString value based on the server information (for example,
port, host name, and logical name) and the protocol that you want to use. This table contains
examples.

Table 4.9 Sample dataSourceString Values

URI
Scheme

Protocol,
Authentication

Server
Port

Host/Logical
Name Sample dataSource String Value

iom-bridge Bridge, Host 1234 example.com dataSourceString = _
 "iom-bridge://example.com:1234"

iom-com COM, Host COM does
not have a
port that is
exposed to
the user.

example.com dataSourceString = "iom-com://example.com"

iom-name Not specified. The name is
extracted from the metadata
server.

"My Logical
Name"

dataSourceString = "iom-name://My Logical Name"

30 Chapter 4 • Learning about SAS Connections

URI
Scheme

Protocol,
Authentication

Server
Port

Host/Logical
Name Sample dataSource String Value

iom-id Not specified. An existing connection is reused. dataSourceString =
 "iom-id://ws.UniqueIdentifier

iom Bridge, IWA 1234 example.com dataSourceString =
 "iom://example.com:1234;" & _
 "Bridge;SECURITYPACKAGE=Negotiate"

iom COM, IWA COM does
not have a
port that is
exposed to
the user.

example.com dataSourceString = "iom://example.com;" & _
 "COM;SECURITYPACKAGE=Negotiate"

* This logical name has been defined in a SAS Metadata Server. This sample also assumes that the SAS Metadata Server has been identified
for the provider. For example, this code might be used to identify a SAS Metadata Server: iom-bridge://metadata.example.com:8561

See Also
• “How to Identify the SAS Providers” on page 24

• “ADO Connection Properties for the SAS Providers” on page 24

• “Three Ways to Open an ADO Connection Object” on page 28

• “Basic Connection Recipes” on page 35

See Also 31

32 Chapter 4 • Learning about SAS Connections

Part 3

Connection Recipes

Chapter 5
Opening an ADO Connection Object . 35

Chapter 6
Managing Connections . 47

33

34

Chapter 5

Opening an ADO Connection
Object

Basic Connection Recipes . 35

Connecting to Local Data . 36
Goal . 36
Implementation . 36

Connecting to Local Data (Single-User Server) . 37
Goal . 37
Implementation . 37

Connecting to a Remote SAS/SHARE Server . 39
Goal . 39
ADO Implementation . 39
OLE DB Implementation . 39

Connecting to a Remote SAS Workspace Server . 40
Goal . 40
Implementation . 40

Connecting to a Remote SAS Workspace Server Using SAS Objects 42
Goal . 42
Implementation . 43

Connecting to a Remote SAS OLAP Server . 44
Goal . 44
Implementation . 44

Basic Connection Recipes
This chapter provides sample code that you can use to open an ADO Connection object for
access to local and remote data. Here is a list of the recipes in this chapter:

• “Connecting to Local Data” on page 36

• “Connecting to Local Data (Single-User Server)” on page 37

• “Connecting to a Remote SAS/SHARE Server” on page 39

• “Connecting to a Remote SAS Workspace Server” on page 40

• “Connecting to a Remote SAS Workspace Server Using SAS Objects” on page 42

• “Connecting to a Remote SAS OLAP Server ” on page 44

35

See Also
• “Supplemental Connection Recipes” on page 47

• “Data Access Recipes” on page 65

Connecting to Local Data

Goal
You want to open an ADO Connection object in order to access data that is stored in one
of these locations:

• your local machine

• a SAS Workspace server that is running on your local machine

• a SAS/SHARE server that is running on your local machine

This recipe applies to the local, SAS/SHARE, and IOM providers. Sample code is included.
This recipe applies only to ADO.

Note: Sample code for the Base SAS provider can be found in “Connecting to Local Data
(Single-User Server)” on page 37. There is no recipe for making a local connection
by using the OLAP provider. Although it is technically possible to make a local
connection to a SAS OLAP Server, a local configuration is unlikely.

Implementation
A local connection is the simplest connection that you can make. The following table
explains the required scenario and contains sample code.

Table 5.1 Sample Code for Local Connections

Provider Connection Scenario and Sample Code

local provider The data is on your local machine. You specify the physical location.

Dim obConnection As New ADODB.Connection

obConnection.Provider = "sas.LocalProvider"
obConnection.Properties("Data Source") = "c:\MySasData"
obConnection.Open

IOM provider The SAS Workspace Server is running on your local machine.

Dim obConnection As New ADODB.Connection
Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2;Data Source=_LOCAL_"
obConnection.Open connectionString

After the Connection object is opened, it is assigned to the specified server for the duration of the
session.

36 Chapter 5 • Opening an ADO Connection Object

Provider Connection Scenario and Sample Code

SAS/SHARE
provider

The SAS/SHARE server is running on your local machine. You specify the server's ID as the value of
the "Data Source" property.

Dim obConnection As New ADODB.Connection

obConnection.Provider = "sas.SHAREProvider"
obConnection.Properties("Data Source") = "shr1"
obConnection.Open

After the Connection object is opened, it is assigned to the specified server for the duration of the
session.

For an explanation of the properties used in the sample code, see “ADO Connection
Properties for the SAS Providers” on page 24.

Connecting to Local Data (Single-User Server)

Goal
You want your application to use the Base SAS provider to start a local server for use by
a single user. In this context, a local installation of Base SAS operates as the server.

This recipe applies to the Base SAS provider. Sample code for ADO is included.

Implementation

Adding Server Information to the TCP/IP Services File
Before you can open this connection, you must modify the TCP/IP services file to include
an entry for the SAS server (that is, the Base SAS installation) that the provider will use.
The TCP/IP services file contains information about the services available on the local
machine, including available SAS servers. For each named service, the file specifies a port
number, a protocol name, and any service alias.

Note: The TCP/IP services file is not stored in the same location on all platforms. However,
for the Windows NT, Windows 2000, and Windows XP platforms, the services file is
stored at c:\winnt\system32\drivers\etc\services.

Entries in the services file have the following general form:

<service-name> <port-number/protocol-name> <aliases> # <comments>

To add the server information to the file:

1. Enter the server ID as the service name. The server ID is usually a case-sensitive string
that is one to eight characters in length. The first character is a letter or an underscore;
the remaining seven characters can include letters, digits, underscores, the dollar sign
($), or the at (@) symbol.

Note: When you write the code to start the server, you use the same server ID that you
enter as the value for the "Data Source" property. You also enter the server ID as
the value to be passed into the %sasodbc macro for the "SAS Parameters" property
as shown in the sample code (see “Sample Code for Starting a Local Server” on
page 38).

Implementation 37

2. Set the port number to a number above 1024 that is not already in use. Any port number
that is equal to or less than 1024 is reserved. For larger networks, obtain the port number
from your network administrator.

3. Set the protocol name to TCP.

For example, to configure the Base SAS provider to access a local server named
sdplserv, you add the following entry to the services file (substituting the appropriate
port number):

sdplserv 5420/tcp # Base SAS Provider Local Server

Sample Code for Starting a Local Server
After you add the server entry to the TCP/IP services file, you can use the following Visual
Basic code to start the local server. This sample uses the Connection object Properties
collection to specify individual property values. The server ID is sdplserv (which is the
default).

Dim obConnection As New ADODB.Connection

obConnection.Provider = "sas.BaseSASProvider"
obConnection.Properties("Data Source") = "sdplserv"
obConnection.Properties("SAS Executable") = "C:\\Program Files\\SAS\\SASFoundation\\9.2\\sas.exe"
obConnection.Properties("SAS Parameters") = "-initstmt %sasodbc(sdplserv) -icon -nosplash"
obConnection.Properties("SAS Working Directory") = "C:\\Program Files\\SAS\\SASFoundation\9.2\\"
obConnection.Open

T I P To identify a version of Base SAS that is older than Version 9 (the default), provide
a value for the "SAS Server Release" property. For information about using this
property, see “Connecting to a Specific SAS/SHARE Server Version” on page 62.

For an explanation of the properties used in the sample code, see “Base SAS Provider
Properties” on page 25.

A Closer Look at the Value of the 'SAS Parameters' Property
The following line of code specifies the default value for the "SAS Parameters" property.

obConnection.Properties("SAS Parameters") = "-initstmt %sasodbc(sdplserv) -icon -nosplash"

The initialization statement -initstmt executes a SAS macro named %sasodbc, which
in turn invokes the server identified by sdplserv. The -icon option immediately
minimizes the SAS session. The -nosplash option suppresses the SAS logo and
copyright information.

The %sasodbc macro ships with Base SAS and is found in !sasroot\core\sasmacro
\sasodbc.sas. This macro, which was created for use with the SAS ODBC driver,
executes PROC ODBCSERV. To specify PROC ODBCSERV options in addition to the
sdplserv server ID, you can modify the sasodbc.sas file. You can also modify
sasodbc.sas in order to include additional SAS system options or SAS statements such as
the LIBNAME statement.

CAUTION:
If you also use the SAS ODBC Driver, you should create a separate SAS macro
file for use with the Base SAS provider.

Note: The PROC ODBCSERV options are identical to the PROC SERVER statement
options. For more information about the options, see the SAS/SHARE User's Guide.

Note: !SASROOT is the logical name for the directory in which you install SAS.

38 Chapter 5 • Opening an ADO Connection Object

See Also
“Connecting to Local Data” on page 36

Connecting to a Remote SAS/SHARE Server

Goal
You want your application to connect to a remote SAS/SHARE server.

This recipe applies to the SAS/SHARE provider. Sample code for ADO is included.

ADO Implementation
The following Visual Basic code shows you how to specify the remote server information.
This sample uses the Connection object Properties collection to specify individual property
values. The server ID is shr1.

Dim obConnection As New ADODB.Connection

obConnection.Provider = "sas.ShareProvider"
obConnection.Properties("Data Source") = "shr1"
obConnection.Properties("Location") = "ShareServer.example.com"
obConnection.Properties("User ID") = "jdoe"
obConnection.Properties("Password") = "djru7"
obConnection.Open

Connection information can also be submitted in a single connection string:

obConnection.Open "Provider=sas.ShareProvider;Data Source=shr1; _
 Location=ShareServer.example.com;User ID=jdoe; _
 Password = djru7"

Note: For a step-by-step example and answers to questions that are frequently asked about
setting up a SAS/SHARE server, see "SAS/SHARE: Learning to Use" in the
SAS/SHARE User's Guide.

For an explanation of the properties used in the sample code, see “SAS/SHARE Provider
Properties” on page 26.

OLE DB Implementation
OLE DB requires that you use a data source object to connect to a remote SAS/SHARE
server. The following table shows how the ADO connection properties that were previously
discussed correspond to the OLE DB data source initialization properties.

Table 5.2 OLE DB Data Source Initialization Properties

OLE DB Property Set OLE DB Property ID
Corresponding ADO
Property

DBPROPSET_DBINIT DBPROP_INIT_DATASOURCE "Data Source"

OLE DB Implementation 39

OLE DB Property Set OLE DB Property ID
Corresponding ADO
Property

DBPROPSET_DBINIT DBPROP_INIT_LOCATION "Location"

DBPROPSET_DBINIT DBPROP_AUTH_USERID "User ID"

DBPROPSET_DBINIT DBPROP_AUTH_PASSWORD "Password"

The OLE DB data source initialization properties use the same syntax as their ADO
counterparts. As shown in “ADO Implementation” on page 39, the ADO property values
are represented as character strings. In OLE DB, which has only C and C++ language
bindings, these property values are implemented as variant type VT_BSTR.

Connecting to a Remote SAS Workspace Server

Goal
You want your application to connect to a remote SAS Workspace Server by using a method
that enables you to use ADO objects exclusively. In addition, you want the SAS workspace
to persist until the ADO Connection object is closed.

This recipe applies to the IOM provider. This recipe applies only to ADO. Sample code is
included.

Note: The connection strings use the Data Source URI format. For more information, see
“What Is the Data Source URI Format?” on page 29.

For an explanation of the properties used in the sample code, see “IOM Provider Properties”
on page 26.

Implementation

Sample Connection Code for Common SAS 9.2 Server Configurations
The following table provides examples of connection strings for accessing common
SAS 9.2 server configurations. In these examples, the SAS Workspace Server name is
workspace.example.com and the port number is 8591.

Note: If you are not connecting to SAS 9.2 servers, then you cannot use the sample code
in this topic.

Table 5.3 Sample Code for Common SAS 9.2 Server Configurations

Server Configuration Sample Code

Bridge with host
authentication

Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2; _
Data Source=iom-bridge://workspace.example.com:8591; _
User ID=jdoe;Password=734fi"

40 Chapter 5 • Opening an ADO Connection Object

Server Configuration Sample Code

COM with host
authentication

Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2; _
Data Source=iom-com://workspace.example.com; _
User ID=jdoe;Password=734fi"

Bridge with IWA* Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2; _
Data Source=""iom://workspace.example.com:8591; _
Bridge;SECURITYPACKAGE=Negotiate"""

COM with IWA* Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2; _
Data Source=""iom://workspace.example.com; _
COM;SECURITYPACKAGE=Negotiate"""

* Extra quotation marks are required because of the semicolon used in the "Data Source" property value. If you are not using a connection
string, then you do not need the extra quotation marks.

Sample Connection Code for SAS 9.2 Server Configurations That
Include a SAS Metadata Server
The following table provides examples of connection strings for accessing common
SAS 9.2 server configurations that include a SAS 9.2 Metadata Server. In these examples,
the host name is metadata.example.com and the port number is 8561.

Note: If you are not connecting to SAS 9.2 servers, then you cannot use the sample code
in this topic.

Table 5.4 Sample Code for Common SAS 9.2 Server Configurations That Include a SAS Metadata Server

Server Configuration Sample Code

Bridge with a logical server
name defined in a SAS Metadata
Server and host authentication

Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2; _
Data Source=iom-name://Workspace Server - Logical Server Name; _
SAS Metadata Location=iom-bridge://metadata.example.com:8561; _
SAS Metadata User ID=metauserid;SAS Metadata Password=metapassword"

Bridge with a logical server
name defined in a SAS Metadata
Server and IWA*

Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2; _
Data Source=iom-name://Workspace Server - Logical Server Name; _
SAS Metadata Location=""iom://metadata.example.com:8561; _
Bridge;SECURITYPACKAGE=Negotiate"""

If the user is not defined in the same authentication domain as the logical server name,
then you must also include a line of code that specifies the user ID and password for the
remote server.

User ID=myuserid;Password=mypassword;

Implementation 41

Server Configuration Sample Code

Logical server name defined in a
SAS Metadata Server that is
configured via the SAS
Integration Technologies
configuration utility**

This type of connection does not require any additional metadata server information.

Dim connectionString As String

connectionString = "Provider=SAS.IOMProvider.9.2; _
Data Source=iom-name://Workspace Server - Logical Server Name"

* Extra quotation marks are required because of the semicolon used in the "Data Source" property value. If you are not using a connection
string, then you do not need the extra quotation marks.

** The SAS Integration Technologies configuration utility (ITConfig) enables you to create a configuration file that contains information
about how to access the metadata server. The provider uses that metadata server in order to resolve logical server names.

Sample Connection Code That Uses the Properties Collection
The following Visual Basic code works with all versions of SAS. In these examples, the
SAS Workspace Server name is workspace.example.com and the port number is 8591.

Dim obConnection As New ADODB.Connection

obConnection.Provider = "sas.IOMProvider"
obConnection.Properties("Data Source") = "workspace"
obConnection.Properties("SAS Port") = 8591
obConnection.Properties("SAS Machine DNS Name") = "workspace.example.com"
obConnection.Properties("SAS Protocol") = SASObjectManager.ProtocolBridge
obConnection.Properties("User ID") = "jdoe"
obConnection.Properties("Password") = "734fi"
obConnection.Open

Note: To use the sample code, you must reference the SASObjectManager Type Library
in your Visual Basic project. SASObjectManager Type Library is installed with SAS
Integration Technologies.

See Also
“Connecting to a Remote SAS Workspace Server Using SAS Objects” on page 42

Connecting to a Remote SAS Workspace Server
Using SAS Objects

Goal
You want your application to connect to a remote SAS Workspace Server by using SAS
objects. This connection method provides more flexibility in creating and managing SAS
workspaces than using ADO to create the connection.

This recipe applies to the IOM provider. This recipe applies only to ADO. Sample code is
included.

Note: To use the sample code, you must reference these type libraries in your Visual Basic
project: Microsoft ActiveX Data Objects Library, the SAS Integrated Object Model
(IOM) Type Library, and the SASObjectManager Type Library. The SAS type libraries
are installed with SAS Integration Technologies.

42 Chapter 5 • Opening an ADO Connection Object

Implementation

Sample Code That Uses SAS Objects to Connect to a Remote SAS
Workspace Server
The following Visual Basic code works with all versions of SAS. In these examples, the
SAS Workspace Server name is workspace.example.com and the port number is 8591.

 Dim obConnection As New ADODB.Connection
 Dim obSAS As SAS.Workspace
 Dim obOF As New SASObjectManager.ObjectFactory
 Dim obOK As New SASObjectManager.ObjectKeeper
 Dim obServerDef As New SASObjectManager.ServerDef

 ' Use ServerDef attributes to identify the remote server.
 obServerDef.Protocol = ProtocolBridge
 obServerDef.MachineDNSName = "workspace.example.com"
 obServerDef.Port = 8591

 ' Create a workspace on the identified remote server.
 Set obSAS = obOF.CreateObjectByServer("MyServer", True, obServerDef, "johnd", "xyz")

 ' Add the new workspace object to the ObjectKeeper.
 Call obOK.AddObject(1, "WorkspaceObject", obSAS)

 ' Open a connection to the workspace by using its UniqueIdentifier, which is generated automatically.
 obConnection.Open "Provider=sas.iomprovider.9.2; Data Source=iom-id://" & obSAS.UniqueIdentifier
 :
 :
 :
 obConnection.Close

 ' Remove the workspace object from the ObjectKeeper.
 Call obOK.RemoveObject(obSAS)

A Closer Look at the SAS Objects
Here is more information about the SAS objects that are used in the sample code:

• The ServerDef object specifies the set of attributes necessary to make a connection to
the remote SAS Workspace Server. The sample code assigns values to these attributes:
Protocol, MachineDNSName, and Port.

• The following line of code uses the ObjectFactory CreateObjectByServer method in
order to create a new SAS workspace on the identified server.

Set obSAS = obOF.CreateObjectByServer("MyServer", True, obServerDef, "johnd", "xyz")

The first parameter is a name that you assign to the created server instance. The second
parameter is the Boolean value True, which indicates that the application should not
attempt to create the workspace until a connection has been established. The third
parameter is the name of the ServerDef object that contains the connection information.
The fourth and fifth parameters are the user ID and password that are required to log
on to the remote server.

• The following line of code uses the ObjectKeeper AddObject method in order to store
the new SAS workspace. Before the IOM provider can reference the workspace, the
workspace must be added to the ObjectKeeper.

Implementation 43

Call obOK.AddObject(1, "WorkspaceObject", obSAS)

The first two parameters are a unique numeric ID and a unique string. Either value can
be used in later code in order to retrieve the workspace object. The third parameter is
the name of the workspace object.

Note: For information about working with object variables and creating a workspace, see
the SAS Integration Technologies: Windows Client Developer's Guide.

See Also
“Connecting to a Remote SAS Workspace Server” on page 40

Connecting to a Remote SAS OLAP Server

Goal
You want your application to connect to a remote SAS OLAP Server. (Although it is
technically possible to make a local connection to a SAS OLAP Server, typically the
connection is remote.)

This recipe applies to the OLAP provider. This recipe applies only to ADO. Sample code
is included.

Note: The connection strings use the Data Source URI format. For more information, see
“What Is the Data Source URI Format?” on page 29.

For an explanation of the properties used in the sample code, see “OLAP Provider
Properties ” on page 27.

Implementation

Sample Connection Code for Common SAS 9.2 Server Configurations
The following table provides examples of connection strings that you use to access common
SAS 9.2 server configurations. In these examples, the SAS OLAP Server name is
olap.example.com and the port number is 8591.

Note: If you are not connecting to SAS 9.2 servers, then you cannot use the sample code
in this topic.

Table 5.5 Sample Code for Common SAS 9.2 Server Configurations with SAS 9.2

Server Configuration Sample Code

Bridge with host
authentication

Dim connectionString As String

connectionString = "Provider=sas.OLAPProvider.9.2; _
Data Source=iom-bridge://olap.example.com:8591; _
User ID=jdoe;Password=djru7"

44 Chapter 5 • Opening an ADO Connection Object

Server Configuration Sample Code

Bridge with IWA* Dim connectionString As String

connectionString = "Provider=sas.OLAPProvider.9.2; _
Data Source=""iom://olap.example.com:8591; _
Bridge;SECURITYPACKAGE=Negotiate"""

* Extra quotation marks are required because of the semicolon used in the "Data Source" property value. If you are not using a connection
string, then you do not need the extra quotation marks.

Sample Connection Code for SAS 9.2 Server Configurations That
Include a SAS Metadata Server
The following table provides examples of connection strings for accessing common SAS
9.2 server configurations that include a SAS 9.2 Metadata Server. In these examples, the
host name is metadata.example.com and the port number is 8561.

Note: If you are not connecting to SAS 9.2 servers, then you cannot use the sample code
in this topic.

Table 5.6 Sample Code for Common SAS 9.2 Server Configurations That Include a SAS Metadata Server

Server Configuration Sample Code

Bridge with a logical
server name defined in a
SAS Metadata Server and
host authentication

Dim connectionString As String

connectionString = "Provider=sas.OLAPProvider; _
Data Source=iom-name://OLAP Server - Logical Server Name; _
SAS Metadata Location=iom-bridge://metadata.example.com:8561; _
SAS Metadata User ID=jdoe;SAS Metadata Password=djru7"

Bridge with a logical
server name defined in a
SAS Metadata Server and
IWA**

Dim connectionString As String

connectionString = "Provider=SAS.OLAPProvider.9.2; _
Data Source=iom-name://OLAP Server - Logical Server Name; _
SAS Metadata Location=""iom://metadata.example.com:8561; _
Bridge;SECURITYPACKAGE=Negotiate"""

If the user is not defined in the same authentication domain as the logical server name, then you
must also include a line of code that specifies the user ID and password for the remote server.

User ID=jdoe;Password=djru7;

Logical server name
defined in a SAS
Metadata Server that is
configured via the SAS
Integration Technologies
configuration utility**

Dim connectionString As String

connectionString = "Provider=SAS.OLAPProvider.9.2; _
Data Source=iom-name://OLAP Server - Logical Server Name"

* Extra quotation marks are required because of the semicolon used in the "Data Source" property value. If you are not using a connection
string, then you do not need the extra quotation marks.

** The SAS Integration Technologies configuration utility (ITConfig) enables you to create a configuration file that contains information
about how to access the metadata server. The provider uses that metadata server in order to resolve logical server names. This type of
connection does not require any additional metadata server information.

Implementation 45

Sample Connection Code That Uses a Connection String
The following Visual Basic code works with all versions of SAS. In these examples, the
SAS OLAP Server name is olap.example.com and the port number is 8591.

Dim obConnection As New ADODB.Connection
Dim connectionString As String

connectionString = "Provider=SAS.OLAPProvider.9.2;Data Source=olap.example.com; _
SAS Port=8591;SAS Protocol= SASObjectManager.ProtocolBridge;User ID=myuserid; _
Password=mypassword"
obConnection.Open connectionString

Note: To use the sample code, you must reference the SASObjectManager Type Library
in your Visual Basic project. SASObjectManager Type Library is installed with SAS
Integration Technologies.

46 Chapter 5 • Opening an ADO Connection Object

Chapter 6

Managing Connections

Supplemental Connection Recipes . 47

Prompting Users for Connection Information by Displaying the
Data Link Properties Dialog Box . 48

Goal . 48
Implementation . 48

Using a Microsoft Data Link (.udl) File to Provide Persistent
Connection Information . 54

Goal . 54
Implementation . 54

Controlling Data Access Permissions with a Connection . 55
Goal . 55
ADO Implementation . 55
OLE DB Implementation . 56

Managing File Formats with the Local Provider . 58
Goal . 58
ADO Implementation . 58
OLE DB Implementation . 59

Reusing an Existing IOM Workspace . 61
Goal . 61
Implementation . 61

Connecting to a Specific SAS/SHARE Server Version . 62
Goal . 62
ADO Implementation . 62
OLE DB Implementation . 62

Supplemental Connection Recipes
This chapter provides sample code that you can use to customize a basic connection. For
example, when opening a connection, you can specify a file format and control permissions.
You can also write code that displays the Microsoft Data Link dialog box so that users can
enter connection information.

Here is a list of the recipes in this chapter:

• “Prompting Users for Connection Information by Displaying the Data Link Properties
Dialog Box” on page 48

47

• “Using a Microsoft Data Link (.udl) File to Provide Persistent Connection Information ”
on page 54

• “Controlling Data Access Permissions with a Connection” on page 55

• “Managing File Formats with the Local Provider” on page 58

• “Reusing an Existing IOM Workspace” on page 61

• “Connecting to a Specific SAS/SHARE Server Version” on page 62

See Also
• “Basic Connection Recipes” on page 35

• “Data Access Recipes” on page 65

Prompting Users for Connection Information by
Displaying the Data Link Properties Dialog Box

Goal
You want your application to prompt users for connection information at run time by
displaying the Data Link Properties dialog box.

This recipe applies to all the SAS providers that are being used to access SAS 9.2 servers.
This recipe applies only to ADO. Sample code is included.

Implementation

Sample Code That Displays the Data Link Properties Dialog Box
You use the Microsoft Data Link API in order to display the Data Link Properties dialog
box, which prompts user for connection information. The dialog box has property pages
that the user completes in order to select a provider and enter connection information. After
the user enters the information, an ADO Connection object is returned.

Here are two ways in which you can present the Data Link Properties dialog box to users:

• Method 1: If the data source does not require a password, then you can allow the user
to select a provider in addition to entering connection information. You can also
preselect the provider and just allow the user to enter connection information.

• Method 2: If the data source does require a password, then you write code that specifies
the provider. The user just enters connection information in the dialog box.

The following sample code can be used if the data source does not require a password and
you want to allow the user to select a provider. This code displays a version of the Data
Link Properties dialog box that includes the Provider tab.

Note: To use the sample code, you must reference these type libraries in your Visual Basic
project: the Microsoft OLE DB Service Component Type Library and the Microsoft
ActiveX Data Objects Library.

48 Chapter 6 • Managing Connections

CAUTION:
Do not use this code if the data source requires a password.If you do, the password
is converted to a string of asterisks and the call to Connection.Open fails with an invalid
password error.

Example Code 6.1 Method 1: A Password Is Not Required and the User Is Prompted to Select a Provider

 Dim dl As New MSDASC.DataLinks
 Dim obConnection As New ADODB.Connection
 Dim obRecordset as New ADODB.Recordset

 Set obConnection = dl.PromptNew
 obConnection.Open

 obRecordset.Open "sasuser.MyData", obConnection, adOpenDynamic, adLockOptimistic, adCmdTableDirect
 ' Operate on obRecordset.

Display 6.1 Provider Tab with a List of the SAS Providers for OLE DB

If your data source is secured by a password or if you want to preselect the provider, then
you can write code that hides the Provider tab from the user. In this case, the user enters
only connection information. Here is sample code that implements this method. The code
uses the Connection object Prompt property and includes a provider name
(SAS.IOMProvider).

Implementation 49

Note: To use the sample code, you must reference the Microsoft ActiveX Data Objects
Library in your Visual Basic project.

Example Code 6.2 Method 2: A Password Is Required or the Provider Is Known

 Dim obConnection As New ADODB.Connection
 Dim obRecordset As New ADODB.Recordset

 obConnection.Provider = "SAS.IOMProvider"
 obConnection.Properties("Prompt") = adPromptAlways
 obConnection.Open

 obRecordset.Open "sasuser.MyData", obConnection, adOpenDynamic, adLockOptimistic, adCmdTableDirect
 ' Operate on obRecordset.

Note: For more information about the "Prompt" property, see
“DBPROP_INIT_PROMPT” on page 159.

What You Need to Know about Connecting with the IOM and OLAP
Providers
If the IOM or OLAP provider is being used (either because you specified it or the user
selected it), the user can enter connection information on either the Connection tab or on
the Advanced tab. Both tabs are customized specifically for a connection to a SAS
Workspace or SAS OLAP server.

Note: The user must use the Advanced tab if the selected provider is defined in a SAS
Metadata Server that has not been configured by using the SAS Integration
Technologies configuration utility (ITConfig).

Here is the customized version of the Connection tab.

50 Chapter 6 • Managing Connections

Display 6.2 The Customized Connection Tab As It Appears When the IOM Provider Is Selected

SAS provides customized help for completing this tab (see “Data Link Properties Dialog
Box (Connection Tab)” on page 265). To access the information, users click the Help
button.

The following table explains how the fields on the customized Connection tab correspond
to the ADO and OLE DB properties.

Table 6.1 How the Fields Correspond to ADO and OLE DB Properties

Field Name ADO Property Name OLE DB Property Name

Data Source "Data Source" DBPROP_INIT_DATASOURCE

User name "User ID" DBPROP_AUTH_USERID

Password "Password" DBPROP_AUTH_PASSWORD

Here is the customized version of the Advanced tab.

Implementation 51

Display 6.3 The Advanced Tab As It Appears When the IOM Provider Is Selected

SAS provides customized help for completing this tab (see “Data Link Properties Dialog
Box (Advanced Tab)” on page 266). To access the information, users click the Help button.

The following table explains how the fields on the Advanced tab correspond to the ADO
and OLE DB properties.

Table 6.2 How the Fields Correspond to ADO and OLE DB Properties

Field Name ADO Property Name OLE DB Property Name

SAS Metadata Server Information

Metadata Server Location "SAS Metadata Location" DBPROP_SAS_INIT_METALOCATION

User name "SAS Metadata User ID" DBPROP_SAS_INIT_METAUSERID

Password "SAS Metadata Location" DBPROP_SAS_INIT_METAPASSWORD

SAS Server Information

Data Source "Data Source" DBPROP_INIT_DATASOURCE

Location "Location" DBPROP_INIT_LOCATION

52 Chapter 6 • Managing Connections

Field Name ADO Property Name OLE DB Property Name

User name "User ID" DBPROP_AUTH_USERID

Password "Password" DBPROP_AUTH_PASSWORD

What You Need to Know about Connecting with the Local,
SAS/SHARE, or Base SAS Provider
If the local, SAS/SHARE, or Base SAS provider is being used (either because you specified
it or the user selected it), the user enters information on the generic version of the
Connection tab.

Display 6.4 The Generic Connection Tab for Use with the Local, SAS/SHARE, and Base SAS
Providers

For information about completing the generic Connection tab, users can click the Help
button. The standard help content is provided by Microsoft.

The following table explains how the fields on the generic Connection tab correspond to
the ADO and OLE DB properties. These fields have specifications that are specific to SAS.

Implementation 53

Table 6.3 How the Fields Correspond to ADO and OLE DB Properties

Field Name ADO Property Name OLE DB Property Name

Data Source Information

Data Source "Data Source" DBPROP_INIT_DATASOURCE

Location "Location" DBPROP_INIT_LOCATION

SAS Server Information

User name "User ID" DBPROP_AUTH_USERID

Password "Password" DBPROP_AUTH_PASSWORD

Using a Microsoft Data Link (.udl) File to Provide
Persistent Connection Information

Goal
You want your application to reference connection information that is stored in a Microsoft
Data Link (.udl) file. The .udl file is a special text file that can be used in conjunction with
ADO and the Visual Basic DataEnvironment tool in order to initialize an ADO Connection
object. (This connection method is similar to the method that is provided for ODBC by the
ODBC Administrator.)

Note: DataEnvironment is a Visual Basic 6 GUI tool that can be used to manage static
connections to known data sources. To add it to your project, select Project ð Add
Data Environment.

This recipe applies to all the SAS providers. This recipe applies only to ADO. Sample code
is included.

Note: To use the sample code, you must reference the Microsoft ActiveX Data Objects
Library in your Visual Basic project.

Implementation

Creating a Microsoft Data Link (.udl) File
To create a .udl file:

1. Create an empty text file with the extension .udl.

2. From Windows Explorer, double-click on your new file to open the Data Link
Properties dialog box.

Note: The Data Link Properties dialog box is the same interface that the user sees when
you create an application that uses the MSDASC.DataLinks object (see “Prompting
Users for Connection Information by Displaying the Data Link Properties Dialog
Box” on page 48).

54 Chapter 6 • Managing Connections

3. In the Data Link Properties dialog box, enter the connection information that is required
to open an ADO Connection object.

4. Click OK to save the .udl file with the information that you entered.

Sample Code That Shows How to Reference the File
The following sample code shows you how to reference the file in the ConnectionString
property of a Connection object. It requires that you reference the Microsoft ActiveX Data
Objects Library.

 Dim obConnection As New ADODB.Connection

 obConnection.ConnectionString = "File Name=c:\mydir\myfile.udl"
 obConnection.Open

Note: You can also refer to the .udl file in the Visual Basic DataEnvironment tool.

T I P If you store the .udl file on a server, you can update the .udl file, instead of your
application code, when a data source is moved to a new location.

Controlling Data Access Permissions with a
Connection

Goal
You want your application to set permissions on your data source.

This recipe applies to all the SAS providers. Sample code for ADO is included.

ADO Implementation

Values That Are Supported for the "Mode" Property
To control the available permissions for modifying data, you use the Connection object
"Mode" property. The SAS providers support the following three values for the "Mode"
property:

• adModeRead

• adModeReadWrite

• adModeShareDenyNone

The default value for the "Mode" property is adModeReadWrite in conjunction with
adModeShareDenyNone. (You cannot prevent other clients from connecting to the server;
therefore adModeShareDenyNone is in effect regardless of your lock setting.)

How the Mode Value Affects the Lock Type
The "Mode" property value can affect which lock type is used on open recordsets. For
example, the following Visual Basic code determines read-only access (adModeRead)
before the connection is opened. Recordsets that you open with this connection will use
the adLockReadOnly lock type, even if you request a different lock type.

Dim obConnection As New ADODB.Connection

ADO Implementation 55

obConnection.Provider = "sas.BaseSASProvider"
obConnection.Properties("Data Source") = "sdplserv"
obConnection.Properties("SAS Executable") = "C:\\Program Files\\SAS\\SASFoundation\\9.2\\sas.exe"
obConnection.Properties("SAS Parameters") = "-initstmt %sasodbc(sdplserv) -icon -nosplash"
obConnection.Properties("SAS Working Directory") = "C:\\Program Files\\SAS\\SASFoundation\9.2\\"
obConnection.Mode = adModeRead
obConnection.Open

For an explanation of the properties used in the sample code, see “Base SAS Provider
Properties” on page 25.

Note: For more information about lock types, see “Implementing a Locking Strategy” on
page 109and “Working with Cursor and Lock Type Combinations” on page 135.

How the Mode Value Is Implemented
The following table provides additional information about how the SAS providers
implement "Mode" property values.

CAUTION:
The value that you specify is not always the value that the provider uses.

Table 6.4 How ADO Mode Property Values Are Implemented

Mode Specified Mode Used Comment

adModeShareDenyRead,
adModeShareDenyWrite, or
adModeShareDenyExclusive

adModeShareDenyNone adModeShareDenyNone is always in effect because you
cannot prevent other clients from connecting to a server.

adModeWrite adModeReadWrite You cannot open a connection that is limited only to write
operations. Reading data is always supported on an open
connection.

This mode is used in conjunction with
adModeShareDenyNone.

adModeRead adModeRead If read-only access is set before the connection is opened,
recordsets that are opened by using the connection will use
the adLockReadOnly lock type, regardless of any other lock
type that you might have requested.

This mode is used in conjunction with
adModeShareDenyNone.

OLE DB Implementation
To get results that are identical to the ADO Connection object "Mode" property, you set a
particular DBPROP_INIT_MODE bit mask. The following table lists the one-to-one
correspondence between the values of the ADO Connection object ConnectModeEnum
constants (the "Mode" property names) and the bit masks defined for the OLE DB
DBPROP_INIT_MODE data source property.

56 Chapter 6 • Managing Connections

Table 6.5 ADO "Mode" Properties and Corresponding DBPROP_INIT_MODE Bit Masks

ConnectModeEnum Constant DBPROP_INIT_MODE Bit Mask

adModeRead DB_MODE_READ

adModeWrite DB_MODE_WRITE

adModeReadWrite DB_MODE_READWRITE

adModeShareDenyRead DB_MODE_SHARE_DENY_READ

adModeShareDenyWrite DB_MODE_SHARE_DENY_WRITE

adModeShareDenyExclusive DB_MODE_SHARE_DENY_EXCLUSIVE

adModeShareDenyNone DB_MODE_SHARE_DENY_NONE

adModeUnknown 0

When you set a particular DBPROP_INIT_MODE bit mask value, it has the same effect
as when you the ADO Connection object "Mode" property to the corresponding
ConnectModeEnum value, as shown in the following table:

Table 6.6 How OLE DB ModeProperty Values Are Implemented

DBPROP_INIT_MODE Bit Mask Set DBPROP_INIT_MODE Bit Mask Used Comment

DB_MODE_SHARE_DENY_READ,
DB_MODE_SHARE_DENY_WRITE, or
DB_MODE_SHARE_DENY_EXCLUSIV
E

DB_MODE_SHARE_DENY_NONE A client cannot prevent other
clients from connecting to a
server.

DB_MODE_WRITE DB_MODE_READWRITE You cannot open a
connection that is limited
only to write operations.
Reading data is always
supported.

DB_MODE_READ DB_MODE_READ Use of DB_MODE_READ
bit without the
DB_MODE_WRITE bit
restricts open rowsets to
read-only access. Read-only
rowsets do not implement the
IRowsetChange and
IRowsetUpdate interfaces.

OLE DB Implementation 57

Managing File Formats with the Local Provider

Goal
You want your application to specify which SAS file format to use when it accesses a data
source. You also want to know how to access different file formats simultaneously, and
what happens if your application does not specify a file format.

This recipe applies to the local provider. This recipe includes sample code for ADO and
OLE DB.

ADO Implementation

Specifying a File Format
To specify which file format that the local provider should use to access a data source, set
the "SAS File Format" property on the Connection object. You can use the following
property values:

• "V9" (the default) for SAS 9.2 and earlier (also valid for SAS 8 and SAS 7 data sets)

• "V8" for SAS 8 or SAS 7 data sets

• "V7" for SAS 7 or SAS 8 data sets

• "V6" for SAS 6 data sets

• "XPT" for SAS 5 transport files

For example, the following Visual Basic code could be used to access a SAS Version 6
data set named HRdata that is stored in a directory named c:\v6data.

Dim obConnection As New ADODB.Connection
Dim obRecordset As New ADODB.Recordset

obConnection.Provider = "sas.LocalProvider"
obConnection.Properties("Data Source") = "c:\v6data"
obConnection.Properties("SAS File Format") = "V6"
obConnection.Open

obRecordset.Open "HRdata", obConnection, adOpenStatic, adLockReadOnly, adCmdTableDirect

The code in the next example can read a SAS data set named TestDs1 from a Version 5
SAS transport file named xport1.dat:

Dim obConnection As New ADODB.Connection
Dim obRecordset As New ADODB.Recordset

obConnection.Provider = "sas.LocalProvider"
obConnection.Properties("Data Source") = "c:\xptdata\xport1.dat"
obConnection.Properties("SAS File Format") = "XPT"
obConnection.Open

obRecordset.CursorType = adOpenStatic
obRecordset.LockType = adLockReadOnly
obRecordset.Open "TestDs1", obConnection, adOpenStatic, adLockReadOnly, adCmdTableDirect

58 Chapter 6 • Managing Connections

Accessing Different File Formats Simultaneously
You cannot simultaneously access different file formats by using the same Connection
object. If you need simultaneous access, do one of the following tasks:

• Store the data sets in different directories.

• Create multiple Connection objects that point to the directory that contains the mixed
format data sets. Use the "Data Source" property to specify the directory name. Use the
"SAS File Format" property to specify the file format of each data set in the directory.

What Happens If No File Format is Set
If no "SAS File Format" property value is explicitly set and you are not accessing transport
files, then the local provider applies the following two rules to set the file format for you:

• If the data sets in the specified directory are all in the same format, then the local
provider uses that format.

• If there are no data sets in the directory or if the directory contains data sets with
different formats, then the "SAS Default File Format" property value ("V9") is used.

The two rules for handling those cases when the file format is not explicitly set do not apply
to transport files. To access transport files, enter "XPT" as the "SAS File Format" property
value.

T I P Even though you can store transport files in the same directory as SAS data sets, it
is still a good practice to keep transport files in a separate directory.

Setting the Data Source Property for Transport Files
When you access SAS data sets, the Connection object "Data Source" property is the path
to the directory that contains the data sets. When you are reading transport files, however,
you should set the Connection object "Data Source" property to both the path and to the
filename of the transport file.

The local provider can read data sets in a transport file even if there is more than one data
set in the transport file. Set the first parameter of the Recordset object's Open method to
the data set name, as shown in this line of code:

obRecordset.Open "TestDs1", obConnection, adOpenStatic, adLockReadOnly, adCmdTableDirect

OLE DB Implementation

Specifying a File Format
The OLE DB implementation is similar to the code used for ADO; however, for the OLE
DB interface, you use these properties:

• DBPROP_INIT_DATASOURCE (corresponding to the ADO property "Data
Source").

• DBPROP_SAS_INIT_FILEFORMAT (corresponding to the ADO property "SAS File
Format"). The property values for DBPROP_SAS_INIT_FILEFORMAT are the same
values that are used for "SAS File Format"(see “Specifying a File Format” on page
58).

The following code shows how to use the local provider to set up a data source object that
accesses SAS Version 6 files in a directory named c:\v6data:

CLSID clsid;
IUnknown * pDSO;
// Turn the ProgID into a CLSID value

OLE DB Implementation 59

CLSIDFromProgID("SAS.LocalProvider", &clsid);
// With the CLSID, create an instance of this provider's data source object
CoCreateInstance(clsid, // class identifier
NULL, // no outer unknown (that is, no aggregation)
CLSCTX_INPROC_SERVER, // all providers run in process
IID_IUnknown, // the id of the interface we want on our new object
(LPVOID *) &pDSO); // address of interface pointer returned

DBPROPSET rgPropSet[2];
DBPROP PropA;
DBPROP PropB;
IDBProperties * pIDBProperties;
IDBInitialize *pIDBInitialize;

PropA.dwPropertyID = DBPROP_INIT_DATASOURCE;
PropA.dwOptions = DBPROPOPTIONS_REQUIRED;
PropA.colid = DB_NULLID;
PropA.vValue.vt = VT_BSTR;
PropA.vValue.pbstrVal = SysAllocString("c:\v6data");
PropB.dwPropertyID = DBPROP_SAS_INIT_FILEFORMAT;
PropB.dwOptions = DBPROPOPTIONS_REQUIRED;
PropB.colid = DB_NULLID;
PropB.vValue.vt = VT_BSTR;
PropB.vValue.pbstrVal = SysAllocString("V6");

rgPropSet[0].cProperties = 1;
rgPropSet[0].guidPropertySet = DBPROPSET_DBINIT;
rgPropSet[0].rgProperties = &PropA
rgPropSet[1].cProperties = 1;
rgPropSet[1].guidPropertySet = DBPROPSET_SAS_DBINIT;
rgPropSet[1].rgProperties = &PropB
pDSOUnk->QueryInterface(IID_IDBProperties, &pIDBProperties);
pIDBProperties->SetProperties(2, rgPropset);
pDSOUnk->QueryInterface(IID_IDBInitialize, &pIDBInitialize);
pIDBInitialize->Initialize();

Accessing Different File Formats Simultaneously
You cannot simultaneously access different file formats by using the same data source
object. If you need simultaneous access, do one of the following tasks:

• Store the data sets in different directories.

• Create multiple data source objects that point to the directory that contains the mixed
format data sets. Use the DBPROP_INIT_DATASOURCE property to specify the
directory name. Use the DBPROP_SAS_INIT_FILEFORMAT property to specify the
file format of each data set in the directory.

What Happens if No File Format is Set
If the DBPROP_SAS_INIT_FILEFORMAT property value is not explicitly set and if you
are not accessing transport files, the local provider applies the following two rules to set
the file format for you:

• If the data sets in the specified directory are all in the same format, then the local
provider applies that format.

60 Chapter 6 • Managing Connections

• If there are no data sets in the directory or if the directory contains data sets with
different formats, then the DBPROP_SAS_DEFAULTFILEFORMAT property value
("V9") is used.

The two rules for handling those cases when the file format is not explicitly set do not apply
to transport files. To access transport files, enter "XPT" as the
DBPROP_SAS_INIT_FILEFORMAT property value.

T I P Even though you can store transport files in the same directory as SAS data sets, it
is still a good practice to keep transport files in a separate directory.

Reusing an Existing IOM Workspace

Goal
You want your application to reuse an existing IOM Workspace.

This recipe applies to the IOM provider. This recipe applies only to ADO. Sample code is
included.

Note: To use the sample code, you must reference the SAS Integrated Object Model (IOM)
Library in your Visual Basic project.

Implementation
You can use the "SAS Workspace ID" property to associate a running SAS workspace
object with an ADO Connection object. "SAS Workspace ID" is a customized connection
property. It indicates that you want to use a workspace that you have already created. You
set this property on a Connection object after you set the Connection object Provider
property and before you invoke the Open method. The following Visual Basic code shows
you how to use this method:

Dim obConnection As New ADODB.Connection

obConnection.Provider = "sas.IOMProvider"
obConnection.Properties("SAS Workspace ID") = obSAS.UniqueIdentifier
' Set other connection properties as needed.
obConnection.Open

In the sample code, obSAS is a SAS.Workspace object that has been previously created.
The workspace provides the same set of resources and facilities as an interactive or batch
SAS session. The Workspace Object class is part of SAS Integration Technologies. The
UniqueIdentifier workspace property instructs the IOM provider to look up an existing
workspace and to establish communication with it.

Note: For information about working with object variables and creating a workspace, see
the SAS Integration Technologies: Windows Client Developer's Guide.

Implementation 61

Connecting to a Specific SAS/SHARE Server
Version

Goal
You want your application to explicitly request access to a Version 7 or Version 8
SAS/SHARE server. By default, the SAS/SHARE provider uses the SAS 9 server access
method.

This recipe applies to the SAS/SHARE provider. Sample code for ADO is included.

ADO Implementation
To specify a server version, you provide a value for the "SAS Server Release" property.
You set the property on the Connection object because the connection is bound to a specific
server.

Values for the "SAS Server Release" property are integer numbers that correspond to the
version number of the server that is being accessed: 7, 8 (valid for both Version 7 and
Version 8 servers), or 9 (the default).

The following Visual Basic code specifies the Version 7 SAS/SHARE server:

Dim obConnection As New ADODB.Connection

obConnection.Provider = "sas.ShareProvider"
obConnection.Properties("SAS Server Release") = 7
obConnection.Open

OLE DB Implementation
Use the DBPROP_SAS_SERVERRELEASE property to specify the access method. This
property is a member of the DBPROPSET_SAS_DBINIT property set.

62 Chapter 6 • Managing Connections

Part 4

Data Management Recipes

Chapter 7
Accessing Specific or Protected Data . 65

Chapter 8
Creating, Subsetting, and Deleting Data Sets . 77

Chapter 9
Specifying How to Display Data . 89

Chapter 10
Managing Missing Values . 97

Chapter 11
Managing Updates . 107

63

64

Chapter 7

Accessing Specific or Protected
Data

Data Access Recipes . 65

Identifying a Data Set and Returning Results . 66
Goal . 66
ADO Implementation . 66

Specifying a Libref to Use with the IOM Provider . 67
Goal . 67
Implementation . 67

Opening a Password-Protected Data Set . 69
Goal . 69
ADO Implementation . 69
OLE DB Implementation . 70

Accessing Third-Party Data through SAS/ACCESS Engines 70
Goal . 70
Implementation . 70

Displaying Metadata That Is Specific to SAS Data Sets . 71
Goal . 71
ADO Implementation . 72
OLE DB Implementation . 73

Reading SAS OLAP Cubes . 73
Goal . 73
Implementation . 73

Data Access Recipes
This chapter provides sample code that you can use to perform tasks related to accessing
and reading data after the connection is established. These tasks are described here because
they have some aspects that are specific to SAS.

Note: To perform a data-related task that is not included in this chapter, see the OLE DB
Programmer's Reference and Data Access SDK.

Here is a list of the recipes in this chapter:

• “Identifying a Data Set and Returning Results” on page 66

• “Specifying a Libref to Use with the IOM Provider” on page 67

• “Opening a Password-Protected Data Set” on page 69

65

• “Accessing Third-Party Data through SAS/ACCESS Engines” on page 70

• “Displaying Metadata That Is Specific to SAS Data Sets” on page 71

• “Reading SAS OLAP Cubes” on page 73

T I P To use the recipes in this chapter you need an open ADO Connection object. For
more information, see “Basic Connection Recipes” on page 35.

See Also
“Supplemental Connection Recipes” on page 47

Identifying a Data Set and Returning Results

Goal
You want your application to open a specific data set and return either static or dynamic
results. Your options depend on which SAS provider you are using.

This recipe applies to the local, SAS/SHARE, IOM, and Base SAS providers. Sample code
for ADO is included.

ADO Implementation

Sample Code for Identifying Data Sets and Returning Results
The following table includes sample code that is used identify data sets and return results.
Assume that a Connection object named obConnection is already open.

Table 7.1 Sample Code for Identifying Data Sets

Provider Comment and Sample Code

local Specify the data set name. In the sample code, the data set name is family.

obRecordset.Open "family", obConnection, adOpenStatic, adLockReadOnly, _
 adCmdTableDirect

IOM, SAS/SHARE, and
Base SAS

Use SAS libname.memname notation. In the sample code, the data set name is
mylib.cities.

obRecordset.Open "mylib.cities", obConnection, adOpenStatic, _
 adLockReadOnly, adCmdTableDirect

The value of the CommandType property determines whether the recordset can be
modified.

66 Chapter 7 • Accessing Specific or Protected Data

Table 7.2 How the CommandType Value Affects Results

Value of the
CommandType
Property Result

adCmdTableDirect A dynamic open of a data set that can be modified. Command type adCmdTableDirect is used
in the sample code and can be used with all of the providers.

adCmdTable A static result set from a query that cannot be modified. Command type adCmdTable can be
used only with the IOM, SAS/SHARE, and Base SAS providers because adCmdTable executes
an SQL query in the form SELECT * FROM libname.memname. The local provider
does not support SQL processing.

A Closer Look at Defining the SAS Library for the Server
SAS organizes tables in libraries. Before you can use a SAS library, you must tell SAS
where it is. One way to identify the library is to use a libref, which is a short name (or alias)
for the full physical name of the library. Before you can use the libname.memname notation,
the libref that contains the data set must be defined for the server.

• For the SAS/SHARE server, the libref is assigned when the server is started.

• For a local installation of Base SAS, you assign the libref when you specify the "SAS
Parameters" property in the connection code. The value of the "SAS Parameters"
property contains the command line that includes code to start the server. For more
information about the "SAS Parameters" property, see “Connecting to Local Data
(Single-User Server)” on page 37.

• For the SAS Workspace Server, you can use ADO to assign a libref by executing a
LIBNAME statement through an ADO Command object. Or you can use the IOM
DataService class to assign a libref. For more information, see “Specifying a Libref to
Use with the IOM Provider” on page 67.

Specifying a Libref to Use with the IOM Provider

Goal
You want to use the IOM provider to open or create a table, so you need to know how to
specify (assign) a libref.

This recipe applies to the IOM provider. Sample code for ADO is included.

Implementation

Two Methods for Assigning a Libref
SAS organizes tables in libraries. Before you can use a SAS library, you must tell SAS
where it is. One way to identify the library is to use a libref, which is a short name (or alias)
for the full physical name of the library. Here are two ways that you can assign a libref:

• You can use ADO to assign a libref by executing a LIBNAME statement through an
ADO Command object.

• You can use the IOM DataService class to assign a libref.

Implementation 67

Both techniques assign a libref for the duration of the SAS session or until the libref is
unassigned. When choosing between the two methods, consider the information in the
following table:

Table 7.3 How to Choose Between the Two Methods

Your Situation or Preference Recommended Method

You are comfortable using the SAS LIBNAME
statement.

Use ADO.

You are not using SAS objects to connect to
your server.

Use ADO.

You are using SAS objects to connect to your
server.

Use the IOM DataService class.

You want to know whether the libref was
successfully assigned.

Use the IOM DataService class (because the
AssignLibref method has a return code).

You want to take advantage of other methods
and attributes on the Libref object.

Use the IOM DataService class.

Using ADO to Assign a Libref
You can use ADO to assign a libref by executing a LIBNAME statement through an ADO
Command object. The following Visual Basic code shows how this task is done.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset
Dim obCommand As New ADODB.Command

obCommand.ActiveConnection = obConnection

'Assign a libref by executing a LIBNAME statement.
obCommand.CommandType = adCmdText
obCommand.CommandText = "libname mylib 'c:\census\data'"
obCommand.Execute

'Open a data set in the assigned library.
obRecordset.Open "mylib.cities", obConnection, adOpenStatic, adLockReadOnly, adCmdTableDirect

Using the IOM DataService Class to Assign a Libref
You can use the IOM DataService class to assign a libref. The following Visual Basic code
shows how this task is done.

Note: To use the sample code, you must reference these libraries in your Visual Basic
project: SAS Integrated Object Model (IOM) Type Library and the SASObjectManager
Type Library. These libraries are installed with SAS Integration Technologies.

Dim obObjectFactory As New SASObjectManager.ObjectFactory

Dim obConnection As New ADODB.Connection
Dim obRecordset As New ADODB.Recordset

Dim obSAS As SAS.Workspace

68 Chapter 7 • Accessing Specific or Protected Data

Dim obLibRef As SAS.Libref

' Use the SAS Object Manager to establish a SAS workspace object.
set obSAS = obObjectFactory.CreateObjectByServer("MyServer", True, Nothing, "", "")

Dim obObjectKeeper As New SASObjectManager.ObjectKeeper

obObjectKeeper.AddObject(1, "MyServer", obSAS)

' Call the AssignLibref method in order to assign a libref.
Set obLibRef = obSAS.DataService.AssignLibref("mylib", "", "c:\census\data", "")

' Open a connection.
obConnection.Open "Provider=sas.IOMProvider;SAS Workspace ID=" & obSAS.UniqueIdentifier

' Open a data set in the assigned library.
obRecordset.Open "mylib.cities", obConnection, adOpenStatic, adLockReadOnly, adCmdTableDirect

In the sample code, obSAS, obLibRef, and obObjectFactory are all IOM objects.
For more information about the SAS object hierarchy, see the SAS Integration
Technologies: Windows Client Developer's Guide.

Opening a Password-Protected Data Set

Goal
You want your application to open a password-protected data set.

This recipe applies to the local, SAS/SHARE, IOM, and Base SAS providers. Sample code
for ADO is included.

SAS supports three types of data set passwords: READ, WRITE, and ALTER. SAS also
supports a PW= data set option that assigns the same password for each level of protection.
To access a data set that is protected with the PW= data set option, set each ADO or OLE
DB property that provides the level of access that you need.

Note: For complete information about SAS data set passwords, see SAS Language
Reference: Concepts.

ADO Implementation
The SAS providers implement three ADO Recordset object properties that correspond to
each of the SAS password types.

Table 7.4 Recordset Properties and Corresponding SAS Password Types

Recordset Property Name SAS Data Set Password Types

"SAS Read Password" READ=

"SAS Write Password" WRITE=

"SAS Alter Password" ALTER=

ADO Implementation 69

The following sample code uses the "SAS Read Password" property to open a read-
protected data set.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

obRecordset.ActiveConnection = obConnection
obRecordset.Properties("SAS Read Password") = "gurt96"

' The second parameter on the Open method must remain empty.
obRecordset.Open source, , adOpenStatic, adLockReadOnly, adCmdTableDirect

OLE DB Implementation
The SAS providers implement three OLE DB rowset properties that correspond to each of
the SAS password types. The OLE DB properties are part of the DBPROP_SAS_ROWSET
customized property set.

Table 7.5 Rowset Properties and Corresponding SAS Password Types

Rowset Property Name SAS Data Set Password Types

"DBPROP_SAS_READPASSWORD" READ=

"DBPROP_SAS_WRITEPASSWORD" WRITE=

"DBPROP_SAS_ALTERPASSWORD" ALTER=

Accessing Third-Party Data through
SAS/ACCESS Engines

Goal
You want to access third-party data stores that are available through your licensed
SAS/ACCESS engines.

This recipe applies to the SAS/SHARE, IOM, and Base SAS providers. Sample code for
ADO is included.

Implementation

Assigning a Libref for a SAS/ACCESS Engine
An engine is a component of SAS software that is used to read from or write to a source
of data. There are several types of SAS engines, including engines that SAS/ACCESS
software uses to connect to a variety of data sources other than Base SAS. To access third-
party data that is available through your licensed SAS/ACCESS engines, you must assign
a libref for the specific SAS/ACCESS engine. How you assign the libref depends on the
provider.

70 Chapter 7 • Accessing Specific or Protected Data

• The IOM provider is the only provider that can be used to directly assign a libref, as
illustrated by the sample code.

• If you are using the SAS/SHARE provider, the libref must have been assigned when
the SAS/SHARE server was started.

• If you are using the Base SAS provider, you must specify the libref in the start-up script
that is used by the provider to start a SAS session (see “Connecting to Local Data
(Single-User Server)” on page 37).

Sample Code for Accessing Third-Party Data Using the IOM Provider
The following sample Visual Basic code uses the ADO Command and Recordset objects
in order to access Oracle data. The record set is opened for read-only access as indicated
by adLockReadOnly.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset
Dim obCommand As New ADODB.Command

obCommand.ActiveConnection = obConnection

'Assign a libref by executing a LIBNAME statement that identifies the SAS/ACCESS engine.
obCommand.CommandType = adCmdText
obCommand.CommandText = "libname mylib oracle user=todd password=king path=oraclev7;"
obCommand.Execute

'Open the data set for read-only access.
obRecordset.Open "mylib.dept", obConnection, adOpenStatic, adLockReadOnly, adCmdTableDirect

Note: The syntax that you use in your LIBNAME statement depends on the
SAS/ACCESS engine that you are using and on your operating environment.
SAS/ACCESS engines are implemented differently in different operating
environments. See the documentation for your DBMS for more information.

Note: If you are writing directly to the OLE DB interface, use OLE DB rowset methods
in order to read the SAS/ACCESS data set. To open the rowset for read-only access,
set the DBPROP_IRowsetChange property to False.

See Also
“Specifying a Libref to Use with the IOM Provider” on page 67

Displaying Metadata That Is Specific to SAS Data
Sets

Goal
You want your application to display metadata that is specific to SAS data sets.

This recipe applies to the local, SAS/SHARE, IOM, and Base SAS providers. Sample code
for ADO is included.

Goal 71

ADO Implementation

How Metadata Is Exposed
Available metadata for a SAS data set includes persisted formats and informats, number
of records, and whether an index exists. To extract the metadata, you use extensions to the
COLUMNS and TABLES schema rowsets.

Note: For more information, see “COLUMNS Schema Rowset” on page 228 and
“TABLES Schema Rowset” on page 245.

Sample Code for Displaying Information about Formats and Informats
The following Visual Basic code shows how to display information about SAS formats
and informats that are persisted on a data set named Shoes in the SASUSER library.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Get schema information for Sasuser.Shoes.
Set obRecordset = obConnection.OpenSchema(adSchemaColumns, Array(Empty, Empty, "Sasuser.Shoes"))

' Display fields pertaining to SAS formats and informats.
Do Until obRecordset.EOF
 Debug.Print "Table name: " & obRecordset!TABLE_NAME & vbCr & _
 "Column Name: " & obRecordset!COLUMN_NAME & vbCr & _
 "Format name: " & obRecordset!FORMAT_NAME & vbCr & _
 "Format length: " & obRecordset!FORMAT_LENGTH & vbCr & _
 "Informat name: " & obRecordset!INFORMAT_NAME & vbCr & _
 "Informat length: " & obRecordset!INFORMAT_LENGTH
 obRecordset.MoveNext
Loop

A Closer Look at the Parameters for the OpenSchema Method
The following line of code specifies the parameters for the OpenSchema Method:

Set obRecordset= obConnection.OpenSchema(adSchemaColumns, Array(Empty, Empty, "SASUSER.SHOES"))

• For the first parameter, which is Query Type, the sample code specifies
adSchemaColumns. adSchemaColumns returns information for all columns on all data
sets in the open connection.

• For the second parameter, which is Criteria, the sample code passes in an array that
limits the returned information to just SASUSER.SHOES columns. To achieve this
result, the array specifies a nonempty value for the TABLE_NAME, which is the third
constraint available for adSchemaColumns. (adSchemaColumns has four available
constraints: TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and
COLUMN_NAME.)

T I P To return metadata for all data sets in the open connection, write similar code and
specify adSchemaTables (instead of adSchemaColumns) as the value of the QueryType
parameter.

72 Chapter 7 • Accessing Specific or Protected Data

OLE DB Implementation
When you are programming directly to the OLE DB interface, you can obtain SAS metadata
either through schema rowset extensions or through one of the custom OLE DB rowset
interfaces listed below. Schema rowset extensions and these custom interfaces return the
same information.

• “ISASColumnsInfo Custom Interface” on page 214

• “ISASDataSetInfo Custom Interface” on page 216

• “ISASDataSetInfo90 Custom Interface” on page 218

Reading SAS OLAP Cubes

Goal
You want your application to read SAS OLAP cubes.

This recipe applies to the OLAP provider. This recipe applies only to ADO MD, which is
an extension to ADO that enables you to read multidimensional schema, query cubes, and
retrieve the results. Sample code is included.

Note: This recipe requires that you reference these type libraries in your Visual Basic
project: the Microsoft ActiveX Data Objects Library and the Microsoft ActiveX Data
Objects (Multidimensional) Library.

Implementation

Opening an ADO MD Cellset Object
The following Visual Basic code shows you how to open an ADO MD Cellset object. You
first specify an MDX query and then execute it on a SAS OLAP Server.

' obConnection is an open Connection object.
Dim obCellset As ADOMD.Cellset

Set obCellset.ActiveConnection = obConnection

obCellset.Source = "SELECT" & _
 " {[dealers].[dealer].members} ON COLUMNS," & _
 " {[cars].members} ON ROWS" & _
 " FROM MDDBCARS" & _
 " WHERE ([measures].[SALES_SUM])"
obCellset.Open

Displaying the Results of the MDX Query
After the Cellset object is open, you can display the results of the MDX query. The
following Visual Basic code shows how this task is done. The sample code prints the data
to the Visual Basic Immediate window by calling Debug.Print.

' Print the cellset axis structure and count the number of cells.
Dim cCells As Long

Implementation 73

Dim obAxis As ADOMD.Axis
Dim obPosition As ADOMD.Position
Dim obMember As ADOMD.Member

cCells = 1
For Each obAxis In obCellset.Axes
 Debug.Print obAxis.Name & ", cells on axis: " & obAxis.Positions.Count
 cCells = cCells * obAxis.Positions.Count
 For Each obPosition In obAxis.Positions
 For Each obMember In obPosition.Members
 Debug.Print vbTab & obMember.Name & ": " & obMember.Caption
 Next
 Next
Next

' Print the slicer axis structure.
Debug.Print vbNewLine & "Filter/Slicer Axis:"
For Each obPosition In obCellset.FilterAxis.Positions
 For Each obMember In obPosition.Members
 Debug.Print vbTab & obMember.Name & ": " & obMember.Caption
 Next
Next
Debug.Print ""

If cCells = 1 Then
 Debug.Print "1 cell returned." & vbNewLine
Else
 Debug.Print cCells & " cells returned." & vbNewLine
End If

' Print the cell values by ordinal.
Dim i As Long, j As Long
Dim obCell As ADOMD.Cell
Dim strPositions As String

For i = 0 To cCells - 1
 Set obCell = obCellset(i)
 strPositions = "Cell " & i & " "

 ' Print the position array for this cell.
 ' (Example: Cell 0 would be Cell(0,0,0) in a 3-d array).
 strPositions = strPositions & "("
 For j = 0 To obCell.Positions.Count - 1
 If j > 0 Then strPositions = strPositions & ", "
 strPositions = strPositions & obCell.Positions(j).Ordinal
 Next
 strPositions = strPositions & "): "

 ' Retrieve the cell value and check for NULL.
 If IsNull(obCell.value) Then
 strPositions = strPositions & "-null-"
 Else
 strPositions = strPositions & obCell.value
 End If
 Debug.Print strPositions
Next

74 Chapter 7 • Accessing Specific or Protected Data

' Clean up and exit.
obCellset.Close
Set obCellset = Nothing
Set obCell = Nothing
Set obAxis = Nothing
Set obPosition = Nothing
Set obMember = Nothing

Implementation 75

76 Chapter 7 • Accessing Specific or Protected Data

Chapter 8

Creating, Subsetting, and
Deleting Data Sets

Creating, Subsetting, and Deleting Data Sets Recipes . 77

Creating and Deleting Data Sets . 78
Goal . 78
Implementation . 78

Subsetting Data Sets for Read-Only Sequential Access . 83
Goal . 83
ADO Implementation . 83
OLE DB Implementation . 84

Subsetting Data Sets for Random and Update Access . 87
Goal . 87
Implementation . 88

Creating, Subsetting, and Deleting Data Sets
Recipes

This chapter provides sample code that you can use to perform tasks related to creating and
deleting data sets and subsetting returned data. These tasks are performed after the
connection is established. These tasks are included because they have some aspects that
are specific to SAS.

Note: To perform a data-related task that is not included in this chapter, see the OLE DB
Programmer's Reference and Data Access SDK.

Here is a list of the recipes in this chapter:

• “Creating and Deleting Data Sets” on page 78

• “Subsetting Data Sets for Read-Only Sequential Access” on page 83

• “Subsetting Data Sets for Random and Update Access” on page 87

T I P To use the recipes in this chapter, you need an open ADO Connection object. For
more information, see “Basic Connection Recipes” on page 35.

See Also
“Supplemental Connection Recipes” on page 47

77

Creating and Deleting Data Sets

Goal
You want your application to create and delete data sets.

This recipe applies to the SAS/SHARE, IOM, and Base SAS providers. This recipe includes
sample code for ADO and OLE DB.

Implementation

Three Methods for Creating and Deleting Data Sets
Here are three ways that you can create and delete data sets.

• You can use SQL CREATE TABLE and DROP TABLE statements. This method can
be used with ADO and OLE DB consumers.

• You can use Microsoft ActiveX Data Object Extensions for DDL and Security
(ADOX). This method is used with ADO consumers.

• You can use the ITableDefinition interface. This method is used with OLE DB
consumers.

Before deciding which method to use, review the information in the following table.

Table 8.1 How to Select a Method

Your Situation or Preference Recommended Method

You want to use ADO. Use SQL or ADOX.

You want to use OLE DB. Use SQL or the ITableDefinition interface.

Using SQL Commands with an ADO or OLE DB Consumer
You can pass SQL commands to the providers by using either ADO or OLE DB. The
CREATE TABLE statement is used to create a data set. The DROP TABLE statement is
used to delete a data set. For example, the statement shown below creates a data set named
newtable in the sasuser library with three columns: a numeric column named i, a
character column of length 40 named name, and a numeric column named age.

create table sasuser.newtable (i num, name char(40), age num);

The following SQL statement creates a data set named newtable in the sasuser library
that is a copy of the data set oldtable in the sasuser library.

create table sasuser.newtable as select * from sasuser.oldtable;

Note: For more examples, see “Subsetting Data Sets for Read-Only Sequential Access”
on page 83. For more information about SQL syntax, see the documentation for PROC
SQL in the Base SAS Procedures Guide.

78 Chapter 8 • Creating, Subsetting, and Deleting Data Sets

Using ADOX with an ADO Consumer
If you are creating an ADO consumer, you can use ADOX to create new data sets and
delete existing ones.

Note: To use ADOX, you must add the following two library references to your Visual
Basic project: Microsoft ActiveX Data Objects Library and the Microsoft ADO
Extension for DDL and Security.

The following Visual Basic code shows you how to use ADOX to create a data set, append
to a data set, and delete a data set.

' obConnection is an open Connection object.

 Dim cat As New ADOX.Catalog
 Dim table As New ADOX.table
 Dim tablename As String

 tablename = "sasuser.newtable"

 ' Create the data set.
 table.Name = tablename
 table.Columns.Append "i", adDouble, 0
 table.Columns.Append "name", adChar, 40
 table.Columns.Append "age", adDouble, 0

 ' Append the new data set to the collection of data sets.
 ' Call the provider to create the data set on disk.
 cat.ActiveConnection = obConnection
 cat.Tables.Append table

 ' Open a Recordset object and add rows to the new data set.

 ' Delete the new table.
 cat.Tables.Delete tablename

Using the ITableDefinition Interface with an OLE DB Consumer
OLE DB consumers can use the ITableDefinition interface that is exposed by the Session
object to create and delete data sets. The following C++ code shows how this task is done.

The code uses the IOM provider to create and delete a table named newtable in the
sasuser library. The sample first creates the table with three columns: a numeric column
named i, a character column of length 40 named name, and a numeric column named
age. The code then deletes that same table.

Note: For more information, see “Data Set Management Using the ITableDefinition
Interface” on page 221.

#include atlbase.h
#include comdef.h
#include comutil.h
#include oledb.h
#include atldbcli.h

#include <iostream>
#include <iomanip>
using std::cout;
using std::hex;
using std::setw;

Implementation 79

using std::setfill;
using std::right;
using std::endl;

#define FAIL_IF(hr) issue_if_failed(__FILE__, __LINE__, hr)
inline void issue_if_failed(char* file, ULONG line, HRESULT hr)
{
 /* This method throws an error if hr is a failure. */
 if(FAILED(hr))
 {
 ATLTRACE(%s(%d): Failure 0x%X\n, (char*)file, line, hr);
 _com_issue_error(hr);
 }
}

HRESULT InstantiateProvider(CComPtr<IUnknown>& spUnkDataSrc)
{
 /* spUnkDataSrc contains a NULL IUnknown pointer. */
 /* This method instantiates the IOM Provider Data Source object and */
 /* stores a pointer to its IUnknown interface in spUnkDataSrc. */
 CLSID clsid;

 FAIL_IF(CLSIDFromProgID(L"SAS.IOMProvider", &clsid));
 FAIL_IF(CoCreateInstance(clsid, NULL, CLSCTX_INPROC_SERVER, IID_IUnknown, (void**)&spUnkDataSrc));

 return S_OK;
}

HRESULT InitializeProvider(CComPtr<IUnknown>& spUnkDataSrc)
{
 /* spUnkDataSrc contains an IUnknown pointer to an uninitialized IOM Data Source Object. */
 /* This method initializes the IOM Data Provider. */

 CComQIPtr<IDBInitialize> spInit = spUnkDataSrc;
 CComQIPtr<IDBProperties> spProp = spUnkDataSrc;
 if (spInit == NULL || spProp == NULL)
 return E_FAIL;

 CDBPropSet Props(DBPROPSET_DBINIT);
 Props.AddProperty(DBPROP_INIT_DATASOURCE, (WCHAR*)L_LOCAL_);
 FAIL_IF(spProp->SetProperties(1, &Props));

 FAIL_IF(spInit->Initialize());

 return S_OK;
}

HRESULT CreateSession(CComPtr<IUnknown>& spUnkDataSrc, CComPtr<IUnknown>& spUnkSession)
{
 /* spUnkDataSrc contains a pointer to the IUnknown interface of an initialized Data Source Object */
 /* spUnkSession is where a pointer to the IUnknown interface of the newly created
 Session Object will be stored */
 HRESULT hr = E_FAIL;
 CComQIPtr<IDBCreateSession> spCreateSession = spUnkDataSrc;
 if(spCreateSession == NULL)
 cout << "ERROR: IDBCreateSession not found" << endl;

80 Chapter 8 • Creating, Subsetting, and Deleting Data Sets

 else
 {
 hr = spCreateSession->CreateSession(NULL, IID_IUnknown, &spUnkSession.p);
 FAIL_IF(hr);
 }
 return hr;

}

HRESULT CreateNewTable(CComPtr<IUnknown>& spUnkSession)
{
 /* spUnkSession contains a pointer to the IUnknown interface of an open Session Object */
 /* This method creates a table named newtable from the sasuser library */
 HRESULT hr = E_FAIL;
 CComQIPtr<ITableDefinition> spTableDef = spUnkSession;
 if(spTableDef == NULL)
 cout << "ERROR: ITableDefinition not found" << endl;
 else
 {
 CComPtr<IUnknown> spUnkNewTable = NULL;
 DBORDINAL cColumnDescs = 3;
 DBCOLUMNDESC rgColumnDescs[3];
 DBID in_table;

 in_table.eKind = DBKIND_NAME; /* only DBKIND_NAME supported */
 in_table.uName.pwszName = L"sasuser.newtable";

 memset(rgColumnDescs, 0, 3*sizeof(DBCOLUMNDESC));

 rgColumnDescs[0].wType = DBTYPE_R8;
 rgColumnDescs[0].ulColumnSize = 8;
 rgColumnDescs[0].dbcid.eKind = DBKIND_NAME; /* only DBKIND_NAME supported */
 rgColumnDescs[0].dbcid.uName.pwszName = L"i";

 rgColumnDescs[1].wType = DBTYPE_WSTR;
 rgColumnDescs[1].ulColumnSize = 40;
 rgColumnDescs[1].dbcid.eKind = DBKIND_NAME; /* only DBKIND_NAME supported */
 rgColumnDescs[1].dbcid.uName.pwszName = L"name";

 rgColumnDescs[2].wType = DBTYPE_R8;
 rgColumnDescs[2].ulColumnSize = 8;
 rgColumnDescs[2].dbcid.eKind = DBKIND_NAME; /* only DBKIND_NAME supported */
 rgColumnDescs[2].dbcid.uName.pwszName = L"age";

 hr = spTableDef->CreateTable(
 NULL /* outer unknown */,
 &in_table /*id of table to create */,
 cColumnDescs /* number of columns */,
 rgColumnDescs /* description of columns */,
 IID_IUnknown /* interface to get on new data set */,
 0 /* number of property sets */,
 NULL /* property sets */,
 NULL /* id of table created, always equal to the requested id */,
 &spUnkNewTable.p /* pointer to new data set */);
 }
 return hr;

Implementation 81

}

HRESULT DeleteNewTable(CComPtr<IUnknown>& spUnkSession)
{
 /* spUnkSession contains a pointer to the IUnknown interface of an open Session Object */
 /* This method deletes a table named newtable from the sasuser library */
 HRESULT hr = E_FAIL;
 CComQIPtr<ITableDefinition> spTableDef = spUnkSession;
 if(spTableDef == NULL)
 cout << "ERROR: ITableDefinition not found" << endl;
 else
 {
 DBID tableid;
 tableid.eKind = DBKIND_NAME; /* only DBKIND_NAME supported */
 tableid.uName.pwszName = L"sasuser.newtable";
 hr = spTableDef->DropTable(&tableid);
 }
 return hr;
}

int main(int argc, char* argv[])
{
 CoInitialize(NULL);

 try
 {
 HRESULT hr = E_FAIL;
 CComPtr<IUnknown> spUnkDataSrc = NULL; /* pointer to IUnknown interface of a Data Source Object */
 CComPtr<IUnknown> spUnkSession = NULL; /* pointer to IUnknown interface of a Session Object */
 CComPtr<IUnknown> spUnkCommand = NULL; /* pointer to IUnknown interface of a Command Object */
 CComPtr<IUnknown> spUnkRowset = NULL; /* pointer to IUnknown interface of a Rowset Object */
 FAIL_IF(InstantiateProvider(spUnkDataSrc)); /* creates an instance of the IOM Provider Data Source */
 FAIL_IF(InitializeProvider(spUnkDataSrc)); /* initializes the Data Source object to
 connect to the local workspace server */
 FAIL_IF(CreateSession(spUnkDataSrc, spUnkSession)); /* creates an instance of a Session Object */
 FAIL_IF(CreateNewTable(spUnkSession)); /* create a data set named newtable in the sasuser library */
 FAIL_IF(DeleteNewTable(spUnkSession)); /* delete a data set named newtable in the sasuser library */
 }
 catch(_com_error& e)
 {
 cout << "ERROR: 0x" << hex << setw(8) << setfill('0') << right << e.Error() << endl;
 }

 CoUninitialize();
 return 0;
}

82 Chapter 8 • Creating, Subsetting, and Deleting Data Sets

Subsetting Data Sets for Read-Only Sequential
Access

Goal
You want your application to execute SQL queries and commands in order to subset data
sets for read-only sequential access.

This recipe applies to the SAS/SHARE, IOM, and Base SAS providers. This recipe includes
sample code for ADO and OLE DB.

ADO Implementation

Three Methods for Executing SQL Queries and Commands
The IOM, SAS/SHARE, and Base SAS providers can be used to pass SQL statements in
three ways:

• calling Execute on an open Connection object

• calling Execute on an open Command object

• calling Open on a Recordset object and passing adCmdText as the option

Note: All three methods require that you reference the Microsoft ActiveX Data Objects
Library in your Visual Basic project.

Calling Execute on an Open Connection Object
The following code uses an open ADO Connection object in order to pass SQL statements
to a provider. The data set has three columns: a numeric column named i, a character
column of length 40 named name, and a numeric column named age.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Create a new table in the Sasuser library.
obConnection.Execute "create table sasuser.newtable (i num, name char(40), age num);"

' Insert values into the new table.
obConnection.Execute "insert into sasuser.newtable values(0, ""Bill"", 32) values(1, ""John"", 99);"

' Use a SELECT statement to open a Recordset object on the new table.
Set obRecordset = obConnection.Execute("select * from sasuser.newtable")

' Do something with the Recordset object.
MsgBox obRecordset.GetString

' Close the Recordset object.
obRecordset.Close

ADO Implementation 83

Calling Execute on an Open Command Object
The same SQL statements shown in the previous example can be executed through an ADO
Command object, as shown in the following Visual Basic code:

' obConnection is an open Connection object.
Dim obCommand As New ADODB.Command
Dim obRecordset As New ADODB.Recordset

obCommand.ActiveConnection = obConnection

' Create a new table.
obCommand.CommandText = "create table sasuser.newtable (i num, name char(40), age num);"
obCommand.Execute

' Insert values into the new table.
obCommand.CommandText = "insert into sasuser.newtable values(0, ""Bill"", 32) values(1, ""John"", 99);"
obCommand.Execute

' Open a Recordset object on the new table.
obCommand.CommandText = "select * from sasuser.newtable"
Set obRecordset = obCommand.Execute()

' Do something with the Recordset object.
MsgBox obRecordset.GetString

' Close the Recordset object.
obRecordset.Close

Calling Open on a Recordset Object and Passing adCmdText as the
Option
SQL statements that result in recordsets can be executed through an ADO Recordset object
by using the adCmdText option. The following Visual Basic code shows how this task is
done.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Execute a command that results in a recordset.
' SQL result sets are forward-only and read-only.
obRecordset.Open "select * from sasuser.newtable", obConnection, adOpenForwardOnly, _
 adLockReadOnly, adodb.adCmdText

' Do something with the Recordset object.
MsgBox obRecordset.GetString

' Close the Recordset object.
obRecordset.Close

OLE DB Implementation
OLE DB consumers can use the ICommand family of interfaces that are exposed by the
Command object to execute SQL statements. The most common interfaces are ICommand
and ICommandText. The following C++ code shows how this task is done. In the sample
code, the first two statements return NULL for the pointer to the rowset because no rowset

84 Chapter 8 • Creating, Subsetting, and Deleting Data Sets

is created. The third statement creates a rowset and returns a pointer to its IUnknown
interface.

#include atlbase.h
#include comdef.h
#include comutil.h
#include oledb.h
#include atldbcli.h

#include <iostream>
#include <iomanip>
using std::cout;
using std::hex;
using std::setw;
using std::setfill;
using std::right;
using std::endl;

#define FAIL_IF(hr) issue_if_failed(__FILE__, __LINE__, hr)
inline void issue_if_failed(char* file, ULONG line, HRESULT hr)
{
 /* This method throws an error if hr is a failure. */
 if(FAILED(hr))
 {
 ATLTRACE(%s(%d): Failure 0x%X\n, (char*)file, line, hr);
_com_issue_error(hr);
 }
}

HRESULT InstantiateProvider(CComPtr<IUnknown>& spUnkDataSrc)
{
 /* spUnkDataSrc contains a NULL IUnknown pointer. */
 /* This method instantiates the IOM Provider Data Source object and */
 /* stores a pointer to its IUnknown interface in spUnkDataSrc. */
 CLSID clsid;

 FAIL_IF(CLSIDFromProgID(L"SAS.IOMProvider", &clsid));
 FAIL_IF(CoCreateInstance(clsid, NULL, CLSCTX_INPROC_SERVER, IID_IUnknown, (void**)&spUnkDataSrc));

 return S_OK;
}

HRESULT InitializeProvider(CComPtr<IUnknown>& spUnkDataSrc)
{
 /* spUnkDataSrc contains an IUnknown pointer to an uninitialized IOM Data Source Object. */
 /* This method initializes the IOM Provider specifically. Initializing the SAS/SHARE */
 /* Provider requires different properties as described in Establishing an ADO Connection. */
 CComQIPtr<IDBInitialize> spInit = spUnkDataSrc;
 CComQIPtr<IDBProperties> spProp = spUnkDataSrc;
 if(spInit == NULL || spProp == NULL)
 return E_FAIL;

 CDBPropSet Props(DBPROPSET_DBINIT);
 Props.AddProperty(DBPROP_INIT_DATASOURCE, (WCHAR*)L_LOCAL_);
 FAIL_IF(spProp->SetProperties(1, &Props));

OLE DB Implementation 85

 FAIL_IF(spInit->Initialize());

 return S_OK;
}

HRESULT CreateSession(CComPtr<IUnknown>& spUnkDataSrc, CComPtr<IUnknown>& spUnkSession)
{
 /* spUnkDataSrc contains a pointer to the IUnknown interface of an initialized Data Source Object */
 /* spUnkSession is the location for a pointer to the IUnknown interface of the newly created Session Object */
 HRESULT hr = E_FAIL;
 CComQIPtr<IDBCreateSession> spCreateSession = spUnkDataSrc;
 if(spCreateSession == NULL)
 cout << "ERROR: IDBCreateSession not found" << endl;
 else
 {
 hr = spCreateSession->CreateSession(NULL, IID_IUnknown, &spUnkSession.p);
 FAIL_IF(hr);
 }
 return hr;

}

HRESULT CreateCommand(CComPtr<IUnknown>& spUnkSession, CComPtr<IUnknown>& spUnkCommand)
{
 /* spUnkSession contains a pointer to the IUnknown interface of an open Session Object */
 /* spUnkCommand is the location for a pointer to the IUnknown interface of the newly created Command Object */
 HRESULT hr = E_FAIL;
 CComQIPtr<IDBCreateCommand> spCreateCommand = spUnkSession;
 if(spCreateCommand == NULL)
 cout << "ERROR: IDBCreateCommand not found" << endl;
 {
 hr = spCreateCommand->CreateCommand(NULL, IID_IUnknown, &spUnkCommand.p);
 FAIL_IF(hr);
 }
 return hr;
}

HRESULT ExecuteSQL(CComPtr<IUnknown>& spUnkCommand, bstr_t bstrSQL, CComPtr<IUnknown>& spUnkRowset)
{
 /* spUnkCommand contains a pointer to the IUnknown interface of an open command */
 /* spUnkRowset is where the IUknown pointer to the created rowset (if any) will be stored */
 HRESULT hr = E_FAIL;
 CComQIPtr<ICommandText> spCommandText = spUnkCommand;
 if(spCommandText == NULL)
 cout << "ERROR: ICommandText not found" << endl;
 else
 {
 FAIL_IF(spCommandText->SetCommandText(DBGUID_DBSQL, bstrSQL));
 hr = spCommandText->Execute(NULL, IID_IUnknown, NULL, NULL, &spUnkRowset.p);
 FAIL_IF(hr);
 }
 return hr;
}

int main(int argc, char* argv[])
{

86 Chapter 8 • Creating, Subsetting, and Deleting Data Sets

 CoInitialize(NULL);

 try
 {
 HRESULT hr = E_FAIL;
 CComPtr<IUnknown> spUnkDataSrc = NULL; /* pointer to IUnknown interface of a Data Source Object */
 CComPtr<IUnknown> spUnkSession = NULL; /* pointer to IUnknown interface of a Session Object */
 CComPtr<IUnknown> spUnkCommand = NULL; /* pointer to IUnknown interface of a Command Object */
 CComPtr<IUnknown> spUnkRowset = NULL; /* pointer to IUnknown interface of a Rowset Object */
 FAIL_IF(InstantiateProvider(spUnkDataSrc)); /* creates an instance of the IOM Provider Data Source */
 FAIL_IF(InitializeProvider(spUnkDataSrc)); /* initializes the Data Source object to
 connect to the local workspace server */
 FAIL_IF(CreateSession(spUnkDataSrc, spUnkSession)); /* creates an instance of a Session Object */
 FAIL_IF(CreateCommand(spUnkSession, spUnkCommand)); /* creates an instance of a Command Object */

 /* create a new data set */
 FAIL_IF(ExecuteSQL(spUnkCommand, "create table sasuser.newtable (i num, name char(40), age num);",
 spUnkRowset));

 /* add some rows to the new data set */
 FAIL_IF(ExecuteSQL(spUnkCommand, "insert into sasuser.newtable values(0, \"Bill\", 32)
 values(1, \"John\", 99);", spUnkRowset));

 /* open a Recordset on the new data set */
 FAIL_IF(ExecuteSQL(spUnkCommand, "select * from sasuser.newtable", spUnkRowset));

 /* do something with spUnkRowset */
 /* ... */
 }
 catch(_com_error& e)
 {
 cout << "ERROR: 0x" << hex << setw(8) << setfill('0') << right << e.Error() << endl;
 }

 CoUninitialize();
 return 0;
}

Subsetting Data Sets for Random and Update
Access

Goal
You want your application to use the WHERE clause with the SAS SQL procedure to
subset data sets for random and update access.

This recipe applies to the SAS/SHARE and Base SAS providers. Sample code for ADO is
included.

Note: For more information about WHERE clause processing, see SAS Language
Reference: Concepts and the Base SAS Procedures Guide.

Goal 87

Implementation

Sample Code for Subsetting Data Sets
The SAS SQL procedure enables you to subset data sets by using a WHERE clause. A data
set that is opened by a SAS WHERE clause has the same features as other SAS data sets,
so you can open it for both random and update access.

To control WHERE clause processing, you use the "SAS Where" provider property. The
value of the "SAS Where" property is a string that is a complete and valid SAS WHERE
expression. The following Visual Basic code shows how this task is done.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

obRecordSet.ActiveConnection = obConnection
obRecordSet.Properties("SAS Where") = "flight > 306"

' The second parameter on the Open method must remain empty.
obRecordSet.Open "airline.Flights", , adOpenStatic, adLockReadOnly, adCmdTableDirect

A Closer Look at the 'SAS Where' Property
Although the "SAS Where" provider property might seem to serve the same function as
the ADO Recordset object's "Filter" property, there are differences:

• The "SAS Where" property sends the clause to the server, and the server determines
which records pass the WHERE clause. The server returns only records that pass the
WHERE clause.

• The "Filter" property sends all of the records in the data set to the client. The client then
processes each record to determine whether it should be in the recordset.

See Also
“Subsetting Data Sets for Read-Only Sequential Access” on page 83

88 Chapter 8 • Creating, Subsetting, and Deleting Data Sets

Chapter 9

Specifying How to Display Data

Displaying Data Recipes . 89

Using SAS Formats When You Read Data . 90
Goal . 90
ADO Implementation . 90
OLE DB Implementation . 92

Using SAS Informats When You Write Data . 92
Goal . 92
ADO Implementation . 92
OLE DB Implementation . 94

Reading User-Defined SAS Formats and Informats . 94
Goal . 94
ADO Implementation . 94

Padding Character Data with Blanks . 95
Goal . 95
ADO Implementation . 95
OLE DB Implementation . 96

Displaying Data Recipes
This chapter provides sample code that you can use to perform tasks related to displaying
data after the connection is established. These tasks are included because they have some
aspects that are specific to SAS.

Note: To perform a data-related task that is not included in this chapter, see the OLE DB
Programmer's Reference and Data Access SDK.

Here is a list of the recipes in this chapter:

• “Using SAS Formats When You Read Data ” on page 90

• “Using SAS Informats When You Write Data” on page 92

• “Reading User-Defined SAS Formats and Informats” on page 94

• “Padding Character Data with Blanks” on page 95

T I P To use the recipes in this chapter, you need an open ADO Connection object. For
more information, see “Basic Connection Recipes” on page 35.

89

See Also
“Supplemental Connection Recipes” on page 47

Using SAS Formats When You Read Data

Goal
You want your application to use SAS formats when reading data.

This recipe applies to the local, SAS/SHARE, IOM, and Base SAS providers. Sample code
for ADO is included.

ADO Implementation

How to Structure the Value of the "SAS Formats" Property
SAS implements a set of formats that can be used to transform basic character and numeric
values into formatted character values. In ADO, formats are controlled with the "SAS
Formats" customized Recordset property. This property takes a string value that specifies
the format that you want to use, and specifies any optional overriding information. The
string value also lists one or more columns to which the format should be applied. Use the
following form to enter the string value:

 [+]COLUMN[=FORMAT[w].[d]]

Here is an explanation of the form:

• +, an optional modifier that exposes the column in two conditions: formatted and
unformatted.

• COLUMN, the name of a column in the recordset (which is the same as the variable
name in the SAS data set). If you need to specify more than one column, you must
separate the column names with commas.

• FORMAT, the name of the format that you want to apply.

• w, the width that you want to use with the format.

• d, the number of decimal places (if any) to include with numeric formats.

The order in which the columns are listed in the string does not affect the order in which
they are returned by an ADO Recordset object.

For example, assume that a data set has three variables that appear in the following order:

1. SALEDATE, a SAS date with a default format of MMMYY

2. QUANTITY, a SAS numeric value with no default format

3. PRICE, a SAS numeric value with no default format

The following string value is based on the sample data set:

 SALEDATE=MMDDYY8.,+PRICE=DOLLAR8.2

The results appear in the following four columns on the ADO Recordset object:

1. SALEDATE, a string column with the MMDDYY8. format applied

2. QUANTITY, a numeric column with no format applied

90 Chapter 9 • Specifying How to Display Data

3. PRICE, a numeric column with no format applied

4. PRICE_DOLLAR8.2 as a string column with the DOLLAR8.2 format applied.

Note: The fourth column is constructed through the use of the + modifier; it is not persisted
beyond the life of its exposure on the ADO Recordset object.

How Default Formats Are Applied
If there is no explicit format information, or if you specify "_ALL_" as the "SAS Formats"
property, the SAS providers apply format properties to all columns according to the
following rules:

• If no format name, width, or decimal value is specified with a column name, then the
providers default to the format information that is persisted with the data set.

• If no format specification is stored in the data set, then the providers use the system
defaults. The system defaults are W.D for numeric columns and $CHAR. for character
columns.

How the Plus (+) Modifier Works
To see the same physical column of data exposed as two columns, one formatted and one
unformatted, prefix the column name with the plus (+) sign modifier. When you make this
request, the formatted column appears as a constructed, temporary column named
COLUMN_FORMAT. The formatted column is not persisted beyond the life of its
exposure on the ADO Recordset object.

To see all columns returned in both their formatted and unformatted forms, use the form
"+_ALL_".

CAUTION:
Data integrity problems can occur when the data provider cannot determine
which version of a column (formatted or unformatted) should be written to the
data set. To prevent these problems, use the + modifier to restrict the recordset to read-
only access.

How to Determine Persisted SAS Format Information
To determine column metadata at run time, use the Connection object's OpenSchema
method and set its QueryType parameter to adSchemaColumns. The returned recordset
will contain the persisted SAS format information for each column, along with the defined
OLE DB schema information.

Note: For more information about displaying SAS metadata, see “Displaying Metadata
That Is Specific to SAS Data Sets” on page 71.

Sample Code for Setting the "SAS Formats" Property
The following Visual Basic code shows how to set the "SAS Formats" property so that the
columns in the recordset will include the formatting as indicated by the "SAS Formats"
value.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

obRecordset.ActiveConnection = obConnection
obRecordset.Properties("SAS Formats") = "saledate=mmddyy8.,+price=dollar8.2."

' The second parameter on the Open method must remain empty.
obRecordset.Open "sales", , adOpenStatic, adLockReadOnly, adCmdTableDirect

ADO Implementation 91

OLE DB Implementation
An application that calls a SAS provider directly through the OLE DB interfaces should
use the SASFORMAT structure with the DBBINDING extensions. For more information,
see “About Format and Informat Processing with OLE DB” on page 249.

See Also
“Using SAS Informats When You Write Data” on page 92

Using SAS Informats When You Write Data

Goal
You want your application to use SAS informats when writing data.

This recipe applies to the SAS/SHARE, IOM, and Base SAS providers. Sample code for
ADO is included.

ADO Implementation

How to Structure the Value of the 'SAS Informats' Property
SAS implements a set of informats that can be used to transform formatted character values
into basic character and numeric values. Informats are controlled with the SAS Informats
customized Recordset property.

This property takes a string value that specifies the informat that you want to use. The string
value also lists one or more columns to which it should be applied. Use the following form
to enter the string value:

COLUMN[=INFORMAT[w].[d]]

Here is an explanation of the form:

• COLUMN, the name of a column in the recordset (or variable in the data set). (If you
need to specify more than one column, you must separate the column names with
commas.)

• INFORMAT, the name of the informat that you want to apply

• w, the width that you want to use with the informat

• d, the number of decimal places (if any) to include with numeric informats

For example, the following informat string value removes the dollar sign and commas from
the values in a column named amount. For an input value of $1,000,000, the result is a
numeric value of 1000000.

amount=DOLLAR11.

How Default Informats Are Applied
If there is no explicit informat information (or if you specify "_ALL_" as the "SAS
Informats" property value), the IOM and SAS/SHARE providers apply informat properties
to all columns according to the following rules:

92 Chapter 9 • Specifying How to Display Data

• If no informat name, width, or decimal value is specified with a column name, then the
providers use the default informat information that is persisted with the data set.

• If no informat specification is persisted in the data set, then the providers use the system
default values. The system default values are W.D for numeric columns and $CHAR.
for character columns.

Note: The "SAS Informats" property does not support use of the plus sign (+) modifier
with the "_ALL_" keyword. This modifier can be used with the "SAS Formats" property
to expose data as two columns: one formatted and one unformatted.

How the Use of Informats Affects Formatting
Whenever an informat is applied to a column, the SAS providers also apply format
properties to that column. If a format is not explicitly specified through the use of the "SAS
Formats" property, then the provider that is being used in the application applies the
column's default format. (For more information about using formats, see “Using SAS
Formats When You Read Data ” on page 90.)

The following Visual Basic code uses a simple SAS data set named people that contains
two columns: name and birthday. The code specifies an informat for the birthday
column, which is sufficient for the task of adding a few new records to the data set.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

obRecordset.ActiveConnection = obConnection
obRecordset.Properties("SAS Informats") = "birthday=MMDDYY8."

' The second parameter on the Open method must remain empty.
obRecordset.Open "people", , adOpenStatic, adLockPessimistic, adCmdTableDirect
obRecordset.AddNew Array("name", "birthday"), Array("Beth", "02/13/73")
obRecordset.AddNew Array("name", "birthday"), Array("David", "05/01/65")
obRecordset.Close

Because the "SAS Formats" property is not used to explicitly specify a format for
birthday, the column's default format is used. Because this code only writes data, the
applied format does not affect the results. For applications that read and write records, you
must ensure that each column uses the appropriate informat and format.

In the following Visual Basic code, the first statement applies a format to the birthday
column. The second statement applies a complementary informat to the birthday
column.

obRecordset.Properties("SAS Formats") = "birthday=MMDDYY8."
obRecordset.Properties("SAS Informats") = "birthday=MMDDYY8."

By contrast, in the following code, the property settings for birthday are not
complementary. The format (DOLLAR9.2) implies that the underlying numeric value is
monetary, but the informat (MMDDYY8.) implies that the underlying value is a SAS date.

obRecordset.Properties("SAS Formats") = "birthday=DOLLAR9.2"
obRecordset.Properties("SAS Informats") = "birthday=MMDDYY8."

Even though this pairing of format and informat is not logical, the providers will not prohibit
you from entering this type of configuration. You must make reasonable choices.

Note: As with informats, you can use the "_ALL_" keyword to specify that all columns
use either system default formats or persisted formats.

ADO Implementation 93

How to Determine Persisted SAS Informat Information
To determine column metadata at run time, use the Connection object OpenSchema method
and set its QueryType parameter to adSchemaColumns. The returned recordset will contain
the persisted SAS informat information for each column, along with the defined OLE DB
schema information.

Note: For more information about displaying SAS metadata, see “Displaying Metadata
That Is Specific to SAS Data Sets” on page 71.

OLE DB Implementation
An application that calls a SAS provider directly through the OLE DB interfaces should
use the SASFORMAT structure with the DBBINDING extensions. For more information,
see “About Format and Informat Processing with OLE DB” on page 249.

See Also
“Using SAS Formats When You Read Data ” on page 90

Reading User-Defined SAS Formats and Informats

Goal
You want your application to read user-defined SAS formats and informats.

This recipe applies to the IOM provider. Sample code for ADO is included.

Note: The SAS Workspace Server must have access to the SAS catalog that contains the
user-defined formats and informats.

ADO Implementation

Sample Code for Reading User-Defined Formats
The following Visual Basic code shows you how to read a SAS data set named books that
uses formats that are contained in a catalog named formats. The data set is located in a
directory named c:\storage. The catalog is located in a directory named c:\public.

Note: If you define the libref to point to the location where the catalog is stored, your SAS
Workspace Server can access your user-written formats when you process data sets by
using either ADO recordsets or OLE DB rowsets.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Use the formats persisted on the data set
obRecordset.Properties("SAS Formats") = "_ALL_"

' Assign a libref for the formats catalog.
obConnection.Execute ("libname library 'c:\public' ")

' Assign a libref for the data set.
obConnection.Execute ("libname mylib 'c:\storage' ")

94 Chapter 9 • Specifying How to Display Data

' The second parameter on the Open method must remain empty.
bRecordset.Open "mylib.books", , adOpenDynamic, adLockReadOnly, adCmdTableDirect

Note: Currently, user-written formats cannot be processed on the client side, which is why
the IOM provider can process user-written formats but the local, SAS/SHARE, and
Base SAS providers cannot. The IOM provider delegates all format processing to the
server side. However, the local, SAS/SHARE, and Base SAS providers do all format
processing on the client side.

CAUTION:
Do not attempt to open an ADO Recordset object if the underlying data set
contains user-written formats that are not immediately available to the IOM
workspace. This action results in a fatal error that is generated even if you are not
attempting to use the formats when reading the data.

How to Manage Errors When an Unsupported Provider Is Used
By default, you will get an error if you attempt to use either the local, SAS/SHARE, or
Base SAS provider to perform a row I/O operation with a user-written format or informat.
For example, if you try to read a row and apply a customized format, the attempt will fail.
Likewise, an update or add row operation will fail if a user-written informat is associated
with any column in the row.

You can enable processing to continue without error by changing the value of the Recordset
property "SAS Format Error" (the OLE DB property name is DBPROP_SAS_FMTERR).
This property controls how the local, SAS/SHARE, and Base SAS providers process format
and informat names that cannot be resolved.

By default, the value of this property is True, which causes unknown formats and informats
to be flagged as errors. If you set this property to False when opening a recordset, the
default format or informat (W.D for numeric columns and $CHAR. for character columns)
will be applied when an unknown format or informat is encountered.

See Also
• “Specifying a Libref to Use with the IOM Provider” on page 67

• “Using SAS Formats When You Read Data ” on page 90

Padding Character Data with Blanks

Goal
You want your application to preserve trailing blanks.

This recipe applies to the local, SAS/SHARE, IOM, and Base SAS providers. Sample code
for ADO is included.

ADO Implementation
By default, the SAS providers trim trailing blanks from character columns. This behavior
differs from the default SAS DATA step behavior in which trailing blanks are preserved.
To force the SAS providers to preserve trailing blanks, set the "SAS Preserve Trailing

ADO Implementation 95

Blanks" property to True. The following sample Visual Basic code shows how this task
is done.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

obRecordset.ActiveConnection = obConnection
obRecordset.Properties("SAS Preserve Trailing Blanks") = True

' The second parameter on the Open method must remain empty.
obRecordset.Open "sashelp.shoes", , adOpenStatic, adLockReadOnly, adCmdTableDirect

OLE DB Implementation
When writing to the OLE DB interface, use DBPROP_SAS_BLANKPADDING (a
member of the DBPROPSET_SAS_ROWSET property set) to control padding behavior.

96 Chapter 9 • Specifying How to Display Data

Chapter 10

Managing Missing Values

Missing Value Recipes . 97

Reading Missing Values from a Data Set . 98
Goal . 98
ADO Implementation . 98
OLE DB Implementation . 99

Reading Special Numeric Missing Values from a Data Set 101
Goal . 101
Reading Special Numeric Missing Values . 101

Writing Missing Values to a Data Set . 104
Goal . 104
ADO Implementation . 104
OLE DB Implementation . 105

Missing Value Recipes
This chapter provides sample code that you can use to perform tasks related to reading and
writing missing values. These tasks are included because they have some aspects that are
specific to SAS.

Note: To perform a data-related task that is not included in this chapter, see the OLE DB
Programmer's Reference and Data Access SDK.

Here is a list of the recipes in this chapter:

• “Reading Missing Values from a Data Set” on page 98

• “Reading Special Numeric Missing Values from a Data Set” on page 101

• “Writing Missing Values to a Data Set” on page 104

T I P To use the recipes in this chapter, you need an open ADO Connection object. For
more information, see “Basic Connection Recipes” on page 35.

See Also
“Supplemental Connection Recipes” on page 47

97

Reading Missing Values from a Data Set

Goal
You want your application to test for missing values.

Note: The OLE DB specification supports only one type of missing value for each data
type. Consequently, the SAS providers support only missing numeric values and
missing character values.

This recipe applies to the local, SAS/SHARE, IOM, and Base SAS providers. This recipe
includes sample code for ADO and OLE DB.

ADO Implementation

How Missing Values Are Represented
ADO represents missing numeric values as a Variant data type with a value of Null, which
means that the IsNull function can be used to test for missing values. If a numeric field
value in a record is missing, then IsNull returns a true value for that field.

To test for missing character values, you compare trimmed character values in the data set
against the empty string " ".

Note: Schema rowsets return missing character values as Null values in order to provide
greater interoperability with third-party clients such as Microsoft Excel, The IsNull
function also returns true for missing character values in the rowsets. Always check the
type of the column to determine whether there is a missing character value.

Representation of missing character values depends on whether blank padding is preserved
(see “Padding Character Data with Blanks” on page 95).

• If blank padding is preserved, then missing character values are represented as a string
of spaces with a length equal to the width of the particular column.

• If blank padding is not preserved, then missing character values are represented as an
empty (zero length) string.

Note: If you are not sure about the state of the "SAS Preserve Trailing Blanks" property,
you can use the trim function and compare the value against the empty string " ".

Sample ADO Code That Tests for Missing Values
The following Visual Basic code tests every character and numeric value in a data set to
determine whether a value is missing or not.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset
Dim field As Field

obRecordset.Open "sasuser.shoes", obConnection, adOpenDynamic, adLockPessimistic, adCmdTableDirect
obRecordset.MoveFirst
While Not obRecordset.EOF
 For Each field In obRecordset.Fields
 If (field.Type = adVarChar Or field.Type = adVarWChar) And _
 (IsNull(field.Value) Or Trim(field.Value) = "") Then

98 Chapter 10 • Managing Missing Values

 Debug.Print "missing character value found in column " & field.Name
 ElseIf IsNull(field.Value) Then
 Debug.Print "missing numeric value found in column " & field.Name
 Else
 Debug.Print "no missing value found"
 End If
 Next field
 obRecordset.MoveNext
Wend
obRecordset.Close

Sample Code That Traps Errors Caused by Missing Numeric Values
(ADO)
Because missing numeric values are represented as a Variant data type with a value of Null
instead of as a numeric data type, you cannot use missing numeric values in operations that
require numeric data types. If you do, your application will produce a run-time error on the
first missing numeric value that it encounters.

To trap the error and display a message to the user, use the Visual Basic On Error statement.
The following Visual Basic code shows how this task is done:

Function TotalStores() as Integer
 Dim Total as Integer
 Total = 0
 On Error GoTo Missing
 While Not obRecordset.EOF
 Total = Total + obRecordset!Stores
 obRecordset.MoveNext
 Wend
 On Error GoTo 0
 TotalStores = Total
 Exit Function

Missing:
 If Err.Number = 94 Then
 MsgBox "Missing value encountered"
 Else
 MsgBox "Run-time error: " & Err.Number & vbNewLine & Err.description
 End If
 Resume Next
End Function

OLE DB Implementation

How Missing Values Are Represented
When you write to the OLE DB interface, use the IRowset::GetData method to test for
missing numeric values in a data set. If a numeric field value in a column in the client's
row data buffer is missing, then the dwStatus value is set to DBSTATUS_S_ISNULL. If
the client wishes to receive the appropriate SAS missing value indicator, then the client
should set the DBPROP_SAS_MISSING_VALUES property to True. The possible
missing value indicator values are as follows:

• NumericMissingIgnore(0)

• NumericMissingUnderscore(16)

OLE DB Implementation 99

• NumericMissingDot(32)

• NumericMissingA(33)

• NumericMissingZ(58)

• NotMissing(127)

If a character field value in a column in the client's row data buffer is missing, then the
dwLength value is set to zero (0) or the bData value contains only spaces.

Note: Schema rowsets will return missing character values as NULL values in order to
provide greater interoperability with third-party clients such as Microsoft Excel. The
dwStatus flag will also be set to DBSTATUS_S_ISNULL for missing character values
in the rowsets. Always check the column type to determine whether the value is a
missing character or a missing numeric.

The representation of missing character values depends on whether blank padding is
preserved. In the case of OLE DB, the DBPROP_SAS_BLANKPADDING property
controls this behavior.

• If blank padding is not preserved (DBPROP_SAS_BLANKPADDING is set to
VARIANT_FALSE), then the dwLength member of the column in the client's row data
buffer will be set to zero (which represents the width of the empty column).

• If blank padding is preserved (DBPROP_SAS_BLANKPADDING is set to
VARIANT_TRUE), then the bData member of the column in the client's row data
buffer will be a string of spaces.

Sample Code That Tests for Missing Values (OLE DB)
The following C++ code shows how to test for missing values in a single observation that
is returned from IRowset::GetData. The code assumes that you have completed the
following tasks:

1. called IColumnsInfo::GetColumnInfo to get a DBCOLUMNINFO array and to
determine the number of columns in the data set

2. used the DBCOLUMNINFO array to create a DBBINDING array

3. called IAccessor::CreateAccessor to request an accessor

4. called IAccessor::GetBindings to recover the bindings for the accessor that you created

5. used the bindings to determine how much space to allocate for the row data

6. called IRowsetLocate::GetRowsAt or IRowset::GetNextRows to get an HROW

7. used the HROW and the accessor in the call to GetData

Note: The exact steps that show how to get a row of data from an OLE DB provider can
be found in the OLE DB Programmer’s Reference and Data Access SDK.

hr = pIRowset->GetData(hRow, hAccessor, pRowData)
if (FAILED(hr)){ /* an error occurred */ }
for (DBORDINAL i = 0; i < cNumColumns; i++)
{
 pCol = (COLUMNDATA*)(pRowData + pBindings[i].obLength);
 if (pBindings[i].wType == DBTYPE_R8)
 {
 if (pCol->dwStatus == DBSTATUS_S_ISNULL)
 {
 //This is a missing numeric value
 }

100 Chapter 10 • Managing Missing Values

 else
 {
 //This is a non-missing numeric value
 }
 }
 else if (pBindings[i].wType == DBTYPE_STR || pBindings[i].wType == DBTYPE_WSTR)
 {
 DWORD j;
 // Loop through each character in the data member to
 // see if it contains a string of blanks or if it has a length of zero
 for (j = 0;
 j < pCol->dwLength &&
 (char*)pCol->bData[j] &&
 (char*)pCol->bData[j] == ' ';
 j++);
 if (j == pCol->dwLength)
 {
 //This is a missing character value
 }
 else
 {
 //This is a non-missing character value
 }
 }
 else
 {
 // An unexpected type was returned
 }
}

See Also
“Writing Missing Values to a Data Set” on page 104

Reading Special Numeric Missing Values from a
Data Set

Goal
You want to read the special numeric missing value indicator in SAS data sets.

This recipe applies to the local provider. Sample code for ADO is provided. For OLE DB,
SAS recommends using the DBPROP_SAS_MISSING_VALUES property instead.

Reading Special Numeric Missing Values
The local provider provides ADO rowset property “SAS Get Missing Values Grid” so that
the local provider can return results that indicate the special numeric missing values. SAS
supports special missing numeric values to represent different categories of missing data.
For more information about special numeric missing values, see “Missing Values” in SAS
Language Reference: Concepts.

Reading Special Numeric Missing Values 101

In order to return the special missing numeric value, when this property is set to True, the
provider returns a grid with values that are the opposite of the standard data. Numeric fields
with special numeric missing values normally return Null. When this property is set to
True, those fields return a value that represents the special numeric missing value.

// This sample uses C# syntax
//
// obConnection is an ADODB.Connection object and
// obRecordset is an ADODB.Recordset object
//
try
{
 string connectionString = "Provider=sas.LocalProvider; Data Source=\"c:\\data\"";
 obConnection.Open(connectionString, "", "",
 (int)ADODB.ConnectOptionEnum.adConnectUnspecified);

 obRecordset.ActiveConnection = obConnection;
 obRecordset.Properties["SAS Get Missing Values Grid"].Value = true;
 obRecordset.Open(dataSetName, System.Type.Missing,
 CursorTypeEnum.adOpenForwardOnly, LockTypeEnum.adLockReadOnly,
 (int)CommandTypeEnum.adCmdTableDirect);
}
catch (Exception ex)
{
 if (obConnection.Errors.Count > 0)
 {
 foreach (ADODB.Error e in obConnection.Errors)
 Console.WriteLine(e.Description);
 }
 else
 {
 Console.WriteLine(ex.toString());
 }
}

Consider the following table that represents a SAS data set. It has a character variable and
a numeric variable. The second observation has the standard SAS missing value. The third
and fourth observations use the special numeric missing variables.

Table 10.1 Input Table with Special Numeric Missing Values

CharacterVariable NumericVariable

FirstObservation 10

SecondObservation .

ThirdObservation .A

FourthObservation ._

When the “SAS Get Missing Values Grid” property is set to True and the data set is read,
the results resemble the following table. All character variables are set to missing. Non-
missing numeric variables are set to missing. The fields with special numeric missing values
in the original data set return values to represent the missing value.

102 Chapter 10 • Managing Missing Values

Table 10.2 Result Recordset with “SAS Get Missing Values Grid” Set to True

CharacterVariable NumericVariable

32

33

16

The following table shows the mapping from the special numeric missing value to the value
that is returned in the record set.

Table 10.3 Special Numeric Missing Value Representation

Missing Value Returned Value

. 32

A 33

B 34

C 35

D 36

E 37

F 38

G 39

H 40

I 41

J 42

K 43

L 44

M 45

N 46

O 47

P 48

Q 49

Reading Special Numeric Missing Values 103

Missing Value Returned Value

R 50

S 51

T 52

U 53

V 54

W 55

X 56

Y 57

Z 58

_ 16

Writing Missing Values to a Data Set

Goal
You want your application to write missing values to a data set.

This recipe applies to the SAS/SHARE, IOM, and Base SAS providers. This recipe includes
sample code for ADO and OLE DB.

ADO Implementation
To write missing values to a data set, you specify null as the value of the empty field. For
missing character values, you can also set the value of the field to a string that contains all
spaces (including the empty string " "). The following Visual Basic code sets every field
in the data set to missing:

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset
Dim field As Field

' Specify the LockType.
obRecordset.LockType = adLockPessimistic

' The fourth parameter is empty because the LockType has already been specified.
obRecordset.Open "sashelp.shoes", obConnection, adOpenDynamic, , adCmdTableDirect

obRecordset.MoveFirst
While Not obRecordset.EOF
 For Each field in obRecordset.Fields

104 Chapter 10 • Managing Missing Values

 If field.Type = adWChar Then 'character value
 field.Value = ""
 ' or field.Value = Null
 ' or field.Value = " "
 Else 'numeric value
 field.Value = Null
 End If
 Next field
 obRecordset.MoveNext
Wend

OLE DB Implementation
To write missing values to a data set, you specify DBSTATUS_S_ISNULL as the value
of the dwStatus of the column in the client's row data buffer. You perform this task before
passing that buffer to the IRowsetChange::SetData method.

For missing character values, you can also fill the bData member of the column in the
client's row data buffer with a null-terminated string of spaces (including the empty string
" "). The length of the string of spaces can be up to the length indicated by the dwLength
value.

The following C++ code shows how to set all the fields of one observation in a data set to
Null. The iteration through the fields starts at 1 rather than 0 because the first column
contains the bookmark for that row.

This example assumes that the rowset has been opened in immediate update mode. If a
delayed update is used instead, an additional call to IRowsetUpdate::Update must be made
before the changes will be accepted. The code assumes that you have completed the
following tasks:

1. called IColumnsInfo::GetColumnInfo to get a DBCOLUMNINFO array and to
determine the number of columns in the data set

2. used the DBCOLUMNINFO array to create a DBBINDING array

3. called IAccessor::CreateAccessor to request an accessor

4. called IAccessor::GetBindings to recover the bindings for the created accessor

5. used the bindings to determine how much space to allocate for the row data

6. called IRowsetLocate::GetRowsAt or IRowset::GetNextRows to get an HROW

7. used the HROW and the accessor in the call to GetData

Note: The exact steps for getting a row of data from an OLE DB provider can be found in
the OLE DB Programmer’s Reference and Data Access SDK.

hr = pIRowset->GetData(hRow, hAccessor, pRowData);
if (FAILED(hr)){ /* an error occurred */ }
for (DBORDINAL I = 1; i < cNumColumns; i++)
{
 pCol = (COLUMNDATA*)(pRowData +
 pBindings[i].obLength);pCol->dwStatus = DBSTATUS_S_ISNULL;
}
hr = pIRowset->QueryInterface(IID_IRowsetChange, (void**)&pIRowsetChange);
if (FAILED(hr)){ /* an error occurred */ }
hr = pIRowsetChange->SetData(hRow, hAccessor, pRowData);
if (FAILED(hr)){ /* an error occurred */ }

OLE DB Implementation 105

The following example shows an alternative method for writing character values to a data
set:

hr = pIRowset->GetData(hRow, hAccessor, pRowData);
if (FAILED(hr)){ /* an error occurred */ }
for (DBORDINAL i = 1; i < cNumColumns; i++)
{
 pCol = (COLUMNDATA*)(pRowData + pBindings[i].obLength);
 if (pBindings[i].wType == DBTYPE_STR)
 {
 memset(pCol->bData, ' ', pCol->dwLength);
 }
 else // numeric column
 {
 pCol->dwStatus = DBSTATUS_S_ISNULL;
 }
}
hr = pIRowset->QueryInterface(IID_IRowsetChange, (void**)&pIRowsetChange);
if (FAILED(hr)){ /* an error occurred */ }
hr = pIRowsetChange->SetData(hRow, hAccessor, pRowData);
if (FAILED(hr)){ /* an error occurred */ }

See Also
“Reading Missing Values from a Data Set” on page 98

106 Chapter 10 • Managing Missing Values

Chapter 11

Managing Updates

Updating and Locking Recipes . 107

Updating Recordsets . 107
Goal . 107
Implementation . 108

Implementing a Locking Strategy . 109
Goal . 109
Implementation . 109

Updating and Locking Recipes
This chapter provides sample code that you can use to perform tasks related to updating
and locking ADO recordsets. These tasks are included because they have some aspects that
are specific to SAS.

Note: To perform a data-related task that is not included in this chapter, see the OLE DB
Programmer's Reference and Data Access SDK.

Here is a list of the recipes in this chapter:

• “Updating Recordsets” on page 107

• “Implementing a Locking Strategy” on page 109

T I P To use the recipes in this chapter, you need an open ADO Connection object. For
more information, see “Basic Connection Recipes” on page 35.

See Also
“Supplemental Connection Recipes” on page 47

Updating Recordsets

Goal
You want your application to perform recordset updates, including batch updates.

107

This recipe applies to the SAS/SHARE, IOM, and Base SAS providers. This recipe applies
only to ADO. Sample code for batch updating is included.

Implementation

The Recordset Property Values
To perform recordset updates, you set the Recordset properties to the values shown in the
following table.

Table 11.1 ADO Recordset Properties and Values

ADO Recordset Property Value

CommandType adCmdTableDirect*

LockType adLockBatchOptimistic, adLockOptimistic, or
adLockPessimistic

For information about using adLockBatchOptimistic, see
“Sample Code for Using adLockBatchOptimistic” on page
108.

CursorType If possible, set the property to a value other than its default,
which is adForwardOnly.

* If you set the CommandType property to a value other than adCmdTableDirect, the LockType property might
revert to adLockReadOnly. Because the provider is not guaranteed to honor the requested lock type, you
should always check the value of LockType after the recordset is opened.

Sample Code for Using adLockBatchOptimistic
The SAS providers maintain a row cache. When you open a Recordset object by using the
adLockBatchOptimistic lock type, each altered record is added to the cache. The maximum
number of records allowed in the cache is set by the "Maximum Open Rows" property.

A call to the UpdateBatch method transmits each modified row to the data source and
flushes out the row cache. For the call to be successful, you must limit the number of rows
that are updated between each call to UpdateBatch. The number of rows that are updated
between each call should not exceed the value of the "Maximum Open Rows" property.

The following Visual Basic code shows you how to update records by using the
adLockBatchOptimistic lock type:

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Set the ActiveConnection, CursorType, and LockType here instead of on the Open method.
obRecordset.ActiveConnection = obConnection
obRecordset.CursorType = adOpenStatic
obRecordset.LockType = adLockBatchOptimistic

' Set the maximum number of rows for batch update.
obRecordset.Properties("Maximum Open Rows") = 1000

' Set exclusive member-level lock. All other users get read-only access.
obRecordset.Properties("SAS Optimistic Locking") = False

108 Chapter 11 • Managing Updates

obRecordset.Open "mydata.finance", , , , adCmdTableDirect

' Update every row, setting the BALANCE column of each row to 0.
While Not obRecordset.EOF
 obRecordset!BALANCE = 0
 obRecordset.MoveNext
Wend
obRecordset.UpdateBatch

A Closer Look at adLockBatchOptimistic
Recordset objects that are opened by using the adLockBatchOptimistic lock type have the
following limitations:

• SAS permits batch updates only when the data set has been opened with an exclusive
member lock. If a data set has not been opened with an exclusive member lock, then
the UpdateBatch method ignores the batch request and updates the records one at a
time. To enable an exclusive member lock, set the customized Recordset property "SAS
Optimistic Locking" to False.

Note: An exclusive member lock means that only one user can update the data set.
So, only one user at a time can perform batch updates.

• The number of records that can be updated with one batch update is limited by the value
of the "Maximum Open Rows" property. The default value of this property is 100. If
you need to update more than 100 records at a time, then change the property value to
a higher number.

Implementing a Locking Strategy

Goal
You want your application to lock records, especially during update access. (Locking
records during update access can prevent data loss.)

Note: When a record is being updated, ADO copies the record to a local record buffer
where the changes are made. The changes are not transmitted to the data source until
you call a Recordset Update or UpdateBatch method.

Although all of the providers support locking with read-only access, locking with update
access is available only for the SAS/SHARE, IOM, and Base SAS providers. This recipe
applies only to ADO. Sample code is included.

Implementation

Locking Records with Read-Only Access
By default, ADO locks open Recordset objects and sets the lock type to adLockReadOnly.
When your application does not need update access, you can use the following code, which
does not explicitly set the lock type:

Note: The local and OLAP providers support only read access.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

Implementation 109

' Do not set the lock type parameter. Let it default to adLockReadonly.
obRecordset.Open "mylib.standard", obConnection, , , adCmdTableDirect

Locking Records During Concurrent Updating
If your application needs to support multiple users who can modify the same record
concurrently, then use the adLockPessimistic lock type. This lock type is the most stringent
lock type available. It locks the record from the time editing begins until an Update or
MoveNext method is called. The Recordset Open method must specify the
adCmdTableDirect option, and the CursorType property must be set to adOpenStatic or
adOpenDynamic. The following Visual Basic code shows how this task is done:

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

obRecordset.LockType = adLockPessimistic
obRecordset.CursorType = adOpenDynamic
obRecordset.Open "mylib.standard", obConnection, , , adCmdTableDirect

Dim lt As ADODB.LockTypeEnum
lt = obRecordset.LockType

' Check the lock type to make sure the Recordset can be updated.
' Then, lock the first record in the underlying data source
' and modify the fields in the local record buffer.

If (lt <> adLockReadOnly) Then
 rs!age=19
 rs!sat=808
 rs!degree="BS"
 rs!homest="NC"
End If

' The record is locked, updated, and then unlocked.
obRecordset.Update

Locking Records for a Minimal Amount of Time
When you want to minimize the amount of time a record is locked or if updates will be
made infrequently, you can use the adLockOptimistic lock type. This lock type does not
lock the open Recordset until the Update method is called. When Update is called, the
provider compares the record in the local record buffer against the underlying data source
to ensure that it has not been changed by another process. If a record has been changed,
the update will fail. The Recordset Open method must specify the adCmdTableDirect
option and that CursorType property must be set to adOpenStatic or adOpenDynamic. The
following Visual Basic code shows how this task is done:

Dim obConnection As ADODB.Connection
Dim obRecordset As New ADODB.Recordset

obRecordset.Open "mylib.standard", obConnection, adOpenDynamic, adLockOptimistic, adCmdTableDirect

' Modify the fields in the local buffer for the first record.
' The record is NOT locked in the underlying data set.

rs!age=19 'record is now locked
rs!sat=808
rs!degree="BS"

110 Chapter 11 • Managing Updates

rs!homest="NC"

' The record is locked, updated, and then unlocked.
obRecordset.Update

Locking Records in Order to Improve Performance
Batch updating can improve the performance of your application. SAS permits batch
updates when the data set has been opened with an exclusive member lock. To enable an
exclusive member lock, you set the customized Recordset property SAS Optimistic
Locking to False, as shown in the sample code.

After granting exclusive member-level access to one user, you can use the
adLockBatchOptimistic lock type, which does not lock the open Recordset until the
UpdateBatch method is called. When UpdateBatch is called, the provider compares each
record in the local buffer against the underlying data source to ensure that it has not been
changed by another process. If a record has been changed, the batch update will fail. The
Recordset Open must specify the adCmdTableDirect option, and the CursorType property
must be set to adOpenStatic or adOpenDynamic. The following Visual Basic code shows
how this task is done:

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Set exclusive member access.
obRecordset.ActiveConnection = obConnection
obRecordset.Properties("SAS Optimistic Locking") = False

'Set the maximum number of rows for batch update.
obRecordset.Properties("Maximum Open Rows") = 1000
obRecordset.LockType = adLockBatchOptimistic
obRecordset.CursorType = adOpenStatic
obRecordset.Open "mydata.customers", , , , adCmdTableDirect

'Change all of the records.
While Not obRecordset.EOF
 rs!balance = 0
 obRecordset.MoveNext
Wend

' The record is locked, updated, and then unlocked.
obRecordset.UpdateBatch

Note: If a data set has not been opened with an exclusive member lock, then the
UpdateBatch method ignores the batch request and updates the records one at a time,
and there will be no performance gain.

Update Restrictions
A SAS data set can be opened concurrently for update access only from within a single
SAS process. If one SAS process opens a data set for an update, all other processes are
restricted to read-only access of that data set. This restriction applies to the IOM provider
and supersedes any explicitly set Recordset properties. Therefore, if your application spans
multiple SAS processes, you will not be able to open one data set concurrently even if you
specify an ADO lock type of adLockPessimistic, adLockOptimistic, or
adLockBatchOptimistic.

This restriction does not apply to the SAS/SHARE and Base SAS providers because
multiple requests to open the same data set are serviced by the same SAS process.

Implementation 111

112 Chapter 11 • Managing Updates

Part 5

Tips and Best Practices

Chapter 12
Tuning the Providers for Performance . 115

Chapter 13
Writing Code That Returns Provider Information 119

113

114

Chapter 12

Tuning the Providers for
Performance

Properties That Affect Performance . 115

How the "CacheSize" Property Affects Performance . 116

How the "Maximum Open Rows" Property Affects Performance 116

How the SAS Page Size Property Affects Performance . 117

How the SAS Data Set Options Property Affects Performance 118

Properties That Affect Performance
The SAS providers support the following ADO and OLE DB properties that affect the
performance of your application.

Table 12.1 Property Names and Supported Providers

ADO Property Name OLE DB Property ID Support

"CacheSize" none Supported in ADO by all providers

"Maximum Open Rows" DBPROP_MAXOPENROWS Supported by all providers

"SAS Page Size" DBPROP_SAS_PAGESIZE Supported by the IOM provider

“SAS Data Set Options” DBPROP_SAS_DATASETOPTS Supported by the IOM provider

These properties determine how much data is retrieved and cached at different architectural
levels. They will affect performance for better or for worse, depending on how you use
them in your application. For example, significant performance improvement occurs when
each accessed row is relatively close to the previously accessed row. However, if your
application randomly accesses rows or only accesses a few rows, then increased data
caching might degrade performance. To optimize performance in this case, you can take
the following two steps:

• If you have enough RAM to hold the entire data set in memory and your application
accesses most of the rows in the data set, then increase the amount of data cached to
match the amount of data in the data set.

115

• If you do not have enough RAM or your application needs to access only a few rows
in the data set, then lower the amount of cached data to minimize the transfer of unused
rows.

T I P When you develop your application, you should test different values for these
properties to determine which values will result in the best performance for your target
environment.

Note: The IOM provider also supports optimized accessors as described in the OLE DB
Programmer's Reference and Data Access SDK. This feature enables OLE DB
consumers to specify which columns should be included in the provider's cache.

T I P The sample code in this chapter assumes that an ADO Connection object is open.
For more information, see “Basic Connection Recipes” on page 35.

How the "CacheSize" Property Affects
Performance

The Recordset object property "CacheSize" indicates how many rows should be cached in
the ADO local memory. The following code shows how to set this property:

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

obRecordset.CacheSize = 55
obRecordset.Open "seashell.mediate", obConnection, adOpenDynamic, adLockOptimistic, adCmdTableDirect

How the "Maximum Open Rows" Property Affects
Performance

The "Maximum Open Rows" property, which is supported by all of the providers,
determines how many rows can be active at any one time. This property affects performance
because of the way it interacts with ADO and the "CacheSize" property.

ADO Recordset objects do not release open rows held in memory until they request more
data from the data provider. All data requests performed after the first request can retrieve
only "Maximum Open Rows" minus "CacheSize" rows. For example, if you create an
application that iterated in sequence through each recordset row in a cache and you set the
"Maximum Open Rows" value to 10 and the CacheSize value to 8, performance would be
affected in the following ways:

1. On the first request for data, ADO requests eight rows from the provider.

2. After the application iterates through those eight rows, ADO initiates its next request
for eight rows. However, because "Maximum Open Rows" is set to 10 and ADO still
has eight rows open, the provider returns only two rows.

3. When the two rows are returned, ADO releases the first two rows in its local cache,
returning the number held in memory to eight.

Although this behavior does not affect the ability of an application to iterate through a
recordset, it might eliminate the performance gain that would otherwise be expected. In
order for the Recordset object to retrieve the number of rows indicated by the value of

116 Chapter 12 • Tuning the Providers for Performance

"CacheSize", you should set "Maximum Open Rows" to at least twice the value of
"CacheSize". The following code shows how this task can be done:

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Set the active connection here instead of on the Open method.
obRecordset.ActiveConnection = obConnection
obRecordset.CacheSize = 55
obRecordset.Properties("Maximum Open Rows") = 110

If InStr(LCase(obConnection.Provider), "iomprovider") <> 0 Then
 obRecordset.Properties("SAS Page Size") = 55
End If

obRecordset.Open "seashell.mediate", , adOpenDynamic, adLockOptimistic, adCmdTableDirect

How the SAS Page Size Property Affects
Performance

The SAS Page Size property, which is supported only by the IOM provider, determines
how many rows will be retrieved from the SAS Workspace Server at one time. It serves a
function similar to the "CacheSize" property. However, the SAS Page Size property
determines how much data is cached in the provider itself rather than in the Recordset
object.

There are a few special values for the SAS Page Size property.

• If the SAS Page Size property is set to -1, then the provider attempts to cache the entire
data set on its first request for data. Your application must check that there is enough
RAM for this operation to succeed.

• If the SAS Page Size property is set to 0, then caching is disabled.

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Set the active connection here instead of on the Open method.
obRecordset.ActiveConnection = obConnection
obRecordset.CacheSize = 55
obRecordset.Properties("Maximum Open Rows") = 110

If InStr(LCase(obConnection.Provider), "iomprovider") <> 0 Then
 obRecordset.Properties("SAS Page Size") = 55
End If

obRecordset.Open "seashell.mediate", , adOpenDynamic, adLockOptimistic, adCmdTableDirect

How the SAS Page Size Property Affects Performance 117

How the SAS Data Set Options Property Affects
Performance

The SAS Data Set Options property is supported only by the IOM Provider. This property
can be used to set a variety of data set options that affects how the SAS Workspace Server
accesses a data set. This property is similar to the SAS Page Size property in that the
property affects the SAS Workspace Server rather than affecting the client. One
performance-related use of this property is to set the number of rows that the SAS
Workspace Server retrieves from a data set. Using the OBS= data set option improves
performance by directing the SAS Workspace Server to subset data when retrieving data.
For more information about SAS data set options, see “SAS Data Set Options” in SAS
Language Reference: Dictionary.

The following code shows how to use the SAS data set options with the OBS= data set
option:

' obConnection is an open Connection object.
Dim obRecordset As New ADODB.Recordset

' Set the active connection here instead of on the Open method.
obRecordset.ActiveConnection = obConnection

If InStr(LCase(obConnection.Provider), "iomprovider") <> 0 Then
 ' Limit results to 250 rows
 obRecordset.Properties("SAS Data Set Options") = "obs=250"
 obRecordset.Open "seashell.mediate", , adOpenForwardOnly, adLockReadOnly, adCmdTableDirect

End If

118 Chapter 12 • Tuning the Providers for Performance

Chapter 13

Writing Code That Returns
Provider Information

How to Generate a List of Supported ADO Properties . 119

How to Retrieve Version Information for a Provider . 121
Retrieve Version Information for the Provider Implementation 121
Retrieve Version Information for a Server . 122
Retrieve Version Information for the ADO Interface . 122
Sample Code to Retrieve Version Information for a Provider, a

Server, and the ADO Interface . 122

How to Generate a List of Supported ADO
Properties

The following sample code displays a list of ADO Connection properties and their defaults
in the VB Immediate window. The example uses the latest version of the IOM provider,
as indicated by the value of the Connection object's Provider property. To specify a different
provider, replace "sas.IOMProvider.9.2" with the appropriate ProgID (see “How to Identify
the SAS Providers” on page 24).

Option Explicit
Sub Main()
 Dim obConnection As New ADODB.Connection
 Dim obRecordset As New ADODB.Recordset
 Dim p As ADODB.Property
 obConnection.Provider = "SAS.IOMProvider.9.2"
 For Each p In obConnection.Properties
 Debug.Print p.Name & " = " & p.Value
 Next p
End Sub

119

Log 13.1 List of Properties for the IOM Provider

Password =
User ID =
Asynchronous Processing = 0
Data Source =
Window Handle = 0
Locale Identifier = 0
Location =
Mode = 19
Prompt = 4
Extended Properties =
SAS Cell Cache Size = 10000
SAS Logical Name =
SAS Machine DNS Name =
SAS Port = 0
SAS Protocol = 0
SAS Server Type = 1
SAS Service Name =
SAS Workspace Interface =
SAS Workspace ID =
SAS Workspace Init Script =
SAS Metadata User ID =
SAS Metadata Password =
SAS Metadata Location =
SAS Repository ID =
SAS Repository Name =

Log 13.2 List of Properties for the OLAP Provider

Password =
User ID =
Asynchronous Processing = 0
Data Source =
Window Handle = 0
Locale Identifier = 0
Location =
Mode = 19
Prompt = 4
Extended Properties =
SAS Cell Cache Size = 10000
SAS Logical Name =
SAS Machine DNS Name =
SAS Port = 5451
SAS Protocol = 2
SAS Server Type = 2
SAS Service Name =
SAS Workspace Interface =
SAS Workspace ID =
SAS Workspace Init Script =
SAS Metadata User ID =
SAS Metadata Password =
SAS Metadata Location =
SAS Repository ID =
SAS Repository Name =

120 Chapter 13 • Writing Code That Returns Provider Information

Log 13.3 List of Properties for the Local Provider

Password =
User ID =
Data Source =
Window Handle = 0
Location =
Mode = 19
Prompt = 4
Extended Properties =
SAS File Format =

Log 13.4 List of Properties for the SAS/SHARE and Base SAS Providers

Password =
User ID =
Data Source =
Window Handle = 0
Location =
Mode = 19
Prompt = 4
Extended Properties =
SAS Local Server = 0
SAS Executable = C:\Program Files\SAS\SASFoundation\9.2\sas.exe
SAS Parameters = -initstmt %sasodbc(sdplserv) -icon -nosplash
SAS Working Directory = C:\Program Files\SAS\SASFoundation\9.2\
SAS Server Access Password =
SAS Server Release = 9

How to Retrieve Version Information for a Provider

Retrieve Version Information for the Provider Implementation
You can use either of these methods in order to retrieve version information for the provider
implementation:

• After an ADO Connection object is open, use the "Provider Version" property from the
Connection object Properties collection. The version appears in the form
MM.mm.rr.bbbb where MM is the major release number, mm is the minor release
number, rr is the revision number, and bbbb is the build number.

• If a Connection object is not open, then use the provider's .DLL file. Here are the steps:

1. In Windows Explorer, navigate to your SAS\Shared Files folder.

2. Right-click on the .DLL file associated with the provider that you want to check.
Here are provider .DLL files for SAS 9.2:

• sasaorio0902.dll for the IOM provider and the OLAP provider

• sasafbas0902.dll for the local provider

• sasafshr0902.dll for the SAS/SHARE provider and the Base SAS provider

3. Select Properties from the pop-up menu.

4. In the Properties dialog box, click the Version tab to see the version number.

Retrieve Version Information for the Provider Implementation 121

Retrieve Version Information for a Server
After an ADO Connection object is open, use the "DBMS Version" property in the
Connection object Properties collection. The version appears in the form
MM.mm.rrrrfMMDDYY where MM is the major release number, mm is the minor release
number, rrrr is the maintenance release number, f is for Performance Image, and
MMDDYY is the port date.

Note: The local provider does not have an associated server. If you request the server
property from the local provider, it returns the provider implementation version.

Retrieve Version Information for the ADO Interface
After an ADO Connection object is open, use the Connection object "Version" property.

Sample Code to Retrieve Version Information for a Provider, a Server,
and the ADO Interface

The following Visual Basic code shows you how to retrieve version information for a
provider, a server, and the ADO interface. The code assumes that an ADO Connection
object is open.

Dim strProviderVersion As String
Dim strServerVersion As String
Dim strADOVersion As String
If obConnection.State = adStateOpen Then
 strProviderVersion = obConnection.Properties("Provider Version")
 strServerVersion = obConnection.Properties("DBMS Version")
 strADOVersion = obConnection.Version
End If

122 Chapter 13 • Writing Code That Returns Provider Information

Part 6

Troubleshooting

Chapter 14
Handling Error Objects . 125

Chapter 15
Known Issues . 129

123

124

Chapter 14

Handling Error Objects

Using ADO to Handle Errors . 125

Using OLE DB to Handle Errors . 127

Using ADO to Handle Errors
The OLE DB error objects that are returned by the SAS providers are presented in the ADO
interface as Error objects. Because it is possible for more than one error to be returned, the
errors are stored in the Errors Collection. To retrieve complete error information, you iterate
through the Errors Collection and output the information. In most cases, the "Description"
and "Number" properties of the Error object provide the most helpful information.

The Visual Basic, VBScript, and Active Server Pages (ASP) examples all show how errors
can be handled by using ADO. The VBScript and ASP examples perform the same tasks
as the Visual Basic example, but there are language differences between them. When
reviewing the sample code, keep the following differences in mind:

• An ASP file typically embeds VBScript and delimits the VBScript with <% and %>.

• VBScript does not predefine the ADO Enumerated Constants, so you must code them
as constants.

• In VBScript, you should create objects by using the CreateObject syntax.

• VBScript usually provides different output than Visual Basic.

• Usually, Visual Basic programmers handle errors by using the On Error Goto syntax.
However, this syntax is not supported by VBScript, so the VBScript and ASP examples
use a subroutine to handle error output.

Note: Although the examples use the Debug.Print and MsgBox methods to display error
information, applications can use other methods such as Document.Write, or
Response.Write. You can also write an application that traps errors instead of displaying
error information.

The following examples use the local provider to attempt to open a table named
lostDataset.

If lostDataset does not exist in the directory c:\testdata, then the application
generates an error and outputs the error information. The "Description" property used in
the examples is typically a string message that is composed by the SAS provider. However,
it might also be a message from the server or some component that is used by the provider.
The "Number" property is typically the HRESULT value that is returned by the underlying

125

OLE DB interface method. In the examples, the value is output in hexadecimal because
that is the way that it is typically written in the header files such as WinError.h and
OleDBErr.h.

Example Code 14.1 Visual Basic Error Handling

Sub Main()
 Dim obConnection As New ADODB.Connection
 Dim obRecordset As New ADODB.Recordset
 Dim errorObject As ADODB.Error

 On Error GoTo DisplayErrorInfo
 obConnection.Provider = "sas.LocalProvider"
 obConnection.Properties("Data Source") = "c:\testdata"

 obConnection.Open
 obRecordset.Open "lostDataset", obConnection, adOpenDynamic, adLockOptimistic, ADODB.adCmdTableDirect
 obRecordset.Close
 obConnection.Close

DisplayErrorInfo:
 For Each errorObject In obRecordset.ActiveConnection.Errors
 Debug.Print "Description :"; errorObject.Description
 Debug.Print "Number:"; Hex(errorObject.Number)
 Next
End Sub

Example Code 14.2 VBScript Error Handling

<HTML>
Example showing error handling by using VBScript.

<SCRIPT LANGUAGE=VBSCRIPT>
Const adOpenDynamic = 2
Const adLockOptimistic = 3
Const adCmdTableDirect = 512

Set obConnection = CreateObject("ADODB.Connection")
Set obRecordset = CreateObject("ADODB.Recordset")
Set errorObject = CreateObject("ADODB.Error")

On Error Resume Next
obConnection.Provider = "sas.LocalProvider"
obConnection.Properties("Data Source") = "c:\testdata"

obConnection.Open
obRecordset.Open "lostDataset", obConnection, adOpenDynamic, adLockOptimistic, adCmdTableDirect
DisplayErrorInfo
obRecordset.Close
obConnection.Close

sub DisplayErrorInfo()
 For Each errorObject In obRecordset.ActiveConnection.Errors
 MsgBox "Description: " & errorObject.Description & Chr(10) & Chr(13) & _
 "Number: " & Hex(errorObject.Number)
 Next
End Sub

126 Chapter 14 • Handling Error Objects

</SCRIPT>
</HTML>

Example Code 14.3 ASP Error Handling

<HTML>
Example showing error handling by using VBScript.

<%
Const adOpenDynamic = 2
Const adLockOptimistic = 3
Const adCmdTableDirect = 512

Set obConnection = Server.CreateObject("ADODB.Connection")
Set obRecordset = Server.CreateObject("ADODB.Recordset")
Set errorObject = Server.CreateObject("ADODB.Error")

On Error Resume Next
obConnection.Provider = "sas.LocalProvider"
obConnection.Properties("Data Source") = "c:\testdata"

obConnection.Open
obRecordset.Open "lostDataset", obConnection, adOpenDynamic, adLockOptimistic, adCmdTableDirect
DisplayErrorInfo
obRecordset.Close
obConnection.Close

sub DisplayErrorInfo()
 For Each errorObject In obRecordset.ActiveConnection.Errors
 Response.Write "Description: " & errorObject.Description & Chr(10) & Chr(13) & _
 "Number: " & Hex(errorObject.Number)
 Next
End Sub
%>
</SCRIPT>
</HTML>

Using OLE DB to Handle Errors
The SAS providers support OLE DB error objects, which are extensions of automation
error objects. Most interfaces implemented by the providers return error objects. For any
component, use the ISupportErrorInfo interface to determine which interfaces on the
component return error objects.

See Also
“Standard OLE DB Interfaces” on page 212

See Also 127

128 Chapter 14 • Handling Error Objects

Chapter 15

Known Issues

Known Issues for All Providers . 129

Known Issues for the IOM Provider . 130

Known Issues for the Local Provider . 131

Known Issues for the SAS/SHARE Provider . 132

Known Issues for All Providers
Some ADO properties are missing in Active Server Pages (ASP) under Microsoft IIS
5.0.

When a server-side cursor is used, the following two properties cannot be accessed through
the ADO interface from an ASP page:

• "Literal Row Identity"

• "IRowsetUpdate"

The "Literal Row Identity" property is read-only and therefore has a minor effect on the
functionality of the providers. The value of the "Literal Row Identity" property is always
VARIANT_TRUE.

The absence of the "IRowsetUpdate" property, however, can result in unexpected behavior.
By default, the "IRowsetUpdate" property is VARIANT_FALSE, which means that
recordsets are opened in immediate update mode. When recordsets are opened in immediate
update mode, batch updating (via the UpdateBatch method) is not available when a server-
side cursor is used.

T I P "Literal Row Identity" and "IRowsetUpdate" are available in Visual Basic
applications and in ASP pages when you use a client-side cursor. For more information
about cursor types and locations, see “Working with Cursor and Lock Type
Combinations” on page 135.

SAS customized properties cannot be accessed when you use an ADO client-side
cursor with a Recordset or Connection object.

If your application uses an ADO client-side cursor, you see the following error when the
application attempts to access SAS customized properties: Item cannot be found
in the collection corresponding to the requested name or
ordinal. This problem applies to the ADO Connection object and the ADO Recordset

129

object. It occurs because ADO does not request information about properties from the
provider when a client-side cursor is used.

To enable the application to access SAS customized properties, perform one of these tasks:

• Use a server-side cursor location instead of a client-side cursor location.

• Set the cursor location to server-side in order to access the SAS customized properties,
and then set the cursor location to client-side.

For more information about cursor types and locations, see “Working with Cursor and Lock
Type Combinations” on page 135.

Visual Basic DataBound Controls do not perform reliably with the SAS providers for
OLE DB.

There is no resolution available. The data binding features of the Visual Basic DataBound
Controls cannot be used reliably with the SAS providers for OLE DB. Do not use these
controls with the providers.

Known Issues for the IOM Provider
The ADO Field object "DefinedSize" property must be multiplied by 2.

For character fields, the "DefinedSize" property is set to the maximum number of characters
defined for that field. Because the IOM provider returns character data as wide character
strings, the size of this field in bytes is twice the value of "DefinedSize." To get an accurate
size in bytes, you must multiply "DefinedSize" by 2.

Note: The "ActualSize" property correctly returns the length in bytes.

The ADO Recordset "MaxRecords" property is not available.

There is no resolution to this issue. The SAS IOM provider does not currently implement
the ADO "MaxRecords" property.

Accessing a local instance of the IOM provider in an ASP page that runs under
Windows 2000 Professional returns EOF.

When ASP pages that are served from a machine running Windows 2000 Professional
attempt to connect to a SAS Workspace Server on the same machine by using COM, all
Recordset objects will report EOF immediately after being opened as if the recordsets
contain no rows. This behavior occurs only under Windows 2000 Professional. You do not
encounter this problem when the ASP page server and the SAS Workspace Server are on
different machines.

As a workaround, use the dcomcnfg tool to change the "Authentication Level" of the "SAS:
IOM DCOM Servers" to "(None)". For more information about using dcomcnfg, see
Turning Off Call Security in the Microsoft Developer Network Library at http://
msdn2.microsoft.com/en-us/library/ms687216.aspx.

Move methods fail if you use them to access V7 compressed data sets.

The following ADO Recordset methods will fail with Version 7 compressed data sets when
the number of records to move is nonzero: Move, MoveNext, MoveFirst, and
MovePrevious. In this situation, these methods result in random access operations, which
are not supported in compressed SAS data sets before Version 8.

130 Chapter 15 • Known Issues

In SAS Version 8, when a compressed SAS data set is created with the options
POINTOBS=YES and RESUSE=NO (the default values), the data set can be accessed
randomly, and the Move, MoveNext, MoveFirst, and MovePrevious methods are
successful.

Known Issues for the Local Provider
Numeric variables are not converted correctly when you use the File Format property
and access SAS data sets on platforms other than Windows.

When you use the OLE DB property DBPROP_SAS_INIT_FILEFORMAT (the ADO
property "SAS File Format") and specify a value of "V8", the local provider does not
properly convert numeric variables for SAS data sets that are created on platforms other
than Windows. In this case, the local provider returns incorrect data for the numeric variable
(although it does not return an error).

To ensure that numeric variables are converted properly for SAS data sets created on
platforms other than Windows, use the default file format or "V9".

For more information about cross-platform support, see “Data Sources and File Types
Supported by the SAS Providers” on page 4.

ADO Recordsets that are opened with a client-side cursor incorrectly appear to
support updating.

If you use the read-only local provider to open a Recordset object with a server-side cursor,
ADO attempts to read the values of the DBPROP_IRowsetUpdate and
DBPROP_IRowsetChange properties. If both of these properties are false, the following
Visual Basic statements return FALSE:

• Recordset.Properties("IRowsetUpdate")

• Recordset.Properties("IRowsetChange")

• Recordset.Supports(adUpdate)

• Recordset.Supports(adUpdateBatch)

In this case, any attempt to update the Recordset results in this error message: "Object
or provider is not capable of performing requested operation."
This response is consistent with a read-only provider.

However, when a Recordset object is opened with a client-side cursor, ADO does not ask
the provider for the values of DBPROP_IRowsetChange and DBPROP_IRowsetUpdate.
In this case, all four of the Visual Basic statements in the previous list incorrectly return
TRUE. This return value makes it appear as if the opened recordset can be updated. If you
attempt to perform the update, you see this error message: "Multiple-step
operation generated errors. Check each status value."

The OLE DB Rowset RestartPosition method and the ADO Recordset MoveFirst
method are not supported for transport files.

If you use the local provider to read transport files, you encounter a movement limitation.
The engine used to read transport files is a forward-only, sequential single pass, which
means that you can make only one pass through the file. As a result, the OLE DB Rowset
RestartPosition method and the ADO Recordset MoveFirst method are not supported for
the transport file format. In order to reposition the cursor at the first row, you must complete
one of these tasks:

Known Issues for the Local Provider 131

• When using OLE DB, you must close and then reopen the file.

• When using ADO, you must close and then reopen the Recordset.

Reopening a connection fails on Windows 7.

When an ADO connection object is opened, closed, and then reopened, the connection
fails. SAS has noticed that the "Data Source" property is cleared when a connection object
is closed in a Windows 7 operating environment.

To reuse a connection object, set the user-specified properties again before calling the open
method.

Dim obConnection As New ADODB.Connection
obConnection.Provider = "sas.LocalProvider"
obConnection.Properties("Data Source") = "C:\v9data"
obConnection.Properties("SAS File Format") = "V9"
obConnection.Open()
...
obConnection.Close()
' Set the connection properties again before the call to Open()
obConnection.Properties("Data Source") = "C:\v9data"
obConnection.Properties("SAS File Format") = "V9"
obConnection.Open()
...
obConnection.Close()

Known Issues for the SAS/SHARE Provider
Reopening a connection fails on Windows 7.

When an ADO connection object is opened, closed, and then reopened, the connection
fails. SAS has noticed that the "Data Source" property is cleared when a connection object
is closed in a Windows 7 operating environment.

To reuse a connection object, set the user-specified properties again before calling the open
method.

Dim obConnection As New ADODB.Connection
obConnection.Provider = "sas.ShareProvider"
obConnection.Properties("Data Source") = "C:\v9data"
obConnection.Properties("SAS File Format") = "V9"
obConnection.Open()
...
obConnection.Close()
' Set the connection properties again before the call to Open()
obConnection.Properties("Data Source") = "C:\v9data"
obConnection.Properties("SAS File Format") = "V9"
obConnection.Open()
...
obConnection.Close()

132 Chapter 15 • Known Issues

Part 7

Appendixes

Appendix 1
ADO: Supported Cursor and Lock Type Combinations 135

Appendix 2
ADO: Supported Methods and Properties . 139

Appendix 3
OLE DB Properties . 143

Appendix 4
OLE DB Interfaces . 211

Appendix 5
Schema Rowsets . 225

Appendix 6
OLE DB: Format Processing . 249

Appendix 7
OLE DB: Column Mapping and Binding . 259

Appendix 8
Customized User Help for the Data Link Properties Dialog Box . .
265

133

134

Appendix 1

ADO: Supported Cursor and Lock
Type Combinations

Working with Cursor and Lock Type Combinations . 135

Server-Side Cursor Combinations . 135

Client-Side Cursor Combinations . 137

Working with Cursor and Lock Type Combinations
The cursor and lock type combinations that are supported by the SAS providers depend on
whether the cursor is located on the client side or the server side. If you request a
combination that is not supported, then the providers will attempt to use the supported
combination that most closely matches your choice. After the recordset is opened, verify
the cursor and lock type.

When you specify properties and cursor location on a recordset, you must specify the
properties after the cursor location is set. Certain properties can be specified only for the
server. If the cursor location is specified after the properties, you might not see an error
and you might have unexpected results. For more information, see the discussion of SAS
customized properties in “Known Issues for All Providers” on page 129.

Note: There are no recordsets in ADO MD, so this information does not apply to the OLAP
provider.

See Also
“Implementing a Locking Strategy” on page 109

Server-Side Cursor Combinations
To set a server-side cursor location, you can use this line of code:

obRecordset.CursorLocation = adUseServer

The following tables list the server-side cursor combinations that are supported for the
local, IOM, SAS/SHARE, and Base SAS providers.

135

Table A1.1 Server-Side Cursor Combinations Supported by the Local Provider

Cursor Type Lock Type Supported Features

adOpenDynamic adLockReadOnly adBookmark, adFind, adHoldRecords, adMovePrevious

adOpenForwardOnly adLockReadOnly adFind, adHoldRecords

Table A1.2 Server-Side Cursor Combinations Supported by the IOM Provider

Cursor Type Lock Type Supported Features

adOpenDynamic adLockBatchOptimistic adAddNew, adBookmark, adDelete, adFind,
adHoldRecords, adMovePrevious, adUpdate,
adUpdateBatch

adLockOptimistic adAddNew, adBookmark, adDelete, adFind,
adHoldRecords, adMovePrevious, adUpdate,
adUpdateBatch

adLockPessimistic adAddNew, adBookmark, adDelete, adFind,
adHoldRecords, adMovePrevious, adUpdate,
adUpdateBatch

adLockReadOnly adBookmark, adFind, adHoldRecords, adMovePrevious

adOpenForwardOnly adLockBatchOptimistic adAddNew, adDelete, adFind, adHoldRecords,
adUpdate, adUpdateBatch

adLockOptimistic adAddNew, adDelete, adFind, adHoldRecords,
adUpdate, adUpdateBatch

adLockPessimistic adAddNew, adDelete, adFind, adHoldRecords,
adUpdate, adUpdateBatch

adLockReadOnly adFind, adHoldRecords

Table A1.3 Server-Side Cursor Combinations Supported by the SAS/SHARE and Base SAS Providers

Cursor Type Lock Type Supported Features

adOpenDynamic adLockBatchOptimistic adAddNew, adBookmark, adDelete, adFind,
adHoldRecords, adMovePrevious, adUpdate,
adUpdateBatch

adLockOptimistic adAddNew, adBookmark, adDelete, adFind,
adHoldRecords, adMovePrevious, adUpdate,
adUpdateBatch

adLockReadOnly adBookmark, adFind, adHoldRecords, adMovePrevious

136 Appendix 1 • ADO: Supported Cursor and Lock Type Combinations

Cursor Type Lock Type Supported Features

adOpenForwardOnly adLockBatchOptimistic adAddNew, adDelete, adFind, adHoldRecords,
adUpdate, adUpdateBatch

adLockOptimistic adAddNew, adDelete, adFind, adHoldRecords,
adUpdate, adUpdateBatch

adLockReadOnly adFind, adHoldRecords

Client-Side Cursor Combinations
To set a client-side cursor location, you can use this line of code:

 obRecordset.CursorLocation = adUseClient

The only client-side combination that is supported by the SAS providers is adOpenStatic
and adLockReadOnly. This combination supports adApproxPosition, adBookmark,
adFind, adHoldRecords, adMovePrevious, adNotify, and adResync.

Client-Side Cursor Combinations 137

138 Appendix 1 • ADO: Supported Cursor and Lock Type Combinations

Appendix 2

ADO: Supported Methods and
Properties

The following table identifies which methods and properties of ADO objects are supported
and which are not supported by the SAS providers.

Note: The SAS providers do not support the ICommandWithParameters interface, so the
Parameter object and Parameter collection are not supported and are not included in
the table.

 SUPPORTED UNSUPPORTED

ADO Object Methods Properties Methods Properties

Connection Close

ConnectionString

Open

Execute

OpenSchema

Attributes

CursorLocation

Mode

Provider

State

BeginTrans

Cancel

CommitTrans

RollbackTrans

CommandTimeout

ConnectionTimeout

DefaultDatabase

IsolationLevel

Command Execute ActiveConnection

CommandText

CommandType

Name

Prepared

State

Cancel

CreateParameter

CommandTimeout

139

 SUPPORTED UNSUPPORTED

ADO Object Methods Properties Methods Properties

Recordset AddNew

CacheSize

CancelBatch

CancelUpdate

Close

Clone

Delete

Find

GetRows

GetString

Move

MoveFirst

MoveLast

MoveNext

MovePrevious

Open

Requery

Save

Supports

Update

UpdateBatch

AbsolutePage

AbsolutePosition

BOF

Bookmark

CursorLocation

CursorType

Data Source

EditMode

EOF

Filter

LockType

MaxRecords

PageCount

PageSize

RecordCount

Sort

State

Cancel

CompareBookmarks

NextRecordset

Resync

Seek

ActiveCommand

DataMember

Index

MarshalOptions

Status

StayInSync

Source

Error Description

Number

Source

HelpContext

HelpFile

NativeError

SQLState

Errors Collection Clear

Refresh

Count

Item

Field ActualSize

Attributes

DefinedSize

Name

NumericScale

Precision

Type

Value

AppendChunk

GetChunk

DataFormat

OriginalValue

UnderlyingValue

140 Appendix 2 • ADO: Supported Methods and Properties

 SUPPORTED UNSUPPORTED

ADO Object Methods Properties Methods Properties

Fields Collection Append

Refresh

Count

Item

Delete

Property Attributes

Name

Type

Value

Properties Collection Refresh Count

Item

Client-Side Cursor Combinations 141

142 Appendix 2 • ADO: Supported Methods and Properties

Appendix 3

OLE DB Properties

OLE DB Properties: Introduction . 145
What Are OLE DB Properties? . 145
Supported Property Groups . 146
Supported Property Sets . 146
Property-Related Methods . 148

OLE DB Properties: Descriptions . 149
DBPROP_APPENDONLY . 149
DBPROP_AUTH_PASSWORD . 149
DBPROP_AUTH_USERID . 150
DBPROP_BOOKMARKS . 150
DBPROP_BOOKMARKSKIPPED . 151
DBPROP_BOOKMARKTYPE . 151
DBPROP_BYREFACCESSORS . 151
DBPROP_CANFETCHBACKWARDS . 152
DBPROP_CANHOLDROWS . 152
DBPROP_CANSCROLLBACKWARDS . 152
DBPROP_CLIENTCURSOR . 153
DBPROP_CURRENTCATALOG . 153
DBPROP_DATASOURCEREADONLY . 153
DBPROP_DATASOURCE_TYPE . 154
DBPROP_DBMSNAME . 154
DBPROP_DBMSVER . 154
DBPROP_IAccessor . 155
DBPROP_IColumnsInfo . 155
DBPROP_IConvertType . 156
DBPROP_INIT_ASYNCH . 156
DBPROP_INIT_DATASOURCE . 156
DBPROP_INIT_HWND . 157
DBPROP_INIT_LCID . 157
DBPROP_INIT_LOCATION . 158
DBPROP_INIT_MODE . 158
DBPROP_INIT_PROMPT . 159
DBPROP_INIT_PROVIDERSTRING . 159
DBPROP_IRowset . 159
DBPROP_IRowsetChange . 160
DBPROP_IRowsetIdentity . 160
DBPROP_IRowsetInfo . 160
DBPROP_IRowsetLocate . 161
DBPROP_IRowsetUpdate . 161
DBPROP_IRowsetView . 161
DBPROP_ISupportErrorInfo . 162

143

DBPROP_IViewFilter . 162
DBPROP_IViewRowset . 162
DBPROP_IViewSort . 163
DBPROP_LITERALBOOKMARKS . 163
DBPROP_LITERALIDENTITY . 163
DBPROP_LOCKMODE . 164
DBPROP_MAXOPENROWS . 164
DBPROP_MAXORSINFILTER . 164
DBPROP_MAXPENDINGROWS . 165
DBPROP_MAXROWS . 165
DBPROP_MAXSORTCOLUMNS . 165
DBPROP_MSMD_MDX_CALCMEMB_EXTENSIONS 166
DBPROP_ORDEREDBOOKMARKS . 166
DBPROP_OTHERINSERT . 166
DBPROP_OTHERUPDATEDELETE . 167
DBPROP_OWNINSERT . 167
DBPROP_OWNUPDATEDELETE . 167
DBPROP_PROVIDERVER . 168
DBPROP_REMOVEDELETED . 168
DBPROP_SAS_ALTERPASSWORD . 168
DBPROP_SAS_BLANKPADDING . 169
DBPROP_SAS_DATASET_ENCODING . 169
DBPROP_SAS_DATASET_LABEL . 169
DBPROP_SAS_DATASET_TYPE . 170
DBPROP_SAS_DATASETOPTS . 170
DBPROP_SAS_DEFAULTFILEFORMAT . 170
DBPROP_SAS_ENGINE . 171
DBPROP_SAS_FMTERR . 171
DBPROP_SAS_FORMATS . 172
DBPROP_SAS_GET_MISSING_VALUES . 172
DBPROP_SAS_INFORMATS . 173
DBPROP_SAS_INIT_CELLCACHESIZE . 173
DBPROP_SAS_INIT_FILEFORMAT . 174
DBPROP_SAS_INIT_LOCALSERVER . 175
DBPROP_SAS_INIT_LOGICALNAME . 175
DBPROP_SAS_INIT_MACHINEDNSNAME . 176
DBPROP_SAS_INIT_PORT . 176
DBPROP_SAS_INIT_PROTOCOL . 176
DBPROP_SAS_INIT_SASEXE . 177
DBPROP_SAS_INIT_SASPARAMETERS . 177
DBPROP_SAS_INIT_SASWORKINGDIR . 177
DBPROP_SAS_INIT_SERVERPASSWORD . 178
DBPROP_SAS_INIT_SERVERRELEASE . 178
DBPROP_SAS_INIT_SERVERTYPE . 179
DBPROP_SAS_INIT_SERVICENAME . 179
DBPROP_SAS_INIT_WORKSPACE . 179
DBPROP_SAS_INIT_WORKSPACEID . 180
DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT . 180
DBPROP_SAS_LIBOPTS . 180
DBPROP_SAS_MISSING_VALUES . 181
DBPROP_SAS_NLSOPTS . 181
DBPROP_SAS_OPTIMISTICLOCKING . 182
DBPROP_SAS_PAGESIZE . 182
DBPROP_SAS_PATH . 182
DBPROP_SAS_PHYSICALPOSITIONING . 183
DBPROP_SAS_PT2DBPW . 183

144 Appendix 3 • OLE DB Properties

DBPROP_SAS_READPASSWORD . 184
DBPROP_SAS_RESERVED_ROWSETFLAGS . 184
DBPROP_SAS_SQLCONNECTIONSTRING . 184
DBPROP_SAS_SQLENGINE . 185
DBPROP_SAS_USE_TKMANAGER_SEARCHPATH 185
DBPROP_SAS_WHERE . 186
DBPROP_SAS_WORKSPACE_INIT_LIST . 186
DBPROP_SAS_WORKSPACE_INIT_LOG . 186
DBPROP_SAS_WRITEPASSWORD . 187
DBPROP_SESS_AUTOCOMMITISOLEVELS . 187
DBPROP_SORTONINDEX . 188
DBPROP_SUPPORTEDTXNISOLEVELS . 188
DBPROP_UNIQUEROWS . 188
DBPROP_UPDATABILITY . 189
MDPROP_AGGREGATECELL_UPDATE . 189
MDPROP_AXES . 189
MDPROP_FLATTENING_SUPPORT . 190
MDPROP_MDX_CASESUPPORT . 190
MDPROP_MDX_DESCFLAGS . 190
MDPROP_MDX_FORMULAS . 191
MDPROP_MDX_JOINCUBES . 191
MDPROP_MDX_MEMBER_FUNCTIONS . 191
MDPROP_MDX_NUMERIC_FUNCTIONS . 192
MDPROP_MDX_OBJQUALIFICATION . 192
MDPROP_MDX_OUTERREFERENCE . 193
MDPROP_MDX_QUERYBYPROPERTY . 193
MDPROP_MDX_SET_FUNCTIONS . 193
MDPROP_MDX_SLICER . 194
MDPROP_MDX_STRING_COMPOP . 194
MDPROP_NAMED_LEVELS . 194
MDPROP_RANGEROWSET . 195

OLE DB Properties: Sorted by ADO Name . 195

OLE DB Properties: Sorted by Data Provider . 199
Supported Properties in the IOM and OLAP Data Providers 199
Supported Properties in the Local Data Provider . 201
Supported Properties in the SAS/SHARE and Base SAS Data Providers 203

OLE DB Properties: Sorted by Group . 205
Supported Properties in the Data Source Group . 205
Supported Properties in the Data Source Information Group 205
Supported Properties in the Initialization Group . 206
Supported Properties in the Rowset Group . 207
Supported Properties in the Session Group . 209

OLE DB Properties: Introduction

What Are OLE DB Properties?
Properties are characteristics of an OLE DB object. Data sources, sessions, and rowsets all
have associated properties. Every property has a description, a value, and a type, and can
be read-only or writable. Properties also have related methods that can be used to set object
properties and retrieve object property information.

What Are OLE DB Properties? 145

Properties are contained within sets that are contained within groups. A property set is a
closely related collection of properties associated with one OLE DB object (for example,
rowsets), or associated with one type of functionality (for example, initializing the data
source component). A property group is a loosely knit group of property sets that are
associated with a particular object or type of functionality. Every property belongs to a
property set and, by virtue of its set, a property group.

Each property group name corresponds to an object name (like Rowset) or type of
functionality (like Initialization). Property names and property set names can be used to
determine whether a property is one of the OLE DB standard properties or a customized
property specific to SAS.

• Properties specific to SAS begin with DBPROP_SAS_ (for example,
DBPROP_SAS_FORMATS).

• Property sets specific to SAS begin with DBPROPSET_SAS_ (for example,
DBPROPSET_SAS_DATASOURCEINFO).

You can also view properties sorted by group and set, provider, and ADO name.

Note: When you specify properties and cursor location on a recordset, you need to specify
the properties after the cursor location is set. Certain properties can be specified only
for the server. If the cursor location is specified after the properties, you might not see
an error and you might have unexpected results. For more information, see the
discussion of SAS customized properties in “Known Issues for All Providers” on page
129.

Supported Property Groups
The following table lists the major property groups. The local, SAS/SHARE, IOM, and
Base SAS providers support these groups; however, not all property sets within the groups
are supported by all providers (see “Supported Property Sets” on page 146).

Table A3.1 Supported Property Groups

Property Group Description

Data Source Properties related to data sources.

Data Source
Information

Properties that describe data sources. These properties are read-only and
give unchanging information about the provider and data source.

Initialization Properties for initializing the data source.

Rowset Properties related to rowsets.

Session Properties related to sessions.

Supported Property Sets
The following table lists the property sets (by their global unique identifiers (GUIDs)),
associated groups, descriptions, and which providers support them.

146 Appendix 3 • OLE DB Properties

Table A3.2 Supported Property Sets

Property Set GUID
Property Group and
Description Local IOM OLAP SAS/SHARE

Base
SAS

DBPROPSET_DATASOURCE Data Source

Associated with data
sources.

Yes Yes Yes Yes Yes

DBPROPSET_DATASOURCEINFO Data Source Information

Static information about
data sources.

Yes Yes Yes Yes Yes

DBPROPSET_MDX_EXTENSION Data Source Information

Static information about
features supported in MDX
(Multidimensional
Expressions). Calculated
members are supported in
an Excel pivot table.

no Yes Yes no no

DBPROPSET_SAS_DATASOURCEINFO Data Source Information

Static information about
data sources that are
specific to SAS providers.

Yes no no no no

DBPROPSET_DBINIT Initialization

Associated with initializing
the data source.

Yes Yes Yes Yes Yes

DBPROPSET_SAS_DBINIT Initialization

Aspects of initializing the
data source that are specific
to SAS.

Yes Yes Yes Yes Yes

DBPROPSET_SAS_ROWSET Rowset

Aspects of rowsets that are
specific to SAS.

Yes Yes Yes Yes Yes

DBPROPSET_ROWSET Rowset

Associated with rowsets.

Yes Yes Yes Yes Yes

DBPROPSET_SESSION Session

Associated with sessions.

Yes Yes Yes Yes Yes

DBPROPSET_SAS_SESSION Session

Aspects of sessions that are
specific to SAS.

no Yes Yes Yes Yes

* This support has no relevance when connecting to a SAS Workspace server.

Supported Property Sets 147

Property-Related Methods
OLE DB consumers use property-related methods to set properties on objects in order to
force them to act in a certain way. For example, a consumer can set a property to enable
an OLE DB rowset to support bookmarks. Consumers also use property-related methods
to retrieve an OLE DB object's properties to find out what that object can do. For example,
a consumer can get the value of a property that will reveal whether an OLE DB data source
is read-only or writable.

The following table lists of OLE DB objects with their property-related methods. All five
SAS providers for OLE DB support these methods. For more information about these
methods, see the OLE DB documentation.

Table A3.3 OLE DB Object, Interface, Method, and Purpose

OLE DB
Object Interface Method Purpose

Data source IDBProperties GetPropertyInfo Retrieves information about any property supported
by a provider.

Data source IDBProperties GetProperties For the specified data source object, retrieves the
values currently set for properties that belong to
these property groups: Data Source, Data Source
Information, or Initialization.

Data source IDBProperties SetProperties Sets Data Source or Initialization group properties
for the specified data source object.

Session IOpenRowset OpenRowset Sets properties on a rowset object created from all
rows in a single base table.

Session ISessionProperties GetProperties For the specified session object, retrieves the values
currently set for properties that belong to the
Session group.

Session ISessionProperties SetProperties Sets Session group properties for the specified
session object.

Session IDBSchemaRowset GetRowset Retrieves information about a specified schema
rowset and sets Rowset group properties for that
schema rowset.

Session ITableDefinition CreateTable Creates a new base table in the data source, and sets
specific properties for the table's Column property
group.

Command ICommandProperties GetProperties For the specified rowset object, retrieves the Rowset
group properties that have been set by the
SetProperties method.

Command ICommandProperties SetProperties Sets the Rowset group properties that must be
supported by the rowset or rowsets that are returned
after the command is executed.

148 Appendix 3 • OLE DB Properties

OLE DB
Object Interface Method Purpose

Rowset IRowsetInfo GetProperties Retrieves values for all properties that the specified
rowset supports.

OLE DB Properties: Descriptions

DBPROP_APPENDONLY
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): Append-Only Rowset

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_AUTH_PASSWORD
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): Password

Notes:

Use this property to identify the password to use when connecting to a server. Use this
property in conjunction with the DBPROP_AUTH_USERID property.

Local Provider: This property is ignored by the local provider.

IOM Provider: When connecting to a remote SAS Workspace Server, set this property to
the user's log-in password. However, you do not need to set this property in these two
circumstances:

DBPROP_AUTH_PASSWORD 149

• You are connecting to an existing workspace via the
DBPROP_SAS_INIT_WORKSPACE property.

• You are instantiating a new local server by setting DBPROP_INIT_DATASOURCE
to _LOCAL_.

SAS/SHARE Provider: Set this property to the user's log-in password when you connect
to a SAS/SHARE server that requires user authentication. Consult your SAS/SHARE
server administrator if you are not sure about your server's authentication requirements.

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_AUTH_USERID
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): User ID

Notes:

When connecting to a server, use this property to identify the user's log-in ID. Use this
property in conjunction with the DBPROP_AUTH_PASSWORD property.

Local Provider: This property is ignored by the local provider.

IOM Provider: When connecting to a remote SAS Workspace Server, set this property to
the user's log-in ID. However, you do not need to set this property in these two
circumstances:

• You are connecting to an existing workspace via the
DBPROP_SAS_INIT_WORKSPACE property.

• You are instantiating a new local server by setting DBPROP_INIT_DATASOURCE
to _LOCAL_.

SAS/SHARE Provider: Set this property to the user's log-in ID when connecting to a
SAS/SHARE server that requires user authentication. Consult your SAS/SHARE server
administrator if you are not sure about your server's authentication requirements.

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_BOOKMARKS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

150 Appendix 3 • OLE DB Properties

Column: False

Type: VT_BOOL

Description (ADO property name): Use Bookmarks

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_BOOKMARKSKIPPED
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Skip Deleted Bookmarks

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_BOOKMARKTYPE
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Bookmark Type

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_BYREFACCESSORS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

DBPROP_BYREFACCESSORS 151

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Pass By Ref Accessors

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_CANFETCHBACKWARDS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): Fetch Backwards

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_CANHOLDROWS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): Hold Rows

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_CANSCROLLBACKWARDS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

152 Appendix 3 • OLE DB Properties

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): Scroll Backwards

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_CLIENTCURSOR
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): ClientCursor

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.
This property supports client-side cursors in ADO applications.

DBPROP_CURRENTCATALOG
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source

Property Set: DBPROPSET_DATASOURCE

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): Current Catalog

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_DATASOURCEREADONLY
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

DBPROP_DATASOURCEREADONLY 153

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Read-Only Data Source

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_DATASOURCE_TYPE
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Data Source Type

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_DBMSNAME
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_BSTR

Description (ADO property name): DBMS Name

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_DBMSVER
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

154 Appendix 3 • OLE DB Properties

Read: Yes

Write: No

Column: False

Type: VT_BSTR

Description (ADO property name): DBMS Version

Notes:

Local Provider: Identifies the release version of the provider. Returns the same value as
DBPROP_PROVIDERVER.

IOM and SAS/SHARE Providers: Identifies the release version of the connected server.

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IAccessor
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): IAccessor

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IColumnsInfo
Supported in: IOM Provider, OLAP Provider , Local Provider, SAS/SHARE Provider,
Base SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): IColumnsInfo

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IColumnsInfo 155

DBPROP_IConvertType
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): IConvertType

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_INIT_ASYNCH
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Asynchronous Processing

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_INIT_DATASOURCE
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): Data Source

Notes:

156 Appendix 3 • OLE DB Properties

Use this property to identify the server or physical disk location that you want to connect
to.

Local Provider: Set this property to the directory location that contains your data. The
directory specification can be a local drive, a mounted drive, or the fully qualified path to
a network drive. You can also set this property to "_LOCAL_" if you want to specify a
fully qualified file path when opening a rowset.

IOM Provider: Set this property to "_LOCAL_" when you want a SAS Workspace Server
connection. When creating a remote SAS Workspace Server connection, you can set this
property to any string that you want to associate with the connection.

SAS/SHARE Provider: Set this property to the name of the SAS/SHARE server to which
you want to connect. Consult your SAS/SHARE server administrator if you do not know
the server name. If you are using DBPROP_SAS_INIT_LOCALSERVER to start the
server, then you must use the same Server ID passed in via the
DBPROP_SAS_INIT_SASPARAMETERS property.

OLAP Provider: Set this property to the network DNS name of the OLAP server or the IP
address of the OLAP server. When connecting to a remote OLAP server, use this property
in conjunction with DBPROP_SAS_INIT_SERVICENAME,
DBPROP_SAS_INIT_PROTOCOL, and DBPROP_SAS_INIT_PORT.

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_INIT_HWND
Supported in: IOM Provider, OLAP Provider, Local Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Window Handle

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_INIT_LCID
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Locale Identifier

Notes:

DBPROP_INIT_LCID 157

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_INIT_LOCATION
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): Location

Notes:

Local Provider: This property is ignored by the Local Provider.

IOM Provider: This property is ignored by the IOM Provider.

SAS/SHARE Provider: When connecting to a server that is running on a different node
than the client, set this property to the DNS name of the node that is hosting the server.

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_INIT_MODE
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Mode

Notes:

Use this property to specify access permissions to the connected data source.

All five data providers honor the following bitmasks:

• DB_MODE_READ

• DB_MODE_READWRITE

• DB_MODE_SHARE_DENY_NONE

Other bitmasks are ignored and the mode is degraded to (DB_MODE_READ |
DB_MODE_SHARE_DENY_NONE).

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

158 Appendix 3 • OLE DB Properties

DBPROP_INIT_PROMPT
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I2

Description (ADO property name): Prompt

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_INIT_PROVIDERSTRING
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): Extended Properties

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IRowset
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): IRowset

Notes:

DBPROP_IRowset 159

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IRowsetChange
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): IRowsetChange

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IRowsetIdentity
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): IRowsetIdentity

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IRowsetInfo
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): IRowsetInfo

160 Appendix 3 • OLE DB Properties

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IRowsetLocate
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): IRowsetLocate

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IRowsetUpdate
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): IRowsetUpdate

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IRowsetView
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): IRowsetView

DBPROP_IRowsetView 161

Notes:

Experimental.

DBPROP_ISupportErrorInfo
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): ISupportErrorInfo

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_IViewFilter
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_VIEW

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): IViewFilter

Notes:

Experimental.

DBPROP_IViewRowset
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_VIEW

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): IViewRowset

Notes:

162 Appendix 3 • OLE DB Properties

Experimental.

DBPROP_IViewSort
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_VIEW

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): IViewSort

Notes:

Experimental.

DBPROP_LITERALBOOKMARKS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Literal Bookmarks

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_LITERALIDENTITY
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Literal Row Identity

Notes:

DBPROP_LITERALIDENTITY 163

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_LOCKMODE
Supported in: IOM Provider, OLAP Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Lock Mode

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_MAXOPENROWS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Maximum Open Rows

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_MAXORSINFILTER
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_VIEW

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Maximum OR Conditions

Notes:

Experimental.

164 Appendix 3 • OLE DB Properties

DBPROP_MAXPENDINGROWS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Maximum Pending Rows

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_MAXROWS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Maximum Rows

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_MAXSORTCOLUMNS
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_VIEW

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Maximum Sort Columns

Notes:

Experimental.

DBPROP_MAXSORTCOLUMNS 165

DBPROP_MSMD_MDX_CALCMEMB_EXTENSIONS
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_MDX_EXTENSIONS

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): MDX Calculated Members Extensions

DBPROP_ORDEREDBOOKMARKS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): Bookmarks Ordered

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_OTHERINSERT
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Others' Inserts Visible

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

166 Appendix 3 • OLE DB Properties

DBPROP_OTHERUPDATEDELETE
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Others' Changes Visible

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_OWNINSERT
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Own Inserts Visible

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_OWNUPDATEDELETE
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Own Changes Visible

Notes:

DBPROP_OWNUPDATEDELETE 167

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_PROVIDERVER
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_BSTR

Description (ADO property name): Provider Version

Notes:

Use this property to identify the release version of the provider. The major release, minor
release, revision number, and build number are encoded in the returned value.

Local Provider: Returns the same value as DBPROP_DBMSVER.

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_REMOVEDELETED
Supported in: Local Provider, SAS/SHARE Provider, Base SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Remove Deleted Rows

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_SAS_ALTERPASSWORD
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

168 Appendix 3 • OLE DB Properties

Type: VT_BSTR

Description (ADO property name): SAS Alter Password

Notes:

Use this property to access read-protected, write-protected, or alter-protected SAS files.

For more information about the SAS data set password facility, see "File Protection" in
SAS Language Reference: Concepts.

DBPROP_SAS_BLANKPADDING
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): SAS Preserve Trailing Blanks

Notes:

If the value of DBPROP_SAS_BLANKPADDING is VARIANT_TRUE when character
data is read, then trailing blanks are preserved. Otherwise, trailing blanks are trimmed.

DBPROP_SAS_DATASET_ENCODING
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: No

Column: False

Type: VT_UI4

Description (ADO property name): "SAS Data Set Encoding"

Notes:

Use this property to retrieve the data set encoding value from SAS data sets.

DBPROP_SAS_DATASET_LABEL
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

DBPROP_SAS_DATASET_LABEL 169

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): "SAS Data Set Label"

Notes:

Use this property to set and retrieve the data set label value from SAS data sets.

DBPROP_SAS_DATASET_TYPE
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): "SAS Data Set Type"

Notes:

Use this property to set and retrieve the data set type value from SAS data sets.

DBPROP_SAS_DATASETOPTS
Supported in: IOM Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): "SAS Data Set Options"

Notes:

Use this property to specify SAS data set options when directly opening a table. For more
information about SAS data set options, see "SAS Data Set Options" in SAS Language
Reference: Dictionary.

DBPROP_SAS_DEFAULTFILEFORMAT
Supported in: Local Provider

Property Group: Data Source Information

Property Set: DBPROPSET_SAS_DATASOURCEINFO

Read: Yes

170 Appendix 3 • OLE DB Properties

Write: No

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Default File Format

Notes:

Use this property to define the default value for DBPROP_SAS_INITFILEFORMAT. The
value can change from one release of the provider to the next. In general, the default file
format that is identified by this property corresponds to the data set format of the latest
major SAS release.

DBPROP_SAS_ENGINE
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Library Engine

Notes:

Use this property to specify the name of the engine to use when this rowset is opened.

The available engines depend on the host system, the version of SAS, and the site
installation. This property is comparable to the engine name option in the SAS LIBNAME
statement.

When this property is set, DBPROP_SAS_PATH must also be set. If
DBPROP_SAS_ENGINE is not set and DBPROP_SAS_PATH is set, then the default
engine is used.

DBPROP_SAS_FMTERR
Supported in: Local Provider, SAS/SHARE Provider, Base SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): SAS Format Error

Note:

Use this property to control how the provider handles unknown format and informat names.
When the property value is VARIANT_TRUE, the provider generates an error during row

DBPROP_SAS_FMTERR 171

I/O operations if the associated format or informat is not found. When the property value
is VARIANT_FALSE and the associated format or informat is not found, then the provider
uses BESTw.d for numeric columns and $CHARw. for character columns.

DBPROP_SAS_FORMATS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Formats

Notes:

Use this property to format columns of data. You can use one of the following string values:

• "_ALL_" , which indicates that all variables should be returned as formatted values.

• "+_ALL_" , which indicates that all variables should be returned as both formatted and
unformatted values.

• a comma-separated list with items of the following form:

[+]COLUMN[=FORMAT[w].[d]]

• The optional plus (+) modifier indicates that the variable should be returned as both
formatted and unformatted values.

• COLUMN is the name of the variable that you want to format.

• FORMATw.d is the SAS format that you want to apply. If this value is not given,
then the default format is used.

Use this property only for ADO consumers. OLE DB consumers should not use this
property to format data.

DBPROP_SAS_GET_MISSING_VALUES
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): SAS Get Missing Values Grid

Notes:

172 Appendix 3 • OLE DB Properties

Use this property to control whether a grid that represents special numeric missing values
data is returned or standard data is returned to the user. This property can have the following
values:

• True, to indicate that the SAS missing values grid is requested. In order to identify the
special numeric missing values, the returned data set is the opposite of the standard
data values. Numeric fields that have a value such as 15 are instead returned as Null.
Fields that have a missing value return a number that identifies the SAS numeric
missing value indicator. All character fields are returned with a length of zero.

• False, to indicate that standard data set values are requested. False is the default setting.

For more information about this property, see “Reading Special Numeric Missing Values
from a Data Set” on page 101.

DBPROP_SAS_INFORMATS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Informats

Notes:

Use this property to apply informats to columns of data. You can use one of the following
string values:

• "_ALL_" , which indicates that all variables should be output using informatted values.

• a comma-separated list with items of the form:

COLUMN[=INFORMAT[w].[d]]

• COLUMN is the name of the variable that you write with an informat.

• INFORMATw.d is the SAS informat that you want to apply. If this informat is not
given, then the default informat is used.

Use this property only for ADO consumers. OLE DB consumers should not use this
property to informat data.

DBPROP_SAS_INIT_CELLCACHESIZE
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

DBPROP_SAS_INIT_CELLCACHESIZE 173

Type: VT_I4

Description (ADO property name): SAS Cell Cache Size

Notes:

This property defines the maximum number of cells that will be cached by the OLAP
Provider at any one time. Cached cells are used only to handle requests for single cells (that
is, calls to IMDDataset::GetCellData where ulStartCell and ulEndCell are equal). The
actual number of cells cached in each MDDataset is based on the number of tuples along
the column's axis. Usually, the number of tuples is equivalent to the number of cells in one
row. The following formula can be used to determine the number of cached cells:

floor(SAS Cell Cache Size / Number of cells per row) * Number of cells per row

For example, assume that you have an MDDataset with five cells in a row. A SAS Cell
Cache Size of 12 results in floor(12 / 5) * 5 = floor(2.4) * 5 = 2 *
5 = 10 cells actually cached. For this MDDataset, all values for SAS Cell Cache Size
between 10 and 14 (inclusive) will yield 10 cached cells.

This property can have the following values:

• -1 indicates that the entire MDDataset will be cached in memory.

• 0 indicates that caching will be disabled.

• >0 indicates the maximum number of cells that will be cached.

DBPROP_SAS_INIT_FILEFORMAT
Supported in: Local Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS File Format

Notes:

Use this property to define the SAS file format associated with the data source. The Local
Provider supports the following file formats:

• Version 6 data sets

• Versions 7, 8, and 9 data sets

• Version 5 transport files

This property accepts a string value that indicates which file format to associate with the
directory that is given the DBPROP_INIT_DATASOURCE value. Valid strings for
DBPROP_SAS_INIT_FILEFORMAT are as follows:

• "V9" for Version 9, Version 8, or Version 7 data sets

• "V8" for Version 8 or Version 7 data sets

• "V7" for Version 7 or Version 8 data sets

• "V6" for Version 6 data sets

174 Appendix 3 • OLE DB Properties

• "XPT" for Version 5 transport files

"V7" and "V8" specify the equivalent file formats and can be used interchangeably.

If no value is set for this property, then the provider examines the data source directory to
determine which file format to use. If a decision cannot be made based on the contents of
the data source directory, then the provider uses the
DBPROP_SAS_DEFAULTFILEFORMAT value as the default for
DBPROP_SAS_INIT_FILEFORMAT.

Note: When you specify a value of "V8", the Local Provider does not properly convert
numeric variables for SAS data sets created on platforms other than Windows. In this
case, the Local Provider returns incorrect data for the numeric variable (although it
does not return an error). To ensure that numeric variables are converted properly for
SAS data sets on platforms other than Windows, use the default file format or "V9".

DBPROP_SAS_INIT_LOCALSERVER
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): SAS Local Server

Note:

Use this property to determine whether the SAS/SHARE Provider will start a local server.
The value for this property can be 0 or 1. Zero is the default value and indicates that the
provider should not start a server. One indicates that the SAS/SHARE provider should start
a local server.

DBPROP_SAS_INIT_LOGICALNAME
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Logical Name

Note:

This property is obsolete and is provided only for backward compatibility.

DBPROP_SAS_INIT_LOGICALNAME 175

DBPROP_SAS_INIT_MACHINEDNSNAME
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Machine DNS Name

Notes:

Use this property to specify the network DNS name of the server or the IP address of the
server.

When connecting to a remote SAS Workspace Server, use this property in conjunction with
DBPROP_SAS_INIT_SERVICENAME, DBPROP_SAS_INIT_PROTOCOL, and
DBPROP_SAS_INIT_PORT.

DBPROP_SAS_INIT_PORT
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): SAS Port

Notes:

Use this property to identify the TCP/IP port number to use on the machine that is hosting
the SAS Workspace Server.

When connecting to a remote SAS Workspace Server, use this property in conjunction with
DBPROP_SAS_INIT_MACHINEDNSNAME and DBPROP_SAS_INIT_PROTOCOL.
This property is functionally equivalent to DBPROP_SAS_ INIT_ SERVICENAME.

DBPROP_SAS_INIT_PROTOCOL
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

176 Appendix 3 • OLE DB Properties

Column: False

Type: VT_I4

Description (ADO property name): SAS Protocol

Notes:

Use this property to indicate how to communicate with the SAS server. Its value is either
ProtocolCom, ProtocolCorba, or ProtocolBridge.

When connecting to a remote SAS Workspace Server, use this property in conjunction with
DBPROP_SAS_INIT_SERVICENAME,
DBPROP_SAS_INIT_MACHINEDNSNAME, and DBPROP_SAS_INIT_PORT.

DBPROP_SAS_INIT_SASEXE
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Executable

Notes:

Use this property to specify the fully qualified path for the SAS executable file (sas.exe)
that you use to start a SAS session. The default value might change from one release of the
provider to the next. In general, the default path corresponds to the standard installation
path of the latest major SAS release.

DBPROP_SAS_INIT_SASPARAMETERS
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Parameters

Note:

Use this property to specify the parameters that are used to invoke SAS. The parameters
must include -initstmt, which executes a SAS macro to start the local server.

DBPROP_SAS_INIT_SASWORKINGDIR
Supported in: SAS/SHARE Provider, Base SAS Provider

DBPROP_SAS_INIT_SASWORKINGDIR 177

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Working Directory

Note:

Use this property to specify the fully qualified path for the directory that you want to use
as the SAS working directory.

DBPROP_SAS_INIT_SERVERPASSWORD
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Server Access Password

Note:

Use this property to specify the server access password when one is needed. Consult your
SAS/SHARE server administrator if you are unsure about your server's authentication
requirements.

DBPROP_SAS_INIT_SERVERRELEASE
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): SAS Server Release

Notes:

Use this property to specify the SAS release of the server that you intend to use. The value
of this property can be 7, 8 or 9. The value should correspond to the major release number
of the connected server. Consult your SAS/SHARE server administrator if you are unsure
of your server's release number.

178 Appendix 3 • OLE DB Properties

DBPROP_SAS_INIT_SERVERTYPE
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): SAS Server Type

Notes:

Use this property to specify the type of SAS server that you want to connect to. This value
can be DBPROPVAL_DST_TDP for a tabular data server or DBPROPVAL_DST_MDP
for an OLAP server. Contact your system administrator if you are unsure about the server
type.

DBPROP_SAS_INIT_SERVICENAME
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Service Name

Notes:

Use this property to identify the TCP/IP service name to use on the SAS Workspace Server.

This name is used to look up the port on the machine that is hosting the SAS Workspace
Server. When connecting to a remote SAS Workspace Server, use this property in
conjunction with DBPROP_SAS_INIT_MACHINEDNSNAME and
DBPROP_SAS_INIT_PROTOCOL. This value is functionally equivalent to
DBPROP_SAS_ INIT_ PORT.

DBPROP_SAS_INIT_WORKSPACE
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

DBPROP_SAS_INIT_WORKSPACE 179

Column: False

Type: VT_UNKNOWN

Description (ADO property name): SAS Workspace Interface

Notes:

This property is no longer supported. Use DBPROP_SAS_INIT_WORKSPACEID
instead.

DBPROP_SAS_INIT_WORKSPACEID
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Workspace ID

Notes:

Use this property to specify the UniqueIdentifier for a SAS workspace.

When connecting to an existing SAS workspace, set this property equal to the
UniqueIdentifier of the workspace. UniqueIdentifier is a property on the SAS IOM
workspace object.

DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_DBINIT

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Workspace Init Script

Notes:

You can use this BSTR Data Source Initialization property to hold SAS code that will be
submitted for execution to a SAS Workspace server immediately after a connection is to
the server is established. The code can be any valid SAS code.

DBPROP_SAS_LIBOPTS
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

180 Appendix 3 • OLE DB Properties

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Library Options

Notes:

Use this property to specify any LIBNAME or engine options that should be used when
opening this rowset.

When this property is set, DBPROP_SAS_PATH must also be set. If
DBPROP_SAS_PATH is set and the libref is not specified as part of the rowset's TableID,
then the IOM Provider assigns a libref on the SAS Workspace Server. The options specified
by this property are applied to the libref assignment. The libref is unassigned when the
rowset is released.

DBPROP_SAS_MISSING_VALUES
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): SAS Missing Values

DBPROP_SAS_NLSOPTS
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): SAS NLS Options

Notes:

Use this property to specify how strings will be handled by the provider.

DBPROP_SAS_NLSOPTS 181

DBPROP_SAS_OPTIMISTICLOCKING
Supported in: IOM Provider, OLAP Provider, SAS/SHARE Provider, Base SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): SAS Optimistic Locking

Notes:

Use this property to control whether a data set is opened with SAS member-level access
or SAS record-level access. A value of VARIANT_TRUE indicates record-level access; a
value of VARIANT_FALSE indicates member-level access.

When a file is opened for record-level access, the server uses a record-locking strategy,
which means that exclusive update privileges are acquired on a per record basis. This setting
enables multiple users to access the same file simultaneously. When a file is opened with
member-level control, the server grants exclusive access to the entire file (for example,
data set), which prevents other users from updating the file.

DBPROP_SAS_PAGESIZE
Supported in: IOM Provider, OLAP Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): SAS Page Size

Notes:

Use this property to set the number of rows in a single page of data retrieved from the
server. A value of 0 disables paging. If the DBPROP_SAS_PAGESIZE property is set to
-1, then the provider attempts to cache the entire data set when it reads the data set for the
first time. Your application must ensure that there is enough RAM for this operation to
succeed.

DBPROP_SAS_PATH
Supported in: IOM Provider, OLAP Provider

Property Group: Initialization

Property Set: DBPROPSET_SAS_ROWSET

182 Appendix 3 • OLE DB Properties

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Physical Path

Notes:

Use this property to specify the host file system path for the location of the table referenced
by this rowset (such as a directory).

The path form depends on the platform that is hosting the server and the conventions of
the selected engine. The engine usually requires you to specify an existing location on the
server machine.

When this property is set and the libref is not specified as part of the rowset's TableID, the
provider assigns a libref on behalf of the client. The path of the libref is specified by this
property. The optional properties DBPROP_SAS_ENGINE and
DBPROP_SAS_LIBOPTS are also used to assign the new libref. The libref is unassigned
when the rowset is released.

DBPROP_SAS_PHYSICALPOSITIONING
Supported in: IOM Provider, OLAP Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): SAS Physical Positioning

Notes:

This property determines which positioning model is used by the IOM provider. When this
property is FALSE, then standard OLE DB logical positioning is used. When this property
is TRUE, the SAS physical positioning model is used. By default, this property is FALSE.

When offsets are being calculated, positioning is handled in these ways:

• Logical positioning does not count deleted records.

• Physical positioning does count deleted records.

DBPROP_SAS_PT2DBPW
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Session

Property Set: DBPROPSET_SAS_SESSION

Read: Yes

Write: Yes

DBPROP_SAS_PT2DBPW 183

Column: False

Type: VT_BSTR

Description (ADO property name): SAS PT2DBPW

Notes:

Use this property to enable the processing of SQL queries on remote databases. Set it to
the same value that is specified in the PT2DBPW option in the PROC SERVER statement.

This property must be set whenever the PT2DBPW option is specified in the PROC
SERVER statement and you are using a DBPROP_SAS_SQLENGINE value other than
the default of SQLVIEW.

DBPROP_SAS_READPASSWORD
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Read Password

Notes:

Use this property to specify the read password when you access a read-protected SAS file.

For more information about the SAS data set password facility, see "File Protection" in
SAS Language Reference: Concepts.

DBPROP_SAS_RESERVED_ROWSETFLAGS
Supported in: IOM Provider, OLAP Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): SAS Reserved 1

Notes:

Reserved for future use.

DBPROP_SAS_SQLCONNECTIONSTRING
Supported in: IOM Provider, OLAP Provider, SAS/SHARE Provider, Base SAS Provider

184 Appendix 3 • OLE DB Properties

Property Group: Session

Property Set: DBPROPSET_SAS_SESSION

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS SQL Engine Options

Notes:

When you are creating a Command object, use this property to specify SAS options to
associate with the DBMS engine. Use this property when DBPROP_SAS_SQLENGINE
is set to a value other than its default SQLVIEW value.

DBPROP_SAS_SQLENGINE
Supported in: IOM Provider, OLAP Provider, SAS/SHARE Provider, Base SAS Provider

Property Group: Session

Property Set: DBPROPSET_SAS_SESSION

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS SQL Engine

Notes:

When you are creating a Command object, use this property to identify which DBMS
engine to use.

DBPROP_SAS_USE_TKMANAGER_SEARCHPATH
Supported in: Local Provider

Property Group: Data Source Information

Property Set: DBPROPSET_SAS_DATASOURCEINFO

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): Use TK Manager Search Path

Notes:

This property indicates that the Threaded Kernel Path has been set in the
TKMANAGER_SEARCH_PATH environment variable and that the Threaded Kernel
Manager is to be used. TKMANAGER_SEARCH_PATH must contain the fully qualified
path to the Threaded Kernel Manager DLL (tkmanager.dll) as the first path, followed by

DBPROP_SAS_USE_TKMANAGER_SEARCHPATH 185

the fully qualified paths for all of the Threaded Kernel files required by the provider. This
property is FALSE by default.

DBPROP_SAS_WHERE
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Where

Notes:

Use this property to set a SAS WHERE clause on the rowset. When a WHERE clause is
used, the rowset returns only rows that meet the condition that is specified by the WHERE
clause. The WHERE clause is limited to forward-only access. It cannot be used with a
client-side cursor.

This property is the most efficient way to subset a data set because the filtering process is
done on the server. Only rows that match the WHERE-clause criteria are transmitted from
the server to the client. Other rowset filtering methods are done in the client process, which
means that rows that do not meet the criteria are transmitted from the server to the client.

For more information about WHERE-clause processing, see SAS Language Reference:
Concepts and the Base SAS Procedures Guide.

DBPROP_SAS_WORKSPACE_INIT_LIST
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_SAS_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Workspace Init List

Notes:

You can use this read-only BSTR Data Source property to capture the results of the SAS
listing for SAS code that was submitted by using the
DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT (the "SAS Workspace Init Script”)
property.

DBPROP_SAS_WORKSPACE_INIT_LOG
Supported in: IOM Provider, OLAP Provider

186 Appendix 3 • OLE DB Properties

Property Group: Data Source Information

Property Set: DBPROPSET_SAS_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Workspace Init Log

Notes:

You can use this read-only BSTR Data Source property to capture the SAS log for SAS
code that was submitted by using the
DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT (the "SAS Workspace Init Script”)
property.

DBPROP_SAS_WRITEPASSWORD
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_SAS_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BSTR

Description (ADO property name): SAS Write Password

Notes:

Use this property to specify the write password when accessing a write-protected SAS file.

For more information about the SAS data set password facility, see "File Protection" in
SAS Language Reference: Concepts.

DBPROP_SESS_AUTOCOMMITISOLEVELS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Session

Property Set: DBPROPSET_SESSION

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Autocommit Isolation Levels

Notes:

DBPROP_SESS_AUTOCOMMITISOLEVELS 187

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_SORTONINDEX
Supported in: Local Provider

Property Group: Rowset

Property Set: DBPROPSET_VIEW

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Sort on Index

Notes:

Experimental.

DBPROP_SUPPORTEDTXNISOLEVELS
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Isolation Levels

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

DBPROP_UNIQUEROWS
Supported in: SAS/SHARE Provider, Base SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_BOOL

Description (ADO property name): UniqueRows

Notes:

188 Appendix 3 • OLE DB Properties

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.
This property was added to support client-side cursors in ADO applications.

DBPROP_UPDATABILITY
Supported in: IOM Provider, OLAP Provider, Local Provider, SAS/SHARE Provider, Base
SAS Provider

Property Group: Rowset

Property Set: DBPROPSET_ROWSET

Read: Yes

Write: Yes

Column: False

Type: VT_I4

Description (ADO property name): Updatability

Notes:

For more information, see the OLE DB Programmer’s Reference and Data Access SDK.

MDPROP_AGGREGATECELL_UPDATE
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for updating aggregated cells

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_AXES
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Number of axes in the data set

MDPROP_AXES 189

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_FLATTENING_SUPPORT
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Flattening Support

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_CASESUPPORT
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for MDX case statements

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_DESCFLAGS
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

190 Appendix 3 • OLE DB Properties

Column: False

Type: VT_I4

Description (ADO property name): Support for various <desc flag> values in the
DESCENDANTS function

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_FORMULAS
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for creation of named sets and calculated
members

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_JOINCUBES
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for query joining multiple cubes

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_MEMBER_FUNCTIONS
Supported in: IOM Provider, OLAP Provider

MDPROP_MDX_MEMBER_FUNCTIONS 191

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for various member functions

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_NUMERIC_FUNCTIONS
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for various numeric functions

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_OBJQUALIFICATION
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Provider's ability to qualify a cube name

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

192 Appendix 3 • OLE DB Properties

MDPROP_MDX_OUTERREFERENCE
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for outer Reference in an MDX statement

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_QUERYBYPROPERTY
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_BOOL

Description (ADO property name): Support for querying by property values in an MDX
statement

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_SET_FUNCTIONS
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for various set functions

MDPROP_MDX_SET_FUNCTIONS 193

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_SLICER
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): The capabilities in the WHERE clause of an MDX
statement

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_MDX_STRING_COMPOP
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for string comparison operators other than
equals and not-equals operators

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_NAMED_LEVELS
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

194 Appendix 3 • OLE DB Properties

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for named levels

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

MDPROP_RANGEROWSET
Supported in: IOM Provider, OLAP Provider

Property Group: Data Source Information

Property Set: DBPROPSET_DATASOURCEINFO

Read: Yes

Write: No

Column: False

Type: VT_I4

Description (ADO property name): Support for cell updates

Notes:

For more information, see the "OLE DB for Online Analytical Processing (OLAP)" section
of the OLE DB Programmer’s Reference and Data Access SDK. Also see the SAS OLAP
Server: MDX Guide.

OLE DB Properties: Sorted by ADO Name
Note: Properties specific to SAS begin with SAS (for example, SAS Formats).

• "Append-Only Rowset" on page 149

• "Asynchronous Processing" on page 156

• "Autocommit Isolation Levels" on page 187

• "Bookmark Type" on page 151

• "Bookmarks Ordered" on page 166

• "ClientCursor" on page 153

• "Current Catalog" on page 153

• "DBMS Name" on page 154

• "DBMS Version" on page 154

• "Data Source" on page 156

• "Data Source Type" on page 154

• "Extended Properties" on page 159

OLE DB Properties: Sorted by ADO Name 195

• "Fetch Backwards" on page 152

• "Flattening Support" on page 190

• "Hold Rows" on page 152

• "IAccessor" on page 155

• "IColumnsInfo" on page 155

• "IConvertType" on page 156

• "IRowset" on page 159

• "IRowsetChange" on page 160

• "IRowsetIdentity" on page 160

• "IRowsetInfo" on page 160

• "IRowsetLocate" on page 161

• "IRowsetUpdate" on page 161

• "IRowsetView" on page 161

• "ISupportErrorInfo" on page 162

• "IViewFilter" on page 162

• "IViewRowset" on page 162

• "IViewSort" on page 163

• "Isolation Levels" on page 188

• "Literal Bookmarks" on page 163

• "Literal Row Identity" on page 163

• "Locale Identifier" on page 157

• "Location" on page 158

• "Lock Mode" on page 164

• "MDX Calculated Members Extensions" on page 166

• "Maximum OR Conditions" on page 164

• "Maximum Open Rows" on page 164

• "Maximum Pending Rows" on page 165

• "Maximum Rows" on page 165

• "Maximum Sort Columns" on page 165

• "Mode" on page 158

• "Number of axes in the data set" on page 189

• "Others' Changes Visible" on page 167

• "Others' Inserts Visible" on page 166

• "Own Changes Visible" on page 167

• "Own Inserts Visible" on page 167

• "Pass By Ref Accessors" on page 151

• "Password" on page 149

196 Appendix 3 • OLE DB Properties

• "Prompt" on page 159

• "Provider Version" on page 168

• "Provider's ability to qualify a cube name" on page 192

• "Read-Only Data Source" on page 153

• "Remove Deleted Rows" on page 168

• "SAS Alter Password" on page 168

• "SAS Cell Cache Size" on page 173

• "SAS Data Set Encoding" on page 169

• "SAS Data Set Label" on page 169

• "SAS Data Set Type" on page 170

• "SAS Data Set Options" on page 170

• "SAS Default File Format" on page 170

• "SAS Executable" on page 177

• "SAS File Format" on page 174

• "SAS Format Error" on page 171

• "SAS Formats" on page 172

• "SAS Get Missing Values Grid" on page 172

• "SAS Informats" on page 173

• "SAS Library Engine" on page 171

• "SAS Library Options" on page 180

• "SAS Local Server" on page 175

• "SAS Logical Name" on page 175

• "SAS Machine DNS Name" on page 176

• "SAS Missing Values" on page 181

• "SAS NLS Options" on page 181

• "SAS Optimistic Locking" on page 182

• "SAS PT2DBPW" on page 183

• "SAS Page Size" on page 182

• "SAS Parameters" on page 177

• "SAS Physical Path" on page 182

• "SAS Physical Positioning" on page 183

• "SAS Port" on page 176

• "SAS Preserve Trailing Blanks" on page 169

• "SAS Protocol" on page 176

• "SAS Read Password" on page 184

• "SAS Reserved 1" on page 184

• "SAS SQL Engine" on page 185

OLE DB Properties: Sorted by ADO Name 197

• "SAS SQL Engine Options" on page 184

• "SAS Server Access Password" on page 178

• "SAS Server Release" on page 178

• "SAS Server Type" on page 179

• "SAS Service Name" on page 179

• "SAS Where" on page 186

• "SAS Working Directory" on page 177

• "SAS Workspace ID" on page 180

• "SAS Workspace Init List" on page 186

• "SAS Workspace Init Log" on page 186

• "SAS Workspace Init Script" on page 180

• "SAS Workspace Interface" on page 179

• "SAS Write Password" on page 187

• "Scroll Backwards" on page 152

• "Skip Deleted Bookmarks" on page 151

• "Sort on Index" on page 188

• "Support for MDX case statements on page 190

• "Support for cell updates" on page 195

• "Support for creation of named sets and calculated members" on page 191

• "Support for named levels" on page 194

• "Support for outer reference in an MDX statement" on page 193

• "Support for query joining multiple cubes" on page 191

• "Support for querying by property values in an MDX statement on page 193

• "Support for string comparison operators other than equals and not-equals operators"
on page 194

• "Support for updating aggregated cells" on page 189

• "Support for various <desc flag> values in the DESCENDANTS function" on page
190

• "Support for various member functions" on page 191

• "Support for various numeric functions" on page 192

• "Support for various set functions" on page 193

• "The capabilities in the WHERE clause of an MDX statement" on page 194

• "UniqueRows" on page 188

• "Updatability" on page 189

• "Use Bookmarks" on page 150

• "Use TK Manager Search Path" on page 185

• "User ID" on page 150

• "Window Handle" on page 157

198 Appendix 3 • OLE DB Properties

OLE DB Properties: Sorted by Data Provider

Supported Properties in the IOM and OLAP Data Providers
• “DBPROP_APPENDONLY” on page 149

• “DBPROP_AUTH_PASSWORD” on page 149

• “DBPROP_AUTH_USERID” on page 150

• “DBPROP_BOOKMARKS” on page 150

• “DBPROP_BOOKMARKSKIPPED” on page 151

• “DBPROP_BOOKMARKTYPE” on page 151

• “DBPROP_BYREFACCESSORS” on page 151

• “DBPROP_CANFETCHBACKWARDS” on page 152

• “DBPROP_CANHOLDROWS” on page 152

• “DBPROP_CANSCROLLBACKWARDS” on page 152

• “DBPROP_CURRENTCATALOG” on page 153

• “DBPROP_DATASOURCEREADONLY” on page 153

• “DBPROP_DATASOURCE_TYPE” on page 154

• “DBPROP_DBMSNAME” on page 154

• “DBPROP_DBMSVER” on page 154

• “DBPROP_IAccessor” on page 155

• “DBPROP_IColumnsInfo” on page 155

• “DBPROP_IConvertType” on page 156

• “DBPROP_INIT_ASYNCH” on page 156

• “DBPROP_INIT_DATASOURCE” on page 156

• “DBPROP_INIT_HWND” on page 157

• “DBPROP_INIT_LCID” on page 157

• “DBPROP_INIT_LOCATION” on page 158

• “DBPROP_INIT_MODE” on page 158

• “DBPROP_INIT_PROMPT” on page 159

• “DBPROP_INIT_PROVIDERSTRING” on page 159

• “DBPROP_IRowset” on page 159

• “DBPROP_IRowsetChange” on page 160

• “DBPROP_IRowsetIdentity” on page 160

• “DBPROP_IRowsetInfo” on page 160

• “DBPROP_IRowsetLocate” on page 161

• “DBPROP_IRowsetUpdate” on page 161

Supported Properties in the IOM and OLAP Data Providers 199

• “DBPROP_ISupportErrorInfo” on page 162

• “DBPROP_LITERALBOOKMARKS” on page 163

• “DBPROP_LITERALIDENTITY” on page 163

• “DBPROP_LOCKMODE” on page 164

• “DBPROP_MAXOPENROWS” on page 164

• “DBPROP_MAXPENDINGROWS” on page 165

• “DBPROP_MAXROWS” on page 165

• “DBPROP_MSMD_MDX_CALCMEMB_EXTENSIONS” on page 166

• “DBPROP_ORDEREDBOOKMARKS” on page 166

• “DBPROP_OTHERINSERT” on page 166

• “DBPROP_OTHERUPDATEDELETE” on page 167

• “DBPROP_OWNINSERT” on page 167

• “DBPROP_OWNUPDATEDELETE” on page 167

• “DBPROP_PROVIDERVER” on page 168

• “DBPROP_SAS_ALTERPASSWORD” on page 168

• “DBPROP_SAS_BLANKPADDING” on page 169

• “DBPROP_SAS_DATASETOPTS” on page 170

• “DBPROP_SAS_ENGINE” on page 171

• “DBPROP_SAS_FORMATS” on page 172

• “DBPROP_SAS_INFORMATS” on page 173

• “DBPROP_SAS_INIT_CELLCACHESIZE” on page 173

• “DBPROP_SAS_INIT_LOGICALNAME” on page 175

• “DBPROP_SAS_INIT_MACHINEDNSNAME” on page 176

• “DBPROP_SAS_INIT_PORT” on page 176

• “DBPROP_SAS_INIT_PROTOCOL” on page 176

• “DBPROP_SAS_INIT_SERVERTYPE” on page 179

• “DBPROP_SAS_INIT_SERVICENAME” on page 179

• “DBPROP_SAS_INIT_WORKSPACE” on page 179

• “DBPROP_SAS_INIT_WORKSPACEID” on page 180

• “DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT” on page 180

• “DBPROP_SAS_LIBOPTS” on page 180

• “DBPROP_SAS_MISSING_VALUES” on page 181

• “DBPROP_SAS_OPTIMISTICLOCKING” on page 182

• “DBPROP_SAS_PAGESIZE” on page 182

• “DBPROP_SAS_PATH” on page 182

• “DBPROP_SAS_PHYSICALPOSITIONING” on page 183

• “DBPROP_SAS_READPASSWORD” on page 184

200 Appendix 3 • OLE DB Properties

• “DBPROP_SAS_RESERVED_ROWSETFLAGS” on page 184

• “DBPROP_SAS_SQLCONNECTIONSTRING” on page 184

• “DBPROP_SAS_SQLENGINE” on page 185

• “DBPROP_SAS_WORKSPACE_INIT_LIST” on page 186

• “DBPROP_SAS_WORKSPACE_INIT_LOG” on page 186

• “DBPROP_SAS_WRITEPASSWORD” on page 187

• “DBPROP_SESS_AUTOCOMMITISOLEVELS” on page 187

• “DBPROP_SUPPORTEDTXNISOLEVELS” on page 188

• “DBPROP_UPDATABILITY” on page 189

• “MDPROP_AGGREGATECELL_UPDATE” on page 189

• “MDPROP_AXES” on page 189

• “MDPROP_FLATTENING_SUPPORT” on page 190

• “MDPROP_MDX_CASESUPPORT” on page 190

• “MDPROP_MDX_DESCFLAGS” on page 190

• “MDPROP_MDX_FORMULAS” on page 191

• “MDPROP_MDX_JOINCUBES” on page 191

• “MDPROP_MDX_MEMBER_FUNCTIONS” on page 191

• “MDPROP_MDX_NUMERIC_FUNCTIONS” on page 192

• “MDPROP_MDX_OBJQUALIFICATION” on page 192

• “MDPROP_MDX_OUTERREFERENCE” on page 193

• “MDPROP_MDX_QUERYBYPROPERTY” on page 193

• “MDPROP_MDX_SET_FUNCTIONS” on page 193

• “MDPROP_MDX_SLICER” on page 194

• “MDPROP_MDX_STRING_COMPOP” on page 194

• “MDPROP_NAMED_LEVELS” on page 194

• “MDPROP_RANGEROWSET” on page 195

Supported Properties in the Local Data Provider
• “DBPROP_APPENDONLY” on page 149

• “DBPROP_AUTH_PASSWORD” on page 149

• “DBPROP_AUTH_USERID” on page 150

• “DBPROP_BOOKMARKS” on page 150

• “DBPROP_BOOKMARKSKIPPED” on page 151

• “DBPROP_BOOKMARKTYPE” on page 151

• “DBPROP_BYREFACCESSORS” on page 151

• “DBPROP_CANFETCHBACKWARDS” on page 152

• “DBPROP_CANHOLDROWS” on page 152

Supported Properties in the Local Data Provider 201

• “DBPROP_CANSCROLLBACKWARDS” on page 152

• “DBPROP_DATASOURCEREADONLY” on page 153

• “DBPROP_DBMSNAME” on page 154

• “DBPROP_DBMSVER” on page 154

• “DBPROP_IAccessor” on page 155

• “DBPROP_IColumnsInfo” on page 155

• “DBPROP_IConvertType” on page 156

• “DBPROP_INIT_DATASOURCE” on page 156

• “DBPROP_INIT_LOCATION” on page 158

• “DBPROP_INIT_MODE” on page 158

• “DBPROP_INIT_PROMPT” on page 159

• “DBPROP_INIT_PROVIDERSTRING” on page 159

• “DBPROP_IRowset” on page 159

• “DBPROP_IRowsetChange” on page 160

• “DBPROP_IRowsetIdentity” on page 160

• “DBPROP_IRowsetInfo” on page 160

• “DBPROP_IRowsetLocate” on page 161

• “DBPROP_IRowsetUpdate” on page 161

• “DBPROP_IRowsetView” on page 161

• “DBPROP_ISupportErrorInfo” on page 162

• “DBPROP_IViewFilter” on page 162

• “DBPROP_IViewRowset” on page 162

• “DBPROP_IViewSort” on page 163

• “DBPROP_LITERALBOOKMARKS” on page 163

• “DBPROP_LITERALIDENTITY” on page 163

• “DBPROP_MAXOPENROWS” on page 164

• “DBPROP_MAXORSINFILTER” on page 164

• “DBPROP_MAXPENDINGROWS” on page 165

• “DBPROP_MAXROWS” on page 165

• “DBPROP_MAXSORTCOLUMNS” on page 165

• “DBPROP_ORDEREDBOOKMARKS” on page 166

• “DBPROP_OTHERINSERT” on page 166

• “DBPROP_OTHERUPDATEDELETE” on page 167

• “DBPROP_OWNINSERT” on page 167

• “DBPROP_OWNUPDATEDELETE” on page 167

• “DBPROP_PROVIDERVER” on page 168

• “DBPROP_REMOVEDELETED” on page 168

202 Appendix 3 • OLE DB Properties

• “DBPROP_SAS_ALTERPASSWORD” on page 168

• “DBPROP_SAS_BLANKPADDING” on page 169

• “DBPROP_SAS_DATASET_ENCODING” on page 169

• “DBPROP_SAS_DATASET_LABEL” on page 169

• “DBPROP_SAS_DATASET_TYPE” on page 170

• “DBPROP_SAS_DEFAULTFILEFORMAT” on page 170

• “DBPROP_SAS_FMTERR” on page 171

• “DBPROP_SAS_FORMATS” on page 172

• “DBPROP_SAS_GET_MISSING_VALUES” on page 172

• “DBPROP_SAS_INFORMATS” on page 173

• “DBPROP_SAS_INIT_FILEFORMAT” on page 174

• “DBPROP_SAS_MISSING_VALUES” on page 181

• “DBPROP_SAS_NLSOPTS” on page 181

• “DBPROP_SAS_READPASSWORD” on page 184

• “DBPROP_SAS_USE_TKMANAGER_SEARCHPATH” on page 185

• “DBPROP_SAS_WRITEPASSWORD” on page 187

• “DBPROP_SESS_AUTOCOMMITISOLEVELS” on page 187

• “DBPROP_SORTONINDEX” on page 188

• “DBPROP_SUPPORTEDTXNISOLEVELS” on page 188

• “DBPROP_UPDATABILITY” on page 189

Supported Properties in the SAS/SHARE and Base SAS Data
Providers

• “DBPROP_APPENDONLY” on page 149

• “DBPROP_AUTH_PASSWORD” on page 149

• “DBPROP_AUTH_USERID” on page 150

• “DBPROP_BOOKMARKS” on page 150

• “DBPROP_BOOKMARKSKIPPED” on page 151

• “DBPROP_BOOKMARKTYPE” on page 151

• “DBPROP_BYREFACCESSORS” on page 151

• “DBPROP_CANFETCHBACKWARDS” on page 152

• “DBPROP_CANHOLDROWS” on page 152

• “DBPROP_CANSCROLLBACKWARDS” on page 152

• “DBPROP_CLIENTCURSOR” on page 153

• “DBPROP_DATASOURCEREADONLY” on page 153

• “DBPROP_DBMSNAME” on page 154

• “DBPROP_DBMSVER” on page 154

• “DBPROP_IAccessor” on page 155

Supported Properties in the SAS/SHARE and Base SAS Data Providers 203

• “DBPROP_IColumnsInfo” on page 155

• “DBPROP_IConvertType” on page 156

• “DBPROP_INIT_DATASOURCE” on page 156

• “DBPROP_INIT_LOCATION” on page 158

• “DBPROP_INIT_MODE” on page 158

• “DBPROP_INIT_PROMPT” on page 159

• “DBPROP_INIT_PROVIDERSTRING” on page 159

• “DBPROP_IRowset” on page 159

• “DBPROP_IRowsetChange” on page 160

• “DBPROP_IRowsetIdentity” on page 160

• “DBPROP_IRowsetInfo” on page 160

• “DBPROP_IRowsetLocate” on page 161

• “DBPROP_IRowsetUpdate” on page 161

• “DBPROP_ISupportErrorInfo” on page 162

• “DBPROP_LITERALBOOKMARKS” on page 163

• “DBPROP_LITERALIDENTITY” on page 163

• “DBPROP_MAXOPENROWS” on page 164

• “DBPROP_MAXPENDINGROWS” on page 165

• “DBPROP_MAXROWS” on page 165

• “DBPROP_ORDEREDBOOKMARKS” on page 166

• “DBPROP_OTHERINSERT” on page 166

• “DBPROP_OTHERUPDATEDELETE” on page 167

• “DBPROP_OWNINSERT” on page 167

• “DBPROP_OWNUPDATEDELETE” on page 167

• “DBPROP_PROVIDERVER” on page 168

• “DBPROP_SAS_ALTERPASSWORD” on page 168

• “DBPROP_SAS_BLANKPADDING” on page 169

• “DBPROP_SAS_FMTERR” on page 171

• “DBPROP_SAS_FORMATS” on page 172

• “DBPROP_SAS_INFORMATS” on page 173

• “DBPROP_SAS_INIT_LOCALSERVER” on page 175

• “DBPROP_SAS_INIT_SASEXE” on page 177

• “DBPROP_SAS_INIT_SASPARAMETERS” on page 177

• “DBPROP_SAS_INIT_SASWORKINGDIR” on page 177

• “DBPROP_SAS_INIT_SERVERPASSWORD” on page 178

• “DBPROP_SAS_INIT_SERVERRELEASE” on page 178

• “DBPROP_SAS_MISSING_VALUES” on page 181

204 Appendix 3 • OLE DB Properties

• “DBPROP_SAS_OPTIMISTICLOCKING” on page 182

• “DBPROP_SAS_PT2DBPW” on page 183

• “DBPROP_SAS_READPASSWORD” on page 184

• “DBPROP_SAS_SQLCONNECTIONSTRING” on page 184

• “DBPROP_SAS_SQLENGINE” on page 185

• “DBPROP_SAS_WHERE” on page 186

• “DBPROP_SAS_WRITEPASSWORD” on page 187

• “DBPROP_SESS_AUTOCOMMITISOLEVELS” on page 187

• “DBPROP_SUPPORTEDTXNISOLEVELS” on page 188

• “DBPROP_UNIQUEROWS” on page 188

• “DBPROP_UPDATABILITY” on page 189

OLE DB Properties: Sorted by Group

Supported Properties in the Data Source Group
• DBPROPSET_DATASOURCE

• “DBPROP_CURRENTCATALOG” on page 153

Supported Properties in the Data Source Information Group
• DBPROPSET_DATASOURCEINFO

• “DBPROP_BYREFACCESSORS” on page 151

• “DBPROP_DATASOURCEREADONLY” on page 153

• “DBPROP_DATASOURCE_TYPE” on page 154

• “DBPROP_DBMSNAME” on page 154

• “DBPROP_DBMSVER” on page 154

• “DBPROP_PROVIDERVER” on page 168

• “DBPROP_SUPPORTEDTXNISOLEVELS” on page 188

• “MDPROP_AGGREGATECELL_UPDATE” on page 189

• “MDPROP_AXES” on page 189

• “MDPROP_FLATTENING_SUPPORT” on page 190

• “MDPROP_MDX_CASESUPPORT” on page 190

• “MDPROP_MDX_DESCFLAGS” on page 190

• “MDPROP_MDX_FORMULAS” on page 191

• “MDPROP_MDX_JOINCUBES” on page 191

• “MDPROP_MDX_MEMBER_FUNCTIONS” on page 191

• “MDPROP_MDX_NUMERIC_FUNCTIONS” on page 192

Supported Properties in the Data Source Information Group 205

• “MDPROP_MDX_OBJQUALIFICATION” on page 192

• “MDPROP_MDX_OUTERREFERENCE” on page 193

• “MDPROP_MDX_QUERYBYPROPERTY” on page 193

• “MDPROP_MDX_SET_FUNCTIONS” on page 193

• “MDPROP_MDX_SLICER” on page 194

• “MDPROP_MDX_STRING_COMPOP” on page 194

• “MDPROP_NAMED_LEVELS” on page 194

• “MDPROP_RANGEROWSET” on page 195

• DBPROPSET_MDX_EXTENSIONS

• “DBPROP_MSMD_MDX_CALCMEMB_EXTENSIONS” on page 166

• DBPROPSET_SAS_DATASOURCEINFO

• “DBPROP_SAS_DEFAULTFILEFORMAT” on page 170

• “DBPROP_SAS_USE_TKMANAGER_SEARCHPATH” on page 185

• “DBPROP_SAS_WORKSPACE_INIT_LIST” on page 186

• “DBPROP_SAS_WORKSPACE_INIT_LOG” on page 186

Supported Properties in the Initialization Group
• DBPROPSET_DBINIT

• “DBPROP_AUTH_PASSWORD” on page 149

• “DBPROP_AUTH_USERID” on page 150

• “DBPROP_INIT_ASYNCH” on page 156

• “DBPROP_INIT_DATASOURCE” on page 156

• “DBPROP_INIT_HWND” on page 157

• “DBPROP_INIT_LCID” on page 157

• “DBPROP_INIT_LOCATION” on page 158

• “DBPROP_INIT_MODE” on page 158

• “DBPROP_INIT_PROMPT” on page 159

• “DBPROP_INIT_PROVIDERSTRING” on page 159

• DBPROPSET_SAS_DBINIT

• “DBPROP_SAS_INIT_CELLCACHESIZE” on page 173

• “DBPROP_SAS_INIT_FILEFORMAT” on page 174

• “DBPROP_SAS_INIT_LOCALSERVER” on page 175

• “DBPROP_SAS_INIT_LOGICALNAME” on page 175

• “DBPROP_SAS_INIT_MACHINEDNSNAME” on page 176

• “DBPROP_SAS_INIT_PORT” on page 176

• “DBPROP_SAS_INIT_PROTOCOL” on page 176

• “DBPROP_SAS_INIT_SASEXE” on page 177

206 Appendix 3 • OLE DB Properties

• “DBPROP_SAS_INIT_SASPARAMETERS” on page 177

• “DBPROP_SAS_INIT_SASWORKINGDIR” on page 177

• “DBPROP_SAS_INIT_SERVERPASSWORD” on page 178

• “DBPROP_SAS_INIT_SERVERRELEASE” on page 178

• “DBPROP_SAS_INIT_SERVERTYPE” on page 179

• “DBPROP_SAS_INIT_SERVICENAME” on page 179

• “DBPROP_SAS_INIT_WORKSPACE” on page 179

• “DBPROP_SAS_INIT_WORKSPACEID” on page 180

• “DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT” on page 180

• DBPROPSET_SAS_ROWSET

• “DBPROP_SAS_ENGINE” on page 171

• “DBPROP_SAS_LIBOPTS” on page 180

• “DBPROP_SAS_PATH” on page 182

Supported Properties in the Rowset Group
• DBPROPSET_ROWSET

• “DBPROP_APPENDONLY” on page 149

• “DBPROP_BOOKMARKS” on page 150

• “DBPROP_BOOKMARKSKIPPED” on page 151

• “DBPROP_BOOKMARKTYPE” on page 151

• “DBPROP_CANFETCHBACKWARDS” on page 152

• “DBPROP_CANHOLDROWS” on page 152

• “DBPROP_CANSCROLLBACKWARDS” on page 152

• “DBPROP_CLIENTCURSOR” on page 153

• “DBPROP_IAccessor” on page 155

• “DBPROP_IColumnsInfo” on page 155

• “DBPROP_IConvertType” on page 156

• “DBPROP_IRowset” on page 159

• “DBPROP_IRowsetChange” on page 160

• “DBPROP_IRowsetIdentity” on page 160

• “DBPROP_IRowsetInfo” on page 160

• “DBPROP_IRowsetLocate” on page 161

• “DBPROP_IRowsetUpdate” on page 161

• “DBPROP_IRowsetView” on page 161

• “DBPROP_ISupportErrorInfo” on page 162

• “DBPROP_LITERALBOOKMARKS” on page 163

• “DBPROP_LITERALIDENTITY” on page 163

Supported Properties in the Rowset Group 207

• “DBPROP_LOCKMODE” on page 164

• “DBPROP_MAXOPENROWS” on page 164

• “DBPROP_MAXPENDINGROWS” on page 165

• “DBPROP_MAXROWS” on page 165

• “DBPROP_ORDEREDBOOKMARKS” on page 166

• “DBPROP_OTHERINSERT” on page 166

• “DBPROP_OTHERUPDATEDELETE” on page 167

• “DBPROP_OWNINSERT” on page 167

• “DBPROP_OWNUPDATEDELETE” on page 167

• “DBPROP_REMOVEDELETED” on page 168

• “DBPROP_UNIQUEROWS” on page 188

• “DBPROP_UPDATABILITY” on page 189

• DBPROPSET_SAS_ROWSET

• “DBPROP_SAS_ALTERPASSWORD” on page 168

• “DBPROP_SAS_BLANKPADDING” on page 169

• “DBPROP_SAS_DATASET_ENCODING” on page 169

• “DBPROP_SAS_DATASET_LABEL” on page 169

• “DBPROP_SAS_DATASET_TYPE” on page 170

• “DBPROP_SAS_DATASETOPTS” on page 170

• “DBPROP_SAS_FMTERR” on page 171

• “DBPROP_SAS_FORMATS” on page 172

• “DBPROP_SAS_GET_MISSING_VALUES” on page 172

• “DBPROP_SAS_INFORMATS” on page 173

• “DBPROP_SAS_MISSING_VALUES” on page 181

• “DBPROP_SAS_NLSOPTS” on page 181

• “DBPROP_SAS_OPTIMISTICLOCKING” on page 182

• “DBPROP_SAS_PAGESIZE” on page 182

• “DBPROP_SAS_PHYSICALPOSITIONING” on page 183

• “DBPROP_SAS_READPASSWORD” on page 184

• “DBPROP_SAS_RESERVED_ROWSETFLAGS” on page 184

• “DBPROP_SAS_WHERE” on page 186

• “DBPROP_SAS_WRITEPASSWORD” on page 187

• DBPROPSET_VIEW

• “DBPROP_IViewFilter” on page 162

• “DBPROP_IViewRowset” on page 162

• “DBPROP_IViewSort” on page 163

• “DBPROP_MAXORSINFILTER” on page 164

208 Appendix 3 • OLE DB Properties

• “DBPROP_MAXSORTCOLUMNS” on page 165

• “DBPROP_SORTONINDEX” on page 188

Supported Properties in the Session Group
• DBPROPSET_SAS_SESSION

• “DBPROP_SAS_PT2DBPW” on page 183

• “DBPROP_SAS_SQLCONNECTIONSTRING” on page 184

• “DBPROP_SAS_SQLENGINE” on page 185

• DBPROPSET_SESSION

• “DBPROP_SESS_AUTOCOMMITISOLEVELS” on page 187

Supported Properties in the Session Group 209

210 Appendix 3 • OLE DB Properties

Appendix 4

OLE DB Interfaces

About OLE DB Interfaces . 211
What Are OLE DB Interfaces? . 211

Standard OLE DB Interfaces . 212
Command Object . 212
Data Source Object . 212
Rowset Object . 212
Session Object . 213

OLE DB for OLAP Interfaces . 213
Dataset Object . 213

Custom Interfaces . 213
About Custom Interfaces . 213
ISASColumnsInfo Custom Interface . 214
ISASDataSetInfo Custom Interface . 216
ISASDataSetInfo90 Custom Interface . 218

Data Set Management Using the ITableDefinition Interface 221
About Creating and Deleting SAS Data Sets . 221
Creating a Data Set . 221
Deleting Data Sets . 223

About OLE DB Interfaces

What Are OLE DB Interfaces?
An OLE DB data provider is a COM component composed of a collection of interfaces.
Each OLE DB interface defines a set of related methods that OLE DB clients can call. The
OLE DB specification defines a set of standard OLE DB interfaces. The OLAP provider
also implements the OLE DB for OLAP interfaces. In addition, the following custom
rowset interfaces supplement the standard OLE DB interfaces.

• ISASColumnsInfo Custom Interface

• ISASDataSetInfo Custom Interface

• ISASDataSetInfo90 Custom Interface

The following topics explain how to use the interfaces:

• “Standard OLE DB Interfaces” on page 212

211

• “OLE DB for OLAP Interfaces” on page 213

• “Custom Interfaces” on page 213

Standard OLE DB Interfaces

Command Object
The Command object implementation does not support command processing. The
implementation accommodates a limitation in ADO support for custom rowset properties.
All of the command interface methods, except for those methods on ICommandProperties,
return E_FAIL. Here are the Command object interfaces:

• IColumnsInfo

• ICommand

• ICommandPrepare

• ICommandProperties

• ICommandText

• IConvertType

• ISupportErrorInfo

Data Source Object
These interfaces are supported on the Data Source object:

• IDBCreateSession

• IDBInitialize

• IDBProperties

• IPersist

• ISupportErrorInfo

Rowset Object
These interfaces are supported on the Rowset object with the following restrictions:

• For the SAS/SHARE, IOM, and Base SAS providers, the IRowsetLocate, IRowset
Change, and IRowsetUpdate interfaces are not supported on Rowset objects that are
returned by Command objects. They are supported only on Rowset objects that are
returned by IOpenRowset::OpenRowset.

• For the SAS/SHARE and Base SAS providers, this same restriction is true for
IRowsetIdentity.

• IAccessor

• IColumnsInfo

• IConvertType

• IRowset

• IRowsetChange

212 Appendix 4 • OLE DB Interfaces

• IRowsetIdentity

• IRowsetInfo

• IRowsetLocate

• IRowsetUpdate

• ISupportErrorInfo

Session Object
These interfaces are supported on the Session object:

• IDBCreateCommand

Note: IDBCreateCommand is present only to accommodate a limitation in ADO
support for custom rowset properties. IDBCreateCommand methods return
E_FAIL.

• IDBSchemaRowset

• IGetDataSource

• IOpenRowset

• ISessionProperties

• ISupportErrorInfo

• ITableDefinition

See Also
“Data Set Management Using the ITableDefinition Interface” on page 221

OLE DB for OLAP Interfaces

Dataset Object
These interfaces are supported only by the OLAP provider:

• IAccessor

• IColumnsInfo

• IConvertType

• IMDDataset

• IMDFind

Custom Interfaces

About Custom Interfaces
SAS provides three custom interfaces that can be used to return data set metadata that does
not directly map to OLE DB constructs.

About Custom Interfaces 213

• The ISASColumnsInfo interface has one method.

• The ISASDataSetInfo interface has two methods.

• The ISASDataSetInfo90 interface is an extension to the ISASDataSetInfo interface.
The ISASDataSetInfo90 interface has four methods. Two are shared with the
ISASDataSetInfo interface and two are unique to the ISASDataSetInfo90 interface.

ISASColumnsInfo Custom Interface

The GetColumnInfo Method
The single ISASColumnsInfo interface method is called GetColumnInfo. GetColumnInfo
supplements the standard OLE DB IColumnsInfo interface methods. It returns SAS column
metadata that is not supported by the GetColumnInfo method in the standard IColumnsInfo
interface.

HRESULT GetColumnInfo(
 DBORDINAL * pcColumns,
 SASCOLUMNINFO ** prgInfo,
 OLECHAR ** ppStringsBuffer);

GetColumnInfo returns a fixed set of column metadata in an array of SASCOLUMNINFO
structures, one structure per column. The structures appear in the same order in which the
columns appear in the rowset (column ordinal order). This order is determined by the order
in which the columns are returned from IColumnsInfo::GetColumnInfo. Bookmark
columns are never included in the output of this method. Here is the definition of the
SASCOLUMNINFO structure:

typedef struct tagSASCOLUMNINFO {
 LPOLESTR pwszColDesc;
 LPOLESTR pwszFmtName;
 LPOLESTR pwszIFmtName;
 ULONG iOrdinal;
 SHORT iFmtLength;
 SHORT iFmtDecimal;
 SHORT iIFmtLength;
 SHORT iIFmtDecimal;
 SHORT iSortInfo;
 BOOL fIndexed;
} SASCOLUMNINFO;

The elements (members) of the SASCOLUMNINFO structure are described in the
following table.

Table A4.1 Elements (Members) of the SASCOLUMNINFO Structure

Element Description

pwszColDesc Pointer to the column description (the SAS variable label). If no label is associated
with this column, this member is NULL.

pwszFmtName Pointer to the persisted format name. If no format is associated with this column,
this member is NULL.

pwszIFmtName Pointer to the persisted informat name. If no informat is associated with this
column, this member is NULL.

214 Appendix 4 • OLE DB Interfaces

Element Description

iOrdinal The ordinal of the column. This value corresponds to the SAS variable number.

iFmtLength The width of the formatted data. This member is valid only when pwszFmtName
is not NULL.

iFmtDecimal The decimal width of the format data. This member is valid only when
pwszFmtDecimal is not NULL.

iIFmtLength The width of the informatted data. This member is valid only when pwszIFmtName
is not NULL.

iIFmtDecimal The decimal width of the informatted data. This member is valid only when
pwszIFmtName is not NULL.

iSortInfo A signed short value that indicates the column's position in any applied sorting
hierarchy. Positive values indicate ascending sort order, and negative values
indicate descending sort order. The absolute value of the signed short value
describes the position of the variable in the sorting hierarchy. Zero (0) indicates
that the column does not participate in sorting.

fIndexed True when this column is an indexed column.

* For the SAS/SHARE, Local, and Base SAS providers, this member is valid. For the SAS IOM provider, this member is not valid. That
is, it always contains 0 whether the column participates in the sorting.

Here are the parameters for the GetColumnInfo method:

pcColumns
[out] A pointer to the memory where the number of columns in the rowset will be
returned. This number will not include the bookmark column even if there is one. If
this method terminates as the result of an error, *pcColumns is set to 0.

prgInfo
[out] A pointer to the memory where an array of SASCOLUMNINFO structures will
be returned. One structure is returned for each column that is in the rowset. The provider
allocates memory for the structures and returns the address of the memory location.
When the memory is no longer needed by the column information, you use
IMalloc::Free to release the memory. If *pcColumns is 0 when it is calculated or this
method terminates as the result of an error, the provider does not allocate any memory
and ensures that *prgInfo is a NULL pointer.

ppStringsBuffer
[out] A pointer to the memory where column string names will be returned. All of the
column string values (names) are stored within a single allocation block. If no returned
columns have string names or if this method terminates as the result of an error,
*ppStringsBuffer will be set to NULL. If one or more columns has a string name, then
the specified memory location contains the string values (names) for the columns.
When the names are no longer needed, you use IMalloc::Free to release the memory.
If *pcColumns is 0 when calculated or this method terminates as the result of an error,
the provider does not allocate any memory and ensures that *ppStringsBuffer is a
NULL pointer. Each string value stored in this buffer is terminated by a null-termination
character.

Here are the return codes for the GetColumnInfo method:

S_OK
indicates that the method succeeded.

ISASColumnsInfo Custom Interface 215

E_FAIL
indicates that a provider-specific error occurred.

E_INVALIDARG
indicates that pcColumns, prgInfo, or ppStringsBuffer was a null pointer.

E_OUTOFMEMORY
indicates that the provider was unable to allocate sufficient memory for the column
information structures.

T I P The GetColumnInfo method provides a quick alternative to the GetColumnsRowset
method. While the GetColumnsRowset method returns all available column metadata,
it does so in a rowset. To get the metadata, the consumer must create the column
metadata rowset, create one or more accessors, get each row in the rowset, and get the
data from the rowset.

ISASDataSetInfo Custom Interface

The GetDataSetInfo Method
The GetDataSetInfo method returns SAS file metadata that is not supported by predefined
OLE DB constructs.

HRESULT GetDataSetInfo(
 SASDATASETINFO ** ppDataSetInfo,
 OLECHAR ** ppStringsBuffer);

The GetDataSetInfo method makes no logical change to the state of the object. The
GetDataSetInfo method returns metadata about the file in a SASDATASETINFO structure.

typedef struct tagSASDATASETINFO {
 LONG lLogicalRecordCount;
 LONG lPhysicalRecordCount;
 LONG lRecordLength;
 DATE dDateCreated;
 DATE dDateModified;
 LPOLESTR pwszLabel;
 LPOLESTR pwszCompressionRoutine;
 BOOL fIsIndexed;
} SASDATASETINFO;

The elements (members) of the SASDATASETINFO structure are described in the
following table:

Table A4.2 Elements (Members) of the SASDATASETINFO Structure

Element Description

lLogicalRecordCount The number of logical records in the data set. This value is the number of records
that are returned if the caller sequentially reads through the entire data set. If
this value is not immediately available, a value of -1 is returned in this field.
This situation occurs when the data set is not a physical file (for example, a
SAS data view or a WHERE clause). In such cases, you can use the
GetRecordCounts method to computationally determine this value.

216 Appendix 4 • OLE DB Interfaces

Element Description

lPhysicalRecordCount The number of physical records in the data set. This number can be greater than
the number of logical records and can indicate the magnitude of the physical
file size. If this value is not immediately available, a value of -1 is returned in
this field. This situation occurs when the data set is not a physical SAS file (for
example, a SAS data view or a SAS/ACCESS table). In such cases, you can
use the GetRecordCounts method to computationally determine this value.

lRecordLength The physical record length in bytes.

dDateCreated The date that the data set was created.

dDateModified The date that the data set was last modified.

pwszLabel The data set label. NULL if none is set.

pwszCompressionRoutine The name of the compression algorithm used. NO if none is set.

fIsIndexed TRUE if an index exists on the data set.

Under some circumstances, the actual values for the lLogicalRecordCount and
lPhysicalRecordCount members of the SASDATASETINFO structure are not immediately
available. This situation occurs when the underlying data set is something other than a
physical SAS data file (for example, a SAS data view, a WHERE clause, or a
SAS/ACCESS file). In those cases, the members return a -1. To determine the actual values,
call ISASDataSetInfo::GetRecordCounts.

Here are the parameters for the GetDataSetInfo method:

ppDataSetInfo
[out] A pointer to the memory where a SASDATASETINFO structure will be returned.
If *ppDataSetInfo is NULL when GetDataSetInfo is executed, then the provider
allocates memory for this structure and returns the address to the memory location
specified by this pointer. When the memory is no longer needed, you use IMalloc::Free
to free the memory. As an alternative to depending on the provider to allocate memory
for the SASDATASETINFO structure, the consumer can allocate memory for this
structure and pass in the address as *ppDataSetInfo.

ppStringsBuffer
[out] A pointer to the memory where column string names will be returned. All of the
column string values (names) are stored within a single allocation block. If no returned
columns have string names, or if this method terminates as the result of an error,
*ppStringsBuffer will be set to NULL. If one or more columns has a string name, then
the specified memory location contains the string values (names) for the columns.
When the names are no longer needed, you use IMalloc::Free to release the memory.
If *pcColumns is 0 when calculated or this method terminates as the result of an error,
the provider does not allocate any memory and ensures that *ppStringsBuffer is a
NULL pointer. Each string value stored in this buffer is terminated by a null-termination
character.

Here are the return codes for the GetDataSetInfo method:

S_OK
indicates that the method succeeded.

E_FAIL
indicates that a provider-specific error occurred.

ISASDataSetInfo Custom Interface 217

E_INVALIDARG
indicates that the ppDataSetInfo or the ppStringsBuffer was a null pointer.

E_OUTOFMEMORY
indicates that the provider was unable to allocate sufficient memory for the data set
information structures.

The GetRecordCounts Method
The GetRecordCounts method determines the number of logical and physical records in a
data set by forcing a sequential read of the data set. Call this method only when
GetDataSetInfo returns -1 in the SASDATASETINFO lLogicalRecordCount and
lPhysicalRecordCount fields.

HRESULT GetRecordCounts(
 LONGLONG * plLogicalRecordCount,
 LONGLONG * plPhysicalRecordCount);

CAUTION:
Executing this method on a very large data set might incur a significant
performance cost.

Here are the parameters for the GetRecordCounts method:

plLogicalRecordCount
[out]

A pointer to the memory where the logical number of records in the data set will be
returned. This number indicates how many rows are returned if every row is read once.
If this value exceeds a LONGLONG, a value of -1 is returned in this field.

plPhysicalRecordCount
[out]

A pointer to the memory where the physical number of records in the data set will be
returned. This number might be greater than the number of logical records. It indicates
how many records are allocated in the data set. This value multiplied by the length of
an individual record (lRecordLength returned by GetDataSetInfo approximates the
magnitude of the physical size of the data set. If this value exceeds a LONGLONG, a
value of -1 is returned in this field.

Here are the return codes for the GetRecordCounts method:

S_OK
indicates that the method succeeded.

E_FAIL
indicates that a provider-specific error occurred.

E_INVALIDARG
indicates that plLogicalRecordCount or plPhysicalRecordCount was a null pointer.

ISASDataSetInfo90 Custom Interface

The GetDataSetInfo_2 Method
The GetDataSetInfo_2 method returns file metadata that is specific to SAS. It is a revised
version of GetDataSetInfo that permits larger record counts.

HRESULT GetDataSetInfo_2(
 SASDATASETINFO90 ** ppDataSetInfo,
 OLECHAR ** ppStringsBuffer);

218 Appendix 4 • OLE DB Interfaces

Note: See “The GetDataSetInfo Method” on page 216.

This method makes no logical change to the state of the [SAS file?] object. The
GetDataSetInfo_2 method returns file metadata in a SASDATASETINFO90 structure.

typedef struct tagSASDATASETINFO90 {
 LONGLONG llLogicalRecordCount;
 LONGLONG llPhysicalRecordCount;
 LONG lRecordLength;
 DATE dDateCreated;
 DATE dDateModified;
 LPOLESTR pwszLabel;
 LPOLESTR pwszCompressionRoutine;
 BOOL fIsIndexed;
} SASDATASETINFO90;

The elements (members) of the SASDATASETINFO90 structure are described in the
following table:

Table A4.3 Elements (Members) of the SASDATASETINFO90 Structure

Element Description

llLogicalRecordCount The number of logical records in the data set. This value is the number of records
that are returned if the caller reads sequentially through the entire data set. If this
value is not immediately available, a value of -1 is returned in this field. This
situation occurs when the data set is not a physical file (for example, a SAS data
view or a WHERE clause). In such cases, you can use the GetRecordCounts_2
method to computationally determine this value.

llPhysicalRecordCount The number of physical records in the data set. This number can be greater than
the number of logical records and can indicate the magnitude of the physical file
size. If this value is not immediately available, a value of -1 is returned in this
field. This situation occurs when the data set is not a physical SAS file (for
example, a SAS data view or a SAS/ACCESS table). In such cases, you can use
the GetRecordCounts_2 method to computationally determine this value.

lRecordLength The physical record length in bytes.

dDateCreated The date that the data set was created.

dDateModified The date that the data set was last modified.

pwszLabel The data set label. NULL if none is set.

pwszCompressionRoutine The name of the compression algorithm used. NO if none is set.

fIsIndexed TRUE if an index exists on the data set.

Under some circumstances, the actual values for the llLogicalRecordCount and
llPhysicalRecordCount members of the SASDATASETINFO90 structure are not
immediately available. This situation occurs when the underlying data set is something
other than a physical SAS data file (for example, a SAS data view, a WHERE clause, or a
SAS/ACCESS file). In those cases, the members return a -1. To determine the actual values,
call ISASDataSetInfo90::GetRecordCounts_2.

Here are the parameters for the GetDataSetInfo_2 method:

ISASDataSetInfo90 Custom Interface 219

ppDataSetInfo
[out] A pointer to the memory where a SASDATASETINFO90 structure will be
returned. If *ppDataSetInfo is NULL when GetDataSetInfo_2 is executed, then the
provider allocates memory for this structure and returns the address to the memory
location specified by this pointer. When the memory is no longer needed, you use
IMalloc::Free to free the memory. As an alternative to depending on the provider to
allocate memory for the SASDATASETINFO90 structure, the consumer can allocate
memory for this structure and pass in the address as *ppDataSetInfo.

ppStringsBuffer
[out] A pointer to the memory where column string names will be returned. All of the
column string values (names) are stored within a single allocation block. If no returned
columns have string names, or if this method terminates as the result of an error,
*ppStringsBuffer will be set to NULL. If one or more columns has a string name, then
the specified memory location contains the string values (names) for the columns.
When the names are no longer needed, you use IMalloc::Free to release the memory.
If *pcColumns is 0 when calculated or this method terminates as the result of an error,
the provider does not allocate any memory and ensures that *ppStringsBuffer is a
NULL pointer. Each string value stored in this buffer is terminated by a null-termination
character.

Here are the return codes for the GetDataSetInfo_2 method:

S_OK
indicates that the method succeeded.

E_FAIL
indicates that a provider-specific error occurred.

E_INVALIDARG
indicates that ppDataSetInfo or ppStringsBuffer was a null pointer.

E_OUTOFMEMORY
indicates that the provider was unable to allocate sufficient memory for the data set
information structures.

The GetRecordCounts_2 Method
The GetRecordCounts_2 method determines a count of the number of logical and physical
records in a data set by forcing a sequential read of the data set. Call this method only when
GetDataSetInfo_2 returns -1 in the SASDATASETINFO90 llLogicalRecordCount and
llPhysicalRecordCount fields.

HRESULT GetRecordCounts_2(
 LONGLONG * pllLogicalRecordCount,
 LONGLONG * pllPhysicalRecordCount);

Note: See “The GetRecordCounts Method” on page 218.

CAUTION:
Executing this method on a very large data set might incur a significant
performance cost.

Here are the parameters for the GetRecordCounts_2 method:

pllLogicalRecordCount
[out] A pointer to the memory where the logical number of records in the data set will
be returned. This number indicates how many rows are returned if every row is read
once.

220 Appendix 4 • OLE DB Interfaces

pllPhysicalRecordCount
[out] A pointer to the memory where the physical number of records in the data set will
be returned. This number might be greater than the number of logical records. It
indicates how many records are allocated in the data set. This value multiplied by the
length of an individual record (lRecordLength returned by GetDataSetInfo_2)
approximates the magnitude of the physical size of the data set.

Here are the return codes for the GetRecordCounts_2 method:

S_OK
indicates that the method succeeded.

E_FAIL
indicates that a provider-specific error occurred.

E_INVALIDARG
indicates that pllLogicalRecordCount or pllPhysicalRecordCount was a null pointer.

Data Set Management Using the ITableDefinition
Interface

About Creating and Deleting SAS Data Sets
The SAS/SHARE, IOM, and Base SAS providers implement the CreateTable and
DropTable methods that are available on the OLE DB ITableDefinition interface. These
methods enable you to create new SAS data sets and delete existing ones.

Note: SAS does not support the ITableDefinition AddColumn or DropColumn methods.

Creating a Data Set

Process Overview
To create a SAS data set, you must provide the following information:

• the name of the new SAS data set (table)

• a description of the SAS variables (columns in the table)

You must also indicate whether you want to only create the physical data set or if you also
want to return a rowset on that data set. If you want a rowset to be returned, you must
provide property values for that rowset.

Naming the Data Set
Note: The form of the name must be libname.membername, where libname is a library

defined by the server and membername is the data file or data view that you want to
open within the library.

To specify the name of the new data set, you use the DBID structure defined by OLE DB.
The following code shows how to set up a DBID structure for a new data set named
MYDATA in a library named MYLIB.

DBID TableID;
TableID.eKind = DBKIND_NAME;
TableID.uName.pwszName = L"MYLIB.MYDATA";

Creating a Data Set 221

The DBID structure uses two members, eKind and pwszName, which are the only two
members supported by the SAS providers.

• The eKind member indicates where the provider should look within the DBID to find
the name to use when the physical data set is created.

• DBKIND_NAME tells the provider to look only at the pwszName member of the
uName union, which contains the data set name (with library reference, if applicable).
The pwszName value is not case-sensitive.

Identifying the Variables
In this example data set, the following three variables (columns) are defined:

• FRIEND, a 20-byte character variable

• BIRTHDAY, a SAS date variable

• PHONE, an 8-byte character variable.

FRIEND and PHONE are represented as SAS character variables. BIRTHDAY must be
represented as a double because that is how dates are stored in SAS data sets. SAS variable
types are mapped to OLE DB DBTYPE indicators as follows:

• SAS numeric data is returned as a DBTYPE_R8.

• SAS character data is returned as a DBTYPE_STR.

Note: For more information about data types, see “PROVIDER_TYPES Schema Rowset”
on page 243.

The following code shows how to use the variable information to fill an array of
DBCOLUMNDESC structures. Variable (column) names are specified by using a DBID
structure in the same way that a data set (table) name is specified. The dbcid member of
the DBCOLUMNDESC structure is where the variable (column) name is defined. The
other members of the DBCOLUMNDESC structure are filled out based on the rules
outlined by the OLE DB specification.

DBCOLUMNDESC rgColumnDescs[3];
memset(rgColumnDescs, '0', sizeof(rgColumnDescs)); // defensive programming
rgColumnDescs[0].dbcid.uName.pwszName = L"FRIEND";
rgColumnDescs[0].dbcid.eKind = DBKIND_NAME;
rgColumnDescs[0].wType = DBTYPE_STR;
rgColumnDescs[0].ulColumnSize = 20;
rgColumnDescs[1].dbcid.uName.pwszName = L"BIRTHDAY";
rgColumnDescs[1].dbcid.eKind = DBKIND_NAME;
rgColumnDescs[1].wType = DBTYPE_R8;
rgColumnDescs[1].bPrecision = 15;
rgColumnDescs[2].dbcid.uName.pwszName = L"PHONE";
rgColumnDescs[2].dbcid.eKind = DBKIND_NAME;
rgColumnDescs[2].wType = DBTYPE_STR;
rgColumnDescs[2].ulColumnSize = 8;

Returning a Rowset
To create a rowset on the new data set, you must specify the following information:

• the IID of the interface you want returned

• the address of an interface pointer

The following code completes this example. It can be used to create and return a sequential
rowset—an approach that is useful if you want to create and populate the data set at the
same time, but you do not intend to immediately update the new rows.

222 Appendix 4 • OLE DB Interfaces

IDBCreateSession * pCreateSession;
ITableDefinition * pTableDefinition;
IUnknown * pRowset;
DBPROP prop;
DBPROPSET PropertySet;
pDSO->QueryInterface(IID_IDBCreateSession,);
pCreateSession->CreateSession(NULL, // no aggregation
 IID_ITableDefinition, // ID of the interface we want on the session object
); // address of pointer to session
// specify sequential access
prop.dwPropertyID = DBPROP_IRowsetLocate;
prop.dwOptions = DBPROPOPTIONS_OPTIONAL;
prop.colid = DB_NULLID;
prop.vValue.vt = VT_BOOL;
prop.vValue.bool = VARIANT_FALSE;
PropertySet.guidPropertySet = DBPROPSET_ROWSET;
PropertySet.cProperties = 1;
PropertySet.rgProperties =
pTableDefinition->CreateTable(NULL,
 // no aggregation
 ,
 3, // 3 columns
 rgColumnDescs, // column descriptions
 IID_IRowset, // id of interface we want on the rowset
 1, // we're passing in the rowset property set
 ,
 NULL, // ignored by the providers
); // address of pointer to rowset

Deleting Data Sets
You can use the DropTable method to delete a SAS data set from its associated data source.
The definition of data source depends on the provider that is being used:

• For the Base SAS provider, a data source consists of all library names that are known
to a local installation of Base SAS.

• For the SAS/SHARE provider, a data source consists of all library names that are known
to a SAS/SHARE server.

• For the IOM provider, a data source consists of all library names that are known to a
SAS Workspace Server.

CAUTION:
Be careful when you design an application that implements this method.If you
give users the ability to erase data sets, you should also build in safeguards to prevent
them from accidentally deleting data sets.

The DropTable method's single parameter is an instance of the DBID structure, which is
used to specify the name of the data set (table) and its variables (columns). The following
code shows how to set up a DBID structure to delete a data set named MYDATA in a
library named MYLIB.

DBID TableID;
TableID.eKind = DBKIND_NAME;
TableID.uName.pwszName = L"MYLIB.MYDATA";

The following code shows how you would use this DBID structure to delete the data set:

Deleting Data Sets 223

IDBCreateSession * pCreateSession;
ITableDefinition * pTableDefinition;
pDSO->QueryInterface(IID_IDBCreateSession,);
pCreateSession->CreateSession(NULL, // no aggregation
 IID_ITableDefinition, // ID of the interface we want on the session object
); // address of pointer to session
pTableDefinition->DropTable();

224 Appendix 4 • OLE DB Interfaces

Appendix 5

Schema Rowsets

About Schema Rowsets . 226
What Are Schema Rowsets? . 226
Supported Schema Rowsets . 226
How Are Schema Rowsets Obtained? . 227
How to Restrict the Rows That Are Returned . 228

CATALOGS Schema Rowset . 228
Standard Mapping . 228

COLUMNS Schema Rowset . 228
Standard Mapping . 228
Rowset Extensions . 230
Additional Details . 231

CUBES Schema Rowset . 231
Standard Mapping . 231

DIMENSIONS Schema Rowset . 232
Standard Mapping . 232

FUNCTIONS Schema Rowset . 234
Standard Mapping . 234

HIERARCHIES Schema Rowset . 235
Standard Mapping . 235

LEVELS Schema Rowset . 236
Standard Mapping . 236

MEASURES Schema Rowset . 238
Standard Mapping . 238

MEMBERS Schema Rowset . 239
Standard Mapping . 239
The Tree Operation Restriction . 240

PROPERTIES Schema Rowset . 241
Standard Mapping . 241

PROVIDER_TYPES Schema Rowset . 243
Standard Mapping . 243

SETS Schema Rowset . 245
Standard Mapping . 245

TABLES Schema Rowset . 245
Standard Mapping . 245
Rowset Extensions . 246

225

About Schema Rowsets

What Are Schema Rowsets?
Schema rowsets provide metadata about a data source. The definition of data source
depends on the provider being used:

• For the local provider, a data source is a single directory on disk, which corresponds
to a single library.

• For the SAS/SHARE provider, a data source consists of all library names that are known
to a SAS/SHARE server.

• For the IOM provider, a data source consists of all library names that are known to a
SAS Workspace Server.

• For the OLAP provider, a data source consists of all cubes that are known to a SAS
OLAP Server.

• For the Base SAS provider, a data source consists of all library names that are known
to a local installation of Base SAS.

Supported Schema Rowsets
The SAS providers support the following three schema rowsets:

Table A5.1 Schema Rowsets Supported by All Providers

Schema Rowset Description

TABLES Provides information about which tables are available to the data
source.

COLUMNS Provides information about all of the columns within those tables.

PROVIDER_TYPES Indicates which data types the provider uses to expose SAS data.

In addition, the OLAP Provider also supports the following OLE DB for OLAP schema
rowsets:

Table A5.2 Schema Rowsets Supported by the OLAP Provider

Schema Rowset Description

CATALOGS Provides information about the catalogs that are available to the data
source.

CUBES Provides information about the cubes that are available to the data
source.

DIMENSIONS Provides information about the dimensions that are available in a
specified cube.

226 Appendix 5 • Schema Rowsets

Schema Rowset Description

HIERARCHIES Provides information about the hierarchies that are available in a
specified dimension.

LEVELS Provides information about the levels that are available in a specified
dimension.

MEASURES Provides information about the measures that are available to the data
source.

PROPERTIES Provides information about the properties that are available in each
level and cell.

MEMBERS Provides information about the members that are available to the data
source.

FUNCTIONS Provides information about the functions that are available to the data
source.

SETS Provides information about any currently defined sets.

For more information about each schema rowset, see the following topics:

• “CATALOGS Schema Rowset” on page 228

• “COLUMNS Schema Rowset” on page 228

• “CUBES Schema Rowset” on page 231

• “DIMENSIONS Schema Rowset” on page 232

• “FUNCTIONS Schema Rowset” on page 234

• “HIERARCHIES Schema Rowset” on page 235

• “LEVELS Schema Rowset” on page 236

• “MEASURES Schema Rowset” on page 238

• “MEMBERS Schema Rowset ” on page 239

• “PROPERTIES Schema Rowset” on page 241

• “PROVIDER_TYPES Schema Rowset” on page 243

• “SETS Schema Rowset” on page 245

• “TABLES Schema Rowset” on page 245

Note: The tables in each schema rowset topic list type indicators. For definitions of the
type indicators, see the OLE DB Programmer’s Reference and Data Access SDK.

How Are Schema Rowsets Obtained?
You can obtain schema rowsets in the following ways:

• If you are using ADO, you can pass one of the elements of the ADO SchemaEnum
enumeration to the OpenSchema method of an open Connection object.

• If you are using OLE DB, you can pass the GUID that represents the desired schema
to the IDBSchemaRowset::GetRowset method on an open Session object.

How Are Schema Rowsets Obtained? 227

How to Restrict the Rows That Are Returned
You can use DBSchemaRowset::GetRowset to restrict the rows that are returned in a
schema rowset. A restriction is a value for a specific column. When a restriction is passed
to IDBSchemaRowset::GetRowset, all rows that are returned in the schema rowset must
match the restriction value on the specified column. Restriction values do not support
pattern matching or wildcards. For example, the restriction value D_F matches D_F but not
DEF.

T I P To determine which columns support restrictions, write an OLE DB consumer that
calls IDBSchemaRowset::GetSchemas.

CATALOGS Schema Rowset

Standard Mapping
The CATALOGS schema rowset returns metadata that indicates which catalogs can be
accessed by the provider. Each row in the CATALOGS schema rowset corresponds to one
catalog available in the provider.

The following table describes the columns that are available in the CATALOGS schema
rowset.

Table A5.3 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog. Cannot be NULL. Yes

DESCRIPTION DBTYPE_WSTR Description of the catalog. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

COLUMNS Schema Rowset

Standard Mapping
The COLUMNS schema rowset returns metadata about all of the columns within the tables
that are available to the current data source. Each row in the COLUMNS schema rowset
corresponds to one column in a table. In the case of a SAS data set, a column is a variable.

The following table lists the 11 columns (of the 28 columns in the OLE DB specification)
that contain data.

228 Appendix 5 • Schema Rowsets

Table A5.4 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

TABLE_NAME DBTYPE_WSTR Table name. This value is
either libname.memname
(SAS/SHARE, IOM, and
Base SAS providers) or the
data set name (local
provider).

Yes

COLUMN_NAME DBTYPE_WSTR Column name that
corresponds to the SAS
variable (column) name.

No

ORDINAL_POSITION DBTYPE_UI4 Column ordinal that
corresponds to the SAS
variable (column) number.
Column numbers begin at 1.

No

COLUMN_HASDEFAULT DBTYPE_BOOL VARIANT_TRUE if the
column has a default value.
VARIANT_FALSE if there
is no default value or if the
existence of a default value
is unknown.

No

COLUMN_FLAGS DBTYPE_BOOL A bitmask that describes the
column. (See “Possible
COLUMN_FLAGS
Values” on page 231.)

No

IS_NULLABLE DBTYPE_UI4 VARIANT_TRUE if the
column can be set to NULL.
VARIANT_FALSE if the
column cannot be set to
NULL (which corresponds
to a SAS missing value).

No

DATA_TYPE DBTYPE_UI2 Column data type. No

CHARACTER_MAXIMUM_LENGTH_
TYPE

DBTYPE_UI4 The maximum possible
length in characters of the
column value.

No

CHARACTER_OCTET_LENGTH DBTYPE_UI4 The maximum length in
bytes of the column value.

No

NUMERIC_PRECISION DBTYPE_UI2 The maximum precision of
the column.

No

DESCRIPTION DBTYPE_WSTR The SAS variable (column)
label.

No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

Standard Mapping 229

Rowset Extensions
All the SAS providers extend the COLUMNS schema rowset to include metadata that is
specific to SAS data sets. These custom schema rowset columns include the same
information that is returned by the ISASColumnsInfo interface. However, there are some
differences in how the information is made available. Specifically, the
ISASColumnsInfo interface returns SAS metadata one data set at a time and is limited to
OLE DB consumers. By contrast, the COLUMNS schema rowset extensions include all
columns (variables) that are in all tables (data sets) in a data source. They are also available
to both OLE DB and ADO consumers.

Each custom column maps to a member of the SASCOLUMNINFO structure that is
returned by ISASColumnsInfo::GetColumnInfo. A ninth member in that structure,
pwszColDesc, does not have a corresponding custom column because it returns a variable
label that is included in the OLE DB specification's standard DESCRIPTION column.

The following table lists the columns that are added to the COLUMNS schema rowset. The
columns are returned following the standard columns in the OLE DB specification and in
the order in which they appear in the following table.

Table A5.5 Rowset Extensions

Column Name Type Indicator Mapped Member Description

FORMAT_NAME DBTYPE_WSTR pwszFmtName Stored format name. If no format is
associated with this column, this
member is NULL.

FORMAT_LENGTH DBTYPE_I2 iFmtLength Stored width of the formatted data.

FORMAT_DECIMAL DBTYPE_I2 iFmtDecimal Stored decimal width of the formatted
data.

INFORMAT_NAME DBTYPE_WSTR pwszIFmtName Stored informat name.

INFORMAT_LENGTH DBTYPE_I2 iIFmtLength Stored width to use when applying the
default informat.

INFORMAT_DECIMAL DBTYPE_I2 iIFmtDecimal Stored decimal width to use when
applying the default informat.

SORT_ORDER DBTYPE_I2 iSortInfo A signed short value that indicates the
column's position in any applied sorting
hierarchy. This member is not valid for
all providers, and it is applicable only if
the data set is the result of a SORT
procedure. (See “What SORT_ORDER
Means” on page 231.)

DBTYPE_INDEXED DBTYPE_BOOL fIndexed VARIANT_TRUE when the variable is
indexed; otherwise, it is
VARIANT_FALSE.

230 Appendix 5 • Schema Rowsets

Additional Details

Possible COLUMN_FLAGS Values
The COLUMN_FLAGS column is a bitmask that describes the column. The
DBCOLUMNFLAGS enumerated type lists all of the possible bits that could be set in the
bitmask.

DBCOLUMNFLAGS_ISFIXEDLENGTH
Set only if all data in the column has the same length. This flag is set for columns that
contain numeric data. If DBPROP_SAS_BLANKPADDING is True, then this flag is
set for columns containing character data. Otherwise, this flag is not set.

DBCOLUMNFLAGS_MAYBENULL
Set if the column can contain NULL values (which correspond to missing values). This
flag is used by OLE DB consumers that read data to determine whether they might
encounter a missing value.

DBCOLUMNFLAGS_WRITE
Set only if IRowsetChange::SetData can be called for the column.

Note: For more information about DBCOLUMNFLAGS, see the discussion of
IColumnsInfo::GetColumnInfo in the OLE DB specification.

What SORT_ORDER Means
If a data set has been produced by a SORT procedure (PROC SORT), then the
SORT_ORDER custom column contains a signed short value. This value indicates the
column's position in the applied sorting hierarchy specified in the BY statement. Positive
values indicate ascending sort order, and negative values indicate descending sort order.
The absolute value of the signed short value describes the position of the variable in the
sorting hierarchy. Zero (0) indicates that the column does not participate in sorting.

The meaning of the value in the SORT_ORDER custom column depends on the data
provider and the consumer:

• The local provider supports this column for both OLE DB and ADO consumers.

• The SAS/SHARE and Base SAS providers support this column only for OLE DB
consumers. When used with an ADO consumer, this column contains zero when it
participates in sorting.

• The IOM provider does not support this column at all, so the column always contains
zero when it participates in sorting.

CUBES Schema Rowset

Standard Mapping
The CUBES schema rowset returns metadata about the SAS cubes that can be accessed by
the SAS OLAP Provider. Each row in the CUBES schema rowset corresponds to one cube
that is available in the provider.

The following table describes the columns that are available in the CUBES schema rowset.

Standard Mapping 231

Table A5.6 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog that contains
this cube.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains
this cube.

Yes

CUBE_NAME DBTYPE_WSTR Name of this cube. Yes

CUBE_GUID DBTYPE_GUID GUID of this cube. No

CREATED_ON DBTYPE_DBTIMESTAMP Date and time that this cube was
created.

No

LAST_SCHEMA_UPDATE DBTYPE_DBTYPESTAMP Date and time that this cube's
schema was last updated.

No

SCHEMA_UPDATED_BY DBTYPE_WSTR User ID of the person who last
updated this cube's schema.

No

LAST_DATA_UPDATE DBTYPE_DBTIMESTAMP Date and time that this cube was
last updated.

No

DATA_UPDATED_BY DBTYPE_WSTR User ID of the person who last
updated this cube.

No

DESCRIPTION DBTYPE_WSTR Description of this cube. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

DIMENSIONS Schema Rowset

Standard Mapping
The DIMENSIONS schema rowset returns metadata about the dimensions that are
available on each cube that can be accessed by the provider. Each row in the DIMENSIONS
schema rowset corresponds to a dimension that is available on a particular cube.

The following table describes the columns that are available in the DIMENSIONS schema
rowset.

232 Appendix 5 • Schema Rowsets

Table A5.7 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog that contains this
dimension.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains this
dimension.

Yes

CUBE_NAME DBTYPE_WSTR Name of the cube that contains this
dimension.

Yes

DIMENSION_NAME DBTYPE_WSTR Name of this dimension. Yes

DIMENSION_UNIQUE_NAME DBTYPE_WSTR Unique name of this dimension. Yes

DIMENSION_GUID DBTYPE_GUID GUID of this dimension. No

DIMENSION_CAPTION DBTYPE_WSTR Caption of this dimension. Same as
DIMENSION_NAME if no caption
exists for this dimension.

No

DIMENSION_ORDINAL DBTYPE_UI4 Ordinal number of this dimension.
This ordinal is relative only to the
other dimensions in the same cube.

No

DIMENSION_TYPE DBTYPE_I2 Type of this dimension. There are four
types

• MD_DIMTYPE_TIME, which is
a time dimension.

• MD_DIMTYPE_MEASURE,
which is a measures dimension.

• MD_DIMTYPE_OTHER, which
is neither a time nor a measures
dimension.

• MD_DIMTYPE_UNKNOWN,
which is an unknown type.

No

DIMENSION_CARDINALITY DBTYPE_UI4 Number of members contained by this
dimension.

No

DEFAULT_HIERARCHY DBTYPE_WSTR Default hierarchy of this dimension. No

DESCRIPTION DBTYPE_WSTR Description of this dimension. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

Standard Mapping 233

FUNCTIONS Schema Rowset

Standard Mapping
The FUNCTIONS schema rowset returns metadata that indicates which functions are
available on the cubes that can be accessed by the provider. Each row in the FUNCTIONS
schema rowset corresponds to one function that is available in the provider. The default
sort order is ORIGIN, INTERFACE_NAME, and FUNCTION_NAME.

The following table describes the columns that are available in the FUNCTIONS schema
rowset.

Table A5.8 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

FUNCTION_NAME DBTYPE_WSTR Name of the function. Yes

DESCRIPTION DBTYPE_WSTR Description of the function. No

PARAMETER_LIST DBTYPE_WSTR Comma-delimited list of parameters. No

RETURN_TYPE DBTYPE_14 Variable type of the return data type of the
function.

No

ORIGIN DBTYPE_14 One of the following:

• built-in MDX and SAS functions

• user-defined or external functions

Yes

INTERFACE_NAME DBTYPE_WSTR Name of the interface for the user-defined
function, as well as the group name for the
MDX functions.

Yes

LIBRARY_NAME DBTYPE_WSTR Name of the type library for user-defined
functions.

Yes

DLL_NAME DBTYPE_WSTR Name of the .dll or .exe in which this
function is implemented.

No

HELP_FILE DBTYPE_WSTR Name of the help file that documents this
function.

No

HELP_CONTEXT DBTYPE_14 Help context ID for this function in the help
file.

No

OBJECT DBTYPE_WSTR Object to which this function applies such
as a dimension or level.

No

PARAM_LIST DBTYPE_WSTR Comma-delimited list of parameters. No

234 Appendix 5 • Schema Rowsets

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CAPTION DBTYPE_WSTR Name of the function. Yes

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

HIERARCHIES Schema Rowset

Standard Mapping
The HIERARCHIES schema rowset returns metadata that indicates which hierarchies are
available on the dimensions that can be accessed by the provider. Each row in the
HIERARCHIES schema rowset corresponds to one hierarchy that is available in the
provider.

The following table describes the columns available in the HIERARCHIES schema rowset.

Table A5.9 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog that contains
this hierarchy.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains
this hierarchy.

Yes

CUBE_NAME DBTYPE_WSTR Name of the cube that contains this
hierarchy.

Yes

DIMENSION_UNIQUE_NAME DBTYPE_WSTR Unique name of the dimension that
contains this hierarchy.

Yes

HIERARCHY_NAME DBTYPE_WSTR Name of this hierarchy. NULL if the
parent dimension has no hierarchies.

Yes

HIERARCHY_UNIQUE_NAME DBTYPE_WSTR Unique name of this hierarchy.
Same as the name of the parent
dimension if that dimension has zero
or one hierarchy.

Yes

HIERARCHY_GUID DBTYPE_GUID GUID of this hierarchy. No

HIERARCHY_CAPTION DBTYPE_WSTR The caption of this hierarchy. Same
as HIERARCHY_NAME if no
caption exists for this hierarchy.

No

Standard Mapping 235

Column Name Type Indicator Mapped Value
Restrictions
Supported?

DIMENSION_TYPE DBTYPE_I2 The type of the parent dimension of
this hierarchy. One of four types:

• MD_DIMTYPE_TIME, which
is a time dimension.

• MD_DIMTYPE_MEASURE,
which is a measures dimension.

• MD_DIMTYPE_OTHER,
which is neither a time nor a
measures dimension.

• MD_DIMTYPE_UNKNOWN,
which is an unknown type.

No

HIERARCHY_CARDINALITY DBTYPE_UI4 The number of members contained
by this hierarchy.

No

DEFAULT_MEMBER DBTYPE_WSTR Default member of this hierarchy. No

[ALL]_MEMBER DBTYPE_WSTR Member at the highest level of
rollup in this hierarchy.

No

DESCRIPTION DBTYPE_WSTR Description of this hierarchy. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

LEVELS Schema Rowset

Standard Mapping
The LEVELS schema rowset returns metadata about the levels that are available on the
dimensions that can be accessed by the provider. Each row in the LEVELS schema rowset
corresponds to one level that is available in the provider.

The following table describes the columns that are available in the LEVELS schema rowset.

Table A5.10 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog that contains this
level.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains this
level.

Yes

CUBE_NAME DBTYPE_WSTR Name of the cube that contains this level. Yes

236 Appendix 5 • Schema Rowsets

Column Name Type Indicator Mapped Value
Restrictions
Supported?

DIMENSION_UNIQUE_NAME DBTYPE_WSTR Unique name of the dimension that
contains this level.

Yes

HIERARCHY_UNIQUE_NAME DBTYPE_WSTR Unique name of the hierarchy that
contains this level.

Yes

LEVEL_NAME DBTYPE_WSTR Name of this level. Yes

LEVEL_UNIQUE_NAME DBTYPE_WSTR Unique name of this level. Yes

LEVEL_GUID DBTYPE_GUID GUID of this level. No

LEVEL_CAPTION DBTYPE_WSTR Caption of this level. Same as
LEVEL_NAME if this level has no
caption.

No

LEVEL_NUMBER DBTYPE_UI4 The distance from this level to the root of
the hierarchy. The LEVEL_NUMBER of
the root level is 0.

No

LEVEL_CARDINALITY DBTYPE_UI4 The number of members contained by this
level.

No

LEVEL_TYPE DBTYPE_I4 The type of this level. These are the types:

• MDLEVEL_TYPE_REGULAR

• MDLEVEL_TYPE_ALL

• MDLEVEL_TYPE_CALCULATE
D

• MDLEVEL_TYPE_TIME

• MDLEVEL_TYPE_TIME_YEARS

• MDLEVEL_TYPE_TIME_HALF_
YEARS

• MDLEVEL_TYPE_QUARTERS

• MDLEVEL_TYPE_MONTHS

• MDLEVEL_TYPE_WEEKS

• MDLEVEL_TYPE_DAYS

• MDLEVEL_TYPE_HOURS

• MDLEVEL_TYPE_MINUTES

• MDLEVEL_TYPE_SECONDS

• MDLEVEL_TYPE_UNDEFINED

• MDLEVEL_TYPE_UNKNOWN

No

DESCRIPTION DBTYPE_WSTR Description of this level. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

Standard Mapping 237

MEASURES Schema Rowset

Standard Mapping
The MEASURES schema rowset returns metadata about the measures that can be accessed
by the provider. Each row in the MEASURES schema rowset corresponds to one measure
that is available in the provider.

The following table describes the columns that are available in the MEASURES schema
rowset.

Table A5.11 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog that contains this
measure.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains this
measure.

Yes

CUBE_NAME DBTYPE_WSTR Name of the cube that contains this
measure.

Yes

MEASURE_NAME DBTYPE_WSTR Name of this measure. Yes

MEASURE_UNIQUE_NAME DBTYPE_WSTR Unique name of this measure. Yes

MEASURE_CAPTION DBTYPE_WSTR Caption of this measure. Same as
MEASURE_NAME if this measure has no
caption.

No

MEASURE_GUID DBTYPE_GUID GUID of this measure. No

MEASURE_AGGREGATOR DBTYPE_I4 Indicator of how this measure was derived.
The indicators are as follows:

• MDMEASURE_AGGR_SUM

• MDMEASURE_AGGR_COUNT

• MDMEASURE_AGGR_MIN

• MDMEASURE_AGGR_MAX

• MDMEASURE_AGGR_AVG

• MDMEASURE_AGGR_VAR

• MDMEASURE_AGGR_STD

• MDMEASURE_AGGR_CALCULA
TED

• MDMEASURE_AGGR_UNKNOW
N

No

238 Appendix 5 • Schema Rowsets

Column Name Type Indicator Mapped Value
Restrictions
Supported?

DATA_TYPE DBTYPE_UI2 Data type of this measure. No

NUMERIC_PRECISION DBTYPE_UI2 Maximum numeric precision for numeric
measures. NULL for all other measures.

No

NUMERIC_SCALE DBTYPE_I2 Number of digits to the right of the decimal
point for numeric measures. NULL for all
other measures.

No

MEASURE_UNITS DBTYPE_WSTR Unit of this measure. No

DESCRIPTION DBTYPE_WSTR Description of this measure. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

MEMBERS Schema Rowset

Standard Mapping
The MEMBERS schema rowset returns metadata about the members that are available on
each cube that can be accessed by the provider. Each row in the MEMBERS schema rowset
corresponds to one member that is available in the provider.

The following table describes the columns that are available in the MEMBERS schema
rowset.

Table A5.12 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog that contains this
member.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains this
member.

Yes

CUBE_NAME DBTYPE_WSTR Name of the cube that contains this
member.

Yes

DIMENSION_UNIQUE_NAME DBTYPE_WSTR Unique name of the dimension that
contains this member.

Yes

HIERARCHY_UNIQUE_NAME DBTYPE_WSTR Unique name of the hierarchy that
contains this member.

Yes

Standard Mapping 239

Column Name Type Indicator Mapped Value
Restrictions
Supported?

LEVEL_UNIQUE_NAME DBTYPE_WSTR Unique name of the level that contains
this member.

Yes

LEVEL_NUMBER DBTYPE_UI4 Distance from this member to the root of
the hierarchy. The LEVEL_NUMBER of
the root level is 0.

Yes

MEMBER_ORDINAL DBTYPE_UI4 Ordinal number of this member. No

MEMBER_NAME DBTYPE_WSTR Name of this member. Yes

MEMBER_UNIQUE_NAME DBTYPE_WSTR Unique name of this member. Yes

MEMBER_TYPE DBTYPE_WSTR Type of this member. The types are as
follows:

• MDMEMBER_TYPE_REGULAR

• MDMEMBER_TYPE_ALL

• MDMEMBER_TYPE_FORMULA

• MDMEMBER_TYPE_MEASURE

• MDMEMBER_TYPE_UNKNOW
N

Yes

MEMBER_GUID DBTYPE_GUID GUID of this member. No

MEMBER_CAPTION DBTYPE_WSTR Caption of this member. Same as
MEMBER_NAME if no caption exists
for this member.

Yes

CHILDREN_CARDINALITY DBTYPE_UI4 Number of children contained by this
member.

No

PARENT_LEVEL DBTYPE_UI4 Distance from this member's parent to the
root level of the hierarchy. The
LEVEL_NUMBER of the root level is 0.

No

PARENT_UNIQUE_NAME DBTYPE_UI4 Unique name of this member's parent. No

PARENT_COUNT DBTYPE_UI4 Number of parents of this member. No

DESCRIPTION DBTYPE_WSTR Description of this member. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

The Tree Operation Restriction
The MEMBERS schema rowset has a 12th restriction, called tree operation, that does not
correspond to an actual column. The tree operation restriction identifies the relationship
between the returned members and the member specified in the

240 Appendix 5 • Schema Rowsets

MEMBER_UNIQUE_NAME restriction. These values can be bitwise-combined by using
OR to form a bitmask that represents all returned rows. The following table displays the
tree operation values and the relationships that they identify.

Table A5.13 Relationship of Returned Members to the Specified MEMBER_UNIQUE_NAME

Tree Operation (Returned Members) Relationship to Specified MEMBER_UNIQUE_NAME

MDTREEOP_ANCESTORS Ancestors of MEMBER_UNIQUE_NAME

MDTREEOP_CHILDREN Immediate children of MEMBER_UNIQUE_NAME

MDTREEOP_SIBLINGS Members on the same level as MEMBER_UNIQUE_NAME

MDTREEOP_PARENT Immediate parent of MEMBER_UNIQUE_NAME

MDTREEOP_SELF MEMBER_UNIQUE_NAME itself

MDTREEOP_DESCENDANTS All of the descendants of MEMBER_UNIQUE_NAME

PROPERTIES Schema Rowset

Standard Mapping
The PROPERTIES schema rowset returns metadata about the properties that are available
on each level and the member that can be accessed by the provider. Each row in the
PROPERTIES schema rowset corresponds to one property that is available in the provider.

The following table describes the columns that are available in the PROPERTIES schema
rowset.

Table A5.14 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

PROPERTY_TYPE DBTYPE_I2 Type of this property. Either
MDPROP_MEMBER or
MDPROP_CELL.

Yes

CATALOG_NAME DBTYPE_WSTR Name of the catalog that contains
this property.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains
this property.

Yes

CUBE_NAME DBTYPE_WSTR Name of the cube that contains
this property.

Yes

DIMENSION_UNIQUE_NAME DBTYPE_WSTR Unique name of the dimension
that contains this property.

Yes

Standard Mapping 241

Column Name Type Indicator Mapped Value
Restrictions
Supported?

HIERARCHY_UNIQUE_NAME DBTYPE_WSTR Unique name of the hierarchy
that contains this property.

Yes

LEVEL_UNIQUE_NAME DBTYPE_WSTR Unique name of the level that
contains this property.

Yes

MEMBER_UNIQUE_NAME DBTYPE_WSTR Unique name of the member that
contains this property.

Yes

PROPERTY_NAME DBTYPE_WSTR Name of this property. Yes

PROPERTY_CAPTION DBTYPE_WSTR Caption of this property. No

DATA_TYPE DBTYPE_UI2 Data type of this property. No

CHARACTER_MAXIMUM_LENGTH DBTYPE_UI4 Maximum length of this property
for character, binary, and bit
properties if one of these
properties is defined. The value is
0 for character, binary, and bit
properties that do not have a
defined maximum length. The
value is NULL for all other
properties.

No

CHARACTER_OCTET_LENGTH DBTYPE_UI4 Maximum length in octets of this
property for character, binary,
and bit properties if one of these
properties is defined. The value is
0 for character, binary, and bit
properties that do not have a
defined maximum length. The
value is NULL for all other
properties.

No

NUMERIC_PRECISION DBTYPE_UI2 Maximum numeric precision for
numeric properties. NULL for all
other properties.

No

NUMERIC_SCALE DBTYPE_I2 Number of digits to the right of
the decimal point for numeric
properties. NULL for all other
properties.

No

DESCRIPTION DBTYPE_WSTR Description of this property. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

242 Appendix 5 • Schema Rowsets

PROVIDER_TYPES Schema Rowset

Standard Mapping
The PROVIDER_TYPES schema rowset returns metadata that indicates which data types
are returned by the provider. Each row in the PROVIDER_TYPES schema rowset
corresponds to one data type.

The SAS providers return two data types (numeric data and character data), which means
that the PROVIDER_TYPES schema rowset contains only two rows. Numeric data is
returned as a DBTYPE_R8 type indicator. Character data is returned as a DBTYPE_STR
type indicator.

The following table lists the 16 columns (of the 20 columns in the OLE DB specification)
that contain data.

Table A5.15 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

TYPE_NAME DBTYPE_WSTR Data type name. Value is either num or
char.

No

DATA_TYPE DBTYPE_UI2 The DBTYPE value that corresponds to
the current data type (numeric or
character).

Yes

COLUMN_SIZE DBTYPE_UI4 For numeric data, the maximum precision
of the data type. For character data, the
maximum length of the column in
characters.

No

LITERAL_PREFIX DBTYPE_WSTR Character used to prefix a literal of the data
type in a text command.

No

LITERAL_SUFFIX DBTYPE_WSTR Character used to create a suffix for a literal
of the data type in a text command.

No

IS_NULLABLE DBTYPE_BOOL VARIANT_TRUE if the data type can be
set to NULL; VARIANT_FALSE if the
data type cannot be set to NULL.

No

CASE_SENSITIVE DBTYPE_BOOL VARIANT_TRUE if the data type is
character data and also case-sensitive.
VARIANT_FALSE if the data type is not
character data or is not case sensitive.

No

Standard Mapping 243

Column Name Type Indicator Mapped Value
Restrictions
Supported?

SEARCHABLE DBTYPE_UI4 Indicates whether the data type is
searchable. Value is DB_SEARCHABLE
if the provider supports ICommandText
and the data type can be used with any
relative operator in a WHERE clause.
Value is NULL if the provider does not
support ICommandText.

No

UNSIGNED_ATTRIBUTE DBTYPE_BOOL Indicates whether the data type is signed or
not. Value is VARIANT_TRUE when the
data type is signed; value is
VARIANT_FALSE when the data type is
not signed. Value is NULL if the signed or
unsigned status is not applicable to the data
type.

No

FIXED_PREC_SCALE DBTYPE_BOOL VARIANT_TRUE if precision and scale
are fixed for the data type;
VARIANT_FALSE if there is not a fixed
precision and scale for the data type.

No

AUTO_UNIQUE_VALUE DBTYPE_BOOL VARIANT_TRUE if values of the data
type can automatically increment;
otherwise, VARIANT_FALSE.

No

GUID DBTYPE_GUID The global unique identifier (GUID) for
the data type.

No

TYPELIB DBTYPE_WSTR The type library for the data type. No

IS_LONG DBTYPE_BOOL VARIANT_TRUE if this type is a BLOB
that contains very long data; otherwise,
VARIANT_FALSE.

No

BEST_MATCH DBTYPE_BOOL VARIANT_TRUE if this data type is the
best match between the OLE DB data type
indicated by the value in the DATA_TYPE
column and all types in the data source.
VARIANT_FALSE if this data type is not
the best match.

No

IS_FIXEDLENGTH DBTYPE_BOOL VARIANT_TRUE if all data of this type
has the same length; otherwise,
VARIANT_FALSE.

No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

244 Appendix 5 • Schema Rowsets

SETS Schema Rowset

Standard Mapping
The SETS rowset returns metadata about the sets that are available on each schema or
catalog that can be accessed by the provider. Each row in the SETS schema rowset
corresponds to one set that is available in the provider. The default sort order is
CATALOG_NAME, SCHEMA_NAME, CUBE_NAME, SET_NAME.

The following table describes the columns that are available in the SETS schema rowset.

Table A5.16 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

CATALOG_NAME DBTYPE_WSTR Name of the catalog to which the set
belongs.

Yes

SCHEMA_NAME DBTYPE_WSTR Name of the schema that contains this set. Yes

CUBE_NAME DBTYPE_WSTR Name of the cube that contains this set. Yes

SET_NAME DBTYPE_WSTR Name of the set. Yes

SCOPE DBTYPE_14 Scope of the set. One of the following types:

• MDSET_SCOPE_GLOBAL

• MDSET_SCOPE_SESSION

Yes

DESCRIPTION DBTYPE_WSTR Description of this set. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

TABLES Schema Rowset

Standard Mapping
The TABLES schema rowset returns metadata about all of the tables in the current data
source. Each row in the TABLES schema rowset corresponds to an individual table. Each
SAS data set is considered to be a table.

The following table lists the five of the nine columns in the OLE DB specification that
contain data.

Standard Mapping 245

Table A5.17 Standard Mapping

Column Name Type Indicator Mapped Value
Restrictions
Supported?

TABLE_NAME DBTYPE_WSTR Table name. The value is either
libname.memname (SAS/SHARE,
IOM, and Base SAS providers) or
memname (local provider).

Yes

TABLE_TYPE DBTYPE_WSTR Table type. The value is either
TABLE (all providers) or VIEW
(SAS/SHARE, IOM, and Base SAS
providers).

No

DESCRIPTION DBTYPE_WSTR Table description. In the case of a
SAS data set, this value is the data
set's label.

No

DATE_CREATED DBTYPE_DATE Table creation date. No

DATE_MODIFIED DBTYPE_DATE Most recent modification date. No

Note: For more information about restrictions, see “How to Restrict the Rows That Are
Returned” on page 228.

Rowset Extensions
All of the SAS providers extend the TABLES schema rowset to include metadata that is
specific to SAS data sets. These custom schema rowset columns include the same
information that is returned by the ISASDataSetInfo interface. However, there are some
differences in how the information is made available. Specifically, the
ISASDataSetInfo interface returns SAS metadata one data set at a time and is limited to
OLE DB consumers. By contrast, the TABLES schema rowset extensions include all tables
(data sets) in a data source at one time and are available to both OLE DB and ADO
consumers.

Each custom column maps to a member of the SASDATASETINFO structure that is
returned by ISASDataSetInfo::GetDataSetInfo. A fifth member in that structure,
pwszLabel, does not have a corresponding custom column because it returns a data set label
that is included in the OLE DB specification's standard DESCRIPTION column.

The following table lists the columns that are added to the TABLES schema rowset. The
columns are returned following the standard columns in the OLE DB specification, and in
the order in which they appear in the following table.

246 Appendix 5 • Schema Rowsets

Table A5.18 Rowset Extensions

Column Name Type Indicator Mapped Member Description

LOGICAL_RECORD_COU
NT

DBTYPE_I4 lLogicalRecordCount The logical number of records in the
data set, which is the number of
records you would encounter if you
positioned at the beginning of the
table and read sequentially until you
encountered "end of file." If the
number of records is unknown, -1 is
returned.

PHYSICAL_RECORD_COU
NT

DBTYPE_I4 lPhysicalRecordCount The physical number of records that
are in the data set, which indicates
the number of slots physically
allocated for records in the data set.
This value can be greater than the
number of logical records. If the
number of records is unknown, -1 is
returned.

RECORD_LENGTH DBTYPE_I4 lRecordLength The number of bytes that are
required to physically store a row of
data in the data set. The record length
multiplied by the physical record
count indicates the magnitude of the
data set that is on disk but not the
specific size.

COMPRESSED DBTYPE_WSTR pwszCompressionRoutine The name of the compression
algorithm used. If no compression is
set, then the value is "NO."

INDEXED DBTYPE_BOOL fIsIndexed This column is set to
VARIANT_TRUE when an index
exists on the data set; otherwise, it is
VARIANT_FALSE.

Rowset Extensions 247

248 Appendix 5 • Schema Rowsets

Appendix 6

OLE DB: Format Processing

About Format and Informat Processing with OLE DB . 249
What Are Formats and Informats? . 249
Supported SAS Formats . 250
Determining Persisted (Default) Formatting Information 250

How to Specify Format Processing When Binding Columns 251

Using Formats for Input Operations . 252
How to Keep Default Formats . 252
Sample Code for Using Default Formats . 252

Overriding Formats for Input Operations . 254
How to Override Default Formats . 254
Sample Code for Overriding Default Formats . 254

Processing Informats for Output Operations . 256

How to Simultaneously Bind Columns to Formats and Informats 257

About Format and Informat Processing with OLE
DB

What Are Formats and Informats?
A SAS format is a pattern or set of instructions that SAS uses to determine how the values
of a variable (or column) should be written or displayed. A SAS informat is a pattern or
set of instructions that SAS uses to determine how data values in an input file should be
interpreted. SAS provides a set of standard formats and informats and also enables you to
define your own.

OLE DB applications use customizations to the OLE DB interfaces in order to access SAS
formatting features. The following topics explain how to use the customizations in your
application:

• “How to Specify Format Processing When Binding Columns” on page 251

• “Using Formats for Input Operations” on page 252

• “Overriding Formats for Input Operations” on page 254

• “Processing Informats for Output Operations” on page 256

249

Note: ADO applications support SAS formatting features through the use of the "SAS
Formats" and "SAS Informats" properties. For more information, see “Using SAS
Formats When You Read Data ” on page 90 and “Using SAS Informats When You
Write Data” on page 92.

Supported SAS Formats
The level of support for SAS formats depends on the provider:

• The IOM provider supports both user-written formats and SAS formats that are defined
within the context of the currently active IOM workspace.

• The local provider, OLAP provider, and SAS/SHARE provider do not support user-
written formats; however, they do support most SAS formats.

Note: The OLAP provider requires that the formats are persisted with the cube on the
OLAP server. For more information, see “Determining Persisted (Default) Formatting
Information” on page 250.

Here is the list of supported SAS formats:

$ASCII DOWNAME NUMX S370FZDT
$BINARY DTDATE OCTAL S370FZDU
$CHAR DTMONYY PD TIME
$EBCDIC DTYEAR PERCENT TIMEAMPM
$HEX DTYYQC PIB TOD
$OCTAL E PIBR WEEKDATE
$QUOTE FLOAT PK WEEKDATX
$REVERJ FRACT PVALUE WEEKDAY
$REVERS HEX QTR WORDDATE
$UPCASE HHMM QTRR WORDDATX
$XPORTCH HOUR RB WORDF
BEST IB ROMAN WORDS
BINARY IEEE SSN XYYMMDD
COMMA JULIAN S370FF YEAR
COMMAX MINGUO S370FIB YEN
D MMDDYY S370FIBU YYMM
DATEAMPM MMSS S370FPD YYMMDD
DATETIME MMYY S370FPDU YYMMN
DATE MONNAME S370FPIB YYMON
DAY MONTH S370FRB YYQ
DDMMYY MONYY S370FZD YYQR
DOLLAR NEGPAREN S370FZDL Z
DOLLARX NENGO S370FZDS ZD

For more information about SAS formats, see the SAS Language Reference: Dictionary.

Determining Persisted (Default) Formatting Information
In a SAS data set, a variable (column) can have persisted (default) formatting information.
There are two methods that you can use to determine what, if any, default formatting
information exists in a data set. Use the method that is most appropriate for your application.

250 Appendix 6 • OLE DB: Format Processing

• Along with some other column metadata that is specific to SAS, the ISASColumnsInfo
customized rowset interface returns the names, lengths, and decimal widths of formats
and informats that are stored in the data set. In order to use the interface, the data set
must be open. For more information about how to use the interface, see
“ISASColumnsInfo Custom Interface” on page 214.

Note: A format or informat name that is returned by ISASColumnsInfo::GetColumnsInfo
might not be supported by a particular provider or server. By default, you will receive
an error if you attempt to apply format or informat services with a format that is not
supported. To change this default behavior, set the DBPROP_SAS_FMTERR property
to VARIANT_FALSE.

• The COLUMNS schema rowset also returns format and informat metadata. Consider
using this method if your application needs to determine metadata for columns that
exist in a table that is not open. For more information, see “COLUMNS Schema
Rowset” on page 228.

How to Specify Format Processing When Binding
Columns

When you write code to bind columns during read, write, and update operations, you can
also provide formatting instructions. For example, you can specify that you want to keep
or override default formatting for specific columns.

To provide formatting instructions, you use the SASFORMAT structure (defined by
SASExtensions.idl). The following code shows the SASFORMAT structure:

typedef enum
{
 SASFMT_FORMAT,
 SASFMT_INFORMAT
} SASFMTENUM;

typedef struct tagSASFORMAT
{
 SASFMTENUM wType;
 LPOLESTR pwszName;
 SHORT iLength;
 SHORT iDecimals;
} SASFORMAT;

The elements (members) of the SASFORMAT structure are described in the following
table.

Table A6.1 Elements (Members) of the SASFORMAT Structure

Element Description

wType Indicates whether a particular instance of a SASFORMAT structure
applies to a column's format (SASFMT_FORMAT) or informat
(SASFMT_INFORMAT).

pwszName Pointer to the name (as a string) of the format or informat that should
be used to override the column's default format.

How to Specify Format Processing When Binding Columns 251

Element Description

iLength Specifies the width to apply to the format or informat. If this value
is nonzero, it will override the column's default format.

iDecimals Specifies the number of significant decimal places that should be
used when applying numeric formats or informats. If this value is
nonzero, it will override the associated column's default format.

To perform the binding operation, you call the IAccessor::CreateAccessor method. For
information about using the IAccessor::CreateAccessor method on rowsets returned by
IOpenRowset::OpenRowset and ICommand::Execute, see the following topics:

• “Using Formats for Input Operations” on page 252

• “Processing Informats for Output Operations” on page 256

• “Overriding Formats for Input Operations” on page 254

Using Formats for Input Operations

How to Keep Default Formats
In a SAS data set, a variable (column) can have persisted (default) formatting information,
which you have the option to keep with the returned data.

Note: If there is no persisted formatting information, then the provider applies a format
that best fits the variable type. For more information about persisted formats, see
“Determining Persisted (Default) Formatting Information” on page 250.

Sample Code for Using Default Formats
The sample data set has three columns: SALEDATE, QUANTITY, and PRICE. Each
column has a persisted format. The following sample code shows you how to specify the
default formats when you write code to bind each column.

#include "SASExtensions.h" 1

SASFORMAT formatOverride; 2

memset(&formatOverride, 0, sizeof(formatOverride)); 3

formatOverride.wType = SASFMT_FORMAT; 4

DBBINDEXT bindingExtension; 5

bindingExtension.pExtension = (BYTE *) &formatOverride
bindingExtension.ulExtension = 1;

252 Appendix 6 • OLE DB: Format Processing

DBBINDING rgBindings[3]; 6
struct ACOLUMN
{
DWORDstatus;
BSTRvalue;
};

memset(rgBindings, 0, sizeof(rgBindings)); 7

for(ULONG i =0; i < sizeof(rgBindings); i++) 8

{

rgBindings[i].iOrdinal = i+1; 9

rgBindings[i].dwPart = DBPART_VALUE | DBPART_STATUS;
rgBindings[i].obValue = (i * sizeof(struct ACOLUMN)) + offsetof(struct ACOLUMN, value);
rgBindings[i].obStatus = (i * sizeof(struct ACOLUMN)) + offsetof(struct ACOLUMN, status);

rgBindings[i].dwMemOwner = DBMEMOWNER_CLIENTOWNED; 10

rgBindings[i].wType = 11

DBTYPE_BSTR; 12

rgBindings[i].pBindExt = &bindingExtension
}

1 enables the application to access SAS extensions to OLE DB. Access is specifically
required in order to define the SASFORMAT structure.

2 creates a SASFORMAT structure in order to request the default format. The same
instance of this structure is reused for all three columns.

3 All members are initialized to NULL or zero.

4 sets the override type to "formatting".

5 creates a DBBINDEXT structure to link the SASFORMAT structure to the
DBBINDING structures. The DBBINDEXT structure explains how to organize the
data that is returned by the provider. The DBBINDEXT structure is reused for all three
columns.

6 ties the bindingExtension to each column that will be formatted. There is a
DBBINDING structure for each bound column.

7 As a matter of good programming, the structure is initialized. Columns are bound in
order. However, because it cannot be formatted, the self bookmark is skipped.

8 a loop that binds all of the columns as DBTYPE_BSTR and applies the default format
as specified by the SASFORMAT structure.

9 returns the status because applying a format to a particular data item could fail. The
column length is not returned because the data is being returned as BSTR, which has
a fixed length.

10 frees each data item as the client finishes with it.

Sample Code for Using Default Formats 253

11 accepts the default character type. If you use a different character type, then specify a
maximum column width. Base the value on the width of the format that is being applied.

12 supplies the formatting information. You can reuse the same DBBINDEXT and
SASFORMAT structure multiple times to use the default format.

With such an array of DBBINDING structures, a call can be made to
IAccessor::CreateAccessor to create an HACCESSOR that will obtain columns using SAS
formats.

See Also
• “Overriding Formats for Input Operations” on page 254

• “How to Specify Format Processing When Binding Columns” on page 251

Overriding Formats for Input Operations

How to Override Default Formats
In a SAS data set, a variable (column) can have persisted formatting information, which
you have the option to override. To override the persisted (default) format values, you
specify a format length (width) and number of decimals (for numeric formats).

Sample Code for Overriding Default Formats
The example data set has three columns: SALEDATE, QUANTITY, and PRICE. Each
column has a persisted (default) format. You want to override the default formatting for
the SALEDATE and PRICE columns. Specifically, you want to format the SALEDATE
column using MMDDYY8. formatting, and you want to format the PRICE column using
DOLLAR8.2.

You also want to perform some calculations on the PRICE column. To perform the
calculations, you must write additional code that binds PRICE as a numeric value. So, even
though the data set has only three columns, this example requires the following four
bindings:

• SALEDATE bound as DBTYPE_BSTR with MMDDYY8. formatting

• QUANTITY bound as a DBTYPE_R8

• PRICE bound as DBTYPE_BSTR with DOLLAR8.2 formatting

• PRICE bound as DBTYPE_R8

DBBINDING rgBindings[4]; 1

DBBINDEXT rgBindingExtensions[2];
SASFORMAT rgFormatOverrides[2];

ULONG dwOffset; 2

typedef struct 3

{
DWORD status;

254 Appendix 6 • OLE DB: Format Processing

BYTE value[1];
} COLUMNDEF;

memset(rgBindings, 0, sizeof(rgBindings)); 4

memset(rgBindingExtensions, 0, sizeof(rgBindingExtensions));
memset(rgFormatOverrides, 0, sizeof(rgFormatOverrides));

dwOffset = 0; 5

rgBindings[0].iOrdinal = 1; 6

rgBindings[0].dwPart = DBPART_VALUE | DBPART_STATUS;
rgBindings[0].obValue =dwOffset + offsetof(COLUMNDEF, value);
rgBindings[0].obStatus =dwOffset + offsetof(COLUMNDEF, status);
rgBindings[0].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
rgBindings[0].wType = DBTYPE_BSTR;

rgFormatOverrides[0].wType = SASFMT_FORMAT; 7

rgFormatOverrides[0].pwszName = L"MMYYDD";
rgFormatOverrides[0].iLength = 8;

rgBindingExtensions[0].pExtension = (BYTE *) &(rgFormatOverrides[0]); 8

rgBindingExtensions[0].ulExtension = 1;
rgBindings[0].pBindExt = &(rgBindingExtensions[0]);

dwOffset += sizeof(BSTR) + offsetof(COLUMNDATA, value); 9

rgBindings[1].iOrdinal = 2; 10

rgBindings[1].dwPart = DBPART_VALUE | DBPART_STATUS;
rgBindings[1].obValue =dwOffset + offsetof(COLUMNDEF, value);
rgBindings[1].obStatus =dwOffset + offsetof(COLUMNDEF, status);
rgBindings[1].wType = DBTYPE_R8;
dwOffset += sizeof(double) + offsetof(COLUMNDATA, value);

rgBindings[2].iOrdinal = 3; 11

rgBindings[2].dwPart = DBPART_VALUE | DBPART_STATUS;
rgBindings[2].obValue =dwOffset + offsetof(COLUMNDEF, value);
rgBindings[2].obStatus =dwOffset + offsetof(COLUMNDEF, status);
rgBindings[2].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
rgBindings[2].wType = DBTYPE_BSTR;

rgFormatOverrides[1].wType = SASFMT_FORMAT;
rgFormatOverrides[1].pwszName = L"DOLLAR";
rgFormatOverrides[1].iLength = 8;
rgFormatOverrides[1].iDecimals = 2;

rgBindingExtensions[1].pExtension = (BYTE *) &(rgFormatOverrides[0]);
rgBindingExtensions[1].ulExtension = 1;
rgBindings[2].pBindExt = &(rgBindingExtensions[0]);

Sample Code for Overriding Default Formats 255

dwOffset += sizeof(BSTR) + offsetof(COLUMNDATA, value);

rgBindings[3].iOrdinal = 3; 12

rgBindings[3].dwPart = DBPART_VALUE | DBPART_STATUS;
rgBindings[3].obValue =dwOffset + offsetof(COLUMNDEF, value);
rgBindings[3].obStatus =dwOffset + offsetof(COLUMNDEF, status);
rgBindings[3].wType = DBTYPE_R8;

dwOffset += sizeof(double) + offsetof(COLUMNDATA, value); 13

1 creates an array of DBBINDING structures. There are four bindings, two of which have
formatting overrides.

2 tracks the offset of a bound data point into an I/O buffer.

3 After each binding is created, lays out a status and value part.

4 As a matter of good programming, all structures are initialized.

5 Parts are laid into the buffer at offset 0. When the bindings are created, dwOffset is the
total number of bytes that are needed to hold one row in memory.

6 binds SALEDATE as DBTYPE_BSTR with the MMYYDD8. format applied. The
basic OLE DB binding information comes first.

7 prepares the format override for SALEDATE.

8 links the SASFORMAT structure to the DBBINDING structure.

9 sets the offset to increase beyond the data points for SALEDATE.

10 binds QUANTITY as DBTYPE_R8. Only basic OLE DB binding information is
needed.

11 binds PRICE as DBTYPE_BSTR with the DOLLAR8.2 format applied. This action is
similar to the binding for SALEDATE.

12 binds PRICE as DBTYPE_R8.

13 After this code is executed, dwOffset is the number of bytes that the application needs
in order to store a row of data that is retrieved by using this binding information.

See Also
• “Using Formats for Input Operations” on page 252

• “How to Specify Format Processing When Binding Columns” on page 251

Processing Informats for Output Operations
You can use the SASFORMAT structure in order to specify to use an informat with a
column. You can also choose to override default informatting information. The instructions
for using and overriding informats are similar to the instructions for using and overriding
formats. Here is the procedure:

1. Set the wType member of the SASFORMAT structure to SASFMT_INFORMAT, so
that the instance of the structure applies to an informat rather than a format.

256 Appendix 6 • OLE DB: Format Processing

2. Set pwszName to an informat name to override the default, or set it to zero (0) or NULL
to use the default.

3. Set iLength to a width to override the default, or set it to zero (0) or NULL to use the
default.

4. Set iDecimals to a decimal value to override the default, or set it to zero (0) or NULL
to use the default.

5. Set the wType member of your DBBINDING structure to one of these OLE DB
character types: DBTYPE_STR, DBTYPE_WSTR, or DBTYPE_BSTR. (This action
is the same as the format setting.)

See Also
• “Using Formats for Input Operations” on page 252

• “Overriding Formats for Input Operations” on page 254

How to Simultaneously Bind Columns to Formats
and Informats

A column can be bound with both a format and an informat simultaneously. To perform
this task, set the ulExtension member of the DBBINDEXT to 2, and set the pExtension to
the address of an array of two SASFORMAT structures. One of the structures in this array
should define the format to apply and the other structure should define the informat.

CAUTION:
The SAS providers do not validate that formats and informats are paired logically
on the same column binding. The providers also do not prevent you from binding
the same column more than once per accessor, nor do they prevent you from using that
accessor on output operations. If you use an accessor in this way and if the accessor
you use is not consistent with the operation being performed, you might receive data
integrity errors.

How to Simultaneously Bind Columns to Formats and Informats 257

258 Appendix 6 • OLE DB: Format Processing

Appendix 7

OLE DB: Column Mapping and
Binding

About the Mapping and Binding Process . 259

Returning Column Metadata . 259

Mapping to SAS Constructs . 260

Binding to Rowset Columns . 261

About the Mapping and Binding Process
Before an OLE DB consumer can read, update, or insert a row into a table, the following
two steps must be taken:

1. The SAS providers must use OLE DB constructs to give to the application the
information about the columns in the data store.See “Returning Column Metadata” on
page 259.

2. The client application (the consumer) must give to the data provider the following
specific information about the columns:

• which columns will be manipulated

• what type they will be accessed as

• where they will be stored in the client's memory

The process of communicating this information to the provider is called column binding.
Column binding is done by using the OLE DB accessors. See “Binding to Rowset Columns”
on page 261.

Returning Column Metadata
You can retrieve column metadata by using either the COLUMNS schema rowset or the
IColumnsInfo::GetColumnsInfo() method. Choose the method that best fits your current
needs:

• You can use the COLUMNS schema rowset to return metadata about all of the columns
in every table in the data source component. You can also filter the returned data by a
subset of the tables. Filtering enables you to view many details about the data store
without explicitly opening all of the tables in the data source component.

259

• The IColumnsInfo::GetColumnsInfo() method is available when you have a rowset that
is opened on a specific table. For the opened table, the GetColumnsInfo method returns
the same kind of information that is found in the COLUMNS schema rowset. The
information is returned in an array of DBCOLUMNINFO structures that can be
accessed more efficiently than a schema rowset.

Mapping to SAS Constructs
In OLE DB, a rowset is a type of cursor over a table that consists of rows and columns.
The intersection of each row and column identifies a cell of data. Every cell in a specific
column is of the same data type. The OLE DB concept of a table corresponds directly to
the SAS data set.

A data set consists of variables and observations. A variable defines a cell of data in an
observation. Variables are like columns, and observations are like rows. In fact, these OLE
DB terms and SAS terms can be used interchangeably.

The following table compares the members of the DBCOLUMNINFO structure with the
COLUMNS schema rowset columns and describes how they all correspond to SAS
constructs:

Table A7.1 DBCOLUMNINFO Structure Members Compared with COLUMNS Schema Rowset Columns and the
Corresponding SAS Constructs

DBCOLUMNINFO
Member COLUMNS Schema Rowset Column SAS Data Model Comments

pwszName

columnid

COLUMN_NAME variable name

pTypeInfo not available not applicable Reserved by Microsoft for
future use

iOrdinal ORDINAL_POSITION variable number

dwFlags not applicable not applicable

ulColumnSize CHARACTER_MAXIMUM_LENGTH
and CHARACTER_OCTET_LENGTH

variable length Defines the maximum length of
this column/variable

wType DATA_TYPE variable type Character variables are mapped
to DBTYPE_STR, and numeric
variables are mapped to
DBTYPE_R8

bPrecision NUMERIC_PRECISION not applicable

bScale not applicable not applicable

not available DESCRIPTION variable label

not available IS_NULLABLE not available Indicates that a cell in this
column could be set to
"missing"

260 Appendix 7 • OLE DB: Column Mapping and Binding

Members of the DBCOLUMINFO structure and columns in the COLUMNS schema
rowset that are not represented in this table either do not map to SAS constructs and are
not supported, or they do not map directly to SAS column metadata.

Binding to Rowset Columns
Accessors are managed through the rowset interface IAccessor. The client application uses
the IAccessor interface to specify a set of column bindings and to associate them with an
accessor handle. The handle can be passed into other rowset methods that manipulate
individual rows of data. When you specify column bindings and create accessors, consider
these questions:

• How will the column be identified?

• What type can the client bind it to?

• How much space will be needed to store the data in the client's buffers?

If you have a DBCOLUMNINFO structure for a column, you can easily transfer that
information into a DBBINDING structure, as shown in the following table:

Table A7.2 DBCOLUMNINFO Members Mapped to DBBINDING Members

DBCOLUMNINFO Members DBBINDING Members

iOrdinal iOrdinal

ulColumnSize cbMaxLen

wType wType

bPrecision bPrecision

bScale bScale

The value of iOrdinal must be the same in both the DBBINDING and DBCOLUMNINFO
structures. However, the other members in a DBBINDING structure do not have to match
the corresponding members that are returned in a DBCOLUMINFO structure. For example,
the wType value in the DBBINDING structure can have any meaningful DBTYPE because
the providers support converting data between types as defined by the OLE DB
specification. In addition, the values of the DBBINDING members cbMaxLen, bPrecision,
and bScale are more closely related to the wType member of the DBBINDING structure
than are the corresponding members of the DBCOLUMNINFO structure.

If the column metadata is known at the time that you are creating the client application,
then you do not need to query the data provider. Instead, you can build static DBBINDING
structures, which can increase run-time performance. To build static DBINDING
structures, you must know how to map data set variable attributes to DBBINDING structure
members. The following table explains the mapping:

Binding to Rowset Columns 261

Table A7.3 DBBINGING Structure Members and Corresponding Variable Attributes

DBBINDING Structure
Member Corresponding SAS Variable Attribute

iOrdinal Set this member to the variable number that you want to bind to. The member should
be a value from 1 to N, where N is the number of variables that are defined in the data
set. (The value 0 is reserved for the self-bookmark column.)

obValue

obLength

obStatus

These three members determine the offset of the column value, its length, and its status
of coercion in the buffer that you pass to the provider when you read and update. If the
corresponding bit is not set in the dwPart member, these members are ignored.

pTypeInfo Ignored. Reserved for future use.

pObject Unsupported. OLE objects cannot be embedded in SAS data sets.

pBindExt Used for formatting data.

dwPart This bitmask defines which obValue, obLength, and obStatus members are meaningful.
See the OLE DB specification for more information about this field.

dwMemOwner This member does not map to any SAS variable attributes. You use as described by the
OLE DB specification.

eParamIO Ignored.

cbMaxLen The number of bytes allocated in your buffer for the data value. This number is
determined by the value of wType.

dwFlags Ignored.

wType A DBTYPE value that indicates the type that is used to represent the data value. This
value can directly correspond to the SAS variable's type (DBTYPE_WSTR for
character variables; DBTYPE_R8 for numeric variables), or it can be any type that the
provider can convert the data to. The OLE DB specification lists the valid conversions
between DBTYPEs, and the SAS providers support all of these conversions. At run
time you can discover which conversions are allowed by calling the
IConvertType::CanConvert() rowset method.

bPrecision The IOM provider looks only at this member when wType is set to
DBTYPE_NUMERIC. In this case, this field defines the maximum precision to use
when you get the data. It is ignored when you set and update data.

bScale Ignored.

In the following example, you open a rowset component named pRowset on a known data
set named AUTOS, which contains these variables:

• MAKE, which is a 40-byte character variable

• MODEL, a numeric variable

• MPG, a numeric variable

• COST, a numeric variable

262 Appendix 7 • OLE DB: Column Mapping and Binding

Bind MAKE as DBTYPE_BSTR and the remaining variables as DBTYPE_STR. This
binding means that the first column is a fixed length and the other three columns are varying
lengths. So, cbMaxLen and obLength are not considered when you bind MAKE, but they
are considered when you bind to MODEL, MPG, and COST.

Put the values of MODEL, MPG, and COST into 15-byte buffers. Buffer your consumer
output to place the status and value of MAKE first, followed by the lengths, status, and
values of MODEL, MPG and COST. The following code fills in an array of DBBINDING
structures to match the described binding and calls the appropriate method to create the
OLE DB accessor handle:

IAccessor * pAccessor;
DBBINDING rgBindings[4];
DBBINDSTATUS rgStatus[4];
HACCESSOR hAccessor;
ULONG ulOffset;

 // Lay out each column in memory.
struct COLUMNDATA
 {
 DWORD dwLength; // length of data returned
 DWORD dwStatus; // status of column
 BYTE bData[1]; // data here and beyond
 };
 // Rounding amount is always a power of two.
#define ROUND_UP(Size, Amount) (((DWORD)(Size) + ((Amount) - 1)) & ~((Amount) - 1))

// Alignment for placement of each column within memory.
// Rule of thumb is "natural" boundary, such as a 4-byte member should be
// aligned on address that is multiple of 4.
// Worst case is double or __int64 (8 bytes).
#define COLUMN_ALIGNVAL 8

memset(rgBindings, 0, sizeof(rgBindings)); // defensive programming

 // Start laying out data at the beginning of our buffer
ulOffset = 0;
rgBindings[0].iOrdinal = 1; rgBindings[0].dwPart = DBPART_VALUE | DBPART_STATUS;
 rgBindings[0].obValue = ulOffset + offsetof(COLUMNDATA, bData);
 rgBindings[0].obStatus = ulOffset + offsetof(COLUMNDATA, dwStatus);
 rgBindings[0].wType = DBTYPE_BSTR;
 // Account for space taken by actual cell value
ulOffset += sizeof(BSTR) + offsetof(COLUMNDATA, bData);
ulOffset = ROUND_UP(ulOffset, COLUMN_ALIGNVAL); // round up for alignment
rgBindings[1].iOrdinal = 2; rgBindings[1].cbMaxLen = 15;rgBindings[1].dwPart = DBPART_VALUE |
 DBPART_STATUS | DBPART_LENGTH; rgBindings[1].obValue = ulOffset +
 offsetof(COLUMNDATA, bData);rgBindings[1].obLength = ulOffset +
 offsetof(COLUMNDATA, dwLength);rgBindings[1].obStatus = ulOffset +
 offsetof(COLUMNDATA, dwStatus);rgBindings[1].wType = DBTYPE_STR;
 // Account for space taken by actual cell value
ulOffset += rgBindings[1].cbMaxLen + offsetof(COLUMNDATA, bData);
ulOffset = ROUND_UP(ulOffset, COLUMN_ALIGNVAL); // round up for alignment
rgBindings[2].iOrdinal = 3; rgBindings[2].cbMaxLen = 15;rgBindings[2].dwPart = DBPART_VALUE |
 DBPART_STATUS | DBPART_LENGTH; rgBindings[2].obValue = ulOffset +
 offsetof(COLUMNDATA, bData);rgBindings[2].obLength = ulOffset +
 offsetof(COLUMNDATA, dwLength);rgBindings[2].obStatus = ulOffset +
 offsetof(COLUMNDATA, dwStatus);rgBindings[2].wType = DBTYPE_STR;

Binding to Rowset Columns 263

 // Account for space taken by actual cell value
ulOffset += rgBindings[2].cbMaxLen + offsetof(COLUMNDATA, bData);
ulOffset = ROUND_UP(ulOffset, COLUMN_ALIGNVAL); // round up for alignment
rgBindings[3].iOrdinal = 4; rgBindings[3].cbMaxLen = 15;rgBindings[3].dwPart = DBPART_VALUE |
 DBPART_STATUS | DBPART_LENGTH; rgBindings[3].obValue = ulOffset +
 offsetof(COLUMNDATA, bData);rgBindings[3].obLength = ulOffset +
 offsetof(COLUMNDATA, dwLength);rgBindings[3].obStatus = ulOffset +
 offsetof(COLUMNDATA, dwStatus);rgBindings[3].wType = DBTYPE_STR;
 // Account for space taken by actual cell value
ulOffset += rgBindings[3].cbMaxLen + offsetof(COLUMNDATA, bData);
ulOffset = ROUND_UP(ulOffset, COLUMN_ALIGNVAL); // round up for alignment
pRowset->QueryInterface(IID_IAccessor, &hAccessor);
pAccessor->CreateAccessor(DBACCESSOR_ROWDATA, // we are binding to columns in a rowset
 4, // binding 4 columns
 rgBindings,
 0, // ignored for rowset bindings
 &hAccessor,
 rgStatus);
 // If the above call fails you can look at rgStatus to identify which column's binding info
 // was invalid. When the call succeeds, hAccessor is a valid accessor handle which can be
 // used as input to IRowset::GetData(), IRowsetChange::SetData() and IRowsetChange::InsertRow()
 // When you are done with the accessor handle, release it.
pAccessor->ReleaseAccessor(hAccessor, 0);
pAccessor->Release();

264 Appendix 7 • OLE DB: Column Mapping and Binding

Appendix 8

Customized User Help for the
Data Link Properties Dialog Box

Data Link Properties Dialog Box (Connection Tab) . 265

Data Link Properties Dialog Box (Advanced Tab) . 266

Data Link Properties Dialog Box (Connection Tab)
This version of the Connection tab is designed specifically for you to enter connection
information when you are performing one of these actions:

• using the SAS IOM provider for OLE DB to access a SAS Workspace Server

• using the SAS OLAP provider for OLE DB to access a SAS OLAP Server

Note: If you need to specify a SAS Metadata Server that has not been configured by using
the SAS Integration Technologies configuration utility (ITConfig), then you must enter
connection information on the Advanced tab in the Data Link Properties dialog box.
To display that tab, click Advanced.

The customized Connection tab has these items:

Select or enter a Data Source
You have two choices, depending on where the server is located.

• If you want a new, locally instantiated server connection, type _LOCAL_ in this
field, and then click OK to make the connection.

• If you want a remote server connection, use the Data Source URI format to specify
the location of the SAS Workspace or SAS OLAP server that you want to access.
For example, if you are connecting to a SAS Workspace Server configured as COM
with host authentication, you might enter this code:

iom-com://workspace.example.com

If the SAS Workspace or SAS OLAP server is defined in an LDAP (Lightweight
Directory Access Protocol) server or in a SAS Metadata Server, then the URI can
use the logical name for the workspace or OLAP server. (The SAS Metadata Server
must have been configured by using the ITConfig utility.) Here is a sample Data
Source URI that references a logical name defined in a SAS Metadata Server:

iom-name://Logical Workspace Server

For more information about the Data Source URI, see “Using the Data Source
Property to Specify All Connection-Related Properties” on page 29.

265

Note: If you do not complete the Data Source field, the SAS provider assumes that
you want to establish a local connection.

Note: If your local connection does not succeed, then your system administrator must
check your installation and COM permissions.

Enter information to log on to the server
For secure remote connections, enter your credentials in the User name and
Password fields. (For the user name, type your user ID for logging on to the remote
server.)

Test Connection
Click this button in order to test the connection.

For more information about completing the Connection tab, contact your system
administrator.

Data Link Properties Dialog Box (Advanced Tab)
This version of the Advanced tab is designed specifically for you to enter connection
information when you are performing one of these actions:

• using the SAS IOM provider for OLE DB to access a SAS Workspace Server

• using the SAS OLAP provider for OLE DB to access a SAS OLAP Server

T I P As a best practice, use this tab only when you must specify a SAS Metadata Server
that has not been configured by using the SAS Integration Technologies configuration
utility (ITConfig). If the metadata server that you need to use has been configured by
using ITConfig, then enter connection information on the Connection tab.

The customized Advanced tab has these items:

Enter Metadata Server information
Use default

You can use this option only if you are connecting to a SAS Workspace or SAS
OLAP server that is defined in a SAS Metadata Server that has been configured by
using ITConfig. If this configuration exists, then you should use the Connection
tab to enter the connection information. To display that tab, click Connection.

Metadata Server Location
Use the Data Source URI format to identify the SAS Metadata Server. For example,
you might enter this code:

iom-bridge://metadata.example.com:8561

User name
Type your user ID for logging on to the SAS Metadata Server.

Password
Type the password for the user ID that you entered.

Select or enter SAS Server information
Data Source

Use the Data Source URI format to specify the location of the SAS Workspace or
SAS OLAP server that you want to access. The URI should reference the logical
name of the workspace or OLAP server that is defined in the SAS Metadata Server
that you are using. For example, you might enter this URI.:

iom-name://Logical Workspace Server

266 Appendix 8 • Customized User Help for the Data Link Properties Dialog Box

For more information about the Data Source URI, see “Using the Data Source
Property to Specify All Connection-Related Properties” on page 29.

Test Connection
Click this button in order to test the connection.

For more information about completing the Advanced tab, contact your system
administrator.

Data Link Properties Dialog Box (Advanced Tab) 267

268 Appendix 8 • Customized User Help for the Data Link Properties Dialog Box

Glossary

Active Server Pages (ASP)
an application environment that enables you to use HTML pages, scripts, and ActiveX
server components to create Web applications.

ActiveX Data Objects
a simplified programming interface to OLE DB. Both ADO and OLE DB have been
developed by Microsoft. Short form: ADO. See also OLE DB, consumer, and data
provider.

ActiveX Data Objects (Multidimensional)
an extension to the ADO programming interface that enables users to read
multidimensional schema, to query cubes, and to retrieve the results. ADO MD accesses
data through a multidimensional data provider such as the IOM Data Provider. ADO
MD has been developed by Microsoft. See also OLE DB, data provider, ActiveX Data
Objects, and multidimensional database.

ActiveX Data Objects Extension for Data Definition Language and Security
an extension to the ADO programming interface that enables users to create, modify,
and delete database objects such as tables. This extension, which is commonly referred
to as ADOX, can also be used to manage user permissions and group permissions on
database objects. Short form: ADOX. See also ActiveX Data Objects, OLE DB, and
data provider.

ADO
See ActiveX Data Objects.

ADOX
See ActiveX Data Objects Extension for Data Definition Language and Security.

API
See application programming interface.

application programming interface
a set of software functions that facilitate communication between applications and other
kinds of programs or services. Short form: API.

authentication domain
a SAS internal category that pairs logins with the servers for which they are valid. For
example, an Oracle server and the SAS copies of Oracle credentials might all be
classified as belonging to an OracleAuth authentication domain.

269

bit mask
a string of bits that has a specific pattern of binary 0s and 1s that you use to compare
with other values.

buffer
a portion of computer memory that is used for special holding purposes or processes.
For example, a buffer might simply store information before sending that information
to main memory for processing, or it might hold data after the data is read or before the
data is written.

COM
See Component Object Model.

Component Object Model
an object-oriented programming model that defines how software components interact
within a single process or between processes. For example, COM includes standard
rules of communication that enable a user-interface object to be dragged and dropped
from one application window to another. Short form: COM.

consumer
an application that uses the ADO or OLE DB specification to request functionality or
data from a data provider through OLE DB interfaces. A typical ADO consumer might
submit a query to a data provider and then display the results of that query. See also
ActiveX Data Objects, OLE DB, and data provider.

cube
a set of data that is organized and structured in a hierarchical, multidimensional
arrangement. A cube includes measures, and it can have numerous dimensions and
levels of data.

data provider
software that makes data available through the OLE DB interfaces to a consumer such
as an ADO application. See also ActiveX Data Objects and consumer.

database management system
a software application that enables you to create and manipulate data that is stored in
the form of databases. Short form: DBMS.

DBMS
See database management system.

DNS name
a name that is meaningful to people and that corresponds to the numeric TCP/IP address
of a computer on the Internet. For example, www.alphaliteairways.com might be the
DNS name for an Alphalite Airways Web server whose TCP/IP address is
192.168.145.6.

fatal error
an error that causes a program to end abnormally or that prevents the program from
starting.

format
a pattern or set of instructions that SAS uses to determine how the values of a variable
(or column) should be written or displayed. SAS provides a set of standard formats and
also enables you to define your own formats.

270 Glossary

informat
a pattern or set of instructions that SAS uses to determine how data values in an input
file should be interpreted. SAS provides a set of standard informats and also enables
you to define your own informats.

Integrated Object Model
a set of object-based interfaces to features or services that are provided by Base SAS
software. IOM enables application developers to use industry-standard programming
languages, programming tools, and communication protocols to develop client
programs that access these services on IOM servers. Short form: IOM.

Integrated Object Model server
a SAS object server that is launched in order to fulfill client requests for IOM services.
Short form: IOM server.

IOM
See Integrated Object Model.

IOM server
See Integrated Object Model server.

libref
a name that is temporarily associated with a SAS library. The complete name of a SAS
file consists of two words, separated by a period. The libref, which is the first word,
indicates the library. The second word is the name of the specific SAS file. For example,
in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the file
NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

macro
a SAS catalog entry that contains a group of compiled program statements and stored
text.

MDX language
See multidimensional expressions language.

member-level access
a type of access to a SAS library that permits only one user to use a member (such as
a SAS data set) at a time. See also record-level access.

member-level locking
a method of restricting access to a library member by providing exclusive access to the
user who owns the lock. See also record-level locking.

metadata
a description or definition of data or information.

multidimensional database
another term for cube. Short form: MDDB. See also cube.

multidimensional expressions language
a standardized, high-level language that is used for querying multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language). It is used by the OLE DB for OLAP API. Short form: MDX language.

Glossary 271

Object Linking and Embedding
a method of interprocess communication supported by Windows that involves a client/
server architecture. OLE enables an object that was created by one application to be
embedded in or linked to another application. Short form: OLE.

ODBC
See Open Database Connectivity.

ODBO
See OLE DB for OLAP.

OLAP
See online analytical processing.

OLE
See Object Linking and Embedding.

OLE DB
an open specification that has been developed by Microsoft for accessing both relational
and nonrelational data. OLE DB interfaces can provide much of the same functionality
that is provided by database management systems. OLE DB evolved from the Open
Database Connectivity (ODBC) application programming interface. See also Object
Linking and Embedding and ActiveX Data Objects.

OLE DB for OLAP
an extension to OLE DB that enables users to access multidimensional databases in
addition to relational databases. Short form: ODBO. See also OLE DB and online
analytical processing.

online analytical processing
a software technology that enables users to dynamically analyze data that is stored in
cubes. Short form: OLAP.

Open Database Connectivity
an interface standard that provides a common application programming interface (API)
for accessing data. Many software products that run in the Windows operating
environment adhere to this standard so that you can access data that was created using
other software products. Short form: ODBC.

padding a value with blanks
in SAS software, a process in which the software adds blanks to the end of a character
value that is shorter than the length of the variable.

persisted information
information such as formatting that remains associated with a data source element such
as a column even after the program that created or accessed the data has been
terminated. Persisted information can be retrieved programmatically at any time.

random access
in the SAS data model, a pattern of access by which SAS processes observations
according to the value of some indicator variable without processing all observations
sequentially.

record-level access
a type of access to a SAS data set or other file that permits more than one user to access
the SAS data set or file at a time. Only one user can use a single observation or record

272 Glossary

of the file at a time, but other users can access other observations or records in the same
file. See also member-level access.

record-level locking
locking at the record (observation) level. Record-level locking provides the user who
owns the lock with exclusive access to a single record in a data set. Other users are able
to access other records that are in the same data set. See also member-level locking.

recordset
an ADO object that contains tabular (rows and columns) data. A recordset can be
returned as a result of a query or an executed command. See also ActiveX Data Objects.

result set
the set of rows or records that a server or other application returns in response to a
query.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called catalog
entries. A single SAS catalog can contain several different types of catalog entries.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data values
in addition to descriptor information that is associated with the data. SAS data views
contain only the descriptor information plus other information that is required for
retrieving data values from other SAS data sets or from files that are stored in other
software vendors' file formats.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one
or more SAS Metadata Repositories. The SAS Metadata Server uses the Integrated
Object Model (IOM), which is provided with SAS Integration Technologies, to
communicate with clients and with other servers.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS procedure
a program that is accessed with a PROC statement. SAS procedures can be used to
produce reports, manage files, or analyze data. Many procedures are included with the
Base SAS software.

SAS session
the activity between invoking and exiting a specific SAS software product.

SAS Workspace Server
a SAS IOM server that is launched in order to fulfill client requests for IOM workspaces.
See also IOM server and workspace.

SAS/ACCESS software
a group of software interfaces, each of which makes data from a particular external
database management system (DBMS) directly available to SAS, as well as making
SAS data directly available to the DBMS.

Glossary 273

SAS/SHARE server
the result of an execution of the SERVER procedure, which is part of SAS/SHARE
software. A server runs in a separate SAS session that services users' SAS sessions by
controlling and executing input and output requests to one or more SAS libraries.

Sashelp library
a SAS library supplied by SAS software that stores the text for Help windows, default
function-key definitions and window definitions, and menus.

SASROOT
a term that represents the name of the directory or folder in which SAS is installed at
your site or on your computer.

sasroot
a term that represents the name of the directory or folder in which SAS is installed at
your site or on your computer.

Sasuser library
a default, permanent SAS library that is created at the beginning of your first SAS
session. The Sasuser library contains a Profile catalog that stores the customized
features or settings that you specify for SAS. You can also store other SAS files in this
library.

sequential access
a method of file access in which the records are read or written one after the other from
the beginning of the file to the end.

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
appropriate order. Internet Protocol (IP) is a protocol for managing connections
between operating environments. IP routes information through the network to a
particular operating environment and fragments and reassembles information in
transfers.

transport file
a sequential file that contains a SAS library, a SAS catalog, or a SAS data set in transport
format, as produced by the CPORT procedure or as written by the XPORT engine or
the Version 5 XCOPY or COPY procedures. The format of the transport file that is
produced by the CPORT procedure is different from the format of the transport file that
is written by the XPORT engine or by the Version 5 COPY or XCOPY procedures.
You can use transport files to move SAS libraries, SAS catalogs, and SAS data sets
from one operating system or host to another.

WHERE clause
one or more WHERE expressions used in a WHERE statement, a WHERE function,
or a WHERE= data set option. See also WHERE expression.

WHERE expression
a type of SAS expression that specifies a criterion or search condition. Observations
that meet that criterion are selected for processing.

Work library
a temporary SAS library that is automatically defined by SAS at the beginning of each
SAS session or SAS job. Unless you have specified a User library, any newly created

274 Glossary

SAS file that has a one- level name will be placed in the Work library by default and
will be deleted at the end of the current SAS session or job.

workspace
in the IOM object hierarchy for a SAS Workspace Server, an object that represents a
single session in SAS. See also Integrated Object Model.

Glossary 275

276 Glossary

Index

A
ADO connection properties

See connection properties
ADO objects

supported methods and properties 139

B
Base SAS provider

connection properties 25
recipes 19

C
CacheSize property 116
character data

padding with blanks 95
connection methods

overview 28
connection properties 24, 119

Base SAS provider 25
IOM provider 26
OLAP provider 27
SAS/SHARE provider 26

connections
customizing 47
sample code 28

Connections
recipes 35

cursor combinations
client-side 137
server-side 135

D
data access

recipes 65
data access permissions

controlling 55
Data Link Properties dialog box 48, 265
data sets

creating and deleting 78
displaying metadata 71
identifying 66
missing values 97
password-protected 69
recipes 77

data sets, subsetting
read only, sequential access 83, 87

Data Source URI format 29
constructing a dataSourceString 30
protocols 30
sample code 30

displaying data
recipes 89

E
error objects

using ADO to handle 125
using OLE DB to handle 127

F
file formats

managing 58
file types

data sources 4

I
installation 10
IOM provider

connection properties 26
recipes 16
troubleshooting 130

IOM Workspace
reusing 61

L
libref

277

assigning to use with IOM provider 67
local data

connecting to 36
local data (single-user server)

connecting to 37
local provider

recipes 15
troubleshooting 131

locking records 109

M
mapping and binding 259
Maximum Open Rows property 116
Microsoft Data Link (.udl) file 54
missing values

reading from a data set 98
recipes 97
special numeric missing values 101
writing to a data set 104

O
OLAP provider

connection properties 27
recipes 20

OLE DB interfaces 211
OLE DB properties 145

P
password

password-protected data sets 69
performance

ADO and OLE DB properties 115
CacheSize property 116
Maximum Open Rows property 116
SAS Page Size property 117

permissions 55
providers

troubleshooting 129

R
reading data 90
recipes

Base SAS provider 19
connection 35
data access 65
data sets 77
displaying data 89
IOM provider 16
local provider 15
missing values 97
OLAP provider 20
SAS/SHARE provider 18

updating and locking 107
recordsets

updating 107
remote SAS OLAP Server

connecting to 44
remote SAS Workspace Server

connecting to 40
using objects to connect to 42

remote SAS/SHARE server
connecting to 39

S
SAS formats

processing with OLE DB 249
reading data 90
user-defined 94

SAS informats
processing with OLE DB 249
user-defined 94
writing data 92

SAS OLAP cubes
reading 73

SAS Page Size property 117
SAS providers

Base SAS provider 4
common features 6
connection properties 24
identifying 24
installation 10
IOM provider 4
local provider 4
OLAP provider 4
overview 4
SAS/SHARE provider 4
supported data sources 4
supported file types 4

SAS servers
associated data providers 9

SAS/ACCESS engines 70
SAS/SHARE provider

connection properties 26
recipes 18

SAS/SHARE server
requesting a specific version 62

schema rowsets 226
system requirements 9

T
third-party data

accessing 70
trailing blanks 95
troubleshooting 129

278 Index

W
writing data 92

Index 279

280 Index

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to yourturn@sas.com.
Include the full title and page numbers (if applicable).

• If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/spn

	Contents
	What's New in the SAS 9.2 Providers for OLE DB
	Overview
	A New Data Provider Provides Access to a Local
Installation of Base SAS
	An Enhanced Data Link Properties Dialog Box
	Three New Properties for Managing SAS Code Before
a Data Source Is Initialized
	Support for Reading Multilingual Data from a
Data Set with UTF-8 Encoding
	64-bit Versions of the Providers
	References to 64-bit Programming Tips
	New Property for the IOM Provider
	New Properties for the Local Provider

	Introduction
	Introduction to the SAS Providers for OLE DB
	About the SAS Providers for OLE DB: Cookbook
	How the Cookbook Can Help You Write Applications
	What You Should Know in Order to Use This Cookbook

	About the SAS Providers for OLE DB
	Data Sources and File Types Supported by the SAS Providers
	Features Supported by the SAS Providers
	Tips for 64-bit Programming

	System Requirements and Installation
	System Requirements
	SAS Provider for OLE DB Installation
	Accessibility Features of the SAS Providers for OLE DB

	Getting Started
	Finding Recipes
	Using This Recipe Guide
	Local Provider Recipes
	IOM Provider Recipes
	SAS/SHARE Provider Recipes
	Base SAS Provider Recipes
	OLAP Provider Recipes

	Learning about SAS Connections
	What You Need to Know about SAS Connections
	How to Identify the SAS Providers
	ADO Connection Properties for the SAS Providers
	Local Provider Properties
	Base SAS Provider Properties
	SAS/SHARE Provider Properties
	IOM Provider Properties
	OLAP Provider Properties

	Three Ways to Open an ADO Connection Object
	Using the Data Source Property to Specify All Connection-Related
Properties
	What Is the Data Source URI Format?
	Data Source URI Protocols
	Using a dataSourceString to Hold Connection Information

	Connection Recipes
	Opening an ADO Connection Object
	Basic Connection Recipes
	Connecting to Local Data
	Goal
	Implementation

	Connecting to Local Data (Single-User Server)
	Goal
	Implementation

	Connecting to a Remote SAS/SHARE Server
	Goal
	ADO Implementation
	OLE DB Implementation

	Connecting to a Remote SAS Workspace Server
	Goal
	Implementation

	Connecting to a Remote SAS Workspace Server Using SAS Objects
	Goal
	Implementation

	Connecting to a Remote SAS OLAP Server
	Goal
	Implementation

	Managing Connections
	Supplemental Connection Recipes
	Prompting Users for Connection Information by Displaying the
 Data Link Properties Dialog Box
	Goal
	Implementation

	Using a Microsoft Data Link (.udl) File to Provide Persistent
Connection Information
	Goal
	Implementation

	Controlling Data Access Permissions with a Connection
	Goal
	ADO Implementation
	OLE DB Implementation

	Managing File Formats with the Local Provider
	Goal
	ADO Implementation
	OLE DB Implementation

	Reusing an Existing IOM Workspace
	Goal
	Implementation

	Connecting to a Specific SAS/SHARE Server Version
	Goal
	ADO Implementation
	OLE DB Implementation

	Data Management Recipes
	Accessing Specific or Protected Data
	Data Access Recipes
	Identifying a Data Set and Returning Results
	Goal
	ADO Implementation

	Specifying a Libref to Use with the IOM Provider
	Goal
	Implementation

	Opening a Password-Protected Data Set
	Goal
	ADO Implementation
	OLE DB Implementation

	Accessing Third-Party Data through SAS/ACCESS Engines
	Goal
	Implementation

	Displaying Metadata That Is Specific to SAS Data Sets
	Goal
	ADO Implementation
	OLE DB Implementation

	Reading SAS OLAP Cubes
	Goal
	Implementation

	Creating, Subsetting, and Deleting Data Sets
	Creating, Subsetting, and Deleting Data Sets Recipes
	Creating and Deleting Data Sets
	Goal
	Implementation

	Subsetting Data Sets for Read-Only Sequential Access
	Goal
	ADO Implementation
	OLE DB Implementation

	Subsetting Data Sets for Random and Update Access
	Goal
	Implementation

	Specifying How to Display Data
	Displaying Data Recipes
	Using SAS Formats When You Read Data
	Goal
	ADO Implementation
	OLE DB Implementation

	Using SAS Informats When You Write Data
	Goal
	ADO Implementation
	OLE DB Implementation

	Reading User-Defined SAS Formats and Informats
	Goal
	ADO Implementation

	Padding Character Data with Blanks
	Goal
	ADO Implementation
	OLE DB Implementation

	Managing Missing Values
	Missing Value Recipes
	Reading Missing Values from a Data Set
	Goal
	ADO Implementation
	OLE DB Implementation

	Reading Special Numeric Missing Values from a Data Set
	Goal
	Reading Special Numeric Missing Values

	Writing Missing Values to a Data Set
	Goal
	ADO Implementation
	OLE DB Implementation

	Managing Updates
	Updating and Locking Recipes
	Updating Recordsets
	Goal
	Implementation

	Implementing a Locking Strategy
	Goal
	Implementation

	Tips and Best Practices
	Tuning the Providers for Performance
	Properties That Affect Performance
	How the "CacheSize" Property Affects Performance
	How the "Maximum Open Rows" Property Affects Performance
	How the SAS Page Size Property Affects Performance
	How the SAS Data Set Options Property Affects Performance

	Writing Code That Returns Provider Information
	How to Generate a List of Supported ADO Properties
	How to Retrieve Version Information for a Provider
	Retrieve Version Information for the Provider Implementation
	Retrieve Version Information for a Server
	Retrieve Version Information for the ADO Interface
	Sample Code to Retrieve Version Information for a Provider,
a Server, and the ADO Interface

	Troubleshooting
	Handling Error Objects
	Using ADO to Handle Errors
	Using OLE DB to Handle Errors

	Known Issues
	Known Issues for All Providers
	Known Issues for the IOM Provider
	Known Issues for the Local Provider
	Known Issues for the SAS/SHARE Provider

	Appendixes
	ADO: Supported Cursor and Lock Type Combinations
	Working with Cursor and Lock Type Combinations
	Server-Side Cursor Combinations
	Client-Side Cursor Combinations

	ADO: Supported Methods and Properties
	OLE DB Properties
	OLE DB Properties: Introduction
	What Are OLE DB Properties?
	Supported Property Groups
	Supported Property Sets
	Property-Related Methods

	OLE DB Properties: Descriptions
	DBPROP_APPENDONLY
	DBPROP_AUTH_PASSWORD
	DBPROP_AUTH_USERID
	DBPROP_BOOKMARKS
	DBPROP_BOOKMARKSKIPPED
	DBPROP_BOOKMARKTYPE
	DBPROP_BYREFACCESSORS
	DBPROP_CANFETCHBACKWARDS
	DBPROP_CANHOLDROWS
	DBPROP_CANSCROLLBACKWARDS
	DBPROP_CLIENTCURSOR
	DBPROP_CURRENTCATALOG
	DBPROP_DATASOURCEREADONLY
	DBPROP_DATASOURCE_TYPE
	DBPROP_DBMSNAME
	DBPROP_DBMSVER
	DBPROP_IAccessor
	DBPROP_IColumnsInfo
	DBPROP_IConvertType
	DBPROP_INIT_ASYNCH
	DBPROP_INIT_DATASOURCE
	DBPROP_INIT_HWND
	DBPROP_INIT_LCID
	DBPROP_INIT_LOCATION
	DBPROP_INIT_MODE
	DBPROP_INIT_PROMPT
	DBPROP_INIT_PROVIDERSTRING
	DBPROP_IRowset
	DBPROP_IRowsetChange
	DBPROP_IRowsetIdentity
	DBPROP_IRowsetInfo
	DBPROP_IRowsetLocate
	DBPROP_IRowsetUpdate
	DBPROP_IRowsetView
	DBPROP_ISupportErrorInfo
	DBPROP_IViewFilter
	DBPROP_IViewRowset
	DBPROP_IViewSort
	DBPROP_LITERALBOOKMARKS
	DBPROP_LITERALIDENTITY
	DBPROP_LOCKMODE
	DBPROP_MAXOPENROWS
	DBPROP_MAXORSINFILTER
	DBPROP_MAXPENDINGROWS
	DBPROP_MAXROWS
	DBPROP_MAXSORTCOLUMNS
	DBPROP_MSMD_MDX_CALCMEMB_EXTENSIONS
	DBPROP_ORDEREDBOOKMARKS
	DBPROP_OTHERINSERT
	DBPROP_OTHERUPDATEDELETE
	DBPROP_OWNINSERT
	DBPROP_OWNUPDATEDELETE
	DBPROP_PROVIDERVER
	DBPROP_REMOVEDELETED
	DBPROP_SAS_ALTERPASSWORD
	DBPROP_SAS_BLANKPADDING
	DBPROP_SAS_DATASET_ENCODING
	DBPROP_SAS_DATASET_LABEL
	DBPROP_SAS_DATASET_TYPE
	DBPROP_SAS_DATASETOPTS
	DBPROP_SAS_DEFAULTFILEFORMAT
	DBPROP_SAS_ENGINE
	DBPROP_SAS_FMTERR
	DBPROP_SAS_FORMATS
	DBPROP_SAS_GET_MISSING_VALUES
	DBPROP_SAS_INFORMATS
	DBPROP_SAS_INIT_CELLCACHESIZE
	DBPROP_SAS_INIT_FILEFORMAT
	DBPROP_SAS_INIT_LOCALSERVER
	DBPROP_SAS_INIT_LOGICALNAME
	DBPROP_SAS_INIT_MACHINEDNSNAME
	DBPROP_SAS_INIT_PORT
	DBPROP_SAS_INIT_PROTOCOL
	DBPROP_SAS_INIT_SASEXE
	DBPROP_SAS_INIT_SASPARAMETERS
	DBPROP_SAS_INIT_SASWORKINGDIR
	DBPROP_SAS_INIT_SERVERPASSWORD
	DBPROP_SAS_INIT_SERVERRELEASE
	DBPROP_SAS_INIT_SERVERTYPE
	DBPROP_SAS_INIT_SERVICENAME
	DBPROP_SAS_INIT_WORKSPACE
	DBPROP_SAS_INIT_WORKSPACEID
	DBPROP_SAS_INIT_WORKSPACE_INIT_SCRIPT
	DBPROP_SAS_LIBOPTS
	DBPROP_SAS_MISSING_VALUES
	DBPROP_SAS_NLSOPTS
	DBPROP_SAS_OPTIMISTICLOCKING
	DBPROP_SAS_PAGESIZE
	DBPROP_SAS_PATH
	DBPROP_SAS_PHYSICALPOSITIONING
	DBPROP_SAS_PT2DBPW
	DBPROP_SAS_READPASSWORD
	DBPROP_SAS_RESERVED_ROWSETFLAGS
	DBPROP_SAS_SQLCONNECTIONSTRING
	DBPROP_SAS_SQLENGINE
	DBPROP_SAS_USE_TKMANAGER_SEARCHPATH
	DBPROP_SAS_WHERE
	DBPROP_SAS_WORKSPACE_INIT_LIST
	DBPROP_SAS_WORKSPACE_INIT_LOG
	DBPROP_SAS_WRITEPASSWORD
	DBPROP_SESS_AUTOCOMMITISOLEVELS
	DBPROP_SORTONINDEX
	DBPROP_SUPPORTEDTXNISOLEVELS
	DBPROP_UNIQUEROWS
	DBPROP_UPDATABILITY
	MDPROP_AGGREGATECELL_UPDATE
	MDPROP_AXES
	MDPROP_FLATTENING_SUPPORT
	MDPROP_MDX_CASESUPPORT
	MDPROP_MDX_DESCFLAGS
	MDPROP_MDX_FORMULAS
	MDPROP_MDX_JOINCUBES
	MDPROP_MDX_MEMBER_FUNCTIONS
	MDPROP_MDX_NUMERIC_FUNCTIONS
	MDPROP_MDX_OBJQUALIFICATION
	MDPROP_MDX_OUTERREFERENCE
	MDPROP_MDX_QUERYBYPROPERTY
	MDPROP_MDX_SET_FUNCTIONS
	MDPROP_MDX_SLICER
	MDPROP_MDX_STRING_COMPOP
	MDPROP_NAMED_LEVELS
	MDPROP_RANGEROWSET

	OLE DB Properties: Sorted by ADO Name
	OLE DB Properties: Sorted by Data Provider
	Supported Properties in the IOM and OLAP Data Providers
	Supported Properties in the Local Data Provider
	Supported Properties in the SAS/SHARE and Base SAS Data Providers

	OLE DB Properties: Sorted by Group
	Supported Properties in the Data Source Group
	Supported Properties in the Data Source Information Group
	Supported Properties in the Initialization Group
	Supported Properties in the Rowset Group
	Supported Properties in the Session Group

	OLE DB Interfaces
	About OLE DB Interfaces
	What Are OLE DB Interfaces?

	Standard OLE DB Interfaces
	Command Object
	Data Source Object
	Rowset Object
	Session Object

	OLE DB for OLAP Interfaces
	Dataset Object

	Custom Interfaces
	About Custom Interfaces
	ISASColumnsInfo Custom Interface
	ISASDataSetInfo Custom Interface
	ISASDataSetInfo90 Custom Interface

	Data Set Management Using the ITableDefinition Interface
	About Creating and Deleting SAS Data Sets
	Creating a Data Set
	Deleting Data Sets

	Schema Rowsets
	About Schema Rowsets
	What Are Schema Rowsets?
	Supported Schema Rowsets
	How Are Schema Rowsets Obtained?
	How to Restrict the Rows That Are Returned

	CATALOGS Schema Rowset
	Standard Mapping

	COLUMNS Schema Rowset
	Standard Mapping
	Rowset Extensions
	Additional Details

	CUBES Schema Rowset
	Standard Mapping

	DIMENSIONS Schema Rowset
	Standard Mapping

	FUNCTIONS Schema Rowset
	Standard Mapping

	HIERARCHIES Schema Rowset
	Standard Mapping

	LEVELS Schema Rowset
	Standard Mapping

	MEASURES Schema Rowset
	Standard Mapping

	MEMBERS Schema Rowset
	Standard Mapping
	The Tree Operation Restriction

	PROPERTIES Schema Rowset
	Standard Mapping

	PROVIDER_TYPES Schema Rowset
	Standard Mapping

	SETS Schema Rowset
	Standard Mapping

	TABLES Schema Rowset
	Standard Mapping
	Rowset Extensions

	OLE DB: Format Processing
	About Format and Informat Processing with OLE DB
	What Are Formats and Informats?
	Supported SAS Formats
	Determining Persisted (Default) Formatting Information

	How to Specify Format Processing When Binding Columns
	Using Formats for Input Operations
	How to Keep Default Formats
	Sample Code for Using Default Formats

	Overriding Formats for Input Operations
	How to Override Default Formats
	Sample Code for Overriding Default Formats

	Processing Informats for Output Operations
	How to Simultaneously Bind Columns to Formats and Informats

	OLE DB: Column Mapping and Binding
	About the Mapping and Binding Process
	Returning Column Metadata
	Mapping to SAS Constructs
	Binding to Rowset Columns

	Customized User Help for the Data Link Properties Dialog Box
	Data Link Properties Dialog Box (Connection Tab)
	Data Link Properties Dialog Box (Advanced Tab)

	Glossary
	Index

