
SAS® 9.2 OLAP Server
User’s Guide

TW7920_ColorTitlePage.indd 1 4/7/10 2:39:31 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 OLAP Server: User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 OLAP Server: User’s Guide
Copyright © 2009 ,SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-338-1
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009

1st printing, February 2009

2nd electronic book, September 2009

2nd printing, September 2009

3rd electronic book, May 2010

3rd printing, May 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New ix

Overview ix

OLAP Cube Building Features ix

OLAP Cube Maintenance Features x

Cube Aggregation Tuning Features xi

Incremental Cube Update Features xi

Security For Cubes xi

SAS Tree View Features xii

New OLAP Procedure Options xii

Chapter 1 � OLAP Introduction and Overview 1

What Is OLAP? 1

What Is a Cube? 3

Understanding the Cube Structure 4

Why You Should Use Cubes 5

Chapter 2 � Defining the SAS OLAP Environment 7

SAS OLAP Environment — Overview 7

SAS Metadata Server 8

SAS Application Server 9

SAS Workspace Server 9

SAS OLAP Server 9

SAS Management Console 10

SAS OLAP Server Monitor 10

SAS OLAP Cube Studio 10

OLAP Schema 10

SAS Libraries 11

Data Tables 11

Authorization Permissions 11

Chapter 3 � Organization and Management of Your Data 13

Cube Data Organization 13

OLAP Schemas 14

SAS Libraries and Tables 16

Managing Folders In SAS OLAP Cube Studio 19

SAS OLAP Cube Jobs 20

Chapter 4 � Planning for SAS OLAP Cubes 23

Overview 23

Data Tables Used to Define SAS OLAP Cubes 24

Aggregation Design 26

Aggregation Storage 28

iv

SAS OLAP Cube Size Specifications 29

Naming Guidelines and Rules for the SAS OLAP Server 30

SAS Formats Available for Measures 32

Statistics Available for Measures 34

Chapter 5 � Building Cubes and Administering Cubes 35

SAS OLAP Cube Studio and the OLAP Procedure 36

Connecting and Reconnecting to a Metadata Server 36

Cube Designer Wizard 38

Defining Data Sources For a Cube 38

Defining Drill-Through Tables 39

Defining Dimensions and Levels 40

Specifying the TIME Dimension 40

Specifying GIS Map Information for a Dimension 41

Defining Cube Hierarchies 42

Defining Measures For A Cube 47

Defining Member Properties 49

Defining Aggregations While Building a Cube 50

Saving the Cube Metadata or Creating the Physical Cube 51

Saving the OLAP Procedure (Long Form versus Short Form) 52

Viewing Cubes in SAS OLAP Cube Studio 53

Chapter 6 � Modifying and Maintaining Cubes 55

Editing a Cube 56

Renaming A Cube Object 56

Deleting Cubes and Cube Objects 57

Refreshing Cube Metadata 57

Tuning Cube Aggregations 58

Specifying Tuning and Performance Options in Cube Aggregations 61

Specifying Calculated Members and Measures 63

Multiple Language Support and Dimension Table Translations 65

Adding SAS System Options to a Cube 66

Synchronizing Column Changes 67

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP 67

Impact Analysis and Reverse Impact Analysis 71

Disabling and Enabling Cubes 72

Cube Security 73

Chapter 7 � Updating SAS OLAP Cubes 79

Overview 79

Updating a Cube In-Place 80

Incremental Updates of Cubes and Cube Generations 80

Coalescing Cube Aggregations 82

Updating a Cube In a Production Environment 82

Archiving and Deleting Cube Generations 84

Updating the Captions and Descriptions for a Cube 85

v

Adding New Members to an Incrementally Updated Cube 85

Reorganization of Cube Levels 85

Updating Member Properties 86

Specifying Drill-Through Tables 87

NWAY Considerations 87

Updating Multiple Language Support Cubes 87

Format Search Path and SAS Source Code Considerations 87

Exporting Cubes that Have Been Updated 88

Input Data Tables for Cube Updates 88

Schema and Repository Considerations 89

Physical Storage and Metadata Considerations 90

Connecting to a Workspace Server 90

Proc OLAP Options 90

Proc OLAPOPERATE Options and SAS OLAP Monitor 90

Updating Cubes in SAS OLAP Cube Studio 90

Chapter 8 � Cube Building and Modifying Examples 93

Defining A Connection Profile 94

Building a Cube from a Detail Table 96

PROC OLAP Example for a Detail Table 110

Building a Cube from a Star Schema 114

Building a Cube from a Summary Table 133

Tuning Aggregations For a Cube 151

Adding Data to a Cube with Cube Update 160

Adding Calculated Members To A Cube 170

Setting Member Authorizations On A Dimension 180

Setting Identity Driven Security 187

Viewing a Cube in SAS OLAP Cube Studio 192

Creating a Time Dimension in SAS OLAP Cube Studio 197

Synchronizing Column Changes 199

Specifying an ESRI GIS Map For a Cube Dimension 200

Creating Multiple Hierarchies For a Cube 205

Set IGNORE_MISSING_DIMKEYS for a Star Schema 208

Implementing Drill-through to Detail Data in a SAS OLAP Cube 210

Exporting a Cube From SAS OLAP Cube Studio 216

Importing a Cube Into SAS OLAP Cube Studio 219

Chapter 9 � Using SAS OLAP Cubes 225

Using a Cube with ADO MD 225

Using a Cube with OLE DB for OLAP 225

Using a Cube with Additional SAS Products 226

Using a Cube with Third-Party Clients 229

Chapter 10 � Importing and Exporting SAS OLAP Cubes 231

Importing and Exporting SAS OLAP Cubes 231

ExportCubes and ImportCubes Batch Tools 232

vi

Export SAS Package and Import SAS Package 235

Validating Data After It Is Moved 240

Cube Promotion and Migration Resources 240

Appendix 1 � The OLAP Procedure 243

The OLAP Procedure 244

Syntax: OLAP Procedure 244

PROC OLAP Statement 245

METASVR Statement 256

DIMENSION Statement 257

LEVEL Statement 263

PROPERTY Statement 266

HIERARCHY Statement 267

MEASURE Statement 269

AGGREGATION Statement 274

DROP_AGGREGATION Statement 276

DEFINE Statement 276

UNDEFINE Statement 278

USER_DEFINED_TRANSLATIONS Statement 279

REORGANIZE_LEVEL Statement 281

Loading Cubes 281

Maintaining Cubes 286

Specialized Options for PROC OLAP 288

Appendix 2 � The OLAPOPERATE Procedure 291

The OLAPOPERATE Procedure 291

Syntax: OLAPOPERATE Procedure 292

Connection Options 292

Disconnecting from an OLAP Server 293

Listing Active Sessions on an OLAP Server 293

Listing Session Queries on an OLAP Server 294

Listing Session Rowsets on an OLAP Server 294

Closing a Session 295

Cancelling a Query Result Set 296

Disabling a Cube 296

Enabling a Cube 296

Enabling and Disabling Cubes for a Cube Update 296

Refreshing a Cube 296

Stopping an OLAP Server 297

Appendix 3 � Resources and Reference Topics for SAS OLAP Cubes 299

OLAP Server Resources 299

OLAP Schema Resources 300

Cube Resources 300

Table Resources 300

Dimension Resources 301

vii

Level Resources 302

Hierarchy Resources 302

Measure Resources 303

Member and Member Properties Resources 303

Calculated Members and Measures Resources 303

Aggregation Resources 304

Incremental Cube Update Resources 304

Drill–Through to Detail Resources 305

GIS Mapping Resources 305

Appendix 4 � SAS OLAP Cube Studio Accessibility Features 307

SAS OLAP Cube Studio Accessibility Features 307

Appendix 5 � Recommended Reading 309

Recommended Reading 309

Glossary 311

Index 319

viii

ix

What’s New

Overview
The SAS OLAP Server contains various new functions, tools, and features for SAS

9.2.
� OLAP cube building features
� OLAP cube maintenance features
� cube aggregation tuning features
� incremental cube update features
� security for cubes
� SAS tree view features
� OLAP procedure options

These functions are accessed from SAS OLAP Cube Studio. In addition, some of
these functions have equivalent OLAP procedure statements or options.

OLAP Cube Building Features
� The data table selection process in the Cube Designer wizard has been simplified

and reorganized into an easier and more intuitive order. Tables are now grouped
based on the libraries that the tables are registered to. The table selection pages
also contain functions that enable you to access the properties for a table and view
the data for a table.

� You can now create multiple hierarchies for a dimension with the Define a
Hierarchy dialog box in the Dimension Designer. You can also designate one of the
hierarchies as a default hierarchy.

� You can now build a time dimension with user-supplied time hierarchies that
auto-populate the levels and formats for the Time dimension. The Add-Supplied
dialog box enables you to select from suggested time hierarchies that are based on
a single date-formatted column.

The COLUMN= option is used on the LEVEL statement when the Add-Supplied
function is used.

x What’s New

� If the metadata server connection is lost during a SAS OLAP Cube Studio session,
a new metadata server connection is automatically attempted during the same
SAS OLAP Cube Studio session. This enables you to continue your work in that
same session without losing any data changes you are making.

OLAP Cube Maintenance Features
� The Calculated Members Wizard is now fully integrated into SAS OLAP Cube

Studio. The addition of the advanced expression builder enables you to specify
user-defined formats, set the solve order, and build a custom MDX formula for a
calculated member.

� The View Cube function enables you to verify the cube build process and visualize
the data structure of a cube.

� SAS OLAP cube metadata can now be exported and imported as part of a SAS
package or in batch mode. Cubes built with SAS OLAP Cube Studio 4.2 can be
copied or moved between SAS 9.2 systems with the Export SAS Package and
Import SAS Package functions that are part of SAS OLAP Cube Studio 4.2. Cubes
that were built with a version of SAS that is earlier than 9.2 can also be moved to
the SAS 9.2 environment by using the ExportCubes and ImportCubes batch tools.

Note: The ExportCubes batch tool is supported in a hot fix that is applied to SAS
9.1.3 SP4. Cube metadata that is exported with the ExportCubes tool can then be
imported in the second maintenance release after SAS 9.2 with the ImportCubes
batch tool. �

� The Synchronize Column Changes function enables you to synchronize a cube
when the input table for an existing cube has encountered a column name change.
This function finds the name differences between the cube and its input table. It
then changes the internal cube files to match the input table column names.

� The Refresh Cube function enables the SAS OLAP Server to access calculated
members that were created or updated since the cube was last accessed by the
SAS OLAP Server. This function notifies running SAS OLAP Server instances to
capture calculated member changes made to the cube since it was last loaded by
those instances.

� You can now quickly change the OLAP schema for a cube from within SAS OLAP
Cube Studio.

� Cubes can now be disabled to make necessary changes and updates and then
enabled again. Disabling a cube makes it transparent to the users connected to
any active OLAP Server instances. A cube is disabled in order make edits to the
cube or to perform administrative tasks on the cube. Enabling a cube brings it
back into production.

� You can now choose to export the code generated by PROC OLAP in either a long
form or short form. The Export Code function enables you to store in a text file the
PROC OLAP code that is used to edit or build the cube. The long form contains all
PROC code that is used to create a cube. The short form text file contains only the
PROC OLAP statement, the cube name, and the METASVR statement and obtains
the remainder of the cube structure from an existing registration on the metadata
server.

� You can now perform impact analysis for a cube. This function enables you to view
the relationship of a cube to the objects that it is associated with. Impact analysis
shows the potential impact of changes that you might make to a cube.

� A cube or cube-related object can now have documents and notes attached to
provide additional information about the cube or object.

What’s New xi

� Cube jobs are now automatically generated when a cube is built. A cube job is a
collection of SAS tasks that create output. When you deploy a cube job, the code
needed to create the cube is generated.

� You can now change the name of a cube or other object (such as a job, document,
or note) by selecting that object in the tree view and then selecting the Rename
function.

Cube Aggregation Tuning Features
� The newly designed Aggregation Tuning wizard enables you to build, edit, and

customize aggregations for a cube. You can generate new aggregations for a cube
based on the ARM log or cardinality, or you can use the manual aggregation
builder.

Incremental Cube Update Features
� You can now add data and members to a cube without having to rebuild the cube.

To support this feature, new PROC OLAP statements and options have been added.
Within SAS OLAP Cube Studio, the Incremental Update wizard has been added.

� The Coalesce Aggregations function is part of the Incremental Update function. It
enables you to combine all of the individual rack tables that result from
incremental updates into a single aggregation table. The
COALESCE_AGGREGATIONS option has been added to support this function. In
SAS OLAP Cube Studio, the Coalesce Aggregations wizard has been added.

Security For Cubes
� You can now define member-level security in SAS OLAP Cube Studio. The Add

Authorization dialog box enables you to add MDX expressions that limit access to
a cube dimension. This ensures that only designated portions of the data are
visible to a user or group of users.

Starting in the third maintenance release for SAS 9.2, you can use the Add
Authorization dialog box to grant or deny Read permissions for a member only or
for a member and its descendents.

The SECURITY_SUBSET= option is now available in the OLAP procedure. The
option determines whether security totals will be used. The subset that is defined
is then applied when calculating the cell values.

� Identity-driven security enables you to substitute identity values in a permission
condition. It enables you to insert a placeholder into the permission condition that,
at query time, gets resolved to a string that represents the user identity.

� Starting in the third maintenance release for SAS 9.2, you can specify batch
security in SAS OLAP Cube Studio with the Manage Permission Tables function.
The Manage Permission Tables function enables you to create a special SAS data
set known as a permission table that contains cube access controls for submitting
in bulk. A permission table is a table of access control information that can later
be applied to a cube with batch SAS code. The Manage Permission Tables dialog
box enables you to create and modify permission tables as well as import access
controls (permissions) from a cube or an OLAP schema. You can also execute the
code interactively or export the code to a file for use in a stored process or deployed
job flow.

xii What’s New

SAS Tree View Features
� The tree view is now divided into two tabs, the Folders tab and Inventory tab.

The Inventory tab lists the cubes and their components, such as schemas, tables,
and libraries. The Folders tab displays a folder view of the components of the
cube. This view shows which folders a cube, source tables, and libraries are
located in.

� You can now access functions that are specific to an object in the tree view. The
functions that are listed in the context menu are specific to that object and the
current status of that object. You can access the context menu by right-clicking an
object.

� In SAS OLAP Cube Studio, you can now copy or move objects between folders. You
can also find the folder location of an object in the Inventory tab with the Find In
Folders function.

New OLAP Procedure Options
The following OLAP procedure options are new for SAS OLAP 9.2:

PROC OLAP Statement Options
� ADD_DATA
� ASYNCINDEXLIMIT=
� COALESCE_AGGREGATIONS
� ESRI_MAP_SERVER=
� ESRI_REPLACE
� MAX_RETRIES=
� MAX_RETRY_WAIT=
� MIN_RETRY_WAIT=
� NONUPDATEABLE
� OUTCUBE=
� OUTSCHEMA=
� RENAME
� SECURITY_SUBSET= YES|NO
� SYNCHRONIZE_COLUMNS (replacing SYNCHRONIZE_LEVELS)
� UPDATE_DISPLAY_NAMES
� UPDATE_IN_PLACE

Dimension Statement Options
� MAP_SERVICE=
� UPDATE_DIMENSION=

LEVEL Statement Options
� COLUMN=

What’s New xiii

� ESRI_MAP_LAYER=
� FORMAT=

MEASURE Statement Options
� INCLUDE_CALCULATED_MEMBERS
� NOINCLUDE_CALCULATED_MEMBERS

PROPERTY Statement Options
� ESRI_MAP_FIELD=

xiv What’s New

1

C H A P T E R

1
OLAP Introduction and Overview

What Is OLAP? 1

Data Storage and Access 1

Benefits of OLAP 2

OLAP Variations 3

What Is a Cube? 3

Understanding the Cube Structure 4

Dimensions, Levels and Hierarchies 4

Members 4

Measures 4

Calculated Measures 5

Aggregations 5

Why You Should Use Cubes 5

Cube Usage and Storage Space Reduction 5

Multi-Threading Capabilities 5

Easy Setup and Maintenance 6

Data Management: Choosing Your Own Tool 6

What Is OLAP?
Online Analytical Processing (OLAP) is a technology that is used to create decision

support software. OLAP enables application users to quickly analyze information that
has been summarized into multidimensional views and hierarchies. By summarizing
predicted queries into multidimensional views prior to run time, OLAP tools provide the
benefit of increased performance over traditional database access tools. Most of the
resource-intensive calculation that is required to summarize the data is done before a
query is submitted.

Data Storage and Access
Decision makers are asked to make timely and accurate decisions that are based on

the past performance and behavior of an organization as well as on future trends and
directives. To make effective business decisions, business analysts must have access to
the data that their company generates and responds to. This access must include
timely queries, summaries, and reviews of numerous levels and combinations of large,
recurrent amounts of data. The information that business analysts review determines
the quality of their decisions.

Organizations usually have databases and data stores that maintain repeated and
frequent business transaction data. These data storage systems provide simple yet
detailed storage and retrieval of specific data events. However, these systems are not

2 Benefits of OLAP � Chapter 1

well suited for analytical summaries and queries that are typically generated by
decision makers. For decision makers to reveal hidden trends, inconsistencies, and
risks in a business, they must be able to maintain a certain degree of momentum when
querying the data. An answer to one question usually leads to additional questions and
review of the data. Simple data stores do not successfully support this type of querying.

A second type of storage, the data warehouse, is better suited for this. Data is
maintained and organized so that complicated queries and summaries can be run.
OLAP further organizes and summarizes specific categories and subsets of data from
the data warehouse. This results in a robust and detailed level of data storage with
efficient and fast query returns. SAS OLAP cubes can be built from either partially or
completely denormalized data warehouse tables. Stored, precalculated summarizations
called aggregations can be added to the cube to improve cube access performance.
Aggregations can either be pre-built relational tables, or you can let the cube create its
own optimized aggregates.

Benefits of OLAP
The ability to have coherent, relevant, and timely information is the reason OLAP has

gained in popularity. OLAP systems can help reveal evasive inconsistencies and trends
in data that might not have been seen before. OLAP users can intuitively search data
that has been consolidated and summarized within the OLAP structure. In addition,
OLAP tools allow for tasks such as sales forecasting, asset analysis, resource planning,
budgeting, and risk assessment. OLAP systems also provide the following benefits:

� fast access, calculations, and summaries of an organization’s data
� support for multiple user access and multiple queries
� the ability to handle multiple hierarchies and levels of data
� the ability to presummarize and consolidate data for faster query and reporting

functions
� the ability to expand the number of dimensions and levels of data as a business

grows

To fully understand the benefits of OLAP and the details of its effective
implementation, it helps to examine the technology from two perspectives— that of the
users, and that of the information technology (IT) administrators who are responsible
for OLAP implementation. The users, typically business analysts and executives, expect
the data to be organized according to categories that reflect the way they think about
the enterprise. For IT administrators, OLAP can present a long list of technical issues,
including these concerns:

� storage requirements and associated costs
� client and server capabilities
� maintenance activities such as update and backup
� performance considerations such as the amount of time that is required to build a

multidimensional model
� the ability of the OLAP solution to integrate with current or planned data

warehouse strategies and architectures
� security requirements for cube data

The SAS OLAP Server and SAS OLAP Cube Studio provide resources and
functionality to address these concerns. When building SAS OLAP cubes, you can
perform functions and specify settings that affect the following:

� cube aggregation storage and query performance
� cube dimension security and identity-driven security

OLAP Introduction and Overview � What Is a Cube? 3

� updates of cube data

� maintenance of cubes (such as adding calculated members or changing an OLAP
schema.)

Because SAS OLAP is a component of the SAS Intelligence Platform, it works in
conjunction with other SAS applications to provide an overall solution to the access and
maintenance of a company’s data.

OLAP Variations
OLAP technology can be further defined by the methods for storing and accessing

data and by the performance of queries against that data. SAS OLAP supports three
different variations of OLAP technology:

MOLAP (multidimensional OLAP)
is a type of OLAP that stores summaries of detail data (aggregates) in
multidimensional database structures. MOLAP cubes are most suited for slicing
and dicing of data and are used when performance and query speed is critical. For
further information on MOLAP, see the topic “MOLAP Aggregation Storage” on
page 28.

ROLAP (relational OLAP)
is a type of OLAP in which multidimensional data is stored in a relational
database such as a SAS table or an ORACLE table. ROLAP is more scalable than
other OLAP types and handles extensive amounts of data well. Although
performance can be somewhat slow, ROLAP is limited only by the size of the
relational database it is identified with. For further information on ROLAP, see
the topic “ROLAP Aggregation Storage” on page 28.

HOLAP (hybrid OLAP)
is a type of OLAP in which relational OLAP (ROLAP) and multidimensional OLAP
(MOLAP) are combined. In HOLAP, the source data is usually stored using a
ROLAP strategy, and aggregations are stored using a MOLAP strategy. It
combines the best features of both ROLAP and MOLAP. This combination usually
results in the smallest amount of storage space. In HOLAP, aggregates can be
precalculated and can be linked into a hybrid storage model.

What Is a Cube?

One of the advantages of OLAP is how data and its relationships are stored and
accessed. OLAP systems house data in structures that are readily available for detailed
queries and analytics. Cubes are central to the OLAP storage process.

A cube is a set of data that is organized and structured in a hierarchical,
multidimensional arrangement. The cube is usually derived from a subset of a data
warehouse. Unlike relational databases that use two-dimensional data structures (often
in the form of columns and rows in a spreadsheet), OLAP cubes are logical,
multidimensional models that can have numerous dimensions and levels of data. Also,
an organization typically has different cubes for different types of data.

One of the challenges of OLAP cube data storage and retrieval is the growth of data
and how that growth affects the number of dimensions and levels in a cube hierarchy.
As the number of dimensions increases over time, so does the number of data cells on an
exponential scale. To maintain the efficiency and speed of the OLAP queries, the cube
data is often presummarized into various consolidations and subtotals (aggregations).

4 Understanding the Cube Structure � Chapter 1

Note: The SAS OLAP Server term cube is synonymous with the terms hyper-cube
and multi-cube. �

Understanding the Cube Structure
A SAS OLAP cube stores data in a method that enables fast retrieval of summarized

data. Data summarization in this context means condensing large numbers of detail
records into meaningful numbers such as counts, sums, averages, or other statistical
measures. The structure of a cube is hierarchical in nature and is derived from the
associations between the different columns and rows of data in a data source. SAS
OLAP cubes are comprised of dimensions, levels, hierarchies, members, and member
properties. This structure enables you to easily select data subsets and navigate the
cube structure when querying the cube.

Dimensions, Levels and Hierarchies
SAS OLAP cubes organize data in a hierarchical arrangement, according to

dimensions and measures.Dimensions group the data along natural categories and
consist of one or more levels. Each level represents a different grouping within the
same dimension. For example, a time dimension can include levels such as years,
months, and days. Or an organization dimension of a bank’s customer service centers
can include levels such as branches, states, and regions.

Levels are organized into one or more hierarchies, typically from a coarse-grained
level (for example, Year) down to the most detailed one (for example, Day). The
individual category values (for example, 2002 or 21Jan2002) are called members.

A dimension can also have multiple hierarchies to provide different sequences of
groupings. For example, a "Time" dimension can have a "Fiscal Year" hierarchy and a
"Calendar Year" hierarchy.

Members
Each combination of values within a dimension is called a member. Some examples

of members are shown here.
[Time].[2003]
[Time]. [2004].[January]
[Time]. [2004].[February].[12th]

For each dimension, there is also the special member called the ALL member, which
represents the total for all members (for example, [Time].[All Time]). Not all categorical
data attributes need to become a member of a hierarchy level. Some grouping
information is needed only as additional information for a member or for applying
subsets to data. These attributes can be loaded into member properties. Member
properties can be associated with any level in a hierarchy.

Measures
Measures are the cube data values that are summarized and analyzed. A measure is

the combination of a numeric input column with a roll-up rule or statistic. Measures
are loaded from the data source that you summarize from. One input column can load
one or more measures. For example, you can create the measures "Sum of Amount" and
"Maximum of Amount" from the input column "Amount."

OLAP Introduction and Overview � Multi-Threading Capabilities 5

Calculated Measures
Not all measures are directly derived from input columns. You can create calculated

measures, which are formulas that are based on the values of other measures.
Calculated measures are designed and stored with the cube.

Aggregations
An aggregation is a summary of detail data that is stored with or referred to by a

cube. They are the basis for fast response to data queries in OLAP applications. An
aggregation is possible at each intersection of a level of one or more dimensions. Any
combination of dimension levels can become a stored aggregation, as long as it is
appropriate within the defined hierarchies. One of the major factors that influences
query response time is which aggregations you create and use to query your cube. The
aggregations that are being stored with the cube affect cube build time, the absolute
cube file size, SAS OLAP Server CPU usage, and query response times. As a result,
determining and building your cube aggregations is a crucial component of good cube
design.

Why You Should Use Cubes
SAS cubes are designed to offer efficient data storage, fast data access, easy data

maintenance, and flexibility in data management. The following sections explore cubes
and multidimensional storage.

Cube Usage and Storage Space Reduction
While cubes are the format of choice to guarantee fast query response times against

your data warehouse, SAS OLAP cubes are also often a very space-efficient choice for
data storage. In many cases, a basic cube without additional aggregations can be
smaller than the input data because the process of creating the cube consolidates
records. SAS OLAP cubes use the hierarchy information for efficient aggregations
storage. SAS OLAP cubes also deal efficiently with data sparsity by using virtual
placeholders for empty cells. This removes the need for any physical representation of
empty cells. A good rule of thumb is, the larger your input data, the greater the storage
gain by loading data into a cube.

Multi-Threading Capabilities
Loading data into cubes and executing queries against the cube take advantage of

the multi-threading capabilities of your server machine. Aggregations are created in
parallel at cube build time. The creation of individual aggregations takes advantage of
the Parallel Group-By capabilities of the SAS data engine. At query execution, the
multi-threading capabilities of your server machine are fully used to concurrently serve
queries by multiple users. Both query evaluation and data access are executed in
parallel. To further increase query performance and reduce disk access, you can allocate
additional memory on your server to be used for an in-memory aggregation cache.

6 Easy Setup and Maintenance � Chapter 1

Easy Setup and Maintenance
A cube is the physical representation of your logical dimensional model. The tools

that are provided to update and maintain the cube reflect the multidimensional model,
which makes both setup and maintenance of your cube as intuitive as possible. SAS
Management Console, a Web-based administrator interface, enables you to set up and
manage OLAP servers. SAS OLAP Cube Studio provides the workspace and cube
designer tools that you need to create and maintain cubes. You can also use the SAS
OLAP procedure to create and maintain cubes in a batch environment.

Data Management: Choosing Your Own Tool
If you create your own aggregations by using data management tools such as SQL,

PROC SUMMARY, or the tools of your preferred relational database management
system (RDBMS), then you can link those aggregations to your cubes without
replicating the data within the cube. Any queries against those aggregations are
executed by the appropriate SQL engine, and take advantage of any capabilities that
engine might have. This allows you the flexibility to use the data management tools of
your choice. It also allows you to distribute your data for your cube aggregations across
multiple database systems, servers, and platforms. If you choose to let the cube builder
create the aggregations, then you can control where to store the data and index files for
each aggregation.

7

C H A P T E R

2
Defining the SAS OLAP
Environment

SAS OLAP Environment — Overview 7

SAS Servers 7

SAS Clients 8

Data Organization and Management Components 8

User and User Group Authorization Permissions 8

SAS Metadata Server 8

SAS Application Server 9

SAS Workspace Server 9

SAS OLAP Server 9

SAS Management Console 10

SAS OLAP Server Monitor 10

SAS OLAP Cube Studio 10

OLAP Schema 10

SAS Libraries 11

Data Tables 11

Authorization Permissions 11

SAS OLAP Environment — Overview
Before you can begin developing SAS OLAP cubes, you must define and install the

servers, tools, and user interfaces that enable you to create and manage your SAS
OLAP cubes and related data. When you install your SAS OLAP environment, you will
need to plan for and include the following items:

SAS Servers
SAS OLAP uses a combination of SAS servers to store cube metadata, to store the

physical cube structure, and to query cubes after they are created. The term server
refers to a program or programs that wait for and fulfill requests from client programs
for data or services. Several types of SAS servers are available to handle different
workload types and processing intensities.

� a “SAS Metadata Server” on page 8
� a “ SAS Application Server” on page 9
� a “ SAS Workspace Server” on page 9
� a “SAS OLAP Server” on page 9

8 SAS Clients � Chapter 2

SAS Clients
The SAS OLAP environment uses the following Java desktop applications:

� “SAS Management Console” on page 10
� “SAS OLAP Server Monitor” on page 10
� “SAS OLAP Cube Studio” on page 10

Data Organization and Management Components
The following data organization and management components are necessary for and

used by the SAS OLAP environment.
� “OLAP Schema” on page 10
� “SAS Libraries” on page 11
� “Data Tables” on page 11

User and User Group Authorization Permissions
� “Authorization Permissions” on page 11.

SAS Metadata Server
The SAS Metadata Server is a multi-user server that enables users to read metadata

from and write metadata to one or more SAS metadata folders. This server is a
centralized resource for storing, managing, and delivering metadata for all SAS
applications across the enterprise. It enables all users to access consistent and accurate
data. Some types of metadata objects that can be stored in the SAS metadata include
data libraries, tables, cubes, users and user groups, user authorization permissions, and
server definitions. The default metadata server that is installed during your system
installation and configuration is the SASMeta server.

You can define and administer SAS Metadata Servers in SAS Management Console.
The Server Manager and Metadata Manager plug-ins contain various administrative
functions. The Server Manager provides functions to manage SAS server definitions
stored in the SAS Metadata. It enables you to define and edit information regarding
server locations and connections. The Metadata Manager plug-in enables you to
maintain and define the various SAS metadata for your SAS environment.

Note: For more information on the SAS Metadata Server, see the topic "SAS
Metadata Server" in the SAS Intelligence Platform: Overview. �

The SAS Metadata Server uses the Integrated Object Model (IOM) that is provided
by SAS Integration Technologies. IOM provides distributed object interfaces to Base
SAS software features. It enables you to use industry-standard languages,
programming tools, and communication protocols to develop client programs that access
these services on IOM servers. The SAS Open Metadata Interface (OMI) is an
object-oriented application programming interface (API) that interacts with the SAS
Metadata Server. SAS OLAP Cube Studio is an example of an application that is
compliant with the SAS Open Metadata Interface.

With SAS OLAP Server, all relevant structural information is contained within the
cube and most of it is also replicated within the SAS Open Metadata Architecture. This
is done so you can do the following:

Defining the SAS OLAP Environment � SAS OLAP Server 9

� disassociate the cube definition process from cube creation, thus enabling you to
create a cube by using its stored definition

� define and enforce security at the SAS Open Metadata Architecture level

� manage and control the data source in the centralized SAS Metadata Repository

You can find documentation about the SAS Open Metadata Architecture in the SAS
Intelligence Platform: System Administration Guide and the SAS Intelligence Platform:
Data Administration Guide.

SAS Application Server

During installation and setup, a metadata object is defined that represents the SAS
server tier in your environment. This is called the SAS Application Server. A SAS
Application Server is not an actual server that can execute SAS code submitted by
clients. Rather, it is a logical container for a set of application server components,
which do execute code. It is identified as SASApp in the SAS Management Console
interface. For a SAS OLAP installation, a SAS Workspace Server and a SAS OLAP
Server are contained in the application server.

Note: For further information on the SAS Application Server, see “Understanding
the SAS Application Server” in the SAS Intelligence Platform: Application Server
Administration Guide. �

SAS Workspace Server

The SAS Workspace Server provides access to SAS software features such as the SAS
language, SAS libraries, and the server file system. The SAS Workspace Servers
interact with SAS by creating a server process for each client connection. Each server
process (workspace) represents a Foundation SAS session. This enables client programs
to access SAS libraries, perform tasks by using the SAS language, and retrieve the
results.

A program called the object spawner runs on a workspace servers host machine. The
spawner listens for incoming client requests and launches server instances as needed.
For further information on SAS Workspace Servers, see "Understanding Workspace
Server and Stored Process Servers" in the SAS Intelligence Platform: Application
Server Administration Guide.

SAS OLAP Server

The SAS OLAP Server is a scalable server that provides multi-user access to the
data that is stored in SAS OLAP cubes. The purpose of the SAS OLAP Server is to
respond to queries from cube viewers. SAS OLAP queries are performed by using the
Multidimensional Expressions (MDX) query language in client applications that are
connected to the OLAP server by using OLE DB for OLAP (an extension of OLE DB
that is used by COM-based clients), or through a similarly designed Java interface. A
SAS OLAP Server runs in the background on specially configured host computers. It
processes data by using a multi-threaded kernel that enables you to take advantage of
your server’s parallel processing abilities.

10 SAS Management Console � Chapter 2

Note: For further information on the SAS OLAP Server, see "Administering SAS
OLAP Servers" in the SAS Intelligence Platform: Application Server Administration
Guide. �

SAS Management Console
SAS Management Console provides a single point of access and control to perform

the administrative tasks required to create and maintain an integrated SAS
environment across multiple platforms. SAS Management Console utilizes a plug-in
architecture that is specific to your SAS installation and environment. With SAS
Management Console you can perform the following tasks:

� manage the metadata for your SAS data and environment
� maintain library and server definitions
� create, manage and maintain authorization information for your users and groups
� administer resource access control templates

Note: For further information on SAS Management Console see the Help in SAS
Management Console. �

SAS OLAP Server Monitor
The SAS OLAP Server Monitor plug-in for SAS Management Console enables you to

manage tasks that are specific to the SAS OLAP Server. You can configure SAS OLAP
Servers, administer the connection to a SAS OLAP Server, monitor sessions that are
running on a SAS OLAP Server, and monitor queries that are being processed by a SAS
OLAP Server. You can also enable and disable cubes and refresh cube metadata. For
further information on SAS OLAP Server Monitor, see the Help for SAS OLAP Server
Monitor in SAS Management Console.

SAS OLAP Cube Studio
SAS OLAP Cube Studio provides cube designers with an easy-to-use graphical user

interface for creating SAS OLAP cubes. You can build SAS OLAP cubes, edit cubes,
incrementally update cubes, tune aggregations, and make various other modifications to
existing cubes. The SAS OLAP Server: User’s Guide covers the different functions and
features available for creating SAS OLAP cubes. See Chapter 5, “Building Cubes and
Administering Cubes,” on page 35 for more information.

OLAP Schema
A SAS OLAP schema is an organization container for SAS OLAP cubes. A SAS OLAP

Schema specifies the location of a set of cubes. It communicates with a SAS OLAP
Server about which cubes can be accessed by the server and then queried. When you
install your SAS OLAP Server, a default SAS OLAP schema is created named SASMain
– OLAP Schema. If needed, you can have multiple schemas. However, you can only
have one schema assigned to an OLAP server at a given time. For more information on

Defining the SAS OLAP Environment � Authorization Permissions 11

SAS OLAP schemas, see “OLAP Schemas” on page 14. Also, see “Managing OLAP Cube
Data” in the SAS Intelligence Platform: Data Administration Guide.

SAS Libraries
A SAS library is a collection of one or more files that are referenced and stored as a

unit. For SAS OLAP, libraries serve as organization containers for the data tables that
you use to create SAS OLAP cubes. You can have numerous libraries to organize your
data tables with. To define your libraries, you can use the New Library wizard in SAS
OLAP Cube Studio or in SAS Management Console. For more information on defining
and managing libraries, see “SAS Libraries and Tables” on page 16 and “Assigning
Libraries” in the SAS Intelligence Platform: Data Administration Guide.

Data Tables
Data tables are frequently used to define data stores. They can be used to define

data stores, summary data, a join, or a table that holds information that does not
conform to any other data storage type. A detail, or base, table is any data table defined
in the SAS metadata that contains the measures and levels for a cube. The detail table
consists of unsummarized data that must include one column for each level and one
numeric analysis column for each set of measures that will be generated. There are
different types of data tables that can be used to build a SAS OLAP cube. You can use
the following tables to construct SAS OLAP cubes:

� detail tables (base tables)
� star schemas (a fact table and associated dimension tables)
� summary tables (N-way data set)
� drill-through tables
� aggregation tables

For detailed information on the different data tables, see “Data Tables Used to Define
SAS OLAP Cubes” on page 24. Also, see the SAS Intelligence Platform: Data
Administration Guide for further information on managing data table sources.

Authorization Permissions
When creating and editing SAS OLAP cubes, you must establish and apply security

permissions to ensure the correct access to cube data among the different users on a
system. SAS authorization permissions can be set at general levels or fine-grain levels
and are conveyed across user identities (user, group) and objects (folder, table, library).
Authorization permission settings are then inherited from parent identities or objects.

SAS OLAP cubes and the different components of a cube (dimensions, hierarchies,
levels, measures, calculated measures, and cube jobs) can have authorization
permissions set using the authorization functions that are available in SAS OLAP Cube
Studio and in the Authorization Manager plug-in in SAS Management Console. For
further information on establishing security and authorization permissions for your
SAS OLAP environment, see “Cube Security” on page 73. In addition, see the SAS
Intelligence Platform: Security Administration Guide for detailed information on
security administration for your SAS environment.

12

13

C H A P T E R

3
Organization and Management
of Your Data

Cube Data Organization 13

OLAP Schemas 14

Defining an OLAP Schema 14

Editing an OLAP Schema 14

Changing the OLAP Schema For a Cube 15

Deleting OLAP Schemas 15

Viewing the OLAP Schema Properties 15

Assigning the OLAP Schema with the OLAP Procedure 16

SAS Libraries and Tables 16

Defining Libraries and Tables 16

Creating a New Library Definition for Source Data Tables 16

Defining Tables Used to Build Cubes 17

Renaming Tables 18

Renaming a Table From the Tree View 18

Renaming a Table from the Properties Dialog Box 18

Deleting Tables 18

Viewing Table Data in SAS OLAP Cube Studio 19

Managing Folders In SAS OLAP Cube Studio 19

SAS Metadata Folders 19

Finding an Object in a SAS Folder 19

Copying an Object to a Different SAS Folder 19

Moving Objects Between SAS Folders 19

SAS OLAP Cube Jobs 20

SAS OLAP Cube Jobs 20

Cube Job Deployment and Redeployment 20

Job and Deployed Job Properties 21

Job Properties 21

Deployed Job Properties 21

Cube Data Organization
When working with SAS OLAP Cube data you must manage the storage and

organization of your cube input tables and the cube data, including the cube metadata
and the corresponding physical cube files. During the course of developing and
executing SAS OLAP Cubes, you can do the following:

� define the cube source data and libraries
� establish the OLAP schema assignment for your cubes
� create folders in which to store your cubes
� manage any cube jobs that you deploy

14 OLAP Schemas � Chapter 3

OLAP Schemas
A SAS OLAP schema represents a group of cubes in the SAS metadata and specifies

which group of cubes an OLAP server can access. An initial OLAP schema is assigned
to a SAS OLAP Server when that server is defined in the metadata. Although you can
have multiple schemas, a server can only access the cubes in one schema at a time. As
a result, you do not need to create more OLAP schemas than there are OLAP servers
on your system.

Once an OLAP Schema is available, a cube can be assigned to that OLAP schema
during the cube building process. Whereas there are no absolute restrictions for the
number of cubes per OLAP Schema, assigning a large number of cubes to a schema
should be avoided. This is because the cubes compete for the OLAP server’s cube cache
and data cache at the time they are accessed and handled by the server.

You can create and maintain OLAP schemas in SAS OLAP Cube Studio or SAS
Management Console. Some of the tasks you can perform include the following tasks:

Defining an OLAP Schema
In addition to SAS Workspace Server and SAS OLAP Server definitions, you must

also have an OLAP schema defined in the active metadata server. The standard SAS
deployment process creates an OLAP schema named SASApp - OLAP Schema and
assigns it to the SAS OLAP Server that is also configured during deployment. To define
new schemas, you can use the New OLAP Schema Wizard, which is available from SAS
OLAP Cube Studio and SAS Management Console. In SAS Management Console, you
can launch the OLAP Schema Wizard when you view the OLAP Schema tab on the
Properties dialog box for an existing server. These steps explain how to use SAS OLAP
Cube Studio to launch the OLAP Schema Wizard and define a new schema:

1 Connect to the SAS Metadata Server.
2 Select File � New � OLAP Schema.
3 On the General page of the New OLAP Schema Wizard, enter the schema name

and description. Click Next.
4 On the Server Assignment page, specify the OLAP servers that can access the

schema. This step is optional. Click Next.

Note: If you choose not to specify the server using the OLAP Schema Wizard, you
can add that information later by modifying the schema’s properties. �

5 On the Finish page, click Finish.

Note: When defining a new SAS OLAP Server, if you accept the default definition
settings, then an OLAP schema is automatically created and assigned to the server. To
change that assignment to a different OLAP schema, you must edit the server
definition. In SAS Management Console, select the Server Manager plug-in to make
these changes. �

Editing an OLAP Schema
The OLAP schema specifies which group of cubes an OLAP server can access. To edit

an OLAP schema in SAS OLAP Cube Studio, complete these steps:
1 In the Tree View, select the OLAP Schema you want to edit. Then select

Properties from the Edit menu or from the schema’s context menu.
2 In the Properties dialog box, make changes on the General and Server

Assignment tabs.

Organization and Management of Your Data � Viewing the OLAP Schema Properties 15

You can view cubes assigned to the schema on the Cubes tab. To change the
OLAP schema assignment for a cube, you must select the properties for a cube and
select the Location tab. From here you can enter the name of a different OLAP
schema.

3 When you are finished, click OK on the Properties dialog box.

Changing the OLAP Schema For a Cube
When working with SAS OLAP Cubes, it might be necessary to assign a cube to a

different schema. You can change the OLAP schema assignment for a cube by selecting
Change OLAP Schema from the Actions menu or the cube’s context menu. The Change
OLAP Schema dialog box opens. The selected cube is currently assigned to the OLAP
schema that is listed in the dialog box.

Select an OLAP schema from the drop-down list of OLAP schemas. If needed, you
can also create a new OLAP schema by selecting the New button. This opens the New
SAS OLAP Schema wizard. After you have selected an OLAP schema, select the OK
button. The cube is now assigned to the selected schema.

Note: When reassigning a SAS OLAP cube to a different OLAP Schema, be careful
to note which OLAP server the schema is assigned to. �

Deleting OLAP Schemas
To delete an OLAP schema, complete the following steps:
1 In the Tree View, select the Schema you want to delete.
2 Select Delete from the Edit menu or from the schema’s context menu.
3 Click Yes on the Confirm Delete dialog box.

Note: You cannot delete a schema that currently has OLAP cubes assigned to it. In
addition, you must have the necessary authorizations.

Viewing the OLAP Schema Properties
In SAS OLAP Cube Studio, you can view the properties for a SAS OLAP schema by

selecting the schema from the Tree View and then selecting the Properties function.
The Properties function can be accessed from the Edit menu and from the schema’s
context menu. The OLAP Schema Properties dialog box contains tabs that provide
general information as well as information that is specific to SAS OLAP schemas. The
following tabs are specific to OLAP schemas:

Server
Assignment

lists the OLAP servers defined in the current metadata. On the
Server Assignment tab you can select an OLAP server from the
Available list and move it to the Selected list.

Cubes lists cubes that are assigned to the current schema. The Cubes tab
also displays whether the cubes physically exist or exist as metadata
only.

16 Assigning the OLAP Schema with the OLAP Procedure � Chapter 3

Assigning the OLAP Schema with the OLAP Procedure
To assign an OLAP schema, you must use the OLAP_SCHEMA= option with the

METASVR statement. (See “METASVR Statement” on page 256.) Here is an example
of the METASVR statement and the OLAP_SCHEMA= option:

METASVR
HOST = "hw4195.ec.sas.com"
PORT = 8561

OLAP_SCHEMA = "SASApp - OLAP Schema";

Note: For more information on SAS OLAP schemas see “Managing OLAP Cube
Data” in the SAS Intelligence Platform: Data Administration Guide. �

SAS Libraries and Tables

Defining Libraries and Tables
When you set up the SAS OLAP Cube Studio environment, you must define the data

tables that are used to build cubes and the libraries that they are assigned to. The
following tasks must be completed:

� A metadata server must be started.
� A workspace server must be started and registered in the metadata.
� The metadata for the data tables and libraries must be registered in the metadata

and stored on the workspace server.

Note: You must have ReadMetadata and WriteMetadata permissions to perform
these tasks. �

The tables and libraries can be defined in SAS applications such as SAS Data
Integration Studio or SAS Management Console before you set up your SAS OLAP
Cube Studio environment. If however, this is not done beforehand, you can define them
in SAS OLAP Cube Studio. You need to have your tables and libraries defined if you
plan to do either of these tasks:

� create the physical cube in addition to registering its metadata
� manually add, modify, or drop specific aggregations for a cube

You can use the Source Designer wizard to define your data tables. Use the New
Library wizard to define your libraries.

Creating a New Library Definition for Source Data Tables
You can create a new library definition for your source data tables after you start a

SAS Metadata Server and define a SAS Workspace Server in a SAS metadata folder.
You can create new library definitions using the New Library Wizard, which is available
from SAS OLAP Cube Studio and SAS Management Console.

If you have more than one SAS Workspace Server defined, you should assign the
library to all of the workspace servers that might be used to create cubes. Otherwise,
SAS OLAP Cube Studio attempts to download the data to the server where the cube is
being built. This requires SAS/CONNECT and may not be the most efficient way to
build a cube.

Organization and Management of Your Data � Defining Tables Used to Build Cubes 17

These steps explain how to use SAS OLAP Cube Studio to launch the New Library
Wizard and define a new library:

1 Connect to the SAS Metadata Server.
2 Select File � New � Library. This opens the New Library Wizard.
3 Select a Resource Template and then click Next to continue.

Note: If you connected to the SAS Metadata Server with an unrestricted
metadata profile, you are prompted to enter your user ID and password. �

4 In the New Library Wizard, enter the library name. You also can enter an optional
description. Click Next.

5 Enter values for the libref, the Engine (BASE is the default), the Content Server,
and the Path Specification fields. Follow these guidelines:
� The libref is a short name (or alias) for the full physical name of a SAS library

(for example, sasuser).
� The path specifies the physical location of the tables contained in the library

that you are defining. Select an existing path from the box or click New to enter
a new path.

� If your data is accessed through a WebDAV content server, select the Enable
webDAV Support check box. The content server specifies the HTTP server that
is used to access the data.

� Click the Advanced Options button to set host-independent options such as file
encoding, as well as host-specific options. Click OK to close the dialog box and
return to the New Library Wizard.

� Click Next.

6 Select the SAS Workspace Servers on which the new library is to reside. Click
Next.

7 Click Finish to complete the new library definition.

Note: For further information on SAS Libraries see “Assigning Libraries” in the
SAS Intelligence Platform: Data Administration Guide. �

Defining Tables Used to Build Cubes
You define tables using the Source Designer wizard, which is available from SAS

OLAP Cube Studio and SAS Data Integration Studio. Following is a list of the tables
that can be used to define a cube:

� detail tables (unsummarized data)
� fact tables and dimension tables (for cubes based on star schemas)
� aggregation tables (fully summarized external tables)
� drill-through tables (views maintained by the user that represent all of the data

used to define a cube)

These steps explain how to use SAS OLAP Cube Studio to launch the Source
Designer wizard and define new tables:

1 Connect to the SAS Metadata Server.
2 Select File � Register � Table. This opens the Source Designer wizard. The

Source Designer wizard is also available from the Cube Designer wizard.
3 Select the SAS data source and click Next.
4 From the Server drop-down list, select the name of a SAS Application Server

context that contains a logical SAS Workspace Server. Click Next.

18 Renaming Tables � Chapter 3

5 Enter your user name and password for the selected SAS Workspace Server. Click
OK to return to the Source Designer wizard. Click Next.

6 Select the name of the SAS library that points to the tables that you are importing
from the current SAS Workspace Server. Click Next to see a list of SAS data sets
in the selected library. (You also can click New to create a new library.)

7 Select the data sets that you want to load into the metadata, and click Next.
8 Click Finish.

Note: If you previously selected a server context and tested the SAS Workspace
Server connection, you might not be prompted for the name of the server context. �

Renaming Tables
In SAS OLAP Cube Studio, you can change the name of a data table that you have

registered in the SAS metadata folder. The table name that you see in the Tree View is
the display name for the table, similar to a label or short description. You must have
WriteMetadata permission on the table for which you want to view properties.

Renaming a Table From the Tree View
To rename a table from the Tree View, complete the following steps.
1 In the Tree View, select the Inventory tab. Select a data table from the Table

node.
2 Select the Rename function from the Edit menu or from the table’s context menu.

The table name in the Tree View is highlighted.
3 Enter a new name and select ENTER.

Renaming a Table from the Properties Dialog Box
To rename a table from the Properties dialog box, complete the following steps.
1 In the Tree View, select the Inventory tab. Select a data table from the Table

node.
2 Select the Properties function from the Edit menu or from the table’s context

menu.
3 Select the General tab.
4 Enter a new name in the Name field.
5 Click OK to save the change and close the dialog box, or click Apply to save the

change and remain in the dialog box.

For information on naming tables, see “Naming Guidelines and Rules for the SAS
OLAP Server” on page 30.

Deleting Tables
You can delete tables that you have registered in the SAS metadata. In order to

delete a table you must have been granted WriteMetadata permission on that table.
Complete the following steps to delete a table.

1 In the Tree View, select the Inventory tab.
2 Select Tables and open the list of tables.
3 Select the table that you want to delete.
4 Select Delete from the Edit menu or from the table’s context menu.

Organization and Management of Your Data � Moving Objects Between SAS Folders 19

5 Click Yes in the Confirm Delete message box. The table is deleted.

Viewing Table Data in SAS OLAP Cube Studio
In SAS OLAP Cube Studio, you can view the underlying data of the tables that are

available to build SAS OLAP cubes with. Tables are listed under the Tables node on
the Inventory tab of the Tree View. You can view the underlying data for a table by
selecting View Data from the Actions menu or from the table’s context menu.

Note: For further information on managing tables see “ Managing Table Metadata”
in the SAS Intelligence Platform: Data Administration Guide. �

Managing Folders In SAS OLAP Cube Studio

SAS Metadata Folders
In order to define cubes, you must be connected to a running metadata server and

have a SAS folder to store your cubes to. A SAS folder is a location in which data,
metadata, or programs are stored, organized, and maintained. SAS folders are
accessible to users either directly or through a network. You can create and edit SAS
folders in SAS OLAP Cube Studio, SAS Management Console, or SAS Data Integration
Studio.

To create a new folder in SAS OLAP Cube Studio, select File � New � Folder. The
New Folder dialog box opens. Enter the name and location of the folder and select OK.

Finding an Object in a SAS Folder
When you are working in the Inventory tab of the Tree View, you can quickly locate

which folder an object is stored in with the Find In Folders function. Select an object in
the Inventory tab of the Tree View. Select Find In Folders from the Edit menu or
from the object’s context menu. The Tree View then displays the folder location of the
object.

Copying an Object to a Different SAS Folder
In SAS OLAP Cube Studio, you can copy a cube object from one folder to another.

Select an object in the Tree View. Select Copy to Folder from the Edit menu or from
the object’s context menu. The Select a Location dialog box opens. Select a folder from
the folders list and click OK. The object is copied to the new folder.

Note: You must have WriteMemberMetadata (WMM) on the folder that you are
copying objects to. For further information on permissions for different objects, see the
SAS Intelligence Platform: Security Administration Guide. �

Moving Objects Between SAS Folders
In SAS OLAP Cube Studio, you can move an object from one folder to another. Select

an object in the Tree View. Select Move to Folder from the Edit menu or from the
object’s context menu. The Select a Location dialog box opens. Select a folder from the
folders list and click on OK. The object is moved to the new folder.

20 SAS OLAP Cube Jobs � Chapter 3

Note: You must have WMM on the folder that you are moving objects to. For
further information on permissions for different objects, see the SAS Intelligence
Platform: Security Administration Guide. �

Note: For more information on working with SAS folders, see “Working with SAS
Folders” in the SAS Intelligence Platform: System Administration Guide. �

SAS OLAP Cube Jobs

SAS OLAP Cube Jobs
When you create a cube definition in SAS OLAP Cube Studio, a cube job is

automatically created for that cube. A job is a collection of SAS tasks that create
output. The cube job is the metadata that links a cube to its load data table. This can
be a detail table, a fact table, or a fully summarized table. The cube job also contains a
classifier map in the metadata which links the columns in the load table to the levels,
measures, and member properties for the cube.

Note: The cube job does not link the star schema dimension tables or the
aggregation tables to the cube. �

After a cube definition and the cube job is created, you can perform the following
tasks:

� deploy and redeploy a cube job for scheduling

� export a SAS package

� view the properties for a cube job

When you deploy a cube job, the code needed to create the cube is generated. It is
then stored in a file in the specified deployment directory. In addition, a deployed job
object is created. This new object is linked to the original cube job and it can be added
to a SAS flow for scheduling. You can also now redeploy the job as needed.

Cube Job Deployment and Redeployment
SAS OLAP cube jobs are deployed to create cubes and are listed in the Job (cube)

folder under the Inventory tab of the Tree View. To deploy a cube job, select the job in
the Tree View and select Actions � Deploy. The Deploy a job for scheduling dialog box
opens. From here you can enter information about the job. If the job is deployed
successfully, you receive a confirmation message.

The deployed job is then listed in the Deployed job folder in the Tree View. Each time
you deploy a job, a separate deployed job object is created and listed in the Deployed job
folder. For example: If you deploy a SAS cube job based on the cube "Sales", the
deployed job is labeled as "Sales". If you deploy that same cube job again, the next
deployed job is labeled "Sales000". Deploy the cube job a third time and it is labeled
"Sales001".

Note: Deployed jobs for a cube job can also be accessed from that job’s context
menu. Right-click on the cube job and select Scheduling. The deployed jobs are listed
in the Scheduling drop-down list. A deployed cube job can also be redeployed after the
initial deployment. Select a deployed cube job from the Deployed job folder in the Tree
View. Then, select Actions � Redeploy. �

Organization and Management of Your Data � Job and Deployed Job Properties 21

Job and Deployed Job Properties

Job Properties
In SAS OLAP Cube Studio, you can view the properties for an OLAP cube job or a

deployed job. Select a job from the Tree View and select Properties from the Edit
menu or from the job’s context menu. The Properties dialog box then opens. A cube job
has the same standard dialog box tabs as other cube objects. In addition, it also
contains the following tabs:

Process The Process tab contains options to specify how the job’s code is
generated (Code Generation) and what Execution Host is used.

Pre and Post
Process

The Pre and Post Process tab contains options to insert
user-written code at the beginning or end of the current job.

Deployed Job Properties
A deployed job has the same standard dialog box tabs as other cube objects. It also

contains the Scheduling Details tab for the deployment. This tab includes the
command that is used to execute the current job in batch mode. It also includes the
settings for the SAS Application Server that is used to deploy the job.

22

23

C H A P T E R

4
Planning for SAS OLAP Cubes

Overview 23

Data Tables Used to Define SAS OLAP Cubes 24

Detail Tables 24

Fact Tables and Dimension Tables (Star Schema) 24

Summary Tables 25

Aggregation Tables 25

Drill-Through Tables 26

Aggregation Design 26

Aggregation Size 26

User Query Patterns and ARM Logging 26

Administering ARM Logs 27

Aggregation Performance Settings 27

Aggregation Storage 28

MOLAP Aggregation Storage 28

ROLAP Aggregation Storage 28

Choosing MOLAP or ROLAP Aggregation Storage 29

SAS OLAP Cube Size Specifications 29

Defining the Number of Dimensions for A Cube 29

Defining the Number of Hierarchies for A Cube 30

Defining the Number of Levels, Measures, Members, and Properties 30

Naming Guidelines and Rules for the SAS OLAP Server 30

General Naming Guidelines 30

SAS OLAP Cubes 31

Dimensions, Levels, Hierarchies, and Measures 31

OLAP Cube Aggregations 32

OLAP Schemas 32

Calculated Measures and Members 32

SAS Formats Available for Measures 32

Statistics Available for Measures 34

Overview

The goal of an OLAP system is to have data that is organized, available, and
presented as relevant information to decision makers. To successfully build and query
SAS OLAP cubes, the data in your input files must be internally consistent. In
addition, the columns of input data sets need to reflect the dimensional levels of the
cubes. When building an OLAP application, it is beneficial to assume that building the
actual cube is, the smaller part of the project. The larger task includes finding and
collecting the data and making that data consistent.

24 Data Tables Used to Define SAS OLAP Cubes � Chapter 4

When planning for a SAS OLAP cube you should consider the following items:
� The data tables you use to build the cube
� Aggregation design
� Aggregation storage considerations; MOLAP or ROLAP
� Size specifications for SAS OLAP cubes and cube objects
� Naming guidelines and rules for SAS OLAP cubes and cube objects
� SAS formats that are available for cube measures
� Statistics that are available for cube measures

Data Tables Used to Define SAS OLAP Cubes
A cube is always loaded from data in relational tables. This data can be stored either

in SAS tables or in external RDBMSs and can be accessed through a wide selection of
SAS data engines, including the Base SAS engine, SPD Server, SPD Engine, and the
SAS/ACCESS engines to external RDBMSs. SAS software enables you to be
independent of the physical storage format of the data. When building a SAS OLAP
cube, you must consider the format that your source data is stored in and how that
source data is to be used in the SAS OLAP cube. Cubes can be loaded from data that is
contained in any of the following types of tables:

� detail tables
� fact tables and dimension tables (star schema)
� summary tables
� aggregation tables
� drill-through tables

Detail Tables
A detail, or base, table is any table defined in the SAS metadata that contains the

measures and levels for a cube. A detail table consists of unsummarized data that must
include one column for each level and one numeric analysis column for each set of
measures that will be generated. A detail table includes all the columns that are
needed to load the hierarchy levels, the level properties, and measures. Specifically, a
detail table must contain the following elements:

� one column per dimension level (char or num)
� one column for each property (char or num)
� numeric analysis variables

Fact Tables and Dimension Tables (Star Schema)
A star schema consists of a single fact table and one or more dimension tables. The

fact table must contain one numeric analysis column for each set of measures that will
be generated. You cannot have more than one property value for each distinct value of
the corresponding level. To successfully load a cube, all foreign keys in the fact table
need to have a corresponding primary key in a dimension table. A star schema
configuration is organized with the following requirements and considerations:

� The input columns for data measures must be stored in the fact table.
� The input columns for dimension levels and properties must be stored in one table

for each dimension.

Planning for Cubes � Aggregation Tables 25

� The data records of the fact table and the dimension tables must be linked via
primary and foreign keys.

� If the dimension levels are defined in a dimension table, all the level columns for
that dimension must be contained in the same dimension table.

� Both the dimension keys and fact keys are single columns, not combinations of
columns.

� A dimension can be in the fact table. In this case, all the level columns are in the
fact table and no fact or dimension key is required.

� The dimension key can also be a level in the dimension.

The fact table requires the following conditions:

� one key column with a foreign key for each dimension (character or numeric)

� numeric analysis variables

A dimension table requires the following conditions:

� one key column with a primary key (character or numeric)

� one column for each dimension level (character or numeric)

� one column for each property (character or numeric)

Summary Tables
The summary table is also known as the N-way data set. It is a table that is already

summarized and requires the following elements:

� one column per dimension level (character or numeric)

� one column for each property (character or numeric)

� one column per stored measure, summarized by the appropriate statistic for the
measure

Aggregation Tables
In addition to a summary table for the N-way aggregation, summary tables can also

be provided for other aggregations. Aggregation tables contain presummarized data for
any combination of dimension levels. This feature enables cubes to access summarized
numbers quickly. Aggregated data can be created and automatically stored in MOLAP
(Multidimensional OLAP) tables as the cube is built or manually stored in ROLAP
(Relational OLAP) tables and linked into the cube.

All aggregation tables must contain a column for each measure in the cube where
the statistic for the measure is one of the following: N, NMISS, SUM, MAX, MIN, or
USS. An aggregation table can be used in two ways:

� as an NWAY data source for the cube. In this case, the table must contain a
column for every level in the cube and a column for every stored measure.

� as a subaggregation for the cube. In this case, the table must include a column for
each level of the aggregation and a column for every stored measure.

When planning your aggregation tables, note that the column names and attributes
(type, format) must be consistent across all input tables for a cube. Aggregation tables
require the following structure and organization.

� one column for each dimension level in the aggregation

� one column per measure

26 Drill-Through Tables � Chapter 4

Drill-Through Tables
Many SAS OLAP applications give users the ability to select a cell or a range of cells

and then view the input data that the cell data was summarized from. Drill-through
tables can be used by client applications to provide a view from processed data into the
underlying data source. Drill-through tables are views that represent all of the input
data used to define a cube. Assigning a drill-through table to a cube is optional.

When you are evaluating the data source for a drill-through table you should
consider the following requirements:

� The drill–through table must have the same columns with the same attributes
(name, type, format) as the tables that the cube was loaded from.

� In many cases, the detail table is also the drill-through table.
� For a star schema, a drill-through table is created with a view that fully joins the

star schema. For a summary table, that summary table can be used as a
drill-through table.

Note: When you select a data table for drill-through, you may need to consider user
access and security restrictions for that table. For further information, see “Security for
Drill-through Tables” on page 76. �

Aggregation Design
Efficient drilling or traversing of the cube data is a key factor in flexible and swift

decision making and analysis. In order to maintain speed and consistency in reporting,
data is usually pre-calculated or aggregated. An important factor in query performance
is good aggregation design, which includes decisions about total storage space, available
build time, storage location, and storage format.

Aggregation Size
When planning your data storage and design, it is helpful to approximate the size of

aggregations. A basis for estimating aggregation size is the number of distinct values in
a dimension level, otherwise known as cardinality. The other factor that determines
aggregations size is density. Density is a measure of how many members of each
dimension in an aggregation occur in combination with the members of the other
dimensions (For example, there might not be sales of a specific product on a specific
date). The total cube size, as well as the resources that are available for the cube build
process, determine the build time that is needed. It is also important to note that build
time should not exceed the cube update interval.

Aggregation size and available hardware influence your choices for aggregation
partitioning. You can separate aggregations into multiple files. A reduced file size
might accelerate OLAP server access time, particularly if multiple processors are
available for multi-threaded processing. You can use either pre-aggregated summary
tables, the cube’s own efficient aggregation storage, or a combination of both. Using
indexes on either storage type might increase query performance, while also increasing
storage space and build time.

User Query Patterns and ARM Logging
In choosing the best aggregations to summarize and store with the cube, the most

important factor to take into account is user query behavior. It is recommended that

Planning for Cubes � Aggregation Performance Settings 27

you start with an initial aggregation design that is based on a minimal set of
aggregations or on your best assumptions about usage patterns.

After the cube is deployed to users, you can use the ARM (Application Response
Management) logging capabilities of the SAS OLAP Server to collect data about the
usage pattern and the performance of individual queries. You can analyze the collected
data to find out which cube aggregations are used most, which aggregations you can
safely eliminate without harming query performance, and which aggregations are often
requested but don’t exist in the cube. The ARM data provides all the information that
you need in order to get the optimal query improvement for your build time and cube
storage space.

Administering ARM Logs
When using ARM logs to generate aggregations for a cube, you must consider the

administration and maintenance of the ARM logs. If you are using multiple load
balanced servers, you must plan for the naming of the ARM logs that these servers
write to. Each load balanced server that you use writes to a designated ARM log file. If
the ARM log file name is the same for the different load balanced servers, then the
servers will write to the same ARM log simultaneously. This can produce an invalid
ARM log. It is recommended that you provide a unique ARM log name for each load
balanced server to write ARM log data to. You can then select each ARM log file to
analyze in the Aggregation Tuning dialog box.

Note: For further information about ARM logging, see the topic “ARM Logging” in
the chapter “Administering SAS OLAP Servers” in the SAS Intelligence Platform:
Application Server Administration Guide and the SAS Application Response
Measurement (ARM) Reference. �

Aggregation Performance Settings
When planning and creating aggregations for a cube, you can customize various

performance settings for a single aggregation or for all aggregations in the cube. Below
are aggregation specific settings that you can change:

� ASYNCINDEXLIMIT=
� COMPACT_NWAY
� COMPRESS | NOCOMPRESS
� CONCURRENT=
� DATAPATH=
� INDEXPATH=
� INDEXSORTSIZE=
� MAXTHREADS=
� INDEX |NOINDEX
� PARTSIZE=
� SEGSIZE=

Note: ASYNCINDEXLIMIT=, CONCURRENT=, INDEXSORTSIZE=, and
MAXTHREADS= are available only in the PROC OLAP statement. �

You can change these settings using either the OLAP procedure or in SAS OLAP Cube
Studio. In SAS OLAP Cube Studio, you can apply these settings from these functions:

� Cube Designer – Aggregations dialog box
� Aggregation Tuning dialog box

28 Aggregation Storage � Chapter 4

Aggregation Storage

When determining how to efficiently deliver data in a multidimensional cube, how
data is stored is an important factor. Summarizing data with aggregations improves
query response. Any combination of dimension levels can become a stored aggregation.
Which aggregations are being stored has a direct effect on the SAS OLAP Server CPU
usage, file I/O, and query response times. The aggregations that are being stored also
affect cube build time and the absolute cube file size. Therefore, it is a trade-off
between a single instance of resource use at cube build time and multiple instances of
resource use at cube query time.

The aggregated data values for SAS OLAP cubes can be stored either with the cube
in the cube’s internal format or external to the cube in relational summary tables.

MOLAP MOLAP aggregation storage is the cube-internal storage for
aggregations. MOLAP aggregation tables are created as part of the
cube creation step.

ROLAP ROLAP aggregation storage is the cube-external summary tables.
ROLAP summary tables need to be pre-calculated from the input
data (using tools such as SQL or PROC MEANS/PROC SUMMARY)
and made known to the cube at cube creation time.

MOLAP Aggregation Storage
SAS MOLAP aggregation storage maintains the cube data in the same table format

as the format that is used by the SAS Scalable Performance Data (SPD) Engine.
MOLAP aggregation storage takes advantage of key contraction and allows data access
by using the cube’s internal data representation directly.

MOLAP aggregation storage of SAS OLAP cubes has the same threading and
scalability features as the files used by the SAS SPD Engine. The data and the index
section of the files are stored in different physical files. This enables parallel access to
the data and index sections. The data and index files themselves are stored in
partitions, enabling parallel data retrieval within the same file. The partitions of the
data and the index section can be distributed over multiple disc controllers, thus adding
a further boost to the threaded and partitioned architecture by reducing contention and
possible bottlenecks in the physical I/O.

ROLAP Aggregation Storage
ROLAP tables used in SAS OLAP cubes can be SAS data sets, SAS data views, or

any tables or views accessible through a SAS engine. This extends the choice of
available storage options for SAS OLAP cubes to include SPDE, SPDS, and any
RDBMS product for which a SAS/ACCESS software product is available.

ROLAP aggregation tables must conform to the structure of the input data. The
columns that feed the dimension levels must have the same column names and
attributes that were used in the input data when loading the cube. In addition, all
aggregations must be stored in fully de-normalized form. Here are some guidelines to
make aggregation columns for measures available:

� Each ROLAP aggregation table must include all columns for the cube’s measures
with stored statistics.

� SAS OLAP cube aggregations store the following statistics: SUM, N, NMISS, USS,
MIN, and MAX. Other available statistics are derived from the stored statistics by

Planning for Cubes � Defining the Number of Dimensions for A Cube 29

internal calculations. For example, in order to include a measure for the AVG
statistic in your cube, you need to make columns available in your ROLAP
aggregation tables that were generated by using SUM and N (count).

ROLAP data is stored in either a flat file or with a star schema. With ROLAP, each
instance of slicing and dicing of data is part of an SQL query (or multiple SQL queries)
and is comparable to a WHERE clause in the SQL statement.

ROLAP data requests can also run against the data that was used to create and load
the cube, whether from a detail table or a star schema. The cube’s input data can be
used in place of the aggregation with the combination of the lowest level of all
dimensions (often called NWAY or NWAY aggregation, which is a name borrowed from
PROC MEANS/PROC SUMMARY where it denotes the combination of all CLASS
variables).

Choosing MOLAP or ROLAP Aggregation Storage
MOLAP aggregation storage is optimized for SAS OLAP Server internal processing

and has a minimal data-size footprint. It uses threaded, parallel data access and is
tunable to any hardware environment. MOLAP aggregation storage is convenient
because it doesn’t require additional data management steps.

ROLAP aggregation storage enables you to use existing ROLAP schemas and reuse
legacy SAS OLAP Server, SAS 8 HOLAP structures. ROLAP aggregation storage
enables users to use database systems and data servers of their choice to store and
serve cube aggregation data. Existing processes can be used to create and access
aggregation data to off-load and distribute data access, I/O, and rollup to server
systems of the user’s choice.

A hybrid approach is possible. For example, users with existing ROLAP structures
can build a “light” SAS OLAP cube with no additional stored aggregations and add
MOLAP aggregations to further tune the cube performance.

SAS OLAP Cube Size Specifications

When you are creating SAS OLAP cubes, there are some size specifications for the
various components of the cube.

Defining the Number of Dimensions for A Cube
The maximum number of dimensions that can be defined in a cube is determined by

combining the number of dimensions with the number of multiple hierarchies. The
maximum value of that sum is 128. Mathematically, the sum is expressed as follows:

MaxDims = NumDims + NumMultipleHeirarchies = 128
All hierarchies other than the first hierarchy in each dimension apply to the total.

The following are some examples of cubes that meet the maximum number of
dimensions:

� 128 dimensions, each dimension has 1 hierarchy

� 127 dimensions, 1 dimension has 2 hierarchies

� 126 dimensions, 1 dimension has 3 hierarchies

� 126 dimensions, 2 dimensions have 2 hierarchies

30 Defining the Number of Hierarchies for A Cube � Chapter 4

Defining the Number of Hierarchies for A Cube
When specifying hierarchies, you must define at least one hierarchy for each

dimension. The maximum number of hierarchies that can be defined in a cube is
determined by combining the number of multiple hierarchies with the number of
dimensions. The maximum value of that sum is 128. Mathematically, the sum is
expressed as follows:

MaxHeirs = NumMultHiers + NumDimensions = 128
Specifically, each DIMENSION statement must identify at least one unique

HIERARCHY statement. The maximum number of hierarchies that can be defined in a
dimension is determined only by the maximum number of hierarchies that can be
defined in a cube. All hierarchies other than the first hierarchy in each dimension apply
to the total. Levels in the same dimension can be shared between hierarchies.

Defining the Number of Levels, Measures, Members, and Properties
The following are maximum values for the specified cube element:

Levels
The maximum number of levels for a cube is 256. There can be up to 19 levels per
hierarchy.

Measures
The maximum number of measures per cube is 1024.

Members
The maximum number of members is 2^32 members per hierarchy.

Properties
The maximum number of properties per level is 256.

Naming Guidelines and Rules for the SAS OLAP Server

General Naming Guidelines
When you are creating SAS OLAP cubes, there are naming guidelines and

restrictions that you should adhere to. Below are general guidelines for naming SAS
OLAP cubes and related objects:

Name
Uniqueness

Name uniqueness is case insensitive. Therefore, a name can contain
mixed-case letters. SAS stores and writes the variable name in the
same case that is used in the first reference to the variable.
However, when SAS processes a variable name, SAS internally
converts it to uppercase. You cannot, therefore, use the same
variable name with a different combination of uppercase and
lowercase letters to represent different variables. For example, cat,
Cat, and CAT all represent the same variable. Names must be
unique within a folder by type but not by subtype.

Macro Variables
or Functions

When building or editing a SAS OLAP cube, you should be aware
that the fields within the Cube Designer wizard do not support
macro variables or functions. The fields are purely character strings
and are not resolved before being written to the cube’s metadata.

Planning for Cubes � Dimensions, Levels, Hierarchies, and Measures 31

Name Literals If the name has embedded blanks or characters other than letters of
the Latin alphabet, numbers, or underscores, then PROC OLAP
formats the name as a name literal. This means that it is enclosed
within quotation marks followed by the letter n. (Name literals
enable you to use special characters or blanks that are not otherwise
allowed in SAS names. Here are some examples:

� CUBE=’Financials@HQ’n

� DIMENSION ’Product@Work Dimension’n hierarchies=
(Product@Work Hierarchy’n)

� HIERARCHY ’Product@Work Hierarchy’n levels=
(prodtype product)

VALIDVARNAME
=Option

If you need to use special characters in a name, you must use the
VALIDVARNAME= option. Ideally, the SAS Workspace Server
should have the VALIDVARNAME= system option set to ANY. If the
SAS Workspace Server is not running with VALIDVARNAME=ANY,
then you can set the option on the Cube Designer wizard. In this
case, select the Advanced button on the Cube Designer-General
page. On the Submit SAS Code tab, enter the VALIDVARNAME=
option. Modify your names to meet the naming requirements that
the SAS Workspace Server is running with.

Note: For more information about the VALIDVARNAME=
option, see “VALIDVARNAME= System Option” in the SAS
Language Reference: Dictionary. �

SAS OLAP Cubes
In addition to the general requirements, SAS OLAP Server names for cubes follow

these general rules:

� A cube name can be up to 32 characters in length.

� A cube name must be a SAS name.

� A cube name cannot contain square brackets. This is an MDX restriction.

� A cube name cannot have non-printable characters.

� A cube name cannot have leading white spaces because cubes are public objects
that are contained in metadata folders.

� A cube name cannot contain forward slashes or backward slashes.

� If you need to use special characters in a name you must use the
VALIDVARNAME = ANY option. This applies to special characters except forward
slashes, backward slashes, and square brackets.

Dimensions, Levels, Hierarchies, and Measures
SAS OLAP Server names for dimensions, levels, hierarchies, and measures, follow

these general rules:

� A name can be up to 32 characters in length.

� A name must be a SAS name.

� If you need to use special characters in a name you must use the
VALIDVARNAME = ANY option.

32 OLAP Cube Aggregations � Chapter 4

Note: Cube dimensions cannot have the same name as any level name within the
dimension. However, if there is only one hierarchy for the dimension it is automatically
assigned the same name as the dimension. �

OLAP Cube Aggregations
Aggregation names can be up to 32 characters in length. They can also include

slashes, periods, and square brackets.

OLAP Schemas
SAS OLAP Server names for OLAP schemas follow these general rules:
� A schema name can be up to 60 characters in length.
� A schema name cannot have forward slashes or backward slashes.
� A schema name cannot have non-printable characters.
� A schema name cannot have leading white spaces because schemas are public

objects that are contained in metadata folders.

Calculated Measures and Members
SAS OLAP Server names for calculated measures and members follow this general

rule:
� A calculated measure or member name can be up to 60 characters in length.

However, it is recommended that you maintain a 32 character limit for calculated
measures.

SAS Formats Available for Measures
For each measure that you define for a cube, you can select the SAS format that is

used to display the value of the measure. The following formats are available from the
Format drop-down list on the Measure Details page of the Cube Designer wizard in
SAS OLAP Cube Studio:

Table 4.1 SAS Formats Available for Measures

SAS Format Description

15.0 Designates the width of the resulting string will be a maximum of 15
characters after the value has been formatted.

BEST Enables SAS to choose the best numeric notation.

BEST15 Enables SAS to choose the best numeric notation. The width of the
resulting string will be a maximum of 15 characters.

COMMA Writes numeric values with commas and decimal points.

COMMA15 Writes numeric values with commas and decimal points. The width
of the resulting string will be a maximum of 15 characters.

COMMAX Writes numeric values with periods and commas.

COMMAX15 Writes numeric values with periods and commas. The width of the
resulting string will be a maximum of 15 characters.

Planning for Cubes � SAS Formats Available for Measures 33

SAS Format Description

DOLLAR Writes numeric values with dollar signs, commas, and decimal points.

DOLLAR15 Writes numeric values with dollar signs, commas, and decimal points.
The width of the resulting string will be a maximum of 15 characters.

DOLLARX Writes numeric values with dollar signs, periods, and commas.

DOLLARX15 Writes numeric values with dollar signs, periods, and commas. The
width of the resulting string will be a maximum of 15 characters.

EURO Writes numeric values with a leading euro symbol, a comma that
separates every three digits, and a period that separates the decimal
fraction.

EURO15 Writes numeric values with a leading euro symbol, a comma that
separates every three digits, and a period that separates the decimal
fraction. The width of the resulting string will be a maximum of 15
characters.

EUROX Writes numeric values with a leading euro symbol, a period that
separates every three digits, and a comma that separates the
decimal fraction.

EUROX15 Writes numeric values with a leading euro symbol, a period that
separates every three digits, and a comma that separates the
decimal fraction. The width of the resulting string will be a
maximum of 15 characters.

NEGPAREN Writes negative numeric values in parentheses.

NEGPAREN15 Writes negative numeric values in parentheses. The width of the
resulting string will be a maximum of 15 characters.

PERCENT Writes numeric values as percentages.

PERCENT15 Writes numeric values as percentages. The width of the resulting
string will be a maximum of 15 characters. W.D writes standard
numeric data one digit per byte.

WORDF Writes numeric values as words with fractions that are shown
numerically.

WORDF10 Writes numeric values as words with fractions that are shown
numerically. The width of the resulting string will be a maximum of
10 characters.

WORDS Writes numeric values as words.

WORDS10 Writes numeric values as words. The width of the resulting string
will be a maximum of 10 characters.

YEN Writes numeric values with yen signs, commas, and decimal points.

YEN15 Writes numeric values with yen signs, commas, and decimal points.
The width of the resulting string will be a maximum of 15 characters.

Note: For more information about SAS formats, see "Formats" in the SAS Language
Reference: Dictionary. �

34 Statistics Available for Measures � Chapter 4

Statistics Available for Measures
When you define a cube, you select the statistics that are used to calculate the cube’s

measures. Here is the list of available statistics.
Base Stored Statistics:
� Count
� Sum
� Maximum
� Minimum
� Count of Missing Values
� Uncorrected Sum of Squares

Derived Statistics:
� Average
� Range
� Corrected Sum of Squares
� Variance
� Standard Deviation
� Standard Error of Mean
� Coefficient of Variance
� T Value
� Probability of Greater Absolute Value
� Lower Confidence Limit
� Upper Confidence Limit

New cubes that are based on a data source that contains existing summarized data
must include measure statements for the stored statistics. Measure statements are
required for each derived statistic that you want to create for the new cube. For
example, if you want to calculate AVG, you must create measures for N and SUM, as
well as AVG. The following table indicates which stored statistics are required for each
derived statistic.

Derived Statistics Required Stored Statistics

AVG N, SUM

RANGE MIN, MAX

CSS N, SUM, USS

VAR, STD, STDERR, CV, T, PRT,
LCLM, UCLM

N, SUM, USS

35

C H A P T E R

5
Building Cubes and
Administering Cubes

SAS OLAP Cube Studio and the OLAP Procedure 36

SAS OLAP Cube Studio 36

SAS OLAP Procedure 36

Connecting and Reconnecting to a Metadata Server 36

Creating a Connection Profile 37

Connecting with an Existing Profile 38

Reconnecting to a Metadata Server 38

Cube Designer Wizard 38

Defining Data Sources For a Cube 38

Defining Drill-Through Tables 39

Defining Dimensions and Levels 40

Defining Dimensions 40

Defining Levels for a Dimension 40

Specifying the TIME Dimension 40

Designating a TIME Dimension 40

Add Levels 41

Add Supplied Time Hierarchies 41

Specifying GIS Map Information for a Dimension 41

Specifying a GEO Type Dimension in PROC OLAP 42

Defining Cube Hierarchies 42

Defining a Default Hierarchy 42

Defining Multiple Hierarchies for a Dimension 42

HIERARCHY Statement 43

Cube Designer 43

Defining Ragged and Unbalanced Hierarchies for a Dimension 44

Defining Ragged and Unbalanced Hierarchies in SAS OLAP Cube Studio 44

Defining Ragged and Unbalanced Hierarchies with PROC OLAP 45

Ragged Hierarchies and Unique Member Names 46

Defining Measures For A Cube 47

Selecting Measures in SAS OLAP Cube Studio 47

Unique Member Count Measures 47

NUNIQUE Statistic 47

Defining Stored and Derived Measures for a Fully Summarized Cube 48

Stored Measures 48

Derived Measures 48

Statistics Available for Measures 48

Base Stored Statistics 48

Derived Statistics 49

Defining Member Properties 49

Property Statement 50

Cube Designer 50

36 SAS OLAP Cube Studio and the OLAP Procedure � Chapter 5

Defining Aggregations While Building a Cube 50

Adding Aggregations to a Cube 50

Defining Stored Aggregations For a Fully Summarized Cube 50

Saving the Cube Metadata or Creating the Physical Cube 51

New Cubes 51

Cubes Only Defined in the Metadata 51

Cubes That Physically Exist 51

Saving the OLAP Procedure (Long Form versus Short Form) 52

Export Code 53

Viewing Cubes in SAS OLAP Cube Studio 53

SAS OLAP Server Connection 54

Cube Permissions 54

Disabled Cubes 54

SAS OLAP Cube Studio and the OLAP Procedure

SAS OLAP Cube Studio
SAS OLAP Cube Studio contains several tools and functions that enable you build,

modify, and maintain OLAP cubes. Specifically, the Cube Designer wizard guides you
through the cube building process. You can specify the data used to build the cube, the
structure of the cube, and the measures and aggregations that will be used to process
queries for the cube. After you have built your cube in the Cube Designer wizard, you
can view a simple display of the cube and verify your cube data and structure.

SAS OLAP Cube Studio also provides tools and functions for modifying and
maintaining cubes. After a cube is built you can make various changes and updates to
the cube. Here are some functions that you can perform on a cube after it is created:

� tune the aggregations for the cube
� add and edit calculated members and measures for the cube
� incrementally update the cube
� export and then import a SAS package between SAS environments

For more information on functions and tasks that you can perform on a cube after it
is created, see Chapter 6, “Modifying and Maintaining Cubes,” on page 55.

SAS OLAP Procedure
In addition to using SAS OLAP Cube Studio, you can define and build SAS OLAP

cubes with the OLAP procedure. The OLAP procedure contains various statements and
options to help you define a cube in batch mode if needed or preferred. See Appendix 1,
“The OLAP Procedure,” on page 243 for detailed information on the OLAP procedure.

Connecting and Reconnecting to a Metadata Server
The SAS Metadata Server enables users to write metadata objects to and read

metadata objects from SAS folders. It maintains information about users, groups, data
libraries, servers, and various user-created products such as cubes and information

Building and Administering Cubes � Creating a Connection Profile 37

maps. The SAS Metadata Server contains a metadata identity for every user of the SAS
Intelligence Platform. This includes each user’s login information, including a user ID
and an encrypted password. When a user logs on to a SAS application, the application
verifies the user’s identity by checking it against the metadata identity.

To create SAS OLAP cubes, you must create a connection profile for the metadata
server that you access while using SAS OLAP Cube Studio. A connection profile is a
user’s view of a metadata server and is used to connect the application to a metadata
server. The Connection Profile wizard enables you to specify the connection profile.
When you define a connection profile, you specify the server and the port to which the
application connects. You can also specify a user ID and password for all connections to
the server or allow users to specify a user ID and password each time they log on.
When an application opens a connection profile, it has access to the metadata on the
specified server based on the security credentials of the user ID used to connect.

A connection profile is a client-side definition of where a SAS Metadata Server is
located. The connection profile definition includes a host name and a port number, and
can contain a user’s login information and instructions for connecting to the metadata
server automatically.

Creating a Connection Profile
In order to define cubes, you must be connected to a running metadata server.

Connection information is stored in a connection profile, which is a client-side definition
of where the SAS Metadata Server is located. The profile definition includes a host
name and port number. In addition, the connection profile can contain a user’s login
information and instructions for connecting to the metadata server automatically.

You can define new connection profiles using the Connection Profile wizard. This
wizard is available from within various SAS products, including SAS OLAP Cube
Studio, SAS Management Console, and SAS Data Integration Studio. To create a new
connection profile, follow these steps:

1 In SAS OLAP Cube Studio, select File � Connection Profile to display the
Connection Profile dialog box. The Connection Profile dialog box also appears
automatically when you launch SAS OLAP Cube Studio, unless you have set a
default profile.

2 Select the Create a new connection profile radio button to launch the
Connection Profile wizard.

3 On the Connection Profile wizard, enter connection information to create the new
profile, including the following items:

� profile name

� machine name

� port number

� user name

� password

� authentication domain

� whether to save user ID and password in this profile

� whether to use Integrated Windows authentication (single sign-on)

4 Click Finish to return to the Connection Profile dialog box.

5 If you want to always use the selected profile when SAS OLAP Cube Studio is
launched, click the Set this connection profile as the default check box.

6 Click OK to open the selected profile.

38 Connecting with an Existing Profile � Chapter 5

Connecting with an Existing Profile
Existing connection profiles are listed on the Connection Profile dialog box, which

appears automatically when you launch SAS OLAP Cube Studio (unless you have set a
default profile). If the dialog box does not appear automatically, select File �
Connection Profile. Complete these steps in the Connection Profile dialog box:

1 Select the Open an existing connection profile radio button.
2 Select the name of the profile from the drop-down selection list.
3 If you want to always use the selected profile when SAS OLAP Cube Studio is

launched, select the Set this connection profile as the default check-box.
4 Click OK to open the selected profile.

Reconnecting to a Metadata Server
If the connection to the metadata server is broken, a dialog box appears and asks if

you want to attempt reconnection. Click Try Now. SAS OLAP Cube Studio then
attempts to reconnect to the metadata server. If the reconnection is successful, you can
continue your work. The user credentials from the previous session are used.

Cube Designer Wizard
Within SAS OLAP Cube Studio, the Cube Designer wizard guides you through the

process of building a cube. You can create cube definitions as well as build complete
cubes. The following are some tasks that you can perform:

� define the data sources used to load a cube
� specify any drill-through tables used by the cube
� define the cube dimensions, levels, and hierarchies
� select measures and measure details for the cube
� specify unique member count measures (NUNIQUE)
� specify member properties
� configure aggregations
� select language translation tables for a star schema’s dimension tables
� define user-written formats to create the cube
� define how to handle missing values for ragged hierarchies

Defining Data Sources For a Cube
When you create a cube you must specify the data source tables for the cube. Those

data source tables must be registered in the SAS metadata. Within SAS OLAP Cube
Studio, the Register Table wizard enables you to identify a data source and register it
in the SAS metadata. Any data source that you plan to use for your cube must be
registered in the SAS metadata so that it is accessible in SAS OLAP Cube Studio.

The type of data table(s) you are using determines the type of cube that you can
build. There are three types of SAS OLAP cubes that you can build:

1 detail table
2 star schema

Building and Administering Cubes � Defining Drill-Through Tables 39

3 fully summarized table

On the Cube Designer –General page, you first specify the cube name, the storage
location for the cube, and the type of input data you are using. The type of cube you
create (detail, star schema, fully summarized) determines the information that you
must specify in the Cube Designer wizard. A star schema cube requires different
information than a detail cube or a fully summarized cube. As a result, the wizard
presents a slightly different arrangement of steps for each type of cube that you build.

After you complete entering information for the Cube Designer – General page, you
then select the specific input data table for the cube. All cube types require an input
data table. The Cube Designer – Input page enables you to select a datasource table for
the cube. You can also view the underlying table data and the table properties from this
page. Star schema and fully summarized cubes have additional tables that must be
specified as follows:

� For star schema cubes you must also define the dimension tables for the cube.
Dimension tables are defined after input tables on the Cube Designer – Dimension
Tables page.

� For fully summarized cubes, you also define aggregation tables on the Cube
Designer – Aggregation Tables page. You do this when you define aggregations for
the cube.

Defining Drill-Through Tables

Drill–through tables enable you to display, at query time, the unsummarized detail
data that a table cell or selected cells were summarized from. Using the drill–through
capability, you can view the specific observations from the underlying data that make
up an aggregate value. Many OLAP applications give you the ability to select a cell or a
range of cells and then view the input data that the cell data were summarized from.
Drill–through capability enables companies to access data that is not stored on an
OLAP server and make it accessible to end users of an OLAP application. When the
OLAP server receives a request for this additional data at query time, it automatically
submits a query and retrieves the data from a data warehouse or from an OLTP (online
transaction processing) system. In order to provide this capability, a drill-through table
must be specified for a cube.

A drill-through table can be a view, data set, or other data file that contains data
that is used to define a cube. For you to successfully use a drill-through table, it must
have the same columns with the same attributes as the table that the cube was loaded
from. Detail data tables are most commonly used as drill-through tables. However, if
the cube was loaded from a star schema, a view that fully joins the star schema can be
used as a drill-through table.

In the Cube Designer wizard, you can select a drill-through table on the Cube
Designer – Drill-Through page. Select a table from the Available tables list and move it
to the Selected table list.

You can also use the OLAP procedure, DRILLTHROUGH_TABLE | DT_TABLE |
DT_TBL= option to define a drill-through table for a cube. To understand how
drill-through is implemented in a SAS OLAP cube, see the cube building example
“Implementing Drill-through to Detail Data in a SAS OLAP Cube” on page 210.

Note: When you select a data table for drill-through, you may need to consider user
access and security restrictions for that table. For further information see “Security for
Drill-through Tables” on page 76. �

40 Defining Dimensions and Levels � Chapter 5

Defining Dimensions and Levels
Within the Cube Designer wizard, you can specify dimensions and levels for a cube

on the Dimension Designer wizard. This wizard enables you to select the type of
dimension you are creating and then select the levels for that dimension.

Defining Dimensions
The Dimension Designer wizard enables you to add new dimensions to a cube and

edit existing dimensions. On the Dimension Designer – General page, you can specify
the following information for a dimension:

� the type of dimension you are creating (Standard, TIME, or GEO)
� the sort order for level values in that dimension
� whether to allow new members for the dimension during an incremental update of

the cube
� star schema mapping details. such as the dimension table, key, and fact key
� missing values for ragged or unbalanced data

Defining Levels for a Dimension
After you specify the general information for a dimension, you can select the levels for

that dimension. On the Dimension Designer – Level page, select the Add button. The
Add Levels dialog box opens. From here you can select the input columns for the levels
that you are adding to the dimension. You can have a maximum of 256 levels per cube.

If you have defined a dimension as a TIME type dimension, the Add button is
changed to a drop-down list of options. A second option for adding levels to the
dimension is then available. You can select either of the following options:

� Add levels

� Add supplied time hierarchies

Note: See “Specifying the TIME Dimension” on page 40 for more details. �

After you have selected the levels for a dimension, you can select the attributes for
each level on the Dimension Designer – Level page. You can specify the following
information for a level:

� format
� caption
� sort order
� missing member string
� description

You can also add more levels to the dimension, duplicate a level, or delete a level.

Specifying the TIME Dimension

Designating a TIME Dimension
The TIME dimension is a unique type of dimension for SAS OLAP cubes. When

building a cube, and specifically, when defining a dimension, you must select the type of

Building and Administering Cubes � Specifying GIS Map Information for a Dimension 41

dimension that you are creating. You can create Standard, TIME, or GEO type
dimensions. For the TIME dimension, you can also provide time hierarchies with the
input table for the cube. Supplied time hierarchies can help you build the dimension
and auto-populate the levels and some level properties for the cube.

On the Dimension Designer – General page select the TIME type dimension. On the
Dimension Designer – Level page, the Add button becomes a drop-down list of options.
The Add levels and Add supplied time hierarchies options are now available for
selection.

Note: The Add (levels) function is always available for selection regardless of the
type of dimension you are creating. When you specify a TIME type dimension, the Add
button is converted to a drop-down list. where you can select which of the Add (level)
specific functions you can use. �

Add Levels
The Add Levels dialog box enables you to select input columns for the levels that

you are adding to the dimension. When you select the Add levels option, the Add
Levels dialog box opens. You can select from a list of available input columns and add
them to the list of input columns for new levels.

Add Supplied Time Hierarchies
In the Dimension Designer, the Add supplied time hierarchies option becomes

available when a dimension is defined as a TIME type dimension and supplied time
hierarchies are available. When you select the Add supplied time hierarchies
option, the Add Supplied dialog box opens. For time-specific dimensions, you can select
from a list of supplied time hierarchies. These supplied time hierarchies can help you
build the dimension and auto-populate the levels and some level properties for the cube.
In this dialog box, you select from a list of supplied time hierarchies for the dimension.
The Add Supplied dialog box is available only if the TIME type is selected on the
Dimension Designer - General page.

Note: For more information on applying time hierarchies, see the cube building
example “Creating a Time Dimension in SAS OLAP Cube Studio” on page 197. �

Specifying GIS Map Information for a Dimension
The SAS OLAP Cube Studio GIS Map function enables you to store ESRI Geographic

Information System (GIS) spatial map information in the SAS metadata. This GIS
information can then be read by the SAS OLAP Server and returned during a cube
query.

When building or editing a cube, the GIS Map function enables you to identify a
geography-based dimension and then assign ESRI spatial map information to that
dimension. To define GIS information for a SAS OLAP cube, you identify a dimension
as a geographic-type dimension (GEO) in the Dimension Designer - General window.
You can have only one GEO dimension per cube. After a dimension has been marked as
a GEO-type dimension, the GIS Map button becomes active on the Cube Designer -
Dimensions page.

The GIS Map dialog box enables you to assign ESRI spatial map information to
levels of the GEO-type dimension. You can add map information to an existing cube,
modify map information for a cube, or delete the map information from a cube. When

42 Specifying a GEO Type Dimension in PROC OLAP � Chapter 5

ESRI map information is added to a cube, the property objects for the mapped cube
levels are listed in the Cube Designer’s Member Property window. From here you can
modify the format, caption, and description for the member property. These member
properties are named SAS_SPATIAL_ID by default.

You can set up the ESRI ArcGIS server information in the metadata by using the
Map Service Manager plug-in in SAS Management Console. Users can access the
functionality through the SAS Web OLAP Viewer.

Note: If a dimension is changed from type GEO to Standard or TIME, all the map
information is removed. �

For further information on the GIS Map window, see the SAS OLAP Cube Studio
Help topic “GIS Maps”. For information on the ESRI Map Component, see the
“Configuring the ESRI Map Component” chapter in the SAS Intelligence Platform: Web
Application Administration Guide

Specifying a GEO Type Dimension in PROC OLAP
If you create a cube with the OLAP proceedure, you can define a cube dimension as a

GEO type. The TYPE= option, on the DIMENSION statement, enables you to identify a
dimension as a GEO type dimension. This can only be used when you initially create a
cube with the OLAP proceedure. In order to add geographic information to an existing
cube, you must use SAS OLAP Cube Studio. For more details, see the TYPE= option.

Defining Cube Hierarchies

Defining a Default Hierarchy
When you define cube dimensions, levels, and hierarchies in SAS OLAP Cube Studio,

a default hierarchy for a dimension is automatically created if a hierarchy is not
explicitly defined. This default hierarchy includes all levels that were specified for the
current dimension and the order they were listed in for the dimension. In addition, if
you define multiple hierarchies and do not select a default, then the default is
automatically assigned to the first hierarchy that is created for the dimension. On the
Dimension Designer – Hierarchy window, you can click the Default button to set a
selected hierarchy as the default for the dimension.

Defining Multiple Hierarchies for a Dimension
SAS OLAP cubes are organized into dimensions and levels of data. The levels are

then arranged into hierarchies. After an initial hierarchy has been created, you can
define additional hierarchies for a single dimension of a cube. This enables you to have
multiple possible drill paths for the same data. When you create more than one
hierarchy for a dimension, the levels have some restrictions:

� A level in a dimension might be used in more than one hierarchy within that
dimension. However, levels cannot be used in hierarchies that are not defined
within the dimension that the level is defined in.

� Each level must be used in at least one hierarchy.
� Levels from the same dimension that are picked for an aggregation must be in the

drill order for at least one hierarchy in that dimension.

Building and Administering Cubes � Defining Multiple Hierarchies for a Dimension 43

� You cannot share levels between dimensions.

You can arrange the levels in a hierarchy in any order. The one exception to this is
the TIME dimension. Levels in hierarchies in the TIME dimension must follow a
prescribed order that is determined by the numerical value that is assigned to the type.
This order is from the smallest value (Years, 16) to the greatest value (Seconds, 3,096).
You can only have one TIME dimension for a cube. The dimension hierarchies also have
some restrictions:

� The first hierarchy that is defined for the dimension is designated as the default.
When there are multiple hierarchies, you can designate the default hierarchy for
the dimension.

� Hierarchy names must be unique across the cube. If there is a single hierarchy for
a dimension, then its name must be the name of the dimension. Also, dimension
and hierarchy names cannot be the same as a level name within that dimension.

� For any cube that is loaded with a star schema, in which a dimension table
represents multiple hierarchies for that dimension, the dimension key that is used
to join the dimension table to the fact table will be used for all hierarchies of that
dimension.

HIERARCHY Statement
The HIERARCHY statement is used with the PROC OLAP statement when you

define a cube:

hierarchy campaigns
levels=(campaign_type campaign sub_campaign);

Cube Designer
You can establish multiple hierarchies by using the Cube Designer – Dimension

page, which is located in the SAS OLAP Cube Studio Cube Designer. To add a
hierarchy to an existing dimension, select a dimension, and then click Modify. This
opens the Dimension Designer – General page. It is populated with the values for the
selected dimension. Select Next until you reach the Dimension Designer - Hierarchy
page. Select Add to create an additional hierarchy.

Note: You can modify existing hierarchies by selecting a hierarchy and clicking
Modify. You can also assign a default hierarchy by selecting a hierarchy and clicking
Default. The first hierarchy is automatically the default hierarchy. �

Note: An exception to defining multiple hierarchies for a dimension is the TIME
dimension. Levels in hierarchies in the TIME dimension must follow a prescribed order
that is determined by the numeric value that is assigned to the type. This order is from
the smallest value (Year, 16) to the greatest value (Seconds, 3,096). �

On the Dimension Designer – Define a Hierarchy page, you can define a new
hierarchy and select the different levels and their order for the hierarchy.

44 Defining Ragged and Unbalanced Hierarchies for a Dimension � Chapter 5

Defining Ragged and Unbalanced Hierarchies for a Dimension
Dimension levels are arranged in one or more hierarchies. Hierarchies, by process of

ordering, have a branching arrangement, and the different member levels have parent
and child relationships. For instance, at company X the sales staff are located in
different regions and cities in different countries. A balanced hierarchy might look like
this:

� global sales president (top of hierarchy)

� sales presidents (per country)

� regional sales managers

� city sales managers

Because of differences in the cube data, hierarchies are often not balanced and possibly
have missing members. For example, some sales regions might not have sales managers
assigned to a specific city. Or some countries might not have sales regions, just cities.
These real-world scenarios would create hierarchies that have missing member data
and possibly ragged hierarchies. This affects the drillpath of the cube data.

You can also drill to missing members within a path and continue to drill down to
members that are present.

Note: Existing SAS 9.2 OLAP cubes that have been updated with one or more new
members for a hierarchy can possibly contain ragged hierarchies and must be rebuilt in
the second maintenance release after SAS 9.2. �

Defining Ragged and Unbalanced Hierarchies in SAS OLAP Cube Studio
The Cube Designer in SAS OLAP Cube Studio enables you to specify the missing

members for a hierarchy and the type of data that is missing. Here are the Cube
Designer pages that enable you to specify missing member information:

Ragged
Hierarchies

Located on the Advanced Cube Options dialog box, on the Cube
Designer – General page, this tab enables you to specify character
and numeric missing member information. By default, no missing
member information is indicated with the value None.

Dimension
Designer –
Level Properties

� Ragged - Ignore Missing Members specifies whether to
ignore or use global or hierarchy-specific ragged hierarchy
settings. To ignore settings, set this property to True. To use
the settings, set this property to False. By default, this is set
to False.

� Ragged - Designate Missing Members specifies that the
Cube Designer use the specified string to identify missing
values and override any global or hierarchy-specific ragged
hierarchy settings. You can use up to 256 characters. The
value of the True/False setting in Ragged - Ignore Missing
Members controls whether or not you override any global or
hierarchy-specific ragged hierarchy settings.

Dimension
Designer –
Define a
Hierarchy

You can select one of these options from the Ragged Hierarchies
tab:

� Ignore. From this drop-down list, select True to ignore the
global missing member settings that you entered at the
Advanced Cube Options dialog box. Select False to use the
global settings for the current hierarchy.

Building and Administering Cubes � Defining Ragged and Unbalanced Hierarchies for a Dimension 45

� Character. For this hierarchy only, enter a maximum of 256
characters that will be used to identify missing character
members.

� Numeric. For this hierarchy only, enter a maximum of 256
characters that will be used to identify missing numeric
members.

Defining Ragged and Unbalanced Hierarchies with PROC OLAP
To create ragged and unbalanced hierarchies with PROC OLAP, you specify options

that allow the procedure to skip over members of levels that have captions with
specified values. The presence of these skipped members constitutes a ragged or
unbalanced hierarchy. In a ragged hierarchy, skipped members in a given level can
have descendants; skipped members are used to enable drill-down through empty
levels. In an unbalanced hierarchy, the skipped members do not have descendants;
members are skipped in order to create hierarchies where certain branches do extend to
all available levels.

For an example of the creation of a ragged hierarchy, assume that a cube defines
information about sales representatives. The Geography hierarchy is defined to have
the levels Country, State, Region, and City. In this particular sales organization, the
state of Nebraska has no regions, but it does have sales representatives in a number of
cities. This ragged hierarchy can be shown as follows:

Cube Sales Representatives

Hierarchy ...Geography...
|

Levels: |
Country ...USA...

|
State ...Montana Nebraska North Carolina...

| | | | | |
Region East West --0-- Central East West

| | | | | |
City | Billings... | | | Asheville...

| | | Greenville...
Helena... | Charlotte...

|
...Council Bluffs, Lincoln, Sioux City...

The Geography hierarchy is ragged because of the need to skip the Region level, and
because the skipped member (Nebraska) has descendants.

To create the ragged hierarchy shown above, the Nebraska member needs to be
defined with one member at the Region level. That member needs to have a caption
that matches the value of the EMPTY_CHAR= option that is defined in the respective
HIERARCHY statement.

In the resulting cube, drilling down from Nebraska takes you directly from the State
level to the City level.

For an example of the creation of an unbalanced hierarchy, assume that a cube named
Employees has a hierarchy named Organizations. In that hierarchy there are various
divisions, departments, and groups. As shown below, some departments lack groups:

Cube Employees

Hierarchy ...Organizations...

46 Defining Ragged and Unbalanced Hierarchies for a Dimension � Chapter 5

|
Levels: |
Div ...R&D Sales Tech Support...

| | |
Dept Java Platform | Java Support Platform Support

| | | | |
Group | | | --0-- --0--

| | |
| | Global Marketing U.S.
| |
| Hosts Performance Unit Test
|

Client Mid-Tier Server

The preceding hierarchy is unbalanced because the Tech Support level has no
descendants at the Group level. To implement this unbalanced hierarchy, the levels
Java Support and Platform Support would have to be defined with captions that
matched the value of the EMPTY= option in their respective LEVEL statements.

The options that implement ragged and unbalanced hierarchies are found in the
PROC OLAP statement, HIERARCHY statement, and LEVEL statement. In the PROC
OLAP and HIERARCHY statements, you can specify separate caption values for
character and numeric levels using the options EMPTY_CHAR= and EMPTY_NUM=.
Similarly, the EMPTY= option of the LEVEL statement allows you to specify separate
values for each level in a hierarchy, regardless of any similar values that were specified
in preceding HIERARCHY and PROC OLAP statements.

The HIERARCHY and LEVEL statements also provide the IGNORE_EMPTY option,
which specifies that any prior specifications of EMPTY_CHAR= or EMPTY_NUM= are
to be ignored for that hierarchy or level.

Ragged Hierarchies and Unique Member Names
In a ragged hierarchy, the parent of a member might not be at the level directly above

that member. Furthermore, not all children of a member are necessarily at the same
level. This can lead to a situation where two children have the same unique name.

For example, in a geography hierarchy you might have the levels state, county, and
city. The state Washington might have a child at the county level called Olympia and
another child at the city level, also named Olympia. The city member is not a
descendant of the county member of the same name. It is a child of Washington.

In a ragged hierarchy, levels can have an unconventional structure, and unpopulated
levels are not assigned a token or placeholder. As a result, the unique name for the
county member is Geography.[All Geography].Washington.Olympia, and the
unique name for the city member is Geography.[All
Geography].Washington.Olympia.

The result of this anomaly is that the city member cannot be asked for by a unique
name in a query, either through MDX or an OLE DB for OLAP (ODBO) request for
metadata. It will be returned in any set that contains it so the data that is associated
with it is not lost. The same applies to the children of a member such as Olympia.
Because the server searches through the hierarchy to validate member names, a
request by name for a child of Olympia the city will result in a bad member name error.
This is because the server actually searches under the county Olympia.

This situation occurs only when two members with the same name share a parent.
Any number of members named Olympia could exist under other parents with no
unusual results.

Building and Administering Cubes � NUNIQUE Statistic 47

Defining Measures For A Cube

Selecting Measures in SAS OLAP Cube Studio
When you build a cube in the Cube Designer wizard, you must specify the measures

that are used to help query the cube. After you have defined the data input source and
the structure of the cube (dimensions, levels, hierarchies) you can define measures on
the Select Measures page of the Cube Designer wizard. You can view the cube’s
currently defined measures, add new measures, and remove existing measures.

To define a measure, you select from the Available list of columns and statistics.
This list contains the numeric columns in the input data source and the statistics
available for each column. Move the selected items to the Selected list. You can have
a maximum of 1024 measures per cube.

Note: If you are including aggregated data from tables other than the input data
source, considerations for stored statistics should be made. This applies when you are
creating a cube from a detail table or a star schema. You must include measures for the
stored statistics that are required for each derived statistic that you create in the cube.
For example, if you want to calculate AVG, you must create measures for N and SUM,
as well as AVG. �

Unique Member Count Measures
The Unique Member Count Measures dialog box enables you to store NUNIQUE

(unique member count) statistics as measures with a cube. You can define unique
member count measures on the Unique Member Count Measures dialog box. This is
accessed from the Select Measures page of the Cube Designer wizard. Select the
Define button to open the Unique Member Count Measures dialog box.

You can add or delete a unique member count measure on this dialog box. To create
the unique member count measure, select the level and hierarchy for the new measure.
Selecting the level in a tree structure (dimension, hierarchy, level) automatically assigns
the dimension and hierarchy to that measure. A name is automatically generated for
that unique member count measure consisting of the level name,"NUNIQUE", and the
parent hierarchy name. It is important to note that only one combination of level and
hierarchy can be defined for a measure. After a combination has been used to create a
unique member count measure, the combination cannot be used again. In addition, if
the level or hierarchy is deselected, then any associated defined unique member count
measures are deleted from the cube. For a cube to build, at least one non-unique
member count (non-NUNIQUE) measure must be defined for the cube.

NUNIQUE Statistic
You can define a distinct count statistic using the MEASURE statement and the

NUNIQUE statistic. The LEVEL and HIERARCHY options for the MEASURE
statement are used with the NUNIQUE statistic and are ignored for non-NUNIQUE
statistics if specified.

Note: The LEVEL name is optional. If it is omitted, then the level name is assumed
to be the name specified for the NUNIQUE measure. The HIERARCHY name is only
required if the level is in multiple hierarchies. For further information about using the
NUNIQUE statistic see the “MEASURE Statement” on page 269 . �

48 Defining Stored and Derived Measures for a Fully Summarized Cube � Chapter 5

Defining Stored and Derived Measures for a Fully Summarized Cube
When you are building a cube with fully summarized data, you can select predefined

(stored) measures that are actually stored with the summarized data source. You can
also then create derived measures from those stored measures. In the Cube Designer
wizard, pages for stored and derived measures are available when you have selected a
fully summarized data source to build a cube from.

Stored Measures
On the Stored Measures page of the Cube Designer wizard, you can select the NWAY

columns that contain stored measures data. Select from the Available list and move
the needed measures to the Selected list. On the Assign Stored Measures page of the
Cube Designer wizard, you can then assign a statistic to each stored measure and each
measure to an analysis group.

Derived Measures
After you have selected stored measures from the summarized data source, you can

define any needed derived measures for the cube. You can store only derived statistics
that can be calculated from the available stored statistics. For example, to use the
derived statistic AVG, you must have stored statistics for N and SUM with the same
assigned group name.

On the Select Derived Measures page of the Cube Designer wizard, select the Add
button to create a new derived statistic or the Modify button to change an existing
derived measure. To define a derived measure, you specify the following options:

Analysis
Group

displays a list of analysis groups assigned to the cube’s stored
measures. Select a group from this drop-down list to see available
statistics in the Derived Statistics drop-down list. Only those
groups that contain stored measures that can be used to derive a
statistic are included in the drop-down list.

Derived
Statistics

displays a list of statistics that you can derive from the statistics
that you are storing with the cube for the selected analysis group.
Select the derived statistic that you want to use. Only those
statistics that can be derived from the stored statistics are included
in the drop-down list

Measure Name displays a name for the derived measure. The name must be a valid
SAS name (up to 32 characters). See “Naming Guidelines and Rules
for the SAS OLAP Server” on page 30 for more information.

Note: A derived statistic can be used only once per cube per analysis group. �

Statistics Available for Measures
When you define a cube, you select the statistics that are used to calculate the cube’s

measures. Here is the list of available statistics.

Base Stored Statistics
� Count
� Sum
� Maximum

Building and Administering Cubes � Defining Member Properties 49

� Minimum
� Count of Missing Values
� Uncorrected Sum of Squares

Derived Statistics
� Average
� Range
� Correct Sum of Squares
� Variance
� Standard Deviation
� Standard Error of Mean
� Coefficient of Variance
� T Value
� Probability of Greater Absolute Value
� Lower Confidence Limit
� Upper Confidence Limit

New cubes that are based on a data source that contains existing summarized data
must include measure statements for the stored statistics, which are required for each
derived statistic that you want to create for the new cube. For example, if you want to
calculate AVG, you must create measures for N and SUM, as well as AVG. The
following table indicates which stored statistics are required for each derived statistic.

Table 5.1 Stored Statistics That Are Used to Create Derived Statistic

Derived Statistics Required Stored Statistics

AVG N, SUM

RANGE MIN, MAX

CSS N, SUM, USS

VAR, STD, STDERR, CV, T, PRT, LCLM, UCLM N, SUM, USS

Defining Member Properties
When you create a SAS OLAP cube, the information that is relevant to the cube is

defined with the cube hierarchy, measures, and aggregations (summaries) that will be
stored with the cube. Additional information that is part of the cube member data can
be included in the cube definition as a member property. Member properties are
attributes of dimension members that provide an additional gradation of information to
users of the cube data. Member property information is usually not as significant as the
levels and members within a dimension, and therefore does not qualify as a level or
member. However, it can have additional analytical value that can be useful at query
time.

A member property is assigned to a level within a hierarchy, and a level can have
multiple properties that are assigned to it. For hierarchy placement, a member
property is assigned (by default) to all hierarchies that the select level is included in.
However, you can remove one or more (but not all) of the hierarchies that the member
property is assigned to. When you create a member property, you must specify the

50 Property Statement � Chapter 5

property name, column, and level. Member property names can be shared across a cube
but must be unique for a specific level within a specific hierarchy. You can also specify a
caption, description, and format. The format that you specify here is used instead of the
format in the data set.

Property Statement
The PROPERTY statement is used with the PROC OLAP statement when you define

a cube:

PROPERTY zipcode-region
column=post_code
hierarchy=geographic
level=region;

Cube Designer
You can also establish member properties with the Member Property dialog box that

is part of the Cube Designer wizard in SAS OLAP Cube Studio. This is accessed after
measures are defined, when you create a cube or edit a cube. On the Member
Properties page, select Add to create a member property. In the Define a Member
Property dialog box, enter the member property name, level, column, and caption.

Defining Aggregations While Building a Cube

Adding Aggregations to a Cube
The Cube Designer wizard enables you to add aggregations to a cube when the cube

is created. You can define aggregations that are built with the cube on the Aggregations
page of the Cube Designer wizard. From here you can add and modify aggregations,
specify performance options, and choose whether to create the default NWAY
aggregation. Selecting the Add button opens the Add Aggregation page of the Cube
Designer wizard. It enables you to select from available levels to create an aggregation.

Defining Stored Aggregations For a Fully Summarized Cube
You can also specify stored aggregations for a cube. When you are building a cube in

the Cube Designer wizard, you can choose to build from a detail table, a star schema, or
a fully summarized table. If you build a cube from a fully summarized table, you can
automatically specify aggregations that are stored in aggregation tables. If you are
building a cube from a detail table or a star schema, you can also select to include
aggregations that are stored in aggregation tables. The General page of the Cube
Designer wizard provides the check-box option Cube will use aggregated data
from other tables. This option enables you to create your cube using aggregated data
from tables other than the detail table or star schema that you selected as the input.

The Aggregation Tables page of the Cube Designer wizard enables you to select
aggregation tables for the cube. From these aggregation tables, you can then select
stored aggregations to include with the cube. On the Stored Aggregations page of the

Building and Administering Cubes � Cubes That Physically Exist 51

Cube Designer wizard, you can add and modify a stored aggregation. After you have
defined the stored aggregations, you can affix further aggregations that are built with
the cube.

Saving the Cube Metadata or Creating the Physical Cube

When you are building a cube in the Cube Designer wizard you can choose to save
only the cube’s definition to the active metadata or to save the cube’s definition and
build the cube. Your options depend on whether the cube:

� is a new cube

� is defined only in the metadata

� physically exists

New Cubes
If you are creating a new cube, the Finish page of the Cube Designer wizard contains

these options:

Save the metadata and create the cube
saves the cube’s definition to the current metadata and creates the physical cube.

Save the metadata but do not create the cube
registers only the cube definition to the current metadata.

Cubes Only Defined in the Metadata
If you are editing a cube that exists only in the metadata, the Finish page contains

these items:

Save the metadata and create the cube
saves definition changes to the current metadata and creates the physical cube.

Save the metadata but do not create the cube
registers the modified cube definition in the current metadata.

Cubes That Physically Exist
If you are editing a cube that physically exists, the Finish page contains these items:

Delete the cube, save the metadata updates, and re-create the cube
saves definition changes to the current metadata and creates the physical cube.
Any existing physical cube is deleted before the new cube is built. If the cube
deletion fails, then the cube metadata is not updated.

Delete the cube, save the metadata updates, but do not re-create the
cube

registers only the modified cube definition in the current metadata. Any existing
physical cube is deleted, but the modified metadata is not used to build a new cube.
If the deletion fails, then the cube metadata is not updated. You can use this option
to delete a physical cube without changing the cube’s definition; simply navigate to
the Finish window without making any changes to the cube’s definition.

52 Saving the OLAP Procedure (Long Form versus Short Form) � Chapter 5

The Export Code button opens the Export Code dialog box. Click Finish to process
the cube and close the Cube Designer wizard. After processing, a standard SAS log
window displays the short form of PROC OLAP that was submitted to create the cube.

Note: To perform tasks on the physical cube (such as deleting, rebuilding, and
tuning), you must have the appropriate file access permissions at the operating system
level. If you do not have access, contact your system administrator for more
information. �

Saving the OLAP Procedure (Long Form versus Short Form)

The OLAP procedure is one of the SAS tools that you can use to create, update, and
delete cubes. It provides statements that enable you to add dimensions, levels,
hierarchies, measures and aggregations to a cube as it is being created. These
statements, when combined with the PROC OLAP statement and METASVR
statement, are often referred to as the long form of PROC OLAP. The long form of
PROC OLAP is used when there is no metadata definition for a cube in the SAS
metadata. When submitted, the long form of the procedure first creates the metadata
definition of the cube in the SAS metadata and then creates the physical files for the
cube. If a metadata definition for the cube specified on the PROC OLAP statement
already exists, an error message is printed in the log.

In addition to basic cube creation tasks, you can use a shorter form of PROC OLAP
to perform maintenance tasks on an existing cube metadata definition. The short form
of PROC OLAP must include the PROC OLAP statement and the METASVR
statement. Other statements, such as the DEFINE, AGGREGATION,
DROP_AGGREGATION and UNDEFINE statements can also be included, depending
on the task you want to perform. These include the following:

� delete the physical files for the cube while leaving the metadata definition intact
(PROC OLAP with the DELETE_PHYSICAL option and METASVR statements)

� create the physical files for the cube based on the information in the existing
metadata definition (PROC OLAP and METASVR statements)

� define new calculated members for a cube or remove existing calculated members
(PROC OLAP, METASVR and DEFINE or UNDEFINE statements)

� define new aggregations or delete existing aggregations (PROC OLAP, METASVR,
AGGREGATION or DROP_AGGREGATION statements)

You can use SAS OLAP Cube Studio to modify the metadata definition of a cube and
then use the short form of PROC OLAP to rebuild the cube, including the changes. For
example, if you want to add a dimension to an existing cube, edit the cube structure in
SAS OLAP Cube Studio to add the dimension. Then, from the Finish panel of the Cube
Designer, submit the short form of PROC OLAP to delete the physical files for the cube,
save the changes to the metadata for the cube, and then submit the short form of PROC
OLAP to re-create the physical files. An advantage to using the short form in this
fashion is that links to access control entries, information maps, and reports will not be
broken as the cube is updated.

To accomplish the same task using the long form of PROC OLAP, you would still use
the short form with the DELETE option to delete the physical cube files and to delete
the metadata definition. The appropriate DIMENSION statements would be added to
the long form and the code submitted to create the new metadata and the new physical
files. But now the access controls for the cube would need to be re-created and
information maps and reports would need to be adjusted to account for the newly
created cube.

Building and Administering Cubes � Viewing Cubes in SAS OLAP Cube Studio 53

Export Code
The Export Code function is available in SAS OLAP Cube Studio. The Export Code

function enables you to store in a text file the PROC OLAP code that is used to edit or
build the cube. There are two options to exporting the PROC OLAP code: the long form
or the short form. The Export Code dialog box appears when you perform one of these
steps:

Click Export Code on the Finish page in the Cube Designer wizard.

Select Export Code from the Actions menu.

On the Export Code dialog box, you can select one of the following options:

1 Long form – enables you to save the full version of the OLAP procedure code to a
text file.

2 Short form – enables you to save the short version of the OLAP procedure code to
a text file.

The Export Code function is also available from the Aggregation Tuning and
Incremental Update functions. When accessed from these functions, the text file that is
generated contains the short form of PROC OLAP.

For both the long form and short form options, enter a fully qualified path, including
file extension, to the location for the text file. The text file that is created stores the
PROC OLAP code that is used to create the currently selected cube. Use the Browse
button to navigate to a location on the file system. You can also open the drop-down box
for either the long or short form options. SAS OLAP Cube Studio maintains a record of
the five most recently used files for you to select from. The most recently used file is at
the top of the list.

The PROC OLAP code that is generated can contain MDX expressions. If the MDX
expression contains mixed quotation marks (both single and double quotes), do not place
quotation marks around the MDX string. You must resolve this issue before submitting
the PROC OLAP code. When working with quotation marks follow these guidelines:

� If the MDX string contains only single quotation marks, then place double
quotation marks around the MDX string.

� If the MDX string contains only double quotation marks, then place single
quotation marks around the MDX string.

Note: The PROC OLAP code that is generated by the Export Code function does
not include the user ID and password due to security reasons. You must manually add
the user ID and password to the exported file before submitting. �

Viewing Cubes in SAS OLAP Cube Studio

After you have built a cube in SAS OLAP Cube Studio, you can examine the contents
of the cube with the View Cube function. The View Cube function is available from the
Actions menu and from the cube context menu. The View Cube function is available
only for use with physically built cubes.

54 SAS OLAP Server Connection � Chapter 5

SAS OLAP Server Connection
When you select the View Cube function, a connection to the SAS OLAP Server

must be made. You can identify the SAS OLAP Server for a cube by selecting the cube’s
OLAP schema in the tree view. Then select the Server Assignment tab on the
Properties dialog box for that schema. If there is only one SAS OLAP Server assigned
to the OLAP schema, then that server is used. If a SAS OLAP Server is not selected for
the schema, a dialog box is displayed that enables you to select a SAS OLAP server. If a
connection to the SAS OLAP Server cannot be made, then the View Cube dialog box
cannot be launched.

Cube Permissions
In order to use the View Cube function, a cube must have the appropriate Read and

ReadMetadata permissions. Read and ReadMetadata permissions can be granted for
the cube with the Authorization function that is available in the Properties dialog box.
If you do not have permissions to read the cube, the View Cube function fails when you
attempt to load it. The following authorization error message is displayed:

View Cube results are not available. Possible reasons are
1) an error occurred in reading the data or
2) the permissions may not allow viewing

You can select OK to close the message dialog box or Details. The Details panel
displays the following message:

The set is empty

In addition, if the Read permissions for a component of the cube (dimension, hierarchy,
etc.) have been denied, those components are not available for selection in the cube
dimension tree.

Disabled Cubes
If a cube has been disabled, you can see the same restriction as if the cube has been

denied Read permissions. The View Cube function fails when you attempt to load it.
The following authorization error message is displayed:

View Cube results are not available. Possible reasons are
1) an error occurred in reading the data or
2) the permissions may not allow viewing

You can select OK to close the message dialog box or Details. The Details panel then
displays the following message:

The set is empty

55

C H A P T E R

6
Modifying and Maintaining
Cubes

Editing a Cube 56

Renaming A Cube Object 56

Deleting Cubes and Cube Objects 57

Deleting a Cube in SAS OLAP Cube Studio 57

Deleting Cube Objects in SAS OLAP Cube Studio 57

Deleting the Physical Cube in SAS OLAP Cube Studio 57

Using the DELETE and DELETE_PHYSICAL OPTIONS 57

Refreshing Cube Metadata 57

MDX DDL REFRESH Statement 58

Tuning Cube Aggregations 58

SAS OLAP Cube Studio — Tune Aggregations Function 58

Aggregation Tuning dialog box 59

ARM Log 60

Cardinality 60

Manual 60

Using PROC OLAP to Tune Aggregations 61

Monitoring OLAP Server Performance 61

Specifying Tuning and Performance Options in Cube Aggregations 61

Setting Options on the Aggregation Tuning Dialog Box 61

Default Tab 62

Aggregation Tab 62

Setting Options with PROC OLAP 62

Specifying Calculated Members and Measures 63

Using the Calculated Members Wizard 63

Selecting Calculation Types 64

Simple Calculations 64

Time Calculations 64

Custom Calculations 65

Multiple Language Support and Dimension Table Translations 65

SAS OLAP Cube Studio and Dimension Table Translations 66

PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement 66

SAS Servers and Character Encoding 66

Adding SAS System Options to a Cube 66

Synchronizing Column Changes 67

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP 67

Conversion Issues 67

VALIDVARNAME 68

Data Types 68

Specifying Member Names 68

SQL Pass-Through Example 69

PROC SQL Syntax 69

56 Editing a Cube � Chapter 6

Connecting Directly to a SAS OLAP Server 70

Connecting to an OLAP Server Using the OLEDB Protocol 70

Specifying User Authentication Information 71

Impact Analysis and Reverse Impact Analysis 71

Disabling and Enabling Cubes 72

Disabling Cubes 72

Enabling Cubes 72

Cube Security 73

Setting Permission Conditions on Cube Dimensions 73

SECURITY_SUBSET PROC OLAP Option 74

Identity-Driven Security 74

Build Formula Dialog Box 75

Integrated Windows Authentication and Single Sign-On 75

Single Sign-On (SSO) to SAS IOM Bridge servers 75

SSO and SAS OLAP Cube Studio 75

Integrated Windows Authentication 75

Trusted Peer Connection 76

Exporting Code 76

Security for Drill-through Tables 76

Applying Batch Security with Permission Tables 77

Editing a Cube
After a cube is created, it might be necessary to make changes to the cube. Whether

you need to change a cube that exists only as metadata or has physical files built, you
can modify the cube with the Edit Cube Structure function. This function launches the
Cube Designer wizard, where you can make various changes to the cube including the
following:

� changing the source data for the cube
� adding or removing structural data to the cube (dimensions, levels, hierarchies)

� changing properties for cube components (level properties, measure attributes, etc.)

� adding or removing cube measures, member properties, or aggregations

The Cube Designer wizard gives you the opportunity to edit and build the cube based
on the existing cube metadata. When you are finished making changes to the cube in
the Cube Designer wizard, you can choose to update the metadata or update the
metadata and build the cube.

To access the Edit Cube Structure function, select the cube you need to edit in the
SAS OLAP Cube Studio tree view. Then select Edit Cube Structure from the
Actions menu or from the cube’s context menu. This opens the Cube Designer wizard.
The selected cube is opened and can now be edited.

Renaming A Cube Object
It might be necessary at times to rename a cube or other object (such as a job,

document, or note) in SAS OLAP Cube Studio. You can change the name of an object by
selecting that object in the tree view and then selecting Rename from the Edit menu or
the object’s context menu. Enter a new name for the object and click outside the object
name. The object is now renamed. For further information on SAS naming conventions
see the topic “Naming Guidelines and Rules for the SAS OLAP Server” on page 30.

Modifying and Maintaining Cubes � Refreshing Cube Metadata 57

Note: You must have WriteMetadata permissions to rename a cube. For more
information on permissions, see the SAS Intelligence Platform: Security Administration
Guide. �

Deleting Cubes and Cube Objects

Deleting a Cube in SAS OLAP Cube Studio
While working in SAS OLAP Cube Studio, you can delete a cube. The Delete

function deletes the cube metadata definition and the cube’s physical files. If you are
deleting a SAS OLAP cube, you should note the difference between the Delete function
and the Delete Physical Cube function. The Delete function deletes the entire cube,
whereas the Delete Physical function deletes the physical cube files but maintains the
cube metadata.

The Delete function should be used on a cube only if you are re-creating the cube
from a completely different data set or table. The use of the Delete function will remove
all information about a cube, including security information and information maps.

Deleting Cube Objects in SAS OLAP Cube Studio
The tree view in SAS OLAP Cube Studio lists the different objects that are used to

create and manage cubes, including tables, libraries, schemas, and jobs. As with cubes,
you can delete an object by selecting Delete from either the Edit menu or the object’s
context menu. After selecting Delete, select Yes to delete the object.

Deleting the Physical Cube in SAS OLAP Cube Studio
When building and maintaining SAS OLAP cubes, it might be necessary at times to

delete the physical files for a cube but maintain the cube metadata. You can delete just
the physical files for a cube by using the Delete Physical Cube function in SAS OLAP
Cube Studio. The cube metadata is maintained and the cube is then listed in the tree
view as a cube metadata definition.

Using the DELETE and DELETE_PHYSICAL OPTIONS
If you are manually editing and deleting cubes, you can use the DELETE or

DELETE_PHYSICAL options with the PROC OLAP statement.

Refreshing Cube Metadata
When a cube is accessed by a SAS OLAP Server, the cube data is read by the OLAP

Server and then reported when queries against the cube are made. It is possible that
changes and updates to a cube can occur after the OLAP Server accesses the cube. To
make certain the data that is being queried is the most recent, the Refresh Cube
function can be used. The Refresh Cube function enables the SAS OLAP Server to
access cube data that was created or updated since the cube was last accessed by the
SAS OLAP Server. You might also want to refresh a cube that has had changes or

58 MDX DDL REFRESH Statement � Chapter 6

functions performed since you opened the cube in SAS OLAP Cube Studio. For example,
if a cube has had calculated members or named sets defined by other users, the Refresh
Cube function would make the changes visible with the Cube Viewer function.

To refresh a cube, select the cube in the tree view. Select Refresh Cube from the
Actions menu or from the cube’s context menu. The Refresh Cubes function then
updates the OLAP server metadata for the cube. If the refresh process is successful,
you receive a message in the lower left corner of the SAS OLAP Cube Studio window
stating: “Cube Refresh of “cubename” is successful”.

You must be connected to a server and have administrative permissions in order to
select the Refresh Cubes function.

MDX DDL REFRESH Statement
The REFRESH statement can be sent manually. You can send the REFRESH

statement for each additional server that the schema is associated with.

refresh cube (cubename | "_ALL_")

Cubename specifies a single cube to refresh for the current server connection. _ALL_
specifies that all cubes are refreshed for the current server connection. Here are some
examples.

This example uses the REFRESH statement to refresh the metadata associated with
a cube named OrionStar.

refresh cube [OrionStar]

This example uses the REFRESH statement to refresh the metadata for all cubes
managed by the connected server.

refresh cube _ALL_

You can use the OLAP MDX SQL Pass-Through facility to send the DLL REFRESH
statement to a server. Here is an example.

proc sql noerrorstop;
connect to olap (&olapcon);
execute
(

refresh cube [OrionStar]
) by olap;

proc sql noerrorstop;
connect to olap (&olapcon);
execute
(

refresh cube _ALL_
) by olap;

Tuning Cube Aggregations

SAS OLAP Cube Studio — Tune Aggregations Function
After you have built a cube in SAS OLAP Cube Studio, you can add new

aggregations to the cube. You can also fine-tune the existing aggregations that were

Modifying and Maintaining Cubes � SAS OLAP Cube Studio — Tune Aggregations Function 59

built with the cube and delete any unnecessary aggregations. The Aggregation Tuning
function enables you to generate new aggregations based on cube data cardinality or
ARM log data. You can also manually build an aggregation, selecting the exact
hierarchies and levels that you want to generate aggregations from. To modify a cube’s
aggregations, select the cube from the tree view and select Aggregation Tuning from
the Actions menu or from the cube’s context menu.

Aggregation Tuning dialog box
The Aggregation Tuning dialog box provides functionality to either automatically

generate aggregation recommendations or to manually define cube aggregations.
Aggregations that are defined with the Aggregation Tuning function are added to a list
of any existing aggregations. This list of aggregations can then be reviewed and edited.
You can modify performance options for aggregations and, if needed, you can remove
any unnecessary aggregations. Finally, you can build the aggregations for the cube. You
can also export the resulting PROC code to a text file.

The Aggregations table displays the aggregations for the cube. This includes both
existing aggregations and newly created aggregations that can be built. You can select
individual aggregations to edit, or you can select multiple, sequential rows of
aggregations. The information displayed on the Aggregations table includes the
following columns:

Status This column indicates the current status of the individual
aggregations.

Count This is a statistic that is generated from the ARM log. It shows the
number of queries that match the aggregation definition.

Total Time This is a statistic that is generated from the ARM log. It shows the
total wall time (for internally accessing the cube data) for queries
that match the aggregation definition. The time value is displayed
in hr : min : sec : millisec format.

Average Time This is a statistic that is generated from the ARM log. It shows the
average wall time (for internally accessing the cube data) for queries
that match the aggregation definition. The time value is displayed
in hr : min : sec : millisec format.

Note: If an aggregation already exists, it can have its performance values updated
from the Arm log. �

The Aggregation Tuning Dialog also contains the following options:

Export Code
This option opens the Export Code dialog box. You can preview and save to a text
file the PROC OLAP code that is used to update the cube aggregations. The
aggregations that are new, modified, or dropped in the Aggregations table are
written to the text file. This button is inactive until you add a new aggregation to
the Aggregations table or drop an existing aggregation from the table.

Update Aggregations
This option enables you to update the aggregations that are listed as new or
modified in the Aggregations table. When Update Aggregations is selected, the
cube is updated to include the new aggregations and changes to any existing
aggregations. This button is inactive until you add a new aggregation to the
Aggregations table, modify the name of an existing aggregation, or drop an
existing aggregation from the table. The Aggregations Tuning dialog box closes
after each build.

60 SAS OLAP Cube Studio — Tune Aggregations Function � Chapter 6

In the Aggregations Tuning dialog box, you can select one of the following methods to
define aggregations for a cube:

ARM Log

ARM analysis is used to monitor and diagnose the performance of various SAS
applications. It enables you to measure and record application performance and query
response times in a designated log file. When using an ARM log to perform ARM
analysis of cube aggregations, you can select either of the following options on the ARM :

Create aggregation recommendations and update existing performance
values based on the ARM log.

You can add aggregations from the ARM log and update the statistics for the
aggregations that have entries in the ARM log. This is the default option.

Update performance values based on the ARM log.
You can update the statistics for aggregations that have entries in the ARM log.
This option is used when you want to examine the information in the ARM log and
verify that the existing aggregations are being used. This can help determine
which aggregations to drop.

The Analyze button opens the Analysis Recommendations dialog box. From here you
can select one or more recommended aggregations. The aggregations you select are
added to the bottom of the Aggregations table as highlighted rows. The Analyze button
is inactive until text is entered in the Enter an ARM log file field.

For ARM log analysis, the generated aggregations list displays all aggregations that
can be determined from the cube query data that is provided in the ARM log. If you
select all of the generated aggregations and add them to the Aggregations table, you
cannot generate further aggregations from that same ARM log. If you reselect the
Analyze button on the ARM Log tab, you receive a message stating: “The ARM analysis
did not recommend any additional aggregations to add to the cube”.

Note: For further information about ARM logging, see "SAS OLAP Server
Monitoring and Logging" in the SAS Intelligence Platform: System Administration
Guideand the SAS Interface to Application Response Measurement (ARM): Reference. �

Cardinality

The Cardinality tab enables you to add aggregations that are recommended based
on the relative cardinality (number of members) of the cube levels. This method of
adding aggregations is used when a cube is first created and before an ARM log can be
generated. For each aggregation build, the cardinality algorithm generates up to 100
aggregation recommendations that are based on the cardinality ratio between the cube
levels. The aggregations with the highest cardinality are recommended. All dimensions
are included in the analysis, and any dimension of type TIME has up to the first two of
its levels included on each aggregation.

Manual

The Manual tab enables you to select the exact hierarchies and levels that you want
to generate aggregations from. On the Manual tab, the hierarchies for the cube are
listed individually as columns. Levels for the hierarchies are numerically listed in
drop-down lists on the columns. The default selection value of each column is None.
When you select an individual level from a hierarchy, you are selecting that level and
its parent levels.

Modifying and Maintaining Cubes � Setting Options on the Aggregation Tuning Dialog Box 61

Using PROC OLAP to Tune Aggregations
To modify an aggregation through PROC OLAP, use the DROP_AGGREGATION

statement to delete the aggregation, and then use the AGGREGATION statement to
define the new aggregation.

� DROP_AGGREGATION level-name1 < level-name2 ...level-nameN > /
NAME=’aggregation-name’ ;

� AGGREGATION level-name1 / < NAME=’aggregation-name’ > ;

For more information about the DROP_AGGREGATION and AGGREGATION
statements, see “The OLAP Procedure” on page 244.

Monitoring OLAP Server Performance
SAS OLAP Server performance is monitored and logged with the Application

Response Measurement (ARM) interface. The ARM interface provides built-in logging
capabilities and generates log records that indicate query content and query start and
completion times. From this data, information regarding aggregation usage, individual
query response times, or throughput can be determined. Traditionally, ARM enables
system administrators to monitor application executions, run times, performance, and
completion. SAS OLAP Server uses ARM to monitor the following:

� application behavior
� user behavior and usage
� server loads
� cube optimization (query response time)
� cube metrics—counts of connections and queries

For more information, see “Monitoring Performance Using Application Response
Measurement (ARM)” in SAS Language Reference: Concepts.

Specifying Tuning and Performance Options in Cube Aggregations
When you build cubes, you can set various options that improve and optimize cube

creation and query performance. These options can be set for all aggregations in a cube
or for a specific aggregation. Additionally, these options can be set by using the PROC
OLAP options or in SAS OLAP Cube Studio. These options are stored with the cube
metadata in the SAS metadata.

Setting Options on the Aggregation Tuning Dialog Box
In the Cube Designer – Aggregation Tuning dialog box, the Options button is

provided for access to tuning options. Select the Options button to open the
Performance Options dialog box. There are two tabs for setting tuning options, the
Default tab and the Aggregation tab.

62 Setting Options with PROC OLAP � Chapter 6

Default Tab
The default performance options are applied to all aggregations for the cube. These

performance options include the following:
� amount of memory (in megabytes) that is available for aggregation creation
� maximum number of threads that are used to create an aggregation index
� number of aggregations to create in parallel
� partition size (in megabytes) of aggregation table partitions
� number of observations (in kilobytes) to include in the index component file

segment
� location of index component files
� location of partitions in which to place aggregation table data
� aggregation tables that are stored in compressed format.

For specific information about these functions, see the Performance Options - Default
tab Help page in SAS OLAP Cube Studio Help.

Aggregation Tab
The aggregation-specific performance options are applied to an individual

aggregation for the cube and override the global option settings for that aggregation.
You can define and modify performance options for an aggregation or delete options for
an aggregation. The aggregation-specific performance options include the following:

� partition size (in megabytes) of aggregation table partitions
� number of observations (in kilobytes) to include in the index component file
� location of index component files
� location of partitions in which to place aggregation table data
� aggregation tables stored in compressed format
� aggregations created with indexes

For specific information about these functions, see the Performance Options - Define tab
Help page in SAS OLAP Cube Studio Help.

Setting Options with PROC OLAP
You can set options for all aggregations in a cube or for a specific aggregation. To set

options for all aggregations, set the options in the PROC OLAP statement. To set
options for a single aggregation, set the options in the PROC OLAP AGGREGATION
statement. The options include the following:

ASYNCINDEXLIMIT= n
specifies a limit on the number of indices that will be created in parallel during
the cube build process.

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation tables in a compressed format on
disk.

CONCURRENT=n
specifies the maximum number of aggregations to create in parallel.

DATAPATH=(’pathname1’ ...’pathnameN’)
specifies the location of one or more partitions in which to place aggregation table
data.

Modifying and Maintaining Cubes � Using the Calculated Members Wizard 63

INDEXPATH=(’pathname1’ ...’pathnameN’)
specifies the locations of the index component files that correspond to each
aggregation table partition as specified by the DATAPATH= option.

INDEXSORTSIZE=n
specifies the amount of memory in megabytes that is available when aggregations
are created. The default is the system’s available memory.

MAXTHREADS=n
specifies the maximum number of threads that are used to asynchronously create
the aggregation indexes.

INDEX | NOINDEX
specifies whether or not to create the aggregations with indexes.

PARTSIZE=partition-size
specifies the partition size in megabytes of the aggregation table partitions and
their corresponding index components.

SEGSIZE=rows-per-segment
specifies the number of observations (table rows) in kilobytes to include in the
index component file segment.

WORKPATH=pathname
specifies one or more locations for temporary work files.

Note: ASYNCINDEXLIMIT=, CONCURRENT=, INDEXSORTSIZE=, and
MAXTHREADS= are available only in the PROC OLAP statement. �

For more information about these options, see “PROC OLAP Statement” on page 245
and “AGGREGATION Statement” on page 274.

Specifying Calculated Members and Measures

After you have built a cube, you might find it necessary to add members or measures
to the cube. You can add calculated members or measures to a cube in the following
ways:

� manually by submitting PROC OLAP code with the DEFINE statement. See
“DEFINE Statement” on page 276.

� using the Calculated Members Wizard

The Calculated Members function enables you to add new members for the Measures
dimension. A calculated member is a definition (for a dimension member) that you
create and store with the cube. The calculated member value is generated later during
query time. You can also define a calculated member as a measure.

Using the Calculated Members Wizard
The Calculated Members function can be accessed from the SAS OLAP Cube Studio

Actions menu or from the context menu for a cube. Click Calculated Members to
open the Calculations dialog box.

In the Calculations dialog box, you can add new calculated members or modify
existing members for the selected cube. The list box displays all calculated members
that are defined in the metadata for the selected cube. Select Add to launch the New
Member Wizard and define a new calculated member.

64 Using the Calculated Members Wizard � Chapter 6

To modify an existing member, select the member and then click Edit. The Edit a
Calculated Member dialog box opens.

Selecting Calculation Types
When you click Add in the Calculations dialog box, the New Member wizard is

launched. In this wizard, you select the type of calculation that you want to create. You
can select one of the following types:

� Simple calculations to create a simple calculation formula. See “Simple
Calculations” on page 64.

� Time analysis calculations to create a time-based calculation formula. See
“Time Calculations” on page 64.

� Custom calculations to enter a custom calculation formula. See “Custom
Calculations” on page 65.

Simple Calculations
On this page, you select the variables to create a simple calculation. You can select

one of the following calculation types:
� Sum
� Difference
� Ratio
� Percent Increase
� Percent Decrease
� Distinct Count

The Formula drop-down lists for the members are populated with all measures,
including calculated measures. The Formula panel changes depending on the
calculation-type radio button you select. When a formula is selected, the Formula panel
is populated with drop-down lists appropriate for the selected calculation. A member
must be selected in each list. The member selections for the different formulas are
preserved across formulas within a type.

If you select Distinct Count, a selection tree is displayed. Each dimension has a
node that expands into its hierarchies and then into the levels for each hierarchy. One
variable in the hierarchy tree must be selected.

For further information on the Simple Calculations page, see the SAS OLAP Cube
Studio Help.

Time Calculations
On this page, you select the variables to create a time calculation. You can select one

of the following calculation types:
� Opening Balance
� Closing Balance
� Rolling Total
� Average Over Time
� Compare Parallel Periods
� Compare Consecutive Periods

The Formula panel changes depending on the time-calculation radio button that you
select. The Existing measure drop-down list is populated with all measures, including
calculated measures. The Time period drop-down list is populated with members from

Modifying and Maintaining Cubes � Multiple Language Support and Dimension Table Translations 65

the Time dimension. A member must be selected in each list. The member selections
for the different formulas are preserved across formulas within a type.

Note: This option is not available if there are no TIME-type dimensions for the
cube. �

For further information on the Time Calculations page, see the SAS OLAP Cube
Studio Help.

Custom Calculations
On this page, you enter the variables to create a custom calculation. You can enter

the following:

Parent dimension
specifies a parent dimension for the new calculated member that you are creating.
The default dimension is Measures. If you select a dimension other than
Measures, this field is initially populated with the unique name for the default
hierarchy’s ALL member.

Parent member
specifies a parent member for the new calculated member. Use the Browse button
to display a tree of valid members for the dimension. If you select the Browse
button and the cube physically exists, you are prompted to log on to an OLAP
server, if you haven’t already.

Note: If the cube exists, you must connect to the OLAP server so that the
valid members can be retrieved from the server. If the cube does not exist or a
connection cannot be made to the OLAP server, the valid members displayed in
the tree will be the ALL members for each of the hierarchies for the dimension. �

Name
specifies a name for the custom calculation.

Formula
specifies an MDX formula for the new calculated member.

Click Verify to validate the MDX formula entered in the Formula text box. This
function is only available for cubes that physically exist. When you select Verify, the
Log on to an OLAP server dialog box opens. Select a server and enter a user ID and
password. A connection is made to the selected OLAP server. Click Clear to clear the
contents of the Formula text box.

The Generated MDX text area allows you to view the MDX code that currently exists
for the selected cube and any new MDX code that is entered in the Formula text box.

For further information on the Custom Calculations page, see the SAS OLAP Cube
Studio Help.

Multiple Language Support and Dimension Table Translations
OLAP cube data is often generated in one language but needed in other languages.

For example, a company’s OLAP cube data might be stored in English, but users who
speak Spanish and Turkish need access to it. So, the member values as well as the
captions that are assigned to dimensions, hierarchies, levels, and so on need to be
translated. Multiple language support is available only for cubes that are loaded from
star schemas. It is used to read your alternate locale data sets and create locale-specific
metadata for use at query time. Query results are returned in the language of the
requested locale.

66 SAS OLAP Cube Studio and Dimension Table Translations � Chapter 6

You can specify language support when building a cube either in the Cube Designer
wizard or with PROC OLAP code. There are 56 possible language locales, and English
is the default language.

SAS OLAP Cube Studio and Dimension Table Translations
In the Cube Designer – General page, select the Advanced button. If you selected

Star Schema as the input type in the Cube Designer – General window, you will see
the Dimension Table Translations tab. From the Available list, select the needed
languages for the translation tables and move it to the Selected list. The first
language in the Selected list is the default language.

PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement
The USER_DEFINED_TRANSLATIONS statement is used in conjunction with the

DIMENSION statement options DIMTABLEMEMPREF= and DIMTABLELIBREF=.
For more information, see the “DIMENSION Statement” on page 257.

SAS Servers and Character Encoding
If your server metadata contains characters other than those typically found in

English, then you must be careful to start your server with an ENCODING= or
LOCALE= system option that accommodates those characters. For example, a SAS
server started with the default US English locale cannot read metadata that contains
Japanese characters. SAS will fail to start and log a message indicating a transcoding
failure.

In general, different SAS jobs or servers can run different encodings (such as ASCII/
EBCDIC or various Asian DBCS encodings) as long as the encoding that is used by the
particular job or server can represent all the characters of the data being processed. In
the context of server start up, this requires that you review the characters used in the
metadata describing your server (as indicated by the SERVER= object server
parameter) to ensure that SAS runs under an encoding that supports those characters.

Adding SAS System Options to a Cube
When you build an OLAP cube, it is often necessary to include additional SAS code

that must run prior to the creation of the cube. This includes the creation of
user-written formats, PROC statements, and format search paths for the formats that
are used on input tables. The Advanced Cube Options dialog box is accessed from the
Cube Designer - General dialog box. It provides two entry tabs, Submit SAS Code and
Format Search Path. Both tabs provide entry fields for SAS code. You can enter any
text in the fields. There is no validation of the text that is entered. However, error
messages are sent to the SAS log.

The text is saved to the cube metadata in the SAS Metadata Repository and is used
every time the cube is created. You can edit or remove the text after it is initially
entered. Highlight the text and make any needed changes, or use the DELETE key to
remove the text. Select OK to save your changes.

Submit SAS Code
You can use this tab to enter a PROC statement or any SAS code that you want to
submit before the cube is created. SAS code is submitted before any format search
path.

Modifying and Maintaining Cubes � Conversion Issues 67

Format Search Path
You can use this tab to enter names of catalogs or libraries for the format search
path. The catalogs and libraries must be separated by a blank and will be
searched in the order in which they are listed. You use the SAS system option
FMTSEARCH= here.

Note: For more information about SAS formats, see “Formats” in SAS
Language Reference: Dictionary. �

Note: When you build a cube with SAS OLAP Cube Studio, the format search path
is saved with the cube metadata in the SAS Metadata Repository and used every time
the cube is recreated. However, if you submit PROC OLAP code through a SAS session,
outside of SAS OLAP Cube Studio, the format search path is ignored. PROC OLAP
does not read the information from the SAS Metadata Repository or write the
information to the SAS Metadata Repository. �

Synchronizing Column Changes

The Synchronize Column Changes function in SAS OLAP Cube Studio enables you to
synchronize a cube when a table for an existing cube has encountered a column name
change. This function finds the name differences between the cube and its input table
and updates the internal cube files with the name change. The Synchronize Column
Changes function is available for a cube if the cube physically exists and you have
WriteMetadata permissions for that cube.

You can access the Synchronize Column Changes function in SAS OLAP Cube Studio
from the Actions menu or from the context menu for a cube. If you are not connected
to a workspace server when you select a cube, you are prompted to select a workspace
server.

Note: You cannot update an unregistered cube. �

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP
The SQL Pass-Through facility for OLAP enables a SAS user to connect to an OLAP

server and execute queries against OLAP data within the PROC SQL environment.
PROC SQL establishes a connection to an OLAP server by using the PROC SQL
CONNECT statement.

After a connection is made to the OLAP server, multiple queries can be submitted by
using the OLAP multidimensional expressions (MDX) query language. These queries
are run against existing OLAP cubes. While using the SQL Pass-Through facility, you
can use the MDX DDL statement to create and delete named sets and calculated
members, scoped either globally, or for the current server connection. A PROC SQL
query is then closed after all observations (rows) of data are returned. To disconnect
from the server, you must submit the PROC SQL DISCONNECT statement.

Conversion Issues
OLAP cube data is multidimensional and flexible in regard to data name lengths and

restrictions. However, when PROC SQL sends a query to the OLAP server, data is

68 Conversion Issues � Chapter 6

returned in a flattened, tabular format that contains rows (observations) and columns
(variables).

The SAS OLAP Server has unique naming conventions that specify valid column
names, lengths, and types. Column names that are returned from the SAS OLAP
Server can contain characters (periods, spaces, brackets) and can be unrestrained in
length. Additionally, OLAP data types can be variable-length strings, floating-point
numbers, or integers. This differs from SAS data set naming conventions, and some
conversion is necessary.

VALIDVARNAME
The SQL Pass-Through facility supports the existing SAS option VALIDVARNAME.

You can specify the VALIDVARNAME option to control variable names. The current
default setting for VALIDVARNAME is V7, and variable names can be a maximum of
32 characters in length. Each variable must start with a letter or the underscore
character and can contain letters, underscores, and numbers. Uppercase and lowercase
letters are also allowed.

When converting column names to SAS variable names, the SQL Pass-Through
facility for OLAP will do the following:

� truncate the column name to the maximum size that is allowed
� replace any invalid characters with an underscore
� use a numeric suffix to differentiate between duplicate variable names that are

generated during the data conversion

Note: For additional information about naming restrictions for the SAS OLAP
Server, see “Naming Guidelines and Rules for the SAS OLAP Server” on page 30. �

Note: For further information about the VALIDVARNAME= system option, see
“VALIDVARNAME=System Option” and “Names in the SAS Language” in the SAS
Language Reference: Dictionary. �

Data Types
OLAP query results that contain member names or strings are converted to a fixed

length CHAR type. All OLAP numeric types are converted to standard SAS numeric
types (8-byte floating point). Missing values are handled by standard SAS conventions.

Specifying Member Names
When specifying member names, single quotation marks and double quotation marks

are uniquely processed by the SQL Pass-Through facility. The following exceptions
occur when using quotation marks in member names.

A member name
contains a single
quotation mark.

If a member name in the OLAP query contains a single quotation
mark (for example, Adam’s), the entire query must be enclosed in
double quotation marks when passed to the SQL Pass-Through
facility. This ensures that the single quotation mark is maintained
in the query text. The double quotation marks are then removed
before the OLAP query is processed on the OLAP server.

Note: Macro variables are not expanded within strings that
contain single quotation marks. This includes MDX statements
enclosed in single quotation marks. �

A member name
contains double
quotation
marks.

If a member name in the OLAP query contains double quotation
marks, the entire query must be enclosed in single quotation marks
when passed to the SQL Pass-Through facility. This ensures that

Modifying and Maintaining Cubes � PROC SQL Syntax 69

the double quotation marks are maintained in the query text. The
single quotation marks are then removed before the OLAP query is
processed on the OLAP server.

Here is an example of the SQL Pass-Through facility with quotation marks. The
member name Adam’s requires the double quotation marks around the SELECT
statement.

proc sql;
connect to olap (host=localhost port=5451 user=user pass=pass);

select * from connection to olap (
"select [A].[All A].[M].[Adam’s] on Rows,

crossjoin([Measures].defaultMember, [B].defaultMember)
on Columns

from [QuoteTest]"
);

disconnect from olap;
quit;

SQL Pass-Through Example
In the following example, PROC SQL connects to the SQL Pass-Through facility for

OLAP to create a new data set named temp, which contains all the variables that are
returned from the multidimensional expression (MDX) defined in the SELECT query.
The OLAP server returns query results in a tabular format known as a flattened
rowset. The table rows become the observations of the output data set, and the table
columns become the variables. After all the rows are returned, PROC SQL closes the
query. The server connection is terminated when the program encounters a
DISCONNECT statement or when the PROC SQL step ends.

Note: Because the OLAP server does not impose the same restrictions on column
names, types, and lengths that SAS imposes on data sets, some conversion might be
required. �

100 proc sql;
101 connect to olap (host=localhost service=olap1);
102 create table temp as select * from connection to olap
103 (
104 select { dealers.dealer.members } on 0,
105 { [cars].[Car].members,
106 [cars].[Color].members } on 1
107 from mddbcars
108);
109 disconnect from olap;
110 quit;

PROC SQL Syntax

CONNECT TO OLAP|OLEDB
establishes a connection to an OLAP server. This statement is required. Specify
OLAP to connect to a SAS OLAP server. Specify OLEDB to connect to all other

70 PROC SQL Syntax � Chapter 6

OLEDB for OLAP-compliant servers. When connecting to an OLAP server,
implicit connection is not supported. Therefore the CONNECT TO OLAP
statement is required. However, when connecting to an OLEDB for OLAP
compliant server, implicit connection is supported. For further information about
the CONNECT statement, see “Pass-Through Facility for Relational Databases” in
the SAS/ACCESS for Relational Databases: Reference.

DISCONNECT FROM OLAP | OLEDB
ends the connection to the OLAP server.

EXECUTE (MDX DDL statement) BY OLAP | OLEDB
specifies an MDX DDL statement for creating or deleting calculated members or
named sets. This option is executed by the SAS OLAP Server. For further
information, see “Basic MDX DDL Syntax” in the SAS OLAP Server: MDX Guide.

SELECT . . . FROM CONNECTION TO OLAP | OLEDB (MDX statement);
specifies the MDX query that is sent to the connected SAS OLAP server.

Connecting Directly to a SAS OLAP Server
When connecting directly to a SAS OLAP server, you specify a SAS OLAP server in

the CONNECT statement. For example:

CONNECT TO olap (host=localhost service=olap1);

You can also submit MDX commands to query SAS OLAP cubes and create various
temporary OLAP components that can be used during a PROC SQL session including
named sets and drill-through paths.

Here are the connection options for a SAS OLAP Server that is started with bridge
protocol:

HOST=machine-name
specifies either the DNS name or the IP address of the machine that is hosting the
OLAP server.

PORT=port-number | SERVICE=service-name
either the port-number or service-name is required. The port-number specifies the
numeric value of the port on which the OLAP server resides. The service-name is
used to look up the port number of the machine that is hosting the OLAP server.

USER=userid
a string that specifies the user’s identification for the specified SAS OLAP server.
If included, this option is enclosed with parentheses with the required arguments
and any options.

PASS=password
a string that specifies the password for the user who is identified with the USER=
option. If included, this option is enclosed with parentheses with the required
arguments and any options.

Connecting to an OLAP Server Using the OLEDB Protocol
When connecting to OLE DB for OLAP data the SAS/ACCESS interface to OLE DB

is used. With this approach you specify OLEDB in the CONNECT statement. For
example:

CONNECT TO oledb (provider=msolap prompt=yes);

With this approach you can create a PROC SQL view of the data or specify MDX
statements to access the OLE DB for OLAP data directly. In this approach the MDX

Modifying and Maintaining Cubes � Impact Analysis and Reverse Impact Analysis 71

statements can be used for read-only access of OLE DB for OLAP data. For further
information about the CONNECT statement, see “Syntax for the Pass-Through Facility
for Relational Databases” in the SAS/ACCESS for Relational Databases: Reference.
Also see “Accessing OLE DB for OLAP Data” in the SAS/ACCESS 9.1 Supplement for
OLE DB (SAS/ACCESS for Relational Databases).

Note: For detailed information about PROC SQL syntax, see “Overview of the
Pass-Through Facility” in the SAS/ACCESS for Relational Databases: Reference and
“Syntax for Remote SQL Pass-Through (RSPT) Facility” in the SAS/SHARE User’s
Guide. �

Specifying User Authentication Information
When you use the SQL Pass-Through facility to connect to an OLAP server, you can

choose how the user authentication information is identified. You can choose to store
the user information in the PROC SQL statement or enter the information at the time
of connection to an OLAP server.

� Enter the user information with the connect statement. – The user name
and password are included and stored in the PROC SQL syntax. For example:

connect to olap (host=localhost port=5451 user="user" pass="pass");

� Enter the user information at the time of connection to an OLAP
server. – Authentication with an OLAP server occurs at the time of connection
and is accomplished with Integrated Windows authentication. You do not have to
store a user name or password in the connection string. For example:

connect to olap (host=localhost port=5451);

This option works in two instances:
1 If both the OLAP server and the SAS client are started with the -SSPI

option, then authentication is attempted using Integrated Windows
authentication. This requires that both the OLAP server and the user’s
computer be Windows PCs that have access to a shared domain server. This
usually occurs when both machines are on the same network.

2 If the –SSPI option is not specified on either the client or the OLAP server, or
if the Integrated Windows authentication fails, an attempt is then made to
contact a metadata server to create a one-time password. This is possible
when the OLAP server and the client use the same metadata server. The
access information for the metadata server can either pre-exist in a SAS
profile or otherwise be queried using a dialog box at runtime.

Note: For more information on Integrated Windows authentication, see the SAS
Intelligence Platform: Security Administration Guide. �

Impact Analysis and Reverse Impact Analysis
The Impact Analysis function enables you to view the relationship of a cube to the

objects that it is associated with. Impact analysis shows the potential impact of changes
that you might make to a cube. In SAS OLAP Cube Studio, you can perform impact
analysis only on a cube. If a cube has an information map, it is also displayed. The
Reverse Impact Analysis function enables you to see how changes to the cube’s
associated objects could affect the cube. This view shows all tables that the cube is

72 Disabling and Enabling Cubes � Chapter 6

composed of, including the input, detail, and aggregation tables. Impact Analysis and
Reverse Impact Analysis display only the objects for which you have ReadMetadata
permission.

To perform impact analysis on a cube, select a cube in the tree view and select
Impact Analysis from the Tools menu or from the cube’s context menu. The Impact
Analysis dialog box opens. The dialog box contains the Impact Analysis tab and the
Reverse Impact Analysis tab. Each tab contains two options that enable you to
toggle between a tree view and a diagram view of the cube and its objects. The diagram
view shows a process flow diagram of the cube.

Each node of the cube analysis also contains a context menu that is available on both
the Impact Analysis and Reverse Impact Analysis tabs. This context menu
enables you to see the object’s properties, analyze columns, and open (view the data in)
a table. You can also print the analysis view at any time.

Note: You can use SAS Data Integration Studio to perform impact analysis on other
objects, such as tables and jobs. For further information on the use of the Impact
Analysis function in SAS Data Integration Studio, see "Using Impact Analysis" in the
SAS Data Integration Studio: User’s Guide. �

Disabling and Enabling Cubes

Disabling Cubes
In SAS OLAP Cube Studio, you can disable and enable cubes to perform various cube

changes and adjustments. You can disable a SAS OLAP cube if you need to perform
administrative tasks or make edits to the cube. You might disable a cube to perform the
following tasks:

� tuning cube aggregations
� adding calculated members to a cube
� changing the security settings for a cube
� renaming a cube
� editing and rebuilding a cube
� changing the OLAP schema for a cube

Disabling a cube removes it from production. As a result, queries against the cube
are affected. Queries that are currently running against the cube are completed.
However, new queries against the cube are not accepted by the OLAP server. To disable
a cube in SAS OLAP Cube Studio, select a cube from the tree view. Then select
Disable from either the Actions menu or the cube’s context menu. The cube is then
disabled in the tree view.

Note: You must have Administer permissions on the OLAP server to disable a cube.
For more information on permissions, see the SAS Intelligence Platform: Security
Administration Guide. �

Enabling Cubes
You can enable a SAS OLAP cube that you have previously disabled. A cube is

disabled in order make edits to the cube or to perform administrative tasks on the cube.
Enabling a cube brings it into production, so that new queries against the cube are
accepted by the OLAP Server. In order to enable a cube in SAS OLAP Cube Studio,

Modifying and Maintaining Cubes � Setting Permission Conditions on Cube Dimensions 73

select a disabled cube from the tree view. Then select Enable from either the Actions
menu or the cube’s context menu. The cube is then enabled and listed as an enabled
cube in the tree view.

After the cube is enabled, you can resume queries to the cube that require SAS OLAP
Server sessions. In SAS OLAP Cube Studio, you can also use the View Cube function.

Note: You must have Administer permissions on the OLAP server to enable a cube.
For more information on permissions, see the SAS Intelligence Platform: Security
Administration Guide. �

Cube Security

Setting Permission Conditions on Cube Dimensions
SAS security enables you to set authorization permissions on a cube and the various

components of a cube, such as hierarchies and levels. You can also apply
member-specific filters to cube data by using MDX expression filters known as
permission conditions. Permission conditions limit access to members of a cube
dimension so that only designated portions of the data are visible to a user or group of
users. With SAS OLAP data, permission conditions impose only explicit grants of the
Read permission and can be specified only on dimension objects.

Permission conditions rely on the SAS OLAP Server for enforcement. At query time,
the server performs the filtering to determine which dimension members should be
returned to each requesting user. The members that are returned by the MDX
expression must all belong to the dimension on which the permission condition is
defined. Each filter consists of an MDX expression which subsets the data in a
dimension as appropriate for a particular user or group. The filters are stored in the
cube metadata.

You can set permission conditions from within SAS OLAP Cube Studio or from
within SAS Management Console using the Authorization tab. You can define new
permission conditions and modify existing permission conditions for a user or group
identity. To create a permission condition, follow these steps:

1 From within SAS OLAP Cube Studio, select a cube in the tree view and drill to a
dimension. In the dimension’s Properties dialog box, select the Authorization tab.

2 Select (or add) the user or group whose Read access you want to limit. In the
permissions list, add an explicit grant of the Read permission for that user or
group.

3 If the selected user or group does not already have a permission condition defined,
the Add Authorization button is now enabled. Click Add Authorization to
open the Add Authorization dialog box. You can now create an MDX expression
filter by specifying members and permissions for the expression filter. From this
dialog box, you can also launch the Build Formula dialog box and create an MDX
expression filter that limits the current dimension as appropriate for the selected
user or group.

4 If the selected user or group does already have a permission condition defined, the
Edit Authorization button is now enabled. Click Edit Authorization to open
the Build formula dialog box and create an MDX expression filter.

See the example “Setting Member Authorizations On A Dimension” on page 180 for
more details.

Note: For more information on OLAP member-level security, see the SAS OLAP
Member Authorization Help in SAS Management Console. Also, see “OLAP

74 SECURITY_SUBSET PROC OLAP Option � Chapter 6

Member-Level Permissions” in the SAS Intelligence Platform: Security Administration
Guide. �

SECURITY_SUBSET PROC OLAP Option
After you have set the necessary permission conditions for dimension members, you

must indicate whether the OLAP Server includes these permission conditions when
processing cube queries. In order for a cube to control the roll-up values for designated
members, the SECURITY_SUBSET PROC OLAP option must be set to YES when the
cube is built. The SECURITY_SUBSET= option is used in conjunction with permission
conditions to specify whether the roll-up values include only the members in the
permission condition or all members in the cube. If you set SECURITY_SUBSET= YES,
cell values are recalculated at query time based on the security subset defined by the
active permission conditions for the given user. If you set SECURITY_SUBSET=NO,
the OLAP Server does not recalculate the cell values. The default value (NO) includes
all members within a total.

Note: For more information, see the SECURITY_SUBSET PROC OLAP option and
the topic "SAS OLAP Security Totals and Permission Conditions" in the SAS OLAP
Server: MDX Guide. �

Identity-Driven Security
It is sometimes necessary to substitute identity values in a permission condition to

further refine member-level security. Identity-specific values are dynamically derived
according to the user ID with which a client is authenticated. Those values are then
used to filter the target data. The identity-specific values are derived from
identity-driven properties that are stored in the metadata for each user and group.

The identity-driven properties are as follows:

SAS.ExternalIdentity
This property translates to optional, site-specific values such as Employee ID.
Those values are not automatically stored in the metadata repository and need to
be loaded and maintained.

SAS.IdentityGroupName
This property resolves to the name of the requesting group identity (for example,
Portal Admins Group).

SAS.PersonName
This property resolves to the name of the requesting user identity (for example,
SAS Demo User).

SAS.IdentityName
This property returns the name of either the requesting group identity or the
requesting user identity, depending on whether the user ID is a group login or a
personal login.

SAS.Userid
This property translates to the authenticated user ID, normalized to one of the
uppercase formats USERID or USERID@DOMAIN (for example,
SASDEMO@LXXXXX).

SAS.IdentityGroups
This property resolves to the names of the groups of which a user is a member.

Modifying and Maintaining Cubes � Integrated Windows Authentication and Single Sign-On 75

Note: For more information on OLAP member level security, see the topic "OLAP
Member-Level Permissions" in the SAS Intelligence Platform: Security Administration
Guide. �

Build Formula Dialog Box
You can apply identity values to a permission condition from the Build Formula

dialog box. To access this dialog box, select a cube dimension from within SAS
Management Console or SAS OLAP Cube Studio. The dimension Properties dialog box
contains an Authorization tab. From here, you can assign Read access to the
appropriate user or group. You can then select the Edit Authorization button. This
opens the Build Formula dialog box. The identity values are then located on the Data
Sources tab. On the Data Sources tab, you can select an identity property and insert
it into the MDX expression that you are building.

See “Setting Identity Driven Security” on page 187 for more details.

Note: For more information on identity-driven properties for OLAP member
authorization see the SAS OLAP Member Authorization Help in SAS Management
Console. Also, see “Identity-Driven Properties” in the SAS Intelligence Platform:
Security Administration Guide �

Integrated Windows Authentication and Single Sign-On

Single Sign-On (SSO) to SAS IOM Bridge servers
Single sign-on (SSO) is an authentication model that enables users to access a

variety of computing resources without being repeatedly prompted for their user IDs
and passwords. This functionality enables a client application to connect to a SAS IOM
Bridge Server as the currently logged-on user. For example, single sign-on can enable a
user to access SAS servers that run on different platforms without interactively
providing the user’s ID and password for each platform. Single sign-on can also enable
someone who is using one application to launch other applications based on the
authentication that was performed when the user was initially logged on to the system.

SSO and SAS OLAP Cube Studio
When you have logged on to a metadata server in SAS OLAP Cube Studio, you can

perform a variety of functions, including building a cube and saving the metadata for
that cube, editing cube metadata, and viewing cube properties. Some functions within
SAS OLAP Cube Studio also require a workspace server or an OLAP server in addition
to the metadata server. These functions include Build Physical Cube, Incremental Cube
Update, Calculated Members, and Cube View. Single sign-on enables you to seamlessly
access these servers without having to provide your login credentials. Two technologies
are available in SAS 9.2 to accomplish this:

1 Integrated Windows authentication is available when the client and server are
both running on Windows.

2 a trusted peer connection is available otherwise.

Note: Before using single sign-on, you must have a user defined in the metadata
repository for any user ID that you want to connect to the metadata server with. �

Integrated Windows Authentication
A client and server engaged in Integrated Windows authentication use Microsoft’s

Security Support Provider Interface (SSPI) to choose the best security package for their

76 Security for Drill-through Tables � Chapter 6

configuration. When you first open SAS OLAP Cube Studio you are prompted to log on
to a metadata server with a connection profile that you have previously created. This
connection profile contains information about the metadata server, including the
machine ID, port ID, user ID, and password. There is also a check box labeled Use
Integrated Windows authentication (single sign-on). If this check box is
selected, then you will use Integrated Windows authentication (IWA) to connect to the
servers (metadata server, workspace server, and OLAP server). You will not need to
provide a user ID or password when you open SAS OLAP Cube Studio. The user ID
and password of your current Windows session will be used. By default this option is
not selected when you create a connection profile in SAS OLAP Cube Studio.

Note: For more information on Integrated Windows authentication see "Integrated
Windows Authentication" in the SAS Intelligence Platform: Security Administration
Guide. �

Trusted Peer Connection
The other authentication technology is a trusted peer connection. This method

depends heavily on the integrity of the client environment. The IOM Bridge protocol
client obtains the identity of the user of the client application from the system
environment. When a trusted peer connection is being used, you are prompted during
an initial login for your user ID and password when connecting to a metadata server.
This is the behavior of previous versions of SAS OLAP Cube Studio. However, when a
connection to a workspace server (submitting procedure code) or a connection to an
OLAP server (cube viewer) is made in SAS 9.2 OLAP Cube Studio, you are no longer
prompted to log on. The connection is created using the metadata server login
credentials.

Note: For more information on trusted peer connections, see “Trusted Peer” in the
SAS Intelligence Platform: Security Administration Guide. �

Exporting Code
In SAS OLAP Cube Studio, you can export PROC OLAP code that you have created

while using various functions and wizards, including Cube Designer, Aggregations
Tuning, and Incremental Update. The Export Code function enables you to save PROC
OLAP code to a designated file. When using the Export Code function, some of the
metadata connection profile information is saved to the file. The host and port
information for the metadata server is saved to the exported file. In addition, the
information is displayed on the Finish page of the different wizards. However, the user
ID and password are not saved to the exported file or displayed on the Finish page.
This is because single sign-on authentication removes the need to display or save the
user ID and password.

Security for Drill-through Tables
Different users of cube data may have different security and access restrictions that

must be adhered to and applied when querying the underlying data for a cube. When
selecting a data table for drill-through, you may need to define user restrictions for
certain data in the drill-through table. The SAS Metadata LIBNAME engine is used to
assign the drill-through table library on a per-session basis. This allows client
credentials to be used when determining which columns the user can see. Columns
which have ReadMetadata permissions denied on the drill-through table will not be
visible to the user. If access is denied for a column on the drill-through table, that level
must also be denied Read access in the cube. Conversely, if a level is denied Read access

Modifying and Maintaining Cubes � Applying Batch Security with Permission Tables 77

in the cube, that column in the drill-through table must have ReadMetadata access
denied. For more information on the SAS Metadata LIBNAME engine see the topic
“Pre-assigning Libraries” in the SAS Intelligence Platform: Data Administration Guide.

Because of this enforcement, the following changes could affect your site:

� User-defined formats will not work if the FORMATS catalog is accessed by the
same libref as the data. You must specify a different libref for the FORMATS
catalog or move the user-defined formats into a different location and assign a new
library.

� If SAS Trusted User does not have ReadMetatdata permissions on the library
definition, then the drill-down functionality fails. You can grant ReadMetadata
permission to the SAS Trusted User by using SAS Management Console.

� You cannot drill down in an OLAP cube if there are discrepancies between the
physical table and the metadata that is defined for the table. You can update the
metadata for the table by using the Update Metadata function in SAS
Management Console or SAS Data Integration Studio. If the table is part of a job
in SAS Data Integration Studio, then check the code for the job to verify that there
are no LENGTH statements that would cause a mismatch to occur.

Note: For further information on drill-through tables, see “Defining Drill-Through
Tables” on page 39. �

Applying Batch Security with Permission Tables
When applying permissions to a cube, you might need to address permissions for

different combinations of users, groups, SAS OLAP Servers, schemas, and cubes, as
well as different elements of the cube, including the dimensions, hierarchies, levels, and
measures. For example, you might need to grant ReadMetadata and Read access to the
group that contains specific cube users. Or you might need to restrict Read access for
different components of a cube (dimension, hierarchy, level, or measure) using MDX
conditions for each cube component, per user, consumer, or group. These various
combined permission settings can be easily created and managed with batch security
that is applied through permission tables.

Starting in the third maintenance release for SAS 9.2, you can specify batch security
in SAS OLAP Cube Studio and SAS Data Integration Studio with the Manage
Permission Tables function. The Manage Permission Tables function enables you to
create a special SAS data set known as a permission table that contains cube access
controls for submitting in bulk. A permission table is a table of access control
information that can later be applied to a cube with batch SAS code. The Manage
Permission Tables dialog box enables you to create and modify permission tables as well
as import access controls (permissions) from a cube or an OLAP schema. You can also
execute the code interactively or export the code to a file for use in a stored process or
deployed job flow.

When a cube is created, security for that cube is determined by the permission
settings that are found in the cube metadata. In SAS OLAP Cube Studio, permission
tables will appear in the metadata tree as a table. You must have WriteMetadata
access to create and modify permission tables. To access the Manage Permission Tables
function in SAS OLAP Cube Studio, select Tools � Manage Permission Tables. The
Manage Permission Tables dialog box opens.

78

79

C H A P T E R

7
Updating SAS OLAP Cubes

Overview 79

Updating a Cube In-Place 80

Incremental Updates of Cubes and Cube Generations 80

OUTCUBE Option 81

OUTSCHEMA Option 81

OUTCUBE and OUTSCHEMA Options 81

Coalescing Cube Aggregations 82

Updating a Cube In a Production Environment 82

Disable the Production Cube 82

Rename the Cubes 83

Enable the New Production Cube 83

Example 1 83

Example 2 84

Archiving and Deleting Cube Generations 84

Updating the Captions and Descriptions for a Cube 85

Adding New Members to an Incrementally Updated Cube 85

Reorganization of Cube Levels 85

Why Reorganize? 86

Scenario Example 86

OLAP Procedure 86

Multiple Language Support Cubes 86

Updating Member Properties 86

Specifying Drill-Through Tables 87

NWAY Considerations 87

Updating Multiple Language Support Cubes 87

Format Search Path and SAS Source Code Considerations 87

Exporting Cubes that Have Been Updated 88

Input Data Tables for Cube Updates 88

Schema and Repository Considerations 89

Physical Storage and Metadata Considerations 90

Connecting to a Workspace Server 90

Proc OLAP Options 90

Proc OLAPOPERATE Options and SAS OLAP Monitor 90

Updating Cubes in SAS OLAP Cube Studio 90

Overview
After a SAS OLAP cube is created, it might be necessary to add further data to the

cube without completely re-creating the cube. If a cube is in production, you must
consider what the best process to update your cube is. You should also consider an

80 Updating a Cube In-Place � Chapter 7

approach that will have as little impact as possible on users. It is important to limit the
amount of time that a cube is unavailable to users while the cube is being updated with
new data. It is also important that the updated cube be checked for correctness before
the cube is made available for queries. To address these concerns, you can choose either
to update a SAS OLAP cube in-place or to create an incremental copy of the cube.

You can update SAS OLAP cubes that physically exist and that are generated from
either detail tables or star schemas. You cannot update a fully summarized cube.
Furthermore you must have ReadMetadata and WriteMetadata permissions for all
elements of the cube

New data to add to a cube can include new members and new data for the cube or
additional data for existing members. You can update a cube using SAS OLAP Cube
Studio or manually using “The OLAP Procedure” on page 244 and “The
OLAPOPERATE Procedure” on page 291.

Updating a Cube In-Place
Depending on the business needs for a cube, it might be more suitable to update a

cube in-place. A separate version of the cube is not created. The process of updating
in-place enables you to add data to a cube while that cube is still online. The cube
maintains its name and OLAP schema assignment. This process might be more
appropriate for some users and their reporting needs, as it is less complicated than
creating incremental generations of a cube. However, there is no opportunity to test
and verify the update in a separate process.

You can update a cube in-place by using the UPDATE_INPLACE PROC OLAP
option. This option is used with the ADD_DATA option to signal that an update will
occur. Here is an example of the UPDATE_INPLACE option:

proc olap data=mylib.newdata cube=cubeA add_data
update_inplace;

metasvr host="myhost" port=8561 protocol=BRIDGE repository=my repository
olap_schema=prodSchema;

run;

The process of updating in-place does not create a new metadata registration when
the update is complete. The existing metadata registration points to the new cube
generation and the old generation is deleted. In addition, you do not have to disable the
cube prior to beginning the in-place update. OLAP server sessions referencing the old
cube will continue to do so until the last session closes the old cube. After that, new
sessions will begin to reference the updated cube. However, it might be desirable to
have a specific “cross-over” to the new cube at some point after the update completes.

See “Update a Cube In-Place” on page 160 for a discussion of updating a cube
in-place with the SAS OLAP Cube Studio Incremental Update Wizard.

Incremental Updates of Cubes and Cube Generations
When you create a SAS OLAP cube, data from a table is summarized and

sub-aggregates are created for the cube. The Incremental Update function enables you
to create an incremental update or copy of the original cube. This is known as a
generation of the cube. A generation is a complete, independent version of the original
cube, with a separate metadata registration and separate sets of member and property
trees. The new generation shares the original data (previous aggregation data) rather
than maintaining duplicate copies.

Updating SAS OLAP Cubes � OUTCUBE and OUTSCHEMA Options 81

The new cube generation enables the original cube to remain online for queries
during the entire update process. This is because the original cube is not modified. The
original cube continues in production as before while the new cube is available for
administrative review and updates (such as security updates or new global calculated
members). This provides the administrator with an opportunity to examine and verify
the correctness of the updates before bringing the cube online for production without
affecting the original cube. A new cube generation also provides the additional benefit
of keeping historical data (in the form of the previous generations) available for as long
as necessary.

You can update a cube incrementally by using the OUTCUBE or the OUTSCHEMA
options. These options are used with the ADD_DATA option to signal that an update
will occur and a new generation of the cube will be created. You can use either option
separately or both together.

OUTCUBE Option
Here is an example of the OUTCUBE option. In this example, the cube

PRODSCHEMA is updated and a cube generation (TSTCUBE) is created in the same
schema as the original cube.

proc olap fact=olapsio.factcars cube=PRODCUBE
OUTCUBE=TSTCUBE
ADD_DATA;

metasvr host=&host port=&port protocol=&protocol userid=&userid pw=&pw
repository=&repos olap_schema=PRODSCHEMA;

run;

OUTSCHEMA Option
You can also create a generation of a cube by specifying a different schema than the

original cube. In this example, the new cube retains the name of the original cube
PRODCUBE (OUTCUBE was not specified). However, the new cube now resides in the
schema TESTSCHEMA, as specified in the OUTSCHEMA option.

proc olap fact=olapsio.factcars cube=PRODCUBE
OUTSCHEMA=TESTSCHEMA
ADD_DATA;

metasvr host=&host port=&port protocol=&protocol userid=&userid pw=&pw
repository=&repos olap_schema=PRODSCHEMA;

run;

OUTCUBE and OUTSCHEMA Options
You can use both OUTCUBE and OUTSCHEMA options to create a new cube in a

different schema. In this example, a new cube called TSTCUBE is created and it
resides in the schema TESTSCHEM.

proc olap fact=olapsio.factcars cube=PRODCUBE
OUTSCHEMA=TESTSCHEMA
OUTCUBE=TSTCUBE
ADD_DATA;

metasvr host=&host port=&port protocol=&protocol userid=&userid pw=&pw
repository=&repos olap_schema=PRODSCHEMA;

run;

82 Coalescing Cube Aggregations � Chapter 7

The possible functions that you can perform on a SAS OLAP cube depend on whether
the cube is the original cube or a generation of a cube. These functions can also depend
on which generation of the original cube it is. Any generation of a cube can have
calculated members added to or deleted from it. However, only the most current cube
generation can be edited, rebuilt, tuned, or updated. You can add data to cubes that are
created in SAS 9.2. A cube built in SAS 9.1.3 must be rebuilt in SAS 9.2 in order to use
the Incremental Update function. Furthermore, you must have ReadMetadata and
WriteMetadata permissions for all elements of the cube. See “Generating a New Cube”
on page 164 for a discussion of creating a cube generation with the SAS OLAP Cube
Studio Incremental Update Wizard.

Note: The SAS OLAP Cube Studio right-click menu options for Edit, Create,
Manual Tuning, Advanced Tuning, and Delete Physical Cube are not active if the cube
is not the current generation. �

Coalescing Cube Aggregations

The Incremental Update function enables you to add new members to a cube and
update data. Every time a cube update is done, the incremental aggregation data is
written to a new SPDE table (rack). The more cube updates that have been completed,
the more tables or racks there are that must be read during a query, and the slower the
access time can be.

Periodically, it can be beneficial for performance reasons to combine all of the
individual tables into a single aggregation table. Aggregations are coalesced (combined)
in a separate job from adding data to a cube. Only aggregations with more than one
rack are coalesced. The COALESCE_AGGREGATIONS option can be executed only for
the most current generation of the cube. In addition, only MOLAP aggregations (those
aggregations created by PROC OLAP) can be coalesced. The coalesce task is processed
in-place. A new generation of the cube is not created.

After the cube generation is coalesced, it is no longer dependent on the aggregation
data from previous generations. If those generations have already been deleted, then
the old aggregation tables are also deleted.

You can coalesce all the aggregations by using the option on the PROC OLAP
statement. In addition, the Coalesce wizard is available in SAS OLAP Cube Studio.

See “Coalesce Incremental Data for a Cube” on page 167 for a discussion of coalescing
cube aggregations with the SAS OLAP Cube Studio Incremental Update wizard.

Updating a Cube In a Production Environment

When a new generation of a cube is created, it can be designated as the production
version of the original cube. The new generation must be given a different name from
the original cube or reside in a different OLAP schema. In order to update a cube in
production, you must disable the existing production cube, rename the cubes, and then
enable the new production cube.

Disable the Production Cube
To disable a cube, you can use either the SAS OLAP Monitor plug-in to SAS

Management Console or the PROC OLAPOPERATE statement (see “Disabling a Cube”
on page 296). When a cube is disabled, it is taken offline and is not available for new

Updating SAS OLAP Cubes � Example 1 83

queries. All existing query results are closed, but the sessions are left open and can be
closed by the SAS OLAP Server Monitor. If a query is being processed, however, the
disable action will fail.

Rename the Cubes
Rename the original cube to another name (for example, Sales_OLD). Then rename

the cube generation to the original cube name (Sales). To rename a cube, you can use
either SAS OLAP Cube Studio or the PROC OLAP RENAME option. The RENAME
option enables you to reassign cube generations. It is used with the OUTCUBE or the
OUTSCHEMA options. Renaming a cube updates the metadata for the cube but does
not change the file structure or physical location of the cube. To rename a cube, you
must have ReadMetadata and WriteMetadata permissions on all parts of the cube and
the cube must be disabled.

Enable the New Production Cube
To enable a cube, you can use either the SAS OLAP Monitor plug-in to SAS

Management Console or the PROC OLAPOPERATE statement (see “Enabling a Cube”
on page 296). Enabling the cube enables queries to resume on the server for the new
production cube. Existing reports will continue to work as they reference the cube by
name.

Example 1
Here is an example where an existing production cube is replaced with an updated

version in the same schema. The old cube is then deleted.
Perform an incremental update on production cube A.

proc olap cube=A outcube=A_New add_data data=lib1.data1;
metasvr ;
run;

Disable the production cube.

proc olapoperate <server-connection-options>;
disable cube A;
run;

Rename the production cube to a temporary name.

proc olap rename cube=A outcube=A_Old;
metasvr ...;
run;

Rename the new cube to the original production cube name.

proc olap rename cube=A_New outcube=A;
metasvr ...;
run;

Enable the new production cube (make available for queries).

proc olapoperate <server-connection-options>;
enable cube A;
run;

84 Example 2 � Chapter 7

Delete the old cube.

proc olap cube=A_Old delete;
metasvr ...;
run;

Example 2

In this second example, an existing production cube is replaced with an updated
version from another schema and the old cube is archived.

Perform an incremental update on production cube A. This creates a cube A located
in OLAP Schema TestSchema.

proc olap cube=A outschema=TestSchema add_data data=lib1.data1;
metasvr olap_schema=ProductionSchema ;
run;

Disable the production cube.

proc olapoperate <server-connection-options>;
disable cube A;
run;

Move the old cube to an archive schema.

proc olap rename cube=A outcube=A_September2005 outschema=ArchiveSchema;
metasvr ... olap_schema=ProductionSchema;
run;

Move the new cube to the original production schema.

proc olap rename cube=A outschema=ProductionSchema;
metasvr ...olap_schema=TestSchema;
run;

Enable the new production cube (make available for queries).

proc olapoperate <server-connection-options>;
enable cube A;
run;

Archiving and Deleting Cube Generations

If multiple generations of a cube have been created, special considerations are
needed when archiving or deleting these generations. It is possible to archive an old
cube generation into another schema or under another name. The cube will then be
available for access to historical data. If you are deleting cube generations, it is
important to note that a cube that is an earlier generation must be deleted with PROC
OLAP. Deleting only the metadata will not work for generations of cubes.

Because cube generations generally look through to aggregation data in previous
generations, cube data cannot be physically deleted as long as another generation is
dependent upon it. Only those physical files that are not needed by the new cube (for
example, member and property trees) are actually deleted. The aggregation files remain
available to subsequent generations. In addition, the metadata registration in the
metadata repository is deleted.

Updating SAS OLAP Cubes � Reorganization of Cube Levels 85

Updating the Captions and Descriptions for a Cube
You can update the captions and descriptions for a cube without adding data to the

cube. This is considered a nonstructural update and can be performed on a cube with
the UPDATE_DISPLAY_NAMES option for PROC OLAP. This option enables you to
identify captions and descriptions on a cube that will change. Here is an example:

proc olap cube=cubename description="new description" UPDATE_DISPLAY_NAMES
dt=newdtname;

metasvr options;
dimension time description="New TimeDescription" caption="New TimeCaptions";

Note: The only description that can change when a cube is renamed is the cube
description (the drill-through table name might also be changed during a rename).
Other descriptions and captions must be altered in a separate step after the cube is
renamed. �

Adding New Members to an Incrementally Updated Cube
By default, the Incremental Update function expects new members and new data to

be added to the cube. However, when adding new data to a star schema, you can specify
that only data will be added with the NONUPDATEABLE option. When this option is
selected, the Incremental Update process does not check the dimension tables for new
members. The NONUPDATEABLE option can be specified on the PROC statement or
on an individual DIMENSION statement. If the NONUPDATEABLE option is specified
on the PROC statement, none of the dimension tables are read. Alternately, you can
specify NONUPDATEABLE on the DIMENSION statement if you are adding new
members to a specific dimension.

Note: You should set the IGNORE_MISSING_DIMKEYS=VERBOSE option when
using the NONUPDATEABLE option. �

IN SAS OLAP Cube Studio, you can check the options Cube Designer -
Dimensions and Dimension Designer- General.

Note: Existing SAS 9.2 OLAP cubes that have been updated with one or more new
members for a hierarchy can possibly contain ragged hierarchies and must be rebuilt in
the second maintenance release after SAS 9.2. �

Reorganization of Cube Levels
When you are administering SAS OLAP Cubes, it might be necessary to perform

multiple updates of a cube for various business reasons. After a cube has been updated
several times, it might be necessary to reorganize the levels for the cube. The deciding
factor for this would most likely be a failure of the cube to update successfully,
accompanied with error messages that are similar to the following messages:

ERROR: The new member name "64 " belonging to the "type" level cannot be
added to cube because the limit for inserting new captions between
existing members " 63" and "1001" has been reached. Consider using
the proc olap reorganization options to create additional space.

ERROR: A problem was encountered when attempting to update the cube’s
hierarchies with new members.

86 Why Reorganize? � Chapter 7

ERROR: Cube "cubename " cannot be updated.

If you cannot update your cube and receive this message, you must reorganize your
cube level before you can resume updating your cube.

Why Reorganize?
Reorganization of a cube must be done after a cube update fails when accompanied

by an error message that suggests using "proc olap reorganization options" to create
additional space for that level. A level may run out of space for new level members
after multiple cube update events. This occurs when new level members have been
added to the same sorted location for each event. If too many new level members are
inserted into the same sorted location, then eventually cube update fails.
Unfortunately, this limit can be reached rather quickly if multiple cube update events
take place and, for each event, new level members are inserted into the same location
between existing members due to their relative sort order. Reorganization changes the
internal structure of the cube so that cube update can once again proceed successfully.

Scenario Example
Consider that you have a sales data cube that contains a level for the customer name,

and you have numerous data records for that level where the customer name starts
with the letter S. Each time a cube update takes place, a new customer name is added
whose name starts with the letter S. There is a finite amount of reserved space for new
last names when a cube is first made. If all new names added sort in the same location
of the alphabet, rather than being evenly distributed throughout the alphabet, then the
odds of running out of reserved space increase with each new cube update event.

Eventually, there is no longer any reserved space left to fit in yet another last name
that starts with S. However, there might be ample room to add a name that starts with
the letter Q, X, or I. Nonetheless, the customer name level will still have to be
reorganized before new names starting with the letter S can be added to the cube.

OLAP Procedure
The following PROC OLAP items are available to reorganize SAS OLAP cubes:
� REORGANIZE_LEVELS | REORG_LEVELS option for PROC OLAP
� “REORGANIZE_LEVEL Statement” on page 281

In SAS 9.2, reorganization can only be performed with the PROC OLAP commands.

Multiple Language Support Cubes
You cannot reorganize multiple language support (MLS) cubes. You can, however,

update an MLS cube.

Updating Member Properties
When you add data to a cube, the values for member properties are normally not

updated. However, you can specify the DIMENSION statement option
UPDATE_DIMENSION and the MEMBERS_AND_PROPERTIES value to update the
member properties for a dimension. When updating member properties, the new values

Updating SAS OLAP Cubes � Format Search Path and SAS Source Code Considerations 87

must be contained in either the ADD_DATA table for a detail load cube or the update
table for the dimension for a star schema load.

For a star schema cube, it is possible to change the member property values without
adding data to the cube. The table of new data is not required. You can select to update
member properties on all the dimensions or on just certain dimensions. In both
instances, the original dimension table for a dimension is scanned for new values unless
a different table is provided. The Cube Designer – Dimensions page and the Dimension
Designer - General page have the option Allow new members during incremental
update. See the SAS OLAP Cube Studio Help for further details.

Specifying Drill-Through Tables
Because new data and possibly new members are being added to the cube, a new

drill-through table might be required. You can specify a drill-through table that will be
associated with the cube after it is updated with the DRILLTHROUGH_TABLE PROC
OLAP option or you can specify a new drill-through table in SAS OLAP Cube Studio.
Follow these steps to enter a new drill-through table in SAS OLAP Cube Studio.

1 Select Incremental Update.
2 Select either Update In-Place or Generate New Cube.
3 On the Update General page, enter the new drill-through table in the New

drill-through table field.

NWAY Considerations
When you use the Incremental Update function on a cube, the cube should have a

MOLAP NWAY. If the cube is loaded from a fully summarized table, the Incremental
Update function is not allowed. The NO_NWAY option is also of importance. When
using PROC OLAP to add data the cube, you must have the NO_NWAY option set to
NO. If the NO_NWAY option is set to YES, it is assumed that the cube does not have a
MOLAP NWAY and adding data is not allowed.

Updating Multiple Language Support Cubes
For multiple language support star schema cubes, the original dimension tables are

always used (see “Multiple Language Support and Dimension Table Translations” on
page 65). When you update a non-MLS star schema, if a table is not specified for the
dimension table, the original dimension table is scanned for new members.

If you are updating a MLS cube, you cannot modify the languages that are selected
for the cube. To add new members, the original dimension tables (including the
different language tables) must be updated with the new members. For Multiple
Language Support cubes, the original tables are always re-read.

Format Search Path and SAS Source Code Considerations
When updating cubes that have added syntax for a user written formatted search

path or SAS code, you must consider how that information will be updated as well.
Here are some possible scenarios.

88 Exporting Cubes that Have Been Updated � Chapter 7

Table 7.1 Formatted Search Path Scenarios

Update Process Update Results

You perform an update in-place and do not make
any changes to the format search path or SAS
source code.

The metadata for the cube does not need to be
updated. When the update runs, the current
format search path and SAS source code must
be submitted with the code.

You perform an update in-place and change the
format search path or the SAS source code.

The new values for the format search path and
SAS source code will be updated in the metadata
for the cube in addition to being submitted with
the code or saved with the exported code.

You create a new cube in the update and do not
make any changes to the format search path or
the SAS source code.

The new generation of the cube will be created
using the same format search path and SAS
source code as the original cube, and its
metadata should also include the same format
search path and SAS source as the original cube.
The submitted code or exported code will contain
the current format search path and SAS source
code. PROC OLAP will copy the current format
search path and SAS source code to the new
cube as part of the update.

You create a new cube in the update and enter a
new format search path or new SAS source code.

The next generation of the cube will be created
with the new format search path and SAS
source code, and its metadata will include the
new format search path and SAS source code.
The submitted or exported code will contain the
new format search path and new SAS source
code. However, PROC OLAP will copy what is
currently in the metadata for the original cube.

Exporting Cubes that Have Been Updated
After you update a cube, it might be necessary to export that cube for use in another

SAS OLAP environment. The following rules apply to exporting cubes that have been
updated:

� If a cube exists and has been updated but not coalesced, it cannot be exported.
� If a cube exists and has been updated, and it has been coalesced, it can be

exported. This is possible even if it is not the most current generation of the cube.
� The export template should not include the NextGeneration or PrevGeneration

associations.

Input Data Tables for Cube Updates
When you add data to a cube, you must select a table that contains the new data for

the cube. This might be new data for existing members or new members with new data.
The table must be defined in the metadata repository and it must contain all the
columns for the measures. Depending whether you are incrementally updating the cube
or rebuilding the cube, you must manage the input data accordingly. If you are
updating the cube incrementally, then your table does not need to contain all the

Updating SAS OLAP Cubes � Schema and Repository Considerations 89

cumulative data. However, if you are rebuilding the cube, then your input tables must
contain all the data from the original build and all the incremental updates.

If you are rebuilding a cube, it is very important that the data used as input to the
rebuilt cube contain all the incremental updates that have been made since the original
cube was created. This can be done one of two ways:

1 The input base or fact table definition in the SAS metadata should be a view that
combines the original input table plus all subsequent update tables into a single
logical table. This is the recommended approach.

2 The input base or fact table itself is physically updated to add data from all
update tables.

It is not possible for PROC OLAP or SAS OLAP Cube Studio to verify the correctness
of the input data. This is the responsibility of the administrator or cube builder.
Depending on what data source the cube is loaded from, some requirements apply:

Table 7.2 Input Table Considerations

Data Source Requirement

Detail table All the level columns must be in the new data table.

Star schema The foreign key columns must be in the new data table.
However, the level columns must be in the dimension table
along with the unique key columns.

For star schema cubes, you do not have to select a source table.
If a source table is not selected, then only the dimension tables
will be processed and only if the UPDATE_DIMENSION option
is set to MEMBERS or MEMBERS_AND_PROPERTIES for the
dimension. No new data is added to the cube. In this case, the
ADD_DATA option should not be added to the PROC OLAP
statement.

You can, however, still specify new dimension tables and specify
a value for the UPDATE_DIMENSION option. This is only
valid for dimensions in a star schema that originate from a
dimension table. Dimensions in a star schema that come from
the fact table can only be updated if a source table is selected
and ADD_DATA is specified on the PROC OLAP statement.

Fully summarized table The cube cannot be updated.

When you add data to a cube, the cube and its corresponding tables must be kept in
synch. When you add new members to the cube using the Incremental Update process,
the original tables are re-read by PROC OLAP unless a different table is provided.

Note: If the original dimension table for a star schema is updated with the new
members, you do not need to select a table for a dimension. �

Schema and Repository Considerations
When you add data to a cube, a new name or a new OLAP schema must be provided

for the updated cube. By default, the OLAP schema of the original cube is selected. In
addition, the new generation of the cube should be created in the same repository as the
original cube. If you are defining the repository with the PROC OLAP METASVR
statement, use the repository for the cube that is being updated. Do not use the default
repository.

90 Physical Storage and Metadata Considerations � Chapter 7

Physical Storage and Metadata Considerations
The physical files that compose SAS OLAP cubes are contained within two subfolders:
� the cube path folder
� the generation path folder

The cube path folder name matches the cube name, under the folder defined by the
PATH= option. The aggregation racks (tables) are located in the cube folder. The
remaining internal cube files are placed in a generation folder. Each generation will
have a new generation folder, with subsequent names (gen0001, gen0002, gen0003, and
so on). These folders will be created under the existing cube folder.

Connecting to a Workspace Server
Because adding data to a SAS OLAP cube involves submitting SAS code to

accomplish the actual update, a connection to the workspace server must be established.
If a connection cannot be made, you can continue using the Incremental Update
function and save the generated PROC OLAP code to submit later in a SAS session.

Proc OLAP Options
Depending on the type of cube update you are performing (in-place or incremental),

the following PROC OLAP statements and options can be used:
� ADD_DATA
� NONUPDATEABLE
� OUTCUBE
� OUTSCHEMA
� RENAME
� UPDATE_DIMENSION
� UPDATE_DISPLAY_NAMES
� UPDATE_INPLACE

Proc OLAPOPERATE Options and SAS OLAP Monitor
In addition to PROC OLAP options, it might be necessary to use PROC

OLAPOPERATE options when promoting an incremental update of a cube online. You
can use the PROC OLAPOPERATE options DISABLE CUBE and then ENABLE
CUBE, or you can perform these functions with the SAS OLAP Monitor plug-in for SAS
Management Console.

� “Disabling a Cube” on page 296
� “Enabling a Cube” on page 296

Updating Cubes in SAS OLAP Cube Studio
The Incremental Update function in SAS OLAP Cube Studio enables you to add new

members and new data to a cube as well as update captions for dimensions, hierarchies,

Updating SAS OLAP Cubes � Updating Cubes in SAS OLAP Cube Studio 91

levels, member properties, and measures. The Incremental Update function enables you
to specify cube updates and submit the generated procedure code without rebuilding the
cube. Although you can add data to a cube, the cube structure cannot be modified.
Adding or removing dimensions, levels, measures, hierarchies and properties is not part
of the Incremental Update function.

When you initially create a cube, you can establish whether the cube will allow new
members to be added to the cube at a later point. You can also allow new members to
be added to a specific dimension on a cube. The Cube Designer – Dimensions page and
the Dimension Designer – General page on the Cube Designer wizard have the option
Allow new members during incremental update. See the SAS OLAP Cube Studio
Help for further details.

The Incremental Update wizard is available from the Actions menu and the context
menu in SAS OLAP Cube Studio. It is active on the menu if the selected cube meets
the requirements for adding data. If you select the Incremental Updates function, a
drop-down menu opens. Depending on the type of update you need to perform, select
one of the following options.

� Update In-Place

� Generate New Cube

� Coalesce Incremental Data

After you have updated your cube, you can check to see a list of the generations for
the cube. Select the Generations tab on the Properties dialog box for the cube.

See the SAS OLAP Cube Studio Help for further details on the Incremental Update
function.

92

93

C H A P T E R

8
Cube Building and Modifying
Examples

Defining A Connection Profile 94

Building a Cube from a Detail Table 96

Enter General Cube Information 96

Select A Detail Table 96

Drill-Through Table 97

Table Options 97

Define Dimensions, Levels, and Hierarchies 97

Creating a Time Dimension 101

Define Measures 103

Define Member Properties 104

Define Aggregations 105

Build the Cube 107

Save a Cube’s PROC OLAP Code 108

PROC OLAP Statements and Options For a Detail Table 108

PROC OLAP Example for a Detail Table 110

Building a Cube from a Star Schema 114

Enter General Cube Information 114

Select Fact and Dimension Tables 116

Drill-Through Table 117

Table Options 118

Define Dimensions, Levels and Hierarchies 118

Define Measures 122

Define Member Properties 123

Define Aggregations 124

Build the Cube 125

PROC OLAP CODE for the Star Schema Example 126

PROC OLAP Statements and Options For a Star Schema 131

Building a Cube from a Summary Table 133

Enter General Cube Information 133

Select an Input Table 134

Drill-Through Table 134

Table Options 134

Define Dimensions, Levels and Hierarchies 135

Define Measures 139

Stored Measures 139

Derived Measures 140

Edit Measure Details 141

Define Member Properties 142

Define Aggregation Tables 142

Define Stored Aggregations 143

Define Aggregations 145

94 Defining A Connection Profile � Chapter 8

Build the Cube 145

PROC OLAP CODE for the Summary Table Example 146

PROC OLAP Statements and Options For a Summary Table 149

Tuning Aggregations For a Cube 151

Cardinality Tuning 151

Manual Tuning 156

Arm Log Tuning 158

Adding Data to a Cube with Cube Update 160

Update a Cube In-Place 160

Generating a New Cube 164

Coalesce Incremental Data for a Cube 167

Adding Calculated Members To A Cube 170

Creating a Simple Calculation 170

Creating a Time Analysis Calculation 175

Creating a Custom Calculation 177

Setting Member Authorizations On A Dimension 180

Setting Identity Driven Security 187

Viewing a Cube in SAS OLAP Cube Studio 192

Adding Level Data to a Cube View 192

Replacing Level Data On A Cube View 195

Creating a Time Dimension in SAS OLAP Cube Studio 197

Synchronizing Column Changes 199

Specifying an ESRI GIS Map For a Cube Dimension 200

Creating Multiple Hierarchies For a Cube 205

Set IGNORE_MISSING_DIMKEYS for a Star Schema 208

Implementing Drill-through to Detail Data in a SAS OLAP Cube 210

Exporting a Cube From SAS OLAP Cube Studio 216

Importing a Cube Into SAS OLAP Cube Studio 219

Defining A Connection Profile
Each time you log onto SAS OLAP Cube Studio, a connection is made to a metadata

server. Before you can build a cube in SAS OLAP Cube Studio, you must specify a
connection profile that contains the information for the metadata server that you want
to build your cube with. In SAS OLAP Cube Studio, select File � Connection Profile.
On the Open a Connection Profile dialog box, you can choose to either create a new
connection profile or edit an existing one. If you choose to create a new connection
profile, the Connection Profile wizard will open. The following display shows the
information that is entered for a connection profile.

Cube Building and Modifying Examples � Defining A Connection Profile 95

Enter the machine information for the metadata server that you will connect to and
retrieve a data source from.

� In the New Connection Profile dialog box, enter the machine ID, port, your user
ID, and password.

Note: These fields are the equivalent of the following METASVR statement
options:

� HOST=

� PORT=

� USERID=

� PW=.

�

� Here is an example of the PROC OLAP code:

metasvr host=localhost
port=9999
protocol=bridge
userid=userid
pw=pw
repository=Foundation
olap_schema="OLAP Schema"

After you have entered the basic connection information, you can select to do one
of the following:

� enter the authentication domain for the SAS Metadata Server

� save the user ID and password with the connection profile or use Integrated
Windows authentication (single sign-on). The Integrated Windows
authentication option specifies that access is based on the user’s previous
authentication to the Windows desktop.

Note: For more information on authentication and single sign-on, see
“Understanding Authentication” in the SAS Intelligence Platform: Security
Administration Guide. �

96 Building a Cube from a Detail Table � Chapter 8

Building a Cube from a Detail Table
A detail, or base, table is a table whose data pertains to a single area of interest. It

is any table defined in a SAS Metadata Repository that contains the measures and
levels for a cube. You can build an OLAP cube from a detail table by using the Cube
Designer wizard in SAS OLAP Cube Studio. In this example, you use data from a
recent product marketing campaign. You establish measures and summaries of various
aspects of the data, such as product statistics, geographic location of potential
customers, and revenue summaries.

Enter General Cube Information
After you have established a connection profile, you can begin to create a cube. Select

File � New � Cube. On the Cube Designer – General page, enter the basic cube
information. For this example input type, you select Detail Table. The following
display shows fields that you enter information for.

� Enter information in the following fields:
� Name

� Description
� OLAP schema

� Location (SAS folder)
� Physical cube path (path in the file system to store the cube)
� Work path (path for temporary work files)
� Input Type (detail table)

Select A Detail Table
At the Cube Designer – Input page, select a detail table for your cube. If one does not

exist for your data, select Define Table, and then define the source that you will

Cube Building and Modifying Examples � Define Dimensions, Levels, and Hierarchies 97

import your metadata from. The following display shows the input table Detail that is
selected for the example cube.

Drill-Through Table

At the Cube Designer - Drill-Through dialog box, you can select or define an optional
drill-through table. Drill-through tables can be used by client applications to provide a
view from processed data into the underlying data source.

If a drill-through table does not exist for your data, select Define Table, and then
define the source that you will import your metadata from.

Table Options

The Table Options button is available in both the Cube Designer - Input and the
Cube Designer - Drill-Through dialog boxes. It opens the Table Options dialog box. It
enables you to specify data set options that are used to open the data set. For example,
you could enter a WHERE clause or subsetting information that is then applied to the
selected table when it is opened. The options are stored as part of the cube and then
reapplied when the data is accessed at run time. You can also specify data set options
in the Dimension Designer – General dialog box (for use with star schemas) and the
Stored Aggregates dialog box (for use with summarized tables). For more information,
see “Data Set Options” in SAS Language Reference: Concepts.

Define Dimensions, Levels, and Hierarchies
Now that your basic metadata server and cube information has been entered, you

can define the different dimensions and their respective levels and hierarchies. For this
example, the following dimensions are created:

� Products

� Dates

� Geography

98 Define Dimensions, Levels, and Hierarchies � Chapter 8

� Customers
� Orders

At the Cube Designer – Dimensions page, select Add.

This opens the Dimension Designer – General page, as seen in the following display.

Enter the information in the following fields:
� Name

� Caption

� Description

� Type (Standard, GEO, or TIME)
� Sort Order.

Cube Building and Modifying Examples � Define Dimensions, Levels, and Hierarchies 99

Select Next. This opens the Dimension Designer - Level page. Next, select Add to
open the Add Levels page, as seen in the following display.

Select the levels you want to add to the dimension. Select OK to return to the
Dimension Designer – Level page, where the selected levels are listed. You can now
define properties such as format, time type, and sort order for the levels that you have
selected. See the following display.

Next, define hierarchies for the levels on the Dimension Designer - Hierarchy page.
You can select Add to open the Define a Hierarchy page and individually select the
levels for the hierarchy.

100 Define Dimensions, Levels, and Hierarchies � Chapter 8

Or you can select Finish on the Dimension Designer - Hierarchy page to accept the
order of the levels that are defined on the previous Dimension Designer - Level page. If
you select this option, the hierarchy is assigned the same name as the dimension. See
the following display.

Repeat this process for each dimension. After you create each dimension, it is listed
in the Dimensions panel of the Cube Designer - Dimensions page. See the following
display.

Cube Building and Modifying Examples � Define Dimensions, Levels, and Hierarchies 101

Creating a Time Dimension
When you create the Dates dimension, you must specify the TIME dimension type on

the Dimension Designer – General page. See the following display.

Specifying the TIME dimension type enables Add supplied time hierarchies on
the Dimension Designer – Level page. The Add button is converted to a drop-down list
of options. The Add levels and Add supplied time hierarchies options are now
available for selection. See the following displays.

102 Define Dimensions, Levels, and Hierarchies � Chapter 8

This display shows the Add button when selected.

Select Add supplied time hierarchies. This opens the Add Supplied dialog box.
Select from the list of supplied time hierarchies to create the time levels. This also
creates the hierarchies for the dimension. See the following display.

Cube Building and Modifying Examples � Define Measures 103

You can then define properties such as time type and sort order for the levels that
you have selected. See the following display.

The hierarchy or hierarchies that are selected on the Add Supplied – dialog box are
listed in the Hierarchies panel on the Dimension Designer – Hierarchy page. If there
is only one hierarchy, as with this example, the hierarchy name is changed to match the
dimension name. See the following display.

Define Measures
You can now define the measures for the cube. In this example, you define measures

for the CostPrice Per Unit. Define the measures for the cube at the Cube Designer –
Select Measures page, as shown in the following display.

104 Define Member Properties � Chapter 8

Modify any measure attributes such as measure captions and formats at the Cube
Designer – Measure Details page, as shown in the following display.

Define Member Properties
You can now define the member properties for any needed cube members. A member

property is an attribute of a dimension member. A member property is also an optional
cube feature that is created in a dimension to provide users with additional information
about members. For this example, you can define the customer gender as a member
property. Define member properties in the Cube Designer - Member Property dialog
box, as seen in the following display.

Cube Building and Modifying Examples � Define Aggregations 105

At the Define a Member Property page, enter the member property name, level,
column, format, and caption.

Define Aggregations
You can now define the aggregations for the cube. Aggregations are summaries of

detailed data that are stored with a cube or referred to by a cube. They can help

106 Define Aggregations � Chapter 8

contribute to faster query response. Define the aggregations for the cube from the Cube
Designer - Aggregations page, as shown in the following display.

Select Add to specify a user-defined aggregation. This opens the Add Aggregation
dialog box, as shown in the following display. In this dialog box you can select levels to
add to the aggregation that you are defining.

Select OK to return to the Cube Designer - Aggregations page, where the new
aggregation is listed. Select Next to go to the Cube Designer - Finish page.

Cube Building and Modifying Examples � Build the Cube 107

Build the Cube
You can now build the cube. On the Cube Designer - Finish page, review the settings

for the cube, and then select one of the cube creation options, as shown in the following
display.

You can choose to do one of the following:
1 save the metadata and create the cube
2 save the metadata but do not create the cube

You can also select whether to save the generated PROC OLAP code. Select Export
Code. This opens the Export Code dialog box, as shown in the following display.

You can select to save either the long or short form of the code, or both. Enter the file
location(s) where you want to save the resulting code. Select OK when finished to return
to the Cube Designer - Finish page.

On the Cube Designer - Finish page, select Finish to complete the wizard. If the
cube builds successfully, you will receive progress messages about the cube build, as
seen in the following display.

108 Save a Cube’s PROC OLAP Code � Chapter 8

Save a Cube’s PROC OLAP Code
In SAS OLAP Cube Studio, you can elect to save the PROC OLAP code that is

generated when a cube is built. The code is saved to a text file that you specify. The
information saved in the file includes the following items:

� the SAS LIBNAME statement
� any FMTSEARCH statements
� any additional SAS code
� the PROC OLAP statement
� the METASVR statement
� all other PROC OLAP statements

You can access the Save PROC OLAP Code dialog box by using one of the following
methods:

1 On the tree view in SAS OLAP Cube Studio, right-click on a cube and select
Export Code.

2 In the Cube Designer – Finish page in the Cube Designer wizard, right-click
Export Code.

The Export Code dialog box opens. You can select to save either the long or short
form of the code, or both. Enter the file location or locations where you want to save the
resulting code. Select OK when finished.

PROC OLAP Statements and Options For a Detail Table
The PROC OLAP code that is generated when a detail cube is built is listed below. A

detail cube is unique in that it uses the DATA= option to specify the data source for the
cube. The statements each have options that are either required or optional, depending
on the cube structure.

Table 8.1 Statements and Options Used to Load Cubes from a Detail Table

Statements Options Required or Optional?

PROC OLAP DATA= Required

CUBE= Required

PATH= Required

DESC= Optional

Cube Building and Modifying Examples � PROC OLAP Statements and Options For a Detail Table 109

Statements Options Required or Optional?

NO_NWAY Optional

WORKPATH= Optional

DT_TABLE Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

LEVEL The LEVEL statement is
optional unless you want to
specify time periods for each
level in a TIME dimension. If
you specify a time period for
one level, then you must
specify a time period for all
levels. To specify a time period,
you use the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required if you use the
AGGREGATION statement
with the /TABLE= option

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

PROPERTY prop-name Required

110 PROC OLAP Example for a Detail Table � Chapter 8

Statements Options Required or Optional?

LEVEL= Required

AGGREGATION The AGGREGATION
statement is optional unless
you are creating additional
aggregations. In that case, you
must specify the names of the
contiguous levels to be used to
create the aggregation. Use the
/TABLE= option for cubes that
contain aggregated data from
tables other than the input
data source.

PROC OLAP Example for a Detail Table
In addition to building a cube in SAS OLAP Cube Studio, you can build an OLAP

cube with PROC OLAP code and execute the code in a SAS session. Running PROC
OLAP registers your cube and its sources in a metadata repository. It also creates the
files that make up the cube. These are the possible input types for an OLAP cube that
is built from a detail table:

� a data table (specified in the PROC OLAP statement DATA= option)

� dimension tables (specified in the DIMENSION statement DIMTBL= option)
� presummarized tables (specified in the AGGREGATION statement TABLE=

option)

In this example, you use data from a recent product marketing campaign. For this
cube, you establish measures and summaries of various aspects of the data, such as
product statistics, geographic location of potential customers, and revenue summaries.

1 Define the metadata profile and general information. You use the PROC
OLAP and METASVR statements here. The detail table is specified in the PROC
OLAP statement DATA= option. The CUBE= option is used to specify the
metadata folder location of a cube and the name of the cube. The folder must
already exist in the metadata. The PATH= option specifies the physical or logical
path to the location of a new cube. Within the specified path, the cube is stored in
a directory that uses the name of the cube in uppercase letters.

The METASRV statement is used to establish the metadata connection. It
identifies the metadata repository in which existing cube metadata information
exists or in which metadata about a new cube should be stored. The statement is
also used to provide a user’s identification and password for the identified
repository. Also, the DRILLTHROUGH_TABLE= option is used here to indicate
the drill-through table. Drill-through tables are optional and can be used by client
applications to provide a view from processed data into the underlying data source.

proc olap data=olapsio.detail
cube=/cubefolders/mycubefolder/Campaign1’
path="c:\cubes"
;

metasvr host=localhost
port=9999
protocol=bridge

Cube Building and Modifying Examples � PROC OLAP Example for a Detail Table 111

userid=userid
pw=pw
repository=Foundation
olap_schema="OLAP Schema"
;

2 Define dimensions, levels, and hierarchies. Now that your basic
metadata server and cube information has been entered, you can define the
different dimensions and their respective levels and hierarchies. You use the
DIMENSION, HIERARCHY, and LEVEL statements here.

Note: For time-specific levels in a dimension, the LEVEL statement is
required. Also, there can be only one time-specific dimension. �

dimension products
hierarchies=(products)
caption="Products"
sort_order=ascunformatted
;

hierarchy products
levels=(product_category product_group product_id
product_line product_name)
;

dimension date
hierarchies=(date)
caption="Date"
type=time
;

hierarchy date
levels=(year quarter month)
;

level year
type=year
;

level quarter
type=quarters
;

level month
type=months
;

dimension geography
hierarchies=(geography)
caption="Geography"
;

hierarchy geography
levels=(Country Region City)
;

dimension customer
hierarchies=(customer)
caption="Customer"
;

hierarchy customer
levels=(customer_age customer_group customer_type)
;

dimension orders

112 PROC OLAP Example for a Detail Table � Chapter 8

hierarchies=(orders)
caption="Orders"
;

hierarchy orders
levels=(order_date total_retail_price costprice_per_unit)
;

3 Define measures. You can now define the measures for the cube. A measure is
an input column and a roll-up rule (statistic). Only certain measures are
physically stored. Other measures are derived from the stored measures at run
time. In this example, you want measures for the product CostPrice_per_unit
average and a range.

You use the MEASURE statement here.

measure costprice_per_unitrange
column=costprice_per_unit
stat=range
format=dollar10.2
;

measure costprice_per_unitavg
column=costprice_per_unit
stat=avg
format=10.2
;

4 Define member properties. You can now define the member properties for any
needed cube members. A member property is an attribute of a dimension member.
A member property is also an optional cube feature that is created in a dimension
to provide users with additional information about members. For this example,
you can define the customer genderas a member property.

You use the PROPERTY statement here.

property gender
column=customer_gender
hierarchy=customer
level=customer_id
;

5 Define aggregations. You can now define the aggregations for the cube.
Aggregations are summaries of detailed data that is stored with a cube or referred
by a cube. Their existence can reduce cube query time. If all aggregations are to
be generated at the time of cube creation (MOLAP cube), then you can select
specific aggregations that must be created in addition to the NWAY, which is the
only aggregation that PROC OLAP makes by default.

You use the AGGREGATION statement here.

aggregation product_group product_line
product_category country year
name=’ProductYear’
;

6 Build the cube. You can now build the cube. Execute the PROC OLAP statement
within the SAS System or in batch-mode. Here is the complete PROC OLAP code.

proc olap data=olapsio.detail
cube=/cubefolders/mycubefolder/Campaign1’
path="c:\cubes"

Cube Building and Modifying Examples � PROC OLAP Example for a Detail Table 113

;
metasvr host=localhost

port=9999
protocol=bridge
userid=userid
pw=pw
repository=Foundation
olap_schema="OLAP Schema"
;

dimension products
hierarchies=(products)
caption="Products"
sort_order=ascunformatted
;

hierarchy products
levels=(product_category product_group product_id
product_line product_name)
;

dimension date
hierarchies=(date)
caption="Date"
type=time
;

hierarchy date
levels=(year quarter month)
;

level year
type=year
;

level quarter
type=quarters
;

level month
type=months
;

dimension geography
hierarchies=(geography)
caption="Geography"
;

hierarchy geography
levels=(Country Region City)
;

dimension customer
hierarchies=(customer)
caption="Customer"
;

hierarchy customer
levels=(customer_age customer_group customer_type)
;

dimension orders
hierarchies=(orders)
caption="Orders"
;

hierarchy orders

114 Building a Cube from a Star Schema � Chapter 8

levels=(order_date total_retail_price costprice_per_unit)
;

measure costprice_per_unitrange
column=costprice_per_unit
stat=range
format=dollar10.2
;

measure costprice_per_unitavg
column=costprice_per_unit
stat=avg
format=10.2
;

property gender
column=customer_gender
hierarchy=customer
level=customer_id
;

aggregation product_group product_line
product_category country year
name=’ProductYear’
;

run;

Note: Any libraries must be specified before you run the PROC OLAP code. �

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in C:\olapcubes and name the cube Campaigns, the
cube is saved in the directory C:\olapcubes\CAMPAIGNS. �

Building a Cube from a Star Schema
In this example, you build a cube from a star schema. A star schema is a data source

that contains tables in a database in which a single fact table is connected to multiple
dimension tables. With a cube based on a star schema, you identify the fact table, the
dimension tables, and the keys that map the tables together. In this example, you use
data from a recent product marketing campaign to establish measures and summaries
of various aspects of the data, such as product statistics, geographic location of potential
customers, and revenue summaries.

Enter General Cube Information
After you have established a connection profile, you can begin to create a cube. Select

File � New � Cube. On the Cube Designer – General page, enter the basic cube
information. For the input type in this example, you select Star Schema. The following
display shows fields that you enter information for.

Cube Building and Modifying Examples � Enter General Cube Information 115

� Enter information in the following fields:
� Name

� Description

� OLAP schema

� Location (SAS folder)
� Physical path (path in the file system to store the cube)
� Work path (path for temporary work files)
� Input Type (star schema)

After you have selected the star schema input type, you can select Advanced and
define star schema options and dimension table translation languages for the cube. The
following display shows the Advanced Cube Options dialog box. For star schema cubes
you can specify options for missing keys and whether to compact the NWAY aggregation
at build time.

116 Select Fact and Dimension Tables � Chapter 8

Select Fact and Dimension Tables
On the Cube Designer – Input page, select a fact table for your cube. If one does not

exist for your data, select Define Table, and then define the source that you will
import your metadata from. The following display shows the fact table ORDFACT that
is selected for the example cube.

Cube Building and Modifying Examples � Select Fact and Dimension Tables 117

After a fact table has been chosen, you select the dimension tables for the cube on
the Cube Designer – Dimension Tables page. See the following display.

Drill-Through Table
In the Cube Designer - Drill-Through dialog box, you can select or define an optional

drill-through table. Drill-through tables can be used by client applications to provide a
view from processed data into the underlying data source.

If a drill-through table does not exist for your data, select Define Table, and then
define the source that you will import your metadata from.

118 Define Dimensions, Levels and Hierarchies � Chapter 8

Table Options
The Table Options button is available in both the Cube Designer - Input and the

Cube Designer - Drill-Through dialog boxes. It opens the Table Options dialog box. It
enables you to specify data set options that are used to open the data set. For example,
you could enter a WHERE clause or subsetting information that is then applied to the
selected table when it is opened. The options are stored as part of the cube and then
reapplied when the data is accessed at run time. You can also specify data set options
in the Dimension Designer – General dialog box (for use with star schemas) and the
Stored Aggregates dialog box (for use with summarized tables). For more information,
see “Data Set Options” in SAS Language Reference: Concepts.

Define Dimensions, Levels and Hierarchies

Now that your basic metadata server and cube information has been entered, you
can define the different dimensions and their respective levels and hierarchies. For this
example, the following dimensions are created:

� Product
� Time
� Geography
� Customer
� Organization

On the Cube Designer - Dimensions page, select Add.

This opens the Dimension Designer—General page, as seen in the following display.

Cube Building and Modifying Examples � Define Dimensions, Levels and Hierarchies 119

Enter information in the following fields:
� Name

� Caption

� Description

� Type (Standard, GEO, or TIME)
� Sort order

Because you are building a cube from star schema data. you must identify the table
for the dimension, and the keys that link the dimension and fact tables together. For
each dimension that you define, specify the following:

� Table (for the dimension you are creating)
� Key (for the dimension you are creating)
� Fact key

� any Table options for the selected dimension table

Select Next. This opens the Dimension Designer - Level page. Next, select Add to
open the Add Levels page, as seen in the following display.

120 Define Dimensions, Levels and Hierarchies � Chapter 8

Select the levels you want to add to the dimension. Select OK to return to the
Dimension Designer - Level page, where the selected levels are listed. You can
now,define properties such as format, time type, and sort order for the levels that you
have selected. See the following display.

Next, define hierarchies for the levels on the Dimension Designer - Hierarchy page.
Select Add to on the Dimension Designer – Define a Hierarchy page and individually
select the levels for the hierarchy.

Cube Building and Modifying Examples � Define Dimensions, Levels and Hierarchies 121

You can also select Finish on the Dimension Designer - Hierarchy page to accept the
order of the levels that are defined on the previous Dimension Designer - Level page. If
you select this option, the hierarchy is assigned the same name as the dimension. See
the following display.

Repeat this process for each dimension. After you create each dimension, it is listed
in the Dimensions panel of the Cube Designer - Dimensions page. See the following
display.

122 Define Measures � Chapter 8

Note: If you are defining a TIME dimension you can select Supplied on the
Dimension Designer - Level page. See “Creating a Time Dimension in SAS OLAP Cube
Studio” on page 197 for further information. �

Define Measures
You can now define the measures for the cube. In this example, you define measures

for the CostPrice Per Unit. Define the measures for the cube on the Cube Designer -
Select Measures page, as shown in the following display.

Modify any measure attributes such as measure captions and formats on the Cube
Designer - Measure Details page, as shown in the following display.

Cube Building and Modifying Examples � Define Member Properties 123

Define Member Properties
You can now define the member properties for any needed cube members. A member

property is an attribute of a dimension member. A member property is also an optional
cube feature that is created in a dimension to provide users with additional information
about members. For this example, you can define the customer gender as a member
property. Define member properties in the Cube Designer - Member Property dialog
box, as seen in the following display.

On the Define a Member Property page, enter the member property name, level,
column, format, and caption.

124 Define Aggregations � Chapter 8

Define Aggregations
You can now define the aggregations for the cube. Aggregations are summaries of

detailed data that are stored with a cube or referred to by a cube. They can help
contribute to faster query response. You define the aggregations for the cube from the
Cube Designer - Aggregations page.

Select Add to specify a user-defined aggregation. This opens the Add Aggregation
dialog box, as shown in the following display. In this dialog box you can select levels to
add to the aggregation that you are defining.

Cube Building and Modifying Examples � Build the Cube 125

Select OK to return to the Cube Designer - Aggregations page, where the new
aggregation is listed as shown in the following display.

Select Next to go to the Cube Designer - Finish page.

Build the Cube
You can now build the cube. On the Cube Designer - Finish page, review the settings

for the cube, and then select one of the cube creation options, as shown in the following
display.

126 PROC OLAP CODE for the Star Schema Example � Chapter 8

You can choose to do one of the following:
1 save the metadata and create the cube
2 save the metadata but do not create the cube

You can also select whether to save the generated PROC OLAP code. Select Export
Code. This opens the Export Code dialog box as shown in the following display.

PROC OLAP CODE for the Star Schema Example
LIBNAME olapsio BASE "\\olap\tmp\libolap" ;

PROC OLAP
CUBE = "/Shared Data/OLAPSchemas/OrderCube"
PATH = ’c:\v9cubes’
DESCRIPTION = ’starschemacube’
FACT = olapsio.ORDER_FACT

;

METASVR
HOST = "J12345.na.abc.com"
PORT = 8561
OLAP_SCHEMA = "SASApp - OLAP Schema";

Cube Building and Modifying Examples � PROC OLAP CODE for the Star Schema Example 127

DIMENSION Customers
CAPTION = ’Customers’
SORT_ORDER = ASCENDING
DIMTBL = olapsio.CUSTDIM
DIMKEY = Customer_Id
FACTKEY = Customer_ID
HIERARCHIES = (

Customers
) /* HIERARCHIES */;

HIERARCHY Customers
ALL_MEMBER = ’All Customers’
CAPTION = ’Customers’
LEVELS = (

Customer_Type Customer_Group
Customer_Gender Customer_Age
) /* LEVELS */

DEFAULT;

LEVEL Customer_Type
CAPTION = ’Customer Type’
SORT_ORDER = ASCENDING;

LEVEL Customer_Group
CAPTION = ’Customer Group’
SORT_ORDER = ASCENDING;

LEVEL Customer_Gender
FORMAT = $GENDER.
CAPTION = ’Customer Gender’
SORT_ORDER = ASCENDING;

LEVEL Customer_Age
CAPTION = ’Customer Age’
SORT_ORDER = ASCENDING;

DIMENSION Geography
CAPTION = ’Geography’
TYPE = GEO
SORT_ORDER = ASCENDING
DIMTBL = olapsio.GEOGDIM
DIMKEY = Street_Id
FACTKEY = Street_ID
HIERARCHIES = (

Geography
) /* HIERARCHIES */;

HIERARCHY Geography
ALL_MEMBER = ’All Geography’
CAPTION = ’Geography’
LEVELS = (

Country Region State
) /* LEVELS */

128 PROC OLAP CODE for the Star Schema Example � Chapter 8

DEFAULT;

LEVEL Country
FORMAT = $COUNTRY.
CAPTION = ’Country’
SORT_ORDER = ASCENDING;

LEVEL Region
CAPTION = ’Region Name’
SORT_ORDER = ASCENDING;

LEVEL State
CAPTION = ’State’
SORT_ORDER = ASCENDING;

DIMENSION Organization
CAPTION = ’Organization’
SORT_ORDER = ASCENDING
DIMTBL = olapsio.ORGDIM
DIMKEY = Employee_Id
FACTKEY = Employee_ID
HIERARCHIES = (

Organization
) /* HIERARCHIES */;

HIERARCHY Organization
ALL_MEMBER = ’All Organization’
CAPTION = ’Organization’
LEVELS = (

Company Group Department
) /* LEVELS */

DEFAULT;

LEVEL Company
CAPTION = ’Company’
SORT_ORDER = ASCENDING;

LEVEL Group
CAPTION = ’Group’
SORT_ORDER = ASCENDING;

LEVEL Department
CAPTION = ’Department’
SORT_ORDER = ASCENDING;

DIMENSION Product
CAPTION = ’Product’
SORT_ORDER = ASCENDING
DIMTBL = olapsio.PRODIM
DIMKEY = Product_ID
FACTKEY = Product_ID
HIERARCHIES = (

Product
) /* HIERARCHIES */;

Cube Building and Modifying Examples � PROC OLAP CODE for the Star Schema Example 129

HIERARCHY Product
ALL_MEMBER = ’All Product’
CAPTION = ’Product’
LEVELS = (

Product_Category Product_Group Product_Line
) /* LEVELS */

DEFAULT;

LEVEL Product_Category
CAPTION = ’Product Category’
SORT_ORDER = ASCENDING;

LEVEL Product_Group
CAPTION = ’Product Group’
SORT_ORDER = ASCENDING;

LEVEL Product_Line
CAPTION = ’Product Line’
SORT_ORDER = ASCENDING;

DIMENSION Time
CAPTION = ’Time’
TYPE = TIME
SORT_ORDER = ASCFORMATTED
DIMTBL = olapsio.TIMEDIM
DIMKEY = Date
FACTKEY = Order_Date
HIERARCHIES = (

Time
) /* HIERARCHIES */;

HIERARCHY Time
ALL_MEMBER = ’null’
LEVELS = (

Year Quarter Month
) /* LEVELS */

DEFAULT;

LEVEL Year
COLUMN = Date
FORMAT = YEAR4.
TYPE = YEAR
CAPTION = ’Year’
SORT_ORDER = ASCFORMATTED;

LEVEL Quarter
COLUMN = Date
FORMAT = QTR1.
TYPE = QUARTERS
CAPTION = ’Quarter’
SORT_ORDER = ASCFORMATTED;

LEVEL Month

130 PROC OLAP CODE for the Star Schema Example � Chapter 8

COLUMN = Date
FORMAT = MONNAME9.
TYPE = MONTHS
CAPTION = ’Month’
SORT_ORDER = ASCFORMATTED;

PROPERTY Ages
LEVEL = Customer_Age
COLUMN = Customer_Birth_Date
CAPTION = ’Customer Birth Date’
HIERARCHY = (

Customers
) /* HIERARCHIES */;

MEASURE Total_Retail_PriceMAX
STAT = MAX
COLUMN = Total_Retail_Price
CAPTION = ’Maximum Total_Retail_Price’
FORMAT = DOLLAR13.2
DEFAULT;

MEASURE Total_Retail_PriceAVG
STAT = AVG
COLUMN = Total_Retail_Price
CAPTION = ’Average Total_Retail_Price’
FORMAT = DOLLAR13.2;

MEASURE CostPrice_Per_UnitMAX
STAT = MAX
COLUMN = CostPrice_Per_Unit
CAPTION = ’Maximum CostPrice_Per_Unit’
FORMAT = DOLLAR13.2;

MEASURE CostPrice_Per_UnitAVG
STAT = AVG
COLUMN = CostPrice_Per_Unit
CAPTION = ’Average CostPrice_Per_Unit’
FORMAT = DOLLAR13.2;

AGGREGATION /* Default */
/* levels */
Company Country Customer_Age Customer_Gender Customer_Group
Customer_Type Department Group Month Product_Category
Product_Group Product_Line Quarter
Region State Year
/ /* options */
NAME = ’Default’;

AGGREGATION /* ProductCustomer */
/* levels */
Customer_Type Customer_Group Customer_Gender
Customer_Age Product_Category
/ /* options */
NAME = ’ProductCustomer’;

Cube Building and Modifying Examples � PROC OLAP Statements and Options For a Star Schema 131

FORMAT Customer_Birth_Date DATE9.;

RUN;

PROC OLAP Statements and Options For a Star Schema

The following table lists the PROC OLAP statements and options that you use to
load a cube from a star schema. A star schema is a set of input tables that are defined
in a repository. The set of tables includes a single fact table and one or more dimension
tables. The fact table must contain at least one numeric analysis column for each set of
measures that is generated. To specify the data source for a star schema, you must use
the FACT=, DIMTBL=,DIMKEY=, and FACTKEY= options.

Table 8.2 Statements and Options Used to Load Cubes from a Star Schema

Statements Options Required or Optional?

PROC OLAP FACT= Required

CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

WORKPATH= Optional

DT_TABLE Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DIMTBL= Required for cubes that
support one locale. If the cube
will contain multiple national
languages, replace this option
with DIMTABLELIBREF= and
DIMTABLEMEMPREF=.

FACTKEY= Required

DIMKEY= Required

DIMTABLELIBREF Required if you build a cube
that will contain multiple
national languages. Replaces
DIMTBL=.

132 PROC OLAP Statements and Options For a Star Schema � Chapter 8

Statements Options Required or Optional?

DIMTABLEMEMPREF Required if you build a cube
that will contain multiple
national languages. Replaces
DIMTBL=.

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

LEVEL The LEVEL statement is
optional unless you want to
specify time periods for each
level in a TIME dimension. If
you specify a time period for
one level, then you must
specify a time period for all
levels. To specify a time period,
you use the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required if you use the
AGGREGATION statement
with the TABLE= option

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

PROPERTY prop-name Required

Cube Building and Modifying Examples � Enter General Cube Information 133

Statements Options Required or Optional?

LEVEL= Required

AGGREGATION The AGGREGATION
statement is optional unless
you are creating additional
aggregations. In that case, you
must specify the names of the
contiguous levels to be used to
create the aggregation. Use the
TABLE= option for cubes that
contain aggregated data from
tables other than the input
data source.

Building a Cube from a Summary Table

In this example, you build a cube with fully summarized data. A summary table is a
data source that contains a crossing of all dimensions for a cube. In this example,
furniture company sales data for the PRDNWYPR table is used. The table contains
columns for location, sales, date, and product values. It also contains stored measures
for actual and predicted sales figures.

Enter General Cube Information
After you have established a connection profile, you can begin to create a cube. Select

File � New � Cube. On the Cube Designer – General page, enter the basic cube
information. For this example input type, you select Fully Summarized Table. The
following display shows fields that you enter information for.

134 Select an Input Table � Chapter 8

� Enter information in the following fields:
� Name

� Description

� OLAP schema

� Location (SAS folder)
� Physical cube path (path in the file system to store the cube)
� Work path (path for temporary work files)
� Input Type (fully summarized table)

Note: When the Fully summarized table input type is selected, the option Cube
will use aggregated data from other tables is automatically selected. �

Select an Input Table
On the Cube Designer – Input page, select an input table for your cube. If one does

not exist for your data, select Define Table, and then define the source that you will
import your metadata from. The following display shows the summarized table
PRDNWPR that is selected for the example cube.

Drill-Through Table
In the Cube Designer - Drill-Through dialog box, you can select or define an optional

drill-through table. Drill-through tables can be used by client applications to provide a
view from processed data into the underlying data source.

If a drill-through table does not exist for your data, select Define Table, and then
define the source that you will import your metadata from.

Table Options
The Table Options button is available in both the Cube Designer - Input and the

Cube Designer - Drill-Through dialog boxes. It opens the Table Options dialog box. It

Cube Building and Modifying Examples � Define Dimensions, Levels and Hierarchies 135

enables you to specify data set options that are used to open the data set. For example,
you could enter a WHERE clause or subsetting information that is then applied to the
selected table when it is opened. The options are stored as part of the cube and then
reapplied when the data is accessed at run time. You can also specify data set options
in the Dimension Designer – General dialog box (for use with star schemas) and the
Stored Aggregates dialog box (for use with summarized tables). For more information,
see “Data Set Options” in SAS Language Reference: Concepts.

Define Dimensions, Levels and Hierarchies
Now that your basic metadata server and cube information has been entered, you

can define the different dimensions and their respective levels and hierarchies. For this
example, the following dimensions are created:

� Products
� Dates
� Geography

On the Cube Designer - Dimensions page, select Add.

This opens the Dimension Designer – General page, as seen in the following display.

136 Define Dimensions, Levels and Hierarchies � Chapter 8

Enter information in the following fields:
� Name
� Caption

� Description
� Type (Standard, GEO, or TIME)
� Sort order.

Select Next. This opens the Dimension Designer - Level page. Next, select Add to
open the Add Levels dialog box, as seen in the following display.

Select the levels you want to add to the dimension. Select OK to return to the
Dimension Designer - Level page, where the selected levels are listed. You can now

Cube Building and Modifying Examples � Define Dimensions, Levels and Hierarchies 137

define properties such as format, time type, and sort order for the levels that you have
selected. See the following display.

Next, define hierarchies for the levels on the Dimension Designer - Hierarchy page.
You can select Add to open the Define a Hierarchy page and individually select the
levels for the hierarchy.

Or you can select Finish to accept the order of the levels that are defined on the
previous Dimension Designer - Level page. If you select this option, the hierarchy is
assigned the same name as the dimension. See the following display.

138 Define Dimensions, Levels and Hierarchies � Chapter 8

Repeat this process for each dimension. For this example, the following dimensions
are created:

� Geography: (levels: Country, Division)
� Products: (levels: Product, Product Type)
� Dates: (Year, Quarter, Month)

After you create each dimension it is listed in the Dimensions panel of the Cube
Designer - Dimensions page. See the following display:

Cube Building and Modifying Examples � Define Measures 139

Define Measures
For this example, stored measures and derived measures are created. Stored

measures are base measures that are loaded from the fully summarized table. When
you are creating a cube from a fully summarized table, the table must have a
cooresponding single column for each stored measure that you want to include in the
cube. The base statistics are SUM, N, MIN, MAX, NMISS, and USS.

Derived measures are measures that are built from the stored measures that you
have selected for the cube. Derived measures are assigned to an analysis group when
they are created. An analysis group is used to identify the numeric column in the
original unsummarized data source that was used as the analysis variable for the
stored measure. It can also be a name that identifies a logical association between
several stored measures.

Note: For further information on measure statistics, see “Statistics Available for
Measures” on page 48. �

Stored Measures
You can now select the stored (base) measures for the cube in the Cube Designer -

Select Stored Measures page. From the list of available measures, select the stored
measures that you want to include in the cube. For this example actn, actsum, predn,
and predsum are included.

On the Cube Designer - Assign Stored Measures page, you can specify the Statistic
and Analysis Group options for the stored measures. For the Statistic, select the
appropriate statistic from the drop-down menu. For the Analysis Group, enter a name
that identifies a logical association between the stored measures. The Analysis Group
name can identify the numeric column in the original unsummarized data source that
was used as the analysis variable for the stored measure. If the table contained two
measures from the same analysis column, both of the base measures should have the
same analysis group specified.

140 Define Measures � Chapter 8

Derived Measures

On the Cube Designer – Select Derived Measures page, specify the measures that are
derived from the stored measures. Each derived measure is based on a set of required
stored measures. If the stored measures for an analysis group do not include all those
required for a specific derived measure, then that measure cannot be included in the
cube. On the Define a derived measure panel, select the Analysis group, Derived
statistic, and Measure name for the derived measure that you are creating.

When you are finished, select Apply. The derived measure is listed in the Derived
Measures list.

Cube Building and Modifying Examples � Define Measures 141

For this example, two derived measures are created: ActualDerived and Predicted
Derived.

Edit Measure Details
On the Cube Designer – Edit Measure Details page, you can select a default measure

and modify measure details for the stored and derived measures.

142 Define Member Properties � Chapter 8

Define Member Properties
You can now define the member properties for any needed cube members. A member

property is an attribute of a dimension member. A member property is also an optional
cube feature that is created in a dimension to provide users with additional information
about members. Define member properties in the Cube Designer - Member Property
dialog box.

Define Aggregation Tables
On the Cube Designer – Aggregation Tables page, you associate aggregation tables

with the summarized data source that you specified as the input data source for the
cube. When you open the Cube Designer – Aggregation Tables page, the input data
table that you selected to build your cube with is listed in the Selected tables list.
You can then select a table to use as the aggregation table from the Available tables
list and move it to the Selected tables list. For this example, the table PGEOTIME
is used as the aggregation table.

Note: If the cube is loaded from a fully summarized data source, then the measure
names within the selected aggregation tables must match the measure names in the
input data source. If the cube is loaded from a detail table or a star schema, then all of
the selected aggregation tables must use the same measure names. For all cubes, the
levels must be the same as those in the input data source. �

Cube Building and Modifying Examples � Define Stored Aggregations 143

Define Stored Aggregations
You can now define stored aggregations for the cube. Stored aggregations are

aggregations that are stored in the aggregation tables. On the Cube Designer - Stored
Aggregations page, select Add to create a stored aggregation.

In the Specify an aggregation dialog box, enter the aggregation name,
aggregation table, and any necessary table options for the aggregation. Then select the
levels that are used in the aggregation. For this example, the stored aggregations
named Aggregation1 and Aggregation2 are created.

144 Define Stored Aggregations � Chapter 8

The aggregations are listed on the Cube Designer – Stored Aggregations page.

Cube Building and Modifying Examples � Build the Cube 145

Define Aggregations
If needed, you can now define aggregations that are stored with the cube. Define the

aggregations for the cube from the Cube Designer - Aggregations page.

Build the Cube
After you have finished entering information for the summarized cube, you can build

the cube. On the Finish page, you can review the details of the cube that you just
defined. You also choose whether to only save the cube’s definition to the active
metadata or to save the cube’s definition and build the cube. Select the option Save
the metadata and create the cube. You can also choose to export the PROC OLAP
code to a text file. When you are done, select Finish. The cube is processed and the
Cube Designer wizard will close.

146 PROC OLAP CODE for the Summary Table Example � Chapter 8

PROC OLAP CODE for the Summary Table Example
OPTIONS VALIDVARNAME=ANY;
LIBNAME olapsio BASE ‘‘\\olap\tmp\libolap" ;

PROC OLAP
CUBE = "/Shared Data/OLAPSchemas/SumCube"
PATH = ’C:\v9cubes’
DESCRIPTION = ’Fully Summarized Cube’
NONUPDATEABLE
MAXTHREADS = 5000

;

METASVR
HOST = "J12345.na.sas.com"
PORT = 8561
OLAP_SCHEMA = "SASApp - OLAP Schema";

DIMENSION Geography
CAPTION = ’Geography’
SORT_ORDER = ASCENDING
HIERARCHIES = (

Geography
) /* HIERARCHIES */;

HIERARCHY Geography
ALL_MEMBER = ’All Geography’
CAPTION = ’Geography’
LEVELS = (

COUNTRY DIVISION
) /* LEVELS */

Cube Building and Modifying Examples � PROC OLAP CODE for the Summary Table Example 147

DEFAULT;

LEVEL COUNTRY
FORMAT = $CHAR10.
CAPTION = ’Country’
SORT_ORDER = ASCENDING;

LEVEL DIVISION
FORMAT = $CHAR10.
CAPTION = ’Division’
SORT_ORDER = ASCENDING;

DIMENSION Products
CAPTION = ’Products’
SORT_ORDER = ASCENDING
HIERARCHIES = (

Products
) /* HIERARCHIES */;

HIERARCHY Products
ALL_MEMBER = ’All Products’
CAPTION = ’Products’
LEVELS = (

PRODUCT PRODTYPE
) /* LEVELS */

DEFAULT;

LEVEL PRODUCT
FORMAT = $CHAR10.
CAPTION = ’Product’
SORT_ORDER = ASCENDING;

LEVEL PRODTYPE
FORMAT = $CHAR10.
CAPTION = ’Product type’
SORT_ORDER = ASCENDING;

DIMENSION Dates
CAPTION = ’Dates’
TYPE = TIME
SORT_ORDER = ASCENDING
HIERARCHIES = (

Dates
) /* HIERARCHIES */;

HIERARCHY Dates
ALL_MEMBER = ’All Dates’
CAPTION = ’Dates’
LEVELS = (

YEAR QUARTER MONTH
) /* LEVELS */

DEFAULT;

LEVEL YEAR

148 PROC OLAP CODE for the Summary Table Example � Chapter 8

FORMAT = 4.
TYPE = YEAR
CAPTION = ’Year’
SORT_ORDER = ASCENDING;

LEVEL QUARTER
FORMAT = 8.
TYPE = QUARTERS
CAPTION = ’Quarter’
SORT_ORDER = ASCENDING;

LEVEL MONTH
FORMAT = MONNAME3.
TYPE = MONTHS
CAPTION = ’Month’
SORT_ORDER = ASCENDING;

MEASURE predsumSUM
STAT = SUM
ANALYSIS = PredictGroup
AGGR_COLUMN = predsum
CAPTION = ’Sum of predsum’
FORMAT = Best12.
DEFAULT;

MEASURE prednN
STAT = N
ANALYSIS = PredictGroup
AGGR_COLUMN = predn
CAPTION = ’Number of values for predn’
FORMAT = 12.;

MEASURE actsumSUM
STAT = SUM
ANALYSIS = ActualGroup
AGGR_COLUMN = actsum
CAPTION = ’Sum of actsum’
FORMAT = Best12.;

MEASURE actnN
STAT = N
ANALYSIS = ActualGroup
AGGR_COLUMN = actn
CAPTION = ’Number of values for actn’
FORMAT = 12.;

MEASURE PredictedDerived
STAT = AVG
ANALYSIS = PredictGroup
CAPTION = ’Average PredictGroup’
FORMAT = Best12.;

MEASURE ActualDerived
STAT = AVG

Cube Building and Modifying Examples � PROC OLAP Statements and Options For a Summary Table 149

ANALYSIS = ActualGroup
CAPTION = ’Average ActualGroup’
FORMAT = Best12.;

AGGREGATION /* Default */
/* levels */
COUNTRY DIVISION MONTH PRODTYPE
PRODUCT QUARTER YEAR
/ /* options */
TABLE = olapsio.PRDNWYPR
NAME = ’Default’;

AGGREGATION /* Aggregation1 */
/* levels */
COUNTRY YEAR
/ /* options */
TABLE = olapsio.PGEOTIME
NAME = ’Aggregation1’;

AGGREGATION /* Aggregation2 */
/* levels */
COUNTRY DIVISION PRODTYPE
PRODUCT QUARTER YEAR
/ /* options */
TABLE = olapsio.PRDNWYPR
NAME = ’Aggregation2’;

RUN;

PROC OLAP Statements and Options For a Summary Table
The following table lists the PROC OLAP statements and options that you use to

load cubes from a fully summarized data source (a crossing of all dimensions also
known as an NWAY). Unlike a detail table or star schema, a fully summarized cube
does not use either the DATA= or FACT= option to specify the data that is used to build
the cube. Instead the TABLE= option is used on the AGGREGATION statement.

Table 8.3 Statements and Options Used to Load Cubes from Fully Summarized
Data

Statements Options Required or Optional?

PROC OLAP CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

WORKPATH= Optional

DT_TABLE Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

150 PROC OLAP Statements and Options For a Summary Table � Chapter 8

Statements Options Required or Optional?

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

LEVEL The LEVEL statement is
optional unless you want to
specify time periods for each
level in a TIME dimension. If
you specify a time period for
one level, then you must
specify a time period for all
levels. To specify a time period,
you use the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

PROPERTY prop-name Required

LEVEL= Required

Cube Building and Modifying Examples � Cardinality Tuning 151

Statements Options Required or Optional?

AGGREGATION Names of the contiguous levels
to be used to create the
aggregation

Required (additional
AGGREGATION statements
without the TABLE= option
can be used to create
aggregations other than the
automatically defined NWAY).

TABLE= Required

Tuning Aggregations For a Cube
After you have built a cube, you can modify the aggregations for the cube with the

Aggregation Tuning function in SAS OLAP Cube Studio. The Aggregation Tuning
function enables you to either automatically generate aggregation recommendations or
to manually define cube aggregations. In the SAS OLAP Cube Studio tree view, select a
cube and select Aggregation Tuning from the Actions menu. In the Aggregations
Tuning dialog box, you can select from three different methods of aggregation tuning:

1 “Cardinality Tuning” on page 151
2 “Manual Tuning” on page 156
3 “Arm Log Tuning” on page 158

Cardinality Tuning
The Cardinality tab enables you to add aggregations that are recommended based

on the relative cardinality (number of members) of the cube levels. This method of
adding aggregations is used when a cube is first created and before an ARM log can be
generated. On the Cardinality tab, select Analyze.

The Analysis Recommendations dialog box opens. A list of recommended
aggregations is displayed. This list can contain up to 100 aggregation recommendations

152 Cardinality Tuning � Chapter 8

for the cube. Select the aggregation recommendations that you want to add to the
Aggregations table. Click Select All to choose all of the aggregation
recommendations. Select OK to execute the analysis. The selected aggregation
recommendations are added to the list of aggregations in the Aggregations table.

In the Aggregation Tuning dialog box, the Aggregations table displays the newly
recommended aggregations. In the Status column, the new aggregation symbol is
listed for each new aggregation. The Method column lists the recommended
aggregations as Cardinality type aggregations. You can scroll through the list of
aggregations to analyze which aggregations to keep, edit properties for aggregations, or
remove aggregations.

You can also view the levels that compose the aggregation recommendations. Select
the Preview levels checkbox on the Aggregation Tuning dialog box. The Preview
levels panel opens, displaying the levels for the currently selected aggregation
recommendation.

Cube Building and Modifying Examples � Cardinality Tuning 153

Note: The Preview levels panel is read-only. �

In the Aggregation Tuning dialog box, you can select to edit or drop aggregations that
loaded with the cube. When you select an existing aggregation, the Drop button
becomes active.

If you select Drop, the drop icon appears in the Status column for that aggregation.
In addition, the Clear Drop button becomes active. This button enables you to clear the
drop status for an aggregation. Those aggregations that are marked with the drop icon
are dropped from the cube the next time you select the Build Aggregations button.

154 Cardinality Tuning � Chapter 8

You can also review those aggregations that were recommended by cardinality
analysis, and if needed delete them. When you select a newly recommended
aggregation in the Aggregations table, the Delete button becomes active.

If you select Delete, a message dialog box opens. Select Yes to delete the selected
aggregations. Select No to cancel the Delete function.

Cube Building and Modifying Examples � Cardinality Tuning 155

You can also modify the performance options for the cube aggregations. In the
Aggregation Tuning dialog box, select Options. This opens the Performance Options
dialog box. On the Default tab, you can set default performance option settings for all
generated aggregations for the cube.

On the Aggregation tab you can select an individual aggregation and change
performance option settings for that specific aggregation. Select OK when you are
finished changing the performance options. The Performance Options dialog box closes.

If needed, you can export the SAS code that is used to build the aggregations that
are listed in the Aggregations table. Select Export Code on the Aggregation Tuning
dialog box. The Export Code dialog box opens. Enter the path of the text file that you
are exporting the code to. Click OK to to create the file. The code is stored in a text file
that you can further review, edit, and use to recreate the cube later.

156 Manual Tuning � Chapter 8

When you have finished updating and modifying the aggregations listed in the
Aggregations table, you can select Build Aggregations. The Aggregation Tuning
function builds the recommended aggregations, and drops any existing aggregations
that are marked with the drop icon. A build success confirmation message opens and
the Aggregation Tuning dialog box closes. Click OK on the message box.

Manual Tuning
The Manual tab enables you to select the exact hierarchies and levels that you want

use to generate aggregation recommendations from. The manual tuning option is used
when you have dimension levels that are frequently used with other dimension levels.
It is also used when a level has unique member counts (NUNIQUE) set.

Select the Manual tab on the Aggregation Tuning dialog box. The hierarchies for the
cube are listed individually as columns. Levels for the hierarchies are numerically
listed in drop-down lists on the columns. When you select an individual level from a
hierarchy, you are selecting that level and its parent levels.

From the drop-down lists, select the levels that you want to use to create the
aggregation recommendation. Both the Add to List and the Reset All buttons are
enabled whenever one or more of the drop-down lists are changed to a selection other
than the default selection of (None).

Cube Building and Modifying Examples � Manual Tuning 157

For this example, select the levels for Campaign_Type, Campaign _Start_Year,
Product_Group, and Division. Select Add to List.

The aggregation recommendation that you created is listed in the Aggregations
table. On the row for that aggregation, the levels that were manually selected for the
aggregation are displayed and the new aggregation icon is listed in the Status column.
When you are finished adding aggregation recommendations, select Build
Aggregation to build the aggregations for the cube.

158 Arm Log Tuning � Chapter 8

Arm Log Tuning
The ARM Log tab enables you to add aggregations that are based on the query

analysis records that are stored in an Application Response Measuring (ARM) log. ARM
analysis is recommended for optimal cube tuning. When the ARM API is used, a log file
can be created that can be gleaned for query performance details. The ARM log is used
to analyze query patterns and determine which aggregations to generate that will most
likely have a positive impact on query performance. In order to create an ARM log,
ARM logging must be turned on and queries must be performed against the cube. This
function is only as effective as the amount of ARM data that is provided and it also
depends on whether the ARM log data truly reflects the future cube query patterns. For
more information on creating the ARM log see “Using ARM to Monitor SAS OLAP
Server Performance” in the SAS 9.2 Intelligence Platform: System Administration
Guide.

Select the ARM Log tab and select the option Create aggregation
recommendations and update existing performance values based on the ARM
log. In the Enter an ARM log text field, enter the file path for the ARM log that you
will use to generate aggregation recommendations. Use the Browse button to search for
an ARM log if needed. After you have selected an ARM log file, select Analyze.

After you have selected Analyze, the Analysis Recommendations dialog box opens. A
list of recommended aggregations is displayed. Select the aggregation recommendations
that you want to add to the Aggregations table. Click Select All to choose all of the
aggregation recommendations. Click OK to execute the analysis. The selected
aggregation recommendations are added to the list of aggregations in the
Aggregations table.

Cube Building and Modifying Examples � Arm Log Tuning 159

In the Aggregation Tuning dialog box, the aggregation recommendations are listed.
The Method column displays the ARM log status for these aggregation
recommendations. Select Build Aggregations to build the aggregations for the cube.

Alternately, you can also choose to update only the statistics for the existing
aggregations that have entries in the ARM log. The Update performance values
based on the ARM log option is used when you want to examine the information in
the ARM log and verify that the existing aggregations are being used. This can help
determine which aggregations to drop. Select Update to execute the update.

Note: The label of the Analyze button changes to Update when you select this radio
button. By default, the button is labeled Analyze. �

160 Adding Data to a Cube with Cube Update � Chapter 8

The existing aggregations that are listed in the Aggregations table have their
Count, Total Time, and Average Time column values updated. The Method column
also lists Arm Log as the update method.

Adding Data to a Cube with Cube Update
After you have built a cube with either a detail table or a star schema, you can

update the cube with the Incremental Update function in SAS OLAP Cube Studio. You
can choose to update the original cube or generate an updated generation (copy) of the
cube. You can then choose to coalesce (consolidate) the aggregation racks (SPDE tables)
that have been created during the cube update into a single SPDE table.

Note: For more information on updating SAS OLAP cubes, see Chapter 7,
“Updating SAS OLAP Cubes,” on page 79 . �

Update a Cube In-Place
The Update In-Place function enables you to update the original cube. In SAS OLAP

Cube Studio select a cube from the tree view that you want to update. You can then
right-click on the cube and select Incremental Update � Update In-Place. You can
also select the function from the Actions menu.

On the Update General page of the Incremental Update wizard, select the source
table that you will use to update the cube with. If you are updating a star schema cube,
the check box Add data during update is available. If selected, it activates the New
source table box. Select a new source table. You can also click on Select and choose
a table that is not in the drop-down list. If a drill-through table is included in the cube
update, click Select beside the New drill-through table text field and choose a

Cube Building and Modifying Examples � Update a Cube In-Place 161

drill-through table. If the cube was originally built without a drill-through table, the
option (none) is listed in the Current drill-through table text field.

If you are updating a star schema cube, you can also specify how missing dimension
keys are handled if encountered. Select one of the three radio button options under
When searching through new members in a table and a missing key is
encountered.

Note: Because you are updating the original cube with the Update In-Place
function, the fields for Cube Name, OLAP Schema, and Location are inactive. �

You can also select Advanced and specify aggregation performance options, any
needed SAS code, and a search path for user-written formats to include with the cube
update. Select Next when you are finished.

162 Update a Cube In-Place � Chapter 8

On the Dimension Selection page, you can click a dimension in the Select a
dimension list. You can then select one of the radio buttons under Select an update
process method. When the cube was originally built, you could also specify whether a
dimension could be updated at a later time or not. Any dimensions that cannot be
updated are listed in the Blocked from new member updates list and are not
available for selection.

If you are updating a star schema cube, you can select a dimension table that can be
used to update an individual dimension. Each dimension has a default table assigned
from the original cube build. Using the left and right arrow keys, you can move tables
between the Available tables and the Selected table lists. You can also view
statistics about the table you are selecting with the Properties, View Data, and
Table Options buttons. If the table you want to use is not included in the Available
Tables list, you can register the table with the Register Table button. Select Next
when you are finished.

Cube Building and Modifying Examples � Update a Cube In-Place 163

On the Summary of Selections page, review the generated PROC OLAP code that
is used to update the cube. You can save the PROC OLAP code to a file by selecting
Export Code. Select the Finish to run the update of the cube.

164 Generating a New Cube � Chapter 8

Generating a New Cube
The Generate New Cube function enables you to create an updated copy of the

original cube without modifying the original cube. It is useful for cubes that are in a
production environment, as it enables the system administrator to check the cube
generation for accuracy before making it avaliable for user queries. In SAS OLAP Cube
Studio, select a cube from the tree view that you want to update. You can then
right-click the cube and select Incremental Update � Generate New Cube. You can
also select the function from the Actions menu. This opens the Update General page of
the Incremental Update wizard.

Because you are creating a generation of the original cube, you must enter a cube
name that is different from the original cube in the Cube Name text box. You can also
change the OLAP schema and the folder location for the new cube.

You can then select the source table that you will use to update the cube with. If you
are updating a star schema cube, the check box Add data during update is available.
If selected, it activates the New source table box. Select a new source table. You can
also click Select and choose a table that is not in the drop-down list.

If a drill-through table is included in the cube update, click Select beside the New
drill-through table text field and choose a drill-through table. If the cube was
originally built without a drill-through table, the option (none) is listed in the Current
drill-through table text field.

If you are updating a star schema cube, you can also specify how missing dimension
keys are handled if encountered. Select one of the three radio button options under
When searching through new members in a table and a missing key is
encountered.

Cube Building and Modifying Examples � Generating a New Cube 165

You can also select Advanced and specify aggregation performance options, any
needed SAS code, and a search path for user-written formats to include with the cube
update. Select Next when you are finished.

On the Dimension Selection page, you can click a dimension in the Select a
dimension list. You can then select one of the radio button options under Select an
update process method. When the cube was originally built, you could also specify
whether a dimension could be updated at a later time or not. Any dimensions that
cannot be updated are listed in the Blocked from new member updates list and are
not available for selection.

166 Generating a New Cube � Chapter 8

If you are updating a star schema cube, you can select a dimension table that can be
used to update an individual dimension. Each dimension has a default table assigned
from the original cube build. Using the left and right arrow keys, you can move tables
between the Available tables and the Selected table lists. You can also view
statistics about the table you are selecting with the Properties, View Data, and
Table Options buttons. If the table you want to use is not included in the Available
Tables list, you can register the table with the Register Table button. Select Next
when you are finished.

On the Summary of Selections page, review the generated PROC OLAP code that is
used to update the cube. You can save the PROC OLAP code to a file by selecting
Export Code. Select Finish to run the update of the cube.

Cube Building and Modifying Examples � Coalesce Incremental Data for a Cube 167

Coalesce Incremental Data for a Cube
After a cube has been updated, you can choose to combine the aggregation racks

(SPDE tables) that have been created during the cube update into a single SPDE table.
In SAS OLAP Cube Studio, select a cube from the tree view. You can then right-click
the cube and select Incremental Update � Coalesce Inremental Data. You can also
select the function from the Actions menu. This opens the Aggregations page of the
Coalesce Incremental Data wizard.

On the Aggregations page, you can view the aggregations that will be coalesced from
the Selected aggregations list. You can also observe the levels of the selected
aggregations in the Select aggregations to preview levels list. The preview list
is display only. Select Next.

168 Coalesce Incremental Data for a Cube � Chapter 8

On the Performance Options page, you can specify query performance settings for the
cube aggregations. The Default tab enables you to change performance settings for all
aggregations of the cube. Enter any needed setting values. Select the Next when you
are finished.

Cube Building and Modifying Examples � Coalesce Incremental Data for a Cube 169

On the Summary of Selections page, review the generated PROC OLAP code that is
used to coalesce the aggregations. You can save the PROC OLAP code to a file by
selecting Export Code. Select Finish to run the update of the cube.

A progress dialog box displays after you select Finish.

The SAS log that is generated contains status information for the coalesce process.

170 Adding Calculated Members To A Cube � Chapter 8

Adding Calculated Members To A Cube

The Calculated Members function enables you to add new members for the Measures
dimension. A calculated member is a definition (for a dimension member) that you
create and store with the cube. The calculated member value is generated at a later
point, during query time. You can also define a calculated member as a measure. You
can access the Calculated Members function from the SAS OLAP Cube Studio Actions
menu or from the context menu for a cube.

The following display shows the Calculations for Cube page of the Calculated
Members function. The Defined calculated members list displays all calculated
members that are defined in the metadata for the selected cube. On the Calculations
for Cube page, you can add new calculated members or modify existing members for the
selected cube. Select Add to launch the New Member wizard and define a new
calculated member.

Creating a Simple Calculation

On the Calculation Type page of the New Member wizard, select the type of
calculation that you want to create: a simple calculation, time analysis calculation, or a
custom calculation. In this example, a simple calculation is created.

Cube Building and Modifying Examples � Creating a Simple Calculation 171

On the Simple Calculations page, select the mathematical calculation that you want
to use in the calculated member from the list of radio buttons. Next, select the
measures that you want to use with the calculation. In this example, the predicted and
actual measures for the cube are used in the formula. It is the difference between these
measures that the formula will calculate. Select Next when you are finished.

On the General page of the New Member wizard, enter the measure Name. In this
example, the calculated measure is named PredAnDiff. Select the format and solve
order for the measure. When you are finished, select Next.

172 Creating a Simple Calculation � Chapter 8

On the Finish page of the New Member wizard, a display panel shows the metadata
that is generated for the new calculated member. Review the metadata. When you are
finished, select Finish to complete the New Member Wizard.

The new calculated member PredAnDiff is now listed in the Defined calclulated
members list.

Cube Building and Modifying Examples � Creating a Simple Calculation 173

If needed, you can now make changes to the PredAnDiff calculated member. On the
Calculations for Cube page, select the calculated member and click Next. This opens
the Edit a Calculated Member page. You can then modify the measure name and
formula. Select Verify to check the MDX code for errors and validate the code against
the OLAP server. If you select Build Formula, the Build Formula dialog box opens.

174 Creating a Simple Calculation � Chapter 8

In the Build Formula dialog box, you can modify the MDX code with the help of an
expression builder. You can also add MDX functions and Data Source elements to the
expression. Select OK when you are finished editing the calculated member.

Cube Building and Modifying Examples � Creating a Time Analysis Calculation 175

Creating a Time Analysis Calculation
You can also create a Time analysis calculated member with the New Member

wizard. On the Calculations for Cube dialog box, select Add to launch the New Member
wizard and define a new calculated member.

176 Creating a Time Analysis Calculation � Chapter 8

On the Calculation Type page of the New Member wizard, select Time analysis
calculation. When you are finished, select Next.

Cube Building and Modifying Examples � Creating a Custom Calculation 177

On the Time Calculations page, select a time calculation. Next, select an existing
measure from the Formula panel. The Formula panel will change depending on the
time calculation radio button that you select. The Existing measure drop-down list is
populated with all measures, including calculated measures. The Time period
drop-down list is populated with members from the Time dimension. When you are
finished, select Next.

Finish the New Member wizard by completing the General and Finish pages.

Creating a Custom Calculation
You can also create a custom calculated member with the New Member wizard. On

the Calculations for Cube dialog box, select Add to launch the New Member wizard and
define a new calculated member.

178 Creating a Custom Calculation � Chapter 8

On the Calculation Type page of the New Member wizard, select Custom
calculation. When you are finished, select Next.

Cube Building and Modifying Examples � Creating a Custom Calculation 179

On the Custom Calculations page, you can select the parent dimension and parent
member for the measure. You can also enter the MDX formula for the measure. Enter
the name for the calculated member and select the format and solve order.

If you select Build Formula, the Build Formula dialog box opens. In this dialog box
you can modify the MDX code with the help of an expression builder. You can also add
MDX functions and data source elements to the expression.

180 Setting Member Authorizations On A Dimension � Chapter 8

On the Custom Calculation page, select Verify to check any MDX code that you may
have added for errors. This validates the code against the OLAP server. Select OK when
you are finished editing the calculated member. Finish the New Member wizard by
completing the General and Finish panels.

Setting Member Authorizations On A Dimension
SAS security enables you to set authorization permissions on a cube and the various

components of a cube. You can apply member-specific filters to cube data by using MDX
expression filters known as permission conditions. Permission conditions limit access to
a cube dimension so that only designated portions of the data are visible to a user or
group of users. With SAS OLAP data, permission conditions impose only explicit grants
of the Read permission and can be specified only on dimension objects. You can add
member authorizations to a cube dimension from either SAS OLAP Cube Studio or SAS
Management Console. In this example, a retail company has a SAS OLAP cube that
contains sales data. They need to apply Read restrictions to members of a dimension
that contains data for the method of payment for merchandise.

To select a dimension from within SAS OLAP Cube Studio, select a cube in the tree
view and drill down to a dimension. To select a dimension in SAS Management Console:

1 Select the Authorization Manager � By Type � Dimension and drill-down to a
dimension.

2 Right-click the dimension and select Properties.
3 In the dimension’s Properties dialog box, select the Authorization tab, as shown

in the following display. Select (or add) the user or group whose Read access you
want to limit. In this example, the PUBLIC group is restricted.

4 In the Effective Permissions list, add an explicit grant of the Read permission
for that user or group. If the selected user or group does not already have a
permission condition defined, the Add Authorization button is now enabled.

5 Click Add Authorization to open the Add Authorization dialog box.

Cube Building and Modifying Examples � Setting Member Authorizations On A Dimension 181

On the Add Authorization dialog box, you can create an MDX expression by
specifying members and permissions for the permission condition. You can choose to
create a basic expression or an advanced expression for a member. By default, the
option Create a basic MDX expression by selecting one or more members and
specifying permissions is selected when you open the Add Authorization dialog box.
In this example, the Terms dimension contains data for different methods of payment.
The members AMEX and MC-VISA are restricted from view for the PUBLIC group.
Drill down on the dimension in the list and select the AMEX member.

After you have selected the basic expression option and a member, the MDX code for
the permission condition will appear in the Member text field. You can now select the
option Specify access to this member. This enables you to apply a permission
option to the currently selected member or a member and its descendants. You must
select this option to activate one of the grant or deny permissions options. Click the
Deny read permissions to this member and its descendants option. The MDX
code for the permission condition is displayed in the Expression text box.

182 Setting Member Authorizations On A Dimension � Chapter 8

Repeat the process for the MC-VISA member. The MDX code for MC_VISA is
appended to the MDX code for AMEX member in the Expression text box.

You can also choose to manually create an MDX expression filter. In the Add
Authorization dialog box, select the option Create an advanced expression using
the expression builder. The Build Formula button is now active. Click Build
Formula. The Build Formula dialog box opens.

Cube Building and Modifying Examples � Setting Member Authorizations On A Dimension 183

Note: If you have already specified a basic permission condition that denies access
to a member, and you select the Create an advanced expression using the
expression builder option, a message appears that asks: “Do you want your current
expression copied to the expression builder?” See the following display. Select Yes or
No. You can then click Build Formula.

In the Build Formula dialog box, you can create an MDX filter and observe the MDX
expression as you build it. Use the logical operators to specify multiple clauses in your
MDX expression in the Expression Text text box. Use the Functions tab to add MDX
functions to your expression. Use the Data Sources tab to browse through the
dimensions and hierarchies in your cube and select the members that require access
control. You can use the Add to expression button to add your selections to the
Expression Text text box. You can also check the accuracy of the expression you are
building by selecting the Validate Expression button. When you are finished, select
OK. You will return to the Add Authorization dialog box. Select OK again to save the
permission condition and return to the Properties dialog box. �

184 Setting Member Authorizations On A Dimension � Chapter 8

After you have defined permission conditions for the dimension, the label for the Add
Authorization button changes to Edit Authorization.

Cube Building and Modifying Examples � Setting Member Authorizations On A Dimension 185

If you later select Edit Authorization to edit a permission condition, the Build
Formula dialog box will open. You can then make any needed changes to the MDX code.
Select OK to save the permission condition and return to the Properties dialog box.

186 Setting Member Authorizations On A Dimension � Chapter 8

After you have applied the permission conditions, you can validate the Read
restrictions with the View Cube function in SAS OLAP Cube Studio. In SAS OLAP
Cube Studio, select the SALES cube and select View Cube from the Actions menu.
You can see in the following display that the members AMEX and MC-VISA are not
available for view on the TERMS dimension.

Cube Building and Modifying Examples � Setting Identity Driven Security 187

You can also set permission conditions for a dimension by using PROC OLAP and
MDX expressions. See the SECURITY_SUBSET option for the PROC OLAP statement
and the SAS OLAP Security Totals and Permission Conditions topic in the SAS OLAP
Server: MDX Guide.

See the topic “Setting Permission Conditions on Cube Dimensions” on page 73 for
further information.

Setting Identity Driven Security

It is sometimes necessary to subsitute identity values in a permission condition to
further refine member-level security. Identity-specific values are dynamically derived
according to the user ID with which a client is authenticated. Those values are then
used to filter the target data. The identity-specific values are derived from
identity-driven properties that are stored in the metadata repository for each user and
group. You can set an identity driven authorization using the Member Authorization
expression builder.

1 Select the Authorization Manager � By Type � Dimension and drill down to a
dimension.

2 Right-click the dimension and select Properties.

3 In the dimension’s Properties dialog box, select the Authorization tab, as shown
in the following display. Select (or add) the user or group whose Read access you
want to limit. In this example, the PUBLIC group is restricted.

4 In the Effective Permissions list, add an explicit grant of the Read permission
for that user or group. If the selected user or group does not already have a
permission condition defined, the Add Authorization button is now enabled.

5 Click Add Authorization to open the Add Authorization dialog box.

188 Setting Identity Driven Security � Chapter 8

In the Add Authorization dialog box, select the option Create an advanced MDX
expression using the expression builder option. You can then click Build
Formula. This opens the Build Formula dialog box.

Cube Building and Modifying Examples � Setting Identity Driven Security 189

In the Build Formula dialog box, you can create an MDX filter and observe the MDX
expression as you build it. Use the logical operators to specify multiple clauses in your
MDX expression in the Expression Text list. Use the Functions tab to add MDX
functions to your expression. Use the Insert button to add your selections to the
Expression Text list.

Use the Data Sources tab to browse through the dimensions and hierarchies in your
cube and select the members that require access control. Use the Add to Expression
button to add your selections to the Expression Text text field. You can also check the
accuracy of the expression you are building by selecting the Validate Expression
button.

190 Setting Identity Driven Security � Chapter 8

To add identity values to the expression, click the Identity Values folder on the
Data Sources tab. Select an identity value from the list. Use the Add to Expression
button to add your selections to the Expression Text text field.

Cube Building and Modifying Examples � Setting Identity Driven Security 191

Here is a list of possible identity values:

SAS.ExternalIdentity
This property translates to optional, site-specific values such as Employee ID.
Those values are not automatically stored in the metadata repository and need to
be loaded and maintained.

SAS.IdentityGroupName
This property resolves to the name of the requesting group identity (for example,
Portal Admins Group).

SAS.PersonName
This property resolves to the name of the requesting user identity (for example,
SAS Demo User).

SAS.IdentityName
This property returns the name of either the requesting group identity or the
requesting user identity, depending on whether the user ID is a group login or a
personal login.

SAS.Userid
This property translates to the authenticated user ID, normalized to one of the
uppercase formats USERID or USERID@DOMAIN (for example,
SASDEMO@LXXXXX).

SAS.IdentityGroups
This property resolves to the names of the groups of which a user is a member.

When you are finished, select OK. You will return to the Add Authorizationdialog box.
Select OK again to save the permission condition and return to the Properties dialog box.

See the topics “Cube Security” on page 73 and specifically “Identity-Driven Security”
on page 74 for further information.

192 Viewing a Cube in SAS OLAP Cube Studio � Chapter 8

Viewing a Cube in SAS OLAP Cube Studio
After you have built a cube in SAS OLAP Cube Studio, you can examine the contents

of the cube with the View Cube function. The View Cube function is available from the
Actions menu and from the cube context menu. The View Cube function is available
for use only with physically built cubes. In addition, when you select the View Cube
function, a connection to a SAS OLAP Server must be made.

When the View Cube function is selected, the View Cube dialog panel is loaded and
a multidimensional view of the cube data is displayed in a table. By default, the first
dimension (default hierarchy) of the cube is displayed on the row axis and the default
measure is displayed on the column axis of the table. The dimensions that are not
assigned to a row or column are automatically assigned to the slicer axis. The default
member or All member is used to create the slicer filter. You can then drill into the
dimensions for the cube and see figures for specific levels of the cube. In the View Cube
dialog box you can choose to add level selections to the existing cube view, or you can
select the check box Replace current selection to replace the existing levels in the
display.

Adding Level Data to a Cube View
In this example, the option Replace current selection is not selected. A retailer

is analyzing sales figures for outlets in various countries. In the initial cube view, the
column axis displays the default measure for the Sum of ACTUAL sales. Displayed on
the row axis is the default hierarchy for the geo (geography) dimension.

Cube Building and Modifying Examples � Adding Level Data to a Cube View 193

In the following display, the row axis view is filtered on the products dimension to
the FURNITURE level. Furniture-specific sales numbers are added to the existing row
axis. The column axis is not modified and is still filtered on the Sum of ACTUAL sales.

The following display shows continued filtering on the FURNITURE level down to the
sales figures for sofas only.

194 Adding Level Data to a Cube View � Chapter 8

You can also filter on the column values. In this display, the time dimension is
filtered down to the sales figures for the month of November. In addition, the products
dimension has been filtered on beds for the row axis.

In this display, the measure Sum of PREDICTED sales is added to the column axis.
You can now compare the actual versus the predicted sales totals.

Cube Building and Modifying Examples � Replacing Level Data On A Cube View 195

Replacing Level Data On A Cube View
In this example, the option Replace current selection is checked. A retailer is

analyzing sales figures for outlets in various countries. In the initial cube view, the
column axis displays the default measure for the Sum of ACTUAL sales. Displayed on
the row axis is the default hierarchy for the geo (geography) dimension.

In the following display, the row axis view is filtered on the products dimension to
the FURNITURE level. Because the Replace current selection check box is selected,
the original, default row selections were replaced. The column axis is not modified and
is still filtered on the Sum of ACTUAL sales.

196 Replacing Level Data On A Cube View � Chapter 8

You can also filter on the column values. In this display, the time dimension is filtered
down to the sales figures for the month of November. Because the Replace current
selection check box is selected, the original, default column selections were replaced.

Cube Building and Modifying Examples � Creating a Time Dimension in SAS OLAP Cube Studio 197

Creating a Time Dimension in SAS OLAP Cube Studio
When you create a cube in SAS OLAP Cube Studio, the Cube Designer wizard

enables you to create cube dimensions and add the needed levels and hierarchies to
those dimensions. For time-specific dimensions, you can select from a list of supplied
time hierarchies that will help you build the dimension and auto-populate the levels
and some level properties for the cube.

Open the Cube Designer wizard and select the input data for the cube. Select Add on
the Cube Designer – Dimensions page. This opens the Dimension Designer – General
page. When you create a time dimension, you must select the TIME dimension type. See
the following display.

Enter the remaining information for the dimension and select Next. This opens the
Dimension Designer- Level page. On the Dimension Designer – Level page, the Add
button becomes a drop-down list of options. The Add levels and Add supplied time
hierarchies options are now available for selection.

Note: The Add (levels) function is always available for selection regardless of the
type of dimension you are creating. When you specify a TIME type dimension, the Add
button is converted to a drop-down list where you can select the Add (level) specific
function that you want to use. �

Select the Add supplied time hierarchies option. On the Add Supplied page, the
Input column drop-down list displays the available numeric values that have a date
format applied to the column. This will default to the Date value if it is found in the
data source list of columns. The Format and Informat values change, depending on the
value selected in the Input column drop-down list. Select from the list of supplied time
hierarchies to create the time levels. See the following display.

198 Creating a Time Dimension in SAS OLAP Cube Studio � Chapter 8

Selecting OK closes the dialog box and updates the Dimension Designer – Level table
with new levels based on your selection. One level is created for each selected time
period, even if it appears in multiple supplied hierarchies. You can then define
properties such as the sort order and description for the levels that you have selected.
See the following display.

The hierarchy or hierarchies that are selected on the Add Supplied page are listed in
the Hierarchies panel on the Dimension Designer - Hierarchies page. If there is only
one hierarchy, as with this example, the hierarchy name is changed to match the
dimension name. See the following display.

Cube Building and Modifying Examples � Synchronizing Column Changes 199

Synchronizing Column Changes
The Synchronize Column Changes function enables you to synchronize a cube when

the input table for an existing cube has encountered a column name change. This
function finds the name differences between the cube and its input table and changes
the hierarchy level names to match the input table column names. The Synchronize
Levels function obtains the cube metadata from the metadata repository and compares
the names between the input table and the cube hierarchy. If a discrepancy is found, a
new cube file and definition are created with the new level name. The level name of the
existing cube is then updated to reflect the new column name. The Synchronize Levels
function is available for a cube if the cube physically exists and you have writemetadata
permissions for that cube.

In SAS OLAP Cube Studio, select a cube in the tree view and right-click. On the
context menu, select Maintain � Synchronize Column Changes.

200 Specifying an ESRI GIS Map For a Cube Dimension � Chapter 8

The Synchronize Column Changes message dialog box opens. Select OK to continue
with the synchronize function. Select Cancel to exit the function.

You can also use the SYNCHRONIZE_COLUMNS option if you are synchronizing the
column changes with a PROC OLAP statement. See the SYNCHRONIZE_COLUMNS
option on the “PROC OLAP Statement” on page 245 for more information.

Specifying an ESRI GIS Map For a Cube Dimension

When you create a cube in SAS OLAP Cube Studio, you can include the connection
information for ESRI GIS mapping services. This GIS information can then be read by
the SAS OLAP Server and returned during a cube query. In order to access ESRI

Cube Building and Modifying Examples � Specifying an ESRI GIS Map For a Cube Dimension 201

mapping data for a cube, you must have defined an ESRI map server in SAS
Management Console and have installed the ESRI plug-in to SAS Management Console.

You can add ESRI mapping connections to a cube while you are creating the cube or
at a later point when you are editing the cube. The Cube Designer wizard in SAS
OLAP Cube Studio enables you to define a GIS specific dimension for a cube and specify
the ESRI map server that you connect to. In this example, a dimension named US
Geography is defined.

Note: For more information on defining ESRI GIS mapping connections for SAS
OLAP cubes, see “Specifying GIS Map Information for a Dimension” on page 41. �

On the Dimension Designer – General page of the Cube Designer wizard, you can
enter basic information for the dimension. For the dimension Type, select GEO. This will
identify the dimension as a geography-specific dimension for ESRI mapping. You can
have only one GEO-type dimension per cube. When you select GEO, the Specify Map
button is enabled on the Cube Designer – Dimensions page.

Continue defining the GEO-type dimension. Select the levels for the dimension with
the Add Levels dialog box.

202 Specifying an ESRI GIS Map For a Cube Dimension � Chapter 8

Specify any level properties on the Dimension Designer – Levels page.

Create the hierarchy for the dimension on the Cube Designer – Hierarchy page.
Click Add to select the dimension levels for the hierarchy or select Finish to
automatically generate a hierarchy that contains all selected levels for the dimension.

Cube Building and Modifying Examples � Specifying an ESRI GIS Map For a Cube Dimension 203

After the dimension is created, it will appear in the Dimensions list on the Cube
Designer – Dimensions page. In addition, the GIS Maps button will be activated.

Click GIS Maps to open the GIS Maps dialog box. This dialog box enables you to
assign ESRI spatial map information to levels of the GEO-type dimension. You can now
specify the connection settings for the ESRI map service.

Select from the drop-down lists the GIS Map Server and Map Service that you need
to connect to. You can now map individual levels to the map service. Select a level from
the Levels list. Select the Map Layer and Map Field ID of the map service. Then
select the corresponding Field ID Column for the cube input table.

204 Specifying an ESRI GIS Map For a Cube Dimension � Chapter 8

You can also test the mapping of the Map Service IDs and the Cube Input Table ID.
The following message is displayed. Select OK to continue with the testing.

The Test GIS Mappings dialog box is displayed when the testing is complete. Select
Close to return to the GIS Maps dialog box.

When you are finished, select OK on the GIS Maps dialog box to return to the Cube
Designer – Dimensions page. Finish creating or editing the cube. Afterwards, you can
access the GIS Map functionality through the SAS Web OLAP Viewer and SAS Web
OLAP Viewer for Java.

Cube Building and Modifying Examples � Creating Multiple Hierarchies For a Cube 205

For further information see “Specifying GIS Map Information for a Dimension” on
page 41.

Creating Multiple Hierarchies For a Cube
When you create a cube using the Cube Designer wizard in SAS OLAP Cube Studio,

you can specify more than one hierarchy for a dimension. Hierarchies can be defined on
the Dimension Designer wizard that is part of the Cube Designer wizard.

1 Create a cube in the Cube Designer wizard, selecting the input data for the cube
and creating dimensions for the cube.

2 On the Dimension Designer - Hierarchy page, select Add. See the following display.

This opens the Dimension Designer – Define a Hierarchy page. See the
following display.

206 Creating Multiple Hierarchies For a Cube � Chapter 8

3 On the Dimension Designer – Define a Hierarchy page, a hierarchy name is
created for you by default that is based on the dimension name. Enter a different
hierarchy name if needed. Enter a caption and a description if needed. You can
then select the levels for the hierarchy from the Available list and add them to
the Selected list. Select OK when you are finished. The hierarchy is created and
listed on the Dimension Designer - Hierarchy page. See the following display.

4 Repeat the Dimension Designer – Define a Hierarchy function for each hierarchy
that you need to create. As you create hierarchies they are listed in the
Hierarchies panel of the Dimension Designer – Hierarchy page. You can then
select a default hierarchy from the list of hierarchies that you have created. See
the following display:

Cube Building and Modifying Examples � Creating Multiple Hierarchies For a Cube 207

Note: If you are creating a time-specific dimension, use the Add Supplied dialog box
to create the levels and hierarchies for the dimension. See the example “Creating a
Time Dimension in SAS OLAP Cube Studio” on page 197. �

If you are creating the cube using PROC OLAP, you will include a HIERARCHY
statement (see “HIERARCHY Statement” on page 267) for each hierarchy that you
create for the dimension. See the following example PROC OLAP code:

DIMENSION Customers
CAPTION = ’Customers’
SORT_ORDER = ASCENDING
HIERARCHIES = (

Customer CustomerUnit
) /* HIERARCHIES */;

HIERARCHY Customer
ALL_MEMBER = ’All Customer’
CAPTION = ’Customer’
LEVELS = (

Customer_Age_Group Customer_Gender
Customer_Group Customer_Type
) /* LEVELS */

DEFAULT;

HIERARCHY CustomerUnit
ALL_MEMBER = ’All CustomerUnit’
CAPTION = ’CustomerUnit’
LEVELS = (

Month_Num Tot_Cost Unit_Cost
) /* LEVELS */;

208 Set IGNORE_MISSING_DIMKEYS for a Star Schema � Chapter 8

Set IGNORE_MISSING_DIMKEYS for a Star Schema
If you are building a cube with a star schema data source, you can define how the

cube build process will respond to missing dimension keys. A missing dimension key is
detected when the star schema fact table contains foreign key values that are not
present in one of the corresponding dimension tables. You can set the option in SAS
OLAP Cube Studio when you are creating or editing a star schema cube. On the Cube
Designer – General page, select Advanced.

This opens the Advanced Cube Options dialog box. Select the Star Schema Options
tab. You can now select one of the options for handling a missing dimension key if it is
encountered.

Cube Building and Modifying Examples � Set IGNORE_MISSING_DIMKEYS for a Star Schema 209

Here are the options:

Print error
and stop
processing

Any missing dimension keys stop the build of the cube. This is the
default option.

Print summary
of missing
keys and
continue
processing

The cube build continues and the fact table row with the missing
key is ignored (it is not built into the cube).

Print details
about missing
keys and
continue
processing

The cube build continues and the fact table row with the missing
key is ignored. In addition, the log receives additional detail and the
missing keys are listed for each dimension table.

You can also set the missing key option when you are updating a cube. See the
example “Generating a New Cube” on page 164. If you are defining a cube in PROC
OLAP you can set the option on the “PROC OLAP Statement” on page 245.

210 Implementing Drill-through to Detail Data in a SAS OLAP Cube � Chapter 8

Implementing Drill-through to Detail Data in a SAS OLAP Cube
Many SAS OLAP applications give users the ability to select a cell or a range of cells

and then view the input data that the cell data was summarized from. SAS OLAP
enables you to assign a drill-through table to a cube. You can then access the
underlying cell data.

Note: When you select a data table for drill-through, you may need to consider user
access and security restrictions for that table. For further information see “Security for
Drill-through Tables” on page 76. �

In this example a cube is assigned a drill-through table and then accessed in
Microsoft Excel 2007. In SAS OLAP Cube Studio, open a cube in the Cube Designer
wizard. In the Cube Designer – Drill-Through page, assign a drill-through table. This
is often the same table that is used as the input table for the cube. Complete the Cube
Designer wizard, saving the drill-through table assignment to the cube. See the
following display:

In Microsoft Excel 2007, select Data � From Other sources � From Data
Connection Wizard. This opens the Data Connection Wizard. Select the option Other/
Advanced. Select Next.

Cube Building and Modifying Examples � Implementing Drill-through to Detail Data in a SAS OLAP Cube 211

On the Data Link Properties page, select the Provider tab. In the list of data
provider options, select the option: SAS OLAP Data Provider 9.2. Select Next. This
takes you to the Connection tab.

On the Connection tab, enter the Data Source, User name and Password for the
SAS OLAP server that you are accessing.

212 Implementing Drill-through to Detail Data in a SAS OLAP Cube � Chapter 8

At this point, you can choose to test the connection to the SAS OLAP Server. Select
the Test Connection button. The following message is displayed if the connection is
successful. You can then select OK on the Data Link Properties dialog box.

If the connection to the OLAP Server is successful, you can select the cube you want
to view drill-through data for. On the Select Database and Table page, select the
needed database and a cube. Select Next.

Cube Building and Modifying Examples � Implementing Drill-through to Detail Data in a SAS OLAP Cube 213

On the Save Data Connection File and Finish page, you can enter optional
information about the cube so that you can reference and access the cube in a later
session. You can enter a Description, Friendly Name, and Search Keywords for the
cube. Select Finish to complete the Data Connection Wizard.

The Import Data dialog box opens. Select to view the cube data in a PivotTable
Report or in a PivotChart and a PivotTable Report. Select OK.

214 Implementing Drill-through to Detail Data in a SAS OLAP Cube � Chapter 8

The Data Link Properties open. Enter your password and select OK.

Cube Building and Modifying Examples � Implementing Drill-through to Detail Data in a SAS OLAP Cube 215

The pivot table and, if selected, the pivot chart open. From here you can select fields
to add to your pivot table and pivot chart.

As you select fields to add, the pivot table and pivot chart become populated. You can
now view the drill-through data for a particular cell in the pivot table. Select the cell
that you want to drill down to.

On the SAS menu, select the OLAP Options menu.

On the OLAP Options menu, select the Drill through Details option.

216 Exporting a Cube From SAS OLAP Cube Studio � Chapter 8

The detail data for the cell in the pivot table is displayed on a second sheet in Excel.

Exporting a Cube From SAS OLAP Cube Studio

In SAS OLAP Cube Studio, you can select a cube to export a part of a SAS package.
Select a cube in the tree view. Select File � Export SAS Package. The Export SAS
Package wizard opens.

On the Welcome to the Export SAS Package Wizard page, enter the name of the
package you want to export. A default package named Package1.spk is automatically
entered. You can also check the option Include dependent objects when
retrieving initial collection of objects. This enables you to automatically
include all dependent objects, recursively, in the export. Select Next.

Cube Building and Modifying Examples � Exporting a Cube From SAS OLAP Cube Studio 217

On the Select Objects to Export page, check the objects that you want to include in
the exported package. The cube job is automatically selected with the cube. Select Next.

218 Exporting a Cube From SAS OLAP Cube Studio � Chapter 8

On the Summary page, review the objects that are included in the exported package.
Select Next.

On the Export Complete page, you can view the status of the export process. You can
also select View Log to view the Export Log. Select Finish to complete the Export SAS
Package wizard.

For detailed information on exporting SAS OLAP cubes, see “Export SAS Package
and Import SAS Package” on page 235.

Cube Building and Modifying Examples � Importing a Cube Into SAS OLAP Cube Studio 219

Importing a Cube Into SAS OLAP Cube Studio
In SAS OLAP Cube Studio, you can import a cube that has been previously exported

as part of a SAS package. In the tree view, select the Folders tab. Select a folder to
import a cube to. Select File � Import SAS Package. The Import SAS Package wizard
opens. On the Welcome to the Import SAS Package Wizard page, select the package
that you want to import. On the Import Options panel, select the import options that
you need. Select Next.

On the Select Objects to Import page, select the objects from the SAS package that
you want to import. Select Next.

220 Importing a Cube Into SAS OLAP Cube Studio � Chapter 8

The About Metadata Connections page lists the metadata properties that you need to
select values for. This list is determined from the objects that you selected to import. In
this example, a SAS Application Server and a directory path must be selected in the
following pages of the wizard. Select Next.

Cube Building and Modifying Examples � Importing a Cube Into SAS OLAP Cube Studio 221

On the SAS Application Servers page, select the target SAS Application Server.
Select Next.

On the OLAP Schemas page, select the OLAP schema on the target system that you
are assigning the imported cube to. You must select an OLAP schema when importing
SAS OLAP cubes. Select Next.

222 Importing a Cube Into SAS OLAP Cube Studio � Chapter 8

On the Directory Paths page, select the directory path, on the target system, that you
want to import the cube files to. Select Next.

On the Summary page, review the objects that you want to import. Select Next.

Cube Building and Modifying Examples � Importing a Cube Into SAS OLAP Cube Studio 223

On the Import Complete page, you can view the status of the import process. You can
also select View Log to view the Import Log. Select Finish to complete the Import SAS
Package wizard.

For detailed information on importing SAS OLAP cubes, see “Export SAS Package
and Import SAS Package” on page 235.

224

225

C H A P T E R

9
Using SAS OLAP Cubes

Using a Cube with ADO MD 225

Using a Cube with OLE DB for OLAP 225

Using a Cube with Additional SAS Products 226

SAS Products That Use SAS OLAP Cubes 226

SAS Enterprise Guide 226

SAS Information Map Studio 227

SAS Web Report Studio 227

SAS Web OLAP Viewer for Java 228

SAS Add-In for Microsoft Office 229

Using a Cube with Third-Party Clients 229

Microsoft Excel Pivot Tables and Pivot Charts 229

Using a Cube with ADO MD
Applications gain access to SAS OLAP cubes through ActiveX Data Objects –

Multidimensional (ADO MD). ADO MD is an industry-standard programming interface
to multidimensional data. It offers the same functionality as OLE DB for OLAP, but in
a simpler programming model. Accessing SAS OLAP cubes through ADO MD requires
the SAS OLAP Data Provider, which is a component of SAS Integration Technologies.
The SAS OLAP Data Provider is installed with the SAS Integration Technologies Client
for Windows. See the SAS Providers for OLE DB: Cookbook for more information about
IOM data provider usage with ADO MD.

Using a Cube with OLE DB for OLAP
In addition to ADO MD, applications gain access to SAS OLAP cubes through OLE

DB for OLAP (ODBO), an industry-standard set of programmable Component Object
Model (COM) interfaces that expose multidimensional data. For SAS OLAP cubes, the
OLE DB interfaces are exposed by the SAS OLAP Data Provider, a component of SAS
Integration Technologies. The SAS OLAP Data Provider enables applications to
perform data analysis by providing a means to view schema information, submit MDX
queries, and retrieve results. The SAS OLAP Data Provider is installed with the SAS
Integration Technologies Client for Windows. See the SAS Providers for OLE DB:
Cookbook for more information about IOM data provider usage.

226 Using a Cube with Additional SAS Products � Chapter 9

Using a Cube with Additional SAS Products
Listed below are the SAS products the enable you to access, view, query, and report

on SAS OLAP cubes. Specific OLAP functionality within these products is also listed.

SAS Products That Use SAS OLAP Cubes
The following SAS products access SAS OLAP cubes:
� “SAS Enterprise Guide” on page 226
� “SAS Information Map Studio” on page 227
� “SAS Web Report Studio” on page 227
� “SAS Web OLAP Viewer for Java” on page 228
� “SAS Add-In for Microsoft Office” on page 229
� SQL Pass-Through Facility for OLAP. For more information, see “Accessing OLAP

Cubes from SAS: SQL Pass-Through Facility for OLAP” on page 67.

Note: The SQL Pass-Through Facility for OLAP does not require additional
licensing. �

For information on how to access SAS OLAP cubes in these different products, see
the individual product Help and documentation.

SAS Enterprise Guide
SAS Enterprise Guide provides a dedicated, intuitive and advanced interface is

provided for analyzing business information stored in OLAP data cubes. SAS
Enterprise Guide is an ODBO-compliant OLAP Viewer. When accessing OLAP cubes
via ODBO, the SAS OLAP Server acts as an Open OLAP Provider, and SAS Enterprise
Guide is an Open OLAP Consumer. SAS Enterprise Guide features drillable, interactive
graphics and enables users to generate ad hoc queries for analytics based on cube data.

The OLAP Analyzer supports all of the functionality required to navigate through
multidimensional data, add topic-specific business calculations, and extract information
from multidimensional sources for further analysis with advanced statistical procedures
or data mining. With the OLAP Analyzer and SAS Enterprise Guide, you can do the
following:

� access SAS OLAP cubes directly from the metadata definition. You can preview
each cube’s dimensions, measure its contents, and override the default view before
accessing the cube.

� slice and dice data as needed to explore the information, as well as drill-through to
underlying detailed data.

SAS Enterprise Guide provides the following features for OLAP cube access,
visualization and manipulation:

� support for drilling, slicing and pivoting in a cube to explore the cube data. You
can also drill-through to the underlying detailed data for a cube. With
drill-through capability, you can navigate in your data from the most summarized
levels to the most detailed levels. You can drill down on all members of a level or
drill down on a specific member of the level. You can also drill in the graph view.

� calculation (calculated member or measure) support, including simple calculations,
count analysis, relative contribution analysis and custom calculations (such as
time series analysis).

Using SAS OLAP Cubes � SAS Web Report Studio 227

� support for filtering that is based on a ranking function or on a range of values.
You can now filter by member caption and member property. You can also create
filters that can be used by multiple queries.

� support for totals, subtotals, and percent of totals calculations.
� multiple, independent views of a cube. Specific views on multidimensional

information can be saved as bookmarks for easy reuse.
� surfacing of multidimensional information slices to other analytical SAS

procedures for advanced analysis, including use in data mining procedures.
� surfacing of SAS OLAP data sources from the SAS OLAP Server or other

third-party vendors supporting OLE DB for OLAP (for example, SAP BW and
Microsoft Analysis Services).

For further information on SAS Enterprise Guide, see Getting Started with SAS
Enterprise Guide and the SAS Enterprise Guide Help.

SAS Information Map Studio
SAS Information Maps can translate business questions into the necessary MDX

code to access SAS OLAP structures. SAS Information Map Studio is a Java application
that enables data modelers and data architects to create and manage SAS Information
Maps, which are business metadata about your physical data. Information maps enable
you to surface your warehouse data in business terms that typical business users
understand, while storing key information that is needed to build appropriate queries.

Information maps can be built from various data structures, including star schemas,
snowflake schemas, normalized data structures, or OLAP cubes, providing business
users with easy access to enterprise data. The SAS OLAP Server is required to create
information maps on top of multidimensional data sources.

For more information about SAS Information Map Studio, see SAS Information Map
Studio: Getting Started with SAS Information Maps.

SAS Web Report Studio
SAS Web Report Studio is a Web-based application that enables you to create, view,

and organize reports. You can use SAS Web Report Studio to perform these
OLAP-specific tasks:

� drill and expand tables and graphs
� support ragged and unbalanced hierarchies
� pivot individual crosstabulation dimensions
� switch dimensions and measures with the Data Selection dialog box
� synchronize report components to display a common drill state or have them

remain independent

In addition to OLAP-specific tasks, SAS Web Report Studio enables you to perform
the following tasks:

Create reports Beginning with a simple and intuitive view of your data provided by
SAS Information Maps (created in SAS Information Map Studio),
you can create reports based on either relational or
multidimensional data sources.

View and
manipulate
reports

While viewing reports using a thin client (a Web browser), you can
filter, sort, and rank the data that is shown in tables,
crosstabulations, and graphs. With multidimensional data, you can

228 SAS Web OLAP Viewer for Java � Chapter 9

drill down on data in crosstabulations and graphs and drill-through
to the underlying data.

For more information about using SAS Web Report Studio, see SAS Web Report Studio:
User’s Guide.

SAS Web OLAP Viewer for Java
The SAS Web OLAP Viewer is a Web application that provides a Web interface for

viewing and exploring OLAP data. It enables business users to look at data from
multiple angles, drill-through to detail data, and add linked graphs or maps to gain
greater insights into trends, exceptions and opportunities.

The SAS Web OLAP Viewer surfaces SAS OLAP cubes, OLAP information maps, and
OLAP-based data explorations. It provides an easy-to-use interface from which you can
select a data source, view the data, and customize your view with features such as
sorting and filtering. With the SAS Web OLAP Viewer, you can perform these tasks:

Explore OLAP data
You can select an OLAP data source and explore multidimensional data using a
table or graph view. Specifically you can do the following:

� explore multidimensional data using a table or graph view (color-coded table,
bar chart, bar-line chart, line plot, pie chart, scatter plot, tile chart, map)

� change business queries by selecting business items to be displayed from a
side bar

� slice through multidimensional data by using a special slicer dimension

� dice multidimensional data by applying filters on any level of a hierarchy
� drill up/down through hierarchies or expand/collapse entire levels

� explore data following ragged or unbalanced hierarchies that model true
hierarchies as they are experienced in business

� obtain detailed information for every cell (drill-through) with the option to
export it to Microsoft Excel

� display and filter on properties associated with members inside the OLAP
data source (member properties)

Analyze OLAP data
Multidimensional views can be adapted to business scenarios in many different
ways, including applying filters and rankings, calculating new measures, sorting,
and adding totals and subtotals. Specifically, you can do the following:

� rank multidimensional data to identify top performers or losers (ties can be
handled)

� display totals and subtotals on cross tables

� add the percentage that a measure contributes to the total or a subtotal of a
table with a single click on a dedicated button

� calculate new measures and add them to any view

Interactively explore geographical maps.
Maps from an ESRI ArcGIS Server can be used to display OLAP data just like
other views of the data. Users can drill on map regions visualizing information
from an OLAP data source in real time. Specifically, you can do the following:

� use maps from ESRI’s ArcGIS Server to display OLAP data just like any
other view on the data

� perform synchronized drill and display for map and table view

Using SAS OLAP Cubes � Microsoft Excel Pivot Tables and Pivot Charts 229

� drill on regions in the map visualizing information from an OLAP data source
in real time, enabling a zoom down to the level of individual houses on a road

� drive the color coding of maps by data from the OLAP data source

Easily save and publish results
Views that reveal new business insights can be easily saved and shared among

colleagues, saved as SAS Web Report Studio reports for further formatting, or
saved as Microsoft Excel spreadsheets or Adobe PDF documents.

For more information, see the SAS Web OLAP Viewer for Java Help.

SAS Add-In for Microsoft Office
The SAS Add-In for Microsoft Office is a Component Object Model (COM) add-in that

extends Microsoft Office by enabling you to harness the power of SAS analytics and
access data directly from Microsoft Excel, Microsoft Word, and Microsoft PowerPoint.
Specifically, you can do the following:

� access and view SAS OLAP Cubes or any data source that is available from your
SAS server. There is no size limit on the SAS data sources that you can open.

� filter your data using an intuitive user interface or using an advanced SQL editor.

� sort your data by an unlimited number of variables.

� refresh your data to incorporate any changes that were made to a data source that
is saved on a server.

For more information, see the SAS Add-In for Microsoft Office: Getting Started with
Data Analysis and the SAS Add-In for Microsoft Office Help.

Using a Cube with Third-Party Clients

The SAS OLAP Server exposes multidimensional data through OLE DB for OLAP
interfaces. Supporting these industry-standard interfaces enables the SAS OLAP Server
to integrate with third-party clients. The user interfaces for these clients vary widely.

Microsoft Excel Pivot Tables and Pivot Charts
Microsoft Excel provides the ability to view and manipulate SAS OLAP cubes in

Excel pivot tables and Excel pivot charts. You can connect to a SAS Metadata Server
and access a SAS OLAP Cube in Excel. Once a cube is accessed, you can select which
measures and dimension to place on the pivot table or pivot chart. Specifically, you can
perform the following OLAP cube-related tasks:

� assign measures and dimensions to the columns and rows of a pivot table or pivot
chart

� drill-through to the cube’s detail data and save that data into a separate sheet

� generate pivot charts based on the cube data already selected in the pivot table

� perform various data analysis tasks such as filtering, sorting and subtotaling

For further information on working with SAS OLAP Cubes in Microsoft Excel, see
the cube building example “Implementing Drill-through to Detail Data in a SAS OLAP
Cube” on page 210.

230

231

C H A P T E R

10
Importing and Exporting SAS
OLAP Cubes

Importing and Exporting SAS OLAP Cubes 231

Determining Which Tool to Use 232

ExportCubes and ImportCubes Batch Tools 232

ExportCubes Batch Tool 232

Overview 232

Syntax 233

ImportCubes Batch Tool 233

Overview 233

Cube Connection Points 234

Syntax 234

Export SAS Package and Import SAS Package 235

SAS Packages - Copying the Cube Metadata Registration for a SAS OLAP Cube 235

Export SAS Package 236

Import SAS Package 236

User Privilege and Permission Considerations 237

Creating Connection Points 237

File Naming Considerations 238

Multi-Language Cubes 238

Manually Copying Physical Files for a SAS OLAP Cube 238

SAS OLAP Cube Files 238

Creating Cube Directories 239

Manually Copying the Header Files for Cube Generations 239

Manually Copying the MOLAP Aggregation Tables 239

Manually Copying Rolap Files 240

Validating Data After It Is Moved 240

Cube Promotion and Migration Resources 240

Importing and Exporting SAS OLAP Cubes
Companies that create and use SAS OLAP cubes often have more than one

environment that they store cubes on. A company might have an environment for
developing and building cubes, another environment for testing cubes, and finally a
production environment where cubes are accessed and queried by end users. If you
have multiple environments for SAS OLAP cubes, you need the ability to copy cubes
and their supporting files and objects from one environment to another.

232 Determining Which Tool to Use � Chapter 10

Determining Which Tool to Use
SAS 9.2 offers you different options to move your data from SAS 9.1.3 SP4. When

you choose to copy or move SAS OLAP cubes between SAS environments, consider the
following options for moving your cubes:

“ExportCubes
and
ImportCubes
Batch Tools” on
page 232

Cubes that were built with a version of SAS that is earlier than 9.2
can be moved to the SAS 9.2 environment by using the ExportCubes
and ImportCubes batch tools.

“Export SAS
Package and
Import SAS
Package” on
page 235

Cubes built with SAS OLAP Cube Studio 4.2 can be copied or moved
between SAS 9.2 systems with the Export SAS Package and Import
SAS Package functions that are part of SAS OLAP Cube Studio 4.2.

ExportCubes and ImportCubes Batch Tools
The ExportCubes and ImportCubes batch tools enable you to move your SAS 9.1.3

SP4 cubes to the second maintenance release after SAS 9.2. To use the batch tools, you
must go to the DOS command line on your operating system.

ExportCubes Batch Tool

Overview
The ExportCubes batch tool is a command-line tool that enables you to export SAS

9.1.3 OLAP cube metadata. This tool exports the metadata for your cubes into
individual XML files that are stored in a designated directory. The ExportCubes batch
tool exports all cubes on the metadata server. It is available for use on Windows and is
executed from a DOS command line.

When exporting cubes, you designate the output directory that you want to store the
XML files to and whether you want to generate a log file of the export process. You can
also designate whether security should be exported with the cube metadata or not.
When you export cube metadata, the name of the XML file is generated from a
combination of the name of the cube’s OLAP schema (if there is one) and the name of
the cube. If the OLAP schema or cube name contains characters that are not allowed
for a filename on that particular operating system, then those characters are changed
according to the native Java interface for that operating system.

When you export your cube metadata, the output directory is populated with an XML
file for each extracted cube. All cubes in the Foundation and Custom repositories are
exported. However, cubes in Project repositories are not exported and are ignored. A log
file of the export execution is created in the output directory.

Note: The ExportCubes batch tool is supported in a hot fix that is applied to SAS
9.1.3 SP4. Cube metadata that is exported with the ExportCubes tool can then be
imported in the second maintenance release after SAS 9.2 with the ImportCubes batch
tool. In addition, cube metadata that is created with a version of SAS that is later than
SAS 9.1.3 SP4 cannot be exported with the ExportCubes batch tool. If attempted, an
error message is printed to the log. �

Importing and Exporting SAS OLAP Cubes � ImportCubes Batch Tool 233

Syntax
To use the ExportCubes batch tool, go to the DOS command line on your operating

system. The batch tool can be found in the following directory path:
SAS-Installation-directory\sasmanagementconsole\9.1\commands
You can enter the ExportCubes command with the needed options.

ExportCubes - <option(s)>

The following example shows the ExportCubes command:

ExportCubes -user "x2345\sasxxx" -password "Passwordxxx" -host "X2345.xy.abc.com"
-port 8561 -extractSecurity -outputDirectory c:\myextractedcubes

Option Name Description

-extractSecurity Specifies to extract security metadata for the cube. If not
specified, security metadata is not extracted.

–host Specifies the server to connect to. The metadata connection
can be specified by a profile or the server, port, user, and
password options.

-outputDirectory Specifies the output directory. The cube metadata and log
is written to this directory. If the directory exists, then a
number (starting with 1) is appended to the end of the
directory name until the name is unique. By default, the
log file is named ExportCube.log.

-password “pw” Specifies the password for the user. The metadata
connection can be specified by a profile or the server, port,
user, and password options.

-port number Specifies the port for the server. The metadata connection
can be specified by a profile or the server, port, user, and
password options.

-profile filename Specifies the workspace file to use for metadata connection
information. The metadata connection can be defined by
specifying the server, port, user, and password options or
by specifying a metadata connection profile. This option
can be used in place of the server, port, user, and password
options.

-user “username” Specifies the user to connect to the server with. The
metadata connection can be specified by a profile or the
server, port, user, and password options.

ImportCubes Batch Tool

Overview
The ImportCubes batch tool is a command-line tool that enables you to import SAS

9.1.3 OLAP cube metadata files that have been exported using the ExportCubes batch
tool on your SAS 9.1.3 SP4 environment. The metadata for a cube is exported as an
XML file. With the ImportCubes batch tool you can specify the location of multiple
exported SAS 9.1.3 XML files and import them to your SAS 9.2 OLAP environment.

234 ImportCubes Batch Tool � Chapter 10

The SAS 9.1.3 SP4 cube metadata is imported and added to the SAS 9.2 Metadata
Server. In addition, you can specify that a log file of the import execution be created.
After the metadata files are imported, you can then rebuild your SAS 9.1.3 SP4 cubes
on your SAS 9.2 system. You can use SAS OLAP Cube Studio to build the physical data
for the cubes.

The ImportCubes batch tool is included with the standard SAS OLAP installation
and is available for use on Windows. It is executed from a DOS command line. When
you execute the ImportCubes command, all the cube XML extract files in a directory
are imported. The cubes are imported into the repository from which they were
exported. If that repository does not exist on the target metadata server, then the cubes
are imported into the Foundation repository and this is noted in the log.

If needed, you can substitute file paths during the import of your cube metadata. To
substitute file paths during the import, each XML file where you want to substitute file
paths must be edited. To change file paths for a cube, you must edit the Substitutions
section of the XML file. Specifically, you must change the string following the tag
“DefaultValue=” to the directory path that you want. Do this for each XML file that you
want to change, and then run the ImportCubes batch tool. The following example
shows the Substitutions section of an XML file.

<Substitutions>
<Property Id="A5G2Y32Q.AI000EOC" TLObjN="1" Name="INDEXPATH"

DefaultValue="c:\indexfilesAggrA"/>
<Property Id="A5G2Y32Q.AI000EOD" TLObjN="1" Name="DATAPATH"

DefaultValue="c:\partitionsAggrA"/>
<Directory Id="A5G2Y32Q.B00000RU" TLObjN="1" Name="c:\v9cubes"

DirectoryName="c:\v9cubes"/>
<Property Id="A5G2Y32Q.AI000EO9" TLObjN="1" Name="WORKPATH"

DefaultValue="c:\v9cubes"/>
<Property Id="A5G2Y32Q.AI000EOA" TLObjN="1" Name="INDEXPATH"

DefaultValue="c:\globalindex1"/>
<Property Id="A5G2Y32Q.AI000EOB" TLObjN="1" Name="DATAPATH"

DefaultValue="c:\globalpartitions1"/>
</Substitutions>

Cube Connection Points
For each cube, the connection points that the ImportCubes batch tool expects to find

must exist in the target repository. If a table, column, UniqueKey, or OLAP schema
connection cannot be found in the target metadata server, the import of the cube fails
and an error message is written to the ImportCubes log file. For the OLAP schema
connection of a cube, if the OLAP schema does not exist on the target metadata server,
then the cube is imported and not associated with any OLAP schema.

Note: The ImportCubes batch tool is supported in the second maintenace release of
SAS 9.2. The ImportCubes batch tool is only compatible with cubes that were exported
with the corresponding ExportCubes batch tool on your SAS 9.1.3 SP4 environment.
The ImportCubes batch tool is not compatible with cubes that were exported from SAS
9.1.3 SP4 using the SAS OLAP Cube Studio Export Cube function. �

Syntax
To use the ImportCubes batch tool, go to the DOS command line on your operating

system. The batch tool can be found in the following directory path:
SAS-Installation-directory\SASPlatformObjectFramework\9.2
You can enter the ImportCubes command with the needed options.

ImportCubes - <option(s)>

Importing and Exporting SAS OLAP Cubes � SAS Packages - Copying the Cube Metadata Registration for a SAS OLAP Cube 235

The following example shows the ImportCubes command:

ImportCubes -user "sasadm" -password "Password01" -host "X7891.xy.abc.com"
-port 8561 -inputDirectory c:\myextractedcubes

Option Name Description

-host Specifies the server to connect to. The metadata connection
can be specified by a profile or the server, port, user, and
password options.

-inputDirectory Specifies the input directory that contains the XML cube
extract files from the 9.1.3 ExportCubes batch tool. This
option is required.

-log directory Specifies the directory where the log file named
ImportCubes.log is created. If this option is not specified,
the log file is created in the user’s home directory.

-password “pw” Specifies the password for the user. The metadata
connection can be specified by a profile or the server, port,
user, and password options.

-port number Specifies the port for the server The metadata connection
can be specified by a profile or the server, port, user, and
password options.

-profile filename Specifies the workspace file to use for metadata connection
information. The metadata connection can be defined by
specifying the server, port, user, and password options or
by specifying a metadata connection profile. This option
can be used in place of the server, port, user, and password
options.

-user “username” Specifies the user to connect to the server with. The
metadata connection can be specified by a profile or the
server, port, user, and password options.

Export SAS Package and Import SAS Package
A SAS OLAP cube contains a physical files component and a metadata component.

Both of these components must be addressed and kept in-synch when copying or
moving a cube. When copying or moving SAS 9.2 version cubes between SAS 9.2
systems, the physical files that compose a cube are copied with standard operating
system functions and line commands. The cube metadata is then copied with Export
SAS Package and Import SAS Package functions that are found in SAS OLAP Cube
Studio and other SAS Intelligence Platform products.

SAS Packages - Copying the Cube Metadata Registration for a SAS
OLAP Cube

Part of copying a cube includes copying the metadata registration for the cube. In
SAS 9.2, OLAP cubes and their supporting objects can be exported and imported as a
group in a SAS package (SPK) file. You can use the Export SAS Package function to

236 Export SAS Package � Chapter 10

create an (SPK) file. This package file can then be imported into another system with
the Import SAS Package function. The Export SAS Package and Import SAS Package
functions are part of the SAS Intelligence Platform promotion tools. These tools enable
you to promote individual metadata objects or groups of objects from one metadata
server to another, or from one location to another on the same metadata server.

Export SAS Package
In SAS OLAP Cube Studio you can create a SAS package to export to another

system. In the tree view, determine the object or objects that you want to export. Use
the CTRL key to select multiple objects. These objects can include cubes, jobs, libraries,
tables, folders, or OLAP schemas. You can also select multiples of the same object. For
example, you can export two cubes in the same package.

Note: A cube must be exported with its corresponding cube job. �

After you select the needed objects, select Export SAS Package from the File menu
or from the cube’s context menu. This opens the Export SAS Package wizard. To export
a SAS package, perform the following tasks:

1 On the Welcome page of the wizard, specify the name of the SAS package that you
are exporting cube objects to. You can also select the option Include dependent
objects when retrieving initial collection of objects. This signals the
wizard to automatically include any dependent objects for the item(s) you initially
selected in the tree view.

2 On the Select Objects to Export page of the wizard, select the objects to include in
the exported SAS package.

3 On the Summary page of the wizard, confirm the objects to include in the SAS
package. Select Next. The SAS package is created.

4 On the Export Complete page, you can view the export log and verify that the
package was created.

Be aware that SAS OLAP cubes are dependent on a number of other objects. These
include, in particular, cube jobs, tables, libraries, and OLAP schemas. For a successful
import, all these objects need to be available on the target system. You must know
whether these objects are already available in the target system. However, you can
export the objects now and verify their availability later, when you import the package.
If you are selecting a cube to export, always select the cube together with its job. The
export does not work if the job is not present.

Import SAS Package
After you have exported the SAS package, you can import the package on the target

system. Switch to your target system and make sure that the exported SAS package file
and the copied cube files are available there.

At this point, you can open SAS OLAP Cube Studio and select a folder in the tree
view. This selected folder is where you are importing the package to. If the OLAP
schema that you need is on the target system, you can import your cube and related
objects into the folder that contains your OLAP schema.

Note: The Import SAS Package function is available only when you select a folder in
the tree view. �

Select Import SAS Package from the File menu or from the cube’s context menu.
The Import SAS Package wizard opens. To import a SAS package, perform the
following tasks:

Importing and Exporting SAS OLAP Cubes � Creating Connection Points 237

1 On the Welcome page of the wizard, specify the name of the SAS package that you
are importing. On this page you can select to include the objects’ access control
templates. In addition, you can select to import all the objects in the package or
only those that are new and do not exist in the destination folder.

2 On the Select Objects to Import page, you can select the objects from the package
that you want to import. When you click an object in the list of objects to import,
any available options for that object are available on the Options tab.

An important option to verify when importing a SAS OLAP cube is the cube
option The physical cube will need to be built after the import
process. This indicates that the physical cube files do exist on the target system.
By default, this option is automatically selected. If you select this option, deselect
any objects that are already available on the target system. Also, deselect any
objects that you don’t want to create in the target folder. The physical cube will be
built after the cube is imported into the target system.

Note: A cube must be imported with its corresponding cube job. �

3 After you have selected the objects to import and build, the wizard identifies those
objects that you must establish metadata definitions or connection points for. The
About Metadata Connections page lists the metadata objects that you must define.
This list is determined by the objects that you selected on the previous page. The
Import SAS Package wizard enables you to specify values for the target location
that correspond to values from the source location. Depending on what you import
with the cube, this can include the following objects:

� OLAP schema (This can have the same name as the original OLAP schema,
but reside in a different folder.)

� tables (These include fact tables, dimension tables, drill-through tables, or
aggregation tables.)

� libraries

� SAS Application Server

� directory paths (These include the cube path and, optionally, data paths,
index paths, and library paths.)

4 Next, complete the wizard page for each metadata object identified on the About
Metadata Connections page. When you have finished entering the connection
point information, you can view the Summary page of the wizard. This page lists
the objects that are being created and the import objects that are being mapped on
the target system.

User Privilege and Permission Considerations
It is recommended that the person performing the cube export or import be the

AdminUser and preferably the unrestricted user. This is because other users might
have restrictions on parts of the cube that could result in a partial cube being exported
and imported. It is also important that the identities, groups, and permissions for the
imported data be set to correspond to the target environment security settings. Security
settings can be created using the Authorization tab on the cube Properties dialog box.

Creating Connection Points
Certain metadata must exist on the target system prior to importing a cube. All

metadata connection points for the cube must exist with the same names. If a metadata

238 File Naming Considerations � Chapter 10

connection object is not found, then the import fails. The following metadata connection
points must exist:

Object Connection Points Details

Cube Job(cube), OLAP schema, tables,
directory path object

A cube must be imported with its
corresponding job(cube).

Job(cube) Cube A cube must be imported with its
corresponding job(cube).

OLAP Schema SAS Application Server and its
logical OLAP server

Only one OLAP schema can be
associated with a SAS Application
Server.

Library SAS Application Server and
directory path object

The target application server that you
select determines the SAS libraries
that are available.

Tables Library If there is a matching SAS library on
the target system, then that SAS
library is selected by default. This
occurs if the target system library has
the same library name and SAS
Application Server name as the
original SAS library.

File Naming Considerations
When importing cube metadata, if you have not selected an import file before, then

the selected file shown by default is user-default-directory\extractedcube.xml. If you
have selected an import file before, then the last selected file is displayed by default.

Multi-Language Cubes
You can export and import multi-language cubes. However, only the dimension

tables for the server language (the first language in the UDT statement) are verified for
registration. You must ensure that all the tables are present. If one of the tables is
missing when the cube is imported, the import is still successful, but the cube might not
rebuild correctly.

Manually Copying Physical Files for a SAS OLAP Cube

SAS OLAP Cube Files
When you copy a SAS OLAP cube between environments, you can choose to copy the

physical files that are part of the cube. To do this, copy or move all of the files from the
source cube subdirectory to the target cube subdirectory. You can use standard
operating system functions to copy or move the files. It is important to check and verify
that the target files have the same operating system permissions as your original files.
In addition, when you are copying files between environments, note that you can copy
SAS OLAP cube files only among systems that have the same data representation. You

Importing and Exporting SAS OLAP Cubes � Manually Copying Physical Files for a SAS OLAP Cube 239

cannot move between 32–bit and 64–bit systems, and you cannot move between
Windows and UNIX. Manually copying SAS OLAP cube files involves the following
components:

� cube directories
� cube header files
� MOLAP aggregation tables
� ROLAP data tables

Creating Cube Directories
Before you copy the files for a cube, you must create a directory for the cube on the

target system. The path that you create the directory in is known as the root path for
the cube and should have the same name as the cube. The cube’s path is specified with
either of the following methods:

In SAS OLAP
Cube Studio

When creating or editing a cube in the Cube Designer wizard, enter
a file path in the Path field on the Cube Designer – General page.

Using PROC
OLAP

Include the PATH= option in the PROC OLAP statement.

For example, if you create the cube OrionStar in the cube path
myserver\testolap\testcube, then the cube root path is
myserver\testolap\testcubes\OrionStar.

When you copy the OrionStar cube to your target cube path, create a subdirectory
with the cube’s name. For example, if you want to copy or move the cube to
otherserver\prodolap\prodcubes, you would create the directory
otherserver\prodolap\prodcubes\OrionStar.

If the cube has aggregations or indexes stored in other directories, then these files
must also be copied or moved to a subdirectory with the same name. You can use the
DATAPATH= and INDEXPATH= options to specify what directories the aggregations
are stored in.

Manually Copying the Header Files for Cube Generations
The header files for each generation of the cube are located in subdirectories in the

cube root path. They are named gen0000, gen0001, and so on. For example, if the cube
OrionStar is created in the cube path \\myserver\testolap\testcubes, then the
cube header files are stored in the path
\\myserver\testolap\testcubes\OrionStar\gen0000. If you have made
incremental updates to the cube, you might have more than one genNNNN directory. Or
your genNNNN directory might have a numeric suffix other than 0000. Copy or move
all the genNNNN subdirectories with their contents to the target cube root directory.

Manually Copying the MOLAP Aggregation Tables
SAS OLAP cubes store aggregated data values in tables that have the same file

structure as SAS SPD Engine tables. These tables consist of a number of different files
and can be broken into partitions. By default, all the component files and partitions are
stored in the cube root directory. However, you might have chosen to distribute the
MOLAP aggregation storage over multiple locations. You can specify distributed file
storage locations with either of the following methods:

In SAS OLAP Cube Studio
When creating or editing a cube in the Cube Designer wizard, you can define the
storage location for one or more aggregations. On the Aggregations page of the

240 Validating Data After It Is Moved � Chapter 10

wizard, select the Advanced button to open the Performance Options dialog box.
From here you can define the storage location for all aggregations or a single
aggregation. On either the Default tab or the Aggregations tab, enter the file
path in either of the following fields:

� Physical path to indexes
� Physical path to aggregation tables

Using PROC OLAP
Use the DATAPATH= and INDEXPATH= options in the PROC OLAP statement or
in the individual AGGREGATION statements.

Copy your MOLAP aggregation tables by using operating system utilities into the
target directories. Make sure to copy the files from all locations, if you have distributed
your cube aggregation storage over multiple directories.

Manually Copying Rolap Files
ROLAP tables are used as data sources for SAS OLAP cubes and can be stored in

many formats. These formats include SAS tables, SPD Engine tables, SPD Server
tables, and tables in external RDBM systems. When you are building SAS OLAP cubes,
ROLAP tables can be used as the following data sources:

� drill-through tables
� aggregation tables
� input data (if you used the NO_NWAY option)
� format catalogs (used by any of the above)

You can use PROC COPY to copy or move SAS tables, SPD Engine tables, and SPD
Server tables. To copy or move tables in external RDBM systems, use standard
operating system functions. When you copy or move any of these files, you should verify
that your target SAS OLAP Server has access to those files. In addition, you need to
change the LIBNAME specifications to point to the new file locations. Librefs for an
OLAP server are allocated by using an AUTOEXEC file during the SAS OLAP Server
invocation or by using preassigned libraries.

Validating Data After It Is Moved
After migration or promotion of your data is complete, the cubes must be rebuilt in

SAS 9.2. In addition, other tasks must be completed for SAS OLAP Server and SAS
OLAP Cube Studio. The following tasks must be performed:

� In SAS Management Console, ensure that all SAS OLAP Servers and OLAP
schemas are available.

� In the Server Manager, validate the connections to the SAS OLAP Servers.
� Use SAS OLAP Cube Studio to build a test cube.
� Use the Cube Viewer in SAS OLAP Cube Studio to validate the structure of the

test cube.
� Build cubes and validate their structure on all other SAS OLAP servers.

Cube Promotion and Migration Resources
In addition to the export and import cube functions discussed in this chapter, see the

following resources for information about promoting and migrating your SAS data:

Importing and Exporting SAS OLAP Cubes � Cube Promotion and Migration Resources 241

� “Promoting OLAP Cubes from SAS 9.1.3” in the SAS Intelligence Platform: 9.1.3 to
9.2 Migration Guide

� “Using the Promotion Tools” in the SAS Intelligence Platform: Administration
Guide

� The SAS Migration Utility is used to upgrade the SAS content and configuration
from an earlier SAS release to a later SAS release. For detailed information on the
SAS Migration Utility, see the SAS Intelligence Platform: 9.1.3 to 9.2 Migration
Guide

242

243

A P P E N D I X

1
The OLAP Procedure

The OLAP Procedure 244

Syntax: OLAP Procedure 244

PROC OLAP Statement 245

Options 245

METASVR Statement 256

Required Argument 256

Options 257

DIMENSION Statement 257

Required Arguments 258

Options 258

LEVEL Statement 263

Required Arguments 263

Options 263

PROPERTY Statement 266

Required Arguments 266

Options 266

HIERARCHY Statement 267

Required Arguments 268

Options 268

MEASURE Statement 269

Required Arguments 269

Options 272

AGGREGATION Statement 274

Required Arguments 274

Options 274

DROP_AGGREGATION Statement 276

Required Arguments 276

DEFINE Statement 276

Required Arguments 278

UNDEFINE Statement 278

Required Arguments 279

USER_DEFINED_TRANSLATIONS Statement 279

Required Argument 280

SAS Servers and Character Encoding 281

REORGANIZE_LEVEL Statement 281

Loading Cubes 281

Loading Cubes from a Detail Table 281

Loading Cubes from a Star Schema 283

Loading Cubes Using Summarized Data 285

Maintaining Cubes 286

Building a Cube from an Existing Definition 286

244 The OLAP Procedure � Appendix 1

Adding Aggregations to an Existing Cube 287

Deleting Aggregations from an Existing Cube 287

Deleting Cubes 288

Specialized Options for PROC OLAP 288

Options for Managing Ragged Hierarchies 288

Options Used for Performance 289

The OLAP Procedure
The OLAP procedure is one of the SAS tools that you can use to create, update, and

delete cubes. This includes adding and deleting cube aggregations.

Note: You can also use the Cube Designer wizard to maintain OLAP cubes. The
Cube Designer wizard can be launched from SAS Data Integration Studio and SAS
OLAP Cube Studio. Help on using the wizard to build cubes is available from within
both applications.

�

In addition to the basic cube creation tasks, PROC OLAP also enables you to do the
following:

� build cubes with ragged hierarchies
� rename cubes
� change nonstructural cube elements

� control resummarization behavior on cube security
� control options that can be used to optimize cube creation and query performance
� specify data set options on detail, fact, dimension, and drill-through tables
� create TIME dimensions
� design dimensions that have more than one hierarchy

� define global calculated members and named sets
� include SAS code when you submit PROC OLAP in batch mode
� read alternate locale data sets and create locale-specific metadata for use at query

time

Syntax: OLAP Procedure

PROC OLAP <option(s)>;

METASVR OLAP_SCHEMA=’schema-name’ <option(s)>;

DIMENSION dim-name HIERARCHIES=(hier–nam ... hier-nameN) <option(s)>;

LEVEL level-name <option(s)>;

PROPERTY prop-name LEVEL=level-name <option(s)>;

HIERARCHY hier-name LEVELS=(level–name1 <level–name2 ...level-nameN>)
<option(s)>;

MEASURE measure-name STAT=statname <option(s)>;

AGGREGATION level-name < level-name2 level-name3 ...level-nameN> / <option(s)>;

PROC OLAP � Options 245

DROP_AGGREGATION level-name1 < level-name2 ...level-nameN> /
NAME=aggregation-name ;

DEFINE MEMBER | SET’member-or-set-name’ AS ’mdx-expression’ ;

UNDEFINE MEMBER | SET ’member-or-set-name’ ;

USER_DEFINED_TRANSLATIONS locale < locale2 ...localeN> ;

REORGANIZE_LEVEL | REORG_LEVEL

PROC OLAP Statement
The PROC OLAP statement specifies the input data source, cube name, and path.

This statement can also be used to do the following:
� specify options that might improve query performance
� delete cubes
� specify global settings for handling missing hierarchy members in ragged and

unbalanced hierarchies
� perform actions on existing cubes
� change nonstructural cube elements
� update cube data
� coalese partition aggregations

PROC OLAP <option(s)>;

Options
Note: For a list of the options that can be used to optimize cube creation and query

performance, see “Options Used for Performance” on page 289. �

ADD_DATA
specifies an incremental update to a cube. The ADD_DATA option enables you to
add new members and data to a cube. You can update a cube in-place or create
generations of the cube. The new data that the cube is updated with is specified
with the DATA= option. Here is an example of the ADD_DATA option used with
PROC OLAP:

proc olap data=mylib.newdata cube=cubeA add_data
outcube=cubeB outschema=testSchema;

metasvr host="myhost" port=8561 repository=myrepository
olap_schema=prodSchema;

run;

The ADD_DATA option requires that either UPDATE_IN_PLACE, OUTCUBE=,
or OUTSCHEMA= also be specified. The DATA= or FACT= option is required to
specify a table with the new input records.

Note: You cannot use ADD_DATA with cubes that have been created with the
NONUPDATEABLE option. �

See Chapter 7, “Updating SAS OLAP Cubes,” on page 79 for further information.

ASYNCINDEXLIMIT= n
specifies a limit on the number of indices that will be created in parallel during
the cube build process. By default, all indices for an aggregation in the cube are

246 Options � Appendix 1

created asynchronously. The number of indices built is based on the number of
hierarchies present in the aggregation. Therefore, if your cube contains a large
number of hierarchies and your machine has limited resources, you may find that
limiting the indices created asynchronously can result in better cube build
performance. Use a value greater than zero to set this limit. The default value is
0. There is no limit, as all indices for an aggregation are created asynchronously.

Note: The NWAY is the largest aggregation in the cube and contains data for
ALL hierarchies. �

COALESCE_AGGREGATIONS
specifies that all aggregations in a cube will be coalesced. When a cube is updated,
multiple aggregation partitions (separate SPDE tables)) are produced by one or
more cube update (ADD_DATA) operations. The more partitions an aggregation
has, the slower the access time will be. To prevent reduced query performance on
a cube, these aggregation partitions can be coalesced (combined) back into a single
aggregation table. Coalescing updated aggregations periodically keeps the number
of aggregation partitions at a minimum. When an aggregation is coalesced, all
existing partitions are grouped together to create a single SPDE table containing
data from all partitions. This becomes the new aggregation table and the old
partitions are deleted. Only aggregations with more than one partition are
coalesced. All others are ignored (and a warning message is printed to the log).

Only MOLAP aggregations (those aggregations created by PROC OLAP) can be
coalesced. No ROLAP aggregations are coalesced. If a ROLAP aggregation is
specified in a COALESCE_AGGREGATION statement, that statement is ignored
and a warning message is printed to the log.

COMPACT_NWAY
specifies that the cube build will include an additional summarization step that is
designed to decrease the size of the NWAY aggregation and improve viewing
performance. The amount of improvement depends on the nature of the data. The
cubes that improve the most are those that have the largest number of rows that
can be included in the additional summarization step.

Candidates for compaction are cubes that are built from star schema, where the
cube does not define levels for all columns in all dimension tables. This can result
in a fact table that contains many rows that belong to the same leaf member of a
given hierarchy. These are the rows that are summarized to decrease the size of
the NWAY aggregation.

For example, assume that a cube is built from a star schema that contains a
Time dimension table. The Time table contains columns for year, quarter, month,
and day, along with a primary key column. If the cube is defined so that the day
column is not specified as a level of a time hierarchy, then there are up to 31 key
values that refer to each unique combination of year, quarter, and month.
Together, these key values define a unique leaf member of that hierarchy. These
are the values that are summarized at build time.

The amount of compaction in the NWAY aggregation is determined by the
number of source rows that can be summarized. The number of summarized rows
depends on the number of unique key values in the fact table that refer to the same
leaf member of a hierarchy. Another compaction factor is the number of rows in the
fact table that contain unique combinations of keys; these rows are not compacted.

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation tables in a compressed format on
disk.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a COMPRESS option in the
AGGREGATION statement. �

PROC OLAP � Options 247

Default: NOCOMPRESS

CONCURRENT=n
specifies the maximum number of aggregations to create in parallel. This option
does not apply to the NWAY aggregation, which is always built first (unless the
NO_NWAY option is set).

Default: 2, which is based on the results of a special algorithm that takes into
consideration the number of aggregations that are being created and the
number of processors that are available. The algorithm assumes that CPU
resources should be reserved for creating aggregation indexes.

Tip: So that each built index has a fair share of the assigned INDEXSORTSIZE
memory, INDEXSORTSIZE is divided by the CONCURRENT value. The value
of INDEXSORTSIZE should give each concurrent index build enough memory to
at least hold a table PARTSIZE. For best performance, INDEXSORTSIZE
divided by CONCURRENT should be greater than PARTSIZE.

CUBE=cube-name| folder-path/cube-name <(cube>
specifies a valid SAS name for the cube to be created, renamed, or updated. The
folder path that is specified is a metadata folder path. It exists only in the
metadata. In SAS 9.2, cubes are identified both by their location in an OLAP
schema and by their association with a metadata folder. By default, if no
folder-path is given, the cube will be associated with the folder that contains the
OLAP schema. When you specify a metadata folder, you can optionally add the
metadata type (CUBE) after the cube name. For naming guidelines, see “Naming
Guidelines and Rules for the SAS OLAP Server” on page 30.

Note: The cube name must be unique within the OLAP schema and the
metadata folder. The specified metadata folder path must exist. �

Here are some examples of the CUBE= option.
Example 1

proc olap cube=’MYCUBE’ /* other options */;
metasvr ... olap_schema=’SASApp - OLAP Schema’;
/* further statements */
run;

This example creates a cube named MYCUBE in the OLAP schema SASApp -
OLAP Schema and also surfaces the cube in that schema’s metadata folder. It is
located by default in /Shared Data/SASApp - OLAP Schema:

Example2

proc olap cube=’/Shared Data/Cubes/MYCUBE(cube)’ /* other options */;
metasvr ... olap_schema=’SASApp - OLAP Schema’;

/* further statements */
run;

This example creates a cube named MYCUBE in the OLAP schema SASApp -
OLAP Schema and also surfaces the cube in the metadata folder /Shared Data/
Cubes.

DATA | FACT=dsname
specifies the data source for the cube. The unsummarized data source can be any
SAS data file, including files that are supported by SAS/ACCESS software engines.
If you load the cube from a star schema, then the dsname is the name of the fact
table that contains the analysis variables from which to derive the measures for
the cube. The fact table must also contain fact keys that correspond to dimension
tables in the star schema.

248 Options � Appendix 1

You can also provide data set options along with DATA | FACT=. Options are
stored within the cube and reapplied when the data is accessed at run time. For
more information, see “Data Set Options” in SAS Language Reference: Concepts.

Note: This option is not required if you want to define the cube by using input
data from a fully summarized external data source (a crossing of all dimensions
known as an NWAY). In that case, you specify the data source for the cube by
using the TABLE= option in the AGGREGATION statement. �
Interaction: If you load the cube from a star schema, then you must use the

DIMENSION statement to do the following:
� specify the dimension table name (the DIMTBL= option)
� specify the dimension (primary) key column (the DIMKEY= option)
� specify the column (foreign key) in the fact table that corresponds to the

dimension key column (the FACTKEY= option)

DATAPATH=(’pathname’ ...’pathnameN’)
specifies the location of one or more partitions in which to place aggregation table
data. The data is distributed by cycling through each partition location according
to the partition size (set using the PARTSIZE= option). For example, if you specify
DATAPATH=(’C:\data1’ ’D:\data2’), then PROC OLAP places the first
partition of each aggregation table into directory C:\data1, the second partition of
each table into directory D:\data2, the third partition of each table into
C:\data1, and so on. It is also possible to have aggregation tables that use fewer
than the specified number of partitions. For example, your cube might contain an
aggregation table that fits entirely into C:\data1.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a DATAPATH= option in the
AGGREGATION statement. �
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

DELETE
deletes the physical cube that is specified with the CUBE= option. It also deletes
the cube’s definition, which is stored in the metadata repository.

If either the physical cube, its registration, or both are not present, then the
DELETE option behaves as explained in the following table:

Note: The use of the DELETE option will remove all information about a
cube, including security information and information maps. �

PROC OLAP � Options 249

Table A1.1 How the DELETE Option Behaves If the Physical Cube or Its Registration Is Not Present

Physical Cube
Exists Registration eExists Behavior of DELETE Option

No Yes The physical cube is not deleted. The
registration is deleted. If there is a
registration, and you use the DELETE
option, the registration is always deleted
and you cannot recreate the cube from
the registration. You can only recreate
the cube from the registration when you
use the DELETE_PHYSICAL option.

No No Fails because there is nothing to delete.

Yes No Fails because the cube cannot be located
without its registration information. You
must manually delete the cube files.

DELETE_PHYSICAL
deletes the physical cube that is specified with the CUBE= option but leaves the
cube definition intact. This enables you to build a new cube based on the saved
cube definition. With the DELETE_PHYSICAL option, the cube registration is
maintained in the metadata. As a result, you can change the definition of the cube
without changing the cube name or file path. The physical cube must be removed
before that cube can be rebuilt.

Note: The use of the DELETE_PHYSICAL option is preferable when
rebuilding a cube, because it preserves information about a cube, including
security information and information maps. �

If either the physical cube, its registration, or both are not present, then the
DELETE_PHYSICAL option behaves as explained in the following table:

Table A1.2 How the DELETE_PHYSICAL Option Behaves If the Physical Cube or Its registration Is Not Present

Physical Cube Exists Registration
Exists

Behavior of DELETE_PHYSICAL Option

No Yes A warning message is given that there is no
physical cube to delete.

No No Fails because there is nothing to delete.

Yes No Fails because the cube cannot be located
without its registration information. You
must manually delete the physical cube files.

DESC | DESCRIPTION=’cube-description’
specifies up to 200 characters to be stored as descriptive text. If the text includes
blank spaces or any characters that are not permitted in a valid SAS name, then
enclose the text within quotation marks.

Note: Cubes that are built with a cube description that is longer than 200
characters cannot be fully registered in the SAS Metadata Repository. The cube
description will be truncated to 200 characters. �

DRILLTHROUGH_TABLE | DT_TABLE | DT_TBL=table-name
specifies an optional drill-through table. Drill-through tables can be used by client
applications to provide a view from processed data into the underlying data source.

250 Options � Appendix 1

You can specify the DATA | FACT= table or a different table that includes the
necessary data and columns.

You can also specify data set options with this option. Options are stored within
the cube and reapplied when the data is accessed at run time. For more
information, see “Data Set Options” in SAS Language Reference: Concepts.

EMPTY_CHAR=’string’
specifies the quoted text string that identifies members of character levels that are
to be skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Ragged and Unbalanced
Hierarchies for a Dimension” on page 44. The maximum length of the quoted
string is 256 characters.

To be skipped, a member in a character level must have a caption whose value
matches the value of the EMPTY_CHAR= option. For example, if a member in a
character level is skipped, and if the caption of that member is Empty, then the
EMPTY_CHAR= option is specified as follows:

empty_char=’Empty’

Interaction: When specified in the PROC OLAP statement, the
EMPTY_CHAR= option can be overridden by the EMPTY_CHAR= or
IGNORE_EMPTY options in a HIERARCHY statement or by the EMPTY= or
IGNORE_EMPTY options in a LEVEL statement.
To skip members in numeric levels, use the EMPTY_NUM= option.

EMPTY_NUM=’string’
specifies the quoted text string that identifies members of numeric levels that are
to be skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Ragged and Unbalanced
Hierarchies for a Dimension” on page 44. The maximum length of the quoted
string is 256 characters.

To be skipped, a member in a numeric level must have a caption whose value
matches the value of the EMPTY_NUM= option. For example, if a member in a
numeric level is skipped, and if the caption of that member is Empty, then the
EMPTY_NUM= option is specified as follows:

empty_num=’.’

Interaction: When specified in the PROC OLAP statement, the EMPTY_NUM=
option can be overridden by the EMPTY_NUM= or IGNORE_EMPTY options in
a HIERARCHY statement or by the EMPTY= or IGNORE_EMPTY options in a
LEVEL statement.
Note: If there is no format that is associated with the member value, then

BEST12 is used as the format. �
To skip members in character levels, use the EMPTY_CHAR= option.

ESRI_MAP_SERVER=MapServerName
specifies the ESRI map server to which this cube should be linked. The map
server must already be defined on the metadata server. The ESRI map server
must be an ArcGIS server defined on the metadata server. The name will be
unique across all ArcGIS servers defined on the metadata server. There can only
be one map server per cube.

ESRI_REPLACE
indicates that any existing associations to ESRI metadata should be replaced with
those specified in this PROC OLAP session. If no ESRI options are provided, all
existing linkages are removed. If ESRI_REPLACE is not specified and there is a
conflict between existing associations and those specified in this session, an error
results and no associations are added or changed.

PROC OLAP � Options 251

IGNORE_MISSING_DIMKEYS=TERSE | VERBOSE
when specified while building a cube from a star schema, causes SAS to ignore an
error condition, log the error, and continue building the cube. The error condition
is detected when the fact table contains foreign key values that are not present in
one of the contributing dimension tables. By default, and when this option is not
specified, any missing dimension keys stop the build of the cube. When
IGNORE_MISSING_DIMKEYS=TERSE is specified, the cube build continues and
the fact table row with the missing key is ignored (it is not built into the cube).
The SAS log receives an entry that lists the total number of key values that are
missing from each dimension table. Specifying a value of VERBOSE produces the
same behavior, except that the log receives additional details; the missing keys are
listed for each dimension table.

INDEX | NOINDEX
specifies whether or not to create the aggregations with indexes. For faster cube
creation and adding and deleting aggregations, you can set this option to
NOINDEX. However, the lack of indexes will adversely affect query performance.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify an INDEX option in the
AGGREGATION statement. �
Default: INDEX

INDEXPATH=(’pathname’ ...’pathnameN’)
specifies the locations of the index component files that correspond to each
aggregation table partition as specified by the DATAPATH= option.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify an INDEXPATH= option in the
AGGREGATION statement. �

Note: Indexes are not created for aggregations that have fewer than 1,024
records. �
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

INDEXSORTSIZE=n
specifies the amount of memory in megabytes that is available when aggregations
are being created.
Default: The system’s available memory
Tip: So that each built index has a fair share of the assigned INDEXSORTSIZE

memory, INDEXSORTSIZE is divided by the CONCURRENT value. The value
of INDEXSORTSIZE should give each concurrent index build enough memory to
at least hold a table PARTSIZE. For best performance, INDEXSORTSIZE
divided by CONCURRENT should be greater than PARTSIZE.

MAX_RETRIES =
specifies the number of times proc OLAP will attempt to reconnect to the metadata
server after a connection is lost. The value must be between 0 and 25. The default
is 1, which indicates a single attempt to reconnect. A value of 0 means that PROC
OLAP will not attempted to reconnect.

MAX_RETRY_WAIT=
specifies the maximum number of seconds to wait before PROC OLAP attempts to
reconnect to the metadata server. The time to wait (initially MIN_RETRY_WAIT)
will be doubled each time a reconnect fails until this limit is reached. The value
must be between 1 and 3600. The default value is the greater of
MIN_RETRY_WAIT and 30.

252 Options � Appendix 1

MAXTHREADS=n
specifies the maximum number of threads that are used to asynchronously create
the aggregation indexes. The processing engine calculates how many threads are
needed based on the number of indexes that are being created and the
INDEXSORTSIZE= value. This option sets a limit on the number of threads
regardless of the number that is calculated by the processing engine. However, if
the processing engine determines that fewer than the maximum number of
threads is needed, then only the calculated number of threads are used.

Default: The value of the SAS system option SPDEMAXTHREADS or 0. If the
value is 0, then the processing engine determines the number of threads based
on the number of indexes that are created plus the available memory. The
maximum value is 65,536 threads.

MIN_RETRY_WAIT=
specifies the initial number of seconds to wait before PROC OLAP attempts to
reconnect to the metadata server. This delay applies to a second attempt to
reconnect to the metadata server. There is no delay for the first attempt to
reconnect. The value must be between 1 and 3600 (one hour). The default value is
the lesser of MAX_RETRY_WAIT and 30.

NO_NWAY
prevents PROC OLAP from automatically creating an NWAY aggregation (the
crossing of all dimension levels) for the new cube. The automatically created
NWAY is usually the largest in the cube and most resembles the content of the
unsummarized data source.

Interaction: If you use this option, then the input data source that is specified
with the DATA= or FACT= option must be available at run time; otherwise,
queries that are not covered by other aggregations will fail.

NONUPDATEABLE
specifies that the dimension (or dimensions) for a cube should be built with the
minimum amount of disk space to represent the members available when the cube
is created. By default, new dimensions are built to allow for new members to be
added in future updates. NONUPDATEABLE is valid only when the cube is first
created.

If this option is set, no new members can be added to the dimension in future
updates of the cube. This option can be specified either on the PROC OLAP
statement or on the individual DIMENSION statements. To make individual
dimensions non-updateable, use this option on the DIMENSION statement instead.

OUTCUBE=cube-name2| folder-path/cube-name <(cube)>
Specifies a valid SAS name for the new cube registration. For naming guidelines,
see “Naming Guidelines and Rules for the SAS OLAP Server” on page 30. The
folder path that is specified is a metadata folder path. It exists only in the
metadata. The OUTCUBE= option can be used in combination with either the
RENAME= options or the ADD_DATA option.

If you are updating a cube, you can use OUTCUBE= option with the ADD_DATA
option to specify the location of the new cube registration. If you are renaming an
existing cube, you can use the OUTCUBE= with the RENAME option.

OUTCUBE= does not create a copy of existing cubes. In SAS 9.2, cubes are
identified both by their location in an OLAP schema and by their association with
a metadata folder. By default, if no folder-path is given, the cube will be associated
with the folder of the original cube’s OLAP schema, or, if specified, with the folder
of the OLAP schema specified in the OUTSCHEMA= option. When you specify a
metadata folder, you can optionally add the metadata type (CUBE) after the cube
name.

PROC OLAP � Options 253

Note: The cube name must be unique within the OLAP schema and the
metadata folder. The specified metadata folder path must exist. �

Here are some examples of the OUTCUBE= option.
Example 1

proc olap rename cube=MYCUBE_A outcube=’/Shared Data/Cubes/MYCUBE_B’;
metasvr ... olap_schema=’SASApp - OLAP Schema’;
run;

This example creates a cube registration named MYCUBE_B in the schema
SASApp - OLAP Schema and the folder Shared Data/Cubes.

Example 2

proc olap add_data cube=MYCUBE_A outcube=’MYCUBE_B’ /* more options */;
metasvr ... olap_schema=’SASApp - OLAP Schema’;
/* more statements */
run;

This example creates a registration named MYCUBE_B for the updated version of
the cube MYCUBE_A. The new registration is located in the same OLAP schema
and folder as MYCUBE_A.

Note: See Chapter 7, “Updating SAS OLAP Cubes,” on page 79 for further
information. �

OUTSCHEMA=olap-schema-name|
specifies the name of the OLAP schema into which a new cube should be placed.
The OLAP schema must already exist within the SAS Metadata Server and the
metadata (or a repository on which it depends) specified in the METASVR
statement. Changing the OLAP schema for the cube is strictly a change to the
metadata and does not result in a physical move.

You can use OUTSCHEMA= in combination with the RENAME option to move
an existing cube registration into a different OLAP schema. You can
simultaneously use the OUTCUBE= option to also change the cube’s name. In
addition, OUTSCHEMA= can be used in combination with the ADD_DATA option
to specify the target OLAP schema for the registration of the updated cube.

Note: See Chapter 7, “Updating SAS OLAP Cubes,” on page 79 for further
information. �

PARTSIZE=partition-size
specifies the partition size in megabytes of the aggregation table partitions and
their corresponding index components.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a PARTSIZE= option in the
AGGREGATION statement. �

Default: 128 megabytes. The minimum value is 16 megabytes.

PATH=’pathname’
specifies the physical path to the location of a new cube. Within the specified path,
the cube is stored in a directory that uses the name of the cube. However, if the
cube folder already existis, a unique subdirectory is generated. When a cube is
renamed with the OUTCUBE= option, either with the RENAME or ADD_DATA
option, the physical path name does not change. Here is an example where this
might cause a unique subdirectory to be generated:

1 Create a cube named MRKTDATA.

2 Rename the cube MRKTDATA as NEW_MARKET_DATA (or update
MRKTDATA and specify OUTCUBE=NEW_MARKET_DATA).

254 Options � Appendix 1

3 Create another cube named MRKTDATA.
The new cube MRKTDATA would have a cube folder of C:\v9cubes\MRKTDATA1

because the cube folder C:\v9cubes\MRKTDATA still exists for cube
NEW_MARKET_DATA.

REGISTER_ONLY
specifies that metadata for a cube is to be registered, but the cube is not to be
physically built. All of the metadata for the cube is added to the SAS Metadata
Repository. The physical cube can be built later using the existing metadata
definition, with either the short form of PROC OLAP or in SAS OLAP Cube
Studio. Note that all data sets must physically exist at registration time. The data
sets can be empty—they do not need to contain data. Complete data sets are
required when the cube is physically built.

RENAME
indicates that the cube should be renamed. Renaming a cube updates the
metadata for the cube but does not change the file structure or physical location of
the cube. This process requires an exclusive lock on the cube. If the cube is being
queried by SAS OLAP Server sessions, the cube will need to be disabled (see the
OLAPOPERATE procedure) before it is renamed.

Here is the syntax usage for the RENAME option:
PROC OLAP RENAME CUBE=cube-name1 <OUTCUBE=cube-name2>

<OUTSCHEMA=olap-schema-name>; METASVR options; RUN;

Note: The cube that is being renamed must be defined in the metadata but
does not need to physically exist. �

REORGANIZE_LEVELS | REORG_LEVELS
enables you to reorganize all eligible levels for a cube. It is used when you have
performed multiple updates on a cube such that the level values must be
reorganized. If this option is used, only those levels that have previously been
updated with new captions during prior instances of cube update are eligible to be
reorganized.

Here is an example of the REORGANIZE_LEVELS option:

proc olap cube=test REORG_LEVELS;
metasvr ... etc;;
run

SECURITY_SUBSET= YES|NO
controls how permission conditions are interpreted at query time. With
SECURITY_SUBSET= YES, cell values are recalculated at query time based on
the security subset defined by the active permission conditions for the given user.
SECURITY_SUBSET=NO does not recalculate the cell values. The default value
(NO) includes all members within a total.

Note: This option can also be found in SAS OLAP Cube Studio. See the option
Include secured member values in presummarized computations on the
Cube Designer - General page of the Cube Designer wizard. �

SEGSIZE=rows-per-segment
specifies the number of observations (table rows) in the file segment of the index
component. The value is expressed in multiples of 1,024. The minimum value is 1
(1,024 rows). The segmented indexes are used to optimize the processing of
WHERE expressions. Each parallel thread is given a segment of the table to
evaluate that is equal to the value of the SEGSIZE= option multiplied by 1,024.

Note: This option applies to the NWAY aggregation and all aggregations that
do not explicitly specify a SEGSIZE= option in the AGGREGATION statement. �

PROC OLAP � Options 255

Default: 8 (8 x 1,024 = 8,192 rows)

SYNCHRONIZE_COLUMNS
synchronizes the column names stored in the cube’s internal metadata with the
input column names for a cube. This is necessary when dataset column names
have changed since the cube was last built. This applies to cube levels, measures,
and properties.

Note: If column names for a cube have changed and the cube was not
synchronized, you will not be able to update the cube. If the cube has
presummarized aggregations, you will not be able to query the cube. �

UPDATE_DISPLAY_NAMES
enables you to update the captions for dimensions, hierarchies, levels, member
properties, and measures. This option specifies that captions or descriptions on the
cube are going to be modified. The UPDATE_DISPLAY_NAMES option is allowed
with the ADD_DATA option or by itself on the PROC OLAP statement. It can also
be used to change the description or caption on the DIMENSION, HIERARCHY,
LEVEL, MEASURE and PROPERTY statements. Here is the syntax usage for the
UPDATE_DISPLAY_NAMES option:

PROC OLAP CUBE=cubename DESCRIPTION="new description"
UPDATE_DISPLAY_NAMES DT=newdtname; METASVR options; DIMENSION
TIME DESCRIPTION="New TimeDescription" CAPTION="New TimeCaptions";

Specific considerations for the UPDATE_DISPLAY_NAMES option include the
following:

Drill-through
Table

can be updated with the UPDATE_DISPLAY_NAMES option.
When you rename a cube, only the cube description or
drill-through table name can be updated via the
UPDATE_DISPLAY_NAMES option.

NUNIQUE
Measures

When the UPDATE_DISPLAY_NAMES option is specified, the
NUNIQUE measure’s INCLUDE_CALCULATED_MEMBERS
option can be toggled ON or OFF (with the addition of the
NOINCLUDE_CALCULATED_MEMBERS option).

RENAME The only description that can change during a RENAME of a
cube is the cube description (the drill–through table name can
also be changed during a RENAME). Other descriptions and
captions must be altered in a separate step after the RENAME
is executed.

UPDATE_IN_PLACE
enables you to control how the updated cube is made available to users. An update
of the existing cube will occur. UPDATE_IN_PLACE can only be be used when the
ADD_DATA option is specified. It cannot be used in combination with the
OUTCUBE= or OUTSCHEMA= options. See Chapter 7, “Updating SAS OLAP
Cubes,” on page 79 for further information.

WORKPATH=(’pathname1’ ...’pathnameN’)
specifies one or more locations for temporary work files.

256 METASVR Statement � Appendix 1

Default: For all operating environments except z/OS and VMS, if the
WORKPATH= option is not specified, PROC OLAP uses the SPDEUTILLOC=
system option. If SPDEUTILLOC= is not specified, PROC OLAP uses the
UTILLOC= system option. If UTILLOC= is not specified, or if you do not have
write access to the specified path, the following message is generated:

ERROR: Cannot create temporary index for proc olap.
NOTE: The SAS System stopped processing this step
because of errors.

For z/OS and VMS, PROC OLAP uses the SPDEUTILLOC= system option only.
Note: The SPD Engine options are honored by PROC OLAP only if the

REGISTER_ONLY option is set on the PROC OLAP statement, and only if the
long form of the procedure is used to build a cube. The long form of the procedure
is used when you run a SAS program that contains PROC OLAP code. The short
form of the procedure is used by SAS OLAP Cube Studio. �

METASVR Statement
The METASVR statement identifies the SAS metadata repository in which existing

cube metadata information exists or in which metadata about a new cube is stored.

METASVR OLAP_SCHEMA=’schema-name’ < option(s)>;

The METASVR statement options can be used to override the metadata repository
connection values that are specified through SAS start-up options.

Note: During an interactive SAS session, if connection information is not available
either through start-up settings or through a METASVR statement, then the user is
prompted for the missing information. For more information about SAS start-up
options, see SAS Language Reference: Dictionary. �

Following is an example of a METASVR statement with all of its options set:

metasvr olap_schema=’Banking Schema’
repository=’financial repository’
host=’misdept.us.mar.com’
port=9999
userid=jjones
pw=’my password’;

Required Argument
OLAP_SCHEMA=’schema-name’

is a string that specifies the name of the schema that has been defined in a SAS
metadata repository. The name can be a maximum of 32 characters. The OLAP
schema specifies which group of cubes that a SAS OLAP Server can access. Each
OLAP schema can be accessed by multiple SAS OLAP Servers. However, each SAS
OLAP Server has access to only one OLAP schema. When using embedded blanks
or special characters in the schema name, enclose the name in quotation marks.

PROC OLAP � DIMENSION Statement 257

Options
HOST=’metadata-server-host-name’

is a string that specifies the IP address of the metadata repository host. An
example is ’misdept.us.mar.com’. The address can be a maximum of 256
characters. When using lowercase letters, embedded blanks, or special characters
in the host name, enclose the name in quotation marks.

PORT=port-number
specifies the numeric value of the port on which the metadata repository resides.

PW=’password’
is a string that specifies the password for the user identified with the USERID=
option. The password can be a maximum of 512 characters. When using lowercase
letters, embedded blanks, or special characters in the password, enclose the
password in quotation marks.

REPOSITORY=’repos-name’
is a string that specifies the name of a SAS metadata repository in which existing
cube metadata information exists or in which metadata about a new cube is
stored. The name can be a maximum of 60 characters. When using lowercase
letters, embedded blanks, or special characters in the repository name, enclose the
name in quotation marks.

USERID=’userid’
is a string that specifies the user’s identification for the specified metadata
repository. The identification can be a maximum of 256 characters. When using
lowercase letters, embedded blanks, or special characters in the user ID, enclose
the user ID in quotation marks.

DIMENSION Statement
The DIMENSION statement defines the logical and hierarchical relationships

between the variables in the input data.

DIMENSION dim-name HIERARCHIES=(hier–nam ... hier-nameN) <option(s)>;

At least one DIMENSION statement must be specified when the cube is created. The
DIMENSION statement is not used when adding or deleting aggregations from cubes.

The maximum number of dimensions that can be defined in a cube is determined by
combining the number of dimensions with the number of multiple hierarchies that are
defined in those dimensions. The maximum value of that sum is 128. Mathematically,
the sum is expressed as follows:

MaxDims = NumDims + NumMultipleHeirarchies = 128

All hierarchies other than the first hierarchy in each dimension apply to the total.
Here are some examples of cubes that are defined with the maximum number of

dimensions:
128 dimensions, each dimension has 1 hierarchy
127 dimensions, 1 dimension has 2 hierarchies
126 dimensions, 1 dimension has 3 hierarchies
126 dimensions, 2 dimensions have 2 hierarchies

The DIMENSION statement does not create aggregations. To create aggregations,
use the AGGREGATION statement.

258 Required Arguments � Appendix 1

A DIMENSION statement must include the name of at least one hierarchy in its
HIERARCHIES= option. In addition, a HIERARCHY statement must include the name
of at least one level in its LEVELS= option. Note that you cannot use the same level in
more than one dimension.

You can use LEVEL statements to specify a time period for each level in a TIME
dimension. You can also use LEVEL statements to supply information such as a
level-specific sort order or a level description.

The following example uses one DIMENSION statement, two HIERARCHY
statements, and three optional LEVEL statements to define a fully specified dimension.
In the example, the same levels are being used in different ways.

dimension time
hierarchies=(Year_Months Year_Quarters)
;
hierarchy Year_Months

levels=(year month day)
;

hierarchy Year_Quarters
levels=(year quarter day)
;

level year
type=year
caption=’Year’
;

level quarter
type=quarters
caption=’Quarter’
;

level month
type=months
caption=’Month’
;

level day
type=days
caption=’Day’
;

Required Arguments
dim-name

names a dimension by using a valid SAS name up to 32 characters. For naming
guidelines, see “Naming Guidelines and Rules for the SAS OLAP Server” on page
30.

HIERARCHIES=(hier-name...hier-nameN)
specifies the name of one or more hierarchies as defined by HIERARCHY
statements.

Options
CAPTION=’string’

specifies a maximum of 200 characters that can be used to create a meaningful
description of the dimension. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters

PROC OLAP � Options 259

that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Note: Cubes that are built with captions that are longer than 200 characters
cannot be fully registered in the SAS Metadata Repository. Captions will be
truncated to 200 characters. �
Default: dim-name

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the dimension. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: dim-name

DIMKEY=dimension-table-column
specifies the name of a column in the dimension table that is specified in the
DIMTBL= option. That column must contain values that correspond to fact key
values in the fact table and be a value that corresponds to a unique combination of
level values in the fact table.

Note: The corresponding fact key is specified with the FACTKEY= option. The
fact table is specified with the FACT= option in the PROC OLAP statement. �

For example, for a dimension that is composed of three levels—NAME,
ADDRESS, and INCOME—a dimension key named CUSTOMER_ID might exist.
In this dimension, each unique value of CUSTOMER_ID corresponds to a unique
combination of NAME, ADDRESS, and INCOME.

Table A1.3 Sample Dimension Data That Illustrates How Unique DIMKEY Values Correspond to Unique
Combinations of Level Values

CUSTOMER_ID NAME ADDRESS INCOME

1 Juan hostel 2000

2 Shelly apartment 2000

3 Paul house 25000

4 Makoto castle 250000000

DIMTBL=libname.memname
specifies the two-level SAS name or a dimension table that matches the fact table
that is specified with the FACT= option in the PROC OLAP statement. The
dimension table must contain one column for each dimension level and each level
property and one column for the dimension key. However, if the dimension key is
also a level, then the dimension table needs to have only as many columns as
there are levels in the dimension. Member metadata for the dimension is derived
from the information in the level columns of the dimension table.

You can also specify data set options with DIMTBL=. Options are stored within
the cube and reapplied when the data is accessed at run time. For more
information, see “Data Set Options” in SAS Language Reference: Concepts.

Note: The same dimension tables can be used to load cubes that have some,
but not all, dimensions in common. This means that it is possible for multiple
cubes to share the same dimension data. �

Note: If you are building a cube that will contain multiple national languages,
then replace the DIMTBL= option with DIMTABLELIBREF= and

260 Options � Appendix 1

DIMTABLEMEMPREF= options. In addition, you must create a
USER_DEFINED_TRANSLATIONS statement. �

DIMTABLELIBREF=
specifies the library for the data sets that exist, for this dimension, in each
language that is specified by the USER_DEFINED_TRANSLATIONS statement.
The library is associated with the dimension and not the language. You cannot put
different languages in different libraries, but you can put different dimensions in
different libraries. This option is required if you are using the Multiple Language
Support capabilities of the SAS OLAP Server. It is also used in conjunction with
the DIMTABLEMEMPREF= option.

Note: If you are building a cube that will contain multiple national languages,
then DIMTABLELIBREF= and DIMTABLEMEMPREF= are required instead of
DIMTBL=. �

DIMTABLEMEMPREF=
specifies the member prefix for the translated dimension tables. The member
prefix is the prefix of the data set name. The suffix of the name is provided by the
USER_DEFINED_TRANSLATIONS statement. For example, if the member prefix
is dealdim_ and the suffix is da_DK, then PROC OLAP looks for a data set named
dealdim_da_DK.sas7bdat in the library that is specified by the
DIMTABLELIBREF= option. DIMTABLEMEMPREF= is required if you are using
the Multiple Language Support capabilities of the SAS OLAP Server. It is used in
conjunction with the DIMTABLELIBREF= option and the
USER_DEFINED_TRANSLATIONS statement.

Note: If you are building a cube that will contain multiple national languages,
then DIMTABLELIBREF= and DIMTABLEMEMPREF= are required instead of
DIMTBL=. �

EMPTY_CHAR=’string’
specifies the text string that identifies members of character levels that are to be
skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Cube Hierarchies” on page 42.

To be skipped, a member in a character level must have a caption whose value
matches the value of the EMPTY_CHAR= option. For example, if a member in a
character level is skipped, and if the caption of that member is Empty, then the
EMPTY_CHAR= option is specified as follows:

empty_char=’Empty’

The maximum length of the quoted string is 256 characters.
Interaction: When specified in the HIERARCHY statement, the

EMPTY_CHAR= option overrides (for that hierarchy) any specification of the
EMPTY_CHAR= option in the PROC OLAP statement. In turn, the
EMPTY_CHAR= option in the HIERARCHY statement is overridden by the
EMPTY= or IGNORE_EMPTY options in the LEVEL statements in that
hierarchy.
To skip members in numeric levels, use the EMPTY_NUM= option.

EMPTY_NUM=’string’
specifies the text string that identifies members of numeric levels that are to be
skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Cube Hierarchies” on page 42.

To be skipped, a member in a numeric level must have a caption whose value
matches the value of the EMPTY_NUM= option. For example, if a member in a
numeric level is skipped, and if the caption of that member is Empty, then the
EMPTY_NUM= option is specified as follows:

PROC OLAP � Options 261

empty_num=’Empty’

The maximum length of the quoted string is 256 characters.
Interaction: When specified in the HIERARCHY statement, the EMPTY_NUM=

option overrides (for that hierarchy) any specification of the EMPTY_NUM=
option in the PROC OLAP statement. In turn, the EMPTY_NUM= option in the
HIERARCHY statement is overridden by the EMPTY= or IGNORE_EMPTY
options in the LEVEL statements in that hierarchy.
Note: If there is no format that is associated with the member value, then

BEST12 is used as the format. �
To skip members in character levels, use the EMPTY_CHAR= option.

FACTKEY=fact-table-column
specifies the name of the column in the fact table that corresponds to the
dimension table column that is specified with the DIMKEY= option. The name
does not have to match the DIMKEY name. Referring back to the previously
discussed example, the FACTKEY name could be CUST_NO even though the
DIMKEY name is CUSTOMER_ID. However, even if the names are different, the
underlying data must match. For example, you must match numeric columns with
numeric columns and character columns with character columns. In addition, if
the FACTKEY is a character column, then it must be the same length as the
DIMKEY column. If the FACTKEY is a numeric column, then it is handled as a
decimal precision number (rather than as an integer).

IGNORE_EMPTY
specifies that, for this hierarchy, any values that were specified for the
EMPTY_CHAR= and EMPTY_NUM= options in the PROC OLAP statement are to
be ignored. This option can be overridden by specifications of EMPTY_CHAR= and
EMPTY_NUM= in the same HIERARCHY statement. The IGNORE_EMPTY
option can also be overridden in subsequent LEVEL statements by using the
EMPTY= option. For further information, see “Defining Cube Hierarchies” on page
42.

MAP_SERVICE=MapServiceName
specifies the map service to which this cube should be linked. The dimension must
have a dimension type of GEO. The map service must be a map service defined
with the ESRI server specified above. There can only be one map service per GEO
dimension.

NONUPDATEABLE
specifies that the dimension should be built with the minimum amount of disk
space to represent the members available when the cube is created. By default,
new dimensions are built to allow for new members to be added in future updates.
NONUPDATEABLE is valid only when the cube is first created.

If this option is set, no new members can be added to the dimension in future
updates of the cube. If you want to make all dimensions of a cube non-updateable,
you can use the NONUPDATEABLE option on the PROC OLAP statement instead.

SORT_ORDER=ASCENDING | DESCENDING | ASCFORMATTED |
DESFORMATTED | DSORDER

specifies a sort order for all levels in the dimension. Values that are returned from
queries display in this order by default.
Default: ASCENDING
Interaction: This setting is overridden if sort order is set in a LEVEL statement.
Tip: To specify a sort order for each level within a dimension, set the

SORT_ORDER= option in each LEVEL statement. Values that are returned
from queries display in this order.

262 Options � Appendix 1

Note: The sort order can be changed at query time using the MDX ORDER
functions.

TYPE=TIME | GEO
identifies the dimension as a TIME or GEO dimension. The GEO type is used
when defining ESRI map information for a cube. There can only be one GEO and
one TIME dimension for a cube.
Requirement: You must set this option for a TIME or GEO dimension. TIME

and GEO are the only valid values for this option.
Interaction: You can use LEVEL statements to specify the time period of each

level in the TIME dimension. Specifying TYPE=TIME also allows you to use the
MDX time series functions during data query.
Note: In order to add geographic information to an existing cube, you must

use SAS OLAP Cube Studio. The OLAP procedure does not support adding the
GEO type to an existing dimension. �

UPDATE_DIMENSION
enables you to add new members to a cube and update member properties for
existing members of the dimension. UPDATE_DIMENSION can only be used on a
dimension without the NONUPDATEABLE designation. It can be used with or
without the ADD_DATA option on the PROC statement. It can be used with one of
the following parameters:

MEMBERS
This means that the dimension table currently associated with the dimension
should be read and processed for new members of every hierarchy in that
dimension. If ADD_DATA option is used, this is the default behavior for
cubes loaded from a detail table or a star schema. If the ADD_DATA option is
not used, it can be applied to individual dimensions for cubes loaded from
star schemas only. It is not valid for a cube loaded from a detail table. Thus
this option provides a way to update individual dimensions without adding
data to the cube.

MEMBERS_AND_PROPERTIES
This means that the dimension table currently associated with the dimension
should be read and processed for new members PLUS member properties for
existing members should be changed with the new values in the dimension
table. If the ADD_DATA option is used, this option can be used for cubes
loaded from a detail table or a star schema. If the ADD_DATA option is not
used it can be applied to individual dimensions, for cubes loaded from star
schemas only. It is not valid for a cube loaded from a detail table. Thus this
option provides a way to update individual dimensions without adding data
to the cube.

OFF
This means that the dimension table currently associated with the dimension
should NOT be read at all. It applies only to cubes loaded from a star schema
and never to a cube loaded from a single detail table. If the ADD_DATA
option is used on the PROC, this option must be used on any UPDATEABLE
dimensions whose dimensions tables should not be processed, since the
default behavior is UPDATE_DIMENSIONS= MEMBERS. If the ADD_DATA
option is not used on the PROC, this is the DEFAULT option for all
dimensions in the cube.

PROC OLAP � Options 263

LEVEL Statement
The LEVEL statement provides additional information about a level specified with

the LEVELS= option in a HIERARCHY statement, and enables you to set options for
ragged hierarchies. Each LEVEL statement must correspond to a HIERARCHY
statement. You cannot have a level that does not belong to a hierarchy.

LEVEL level-name <option(s)>;

For TIME dimensions, you can use LEVEL statements to specify a time period for
each level in the dimension. However, if you specify the time period for one level, then
you must specify the time period for all levels. You also use LEVEL statements to
supply information such as a level description or a level-specific sort order. You can
have a maximum of 256 levels per cube and a maximum of 19 levels per hierarchy.

Note: Levels that are shared between hierarchies share the values of the options
EMPTY_CHAR=, EMPTY_NUM=, EMPTY=, and IGNORE_EMPTY. These options are
used to create ragged or unbalanced heirarchies, as described in “Defining Cube
Hierarchies” on page 42. �

Note: When you rebuild a cube that has been physically deleted, the rebuilt cube
still uses the formats that were originally used to build the cube and were saved in the
cube’s metadata. This means that the rebuilt cube does not automatically include any
formatting changes that you might have made in the input data source. To manually
specify the new formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

Required Arguments
level-name

specifies a valid SAS name. For naming guidelines, see “Naming Guidelines and
Rules for the SAS OLAP Server” on page 30. This is the same name that is used
in the LEVELS= option in the HIERARCHY statement. Level names must be
unique within a cube.
Interaction: Level names should not conflict with the ALL member name in the

HIERARCHY statement. You should not use ALL for the level name .

Options
CAPTION=’string’

specifies a maximum of 200 characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the text includes blank spaces or special characters
that are not permitted in a valid SAS name, then enclose the caption within
quotation marks.

Note: Cubes that are built with captions that are longer than 200 characters
cannot be fully registered in the SAS Metadata Repository. Captions will be
truncated to 200 characters. �
Default: The column’s label in the input data source. If there is no label

available, the default is the level name.

264 Options � Appendix 1

COLUMN=column-name
specifies the name of a column from the input data source. Use this option if the
column name is not the same as the LEVEL name. This option is useful in the
following scenarios:

� You want your level name to be different from the input column name.
� Different dimension tables for the cube each have a column with the same

name
� You want to use the same dimension table and columns in more than one

dimension of your cube.
� You load multiple levels from the same input column (in combination with

the FORMAT= option).

You can use a column as a level even if it is also being used as a measure.

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the text includes blank spaces or any characters that
are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: The value of the CAPTION= option if one exists; otherwise, the

column’s label. If there is no label available, the default is the level name.

EMPTY=’string’
specifies the text string that identifies members that are to be skipped or
disregarded. Members are skipped in order to create ragged or unbalanced
hierarchies, as described in “Defining Cube Hierarchies” on page 42.

To be skipped, a member must have a caption whose value matches the value of
the EMPTY= option. For example, if a member is skipped, and if the caption of
that member is Empty, then the EMPTY= option is specified as follows:

empty=’Empty’

The maximum length of the quoted string is 256 characters.
Interaction: The EMPTY= option overrides for that level any specification of

EMPTY_CHAR=, EMPTY_NUM=, or IGNORE_EMPTY that might have been
specified in the respective HIERARCHY or PROC OLAP statement.

ESRI_MAP_LAYER=MapLayerName
specifies the ESRI map layer which should be associated with this level. It must
be a map layer defined in the specified map service. The level must be a level
contained in the dimension with dimension type GEO. Only one map layer may be
defined per level. The same map layer can be specified for different levels in the
dimension. However, it is generally with a different map field specified.

FORMAT=sas-format-name
specifies the SAS format to be used when reading in the member caption data
from the input data source for the LEVEL. By default, the column format specified
in the input table is used. However, you can override that format by using the
SAS FORMAT statement in the PROC OLAP step or the FORMAT= option on the
LEVEL statement.

This option can be particularly useful if you want to load multiple levels from
the same column. A typical use is loading the levels of a time dimension. For
example, if your input data contain a column with a SAS date values, you could
load the time dimension levels, as shown in the following example.

dimension Time
hierarchies=(Time)

PROC OLAP � Options 265

type=time
;
hierarchy Time

levels=(Year Quarter Month Day)
;

level Year
type=year
column=date_id
format=year.
;

level Quarter
type=quarters
column=date_id

format=qtr.
;

level Month
type=months
column=date_id
format=monname.
;

level Day
type=days
column=date_id
format=weekdate.
;

IGNORE_EMPTY
specifies that any value of the EMPTY_CHAR= option (for character levels) or
EMPTY_NUM= option (for numeric levels) that was specified in the respective
HIERARCHY or PROC OLAP statement is to be ignored. The level is not to be
skipped in the cube build. For further information, see “Defining Cube
Hierarchies” on page 42

SORT_ORDER=ASCENDING | DESCENDING | ASCFORMATTED |
DESFORMATTED | DSORDER

specifies a sort order for a level within a dimension. Values that are returned from
queries display in this order.
Default: If a sort order is not specified in the DIMENSION statement or in the

LEVEL statement, then the default order of ASCENDING is applied.
Interaction: This setting overrides the SORT_ORDER= setting in the

DIMENSION statement.

TYPE=YEAR | HALF_YEARS | QUARTERS | MONTHS | WEEKS | DAYS |
HOURS | MINUTES | SECONDS

specifies the time period for the dimension levels when you specify the
TYPE=TIME option in the DIMENSION statement.

Requirement: If you specify a time period for one level in the TIME dimension,
then you must specify the time period for all levels in the dimension. With
regard to drill path, identify the levels from the most general time period to the
most specific.

266 PROPERTY Statement � Appendix 1

PROPERTY Statement

The PROPERTY statement assigns properties to specific levels within specified
hierarchies.

PROPERTY prop-name LEVEL=level-name <option(s)>;

Each level can have more than one property assigned to it by using multiple
PROPERTY statements. Property names must match the name of a column in the
input data source, or you must use the COLUMN= option to specify the column name.

In the following example, the COLUMN= option is used in the first two PROPERTY
statements because the column name is different from the property name. In this way,
the property named Population can be assigned to both the country level and the
state level in the geo hierarchy. The level state has two properties: Population
and West_of_Miss.

property Population
column=p_country
hierarchy=geo
level=country
;

property Population
column=p_state
hierarchy=geo
level=state
;

property West_of_Miss
hierarchy=geo
level=state
;

Required Arguments
prop-name

specifies a valid SAS name for the property. Usually this is the name of a column
in the input data source. If it is not the name of a column, then you must include
the COLUMN= option to specify the column name. For naming guidelines, see
“Naming Guidelines and Rules for the SAS OLAP Server” on page 30.

LEVEL=level-name
specifies the name of the level that you are assigning the property to.

Options
CAPTION=’string’

specifies a maximum of 200 characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the caption includes blank spaces or special characters
that are not permitted in a valid SAS name, then enclose the caption within
quotation marks.

Note: Cubes that are built with captions that are longer than 200 characters
cannot be fully registered in the SAS Metadata Repository. Captions will be
truncated to 200 characters. �

PROC OLAP � HIERARCHY Statement 267

Default: The column’s label if it exists, otherwise the property name.

COLUMN=column-name
specifies the name of a column from the input data source. You must use this
option if the column name is not the same as the property name.

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the description includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: The value of the CAPTION= option if one exists; otherwise, the
column’s label.

ESRI_MAP_FIELD=MapFieldName
specifies the field of the map layer to be associated with the level. It must be a
map field associated with the LEVEL statement MapLayerName. The OLAP
property must be named "SAS_SPATIAL_ID" and must be a property of the level
associated with the map layer. It must be associated with all hierarchies in the
dimension. If the HIERARCHY= (or HIERARCHIES=) option is specified, all
hierarchies in the dimension must be specified.

Note: There only can be one map field for each SAS_SPATIAL_ID property. In
addition, there can only be one SAS_SPATIAL_ID property per level. �

HIERARCHY=(hier-name ... hier-nameN)
specifies the name of one or more hierarchies that contain the level. If you do not
include the HIERARCHY option, then the property is automatically assigned to all
occurrences of the level in all of the hierarchies in which it appears. Otherwise,
the property is assigned to the level only in the specified hierarchies.

SAS_SPATIAL_ID
specifies the ESRI mapping properties for the cube levels that you are mapping to.
The COLUMN, HIERARCHY, and LEVEL property options are included.

To associate the values in your OLAP data with the regions of an ESRI map,
your cube must contain member properties whose values match the field values in
the ESRI map service. For each level of a hierarchy that you want to use with the
ESRI map component, you must define a member property named
SAS_SPATIAL_ID to identify the map region. Here is an example:

PROPERTY SAS_SPATIAL_ID
LEVEL=Level2_ProvinceID
HIERARCHY= (geography)
COLUMN=Level2_ProvinceID_Char
CAPTION=’SAS_SPATIAL_ID’

HIERARCHY Statement
The HIERARCHY statement specifies the navigational order of the levels in a

dimension.

HIERARCHY hier-name LEVELS=(level–name1 <level–name2 ...level-nameN>)
<option(s)>;

You must define at least one hierarchy for each dimension. Specifically, each
DIMENSION statement must identify at least one unique HIERARCHY statement.

268 Required Arguments � Appendix 1

The maximum number of hierarchies that can be defined in a cube is 128.
Mathematically, the sum is expressed as follows:

MaxHiers = NumMultHiers + NumDimensions = 128

All hierarchies other than the first hierarchy in each dimension apply to the total.
Here are some examples of cubes that meet the maximum number of hierarchies:
128 dimensions, each dimension has 1 hierarchy
127 dimensions, 1 dimension has 2 hierarchies
126 dimensions, 1 dimension has 3 hierarchies
126 dimensions, 2 dimensions have 2 hierarchies

Levels in the same dimension can be shared between hierarchies. You can have a
maximum of 19 levels per hierarchy. There is no limit to the number of hierarchies per
dimension.

Following is an example of a HIERARCHY statement that specifies three levels:

hierarchy Geography
levels=(country region division);

Required Arguments
hier-name

specifies a valid SAS name for the hierarchy. This name is also used in the
HIERARCHIES= option in the DIMENSION statement. The hier-name cannot be
the same as any of its level names. Hierarchy names must be unique within the
cube. If the hierarchy that you are defining is the only one in the dimension, then
the hierarchy name must match the dimension name. For other naming guidelines,
see “Naming Guidelines and Rules for the SAS OLAP Server” on page 30.

LEVELS=(level-name1 <level-name2 ...level-nameN>)
specifies a valid SAS name for at least one level. These names correspond to the
level names used in any optional LEVEL statements. Level names must be unique
within a cube and cannot be the same as the hier-name. (You can use a column as
a level even if it is also being used as a measure.) Enter one or more names,
separated by a space. Enter the level names in the order in which you want them
to be used, beginning with the top level. For naming guidelines, see “Naming
Guidelines and Rules for the SAS OLAP Server” on page 30.
Requirement: If the hierarchy is part of a TIME dimension, then the levels

must be listed in order from most general to least general based on their
assigned TYPE. For example, a TYPE=YEAR level must be listed before a
TYPE=QUARTER level.

Interaction: Level names should not conflict with the ALL member name in the
HIERARCHY statement. You should not use ALL for the level name .

Options
ALL_MEMBER=’string’

specifies the caption for the ALL member of the hierarchy.
Interaction: The ALL member name should not conflict with Level names in the

LEVEL or HIERARCHY statement. When selecting the ALL member name,
follow these guidelines:

� The all member caption should not be all.
� A level name within the hierarchy should not be named all.

PROC OLAP � Required Arguments 269

� The all member caption should not be a level name that is within the
hierarchy.

When a cube is built, a warning message is displayed in the SAS log and in
SAS OLAP Cube Studio if a conflict between the ALL member name and a level
name is detected.

CAPTION=’string’
specifies a maximum of 200 characters that can be used to create a meaningful
description of the hierarchy. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Note: Cubes that are built with captions that are longer than 200 characters
cannot be fully registered in the SAS Metadata Repository. Captions will be
truncated to 200 characters. �

Default: hier-name

DEFAULT
identifies a hierarchy as the default hierarchy for the dimension that is defined by
the DIMENSION statement.

Default: The first hierarchy listed for the dimension

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the hierarchy. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: The hierarchy caption, which may be the default, hier-name.

MEASURE Statement

The MEASURE statement defines the cube’s measures and indicates how they map
to the input data.

MEASURE measure-name STAT=statname <option(s)>;

Include one MEASURE statement for each measure in the cube. Each cube must
have at least one measure. Measure names must be unique. You can have a maximum
of 1,024 measures per cube.

Note: All cube aggregations have identical measures. �

Required Arguments
measure-name

specifies a valid SAS name for the measure. The name must be unique. For
naming guidelines, see “Naming Guidelines and Rules for the SAS OLAP Server”
on page 30.

STAT= statname
specifies the statistic for the measure. The following base statistics are available:
N, NMISS, NUNIQUE, SUM, MAX, MIN, or USS. In addition, these derived

270 Required Arguments � Appendix 1

statistics are also available: AVG, RANGE, CSS, VAR, STD, STDERR, CV, T, PRT,
LCLM, or UCLM.

Note: At least one non-NUNIQUE measure must be defined. �
New cubes that are based on a data source that contains existing summarized

data (where such data has been indicated in at least one AGGREGATION
statement via the TABLE= option), must include MEASURE statements for the
stored statistics required for each derived statistic that you want to create for the
new cube. For example, if you want to calculate AVG, you must create measures
for N and SUM, as well as AVG.

Note: MOLAP aggregations do not require the N and SUM. �
The following table indicates which stored statistics are required for each

derived statistic:

Table A1.4 Stored Statistics Required for Each Derived Statistic

Derived Statistics Required Stored Statistics

AVG N, SUM

CSS N, SUM, USS

RANGE MIN, MAX

VAR, STD, STDERR, CV, T,
PRT, LCLM, UCLM

N, SUM, USS

Note: For information about statistic formulas, see “Keywords and Formulas”
in Base SAS Procedures Guide. �

For cubes that are not loaded from a fully summarized data source (that is, you
specified a data source by using the DATA | FACT= option), some statistics use
formats taken from the input data source. Specifically, if the statistic is SUM, MIN,
MAX, RANGE, AVG, STD, STDERR, LCLM, or UCLM, then PROC OLAP uses the
format that is assigned to the column specified by the COLUMN | ANALYSIS=
option. The following table lists the formats used for the other supported statistics:

Table A1.5 Default Formats Used for Statistics

Statistic Format Used

CSS BEST.

CV 8.2

N 12.0

NMISS 10.0

PRT 6.4

T 7.3

USS BEST.

VAR BEST.

For cubes that are loaded from a fully summarized data source (that is, you
specified the data source by using the AGGREGATION statement), the default
format is BEST12.

To override the default formats, you can either set the FORMAT= option or use
a SAS FORMAT statement.

PROC OLAP � Required Arguments 271

Note: The FORMAT= option also overrides a FORMAT statement. �

Note: When you rebuild a cube that has been physically deleted, the rebuilt
cube still uses the formats originally saved in the cube’s metadata. This means
that the rebuilt cube does not automatically include any formatting changes that
you might have made in the input data source. To manually specify the new
formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

COLUMN | ANALYSIS=anlvar
specifies the name of a numeric column that is contained in the cube’s input data
source. (You can use a column as a measure even if it is also being used as a level.)

If the cube is based on an unsummarized data source, then anlvar is the name
of the column in that data source from which the measure will be calculated. Use
COLUMN= to specify the column.

If the cube is based on a summarized data source, then anlvar can be the name
of the numeric column in the data source that was used as the analysis variable
for the pre-calculated measure. Use ANALYSIS= to specify the column. It can also
be a name that identifies a logical association between measures with the same
anlvar name.

For example, if your cube has three measures, N, SUM, and AVERAGE, and if
those measures were derived from the same analysis variable, then you could
specify ANALYSIS=Sales to logically link the three measures through their shared
analysis variable. You would also identify the analysis variable in the
AGGR_COLUMN= option.

As a further illustration, assume that you were building a cube with an NWAY
aggregation that was specified using a summarized SAS dataset. The dataset
contains the columns Country, Region, Division, Year, Quarter, Month,
SumOfSales, and NumOfSales. You would use two MEASURES statements, one
for SumOfSales and another for NumOfSales, as follows.

measure Sales_Sum
stat=sum
aggr_column="SumOfSales"
analysis="Sales"
desc=’Sum of Sales’
units=’Dollars’
format=dollar10.2
;

measure Sales_N
stat=n
aggr_column="NumOfSales"
analysis="Sales"
desc=’Number of Sales’
units=’Dollars’
format=dollar10.2
;

The Sales column becomes logically linked with the physical columns
SumOfSales and NumOfSales.

If the cube consists of a combination of summarized and unsummarized data
sources, then anlvar refers to both a physical and a logical entity. For example,
you might have a cube that requires a physical analysis variable to create a
crossing, but that same cube already contains other, higher-level aggregations. In
this case, the analysis variable is also used to logically link the measures in the
pre-existing aggregations that were derived from the same input column. You
would also identify the analysis variable in the AGGR_COLUMN= option.
Default: measure-name

272 Options � Appendix 1

Interaction: An unsummarized data source is specified with the DATA | FACT=
option in the PROC OLAP statement. A summarized data source is specified
with the TABLE= option in an AGGREGATION statement.

Note: The COLUMN argument is not required for the NUNIQUE statistic and will
be ignored for the NUNIQUE statistic if specified. �

Options
AGGR_COLUMN=input-column

specifies the name of the numeric column in the summarized input data that
contains the values for the measure. The source of the summarized input data is
specified in the AGGREGATION statement. This option is valid only for stored
statistics.

CAPTION=’string’
specifies a maximum of 200 characters that can be used to create a meaningful
description of the measure. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Note: Cubes that are built with captions that are longer than 200 characters
cannot be fully registered in the SAS Metadata Repository. Captions will be
truncated to 200 characters. �

Default: The default is based on the statistic and the COLUMN= value, as
shown in the following table. For example, if the statistic is SUM and the
COLUMN= value is Sales, then the default caption is Sum of Sales.

Table A1.6 Defaults for the CAPTION= Option If No Caption Is Specified

Statistic Used for Measure Default Caption

AVG Average measure-column-name

CSS Corrected Sum of Squares of
measure-column-name

CV Measure-column-name Coefficient of
Variation

LCLM Measure-column-name Lower Confidence
Limit

MAX Maximum measure-column-name

MIN Minimum measure-column-name

N Number of Values for measure-column-name

NMISS Number of Missing Values for
measure-column-name

NUNIQUE Number of Unique Values for level-name in
hierarchy-name

PRT Probability of Greater Absolute Value for
measure-column-name

RANGE Measure-column-name Range

PROC OLAP � Options 273

Statistic Used for Measure Default Caption

STD Measure-column-name Standard Deviation

STDERR Measure-column-name Standard Error of
Mean

SUM Sum of measure-column-name

T Measure-column-name T Value

UCLM Measure-column-name Upper Confidence
Limit

USS Measure-column-name Uncorrected Sum of
Squares

VAR Measure-column-name Variance

DEFAULT
identifies a measure as the default measure for the cube.

Default: The measure defined in the first MEASURE statement

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the measure. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: measure-name

FORMAT=sas-format-name
specifies the SAS format to be used to display the value of the measure. This
format overrides the default format (see STAT= for more information) and any
format that is specified in a SAS FORMAT statement. Both SAS-supplied formats
and user-defined formats are supported.

Note: When you rebuild a cube that has been physically deleted, the rebuilt
cube still uses the formats that were originally saved in the cube’s metadata. This
means that the rebuilt cube does not automatically include any formatting
changes that you might have made in the input data source. To manually specify
the new formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

HIERARCHY=’string’
specifies the hierarchy in which the level resides. This option is used only with the
NUNIQUE statistic. If there is only one hierarchy, then the option can be omitted.

Note: The HIERARCHY= option will be ignored for non-NUNIQUE statistics if
specified. �

INCLUDE_CALCULATED_MEMBER | INCLUDE_CALC
specifies that calculated members are included in the NUNIQUE count for the
measure statement. This option applies to the STAT= NUNIQUE statistic option
only.

LEVEL= ’string’
specifies the level for which a unique count is determined. This option is used only
with the NUNIQUE statistic. The default is the Measure name.

Note: The LEVEL= option is ignored for non-NUNIQUE statistics if specified. �

274 AGGREGATION Statement � Appendix 1

NOINCLUDE_CALCULATED_MEMBER |NOINCLUDE_CALC
specifies that calculated members are not included in the MEASURE statement.

UNITS=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the measure’s units (for example, “pounds sterling”). Third-party
applications that report on cube data might display this description. If the text
includes blank spaces, mixed-case letters, special characters, then enclose the text
within quotation marks.

AGGREGATION Statement
The AGGREGATION statement defines an aggregation of the cube based on level

information that you provide.

AGGREGATION level-name < level-name2 level-name3 ...level-nameN> / <option(s)>;

You can specify level names that are associated with an unsummarized data source,
or you can specify level names that match columns in a table that contains existing
aggregated data. The levels can exist in more than one dimension. You do not need to
include dimension names, because level names must be unique across dimensions.

Here is an example of an AGGREGATION statement that specifies three levels and
uses the NAME= option. The slash character (/)is required to separate level names
from option specifications.

aggregation country prodtype year /
name=’Product Types by Country’;

Required Arguments
level-name

is the level that is to be used to create the aggregation. Additional level names are
optional. Names are separated by spaces. Names are separated from option
specifications with a required slash character (/). You do not have to include all
levels that are specified in all HIERARCHY statements, but the names that you
do specify must match the names that are used in the HIERARCHY statements.
You can include a TABLE= option to identify a table that contains existing
aggregated information for your specified levels. The levels that you specify must
match columns in the input table.

Restriction: Levels must be listed in drill-path order. You cannot specify an
aggregation that contains a summary level that could never be requested. For
example, if your TIME hierarchy contains the levels Year, Month, and Day, you
could specify Year and Month as an aggregation, but not Month by itself.

Options
Note: For a list of the options that can be used to optimize cube creation and query

performance, see “Options Used for Performance” on page 289. �

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation table in a compressed format on
disk.
Default: NOCOMPRESS

PROC OLAP � Options 275

DATAPATH=(’pathname’ ...’pathnameN’)
specifies the location of one or more partitions in which to place aggregation table
data. The data is distributed by cycling through each partition location according
to the partition size. This is set by using the PARTSIZE= option. For example, if
you specify DATAPATH=(’C:\data1’ ’D:\data2’), then PROC OLAP places the
first partition of the aggregation table into directory C:\data1, the second
partition of the table into directory D:\data2, the third partition of the table into
C:\data1, and so on. It is also possible to have aggregation tables that use fewer
than the specified number of partitions. For example, your aggregation table
might fit entirely into C:\data1.
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

INDEX | NOINDEX
specifies whether or not to create the specified aggregation with indexes. For
faster cube creation and updates, you can set this option to NOINDEX. However,
the lack of indexes might adversely affect query performance.

Note: Indexes are not created for aggregations that have fewer than 1,024
records. �
Default: INDEX

INDEXPATH=(’pathname’ ...’pathnameN’)
specifies the locations of the index component files that correspond to each
aggregation table partition as specified by the DATAPATH= option.
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

NAME=’aggregation-name’
specifies a maximum of 256 characters as the name of the aggregation. If the
name includes blank spaces or any characters that are not permitted in a valid
SAS name, then the name must be enclosed within quotation marks. The name is
stored with the cube’s metadata.
Default: A name assigned by SAS, such as AGGR1.

PARTSIZE=partition-size
specifies the partition size in megabytes of the aggregation table partitions and
their corresponding index components.
Default: 128 megabytes. The minimum value is 16.

SEGSIZE=rows-per-segment
specifies the number of observations (table rows) in the file segment of the index
component. The value is expressed in multiples of 1,024. The minimum value is 1
(1,024 rows). The segmented indexes are used to optimize the processing of
WHERE expressions. Each parallel thread is given a segment of the table to
evaluate that is equal to the value of the SEGSIZE= option multiplied by 1,024.
Default: 8 (8 x 1,024 = 8,192 rows)
Interaction: The value of this option overrides for the current aggregation any

such value that was specified for all aggregations in the PROC OLAP statement.

TABLE=libname.dataset
specifies the name of a SAS data set or data view that contains the data for one
aggregation. Every level that is listed in the AGGREGATION statement must
match a column that contains aggregation information in the specified table. Place
this option after the list of level names.

Analysis columns in the table are mapped to the numeric columns that are
specified with the AGGR_COLUMN= option in MEASURE statements.

276 DROP_AGGREGATION Statement � Appendix 1

You can also set data set options with TABLE=. Options are stored within the
cube and reapplied when the data is accessed at run time. For more information,
see “Data Set Options” in SAS Language Reference: Concepts.

Restriction: You cannot use the TABLE= option in an AGGREGATION
statement that is used to add an aggregation to an existing cube.

DROP_AGGREGATION Statement

The DROP_AGGREGATION statement removes an aggregation from the specified
cube.

DROP_AGGREGATION level-name1 < level-name2 ...level-nameN> /
NAME=aggregation-name;

You can specify the levels that are in the aggregation, or the name of the
aggregation, or both the levels and the name. The slash character (/) is required to
separate level names from option specifications.

Required Arguments
At least one of the following arguments is required for a DROP_AGGREGATION

statement:

level-name1
specifies the names of the level that is in the aggregation that you want to drop.
Additional levels can be specified using blank spaces to separate the level names,
as shown in the following example.

drop_aggregation Year Month Product /
name=Sales ;

NAME=’aggregation-name’
specifies the name of the aggregation that you want to drop. If the name includes
blank spaces or any characters that are not permitted in a valid SAS name, then
the name must be enclosed within quotation marks.

DEFINE Statement

The DEFINE statement defines a global calculated member or a named set for any
cube that is registered in a SAS Metadata Repository.

DEFINE MEMBER | SET ’member-or-set-name’ AS ’mdx-expression’ ;

A calculated member is a dimension member that has been calculated from the
member values in the input table. Only the definition of the member is stored; the
value is calculated when a query is submitted. A named set is an alias for a specified
MDX expression. Named sets are often used to make complex MDX queries easier to
read and maintain.

The defined calculated members and named sets are available to any session that
creates a query in the context of the SAS OLAP Server and the schema defined in the
METASRV statement of the PROC OLAP code that is used to create the global member
or set.

PROC OLAP � DEFINE Statement 277

DEFINE statements can apply to more than one cube, so the CUBE= option is not
required to use this statement. The METASVR statement verifies that the cube
definition exists in the metadata repository.

The DEFINE statement can be used alone as shown in this example, which defines
two calculated members and one named set. The METASVR is the only other required
statement. To define multiple sets or calculated members, separate option values with a
comma.

proc olap;
metasvr olap_schema=’Services Schema’

repository=’services’
host=’misdept.us.mar.com’
port=9999
userid=jjones
pw=’my password’
;

define member ’[mddbcars].[Measures].[avg]’ as
’[Measures].[sales_sum]/[Measures].[sales_n]’,

member ’[sales].[Measures].[stat1]’ as
’[Measures].[qty] +1’,

set ’[campaign].[myset]’ as
’[campaign_dates].[All campaign_dates].children’

;
run;

The DEFINE statement can also be used with a PROC OLAP program that creates a
cube or with a program that adds aggregations to or deletes aggregations from an
existing cube. Cube builds, additions, and deletions occur before the DEFINE statement
is processed, so the DEFINE statement is not processed if those statements fail.

proc olap data=olapsio.cars
cube=mddbcars
path=’d:\services\’
;

metasvr olap_schema=’Services Schema’
repository=’cars’
host=’misdept.us.mar.com’
port=9999
userid=jjones
pw=’my password’
;

dimension date
hierarchies=(date)
sort_order=scending
;

hierarchy date
LEVELS=(dte)
;

level dte
;

dimension cars
hierarchies=(cars
sort_order=ascending)
;

hierarchy cars
levels=(car color)

278 Required Arguments � Appendix 1

;
dimension dealers

hierarchies=(dealers)
sort_order=ascending
;

hierarchy dealers
levels=(dealer dest)
;

measure sales_sum
column=sales
stat=sum
format=dollar15.2
;

measure sales_n
column=sales
stat=n
format=12.0
;

define member ’[mddbcars].[Measures].[avg]’ as
’[Measures].[sales_sum] / [Measures].[sales_n]’
;

run;

Required Arguments
MEMBER | SET

indicates whether you are creating a calculated member or a named set.

’member-or-set-name’
specifies the name of the member or set that you are creating. If you are creating
a calculated member, then this value specifies a name for the member that will be
calculated by the MDX expression. If you are creating a named set, then this
value is the alias for the specified MDX expression.

AS ’mdx-expression’
specifies the MDX expression.

UNDEFINE Statement

The UNDEFINE statement deletes from a SAS metadata repository one or more
global calculated members or named sets.

UNDEFINE MEMBER | SET ’member-or-set-name’ ;

To delete multiple calculated members or named sets in a single UNDEFINE
statement, use commas to separate instances of MEMBER | SET ’member-or-set-name’.

For additional information on calculated members and named sets, see “DEFINE
Statement” on page 276.

The following example shows how a single UNDEFINE statement can be used to
delete from a metadata repository two calculated members and one named set.

proc olapl;
metasvr olpa_schema=’Services Schema’

repository=’services’

PROC OLAP � USER_DEFINED_TRANSLATIONS Statement 279

host=’misdept.us.mar.com’
port=9999
userid=jjones
pw=’my password’
;

undefine member ’[carsCube].[Measures].[avg]’,
member ’[sales].[Measures].[stat1]’,
set ’[campaign].[myset]’
;

run;

Required Arguments
MEMBER | SET

indicates whether you are deleting a global calculated member or a named set.

’member-or-set-name’
specifies the name of the member or set that is to be deleted from the metadata
repository. Cube names and dimension names are required for each
member-or-set-name. Square brackets ([]) are optional inside the quotation marks
of member-or-set-name, as shown in the preceding example.

USER_DEFINED_TRANSLATIONS Statement

The USER_DEFINED_TRANSLATIONS statement is required to use the Multiple
Language Support capabilities of the SAS OLAP Server. This statement specifies the
locales that are associated with the data sets that you specify in the DIMENSION
statement.

USER_DEFINED_TRANSLATIONS locale < locale2 ...localeN> ;

Note: Alternative statement names are UDT and
USER_DEFINED_TRANSLATION. �

PROC OLAP uses the UDT statement information, along with DIMENSION
statement options, to read your alternate locale data sets and create locale-specific
metadata for use at query time. Query results are returned in the language of the
requested locale. The Multiple Language Support feature is available only for cubes
that are loaded from a star schema. The alternate locale data set names consist of a
prefix, which indicates the member, and a suffix, which indicates the language. The
DEFINE statement supplies the suffix. The DIMTABLEMEMPREF= option in the
DIMENSION statement specifies the member prefix. For example, if the member prefix
is dealdim_ and the suffix is pl_PL, then PROC OLAP looks for a data set named
dealdim_pl_PL.sas7bdat in the library that is specified by the DIMTABLELIBREF=
option.

The following sample code looks for these dimension data sets in the mylib library.
The default locale is the first locale specified in the UDT statement. Additionally, the
default locale does not use the suffix that is defined by the UDT statement. In this
example, Polish is the default locale, so the suffix is not used.

dimension date
hierarchies=(date)
sort_order=ascending
dimtablelibref=mylib

280 Required Argument � Appendix 1

dimtablemempref=ctimedim_
factkey=dte
dimkey=dte
;

hierarchy date levels=(dte)
;

level dte
;

dimension cars
hierarchies=(cars)
sort_order=ascending
dimtablelibref=mylib
dimtablemempref=cardim_
factkey=carkey
dimkey=carkey
;

dimension cars
levels=(car color)
;

dimension dealers
hierarchies=(dealers)
sort_order=ascendng
dimtablelibref=mylib
dimtablemempref=dealdim_
factkey=dealerkey
dimkey=dealerkey
;

hierarchy dealers
levels=(dealer dest)
;

user_defined_translations
pl_PL /* Polish as used in Poland */
en_US /* English as used in the United States */
ja_JP /* Japanese as used in Japan */
;

Table A1.7 Locales and Associated Data Set Names

Locale Dimension Data Sets

English ctimedim_en_US cardim_en_US dealdim_en_US

Japanese ctimedim_ja_JP cardim_ja_JP dealdim_ja_JP

Polish ctimedim_ cardim_ dealdim_

Required Argument
locale

specifies the locales that correspond to the data sets contained in the library that
is specified by the DIMTABLELIBREF= option in the DIMENSION statement.
Separate locales with a space.

PROC OLAP � Loading Cubes from a Detail Table 281

SAS Servers and Character Encoding
If your server metadata contains characters other than those typically found in

English, then you must be careful to start your server with an ENCODING= or
LOCALE= system option that accommodates those characters. For example, a SAS
server started with the default US English locale cannot read metadata that contains
Japanese characters. SAS will fail to start and will log a message indicating a
transcoding failure.

In general, different SAS jobs or servers can run different encodings (such as ASCII/
EBCDIC or various Asian DBCS encodings) as long as the encoding that is used by the
particular job or server can represent all the characters of the data being processed. In
the context of server start up, this requires that you review the characters used in the
metadata describing your server (as indicated by the SERVER= object server
parameter) to ensure that SAS runs under an encoding that supports those characters.

REORGANIZE_LEVEL Statement
REORGANIZE_LEVEL | REORG_LEVEL

This option enables you to reorganize individual, eligible levels for a cube. It is used
when you have performed multiple cube updates on a cube such that the levels values
must be reorganized. Any level used in this statement must have been updated with
new captions during prior instances of cube update.

Here is an example of the REORGANIZE_LEVEL statement:

proc olap cube=test ;
metasvr... etc;;

REORG_LEVEL CUSTOMER_NAMES;

REORG_LEVEL PRODUCT;
;
run ;

Loading Cubes

Loading Cubes from a Detail Table
The following table lists the PROC OLAP statements and options that you use to

load a cube from a detail table. The detail table has a column for each level and at least
one numeric analysis column from which one or more measures can be generated. The
PROC OLAP code that is used for a cube that is built from a detail table will use the
DATA= option to specify the data source for the cube.

Table A1.8 Statements and Options Used to Load Cubes from a Detail Table

Statements Options Required or Optional?

PROC OLAP DATA= Required

CUBE= Required

282 Loading Cubes from a Detail Table � Appendix 1

Statements Options Required or Optional?

PATH= Required

DESC= Optional

NO_NWAY Optional

WORKPATH= Optional

DT_TABLE Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

LEVEL The LEVEL statement is
optional unless you want to
specify time periods for each
level in a TIME dimension. If
you specify a time period for one
level, then you must specify a
time period for all levels. To
specify a time period, you use
the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required if you use the
AGGREGATION statement with
the /TABLE= option

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

PROC OLAP � Loading Cubes from a Star Schema 283

Statements Options Required or Optional?

PROPERTY prop-name Required

LEVEL= Required

AGGREGATION The AGGREGATION statement
is optional unless you are
creating additional aggregations.
In that case, you must specify
the names of the contiguous
levels to be used to create the
aggregation. Use the TABLE=
option for cubes that contain
aggregated data from tables
other than the input data source.

Loading Cubes from a Star Schema
The following table lists the PROC OLAP statements and options that you use to

load a cube from a star schema. A star schema is a set of input tables that are defined
in a repository. The set of tables includes a single fact table and one or more dimension
tables. The fact table must contain at least one numeric analysis column for each set of
measures that will be generated. To specify the data source for a star schema you must
use the FACT=, DIMTBL=,DIMKEY=, and FACTKEY= options

Table A1.9 Statements and Options Used to Load Cubes from a Star Schema

Statements Options Required or Optional?

PROC OLAP FACT= Required

CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

WORKPATH= Optional

DT_TABLE Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

284 Loading Cubes from a Star Schema � Appendix 1

Statements Options Required or Optional?

DIMTBL= Required for cubes that support
one locale. If the cube will
contain multiple national
languages, replace this option
with DIMTABLELIBREF= and
DIMTABLEMEMPREF=.

FACTKEY= Required

DIMKEY= Required

DIMTABLELIBREF Required if you build a cube that
will contain multiple national
languages. Replaces DIMTBL=.

DIMTABLEMEMPREF Required if you build a cube that
will contain multiple national
languages. Replaces DIMTBL=.

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

LEVEL The LEVEL statement is
optional unless you want to
specify time periods for each
level in a TIME dimension. If
you specify a time period for one
level, then you must specify a
time period for all levels. To
specify a time period, you use
the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required if you use the
AGGREGATION statement with
the /TABLE= option

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

PROPERTY prop-name Required

PROC OLAP � Loading Cubes Using Summarized Data 285

Statements Options Required or Optional?

LEVEL= Required

AGGREGATION The AGGREGATION statement
is optional unless you are
creating additional aggregations.
In that case, you must specify
the names of the contiguous
levels to be used to create the
aggregation. Use the /TABLE=
option for cubes that contain
aggregated data from tables
other than the input data source.

Loading Cubes Using Summarized Data

The following table lists the PROC OLAP statements and options that you use to
load cubes from a fully summarized data source (a crossing of all dimensions also
known as an NWAY). Unlike a detail table or star schema, a fully summarized cube
does not use either the DATA= or FACT= option to specify the data that is used to build
the cube. Instead the TABLE= option is used on the AGGREGATION statement.

Table A1.10 Statements and Options Used to Load Cubes from Fully Summarized Data

Statements Options Required or Optional?

PROC OLAP CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

WORKPATH= Optional

DT_TABLE Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

286 Maintaining Cubes � Appendix 1

Statements Options Required or Optional?

LEVEL The LEVEL statement is
optional unless you want to
specify time periods for each
level in a TIME dimension. If
you specify a time period for one
level, then you must specify a
time period for all levels. To
specify a time period, you use
the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

PROPERTY prop-name Required

LEVEL= Required

AGGREGATION names of the contiguous levels to
be used to create the aggregation

Required (additional
AGGREGATION statements
without the TABLE= option can
be used to create aggregations
other than the automatically
defined NWAY).

TABLE= Required

Maintaining Cubes

Building a Cube from an Existing Definition
It is possible to have cube definitions in the SAS metadata that do not have

associated physical cubes. For example, you can use the DELETE_PHYSICAL= option
in the PROC OLAP statement to delete a cube but leave its definition intact. You can
also use SAS OLAP Cube Studio to save only the definition of a new cube.

The following table lists the PROC OLAP statements and options that you use to
build a cube from an existing metadata definition:

PROC OLAP � Deleting Aggregations from an Existing Cube 287

Table A1.11 Statements and Options Used to Build a Cube from an Existing Definition

Statements Options

PROC OLAP CUBE=

METASVR OLAP_SCHEMA=

Adding Aggregations to an Existing Cube
The following table lists the PROC OLAP statements and options that you use to add

aggregations to an existing cube.

Table A1.12 Statements and Options Used to Add Aggregations to an Existing Cube

Statements Options Required or Optional?

PROC OLAP CUBE= Required

METASVR OLAP_SCHEMA= Required

AGGREGATION Names of the contiguous levels to
be used to create the aggregation

Required

NAME= Optional

DATAPATH= Optional

INDEXPATH= Optional

COMPRESS | NOCOMPRESS Optional

INDEX | NOINDEX Optional

PARTSIZE= Optional

SEGSIZE= Optional

Note: You can add and delete aggregations in the same PROC OLAP script. �

Note: You cannot add aggregations to a cube that contains aggregated data from a
source other than the input data source. �

Deleting Aggregations from an Existing Cube
The following table lists the PROC OLAP statements and options that you use to

delete aggregations from an existing cube.

Table A1.13 Statements and Options Used to Drop Aggregations from an Existing Cube

Statements Options

DROP_AGGREGATION Specify one or more level names that correspond to
the aggregations that you want to remove, or use
the aggregation name to specify the aggregation
that you want to remove.

METASVR OLAP_SCHEMA=

PROC OLAP CUBE=

Note: You can add and delete aggregations in the same PROC OLAP script. �

288 Deleting Cubes � Appendix 1

Note: You cannot delete aggregations from a cube that contains aggregated data
from a source other than the input data source. �

Deleting Cubes
The following table lists the PROC OLAP statements and options that you use to

delete existing cubes.
If you use the DELETE option, then both the physical cube and its definition, which

is stored in the metadata server, are deleted.

Table A1.14 Statements and Options Used to Delete a Cube and Its Metadata

Statements Options

METASVR OLAP SCHEMA=

PROC OLAP CUBE=

DELETE

If you use the DELETE_PHYSICAL option, then only the physical cube is deleted;
the definition remains intact.

Table A1.15 Statements and Options Used to Delete a Cube but Retain Its Metadata

Statements Options

METASVR OLAP_SCHEMA=

PROC OLAP CUBE=

DELETE_PHYSICAL

Specialized Options for PROC OLAP

Options for Managing Ragged Hierarchies
If a hierarchy is balanced, then all of its branches descend to the same level, and

each member has a parent level that is positioned immediately above it. However,
hierarchies are not always balanced, and sometimes they contain missing hierarchy
members. To manage missing hierarchy members, you can use these four options,
which were created specifically for ragged hierarchies:

Table A1.16 Options That Can Be Set to Manage Missing Hierarchy Members in Ragged Hierarchies

Options Statements Where Option is Available

EMPTY_CHAR= PROC OLAP and HIERARCHY

EMPTY_NUM= PROC OLAP and HIERARCHY

PROC OLAP � Options Used for Performance 289

Options Statements Where Option is Available

EMPTY= LEVEL

IGNORE_EMPTY HIERARCHY and LEVEL

Options Used for Performance
When you create a cube, you can set some options that can be used to optimize cube

creation and query performance. If you set the options in the PROC OLAP statement,
then the settings are applied to all aggregations in the cube. If you set the options in the
AGGREGATION statement, then the options apply to that specific aggregation. Options
set for individual aggregations override any options set in the PROC OLAP statement.

Here are the options:
� ASYNCINDEXLIMIT=
� COMPACT_NWAY
� COMPRESS | NOCOMPRESS
� CONCURRENT=
� DATAPATH=
� INDEXPATH=
� INDEXSORTSIZE=
� MAXTHREADS=
� INDEX |NOINDEX
� PARTSIZE=
� SEGSIZE=

Note: ASYNCINDEXLIMIT=, CONCURRENT=, INDEXSORTSIZE=, and
MAXTHREADS= are available only in the PROC OLAP statement. �

For an explanation of these options, see the PROC OLAP statement and the
AGGREGATION statement.

290

291

A P P E N D I X

2
The OLAPOPERATE Procedure

The OLAPOPERATE Procedure 291

Syntax: OLAPOPERATE Procedure 292

Connection Options 292

Disconnecting from an OLAP Server 293

Listing Active Sessions on an OLAP Server 293

Listing Session Queries on an OLAP Server 294

Listing Session Rowsets on an OLAP Server 294

Closing a Session 295

Cancelling a Query Result Set 296

Disabling a Cube 296

Enabling a Cube 296

Enabling and Disabling Cubes for a Cube Update 296

Refreshing a Cube 296

Stopping an OLAP Server 297

The OLAPOPERATE Procedure
The OLAPOPERATE procedure enables users to manage an OLAP server, its cubes,

its sessions, and their queries. It is intended as a batch interface for many of the
functions provided in the OLAP Server Monitor plug-in for SAS Management Console.
More specifically, you can use PROC OLAPOPERATE to connect to an OLAP server and
do the following:

� list sessions and queries for an active OLAP server
� close individual active sessions
� cancel or close individual open result sets
� disable a cube or all cubes
� enable a cube or all cubes
� refresh a cube or all cubes
� stop the OLAP server

You can establish a connection to a running SAS OLAP Server by providing
connection information on the PROC OLAPOPERATE statement or by running the
CONNECT statement. All other OLAPOPERATE statements require a connection to an
OLAP server. Once you have connected, all subsequent statements apply to that server
until a DISCONNECT or STOP SERVER statement is executed.

If a connection is made to a secured OLAP server, you must have administrative
privileges defined with your login information in the metadata in order to execute these
tasks. The OLAPOPERATE procedure is an interactive procedure and its statements
are executed as they are encountered. The OLAPOPERATE procedure is terminated by

292 Syntax: OLAPOPERATE Procedure � Appendix 2

a QUIT or a RUN statement. For example, you can list sessions for a server and then
close certain sessions based on the output of the LIST SESSIONS statement, without
having to reinvoke the procedure (and reconnect to the OLAP server).

The OLAPOPERATE procedure can be used on 9.1 and 9.2 OLAP servers. For 9.1
OLAP servers, some of the statements are not available.

Syntax: OLAPOPERATE Procedure
PROC OLAPOPERATE [<connection options>];

CONNECT <connection options>;
DISCONNECT;
LIST SESSIONS [CUBE=cube-name][USER=user-id];
LIST QUERIES [SESSION=owner];
LIST ROWSETS [SESSION=owner];
CLOSE SESSION id|_ALL_;
CANCEL QUERYid |_ALL_;
DISABLE CUBE cube-name|_ALL_;
ENABLE CUBE cube-name|_ALL_;
REFRESH CUBE cube-name |_ALL_;
STOP SERVER;

Connection Options
The CONNECT statement enables you to connect to a SAS OLAP Server.

CONNECT <connection options>;

The following server connection options on the OLAPOPERATE statement establish
communication with a SAS OLAP Server.

HOST= specifies the host name or network IP address of the computer
hosting the SAS OLAP Server (for example,
HOST=d1234.na.sas.com). The value "localhost" can be used if the
SAS session is connecting to a server on the same computer.

PORT= specifies the TCP port to which the SAS OLAP Server listens for
connections (for example PORT= 5451).

USERID= specifies a user ID to be used to connect to the SAS OLAP Server.
The user must have Administer privileges for the OLAP Server in
order to execute statements of the OLAPOPERATE procedure.

PASSWORD= |
PW=

specifies the password that corresponds to the user ID.

SSPI (Security Support Provider Interface) specifies that the identity of
the user running the SAS session will be used to establish the
connection. The USERID and PASSWORD options are unnecessary
and will be ignored when SSPI is specified. For further information
on SSPI, see “Integrated Windows Authentication and Single
Sign-On” on page 75 and the SSPI topic in Communications Access
Methods for SAS/CONNECT and SAS/SHARE .

The OLAPOPERATE Procedure � Listing Active Sessions on an OLAP Server 293

SPN= specifies the Service Principal Name of the connection destination.
This option is optional even if SSPI is specified. When SPN is not
specified, one is created using the HOST and PORT values.

Disconnecting from an OLAP Server
You can disconnect from the current SAS OLAP server with the DISCONNECT

statement. After you have disconnected from the server, the only other statement you
can execute is the CONNECT statement to connect to another (or the same) server.

When the OLAPOPERATE procedure is terminated with the QUIT or the RUN
statement, an automatic server disconnect is executed. It is not necessary to explicitly
disconnect from the server before terminating the procedure.

DISCONNECT;

Listing Active Sessions on an OLAP Server
You can list information about active sessions on the OLAP Server with the LIST

SESSIONS statement.

LIST SESSIONS [CUBE=cube-name][USER=user-id];

If the CUBE option is specified, the output will contain information about all sessions
currently accessing the specified cube. If the USER option is specified, the output will
contain information about all sessions for the specified user. If neither option is
specified, then all active sessions are displayed.

The LIST SESSIONS statement generates the following statistics:

Session ID is the unique session identifier.

Session Owner is the user ID of the session owner.

Seconds
Inactive

is the number of seconds since the last query for this session.

Results Sets
Open

is the number of open results sets for the session.

Here is an output example.

Session ID: 390C78CD-EAD0-4FEF-9069-2E151AA8B524
Session owner: sasdemo@t2333
Session name:
Session description:
Session seconds inactive = 324 and open results = 0

For clients using the 9.2 MDX IOM interface, a confirmation message listing the
cubes that are active for the session is also given. For example:

Cube ORIONSTAR is active in this session.

The following statistics are also generated by the LIST SESSIONS statement:

Number of
Active Cubes

is the number of cubes being used by this session.

Cube Names is the names of the cubes being used by this session.

294 Listing Session Queries on an OLAP Server � Appendix 2

Listing Session Queries on an OLAP Server
You can list information about session queries with the LIST QUERIES statement.

LIST QUERIES [SESSION=owner];

The LIST QUERIES statement generates the following statistics:

MDX String contains the MDX string for the query. The cube referenced in the
query is easily determined because the FROM clause is placed at the
front of the query. For example, an MDX query such as

select measures.members on columns from mddbcars

is displayed as from mddbcars select measures.members on columns.

Results Set
Type

indicates the type of the query’s results set. Valid values for this
statistic are Multidimensional, Flattened, or Schema Rowset (not
used).

Size indicates the approximate memory used in the query.

Note: For SAS versions earlier than 9.2, this statistic indicates
the number of cells returned in the query. �

Here is an example output for a 9.2 server.

Query Statement "FROM STAR SELECT"
Query type is Multidimensional
Query size in cells = 1
The query is running.

For 9.2 OLAP Servers, the following statistics are also available:

Last Update
Time

indicates the last time the query was referenced.

Query ID is the query ID.

Read Cells indicates the number of cells read.

Total Cells indicates the total number of cells.

Note: For SAS versions earlier than 9.2, this statistic is
equivalent to the Size statistic. �

Here is an example output for a 9.2 OLAP server.

Query Statement "FROM SALES SELECT"
Query ID: E8900912-3A26-4A06-9315-34A111AF57D0
Query type is Flattened
Query size in MB = 693464
Total cells = 1 and cells read = 1
The time of last data set access is 12Nov2007:16:51:21

Listing Session Rowsets on an OLAP Server

You can list information about session queries with the LIST ROWSETS statement.
If the SESSION option is specified, then the rowsets associated with a particular

user are listed. Otherwise, all queries are listed. The LIST ROWSETS statement is

The OLAPOPERATE Procedure � Closing a Session 295

only available for SAS 9.2 OLAP servers. It is not available for OLAP servers prior to
SAS 9.2.

LIST ROWSETS [SESSION=owner];

The LIST ROWSETS statement generates the following statistics:

Cube names lists the names of the cubes opened in this rowset.

Last Update
Time

indicates the last time the rowset was referenced.

Number of
open cubes

indicates the number of cubes opened in this rowset.

Rowset ID is the rowset ID.

Rowset name indicates the type name of the rowset. The following are possible
values for Rowset name statistic.

ACTIONSET

CATALOGSET

CUBESET

DIMENSIONSET

FUNCTIONSET

HIERARCHYSET

LEVELSET

MEMBERSET

MEASURESET

PROPERTYSET

SCHEMASET

SETSET

Here are some examples of session rowset output from an OLAP server.

Rowset name "CUBESET"
Rowset ID: 09FDD38D-237C-42AD-BD92-1126ADEC7046
The time of last rowset access is 13Nov2007:14:03:40

Rowset name "DIMENSIONSET"
Rowset ID: E9B538AA-D80E-40E5-9FD2-8C374EE1B37F
The time of last rowset access is 13Nov2007:14:03:41
Cube MAILORDERINFO is being accessed by this rowset.

Closing a Session

You can close an OLAP session using the CLOSE SESSION statement.

CLOSE SESSION id|_ALL_;

The id is the unique session identifier returned from the LIST SESSIONS statement.
The session will be closed on the server. If the _ALL_ keyword is specified, then all
open sessions are closed. Any queries that are running for an OLAP session will be
cancelled when that session is closed.

296 Cancelling a Query Result Set � Appendix 2

Cancelling a Query Result Set
You can cancel (close) an OLAP query result set with the CANCEL QUERY

statement.

CANCEL QUERY id |_ALL_;

The id is the unique result set identifier returned from the LIST QUERIES
statement. Cancelling a query will stop the query processing and close the result set on
the server. If the _ALL_ keyword is specified, then all running queries will be cancelled.

Disabling a Cube
You can disable a cube by using the DISABLE CUBE statement. When you disable a

cube, the server will not accept any new queries against that cube. Existing queries will
continue to run to completion. In addition, the cube will not show up in the list of
available cubes in the client session.

DISABLE CUBE cube-name|_ALL_;

The statement disallows new MDX queries which reference the specified cube (or all
cubes if _ALL_ is specified). It does not terminate currently executing queries. Those
queries will either finish on their own, or the sessions can be terminated using the
CLOSE SESSION command. If a query is executed on a disabled cube, the following
message is displayed.

ERROR: The cube cannot be opened

Enabling a Cube
You can enable access to a disabled cube by using the ENABLE CUBE statement.

The statement allows queries to be run against the cube again.

ENABLE CUBE cube-name|_ALL_;

If the _ALL_ keyword is specified, all cubes are enabled for access by OLAP sessions.

Enabling and Disabling Cubes for a Cube Update
After a cube has been updated, the updates can be seen only after all open sessions

have finished using the cube. After that, the next open session will display the new
updates. In a busy environment, with numerous sessions, this could take considerable
time. Executing the DISABLE and then ENABLE statements forces new sessions to
immediately access the new data. In addition, if a cube is actively being queried. it
must be disabled before you can use the DELETE or DELETE_PHYSICAL PROC
OLAP options. For more information on updating cubes, see Chapter 7, “Updating SAS
OLAP Cubes,” on page 79 and the ADD_DATAPROC OLAP option.

Refreshing a Cube
You can refresh a cube on an OLAP Server by using the REFRESH CUBE statement.

The OLAPOPERATE Procedure � Stopping an OLAP Server 297

REFRESH CUBE cube-name |_ALL_;

The statement allows the server to access global calculated members and named sets
that were defined or deleted since the cube header was loaded into the servers cube
cache. This includes removing access to any global definitions which have been deleted
since the server was started. If the _ALL_ keyword is specified, all cubes on the OLAP
server are refreshed.

Note: The REFRESH CUBE statement will not show changes to a cube that were
made with the UPDATE_IN_PLACE or the ADD_DATA PROC OLAP option. You must
disable and then enable a cube to see cube updates. �

Stopping an OLAP Server
You can stop a running OLAP Server by using the STOP SERVER statement.

STOP SERVER;

The STOP SERVER statement provides a clean shutdown of the current OLAP
server. After the STOP SERVER statement is complete, the only statement which can
be executed is a CONNECT statement to connect to another server.

298

299

A P P E N D I X

3
Resources and Reference Topics
for SAS OLAP Cubes

OLAP Server Resources 299

OLAP Schema Resources 300

Cube Resources 300

Table Resources 300

Dimension Resources 301

Level Resources 302

Hierarchy Resources 302

Measure Resources 303

Member and Member Properties Resources 303

Calculated Members and Measures Resources 303

Aggregation Resources 304

Incremental Cube Update Resources 304

Drill–Through to Detail Resources 305

GIS Mapping Resources 305

OLAP Server Resources
The following are various links and references to documentation and Help topics that

are related to the SAS OLAP Server.
� SAS OLAP Server: User’s Guide Topics

� “SAS OLAP Server” on page 9

� SAS OLAP Cube Studio Help Topics:
� SAS Servers
� Defining a SAS OLAP Server
� Securing a SAS OLAP Server
� OLAP Schema Properties

� Other Resources:
� “Administering SAS OLAP Servers” in the SAS Intelligence Platform:

Application Server Administration Guide

� “Enabling ARM Logging in SAS OLAP Servers” in the SAS Intelligence
Platform: System Administration Guide

300 OLAP Schema Resources � Appendix 3

OLAP Schema Resources
The following are various links and references to documentation and Help topics that

are related to SAS OLAP schemas.
� SAS OLAP Server: User’s Guide Topics

� “OLAP Schemas” on page 14

� SAS OLAP Cube Studio Help Topics
� Editing an OLAP Schema
� Changing the OLAP Schema for a Cube
� Deleting an OLAP Schema
� OLAP Schema Properties

� OLAP Procedure
� OLAP_SCHEMA argument on the “METASVR Statement” on page 256

Cube Resources
The following are various links and references to documentation and Help topics that

are related to SAS OLAP cubes.
� SAS OLAP Server: User’s Guide Topics

� “What Is a Cube?” on page 3
� “Understanding the Cube Structure” on page 4
� “Why You Should Use Cubes” on page 5
� “Cube Designer Wizard” on page 38
� “Deleting Cubes and Cube Objects” on page 57
� “Disabling and Enabling Cubes” on page 72

� SAS OLAP Cube Studio Help Topics
� SAS OLAP and Cubes Overview
� Creating Cubes – Cube Designer Wizard
� Editing a Cube in SAS OLAP Cube Studio
� SAS OLAP Cube Studio – View Cube
� Cube Properties – Structure Tab

� Cube Examples
� “Building a Cube from a Detail Table” on page 96
� “Building a Cube from a Star Schema” on page 114
� “Building a Cube from a Summary Table” on page 133
� “Viewing a Cube in SAS OLAP Cube Studio” on page 192

� OLAP Procedure
� “PROC OLAP Statement” on page 245

Table Resources
The following are various links and references to documentation and Help topics that

are related to data tables.

Resources and Reference Topics � Dimension Resources 301

� SAS OLAP Server: User’s Guide Topics
� “Data Tables” on page 11

� “Data Tables Used to Define SAS OLAP Cubes” on page 24

� “Multiple Language Support and Dimension Table Translations” on page 65

� SAS OLAP Cube Studio Help Topics
� Data Tables Used to Define Cubes

� Defining Tables Used to Build Cubes

� Viewing Table Data in SAS OLAP Cube Studio
� Renaming Tables

� Deleting Tables

� Cube Designer – Input
� Cube Designer – Dimension Tables

� Multiple Language Support for Cubes
� Cube Designer – Drill-Through

� Cube Designer – Aggregation Tables

� Cube Designer – Table Options
� Editing the Display Settings for the View Data panel

� Cube Examples
� “Building a Cube from a Detail Table” on page 96

� “Building a Cube from a Star Schema” on page 114
� “Building a Cube from a Summary Table” on page 133

� OLAP Procedure
� The following options are used on the “PROC OLAP Statement” on page 245:

� DATA | FACT=

� DATAPATH=
� DRILLTHROUGH_TABLE | DT_TABLE | DT_TBL=

� The following options are used on the “DIMENSION Statement” on page 257:

� DIMKEY=

� DIMTBL=
� DIMTABLELIBREF=

� DIMTABLEMEMPREF=

� FACTKEY=

� TABLE= option on the “AGGREGATION Statement” on page 274

Dimension Resources
The following are various links and references to documentation and Help topics that

are related to cube dimensions.
� SAS OLAP Server: User’s Guide Topics

� “Defining Dimensions and Levels” on page 40

� “Specifying the TIME Dimension” on page 40
� “Specifying GIS Map Information for a Dimension” on page 41

302 Level Resources � Appendix 3

� SAS OLAP Cube Studio Help Topics
� Defining the Number of Dimensions and Hierarchies For a Cube
� Cube Designer – Dimensions
� Dimension Designer – General
� Specifying a Time Dimension For a Cube
� Specifying GIS Map Information for a Dimension

� Cube Examples
� “Setting Member Authorizations On A Dimension” on page 180
� “Creating a Time Dimension in SAS OLAP Cube Studio” on page 197
� “Specifying an ESRI GIS Map For a Cube Dimension” on page 200

� OLAP Procedure
� “DIMENSION Statement” on page 257

Level Resources
The following are various links and references to documentation and Help topics that

are related to cube levels.
� SAS OLAP Server: User’s Guide Topics

� “Defining Dimensions and Levels” on page 40

� SAS OLAP Cube Studio Help Topics
� Dimension Designer – Add Levels
� Dimension Designer – Level

� Cube Examples
� “Building a Cube from a Detail Table” on page 96
� “Creating a Time Dimension in SAS OLAP Cube Studio” on page 197

� OLAP Procedure
� “LEVEL Statement” on page 263

Hierarchy Resources
The following are various links and references to documentation and Help topics that

are related to cube hierarchies.
� SAS OLAP Server: User’s Guide Topics

� “Defining Cube Hierarchies” on page 42

� SAS OLAP Cube Studio Help Topics
� Defining the Number of Dimensions and Hierarchies For a Cube
� Dimension Designer – Hierarchy
� Ragged and Unbalanced Hierarchies in SAS OLAP Cubes
� Specifying Multiple Hierarchies For a Cube

� Cube Examples
� “Creating Multiple Hierarchies For a Cube” on page 205
� “Building a Cube from a Detail Table” on page 96

Resources and Reference Topics � Calculated Members and Measures Resources 303

� OLAP Procedure
� “HIERARCHY Statement” on page 267

Measure Resources
The following are various links and references to documentation and Help topics that

are related to cube measures.
� SAS OLAP Server: User’s Guide Topics

� “Defining Measures For A Cube” on page 47

� SAS OLAP Cube Studio Help Topics
� Defining Measures For a Cube
� Cube Designer – Select Measures
� Cube Designer – Measure Details
� Statistics Available for Measures
� SAS Formats Available for Measures

� Cube Examples
� “Building a Cube from a Detail Table” on page 96
� “Building a Cube from a Summary Table” on page 133

� OLAP Procedure
� “MEASURE Statement” on page 269

Member and Member Properties Resources
The following are various links and references to documentation and Help topics that

are related to cube members and member properties.
� SAS OLAP Server: User’s Guide Topics

� “Defining Member Properties” on page 49

� SAS OLAP Cube Studio Help Topics
� Defining Member Properties For a Cube
� Cube Designer – Member Properties

� Cube Examples
� “Building a Cube from a Detail Table” on page 96

� OLAP procedure
� “PROPERTY Statement” on page 266
� UPDATE_DIMENSION option on the “DIMENSION Statement” on page 257

Calculated Members and Measures Resources
The following are various links and references to documentation and Help topics that

are related to calculated members and measures for cubes.
� SAS OLAP Server: User’s Guide Topics

� “Specifying Calculated Members and Measures” on page 63

304 Aggregation Resources � Appendix 3

� SAS OLAP Cube Studio Help Topics
� Specifying Calculated Members and Measures

� Cube Examples
� “Adding Calculated Members To A Cube” on page 170

� OLAP Procedure
� “DEFINE Statement” on page 276
� “UNDEFINE Statement” on page 278

Aggregation Resources
The following are various links and references to documentation and Help topics that

are related to cube aggregations.
� SAS OLAP Server: User’s Guide Topics

� “Aggregation Design” on page 26
� “Aggregation Storage” on page 28
� “Defining Aggregations While Building a Cube” on page 50
� “Tuning Cube Aggregations” on page 58
� “Specifying Tuning and Performance Options in Cube Aggregations” on page

61
� “Coalescing Cube Aggregations” on page 82

� SAS OLAP Cube Studio Help Topics
� Tuning SAS OLAP Cube Aggregations
� Aggregation Tuning
� Defining Aggregations While Building a Cube
� Coalesce Incremental Data - Aggregations
� Performance Options – Default
� Performance Options – Single Aggregation

� Cube Examples
� “ Tuning Aggregations For a Cube” on page 151

� OLAP Procedure
� “AGGREGATION Statement” on page 274
� COALESCE_AGGREGATIONS
� “DROP_AGGREGATION Statement” on page 276

Incremental Cube Update Resources
The following are various links and references to documentation and Help topics that

are related to incremental cube updates.
� SAS OLAP Server: User’s Guide Topics

� Chapter 7, “Updating SAS OLAP Cubes,” on page 79
� Appendix 2, “The OLAPOPERATE Procedure,” on page 291

� SAS OLAP Cube Studio Help Topics
� Incrementally Updating SAS OLAP Cubes

Resources and Reference Topics � GIS Mapping Resources 305

� Coalesce Incremental Data – Aggregations
� Cube Properties – Generations tab

� Cube Examples
� “Adding Data to a Cube with Cube Update” on page 160

� OLAP Procedure
� The following options are used on the “PROC OLAP Statement” on page 245:

� ADD_DATA
� COALESCE_AGGREGATIONS
� OUTSCHEMA=
� OUTCUBE=
� UPDATE_DISPLAY_NAMES
� UPDATE_INPLACE
� NONUPDATEABLE

� The following options are used on the “DIMENSION Statement” on page 257
� UPDATE_DIMENSION
� NONUPDATEABLE

Drill–Through to Detail Resources
The following are various links and references to documentation and Help topics that

are related to drill-through capabilities for a cube.
� SAS OLAP Server: User’s Guide Topics

� “Defining Drill-Through Tables” on page 39
� The following products enable you to drill through to the detail data for a

cube:
� “SAS Enterprise Guide” on page 226
� “SAS Web Report Studio” on page 227
� “SAS Web OLAP Viewer for Java” on page 228
� “Microsoft Excel Pivot Tables and Pivot Charts” on page 229

� SAS OLAP Cube Studio Help Topics
� Data Tables Used to Define Cubes
� Cube Designer – Drill-Through

� Other Resources
� “Display Detail Data for a Large Cube” in the SAS Intelligence Platform:

Data Administration Guide

� Cube Examples
� “Implementing Drill-through to Detail Data in a SAS OLAP Cube” on page 210

� OLAP Procedure
� DRILLTHROUGH_TABLE= option on the “PROC OLAP Statement” on page 245

GIS Mapping Resources
The following are various links and references to documentation and Help topics that

are related to the GIS mapping of a cube dimension.

306 GIS Mapping Resources � Appendix 3

� SAS OLAP Server: User’s Guide Topics
� “Specifying GIS Map Information for a Dimension” on page 41

� SAS OLAP Cube Studio Help Topics
� Specifying GIS Map Information for a Dimension
� GIS Maps
� Test GIS Mappings

� Other Resources
� “Configuring the ESRI Map Component” in the SAS Intelligence Platform:

Web Application Administration Guide

� Cube Examples
� “Specifying an ESRI GIS Map For a Cube Dimension” on page 200

� OLAP Procedure
� MAP_SERVICE= option on the “DIMENSION Statement” on page 257

307

A P P E N D I X

4
SAS OLAP Cube Studio
Accessibility Features

SAS OLAP Cube Studio Accessibility Features 307

SAS OLAP Cube Studio Accessibility Features
SAS OLAP Cube Studio includes the following accessibility and compatibility

features that improve usability of the product for users with disabilities. These features
are related to accessibility standards for electronic information technology that were
adopted by the U.S. Government under Section 508 of the U.S. Rehabilitation Act of
1973, as amended.

For further information on accessibility features in SAS, see Accessibility Features in
SAS under Windows and Default Key Settings for Interactive SAS Sessions under
Windows in SAS OnlineDoc.

Note: If you have questions or concerns about the accessibility of SAS products,
send e-mail to accessibility@sas.com. �

Table A4.1 Window Manipulation Keys

Window Manipulation Key Action

ALT+F4 Closes active applications on the desktop.
ALT+F4 Closes SAS OLAP Cube Studio.

ALT+F6 Switches to the next window between modeless
secondary windows and their primary window.

ALT+SPACEBAR Opens the title bar icon and displays the
program menu of the leftmost icon on the title
bar.

ALT+TAB Provides a pop-up menu of active applications,
identified by their product graphics.

ALT+TAB+SHIFT Reverses direction through the pop-up menu.

ALT+HYPHEN Displays the shortcut menu for the active MDI
window.

ALT+ESC Navigates active applications on the desktop
and then desktop shortcut bar items. Releasing
the ESC key selects an application.

308 SAS OLAP Cube Studio Accessibility Features � Appendix 4

Window Manipulation Key Action

ALT+ESC+SHIFT Reverses the navigation direction of active
applications on the desktop and the desktop
shortcut bar. Navigates windows in reverse
order.

ALT+ENTER Displays the properties of a selected item while
you are working in a window.

PRINT SCREEN Copies a screen image to the clipboard.

ALT+ PRINT SCREEN Copies an active window image to the Windows
clipboard.

Table A4.2 Actions Performed with the ALT Key.

Action Procedure

Move the application window In SAS OLAP Cube Studio, select the ALT key
and perform the following steps:

1 Choose Move from title bar menu.

2 Use the arrow keys to move the window.

3 Press ENTER to accept or ESC to cancel.

Size the application window In SAS OLAP Cube Studio, select the ALT key
and perform the following steps:

1 Choose Size from title bar menu.

2 Use an arrow key to choose which window
border to move.

3 Resize the window with the appropriate
arrow keys.

4 Press ENTER to accept or ESC to cancel.

Minimize/Maximize the application window In SAS OLAP Cube Studio, perform the
following steps:

1 Choose Minimize from the title bar
menu.

2 Choose Maximize from the title bar
menu.

Restore the application window In SAS OLAP Cube Studio, select the ALT key
and select Restore from title bar menu. The
application is returned to its original state.

309

A P P E N D I X

5
Recommended Reading

Recommended Reading 309

Recommended Reading

Below is the recommended reading list for SAS OLAP Server:
� SAS OLAP Server: MDX Guide
� SAS Providers for OLE DB: Cookbook

� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� SAS Intelligence Platform: Overview

� SAS Intelligence Platform: Administration Guide
� SAS Intelligence Platform: Data Administration Guide

� SAS Intelligence Platform: System Administration Guide

� SAS Intelligence Platform: Application Server Administration Guide
� SAS Intelligence Platform: Security Administration Guide

� SAS Intelligence Platform: Web Application Administration Guide
� SAS Intelligence Platform: 9.1.3 to 9.2 Migration Guide

� SAS Intelligence Platform: Desktop Application Administration Guide

� Getting Started with SAS Enterprise Guide
� SAS Information Map Studio: Getting Started with SAS Information Maps

� SAS Web Report Studio: User’s Guide

� SAS Add-In for Microsoft Office: Getting Started with Data Analysis
� SAS 9.2 Web OLAP Viewer for Java: Help

� SAS 9.2 OLAP Server Monitor: Help
� SAS Management Console main application: Help

� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513

310 Recommended Reading � Appendix 5

Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

311

Glossary

aggregation
a summary of detail data that is stored with or referred to by a cube. Aggregations
support rapid and efficient answers to business questions.

aggregation table
a table that contains pre-calculated totals. Aggregation tables can be referred to by
cubes, reducing the amount of time that is required for building the cubes.

Application Response Measurement
the name of an application programming interface that was developed by an industry
partnership and which is used to monitor the availability and performance of
software applications. ARM monitors the application tasks that are important to a
particular business. Short form: ARM.

ARM
See Application Response Measurement.

base table
a table that contains detail data that is used for building cubes or aggregation tables.

calculated member
in a dimension, a member whose value is derived from the values of other members.

child
within a dimension hierarchy, a descendant in level n-1 of a member that is at level
n. For example, if a Geography dimension includes the levels Country and City, then
Bangkok would be a child of Thailand, and Hamburg would be a child of Germany.

connection profile
a client-side definition of where a metadata server is located. The definition includes
a computer name and a port number. In addition, the connection profile can also
contain user connection information.

cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement. A cube is a directory structure, not a single file. A
cube includes measures, and it can have numerous dimensions and levels of data.

data cleansing
the process of eliminating inaccuracies, irregularities, and discrepancies from data.

312 Glossary

data scrubbing
another term for data cleansing. See also data cleansing.

data sparsity
a characteristic of a multidimensional data source in which there is a relatively high
proportion of empty cells (which indicate missing data values) to filled cells.

data warehouse
a collection of data that is extracted from one or more sources for the purpose of
querying and analysis.

descendant
in a dimension hierarchy, a member that resides at a lower level in relation to other
members in the hierarchy. For example, if a Geography dimension includes the levels
Country, State, and City, then California and Los Angeles would be descendants of
USA.

detail data
nonsummarized (or partially summarized) factual information that pertains to a
single area of interest, such as sales figures, inventory data, or human-resource data.

dimension
a group of closely related hierarchies. Hierarchies within a dimension typically
represent different groupings of information that pertains to a single concept. For
example, a Time dimension might consist of two hierarchies: (1) Year, Month, Date,
and (2) Year, Week, Day. See also hierarchy.

dimension table
in a star schema, a table that contains the data for one of the dimensions. The
dimension table is connected to the star schema’s fact table by a primary key. The
dimension table contains fields for each level of each hierarchy that is included in the
dimension.

drill down
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more lower levels until you reach the data that you are interested in.

drill up
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more higher levels until you reach the level of summarized data that
you are interested in.

drill-through table
a view, data set, or other data file that contains data that is used to define a cube.
Drill-through tables can be used by client applications to provide a view from
processed data into the underlying data source.

fact
a single piece of factual information in a data table. For example, a fact can be an
employee name, a customer’s phone number, or a sales amount. It can also be a
derived value such as the percentage by which total revenues increased or decreased
from one year to the next.

fact table
the central table in a star schema. The fact table contains the individual facts that
are being stored in the database as well as the keys that connect each fact to the
appropriate value in each dimension.

foreign key
a column or combination of columns in one table that references the corresponding
primary key in another table. A foreign key must have the same attributes as the
primary key that it references.

Glossary 313

granularity
the relative level of detail that a data item represents. From the top of a dimension
to the bottom, granularity increases. For example, in a Time dimension that consists
of a Year-Month-Day hierarchy, Month is more granular than Year, and Day is more
granular than Month.

hierarchy
an arrangement of members of a dimension into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific. For example, in a Time dimension, a hierarchy might consist of the members
Year, Quarter, Month, and Day. In a Geography dimension, a hierarchy might consist
of the members Country, State or Province, and City. More than one hierarchy can be
defined for a dimension. Each hierarchy provides a navigational path that enables
users to drill down to increasing levels of detail. See also member and level.

HOLAP
See hybrid online analytical processing.

hybrid online analytical processing
a type of OLAP in which relational OLAP (ROLAP) and multidimensional OLAP
(MOLAP) are combined. In HOLAP, the source data is usually stored using a ROLAP
strategy, and aggregations are stored using a MOLAP strategy. This combination
usually results in the smallest amount of storage space. In HOLAP, aggregates can
be pre-calculated and can be linked into a hybrid storage model. Short form: HOLAP.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

leaf member
the lowest-level member of a hierarchy. Leaf members do not have any child
members.

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

logical server
in the SAS Metadata Server, the second-level object in the metadata for SAS servers.
A logical server specifies one or more of a particular type of server component, such
as one or more SAS Workspace Servers.

MDDB
See multidimensional database.

MDX language
See multidimensional expressions language.

measure
a special dimension that contains summarized numeric data values that are
analyzed. Total Sales and Average Revenue are examples of measures. For example,
you might drill down within the Clothing hierarchy of the Product dimension to see
the value of the Total Sales measure for the Shirts member.

member
a name that represents a particular data element within a dimension. For example,
September 1996 might be a member of the Time dimension. A member can be either
unique or non-unique. For example, 1997 and 1998 represent unique members in the

314 Glossary

Year level of a Time dimension. January represents non-unique members in the
Month level, because there can be more than one January in the Time dimension if
the Time dimension contains data for more than one year.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

MOLAP
See multidimensional online analytical processing.

multidimensional database
another term for cube. Short form: MDDB. See also cube.

multidimensional expressions language
a standardized, high-level language that is used to query multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language). Short form: MDX language.

multidimensional online analytical processing
a type of OLAP that stores aggregates in multidimensional database structures.
Short form: MOLAP.

multi-threading
See threading.

navigate
to purposefully move from one view of the data in a table (or in some other data
structure, such as a cube) to another. Drilling down and drilling up are two examples
of navigation.

NWAY aggregation
the aggregation that has the minimum set of dimension levels that is required for
answering any business question. The NWAY aggregation is the aggregation that has
the finest granularity. See also granularity.

ODBO
See OLE DB for OLAP.

OLAP
See online analytical processing.

OLAP schema
a group of cubes. A cube is assigned to an OLAP schema when it is created, and an
OLAP schema is assigned to a SAS OLAP Server when the server is defined in the
metadata. A SAS OLAP Server can access only the cubes that are in its assigned
OLAP schema.

OLE DB for OLAP
an OLAP API that is used to link OLAP clients and servers by means of a
multidimensional expressions (MDX) language. Short form: ODBO. See also
multidimensional expressions language.

online analytical processing
a software technology that enables users to dynamically analyze data that is stored
in multidimensional database (MDDB) tables. Short form: OLAP.

parallel I/O
a method of input and output that takes advantage of multiple CPUs and multiple
controllers, with multiple disks per controller to read or write data in independent
threads.

Glossary 315

parallel processing
a method of processing that divides a large job into several smaller jobs that can be
executed in parallel on multiple CPUs.

parent
within a dimension hierarchy, the ancestor in level n of a member in level n-1. For
example, if a Geography dimension includes the levels Country and City, then
Thailand would be the parent of Bangkok, and Germany would be the parent of
Hamburg. The parent value is usually a consolidation of all of its children’s values.

primary key
a column or combination of columns that uniquely identifies a row in a table.

reach-through
the act of retrieving and displaying to a user the (unsummarized) detail data from
which the summarized data in a multidimensional database is derived, when that
detail data is stored in a separate data repository.

relational online analytical processing
a type of OLAP in which the multidimensional data is stored in a relational
database. Short form: ROLAP.

ROLAP
See relational online analytical processing.

roll up
to summarize (or apply some other type of calculation or formula to) data values at
one level of a dimension hierarchy in order to derive values for a parent level. For
example, sales figures for January can be rolled up to Quarter1, and employee data
for one department can be rolled up to the division level.

SAS application server
a server that provides SAS services to a client. In the SAS Open Metadata
Architecture, the metadata for a SAS application server specifies one or more server
components that provide SAS services to a client.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the
SAS ARM interface, the ARM API is implemented as an ARM agent. In addition,
SAS supplies ARM macros, which generate calls to the ARM API function calls, and
ARM system options, which enable you to manage the ARM environment and to log
internal SAS processing transactions. See also ARM (Application Response
Measurement).

SAS format
a pattern or set of instructions that SAS uses to determine how the values of a
variable (or column) should be written or displayed. SAS provides a set of standard
formats and also enables you to define your own formats.

SAS informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to
one or more SAS Metadata Repositories. The SAS Metadata Server uses the

316 Glossary

Integrated Object Model (IOM), which is provided with SAS Integration Technologies,
to communicate with clients and with other servers.

SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried
using the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

Scalable Performance Data Engine
a SAS engine that is able to deliver data to applications rapidly because it organizes
the data into a streamlined file format. The SPD Engine divides a problem (such as a
WHERE clause) into smaller problems that can be processed in parallel. Short form:
SPD Engine. See also parallel processing.

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

scrubbing
another term for data cleansing. See also data cleansing.

slice
a subset of data from a cube, where the data in the slice pertains to one or more
members of one or more dimensions. For example, from a cube that contains data
about customer feedback, one slice might pertain to feedback on one particular
product (one member of the Product dimension). Another slice might pertain to
feedback on that product from customers residing in particular geographic areas who
submitted their feedback during a certain time period (one member of the Product
dimension, multiple members of the Geography dimension, one or more members of
the Time dimension).

SMP
See symmetric multiprocessing.

sparsity
See data sparsity.

SPD Engine
See Scalable Performance Data Engine.

SQL
See Structured Query Language.

star schema
tables in a database in which a single fact table is connected to multiple dimension
tables. This is visually represented in a star pattern. SAS OLAP cubes can be
created from a star schema.

stored statistics
statistics that are stored in a cube. Stored statistics can be used to derive
higher-level statistics. Examples include sum, minimum, and maximum.

Glossary 317

Structured Query Language
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. Short form: SQL.

symmetric multiprocessing
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller. Short form: SMP.

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating system. In an SMP environment, which uses
multiple CPUs, multiple threads can be spawned and processed simultaneously.
Regardless of whether there is one CPU or many, each thread is an independent flow
of control that is scheduled by the operating system. See also symmetric
multiprocessing, thread-enabled operating system, and threading.

thread-enabled operating system
an operating system that can coordinate symmetric access by multiple CPUs to a
shared main memory space. This coordinated access enables threads from the same
process to share data very efficiently.

threading
a high-performance method of data I/O or data processing in which the I/O or
processing is divided into multiple threads that are executed in parallel. In the
boss-worker model of threading, the same code for the I/O or calculation process is
executed simultaneously in separate threads on multiple CPUs. In the pipeline
model, a process is divided into steps, which are then executed simultaneously in
separate threads on multiple CPUs. See also parallel I/O, parallel processing, and
SMP (symmetric multiprocessing).

Time dimension
a dimension that divides time into levels such as Year, Quarter, Month, and Day.

tuple
a data object that contains two or more components. In OLAP, a tuple is a slice of
data from a cube. It is a selection of members (or cells) across dimensions in a cube.
It can also be viewed as a cross-section of member data in a cube. For example,
([time].[all time].[2003], [geography].[all geography].[u.s.a.], [measures].[actualsum])
is a tuple that contains data from the Time, Geography, and Measures dimensions.

wizard
an interactive utility program that consists of a series of dialog boxes, windows, or
pages. Users supply information in each dialog box, window, or page, and the wizard
uses that information to perform a task.

318

319

Index

A

ADO MD
cubes with 225

AGGR_COLUMN= option
MEASURE statement (OLAP) 272

AGGREGATION statement
OLAP procedure 274

aggregations 2
adding to cubes 287
deleting from cubes 276, 287

ANALYSIS argument
MEASURE statement (OLAP) 271

C

calculated members
adding to cubes 63

Calculated Members plug-in 63
calculation types 64
custom calculations 65
simple calculations 64
time analysis calculations 64

CAPTION= option
DIMENSION statement (OLAP) 258
HIERARCHY statement (OLAP) 269
LEVEL statement (OLAP) 263
MEASURE statement (OLAP) 272
PROPERTY statement (OLAP) 266

character encoding
SAS servers and 66, 281

COLUMN argument
MEASURE statement (OLAP) 271

COLUMN= option
PROPERTY statement (OLAP) 267

COMPACT_NWAY option
PROC OLAP statement 246

COMPRESS option
AGGREGATION statement (OLAP) 274
OLAP procedure 62
PROC OLAP statement 246

CONCURRENT= option
OLAP procedure 62
PROC OLAP statement 247

cube aggregations
performance options 61
tuning options 61

Cube Designer
building cubes from detail tables 96
defining member properties 50

defining multiple hierarchies 43
defining ragged and unbalanced hierarchies 44
dimension table translations 66
setting tuning and performance options 61

cube metadata
refreshing 57

CUBE= option
PROC OLAP statement 247

cube structure 4
cubes 3

accessing from SQL Pass-Through facility 67
adding aggregations to 287
adding calculated members 63
adding system options to 66
ADO MD with 225
building from detail tables 96
building from existing definition 286
building from star schema 114
building from summary tables 133
data management 6
data storage with 5
default hierarchy 42
defining member properties 49
deleting 288
deleting aggregations from 276, 287
loading from detail tables 281
loading from star schema 283
loading with summarized data 285
maintenance 6
multi-threading and 5
multiple hierarchies 42
OLE DB for OLAP with 225
ragged and unbalanced hierarchies 44
SAS products with 226
saving OLAP procedure code 108
setup 6
third-party clients with 229
updating 56

D

data access 1
data management 6
DATA= option

PROC OLAP statement 247
data storage 1

cubes for 5
data warehouse 2

320 Index

DATAPATH= option
AGGREGATION statement (OLAP) 275
OLAP procedure 62
PROC OLAP statement 248

default hierarchy 42
DEFAULT option

HIERARCHY statement (OLAP) 269
MEASURE statement (OLAP) 273

DEFINE statement
OLAP procedure 276

DELETE option
PROC OLAP statement 248

DELETE_PHYSICAL option
PROC OLAP statement 249

DESC= option
DIMENSION statement (OLAP) 259
HIERARCHY statement (OLAP) 269
LEVEL statement (OLAP) 264
MEASURE statement (OLAP) 273
PROC OLAP statement 249
PROPERTY statement (OLAP) 267

detail tables
building cubes from 96
loading cubes from 281

DIMENSION statement
OLAP procedure 257

dimension table translations 65
dimensions

GIS map information for 41
multiple hierarchies for 42
ragged and unbalanced hierarchies for 44

DIMKEY= option
DIMENSION statement (OLAP) 259

DIMTABLELIBREF= option
DIMENSION statement (OLAP) 260

DIMTABLEMEMPREF= option
DIMENSION statement (OLAP) 260

DIMTBL= option
DIMENSION statement (OLAP) 259

DRILLTHROUGH_TABLE= option
PROC OLAP statement 249

DROP_AGGREGATION statement
OLAP procedure 61, 276

E

EMPTY= option
LEVEL statement (OLAP) 264

EMPTY_CHAR= option
HIERARCHY statement (OLAP) 260
PROC OLAP statement 250

EMPTY_NUM= option
HIERARCHY statement (OLAP) 260
PROC OLAP statement 250

F

FACT= option
PROC OLAP statement 247

FACTKEY= option
DIMENSION statement (OLAP) 261

FORMAT= option
MEASURE statement (OLAP) 273

G

GIS map information 41

H

hierarchies
default hierarchy 42
multiple hierarchies for a dimension 42
ragged and unbalanced 44

HIERARCHIES= argument
DIMENSION statement (OLAP) 258

HIERARCHY= option
PROPERTY statement (OLAP) 267

HIERARCHY statement
OLAP procedure 43, 267

HOST= option
METASVR statement (OLAP) 257

hyper-cubes
See cubes

I

IGNORE_EMPTY option
HIERARCHY statement (OLAP) 261
LEVEL statement (OLAP) 265

INDEX option
AGGREGATION statement (OLAP) 275
OLAP procedure 63
PROC OLAP statement 251

INDEXPATH= option
AGGREGATION statement (OLAP) 275
OLAP procedure 63
PROC OLAP statement 251

INDEXSORTSIZE= option
OLAP procedure 63
PROC OLAP statement 251

L

language support 65
LEVEL= argument

PROPERTY statement (OLAP) 266
LEVEL statement

OLAP procedure 263
LEVELS= argument

HIERARCHY statement (OLAP) 268
loading cubes

from detail tables 281
from star schema 283
with summarized data 285

M

MAXTHREADS= option
OLAP procedure 63
PROC OLAP statement 252

MEASURE statement
OLAP procedure 269

MEMBER argument
DEFINE statement (OLAP) 278
UNDEFINE statement 279

member properties 49
members

unique names 46

Index 321

metadata
refreshing cube metadata 57

METASVR statement
OLAP procedure 256

multi-cubes
See cubes

multi-threading 5
multiple hierarchies 42
multiple language support 65

N

NAME= argument
DROP_AGGREGATION statement (OLAP) 276

NAME= option
AGGREGATION statement (OLAP) 275

NO_NWAY option
PROC OLAP statement 252

O

OLAP 1
benefits of 2
data storage and access 1
variations of 3

OLAP procedure 244
AGGREGATION statement 274
building cubes 110
COMPRESS option 62
CONCURRENT= option 62
DATAPATH= option 62
DEFINE statement 276
defining member properties 50
defining multiple hierarchies 43
defining ragged and unbalanced hierarchies 45
DIMENSION statement 257
dimension table translations 66
DROP_AGGREGATION statement 61, 276
HIERARCHY statement 43, 267
INDEX option 63
INDEXPATH= option 63
INDEXSORTSIZE= option 63
LEVEL statement 263
MAXTHREADS= option 63
MEASURE statement 269
METASVR statement 256
overview 244
PARTSIZE= option 63
performance options 289
PROC OLAP statement 245
PROPERTY statement 50, 266
ragged hierarchy options 288
REFRESH statement 58
refreshing cube metadata 58
saving code for cubes 108
SEGSIZE= option 63
setting tuning and performance options 62
syntax 244
tuning cube aggregations 61
UNDEFINE statement 278
USER_DEFINED_TRANSLATIONS statement 66, 279
WORKPATH= option 63

OLAP_SCHEMA= argument
METASVR statement (OLAP) 256

OLE DB for OLAP
cubes with 225

Online Analytical Processing
See OLAP

P

PARTSIZE= option
AGGREGATION statement (OLAP) 275
OLAP procedure 63
PROC OLAP statement 253

PATH= option
PROC OLAP statement 253

performance
cube aggregations 61
OLAP procedure options for 289

PORT= option
METASVR statement (OLAP) 257

PROC OLAP statement 245
PROPERTY statement

OLAP procedure 50, 266
PW= option

METASVR statement (OLAP) 257

R

ragged hierarchies 44
OLAP procedure options for 288
unique member names and 46

REFRESH statement
OLAP procedure 58

refreshing cube metadata 57
REGISTER_ONLY option

PROC OLAP statement 254
REPOSITORY= option

METASVR statement (OLAP) 257

S

SAS Enterprise Guide 226
SAS Information Map Studio 227
SAS OLAP Cube Studio

building cubes 96
SAS OLAP Server

monitoring performance 61
SAS servers

character encoding and 66, 281
SAS Web OLAP Viewer 228
SAS Web Report Studio 227
SEGSIZE= option

AGGREGATION statement (OLAP) 275
OLAP procedure 63
PROC OLAP statement 254

SET argument
DEFINE statement (OLAP) 278
UNDEFINE statement 279

SORT_ORDER= option
DIMENSION statement (OLAP) 261
LEVEL statement (OLAP) 265

SQL Pass-Through facility
accessing cubes from 67
conversion issues 67
example 69
SQL procedure syntax 69

SQL procedure 69
star schemas

building cubes from 114
loading cubes from 283

322 Index

STAT= argument
MEASURE statement (OLAP) 269

summarized data
loading cubes with 285

summary tables
building cubes from 133

system options
adding to cubes 66

T

TABLE= option
AGGREGATION statement (OLAP) 275

third-party clients
cubes with 229

time analysis calculations 64
tuning cube aggregations

DROP_AGGREGATION statement for 61
monitoring OLAP server performance 61
specifying tuning options 61

TYPE= option
DIMENSION statement (OLAP) 262
LEVEL statement (OLAP) 265

U

unbalanced hierarchies 44

UNDEFINE statement

OLAP procedure 278

unique member names 46

UNITS= option

MEASURE statement (OLAP) 274

USER_DEFINED_TRANSLATIONS statement

OLAP procedure 66, 279

USERID= option

METASVR statement (OLAP) 257

V

VALIDVARNAME= system option 68

W

WORKPATH= option

OLAP procedure 63

PROC OLAP statement 255

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

 free on the Web.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

	Contents
	What’s New
	Overview
	OLAP Cube Building Features
	OLAP Cube Maintenance Features
	Cube Aggregation Tuning Features
	Incremental Cube Update Features
	Security For Cubes
	SAS Tree View Features
	New OLAP Procedure Options
	PROC OLAP Statement Options
	Dimension Statement Options
	LEVEL Statement Options
	MEASURE Statement Options
	PROPERTY Statement Options

	OLAP Introduction and Overview
	What Is OLAP?
	Data Storage and Access
	Benefits of OLAP
	OLAP Variations

	What Is a Cube?
	Understanding the Cube Structure
	Dimensions, Levels and Hierarchies
	Measures
	Aggregations

	Why You Should Use Cubes
	Cube Usage and Storage Space Reduction
	Multi-Threading Capabilities
	Easy Setup and Maintenance
	Data Management: Choosing Your Own Tool

	Defining the SAS OLAP Environment
	SAS OLAP Environment — Overview
	SAS Servers
	SAS Clients
	Data Organization and Management Components
	User and User Group Authorization Permissions

	SAS Metadata Server
	SAS Application Server
	SAS Workspace Server
	SAS OLAP Server
	SAS Management Console
	SAS OLAP Server Monitor
	SAS OLAP Cube Studio
	OLAP Schema
	SAS Libraries
	Data Tables
	Authorization Permissions

	Organization and Management of Your Data
	Cube Data Organization
	OLAP Schemas
	Defining an OLAP Schema
	Editing an OLAP Schema
	Changing the OLAP Schema For a Cube
	Deleting OLAP Schemas
	Viewing the OLAP Schema Properties
	Assigning the OLAP Schema with the OLAP Procedure

	SAS Libraries and Tables
	Defining Libraries and Tables
	Creating a New Library Definition for Source Data Tables
	Defining Tables Used to Build Cubes
	Renaming Tables
	Deleting Tables
	Viewing Table Data in SAS OLAP Cube Studio

	Managing Folders In SAS OLAP Cube Studio
	SAS Metadata Folders
	Finding an Object in a SAS Folder
	Copying an Object to a Different SAS Folder
	Moving Objects Between SAS Folders

	SAS OLAP Cube Jobs
	SAS OLAP Cube Jobs
	Cube Job Deployment and Redeployment
	Job and Deployed Job Properties

	Planning for SAS OLAP Cubes
	Overview
	Data Tables Used to Define SAS OLAP Cubes
	Detail Tables
	Fact Tables and Dimension Tables (Star Schema)
	Summary Tables
	Aggregation Tables
	Drill-Through Tables

	Aggregation Design
	Aggregation Size
	User Query Patterns and ARM Logging
	Aggregation Performance Settings

	Aggregation Storage
	MOLAP Aggregation Storage
	ROLAP Aggregation Storage
	Choosing MOLAP or ROLAP Aggregation Storage

	SAS OLAP Cube Size Specifications
	Defining the Number of Dimensions for A Cube
	Defining the Number of Hierarchies for A Cube
	Defining the Number of Levels, Measures, Members, and Properties

	Naming Guidelines and Rules for the SAS OLAP Server
	General Naming Guidelines
	SAS OLAP Cubes
	Dimensions, Levels, Hierarchies, and Measures
	OLAP Cube Aggregations
	OLAP Schemas
	Calculated Measures and Members

	SAS Formats Available for Measures
	Statistics Available for Measures

	Building Cubes and Administering Cubes
	SAS OLAP Cube Studio and the OLAP Procedure
	SAS OLAP Cube Studio
	SAS OLAP Procedure

	Connecting and Reconnecting to a Metadata Server
	Creating a Connection Profile
	Connecting with an Existing Profile
	Reconnecting to a Metadata Server

	Cube Designer Wizard
	Defining Data Sources For a Cube
	Defining Drill-Through Tables
	Defining Dimensions and Levels
	Defining Dimensions
	Defining Levels for a Dimension

	Specifying the TIME Dimension
	Designating a TIME Dimension
	Add Levels
	Add Supplied Time Hierarchies

	Specifying GIS Map Information for a Dimension
	Specifying a GEO Type Dimension in PROC OLAP

	Defining Cube Hierarchies
	Defining a Default Hierarchy
	Defining Multiple Hierarchies for a Dimension
	Defining Ragged and Unbalanced Hierarchies for a Dimension

	Defining Measures For A Cube
	Selecting Measures in SAS OLAP Cube Studio
	Unique Member Count Measures
	NUNIQUE Statistic
	Defining Stored and Derived Measures for a Fully Summarized Cube
	Statistics Available for Measures

	Defining Member Properties
	Property Statement
	Cube Designer

	Defining Aggregations While Building a Cube
	Adding Aggregations to a Cube
	Defining Stored Aggregations For a Fully Summarized Cube

	Saving the Cube Metadata or Creating the Physical Cube
	New Cubes
	Cubes Only Defined in the Metadata
	Cubes That Physically Exist

	Saving the OLAP Procedure (Long Form versus Short Form)
	Export Code

	Viewing Cubes in SAS OLAP Cube Studio
	SAS OLAP Server Connection
	Cube Permissions
	Disabled Cubes

	Modifying and Maintaining Cubes
	Editing a Cube
	Renaming A Cube Object
	Deleting Cubes and Cube Objects
	Deleting a Cube in SAS OLAP Cube Studio
	Deleting Cube Objects in SAS OLAP Cube Studio
	Deleting the Physical Cube in SAS OLAP Cube Studio
	Using the DELETE and DELETE_PHYSICAL OPTIONS

	Refreshing Cube Metadata
	MDX DDL REFRESH Statement

	Tuning Cube Aggregations
	SAS OLAP Cube Studio — Tune Aggregations Function
	Using PROC OLAP to Tune Aggregations
	Monitoring OLAP Server Performance

	Specifying Tuning and Performance Options in Cube Aggregations
	Setting Options on the Aggregation Tuning Dialog Box
	Setting Options with PROC OLAP

	Specifying Calculated Members and Measures
	Using the Calculated Members Wizard

	Multiple Language Support and Dimension Table Translations
	SAS OLAP Cube Studio and Dimension Table Translations
	PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement
	SAS Servers and Character Encoding

	Adding SAS System Options to a Cube
	Synchronizing Column Changes
	Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP
	Conversion Issues
	SQL Pass-Through Example
	PROC SQL Syntax
	Specifying User Authentication Information

	Impact Analysis and Reverse Impact Analysis
	Disabling and Enabling Cubes
	Disabling Cubes
	Enabling Cubes

	Cube Security
	Setting Permission Conditions on Cube Dimensions
	SECURITY_SUBSET PROC OLAP Option
	Identity-Driven Security
	Integrated Windows Authentication and Single Sign-On
	Security for Drill-through Tables
	Applying Batch Security with Permission Tables

	Updating SAS OLAP Cubes
	Overview
	Updating a Cube In-Place
	Incremental Updates of Cubes and Cube Generations
	OUTCUBE Option
	OUTSCHEMA Option
	OUTCUBE and OUTSCHEMA Options

	Coalescing Cube Aggregations
	Updating a Cube In a Production Environment
	Disable the Production Cube
	Rename the Cubes
	Enable the New Production Cube
	Example 1
	Example 2

	Archiving and Deleting Cube Generations
	Updating the Captions and Descriptions for a Cube
	Adding New Members to an Incrementally Updated Cube
	Reorganization of Cube Levels
	Why Reorganize?
	OLAP Procedure
	Multiple Language Support Cubes

	Updating Member Properties
	Specifying Drill-Through Tables
	NWAY Considerations
	Updating Multiple Language Support Cubes
	Format Search Path and SAS Source Code Considerations
	Exporting Cubes that Have Been Updated
	Input Data Tables for Cube Updates
	Schema and Repository Considerations
	Physical Storage and Metadata Considerations
	Connecting to a Workspace Server
	Proc OLAP Options
	Proc OLAPOPERATE Options and SAS OLAP Monitor
	Updating Cubes in SAS OLAP Cube Studio

	Cube Building and Modifying Examples
	Defining A Connection Profile
	Building a Cube from a Detail Table
	Enter General Cube Information
	Select A Detail Table
	Define Dimensions, Levels, and Hierarchies
	Define Measures
	Define Member Properties
	Define Aggregations
	Build the Cube
	Save a Cube’s PROC OLAP Code
	PROC OLAP Statements and Options For a Detail Table

	PROC OLAP Example for a Detail Table
	Building a Cube from a Star Schema
	Enter General Cube Information
	Select Fact and Dimension Tables
	Define Dimensions, Levels and Hierarchies
	Define Measures
	Define Member Properties
	Define Aggregations
	Build the Cube
	PROC OLAP CODE for the Star Schema Example
	PROC OLAP Statements and Options For a Star Schema

	Building a Cube from a Summary Table
	Enter General Cube Information
	Select an Input Table
	Define Dimensions, Levels and Hierarchies
	Define Measures
	Define Member Properties
	Define Aggregation Tables
	Define Stored Aggregations
	Define Aggregations
	Build the Cube
	PROC OLAP CODE for the Summary Table Example
	PROC OLAP Statements and Options For a Summary Table

	Tuning Aggregations For a Cube
	Cardinality Tuning
	Manual Tuning
	Arm Log Tuning

	Adding Data to a Cube with Cube Update
	Update a Cube In-Place
	Generating a New Cube
	Coalesce Incremental Data for a Cube

	Adding Calculated Members To A Cube
	Creating a Simple Calculation
	Creating a Time Analysis Calculation
	Creating a Custom Calculation

	Setting Member Authorizations On A Dimension
	Setting Identity Driven Security
	Viewing a Cube in SAS OLAP Cube Studio
	Adding Level Data to a Cube View
	Replacing Level Data On A Cube View

	Creating a Time Dimension in SAS OLAP Cube Studio
	Synchronizing Column Changes
	Specifying an ESRI GIS Map For a Cube Dimension
	Creating Multiple Hierarchies For a Cube
	Set IGNORE_MISSING_DIMKEYS for a Star Schema
	Implementing Drill-through to Detail Data in a SAS OLAP Cube
	Exporting a Cube From SAS OLAP Cube Studio
	Importing a Cube Into SAS OLAP Cube Studio

	Using SAS OLAP Cubes
	Using a Cube with ADO MD
	Using a Cube with OLE DB for OLAP
	Using a Cube with Additional SAS Products
	SAS Products That Use SAS OLAP Cubes
	SAS Enterprise Guide
	SAS Information Map Studio
	SAS Web Report Studio
	SAS Web OLAP Viewer for Java
	SAS Add-In for Microsoft Office

	Using a Cube with Third-Party Clients
	Microsoft Excel Pivot Tables and Pivot Charts

	Importing and Exporting SAS OLAP Cubes
	Importing and Exporting SAS OLAP Cubes
	Determining Which Tool to Use

	ExportCubes and ImportCubes Batch Tools
	ExportCubes Batch Tool
	ImportCubes Batch Tool

	Export SAS Package and Import SAS Package
	SAS Packages - Copying the Cube Metadata Registration for a SAS OLAP Cube
	Export SAS Package
	Import SAS Package
	User Privilege and Permission Considerations
	Creating Connection Points
	File Naming Considerations
	Multi-Language Cubes
	Manually Copying Physical Files for a SAS OLAP Cube

	Validating Data After It Is Moved
	Cube Promotion and Migration Resources

	The OLAP Procedure
	The OLAP Procedure
	Syntax: OLAP Procedure
	PROC OLAP Statement
	Options

	METASVR Statement
	Required Argument
	Options

	DIMENSION Statement
	Required Arguments
	Options

	LEVEL Statement
	Required Arguments
	Options

	PROPERTY Statement
	Required Arguments
	Options

	HIERARCHY Statement
	Required Arguments
	Options

	MEASURE Statement
	Required Arguments
	Options

	AGGREGATION Statement
	Required Arguments
	Options

	DROP_AGGREGATION Statement
	Required Arguments

	DEFINE Statement
	Required Arguments

	UNDEFINE Statement
	Required Arguments

	USER_DEFINED_TRANSLATIONS Statement
	Required Argument
	SAS Servers and Character Encoding

	REORGANIZE_LEVEL Statement
	Loading Cubes
	Loading Cubes from a Detail Table
	Loading Cubes from a Star Schema
	Loading Cubes Using Summarized Data

	Maintaining Cubes
	Building a Cube from an Existing Definition
	Adding Aggregations to an Existing Cube
	Deleting Aggregations from an Existing Cube
	Deleting Cubes

	Specialized Options for PROC OLAP
	Options for Managing Ragged Hierarchies
	Options Used for Performance

	The OLAPOPERATE Procedure
	The OLAPOPERATE Procedure
	Syntax: OLAPOPERATE Procedure
	Connection Options
	Disconnecting from an OLAP Server
	Listing Active Sessions on an OLAP Server
	Listing Session Queries on an OLAP Server
	Listing Session Rowsets on an OLAP Server
	Closing a Session
	Cancelling a Query Result Set
	Disabling a Cube
	Enabling a Cube
	Enabling and Disabling Cubes for a Cube Update
	Refreshing a Cube
	Stopping an OLAP Server

	Resources and Reference Topics for SAS OLAP Cubes
	OLAP Server Resources
	OLAP Schema Resources
	Cube Resources
	Table Resources
	Dimension Resources
	Level Resources
	Hierarchy Resources
	Measure Resources
	Member and Member Properties Resources
	Calculated Members and Measures Resources
	Aggregation Resources
	Incremental Cube Update Resources
	Drill–Through to Detail Resources
	GIS Mapping Resources

	SAS OLAP Cube Studio Accessibility Features
	SAS OLAP Cube Studio Accessibility Features

	Recommended Reading
	Glossary
	Index

