
SAS® 9.2
Output Delivery System
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Output Delivery System: User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 Output Delivery System: User’s Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-591-0
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
1st printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

New Features and Enhancements for ODS Statements vii

New Features and Enhancements for the DOCUMENT Procedure xi

New Features and Enhancements for the TEMPLATE Procedure xii

Improved ODS Statistical Graphics xiv

New ODS Support for SAS/GRAPH xiv

New PDF Security xv

New Scalable Vector Graphics and Fonts xv

Query Open ODS Destinations xv

P A R T 1 Introduction 1

Chapter 1 � Getting Started with the Output Delivery System 3
Welcome to the Output Delivery System 3

Accessibility Features in ODS 3

A Quick Start to Using ODS 5

Where to Go from Here 10

P A R T 2 Concepts 13

Chapter 2 � Output Delivery System: Basic Concepts 15
Introduction to the Output Delivery System 16

Gallery of ODS Samples 16

Overview of How ODS Works 22

Understanding ODS Destinations 24

Understanding Table Templates, Table Elements, and Table Attributes 29

Understanding Styles, Style Elements, and Style Attributes 29

Understanding Item Stores, Template Stores, and Directories 31

Changing SAS Registry Settings for ODS 32

Customized ODS Output 34

Summary of ODS 37

Chapter 3 � Output Delivery System and the DATA Step 39
Using ODS with the DATA Step 39

How ODS Works with the DATA Step 40

Syntax for ODS Enhanced Features in a DATA Step 41

Examples 41

P A R T 3 ODS Language Statements 59

Chapter 4 � Introduction to ODS Language Statements 61

iv

Definition of ODS Statements 61

Types of ODS Statements 61

ODS Statement Category Descriptions 62

ODS Statements by Category 63

Chapter 5 � Dictionary of ODS Language Statements 67

P A R T 4 The DOCUMENT Procedure 331

Chapter 6 � The DOCUMENT Procedure 333
Overview: DOCUMENT Procedure 334

Syntax: DOCUMENT Procedure 335

Concepts: DOCUMENT Procedure 364

Results: DOCUMENT Procedure 367

Examples: DOCUMENT Procedure 374

P A R T 5 The TEMPLATE Procedure 393

Chapter 7 � TEMPLATE Procedure: Overview 395
Introduction to the TEMPLATE Procedure 395

Terminology: TEMPLATE Procedure 402

PROC TEMPLATE Statements by Category 403

Syntax: TEMPLATE Procedure 404

Where to Go from Here 406

Chapter 8 � TEMPLATE Procedure: Managing Template Stores 407
Overview: Template Stores 407

Template Store Syntax: TEMPLATE Procedure 408

Concepts: Template Stores and the TEMPLATE Procedure 422

Examples: Managing Template Stores Using the TEMPLATE Procedure 424

Chapter 9 � TEMPLATE Procedure: Creating Crosstabulation Table Templates 429
Overview: ODS Crosstabulation Table Template Output 429

Crosstabulation Table Syntax: TEMPLATE Procedure 433

Concepts: Crosstabulation Output and the TEMPLATE Procedure 457

Examples: Modifying Crosstabulation Output Using the TEMPLATE Procedure 460

Chapter 10 � TEMPLATE Procedure: Creating ODS Graphics 483
Introduction to the Graph Template Language 483

STATGRAPH Syntax: TEMPLATE Procedure 484

Where to Go from Here 485

Chapter 11 � TEMPLATE Procedure: Creating a Style Template (Definition) 487
Overview: ODS Style Templates (Definitions) 487

Style Syntax: TEMPLATE Procedure 489

Concepts: Styles and the TEMPLATE Procedure 538

Examples: Creating and Modifying Styles Using the TEMPLATE Procedure 551

v

Chapter 12 � TEMPLATE Procedure: Creating Tabular Output 593
Overview: ODS Tabular Output 593

Tabular Syntax: TEMPLATE Procedure 596

Concepts: Tabular Output and the TEMPLATE Procedure 753

Examples: Modifying Tabular Output by Using the TEMPLATE Procedure 756

Chapter 13 � TEMPLATE Procedure: Creating Markup Language Tagsets 795
Overview: ODS Tagsets and the TEMPLATE PROCEDURE 795

Markup Language Syntax: TEMPLATE Procedure 796

Concepts: Markup Languages and the TEMPLATE Procedure 838

Examples: Creating and Modifying Markup Languages Using the TEMPLATE
Procedure 846

P A R T 6 Appendices 867

Appendix 1 � Example Programs 869
Creating the $CNTRY Format 869

Creating the Charity Data Set 869

Creating the DIVFMT. and USETYPE. Formats 872

Creating the Univ ODS Document 872

Creating the Employee_Data Data Set 873

Creating the Energy Data Set 875

Creating the Exprev Data Set 875

Creating the Gov Data Set 877

Creating the Grain_Production Data Set 878

Creating the Iron Data Set 879

Creating the Model Data Set 879

Creating the Plants Data Set 880

Creating the Plant_Stat Data Set 880

Creating the StatePop Data Set 881

Creating the Table1 Table Definition 882

Programs That Illustrate Inheritance 883

Creating the Nlits Data Set 889

Appendix 2 � ODS and the HTML Destination 891
HTML Links and References Produced by the HTML Destination 891

Files Produced by the HTML Destination 896

Appendix 3 � ODS HTML Statements for Running Examples in Different Operating
Environments 903
Using a z/OS UNIX System Services HFS Directory for HTML Output 903

Using a z/OS PDSE for EBCDIC HTML Output 903

Using a z/OS PDSE for ASCII HTML Output 904

Appendix 4 � ODS Style Elements 905
General ODS Style Elements 905

Style Elements Affecting Template-Based Graphics 914

vi

Style Elements Affecting Device-Based Graphics 920

Appendix 5 � Recommended Reading 929
Recommended Reading 929

Glossary 931

Index 939

vii

What’s New

Overview
New and enhanced features in the Output Delivery System (ODS) provide an almost

limitless number of choices for reporting and displaying analytical results with a
greater variety of formatting selections and output destinations.

� With ODS statements, you can use new ODS packages, measured RTF output, and
enhanced inline formatting, among other new features.

� Using the DOCUMENT procedure, you can perform four new tasks.
� Several new features and enhancements have been added to the TEMPLATE

procedure, including a new crosstabulation table template and enhanced style
inheritance.

� Improved ODS statistical graphics enable you to use ODS and SAS/GRAPH to
create and modify statistical graphics.

� SAS/GRAPH uses ODS styles by default for graphical output.
� You can use the PDFSECURITY system option to encrypt and password-protect

your PDF files.
� SVG (Scalable Vector Graphics) and new TrueType fonts can be added to ODS

output.
� You can use PROC SQL to query open ODS destinations.
� You can control the way you view your PDF document by specifying system options

PDFPAGELAYOUT and the PDFPAGEVIEW.

New Features and Enhancements for ODS Statements
The following ODS statements are new:

ODS TAGSETS.RTF
creates measured RTF output that enables you to specify how and where page
breaks occur and when to place titles and footnotes in the body of a page.

ODS PACKAGE
opens, adds to, publishes, or closes one SAS ODS package object. ODS packages
enable ODS destinations to use the SAS Publishing Framework, which is a feature

viii What’s New

of SAS Integration Technologies. An ODS package tracks the output from any
active destinations that connect with it. After the destinations close, the package
can be published to any of the publish destinations. You can use ODS packages
with the ODS PACKAGE statement.

ODS TEXT=
inserts text into ODS output.

The following new functionality works with the ODS PRINTER and PDF
destinations:

� Style attribute TEXTDECORATION= can now be specified with the PDF
destination.

� In addition to supporting HTTP, the URL= style attribute now supports HTTPS,
FTP, NEWS, and MAILTO.

New options have been added to the following ODS statements:
� Inline formatting has new syntax for SAS 9.2 and inline styles can now be nested.

The ODS ESCAPECHAR statement now supports the list of functions shown in
the section "Valid Functions That Can Be Used with ODS ESCAPECHAR" that
can be used with various destinations. In addition, you can now use the
UNICODE inline formatting function to select any available Unicode character in
the current Unicode font.

� The ODS EXCLUDE statement now supports the following options:

NOWARN
suppresses the warning that an output object was requested but not created.

WHERE=
excludes output objects that meet a particular condition.

� The ODS GRAPHICS statement now supports the following options:

ANTIALIAS | NOANTIALIAS | ANTIALIAS=
specifies whether anti-aliasing is applied to the rendering of the line and
markers in the graph. Anti-aliasing smooths the appearance of diagonal lines
and some markers.

ANTIALIASMAX=
specifies the maximum number of markers or lines to be anti-aliased before
anti-aliasing is disabled. The default is 600.

BORDER | NOBORDER | BORDER=
specifies whether to draw the graph with a border on the outermost layout.

DISCRETEMAX=
specifies the maximum number of discrete values to be shown in a plot.

GROUPMAX=
specifies the maximum number of group values to be shown in a plot.

HEIGHT=
specifies the height of the graph.

IMAGEFMT=
specifies the image format to display graphics in ODS output. If the image
format is not valid for the active output destination, the device is
automatically remapped to the default image format.

IMAGEMAP | NOIMAGEMAP | IMAGEMAP=
specifies whether data tips are generated.

What’s New ix

IMAGENAME=
specifies the base image filename. By default, the name of the output object
is used. You can determine the name of the output object by using the ODS
TRACE statement.

LABELMAX=
specifies the maximum number of labeled areas before labeling is disabled.

MAXLEGENDAREA=
specifies an integer that is interpreted as the maximum percentage of the
overall graph’s area that a legend can occupy.

PANELCELLMAX=
specifies the maximum number of cells in a graph panel where the number of
cells is determined dynamically by classification variables.

RESET | RESET=
resets one or more ODS GRAPHICS options to its default.

SCALE | NOSCALE | SCALE=
specifies whether the content of the graph is scaled proportionally.

TIPMAX=
specifies the maximum number of distinct data tip boxes that are allowed
before the boxes are disabled.

WIDTH=
specifies the width of the graph.

� The ODS HTML statement now supports the following options:

DEVICE=
specifies the name of a device driver. ODS automatically selects an optimal
default device for each open output destination.

OPTIONS=
specifies tagset-specific suboptions and a named value. The DOC= suboption
allows you to produce a list of other suboptions that can be specified for
OPTIONS=

� The ODS LISTING statement now supports the following option:

DEVICE=
specifies the name of a device driver. ODS automatically selects an optimal
default device for each open output destination.

GPATH=
specifies the location for all graphics output that is generated while the
destination is open.

PACKAGE
specifies that the output from the destination be added to a package.

� The ODS MARKUP statement now supports the following options:

CSSSTYLE=
specifies a cascading style sheet to apply to your output.

DEVICE=
specifies the name of a device driver. ODS automatically selects an optimal
default device for each open output destination.

x What’s New

IMAGE_DPI=
specifies the image resolution in dots per inch for output images.

EVENT=
specifies an event and the value for event variables that are associated with
the event.

OPTIONS=
specifies tagset-specific suboptions and a named value. The DOC= suboption
allows you to produce a list of other suboptions that can be specified for
OPTIONS=

PACKAGE
specifies that the output from the destination be added to a package. The
PACKAGE option is valid for all markup family statements.

TEXT=
inserts text into your document by triggering the paragraph event and
specifying a text string to be assigned to the VALUE event variable.

� The ODS OUTPUT statement now supports the following option:

NOWARN
suppresses the warning that an output object was requested but not created.

� The ODS PRINTER, ODS PDF, and ODS PCL statements now support the
following options:

CSSSTYLE=
specifies a cascading style sheet to apply to your output.

DPI=
specifies the image resolution in dots per inch for output images.

NEWFILE=
creates a new file at the specified starting-point.

PACKAGE
specifies that the output from the destination be added to an ODS package.

� The ODS PDF and ODS PRINTER statements now support the following options.

PDFTOC=
controls the level of the expansion of the table of contents in PDF documents.

� The ODS RTF statement now supports the following options:

BODYTITLE
specifies that SAS titles and footnotes are placed in the body of the RTF
document rather than the headers and footers section of the document.

BODYTITLE_AUX
specifies that SAS titles and footnotes are placed in the body of the RTF
document rather than the headers and footers section of the document. The
titles and footnotes are placed in cells, which allows the titles and footnotes
to be centered, right-justified and left-justified.

CONTENTS
produces a table of contents page that is inserted into the RTF document
when the TOC_DATA option is specified.

CSSSTYLE=
specifies a cascading style sheet to apply to your output.

What’s New xi

DEVICE=
specifies the name of a device driver. ODS automatically selects an optimal
default device for each open output destination.

IMAGE_DPI=
specifies the resolution for your graphics.

PACKAGE
specifies the location of an aggregate storage location or a SAS catalog for all
RTF files.

TOC_DATA
specifies whether contents data is inserted into the RTF document.

� The ODS SELECT statement now supports the following options:

NOWARN
suppresses the warning that an output object was requested but not created.

WHERE=
selects output objects that meet a particular condition.

� The ODS TRACE statement now supports the following option:

EXCLUDED
includes, in the trace record, information about excluded output objects.

New Features and Enhancements for the DOCUMENT Procedure

The DOCUMENT procedure now enables you to do the following:

� Use all PROC DOCUMENT features with the REPORT procedure.

� Create columns for BY variables in the contents list with the new BYGROUPS
option in the LIST statement.

� Conditionally select a subset of entries in an ODS document for copying, listing,
deleting, moving, or replaying by using WHERE expressions with these
statements:

� COPY TO

� DELETE

� LIST

� MOVE TO

� REPLAY

� Specify the level of the path that you want to delete with the new LEVELS=
option in the DELETE statement.

� Write, to any open ODS destination, the source code of the ODS template that is
associated with the specified output object, with the new OBTEMPL statement.

The DOCUMENT procedure now supports the REPORT procedure.

xii What’s New

New Features and Enhancements for the TEMPLATE Procedure

The following general enhancements and features have been added to the
TEMPLATE procedure:

� The “LIST Statement” on page 411 now supports WHERE expressions, which
enables you to select items for listing that meet a particular condition.

� The “SOURCE Statement” on page 417 now supports WHERE expressions,
which enables you to select items that meet a particular condition.

� The TEMPLATE procedure now enables you to customize the appearance of
crosstabulation tables that are created with the FREQ procedure. The new
CrossTabFreqs table template describes how to display PROC FREQ’s
crosstabulation table. You can create a customized CrossTabFreqs table
template to do the following:

� use custom formats for cellvalues
� specify a style for each value in a cell
� change the stacking order of values in a cell
� change and style headers and footers
� use variable labels in headers and footers
� style table regions independently
� change or remove the legend

The following enhancements and features have been added to the TEMPLATE
procedure for table templates:

� You can now create the master table templates that are globally applied to all
of your tabular output:

Base.Template.Column on page 600
Base.Template.Footer on page 627
Base.Template.Header on page 619
Base.Template.Table on page 642

These master templates are available in all of the DEFINE statements
within a table template.

� You can now use subsetting variables with the “CELLSTYLE AS Statement”
on page 614 to find common values in table templates and column templates.

� You can use the TableHeaderContainer and TableFooterContainer style
elements along with the border control style attributes to change the borders
of the regions that surround the table header and footer.

The following new statements are provided in the TEMPLATE procedure for style
definitions:

CLASS
creates a style element from a like-named style element.

IMPORT
imports Cascading Style Sheet (CSS) code from an external file and converts
the code to style elements and style attributes that are then included in the
style definition.

What’s New xiii

The following enhancements and features have been added to the TEMPLATE
procedure for ODS style definitions:

� You can now create the master template, Base.Template.Style on page 491,
that is globally applied to all of your style definitions. Base.Template.Style is
created with the “DEFINE STYLE Statement” on page 490.

� Style element inheritance has been enhanced. In addition, the functionality
of the REPLACE statement has been replaced by the STYLE statement, and
the REPLACE statement is no longer supported. For more information, see
“Understanding Inheritance” on page 543.

� You can now use the following style attributes with inline formatting or the
TableHeaderContainer and TableFooterContainer style elements to make
individual border style changes to RTF output:

� BORDERBOTTOMCOLOR= on page 511

� BORDERBOTTOMSTYLE= on page 511

� BORDERBOTTOMWIDTH= on page 511

� BORDERCOLOR= on page 511

� BORDERLEFTSTYLE= on page 512

� BORDERLEFTCOLOR= on page 512

� BORDERLEFTWIDTH= on page 512

� BORDERRIGHTCOLOR= on page 512

� BORDERRIGHTSTYLE= on page 513

� BORDERRIGHTWIDTH= on page 513

� BORDERTOPCOLOR= on page 513

� BORDERTOPSTYLE= on page 513

� BORDERTOPWIDTH= on page 514

� The new style HighContrast enables you to produce reports with HTML
output in high contrast to meet accessibility requirements.

The STYLE statement now supports the following option:

SELF
specifies to use the preceding style element or style elements of the same
name for the parent of the new style.

The following new statements are provided in the TEMPLATE procedure for the
tagset template:

CONTINUE
specifies that the execution of the DO loop returns to the corresponding DO
statement.

DO
begins a statement block that executes if the required condition is true.

DONE
ends a statement block.

ELSE
begins a statement block that executes if the corresponding DO statement is
false.

EVAL
creates or updates a user-defined variable and its value.

xiv What’s New

ITERATE
specifies a dictionary variable or list variable to loop through, and for each
iteration, assigns the variable’s values to the _NAME_ and _VALUE_ event
variables.

NEXT
increments a dictionary or list variable to the next value.

STOP
moves execution to the end of the current statement block.

The following enhancements has been added to the TEMPLATE procedure for tagset
templates:

� Stream commands in tagset templates are able to specify variables.
� You can now use the master template Base.Template.Tagset that is globally

applied to all of your tagsets. Base.Template.Tagset is created with the
DEFINE TAGSET statement.

Improved ODS Statistical Graphics
The ODS graphics capability, which was experimental for SAS 9.1, is now production

for SAS 9.2 as ODS graphics.
� There are over 50 procedures in SAS/STAT, SAS/ETS, SAS/QC, and Base SAS that

have been modified to use ODS graphics. Many new plots are now produced by
these procedures, either by default or with the specification of procedure options.

� The functionality of ODS graphics has been extended with the addition of new
graph types, ODS styles designed for statistical work, and a point-and-click editor
for enhancing titles, labels, and other graph features.

� You can also modify graphs by changing their underlying templates, which are
supplied by SAS and are written with PROC TEMPLATE and the Graph Template
Language (GTL).

� The LISTING destination is now supported by ODS graphics.
� A new family of SAS/GRAPH procedures uses ODS graphics to create stand-alone

plots, such as scatterplots overlaid with smoothers, which are particularly useful
for exploratory data analysis.

� The new SGRENDER procedure provides a way to create customized displays by
writing your own templates with the GTL and PROC TEMPLATE.

For complete documentation about ODS graphics, see the SAS/GRAPH: Statistical
Graphics Procedures Guide, SAS/GRAPH: Graph Template Language Reference, and
the SAS/GRAPH: Graph Template Language User’s Guide.

Note: A SAS/GRAPH license is now required to use ODS graphics. �

New ODS Support for SAS/GRAPH
All SAS/GRAPH procedures and devices now support ODS styles. By default, all

colors, fonts, symbols, and graph sizes are derived from the current style. Procedure
statement options and SAS/GRAPH GOPTIONS can still be used to override individual
elements of the graph, providing you the flexibility to customize the appearance of any
graph.

What’s New xv

Additionally, the colors used by the styles have been updated to enhance the
appearance of your graphics output.

If you have multiple ODS destinations open, SAS/GRAPH automatically selects the
appropriate device for each destination. In addition, each graph uses the ODS style
that is associated with each destination. You do not need to specify a device or style to
get optimal results. For example, if you do not specify a device, then SAS/GRAPH
automatically selects the PNG device for the HTML destination and the SASEMF
device for the RTF destination.

Also, if you have multiple ODS destinations open and you are using a device other
than the Java or ActiveX devices (ACTIVEX, JAVA, ACTXIMG, or JAVAIMG), a
different GRSEG is created for each open destination. The GRSEG for the first
destination is stored in WORK.GSEG. The GRSEGs for any other open destinations are
named according to the destination (for example, WORK.HTML).

New PDF Security
You can now encrypt and password-protect your PDF files easily in SAS with the

PDFSECURITY system option. See the PDFSECURITY system option in SAS
Language Reference: Dictionary.

New Scalable Vector Graphics and Fonts
ODS styles can now use new TrueType fonts. All Universal Printers and many SAS/

GRAPH devices use the FreeType library to render TrueType fonts for output in all of
the operating environments that SAS software supports. In addition, by default, many
SAS/GRAPH device drivers and all Universal Printers generate output using ODS
styles, and these ODS styles use TrueType fonts. In addition to SAS Monospace and
SAS Monospace Bold, 21 new TrueType fonts are made available when you install SAS:

� five Latin fonts compatible with Microsoft
� eight multilingual Unicode fonts
� eight monolingual Asian fonts

ODS now supports Scalable Vector Graphics, which is a language for describing
two-dimensional graphics and graphical applications in XML. For more information
about Scalable Vector Graphics and the TrueType fonts, see the section “Printing with
SAS” in SAS Language Reference: Concepts.

Query Open ODS Destinations
You can now programmatically query SAS for open ODS destinations with the new

SQL dictionary table DESTINATIONS and its associated view. See the section “Using
the DICTIONARY Tables” in the SQL Procedure in the Base SAS Procedures Guide.

xvi What’s New

1

P A R T1

Introduction

Chapter 1.Getting Started with the Output Delivery System 3

2

3

C H A P T E R

1
Getting Started with the Output
Delivery System

Welcome to the Output Delivery System 3
Accessibility Features in ODS 3

A Quick Start to Using ODS 5

The Purpose of These Examples 5

Creating Listing Output 5

Creating Output in HTML Format 7
Producing Output in Multiple Formats at the Same Time 8

Where to Go from Here 10

Welcome to the Output Delivery System
Before SAS 7, most SAS procedures generated output that was designed for a

traditional line-printer. This type of output has limitations that prevent you from
getting the most value from your results:

� Traditional SAS output is limited to monospace fonts. In a time of desktop
document editors and publishing systems, you want more versatility in printed
output.

� Some commonly used procedures produce printed output but do not create an
output data set. Many times it would be very convenient to produce not only
printed output but also an output data set that you could use as input to another
SAS procedure or to a DATA step.

ODS is designed to overcome these limitations and make it easier for you to format
your output. The SAS Output Delivery System (ODS) gives you greater flexibility in
generating, storing, and reproducing SAS procedure and DATA step output along with a
wide range of formatting options. ODS provides formatting functionality that is not
available when using individual procedures or the DATA step without ODS.

Accessibility Features in ODS
The Output Delivery System conforms to the U.S. Section 508 guidelines for

Web-based content. If you have specific questions about the accessibility of SAS
products, send them to accessibility@sas.com or call SAS Technical Support.

The following additional accessibility items are available as programming options:

“Event Variables” on page 833

ABBR
specifies an abbreviation for the event variable.

4 Accessibility Features in ODS � Chapter 1

ACRONYM
specifies an acronym for an event variable.

ALT
specifies an alternate description of an event variable.

CAPTION
specifies the caption for a table.

LONGDESC
specifies the long description of an event variable.

SUMMARY
specifies a summary of a table.

Style Template:

STYLES.HIGHCONTRAST
creates the same output as the default output except all of the colors are
black on white.

“Header Attributes” on page 628

ABBR= on page 630
specifies an abbreviation for the header.

ACRONYM= on page 630
specifies an acronym for the header.

ALT= on page 630
specifies an alternate description of the header.

GENERIC on page 632
specifies whether multiple columns can use the header.

LONGDESC= on page 632
specifies the long description of the header.

“Table Attributes” on page 642

LONGDESC= on page 648
specifies a long description of a table.

ALT= on page 645
specifies an alternate description of a table.

The following tagsets and ODS statements are 508 compliant:

“ODS PHTML Statement” on page 215
opens, manages, or closes the PHTML destination, which produces simple
HTML output that uses twelve style elements and no class attributes.

“ODS HTMLCSS Statement” on page 135
opens, manages, or closes the HTMLCSS destination, which produces HTML
output with cascading style sheets.

“ODS HTML Statement” on page 124
opens, manages, or closes the HTML destination, which produces HTML 4.0
output that contains embedded style sheets.

MSOFFICE2K on page 282 tagset
produces HTML code for output generated by ODS for Microsoft Office
products.

Getting Started with the Output Delivery System � Creating Listing Output 5

In SAS 9.1 and later releases, all of the accessibility enhancements have been
merged into the ODS HTML tagsets. No additional steps are required.

A Quick Start to Using ODS

The Purpose of These Examples
The following examples are designed to help you to begin using ODS quickly. Use

them to learn how to produce output that contains more interesting formatting. Then,
to learn more about the depth, breadth, and true power of ODS, see “Introduction to the
Output Delivery System” on page 16.

Creating Listing Output
Creating the listing output is simple—just run a DATA step or PROC step as usual.

By default, the LISTING destination is on, and the DATA step and Base SAS
procedures create listing output through ODS:

options source pagesize=60 linesize=80 nodate;

data employee_data;
input IDNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;

datalines;
1919 Adams Gerald Stamford CT
M TA2 34376 15SEP48 07JUN75 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT52 12AUG78 203/675-7715
1400 Apple Troy New York NY
M ME1 29769 08NOV55 19OCT78 212/586-0808
1350 Arthur Barbara New York NY
F FA3 32886 03SEP53 01AUG78 718/383-1549
1401 Avery Jerry Paterson NJ
M TA3 38822 16DEC38 20NOV73 201/732-8787
1499 Barefoot Joseph Princeton NJ
M ME3 43025 29APR42 10JUN68 201/812-5665
1101 Baucom Walter New York NY
M SCP 18723 09JUN50 04OCT78 212/586-8060
1333 Blair Justin Stamford CT
M PT2 88606 02APR49 13FEB69 203/781-1777
1402 Blalock Ralph New York NY
M TA2 32615 20JAN51 05DEC78 718/384-2849
1479 Bostic Marie New York NY
F TA3 38785 25DEC56 08OCT77 718/384-8816
1403 Bowden Earl Bridgeport CT
M ME1 28072 31JAN57 24DEC79 203/675-3434

6 Creating Listing Output � Chapter 1

1739 Boyce Jonathan New York NY
M PT1 66517 28DEC52 30JAN79 212/587-1247
1658 Bradley Jeremy New York NY
M SCP 17943 11APR55 03MAR80 212/587-3622
1428 Brady Christine Stamford CT
F PT1 68767 07APR58 19NOV79 203/781-1212
1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR57 21MAR78 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP57 30JUN75 212/588-1092
;

proc print data=employee_data(obs=12);
id idnumber;
title ’Personnel Data’;

run;

Output 1.1 Listing Output

Personnel Data 1

ID First Job

Number LastName Name City State Gender Code

1919 Adams Gerald Stamford CT M TA2

1653 Alexander Susan Bridgeport CT F ME2

1400 Apple Troy New York NY M ME1

1350 Arthur Barbara New York NY F FA3

1401 Avery Jerry Paterson NJ M TA3

1499 Barefoot Joseph Princeton NJ M ME3

1101 Baucom Walter New York NY M SCP

1333 Blair Justin Stamford CT M PT2

1402 Blalock Ralph New York NY M TA2

1479 Bostic Marie New York NY F TA3

1403 Bowden Earl Bridgeport CT M ME1

1739 Boyce Jonathan New York NY M PT1

ID

Number Salary Birth Hired HomePhone

1919 34376 15SEP1948 07JUN1975 203/781-1255

1653 35108 18OCT1952 12AUG1978 203/675-7715

1400 29769 08NOV1955 19OCT1978 212/586-0808

1350 32886 03SEP1953 01AUG1978 718/383-1549

1401 38822 16DEC1938 20NOV1973 201/732-8787

1499 43025 29APR1942 10JUN1968 201/812-5665

1101 18723 09JUN1950 04OCT1978 212/586-8060

1333 88606 02APR1949 13FEB1969 203/781-1777

1402 32615 20JAN1951 05DEC1978 718/384-2849

1479 38785 25DEC1956 08OCT1977 718/384-8816

1403 28072 31JAN1957 24DEC1979 203/675-3434

1739 66517 28DEC1952 30JAN1979 212/587-1247

Listing output is the default format; therefore, when you request another format,
your programs will create both listing output and output in the requested format. To
prevent listing output from being created, use this statement:

ods listing close;

Getting Started with the Output Delivery System � Creating Output in HTML Format 7

Creating Output in HTML Format

If you want to display output from a SAS program from the Web, you can use ODS to
create output that is formatted in Hypertext Markup Language (HTML). To create
HTML output, use the ODS HTML statement:

ods html file=’external-file-for-HTML-output’;

If you do not want to generate listing output in addition to the HTML output, then
use this statement:

ods listing close;

The following program contains a PROC PRINT step that produces output in HTML,
but does not produce the default listing output. You can browse this output with
Internet Explorer, Netscape, or any other browser that fully supports HTML 3.2 or later.

ods listing close;
ods html file=’external-file-for-HTML-output’;

proc print data=employee_data(obs=12);
id idnumber;
title ’Personnel Data’;

run;

ods html close;
ods listing;

Note the two ODS statements that follow the PROC PRINT step. To be able to browse
your HTML files in a browser, you must execute the ODS HTML CLOSE statement. It
is simply good practice to reset ODS to listing output, which is the default setting.

Display 1.1 HTML 3.2 Output

The following output is formatted in HTML 3.2 output and viewed in an Internet Explorer 5.0
browser.

8 Producing Output in Multiple Formats at the Same Time � Chapter 1

Producing Output in Multiple Formats at the Same Time
A simple way to produce output in multiple formats at one time is to produce the

default listing output and then request an additional format, such as HTML, PDF, RTF,
or PostScript.

ods html file=’HTML-file-pathname.html’;
ods pdf file=’PDF-file-pathname.pdf’;
ods rtf file=’RTF-file-pathname.rtf’;
ods ps file=’PS-file-pathname.ps’;

proc print data=employee_data(obs=12);
id idnumber;
title ’Personnel Data’;

run;

ods _all_ close;
ods listing;

Note the two ODS statements that follow the PROC statement. The first one closes
all files so that you can use them (for example, you could browse the HTML file or send
the PDF file to a printer). The final statement opens the LISTING destination so that
ODS returns to producing listing output for subsequent DATA or PROC steps in the
current session.

Display 1.2 HTML 3.2 Output

The following output is formatted in HTML 3.2 output and viewed in an Internet Explorer 5.0
browser.

Getting Started with the Output Delivery System � Producing Output in Multiple Formats at the Same Time 9

Display 1.3 PDF Output

The following output is formatted in PDF and viewed with Adobe Acrobat Reader.

Display 1.4 RTF Output

The following RTF output is viewed with Microsoft Word 2000.

10 Where to Go from Here � Chapter 1

Display 1.5 PostScript Output

The following PostScript output is viewed with Ghostview.

Output 1.2 Listing Output

This output is traditional SAS listing output.

Personnel Data 5

ID First Job

Number LastName Name City State Gender Code Salary Birth Hired HomePhone

1919 Adams Gerald Stamford CT M TA2 34376 15SEP1948 07JUN1975 203/781-1255

1653 Alexander Susan Bridgeport CT F ME2 35108 18OCT1952 12AUG1978 203/675-7715

1400 Apple Troy New York NY M ME1 29769 08NOV1955 19OCT1978 212/586-0808

1350 Arthur Barbara New York NY F FA3 32886 03SEP1953 01AUG1978 718/383-1549

1401 Avery Jerry Paterson NJ M TA3 38822 16DEC1938 20NOV1973 201/732-8787

1499 Barefoot Joseph Princeton NJ M ME3 43025 29APR1942 10JUN1968 201/812-5665

1101 Baucom Walter New York NY M SCP 18723 09JUN1950 04OCT1978 212/586-8060

1333 Blair Justin Stamford CT M PT2 88606 02APR1949 13FEB1969 203/781-1777

1402 Blalock Ralph New York NY M TA2 32615 20JAN1951 05DEC1978 718/384-2849

1479 Bostic Marie New York NY F TA3 38785 25DEC1956 08OCT1977 718/384-8816

1403 Bowden Earl Bridgeport CT M ME1 28072 31JAN1957 24DEC1979 203/675-3434

1739 Boyce Jonathan New York NY M PT1 66517 28DEC1952 30JAN1979 212/587-1247

Where to Go from Here
� Examples of ODS output: To see the types of output that you can create with ODS,

see “Gallery of ODS Samples” on page 16.
� Essential concepts in ODS: For concepts that will help you to understand and to

use ODS to your best advantage, see “Introduction to the Output Delivery System”
on page 16.

� Creating more complex HTML pages: With ODS, you can create HTML pages that
include a frame and a table of contents. For more information, see “ODS HTML

Getting Started with the Output Delivery System � Where to Go from Here 11

Statement” on page 124 and Appendix 2, “ODS and the HTML Destination,” on
page 891. You can see many examples of HTML output in the Base SAS
Procedures Guide online documentation.

� ODS statements: For reference information on the ODS statements, see Chapter 5,
“Dictionary of ODS Language Statements,” on page 67. These statements control
the many features of the Output Delivery System.

� Using ODS with the DATA step: With the addition of ODS-related options to the
FILE and PUT statements, you can use ODS to produce enhanced DATA step
reports. See Chapter 3, “Output Delivery System and the DATA Step,” on page 39.

� Creating your own templates: For even more control over formatting, you can
create your own templates for formatting output. See Chapter 7, “TEMPLATE
Procedure: Overview,” on page 395.

12

13

P A R T2

Concepts

Chapter 2.Output Delivery System: Basic Concepts 15

Chapter 3.Output Delivery System and the DATA Step 39

14

15

C H A P T E R

2
Output Delivery System: Basic
Concepts

Introduction to the Output Delivery System 16
Gallery of ODS Samples 16

Introduction to the ODS Samples 16

Listing Output 16

PostScript Output 18

HTML Output 18
RTF Output 19

PDF Output 20

XML Output 20

Excel Output 22

Overview of How ODS Works 22

Components of SAS Output 22
Features of ODS 24

Understanding ODS Destinations 24

Overview of ODS Destination Categories 24

Definition of Destination-Independent Input 25

The SAS Formatted Destinations 25
The Third-Party Formatted Destinations 26

Controlling the Formatting Features of Third-Party Formats 28

ODS Destinations and System Resources 29

Understanding Table Templates, Table Elements, and Table Attributes 29

Understanding Styles, Style Elements, and Style Attributes 29
Styles That Are Shipped with SAS Software 30

Using Styles with Base SAS Procedures 30

Understanding Item Stores, Template Stores, and Directories 31

Changing SAS Registry Settings for ODS 32

Overview of ODS and the SAS Registry 32

Changing Your Default HTML Version Setting 32
Changing ODS Destination Default Settings 33

Customized ODS Output 34

SAS Output 34

Selection and Exclusion Lists 34

How ODS Determines the Destinations for an Output Object 35
Customized Output for an Output Object 35

Customizing Titles and Footnotes 36

Securing ODS Generated PDF Files 36

Summary of ODS 37

16 Introduction to the Output Delivery System � Chapter 2

Introduction to the Output Delivery System
The Output Delivery System (ODS) gives you greater flexibility in generating,

storing, and reproducing SAS procedures and DATA step output, with a wide range of
formatting options. ODS provides formatting functionality that is not available from
individual procedures or from the DATA step alone. ODS overcomes these limitations
and enables you to format your output more easily.

Before SAS 7, most SAS procedures generated output that was designed for a
traditional line-printer. This type of output has limitations that prevents you from
getting the most value from your results:

� Traditional SAS output is limited to monospace fonts. With today’s desktop
document editors and publishing systems, you need more versatility in printed
output.

� Some commonly used procedures do not produce output data sets. Before ODS, if
you wanted to use output from one of these procedures as input to another
procedure, then you relied on PROC PRINTTO and the DATA step to retrieve
results.

Gallery of ODS Samples

Introduction to the ODS Samples
This section shows you samples of the different kinds of formatted output that you

can produce with ODS. The input file contains sales records for TruBlend Coffee
Makers, a company that distributes coffee machines.

Listing Output
Traditional SAS output is listing output. You do not need to change your SAS

programs to create listing output. By default, you continue to create this kind of output
even if you also create a type of output that contains more formatting.

ODS Concepts � Listing Output 17

Output 2.1 Listing Output

Average Quarterly Sales Amount by Each Sales Representative 1

--------------------------------- Quarter=1 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 8 8 14752.5 22806.1 495.0 63333.7

Hollingsworth 5 5 11926.9 12165.2 774.3 31899.1

Jensen 5 5 10015.7 8009.5 3406.7 20904.8
__

Average Quarterly Sales Amount by Each Sales Representative 2

--------------------------------- Quarter=2 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 6 6 18143.3 20439.6 1238.8 53113.6

Hollingsworth 6 6 16026.8 14355.0 1237.5 34686.4

Jensen 6 6 12455.1 12713.7 1393.7 34376.7
__

Average Quarterly Sales Amount by Each Sales Representative 3

--------------------------------- Quarter=3 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 21 21 10729.8 11457.0 2787.3 38712.5

Hollingsworth 15 15 7313.6 7280.4 1485.0 30970.0

Jensen 21 21 10585.3 7361.7 2227.5 27129.7
__

Average Quarterly Sales Amount by Each Sales Representative 4

--------------------------------- Quarter=4 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 5 5 11973.0 10971.8 3716.4 30970.0

Hollingsworth 6 6 13624.4 12624.6 5419.8 38093.1

Jensen 6 6 19010.4 15441.0 1703.4 38836.4
__

18 PostScript Output � Chapter 2

PostScript Output

With ODS, you can produce output in PostScript format.

Display 2.1 PostScript Output

HTML Output
With ODS, you can produce output in HTML (Hypertext Markup Language.) You can

browse these files with Internet Explorer, Netscape, or any other browser that fully
supports HTML 4.0.

Note: To create HTML 3.2 output, use the ODS HTML3 statement. �

ODS Concepts � RTF Output 19

Display 2.2 HTML Output Viewed with Microsoft Internet Explorer

RTF Output
With ODS, you can produce RTF (Rich Text Format) output which is used with

Microsoft Word.

20 PDF Output � Chapter 2

Display 2.3 RTF Output Viewed with Microsoft Word

PDF Output
With ODS, you can produce output in PDF (Portable Document Format), which can

be viewed with Adobe Acrobat.

XML Output
With ODS, you can produce output that is tagged with Extensible Markup Language

(XML) tags.

ODS Concepts � XML Output 21

Output 2.2 XML Output file

<?xml version="1.0" encoding="windows-1252"?>

<odsxml>

<head>

<meta operator="user"/>

</head>

<body>

<proc name="Print">

<label name="IDX"/>

<title class="SystemTitle" toc-level="1">US Census of Population and Housing</title>

<branch name="Print" label="The Print Procedure" class="ContentProcName" toc-level="1">

<leaf name="Print" label="Data Set SASHELP.CLASS" class="ContentItem" toc-level="2">

<output name="Print" label="Data Set SASHELP.CLASS" clabel="Data Set SASHELP.CLASS">

<output-object type="table" class="Table">

<style>

<border spacing="1" padding="7" rules="groups" frame="box"/>

</style>

<colspecs columns="6">

<colgroup>

<colspec name="1" width="2" align="right" type="int"/>

</colgroup>

<colgroup>

<colspec name="2" width="7" type="string"/>

<colspec name="3" width="1" type="string"/>

<colspec name="4" width="2" align="decimal" type="double"/>

<colspec name="5" width="4" align="decimal" type="double"/>

<colspec name="6" width="5" align="decimal" type="double"/>

</colgroup>

</colspecs>

<output-head>

<row>

<header type="string" class="Header" row="1" column="1">

<value>Obs</value>

</header>

<header type="string" class="Header" row="1" column="2">

<value>Name</value>

</header>

<header type="string" class="Header" row="1" column="3">

<value>Sex</value>

</header>

<header type="string" class="Header" row="1" column="4">

<value>Age</value>

</header>

<header type="string" class="Header" row="1" column="5">

<value>Height</value>

</header>

<header type="string" class="Header" row="1" column="6">

<value>Weight</value>

</header>

</row>

</output-head>

<output-body>

<row>

<header type="double" class="RowHeader" row="2" column="1">

<value> 1</value>

</header>

<data type="string" class="Data" row="2" column="2">

<value>Alfred</value>

</data>

... more xml tagged output...

<

/odsxml>

22 Excel Output � Chapter 2

Excel Output
With ODS, you can produce tabular output , which can be viewed with Excel.

Display 2.4 Markup Destination Output Viewed with Excel

Overview of How ODS Works

Components of SAS Output
The PROC or DATA step supplies raw data and the name of the table template that

contains the formatting instructions. ODS formats the output. You can use ODS to
format output from individual procedures and from the DATA step in many different
forms other than the default SAS listing output.

The following figure shows how SAS produces ODS output.

ODS Concepts � Components of SAS Output 23

Figure 2.1 ODS Processing: What Goes in and What Comes Out

ODS Processing: What Goes In and What Comes Out

Table
Definition

Data
Component

Output
Object

DOCUMENT LISTING OUTPUT HTML MARKUP PRINTER RTF

SAS Formatted Destinations Third-Party Formatted Destinations

Document
Output

Listing
Output

SAS
Data Set

HTML3.2
Output

SAS
TAGSETS*

User-defined
TAGSETS

RTF
Output

MS
Windows
Printers

PS PCL PDF

ODS
Destinations

ODS
Outputs

+

Table 2.1 * List of Tagsets That SAS Supplies and Supports

CHTML CSV CSVALL CSVBYLINE

DEFAULT DOCBOOK EXCELXP HTML4

HTMLCSS HTMLPANEL IMODE MSOFFICE2K

PHTML PYX RTF SASREPORT

WML WMLOLIST XHTML

Table 2.2 * Additional Diagnostic Tagsets that SAS Supports

EVENT_MAP NAMEDHTML SHORT_MAP STYLE_DISPLAY

STYLE_POPUP TEXT_MAP TPL_STYLE_LIST TPL_SYLE_MAP

Note: There are also preproduction tagsets. These tagsets can be found at http://
support.sas.com and are not yet supported by SAS. �

24 Features of ODS � Chapter 2

Features of ODS
ODS is designed to overcome the limitations of traditional SAS output and to make it

easy to access and create the new formatting options. ODS provides a method of
delivering output in a variety of formats, and makes the formatted output easy to access.

Important features of ODS include the following:
� ODS combines raw data with one or more table templates to produce one or more

output objects. These objects can be sent to any or all ODS destinations. You
control the specific type of output from ODS by selecting an ODS destination. The
currently available ODS destinations can produce the following types of output:

� traditional monospace output

� an output data set

� an ODS document that contains a hierarchy file of the output objects
� output that is formatted for a high-resolution printer such as PostScript and

PDF

� output that is formatted in various markup languages such as HTML
� RTF output that is formatted for use with Microsoft Word

� ODS provides table templates that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these templates, or by creating your own.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations. For example, PROC UNIVARIATE produces five output objects. You
can easily create HTML output, an output data set, traditional listing output, or
printer output from any or all of these output objects. You can send different
output objects to different destinations.

� In the SAS windowing environment, ODS stores a link to each output object in the
Results folder in the Results window.

� Because formatting is now centralized in ODS, the addition of a new ODS
destination does not affect any procedures or the DATA step. As future
destinations are added to ODS, they will automatically become available to the
DATA step and all procedures that support ODS.

� With ODS, you can produce output for numerous destinations from a single source,
but you do not need to maintain separate sources for each destination. This
feature saves you time and system resources by enabling you to produce multiple
kinds of output with a single run of your procedure or data query.

Understanding ODS Destinations

Overview of ODS Destination Categories
ODS enables you to produce SAS procedure and DATA step output to many different

destinations. ODS destinations are organized into two categories.

SAS Formatted
destinations

produce output that is controlled and interpreted by SAS, such as a
SAS data set, SAS output listing, or an ODS document.

Third-Party
Formatted
destinations

produce output which enables you to apply styles, markup
languages, or enables you to print to physical printers using page
description languages. For example, you can produce output in

ODS Concepts � The SAS Formatted Destinations 25

PostScript, HTML, XML, or a style or markup language that you
created.

The following table lists the ODS destination categories, the destination that each
category includes, and the formatted output that results from each destination.

Table 2.3 Destination Category Table

Category Destinations Results

SAS Formatted DOCUMENT ODS document

LISTING SAS output listing

OUTPUT SAS data set

Third-Party Formatted HTML HTML file for online viewing

MARKUP Markup language tagsets

PRINTER Printable output in one of
three different formats: PCL,
PDF, or PS (PostScript)

RTF Output written in Rich Text
Format for use with Microsoft
Word 2000

As future destinations are added to ODS, they automatically will become available to
the DATA step and to all procedures that support ODS.

Definition of Destination-Independent Input
Destination-independent input means that one destination can support a feature

even though another destination does not support it. In this case, the request is ignored
by the destination that does not support it. Otherwise, ODS would support a small
subset of features that are common to all destinations. If this was true, then it would
be difficult to move your reports from one output format to another output format. ODS
provides many output formatting options, so that you can use the appropriate format
for the output that you want. It is best to use the appropriate destination suited for
your purpose.

The SAS Formatted Destinations
The SAS Formatted destinations create SAS entities such as a SAS data set, a SAS

output listing, or an ODS document. The statements in the ODS SAS Formatted
category create the SAS entities.

The three SAS Formatted destinations are as follows:
� DOCUMENT Destination

The DOCUMENT destination enables you to restructure, navigate, and replay
your data in different ways and to different destinations as you like without
needing to rerun your analysis or repeat your database query. The DOCUMENT
destination makes your entire output stream available in "raw" form and
accessible to you to customize. The output is kept in the original internal
representation as a data component plus a table template. When the output is in a
DOCUMENT form, it is possible to rearrange, restructure, and reformat without
rerunning your analysis. Unlike other ODS destinations, the DOCUMENT

26 The Third-Party Formatted Destinations � Chapter 2

destination has a GUI interface. However, everything that you can do through the
GUI, you can also do with batch commands using the ODS DOCUMENT
statement and the DOCUMENT procedure.

Before SAS 9, each procedure or DATA step produced output that was sent to
each destination that you specified. While you could always send your output to as
many destinations as you wanted, you needed to rerun your procedure or data
query if you decided to use a destination that you had not originally designated.
The DOCUMENT destination eliminates the need to rerun procedures or repeat
data queries by enabling you to store your output objects and replay them to
different destinations.

� LISTING Destination

The LISTING destination produces output that looks the same as the
traditional SAS output. The LISTING destination is the default destination that
opens when you start your SAS session. Thus ODS is always being used, even
when you do not explicitly invoke ODS.

The LISTING destination enables you to produce traditional SAS output with
the same look and presentation as it had in previous versions of SAS.

Because most procedures share some of the same table templates, the output is
more consistent. For example, if you have two different procedures producing an
ANOVA table, they will both produce it in the same way because each procedure
uses the same template to describe the table. However, there are three procedures
that do not use a default table template to produce their output: PRINT
procedure, REPORT procedure, and TABULATE procedure procedure’s n-way
tables. These procedures use the structure that you specified in your program code
to define their tables.

� OUTPUT Destination

The OUTPUT destination produces SAS output data sets. Because ODS already
knows the logical structure of the data and its native form, ODS can output a SAS
data set that represents exactly the same resulting data set that the procedure
worked with internally. The output data sets can be used for further analysis, or
for sophisticated reports in which you want to combine similar statistics across
different data sets into a single table. You can easily access and process your
output data sets using all of the SAS data set features. For example, you can
access your output data using variable names and perform WHERE-expression
processing just as you would process data from any other SAS data set.

The Third-Party Formatted Destinations
The Third-Party Formatted destinations enable you to apply styles to the output

objects that are used by applications other than SAS. For example, these destinations
support attributes such as "font" and "color."

Note: For a list of style attributes and valid values, see the style attributes table in
“Style Attributes and Their Values” on page 498. �

The four categories of Third-Party Formatted destinations are as follows:

� HTML (Hypertext Markup Language)

The HTML destination produces HTML 4.0 output that contains embedded style
sheets. You can, however, produce HTML 3.2 output using the HTML3 statement.

The HTML destination can create some or all of the following:

� an HTML file (called the body file) that contains the results from the
procedure

ODS Concepts � The Third-Party Formatted Destinations 27

� a table of contents that links to the body file

� a table of pages that links to the body file

� a frame that displays the table of contents, the table of pages, and the body
file

The body file is required with all ODS HTML output. If you do not want to link
to your output, then you do not have to create a table of contents, a table of pages,
or a frame file. However, if your output is very large, you might want to create a
table of contents and a table of pages for easier reading and transversing through
your file.

The HTML destination is intended only for online use, not for printing. To print
hard-copies of the output objects, use the PRINTER destination.

� Markup Languages (markup) Family

The same way as table templates describe table layout and style attributes
describe the output style, tagsets describe how to produce a markup language
output. You can use a tagset that SAS supplies or you can create your own tagset
using the TEMPLATE procedure. Similar to table templates and style attributes,
tagsets enable you to modify your markup language output. For example, you can
specify each variety of XML as a new tagset. SAS supplies you with a collection of
XML tagsets and enables you to produce a customized variety of XML.

The important point is that you can implement either a tagset that SAS supplies
or a customized tagset that you created. You do not have to wait for the next
release of SAS. The additional capability to modify and create your own tagsets by
using PROC TEMPLATE gives you greater flexibility in customizing your output.

Because the MARKUP destination is so flexible, you can use either the SAS
tagsets or a tagset that you created. For a complete list of the markup language
tagsets that SAS supplies, see the section on listing tagset names in “ODS
MARKUP Statement” on page 147. To learn how to define your own tagsets, see
the section on methods to create your own tagsets in Chapter 13, “TEMPLATE
Procedure: Creating Markup Language Tagsets,” on page 795.

The MARKUP destination cannot replace ODS PRINTER or ODS RTF
destinations because it cannot do text measurement. Therefore, it cannot produce
output for a page description language or a hybrid language like RTF, which
requires all of the text to be measured and placed at a specific position on the page.

However, SAS 9.2 introduces a measured markup destination that is based on
the traditional markup and traditional page layout destinations. The first
production tagset for this destination is for RTF. Others are planned. The primary
distinction of this tagset is that SAS can determine where page breaks occur in a
markup language implementation. Refer to the “ODS TAGSETS.RTF Statement”
on page 286 for specific information.

� Printer Family

The PRINTER destination produces output for

� printing to physical printers such as Windows printers under Windows, PCL,
and PostScript printers on other operating systems

� producing portable PostScript, PCL, and PDF files

The PRINTER destinations produce ODS output that contain page description
languages: they describe precise positions where each line of text, each rule, and
each graphical element are to be placed on the page. In general, you cannot edit or
alter these formats. Therefore, the output from ODS PRINTER is intended to be
the final form of the report.

28 Controlling the Formatting Features of Third-Party Formats � Chapter 2

� Rich Text Format (RTF)

RTF produces output for Microsoft Word. Other applications can read RTF files,
but the RTF output might not work successfully with them.

The RTF destination enables you to view and edit the RTF output. ODS does
not define the vertical measurement, which means that SAS does not determine
the optimal place to position each item on the page. For example, page breaks are
not always fixed, so you do not want your RTF output tables to split at
inappropriate places when you edit your text. Your tables can remain whole and
intact on one page or they can have logical breaks where you specify.

Because Microsoft Word needs to know the widths of table columns and it
cannot adjust tables if they are too wide for the page, ODS measures the width of
the text and tables (horizontal measurement). Therefore SAS can set all of the
column widths properly and divide the table into panels if it is too wide to fit on a
single page.

In short, when SAS produces RTF output for input to Microsoft Word, it
determines the horizontal measurement. Microsoft Word controls the vertical
measurement. Because Microsoft Word can determine how much space is on the
page, your tables display consistently even after you make changes to your RTF
file.

However, when you use measured RTF, which is implemented when you use the
ODS TAGSETS.RTF statement, you can specify how and where page breaks occur.
You can also specify when to place titles and footnotes into the body of a page.
SAS becomes responsible for the implicit page breaks instead of Microsoft Word.
Refer to the “ODS TAGSETS.RTF Statement” on page 286 for specific information.

Controlling the Formatting Features of Third-Party Formats
All of the formatting features that control the appearance of the third-party

formatted destinations beyond what the LISTING destination can do are controlled by
two mechanisms:

� ODS statement options

� ODS style attributes

The ODS statement options control three features:

1 features that are specific to a given destination, such as style sheets for HTML

2 features that are global to the document, such as AUTHOR and table of contents
generation

3 features that we expect programmers to change on each document, such as the
output filename

The ODS style attributes control the way that individual elements are created.
Attributes are aspects of a given style, such as type face, weight, font size, and color.
The values of the attributes collectively determine the appearance of each part of the
document to which the style is applied. With style attributes, it is unnecessary to insert
destination-specific code (such as raw HTML) into the document. Each output
destination will interpret the attributes that are necessary to generate the presentation
of the document. Because not all destinations are the same, not all attributes can be
interpreted by all destinations. Style attributes that are incompatible with a selected
destination are ignored. For example, PostScript does not support active links, so the
URL= attribute is ignored when producing PostScript output.

ODS Concepts � Understanding Styles, Style Elements, and Style Attributes 29

ODS Destinations and System Resources
ODS destinations can be open or closed. You open and close a destination with the

appropriate ODS statement. When a destination is open, ODS sends the output objects
to it. An open destination uses system resources even if you use the selection and
exclusion features of ODS to select or exclude all objects from the destination.
Therefore, to conserve resources, close unnecessary destinations. For more information
about using each destination, see the topic on ODS statements in Chapter 5,
“Dictionary of ODS Language Statements,” on page 67.

By default, the LISTING destination is open and all other destinations are closed.
Consequently, if you do nothing, your SAS programs run and produce listing output
looking just as they did in previous releases of SAS before ODS was available.

Understanding Table Templates, Table Elements, and Table Attributes
A table template describes how to generate the output for a tabular output object.

(Most ODS output is tabular.) A table template determines the order of column
headings and the order of variables, as well the overall look of the output object that
uses it. For information about customizing the table template, see the topic on the
TEMPLATE procedure in Chapter 12, “TEMPLATE Procedure: Creating Tabular
Output,” on page 593.

In addition to the parts of the table template that order the headers and columns,
each table template contains or references table elements. A table element is a
collection of table attributes that apply to a particular header, footer, or column.
Typically, a table attribute specifies something about the data rather than about its
presentation. For example, FORMAT specifies the SAS format, such as the number of
decimal places. However, some table attributes describe presentation aspects of the
data, such as how many blank characters to place between columns.

Note: The attributes of table templates that control the presentation of the data
have no effect on output objects that go to the LISTING or OUTPUT destination.
However, the attributes that control the structure of the table and the data values do
affect listing output. �

For information on table attributes, see the section on table attributes in Chapter 12,
“TEMPLATE Procedure: Creating Tabular Output,” on page 593.

Understanding Styles, Style Elements, and Style Attributes
To customize the output at the level of your entire output stream in a SAS session,

you specify a style. A style describes how to generate the presentation aspects (color,
font face, font size, and so on) of the entire SAS output. A style determines the overall
look of the documents that use it.

Each style consists of style elements. A style element is a collection of style attributes
that apply to a particular part of the output. For example, a style element might
contain instructions for the presentation of column headings, or for the presentation of
the data inside the cells. Style elements might also specify default colors and fonts for
output that uses the style.

Each style attribute specifies a value for one aspect of the presentation. For example,
the BACKGROUND= attribute specifies the color for the background of an HTML table

30 Styles That Are Shipped with SAS Software � Chapter 2

or for a colored table in printed output. The FONTSTYLE= attribute specifies whether
to use a Roman or an italic font. For information on style attributes, see the section on
style attributes in Chapter 11, “TEMPLATE Procedure: Creating a Style Template
(Definition),” on page 487.

Note: Because styles control the presentation of the data, they have no effect on
output objects that go to the LISTING or OUTPUT destination. �

Styles That Are Shipped with SAS Software
Base SAS software is shipped with many styles. To see a list of these styles, view

them in the SAS Explorer Window, use the TEMPLATE procedure, or use the SQL
procedure.

� SAS Explorer Window:
To display a list of the available styles using the SAS Explorer Window, follow

these steps:
1 From any window in an interactive SAS session, select View � Results

2 In the Results window, select View � Templates
3 In the Templates window, select and open Sashelp.tmplmst.
4 Select and open the Styles folder, which contains a list of available styles. If

you want to view the underlying SAS code for a style, then select the style
and open it.

Operating Environment Information: For information on navigating in the
Explorer window without a mouse, see the section on “Window Controls and
General Navigation” in the SAS documentation for your operating
environment. �

� TEMPLATE Procedure:
You can also display a list of the available styles by submitting the following

PROC TEMPLATE statements:

proc template;
list styles;

run;

� SQL Procedure:
You can also display a list of the available styles by submitting the following

PROC SQL statements:

proc sql;
select * from dictionary.styles;
quit;

For more information on how ODS destinations use styles and how you can
customize styles, see the “DEFINE STYLE Statement” on page 490.

Using Styles with Base SAS Procedures
� Most Base SAS Procedures

Most Base SAS procedures that support ODS use one or more table templates to
produce output objects. These table templates include templates for table
elements: columns, headers, and footers. Each table element can specify the use of

ODS Concepts � Understanding Item Stores, Template Stores, and Directories 31

one or more style elements for various parts of the output. These style elements
cannot be specified within the syntax of the procedure, but you can use customized
styles for the ODS destinations that you use. For more information about
customizing tables and styles, see Chapter 11, “TEMPLATE Procedure: Creating a
Style Template (Definition),” on page 487.

� The PRINT, REPORT, and TABULATE Procedures
The PRINT, REPORT, and TABULATE procedures provide a way for you to

access table elements from the procedure step itself. Accessing the table elements
enables you to do such things as specify background colors for specific cells, change
the font face for column headings, and more. The PRINT, REPORT, and
TABULATE procedures provide a way for you to customize the markup language
and printed output directly from the procedure statements that create the report.
For more information about customizing the styles for these procedures, see the
Base SAS Procedures Guide.

Understanding Item Stores, Template Stores, and Directories
A template store is an item store which stores items that were created by the

TEMPLATE procedure. Items that SAS provides are in the item store
SASHELP.TMPLMST. Compiled templates are stored physically in the
SASUSER.TEMPLAT item store by default. However, you can store items that you
create in any template store where you have write access.

A template store can contain multiple levels known as directories. When you specify
a template store in the ODS PATH statement, however, you specify a two-level name
that includes a libref and the name of a template store in the SAS library that the
libref references.

Display 2.5 Templates Window Showing Item Stores, Template Stores, Directories, and Items

32 Changing SAS Registry Settings for ODS � Chapter 2

Changing SAS Registry Settings for ODS

Overview of ODS and the SAS Registry
The SAS registry is the central storage area for configuration data that ODS uses.

This configuration data is stored in a hierarchical form, which works in a similar
manner to the way directory-based file structures work under UNIX, Windows, VMS,
and the z/OS UNIX system. However, the SAS registry uses keys and subkeys as the
basis for its structure, instead of using directories and subdirectories, like similar file
systems in DOS or UNIX. A key is a word or a text string that refers to a particular
aspect of SAS. Each key might be a place holder without values or subkeys associated
with it, or it might have many subkeys with associated values. For example, the ODS
key has DESTINATIONS, GUI, ICONS, and PREFERENCES subkeys. A subkey is a
key inside another key. For example, PRINTER is a subkey of the DESTINATIONS
subkey.

Display 2.6 SAS Registry of ODS Subkeys

Changing Your Default HTML Version Setting
By default, the SAS registry is configured to generate HTML4 output when you

specify the ODS HTML statement. To permanently change the default HTML version,
you can change the setting of the HTML version in the SAS registry.

CAUTION:
If you make a mistake when you modify the SAS registry, then your system might become
unstable or unusable. You will not be warned if an entry is incorrect. Incorrect entries
can cause errors, and can even prevent you from bringing up a SAS session. See the
section on configuring the SAS registry in SAS Language Reference: Concepts for
more information. �

To change the default setting of the HTML version in the SAS registry:

1 Select Accessories � Solutions � Registry Editor or
issue the command REGEDIT.

ODS Concepts � Changing ODS Destination Default Settings 33

2 Select ODS � Default HMTL Version.
3 Select Edit � Modify or

click the right mouse button and select MODIFY. The Edit String Value window
appears.

4 Type the HTML version in the Value Data text box and select OK.

Display 2.7 SAS Registry Showing HTML Version Setting

Changing ODS Destination Default Settings
ODS destination subkeys are stored in the SAS registry. To change the values for

these destinations subkeys:
1 Select ODS � Destinations.
2 Select a destination subkey.
3 Select a subkey in the Contents of pane.
4 Select Edit � Modify or

click the right mouse button and select MODIFY.
5 Type the value into the Value Data text box in the Edit Value String or Edit

Signed Integer Value dialog box and select OK.

34 Customized ODS Output � Chapter 2

Display 2.8 Registry Editor Window

Customized ODS Output

SAS Output
By default, ODS output is formatted according to instructions that a PROC step or

DATA step defines. However, ODS provides ways for you to customize the output. You
can customize the output for an entire SAS job, or you can customize the output for a
single output object.

Selection and Exclusion Lists
For each ODS destination, ODS maintains either a selection list or an exclusion list

of output objects. You can use the default output objects selected or excluded for each
destination or you can specify which output object you want to produce by selecting or
excluding them from a list.

A selection list is a list of output objects that are sent to an ODS destination. An
exclusion list is a list of output objects that are excluded from an ODS destination. ODS
also maintains an overall selection or exclusion list of output objects. By checking the
destination-specific lists and the overall list, ODS determines what output objects to
produce. These lists can be modified by using the ODS SELECT statement and the
ODS EXCLUDE statement.

You can view the contents of the exclusion and selection lists by using the ODS
SHOW statement. The contents information is written to the SAS log.

EXCLUDE ALL is the default setting for the ODS OUTPUT destination. SELECT
ALL is the default setting for all other destinations. To change the default selection and

ODS Concepts � Customized Output for an Output Object 35

exclusion lists, use the ODS SELECT or ODS EXCLUDE statements or use the exclude
and select actions that are available for some of the ODS statements. However, to set
the exclusion list for the OUTPUT destination to something other than the default, use
the “ODS OUTPUT Statement” on page 184. For a list of ODS Output destinations and
explanations of each, see “Understanding ODS Destinations” on page 24.

In order to view output objects that are selected or excluded from your program, use
the ODS TRACE statement. The ODS TRACE statement prints the output objects that
are selected and excluded and puts the information in a trace record that is output in
the SAS log. The trace provides the path, the label, and other information about output
objects that are selected and excluded. For complete documentation about viewing and
selecting output objects, see the “ODS SELECT Statement” on page 264, the “ODS
EXCLUDE Statement” on page 110, and the “ODS TRACE Statement” on page 317.

How ODS Determines the Destinations for an Output Object
As each output object is produced, ODS uses the selection and exclusion lists to

determine which destination or destinations the output object will be sent to. Figure
Figure 2.2 on page 35 illustrates this process:

Figure 2.2 Directing an Output Object to a Destination

For each destination, ODS first asks if the list for that destination includes the object. If it does
not, ODS does not send the output object to that destination. If the list for that destination does
include the object, ODS reads the overall list. If the overall list includes the object, ODS sends
it to the destination. If the overall list does not include the object, ODS does not send it to the
destination.

Does the destination list
include the output object

to the destination?

Does the overall list
include the object ?

ODS doesn't pass the
object to the destination

ODS passes the object
to the destination

yes

no

yes
no

Note: Although you can maintain a selection list for one destination and an
exclusion list for another, it is easier to understand the results if you maintain the same
types of lists for all the destinations where you route output. �

Customized Output for an Output Object
For a procedure, the name of the table template that is used for an output object

comes from the procedure code. The DATA step uses a default table template unless

36 Customizing Titles and Footnotes � Chapter 2

you specify an alternative with the TEMPLATE= suboption in the ODS option in the
FILE statement. For more information, see the section on the TEMPLATE= suboption
in “FILE Statement for ODS” on page 68.

To find out which table templates a procedure or the DATA step uses for the output
objects, you must look at a trace record. To produce a trace record in your SAS log,
submit the following SAS statements:

ods trace on;
your-proc-or-DATA-step
ods trace off;

Remember that not all procedures use table templates. If you produce a trace record
for one of these procedures, no template appears in the trace record. Conversely, some
procedures use multiple table templates to produce their output. More than one
template appears in the trace record produced in the log.

For a detailed explanation of the trace record, see the “ODS TRACE Statement” on
page 317.

You can use PROC TEMPLATE to modify an entire table template. When a
procedure or DATA step uses a table template, it uses the elements that are defined or
referenced in its table template. In general, you cannot directly specify a table element
for your procedure or DATA step to use without modifying the template itself.

Note: Three Base SAS procedures, PROC PRINT, PROC REPORT, and PROC
TABULATE, do provide a way for you to access table elements from the procedure step
itself. Accessing the table elements enables you to customize your report. For more
information about these procedures, see the Base SAS Procedures Guide. �

Customizing Titles and Footnotes
You can use the global TITLE and FOOTNOTE statements to enhance the

readability of any report. These statements have associated options that enable you to
customize the style of the titles and footnotes when they are used with ODS. Because
these options control only the presentation of the titles and footnotes, they have no
effect on objects that go to the LISTING or OUTPUT destination. Examples of these
style options are: BOLD, COLOR=, and FONT=. For a complete list of style options,
detailed information about the style options, and example code, refer to the TITLE
statement and the FOOTNOTE statement in the SAS Language Reference: Dictionary.

When used with SAS/GRAPH, you can choose whether to render the titles and
footnotes as part of the body of the document or as part of the graphics image. Where
the titles and footnotes are rendered determines how you control the font, size, and color
of the titles and footnotes text. For details on this ODS and SAS/GRAPH interaction,
refer to Controlling Titles and Footnotes with ODS Output in SAS/GRAPH: Reference.

For information on titles and footnotes rendered with and without using the graphics
option USEGOPT, refer to “ODS USEGOPT Statement” on page 322.

Securing ODS Generated PDF Files
You can use the “ODS PRINTER Statement” on page 218 or the “ODS PDF

Statement” on page 210 to generate PDF output. When these PDF files are not
password protected, any user can use Acrobat to view and edit the PDF files. However,
SAS system options can restrict or allow users’ ability to access, assemble, copy, or
modify the ODS PDF files. Other SAS system options control whether the user can fill
in forms and set the print resolution. The following SAS system options are
documented in SAS Language Reference: Dictionary.

ODS Concepts � Summary of ODS 37

Table 2.4 PDF System Options

Task System Option

Specifies whether text and graphics from PDF
documents can be read by screen readers for the
visually impaired

PDFACCESS | NOPDFACCESS

Controls whether PDF documents can be assembled PDFASSEMBLY | NOPDFASSEMBLY

Controls whether PDF document comments can be
modified

PDFCOMMENT | NOPDFCOMMENT

Controls whether the contents of a PDF document
can be changed

PDFCONTENT | NOPDFCONTENT

Controls whether text and graphics from a PDF
document can be copied

PDFCOPY | NOPDFCOPY

Controls whether PDF forms can be filled in PDFFILLIN | NOPDFFILLIN

Specifies the password to use to open a PDF
document and the password used by a PDF
document owner

PDFPASSWORD

Controls the resolution used to print the PDF
document

PDFPRINT

Controls the printing permissions for PDF
documents

PDFSECURITY

Note: The SAS/SECURE SSL software is included in the SAS installation software
only for countries that allow the importation of encryption software. �

Summary of ODS

In the past, the term “output” has generally referred to the outcome of a SAS
procedure and DATA step. With the advent of the Output Delivery System, output
takes on a much broader meaning. ODS optimizes output from SAS procedures and the
DATA step. ODS provides a wide range of formatting options and greater flexibility in
generating, storing, and reproducing SAS output.

Important features of ODS include the following:

� ODS combines raw data with one or more table templates to produce one or more
output objects. An output object tells ODS how to format the results of a procedure
or DATA step.

� ODS provides table templates that define the structure of the output from SAS
procedures and from the DATA step. You can modify these templates or create
your own templates to customize your output.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations.

� ODS stores a link to each output object in the Results folder for easy retrieval and
access.

� As future destinations are added to ODS, these destinations automatically become
available to the DATA step and all procedures that support ODS.

38 Summary of ODS � Chapter 2

One of the main goals of ODS is to enable you to produce output for numerous
destinations from a single source, without requiring separate sources for each
destination. ODS supports many destinations:

DOCUMENT
enables you to capture output objects from a single run of the analysis and to
produce multiple reports in various formats whenever you want without rerunning
your SAS programs.

LISTING
produces output that looks the same as the traditional SAS output.

HTML
produces output for online viewing.

MARKUP
produces output for markup language tagsets.

MEASURED MARKUP
produces output for page-oriented markup languages.

OUTPUT
produces SAS output data sets, thereby eliminating the need to parse PROC
PRINTTO output.

PRINTER
produces presentation-ready printed reports.

RTF
produces output suitable for Microsoft Word reports.

By default, ODS output is formatted according to instructions that the procedure or
DATA step defines. However, ODS provides ways for you to customize the presentation
of your output. You can customize the presentation of your SAS output, or you can
customize the look of a single output object. ODS gives you greater flexibility in
generating, storing, and reproducing SAS procedure and DATA step output with a wide
range of formatting options.

39

C H A P T E R

3
Output Delivery System and the
DATA Step

Using ODS with the DATA Step 39
How ODS Works with the DATA Step 40

Syntax for ODS Enhanced Features in a DATA Step 41

Examples 41

Example 1: Creating a Report with the DATA Step and the Default Table Definition 41

Program 41
Listing Output 44

Example 2: Producing ODS Output That Contains Selected Variables 44

Program 45

HTML Output 47

Listing Output 48

Example 3: Assigning Attributes to Columns in ODS Output 48
Program 48

HTML Output 51

Printer Output 52

Listing Output 53

Example 4: Creating and Using a User-Defined Table Definition Template 53
Program: Creating the User-Defined Table Definition (Template) 54

Program: Using the User-Defined Template (Table Definition) 54

RTF Output 57

Using ODS with the DATA Step

If you are writing DATA step reports now, you are already using ODS. Simple listing
output, the traditional DATA step output, is routed though ODS by default. For over 20
years, SAS users have been able to create highly customized reports as simple listing
output, which uses a monospace typefont. With the advent of ODS, however, you have a
broad range of choices for printing your customized DATA step reports:

� You can produce DATA step reports in many different formats, such as HTML,
RTF, PS (PostScript), or PDF.

� You can create the report in multiple formats at the same time.

� You can also produce the report in different formats at a later time without
rerunning the DATA step.

To take advantage of these enhanced reporting capabilities, you can combine DATA step
programming with the formatting capabilities of ODS.

To create PDF output, for example, start with the DATA steps tools that you are
already familiar with:

� the DATA _NULL_ statement

40 How ODS Works with the DATA Step � Chapter 3

� the FILE statement

� the PUT statement

Then, add a few simple ODS statements and options. In addition, you can choose from
several ODS formatting statements to format the output in other presentation styles,
such as HTML, RTF, and PS. For more information on ODS statements, see Chapter 5,
“Dictionary of ODS Language Statements,” on page 67.

How ODS Works with the DATA Step

Here are the basic steps for using ODS in conjunction with the DATA step to produce
reports with enhanced formatting:

Table 3.1 Steps to Producing Enhanced ODS Output With the DATA Step

Steps Tools Comments

Specify formatting for your
output

ODS formatting statements can
specify formats such as listing,
HTML, RTF, PS, and PDF.

You can also produce output in
multiple formats at the same
time by specifying more than
one format.

Note: If you want only the
simple default listing output,
then you don’t need the ODS
statement.

Specify structure The ODS option in the FILE
statement lists the variables and
their order in the output.

Additional suboptions give you
even more control over the
resulting structure.

Connect the data to the
template

The FILE PRINT ODS statement
creates an output object by binding
a data component to a table
definition (template).

You can specify other details by
using various ODS suboptions
in the FILE PRINT ODS
statement.

Output data The PUT statement writes variable
values to the data component.

A simple way to output all
variables is to use PUT _ODS_.

First, use ODS statements to specify how you want ODS to format your output, for
example, as HTML, RTF or PDF. Then, in the DATA step, use the FILE PRINT ODS
and PUT statements, with appropriate ODS-specific suboptions, to produce your report.

The PUT statement writes variable values, and the FILE PRINT ODS statement
directs the output.* You can use ODS to produce the same output in multiple formats,
and to produce output at a later time in a different format, without rerunning the
DATA step.

You control the formatting that is applied to your reports by using the ODS
formatting statements. They control the opening and closing of ODS destinations, which
apply formatting to the output objects that you create with ODS and the DATA step.

Here is a list of topics, with sources for additional information.

* If you do not specify a FILE statement, then the PUT statement writes to the SAS log by default. If you use multiple PUT
and FILE statements, then in addition to creating ODS-enhanced output, you can write to the log, to the regular DATA step
output buffer, or to another external file in the same DATA step.

Output Delivery System and the DATA Step � Example 1: Creating a Report with the DATA Step and the Default Table Definition 41

Table 3.2 Where to Find More Information on How to Use ODS in the DATA Step

Topic Where to learn more

ODS formatting statements Chapter 5, “Dictionary of ODS Language
Statements,” on page 67

ODS destinations “Understanding ODS Destinations” on page 24

How ODS works “Overview of How ODS Works” on page 22

Syntax for ODS Enhanced Features in a DATA Step

Restriction:
To use the DATA step and ODS to produce output that contains more enhanced
formatting features than the default listing output, you must use both the FILE
PRINT ODS statement and the PUT statement.

See:
“FILE Statement for ODS” on page 68 and “PUT Statement for ODS” on page 81

FILE PRINT ODS<=(ODS-suboption(s))><options>;

PUT <specification(s)> <_ODS_ <@|@@>> ;

Examples

Example 1: Creating a Report with the DATA Step and the Default
Table Definition

ODS features:
FILE PRINT ODS statement
PUT _ODS_ statement

ODS destinations:
LISTING

This example uses the DATA step and ODS to create a listing report. It uses the
default table definition (template) for the DATA step and writes an output object to the
LISTING destination (the default).

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. The PAGENO= option specifies the starting page number. The LINESIZE= option
specifies the output line length, and the PAGESIZE= option specifies the number of lines on an
output page.

options nodate pageno=1 linesize=64 pagesize=60;

42 Example 1: Creating a Report with the DATA Step and the Default Table Definition � Chapter 3

Specify a title. The TITLE statement specifies a title for the output.

title ’Leading Grain Producers’;

Create a user-defined format. PROC FORMAT creates the format $CNTRY. for the variable
COUNTRY.

proc format;
value $cntry ’BRZ’=’Brazil’

’CHN’=’China’
’IND’=’India’
’INS’=’Indonesia’
’USA’=’United States’;

run;

Begin a DATA step that does not create an output data set. Using _NULL_ saves
computer resources because it prevents the DATA step from creating an output data set.

data _null_;

Define variables, assign lengths and formats, read a record, and assign values to four
variables. The LENGTH statement defines a length that is shorter than the default to two
character variables. The FORMAT statement assigns a user-defined format to the variable
COUNTRY. The LABEL statement assigns a label to the variable TYPE. The INPUT statement
reads a record from the datalines and assigns a value to four variables.

length Country $ 3 Type $ 5;
format country $cntry.;
label type=’Grain’;
input Year country $ type $ Kilotons;

Use the default table definition (template) to create simple listing output. The
combination of the fileref PRINT and the ODS option in the FILE statement routes the DATA
step output to ODS. The only open ODS destination is the LISTING destination, which is open
by default when you begin your SAS session. Because no suboptions are specified, ODS uses the
default DATA step table definition (template). This FILE PRINT ODS statement creates an
output object and binds it to the default template.

file print ods;

Write the variables to the data component. The _ODS_ option in the PUT statement writes
every variable to the buffer that the PUT statement writes to the data component. Because no
formats or labels are specified for individual columns, ODS uses the defaults.

put _ods_;

The data provide information on the amounts of wheat, rice, and corn that five leading
grain-producing nations produced during 1995 and 1996.

datalines;
1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207

Output Delivery System and the DATA Step � Example 1: Creating a Report with the DATA Step and the Default Table Definition 43

1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;

44 Example 2: Producing ODS Output That Contains Selected Variables � Chapter 3

Listing Output

Output 3.1 Listing Output Created with the Default DATA Step Table Definition

The default table definition produces a column for each variable in the
DATA step. The order of the columns is determined by their order in
the program data vector. Because no attributes are specified for
individual columns, ODS uses the default column headings and formats.

Leading Grain Producers 1
Country Grain Year Kilotons

Brazil Wheat 1995 1516
Brazil Rice 1995 11236
Brazil Corn 1995 36276
China Wheat 1995 102207
China Rice 1995 185226
China Corn 1995 112331
India Wheat 1995 63007
India Rice 1995 122372
India Corn 1995 9800
Indonesia Wheat 1995 .
Indonesia Rice 1995 49860
Indonesia Corn 1995 8223
United States Wheat 1995 59494
United States Rice 1995 7888
United States Corn 1995 187300
Brazil Wheat 1996 3302
Brazil Rice 1996 10035
Brazil Corn 1996 31975
China Wheat 1996 109000
China Rice 1996 190100
China Corn 1996 119350
India Wheat 1996 62620
India Rice 1996 120012
India Corn 1996 8660
Indonesia Wheat 1996 .
Indonesia Rice 1996 51165
Indonesia Corn 1996 8925
United States Wheat 1996 62099
United States Rice 1996 7771
United States Corn 1996 236064

Example 2: Producing ODS Output That Contains Selected Variables
ODS features:

FILE PRINT ODS statement:

VARIABLES= suboption

ODS HTML statement:

BODY= option

URL= suboption

PUT _ODS_ statement

ODS destinations:

HTML

LISTING

Output Delivery System and the DATA Step � Example 2: Producing ODS Output That Contains Selected Variables 45

Format:
See “Creating the $CNTRY Format” on page 869.

This example selects variables to include in the output. The resulting output is
produced in two formats, listing and HTML. The listing output is produced by default,
and the HTML output is requested by the ODS HTML statement.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. The PAGENO= option specifies the starting page number. The LINESIZE= option
specifies the output line length, and the PAGESIZE= option specifies the number of lines on an
output page. None of these options affects the HTML output.

options nodate pageno=1 linesize=64 pagesize=60;

Specify that you want ODS to create HTML output and store it in the specified file.
The ODS HTML statement opens the HTML destination; any procedure or DATA step output
created will be routed to this destination (and any others that are open) and will, therefore,
format the output in HTML. The BODY= option sends all output objects to the HTML file that
you specify. Some browsers require an extension of HTM or HTML on the filename.

ods html body=’your-html-file.html’;

Specify the titles. The TITLE statements provide titles for the output.

title ’Leading Grain Producers’;
title2 ’for 1996’;

Begin a DATA step that does not create an output data set. Using _NULL_ saves
computer resources because it prevents the DATA step from creating an output data set.

data _null_;

Assign lengths other than the default to two character variables. Also assign a user
defined format to one variable and a label to another. The FORMAT statement assigns a
format to the variable COUNTRY. The LABEL statement assigns a label to the variable TYPE.

length Country $ 3 Type $ 5;
format country $cntry.;
label type=’Grain’;

Read a record from the input data, assign values to four variables. Continue to
process only observations that match the criterion. The INPUT statement reads a single
record and assigns values to four variables. The subsetting IF statement causes the DATA step
to continue to process only those observations that contain the value 1996 for YEAR.

input Year country $ type $ Kilotons;
if year=1996;

46 Example 2: Producing ODS Output That Contains Selected Variables � Chapter 3

Send the DATA step output to whatever ODS destinations are open. Specify the
variables and their order in the data component that is created. The combination of the
fileref PRINT and the ODS option in the FILE statement sends the results of the DATA step to
ODS. Two ODS destinations, the LISTING and the HTML destinations, are open. Because no
table definition is specified, ODS uses the default DATA step definition. The VARIABLES=
suboption specifies that the resulting data component will contain three columns in the order
that is listed.

file print ods=(variables=(country
type
kilotons));

Write values for all variables that are specified with the VARIABLES= suboption in
the FILE statement. The _ODS_ option in the PUT statement writes variable values to the
data component. It writes only those variables that were specified with the VARIABLES=
suboption in the FILE statement. Because no formats or labels are specified for these ODS
columns, ODS uses the defaults.

put _ods_;

The data provides information on the amounts of wheat, rice, and corn that were produced by
the five leading grain-producing nations during 1995 and 1996.

datalines;
1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;

Output Delivery System and the DATA Step � Example 2: Producing ODS Output That Contains Selected Variables 47

Close the HTML destination so that you can view the output. The ODS HTML statement
closes the HTML destination and all the files that are associated with it. You must close the
destination before you can view the output with a browser. Also, closing the destination
prevents all subsequent ODS jobs from automatically producing HTML output.

ods html close;

HTML Output

Display 3.1 HTML Body File Produced by ODS

48 Example 3: Assigning Attributes to Columns in ODS Output � Chapter 3

Listing Output

Output 3.2 Listing Output Produced by the LISTING Destination

Leading Grain Producers 1
for 1996

Country Grain Kilotons

Brazil Wheat 3302
Brazil Rice 10035
Brazil Corn 31975
China Wheat 109000
China Rice 190100
China Corn 119350
India Wheat 62620
India Rice 120012
India Corn 8660
Indonesia Wheat .
Indonesia Rice 51165
Indonesia Corn 8925
United States Wheat 62099
United States Rice 7771
United States Corn 236064

Example 3: Assigning Attributes to Columns in ODS Output
ODS features:

FILE PRINT ODS statement:
OBJECTLABEL= suboption
VARIABLES= suboption

LABEL= suboption
FORMAT= suboption

PUT _ODS_ statement

ODS destinations:
HTML
LISTNG
PRINTER (PS)

Format:
See “Creating the $CNTRY Format” on page 869.

This example assigns a label to the output object that it creates. It also specifies a
label and a format for individual columns.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. The PAGENO= option specifies the starting page number. The LINESIZE= option
specifies the output line length, and the PAGESIZE= option specifies the number of lines on an
output page. These options affect the listing output, but none of them affects the HTML output.

options pagesize=60 linesize=64 nodate pageno=1;

Output Delivery System and the DATA Step � Example 3: Assigning Attributes to Columns in ODS Output 49

Specify that you want to create HTML output. Also specify where to store the HTML
output: the body file, the contents file, and the frame file. The ODS HTML statement
opens the HTML destination and creates HTML output. The BODY= option identifies the file
that contains the HTML output. The CONTENTS= option identifies the file that contains a table
of contents to the HTML output. The contents file links to the body file. The FRAME= option
identifies the file that integrates the table of contents, the page contents, and the body file. If you
open the frame file, you see a table of contents, a table of pages, or both, as well as the body file.

ods html body=’your_body_file.html’
contents=’your_contents_file.html’
frame=’your_frame_file.html’;

Specify that you want PostScript output. Also specify where to store the PostScript
output. The ODS PRINTER statement opens the PRINTER destination and creates PostScript
output by default. The FILE= option sends all output objects to the external file in the current
directory.

ods printer file=’your_postscript_file.ps’;

Specify the titles. The TITLE statements provide titles for the output.

title ’Leading Grain Producers’;
title2 ’for 1996’;

Begin a DATA step that does not create an output data set.Using _NULL_ saves computer
resources because it prevents the DATA step from creating an output data set.

data _null_;

Assign lengths other than the default to two character variables. Also assign a user
defined format to one variable and a label to another. The LENGTH statement assigns
lengths to COUNTRY and TYPE. The FORMAT statement assigns a format to the variable
COUNTRY. The LABEL statement assigns a label to the variable TYPE.

length Country $ 3 Type $ 5;
format country $cntry.;
label type=’Grain’;

Read a record from the input data, assign values to four variables. Continue to
process only observations that match the criterion. The INPUT statement reads a single
record and assigns values to four variables. The subsetting IF statement causes the DATA step
to continue to process only those observations that contain the value 1996 for YEAR.

input Year country $ type $ Kilotons;
if year=1996;

50 Example 3: Assigning Attributes to Columns in ODS Output � Chapter 3

Send the DATA step output to the open destinations, specify a label for the output
object, and specify the variables to write to the data component and the order in
which to write them. The combination of the fileref PRINT and the ODS option in the FILE
statement sends the results of the DATA step to ODS. The LISTING, the HTML, and the
PRINTER destinations are open. Because no table definition is specified, ODS uses the default
DATA step definition.

� The OBJECTLABEL= suboption specifies the label ‘1996 Grain Production’ to the output
object. This label appears in the Results folder and in the HTML contents file.

� The VARIABLES= suboption specifies the variables to write to the data component and the
order in which to write them.

� The LABEL= suboption specifies a label for the variable TYPE. The label specified here takes
precedence over the LABEL statement assignment that was made previously in the DATA
step, so it is used as the column heading for TYPE.

� The FORMAT= suboption assigns a format for the variable KILOTONS.

file print ods= (objectlabel=’1996 Grain Production’
variables=(country

type(label=’Type of Grain’)
kilotons(format=comma12.))

);

Write the variables to the buffer. The _ODS_ option in the PUT statement writes all of the
variables that are defined to ODS (in the FILE PRINT ODS statement) to a special buffer. It
uses default attributes for COUNTRY, and it uses any attributes specified in the VARIABLES=
suboption for the other variables. For attributes that might be specified elsewhere in the DATA
step but are not specified in VARIABLES=, it uses the defaults.

put _ods_;

The data provides information on the amounts of wheat, rice, and corn that five leading
grain-producing nations produced during 1995 and 1996.

datalines;
1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620

Output Delivery System and the DATA Step � Example 3: Assigning Attributes to Columns in ODS Output 51

1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;

To view the HTML output and print the PostScript output, close both the HTML and
PRINTER destinations. This statement closes the LISTING, HTML and PRINTER
destinations and all the files that are associated with them. You must close the HTML
destination before you can view the output with a browser. You must close the PRINTER
destination before you can print the output on a physical printer. If you do not close these
destinations, then output created in subsequent sessions will be routed to them, and you might
inadvertently continue to generate both HTML and PostScript output.

ods _all_ close;

HTML Output

Display 3.2 HTML Frame File Produced by ODS

In this HTML frame file, the object’s label, ’1996 Grain Production’ was supplied by the
OBJECTLABEL= suboption. It appears in the table of contents as the link to the output object.

In the body file, the label ‘Type of Grain’ that was supplied by the LABEL= suboption for the
variable TYPE becomes its column heading.

The format for KILOTONS was supplied by the FORMAT= suboption in the FILE statement.

52 Example 3: Assigning Attributes to Columns in ODS Output � Chapter 3

Printer Output

Display 3.3 Printer Output Viewed with Ghostview

Just as in the HTML body file and in the listing output, the PostScript output displays the label
’Type of Grain’ that was supplied by the LABEL= suboption for the variable TYPE as its column
heading.

The format for KILOTONS was supplied by the FORMAT= suboption in the FILE statement.

Output Delivery System and the DATA Step � Example 4: Creating and Using a User-Defined Table Definition Template 53

Listing Output

Just as in the HTML body file and the PostScript output, the listing
output displays the label ’Type of Grain’ that was supplied by the
LABEL= suboption for the variable TYPE. The format for KILOTONS
was supplied by the FORMAT= suboption in the FILE statement.

Leading Grain Producers 1
for 1996

Type
of

Country Grain Kilotons

Brazil Wheat 3,302
Brazil Rice 10,035
Brazil Corn 31,975
China Wheat 109,000
China Rice 190,100
China Corn 119,350
India Wheat 62,620
India Rice 120,012
India Corn 8,660
Indonesia Wheat .
Indonesia Rice 51,165
Indonesia Corn 8,925
United States Wheat 62,099
United States Rice 7,771
United States Corn 236,064

Example 4: Creating and Using a User-Defined Table Definition
Template

ODS features:
PROC TEMPLATE

FILE PRINT ODS statement:
COLUMNS= suboption:

FORMAT= suboption

DYNAMIC= suboption
GENERIC= suboption

TEMPLATE=
PUT _ODS_ statement:

column pointer controls
line pointer controls

ODS destination:
RTF

This example shows how to do the following:
� create a simple user-defined template (table definition) with PROC TEMPLATE
� use a simple user-defined template in the DATA step

� use pointer controls in the PUT _ODS_ statement

54 Example 4: Creating and Using a User-Defined Table Definition Template � Chapter 3

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program: Creating the User-Defined Table Definition (Template)

Define the table definition PHONELIST. This PROC TEMPLATE step defines a table
definition named PHONELIST.

The template defines two columns: NAME and PHONE.

The GENERIC=ON attribute defines the column for NAME as one that the DATA step can use
for multiple variables.

The column definition uses dynamic headers; that is, a variable that uses this column definition
takes the value of the header at run time from the DATA step that uses this template. Thus,
each variable can have a different column heading.

The STYLE= attribute specifies that the style element DATA be used as the basis for generating
the data in this column. The font face and font size that DATA normally uses are replaced by
the ones that are specified in the STYLE= attribute.

The header for PHONE is hard-coded as Telephone. The STYLE= attribute specifies a style
element to use for the data in this column. For information on PROC TEMPLATE, see Chapter
7, “TEMPLATE Procedure: Overview,” on page 395 .

proc template;
define table phonelist;

column name phone;
dynamic colheader;

define name;
generic=on;
header=colheader;

style=data{fontstyle=italic fontsize=5};
end;

define phone;
header=’Telephone’;
style=datafixed;

end;
end;
run;

Program: Using the User-Defined Template (Table Definition)

Specify that you do not want to produce the default listing output. The ODS LISTING
CLOSE statement closes the listing destination to conserve resources. The listing destination is
open by default when you open your SAS session.

ods listing close;

Specify that you want the output formatted in RTF. The ODS RTF statement opens the
RTF destination and creates RTF output for use by Microsoft Word. Subsequent output objects
are sent to the body file.

ods rtf body=’your_rtf_file.rtf’;

Output Delivery System and the DATA Step � Example 4: Creating and Using a User-Defined Table Definition Template 55

Specify a title. The TITLE statement provides a title for the output.

title ’New Subscriber Telephone List’;

Create a format for telephone numbers. PROC FORMAT creates a user-defined format for
telephone numbers.

proc format;
picture phonenum .=’Not available’

other=’0000)000-0000’ (prefix=’(’);
run;

Create the PHONES data set. The data set PHONES contains names and their
corresponding phone numbers. Some observations contain missing values for the business or
home phone numbers.

data phones;
length first_name $20 last_name $25;
input first_name $ last_name $ business_phone home_phone;
datalines;

Jerome Johnson 9193191677 9198462198
Romeo Montague 8008992164 3609736201
Imani Rashid 5088522146 5083669821
Palinor Kent . 9197823199
Ruby Archuleta . .
Takei Ito 7042982145 .
Tom Joad 2099632764 2096684741
;

Sort the PHONES data set by last name. PROC SORT sorts the data set PHONES by
LAST_NAME and replaces the original data set with the sorted data set.

proc sort data=phones;
by last_name;

run;

Begin a DATA step that does not create an output data set. Read an observation from
the PHONES data set. Using _NULL_ saves computer resources because it prevents the
DATA step from creating an output data set.

data _null_;
set phones;

Request that ODS output be created and use the template named PHONELIST. The
combination of the fileref PRINT and the ODS option in the FILE statement sends the results of
the DATA step to ODS. ODS creates an output object and binds it to the PHONELIST template.
Only RTF output is created because only the RTF destination is open.

The TEMPLATE= suboption tells ODS to use the template PHONELIST, which was created
previously in the PROC TEMPLATE step.

file print ods=(template=’phonelist’

56 Example 4: Creating and Using a User-Defined Table Definition Template � Chapter 3

Place variable values in columns. The COLUMNS= suboption places values of variables
into columns that are defined in the template.

Values for both the LAST_NAME and FIRST_NAME variables are written to columns that are
defined as NAME in the template.

The GENERIC=ON suboption must be set in both the template and the ODS= option in order
for you to use a column definition for more than one column.

The value of the variable BUSINESS_PHONE is placed in a column that is defined as PHONE.

The DYNAMIC= suboption assigns a value to the variable COLHEADER. This value is passed
to the template when the output object is created, and the template uses it for the column
heading. Thus, even though the variables use the same column definition from the template, the
columns in the output object have different column headings.

The FORMAT= suboption assigns the format PHONENUM. to the column named PHONE.

columns=
(name=last_name

(generic=on
dynamic=(colheader=’Last Name’))

name=first_name
(generic=on
dynamic=(colheader=’First Name’))

phone=business_phone
(format=phonenum.)

)
);

The following IF/THEN-ELSE statements execute a different PUT _ODS_ statement based on
the specified conditions:

� If BUSINESS_PHONE contains missing values, then the PUT statement writes values for
LAST_NAME, FIRST_NAME, and BUSINESS_PHONE (the columns that are defined in the
ODS= option) into the output buffer. The PUT statement then writes the value for
HOME_PHONE in column 3, overwriting the missing value of BUSINESS_PHONE.

� If HOME_PHONE contains a missing value, then the PUT statement simply writes values
for LAST_NAME, FIRST_NAME, and BUSINESS_PHONE to the buffer.

� Finally, if both phone numbers have values, then the PUT statement writes values for
LAST_NAME, FIRST_NAME, and BUSINESS_PHONE to the buffer in the first line. SAS
then goes to the next line (as directed by the line pointer control /) and writes the value of
HOME_PHONE in the third column of the next line.

if (missing(business_phone)) then
put _ods_ @3 home_phone;

else if (missing(home_phone)) then
put _ods_;

else
put _ods_ / @3 home_phone;

run;

Close the RTF destination so that you can view the output. The ODS RTF statement
closes the RTF destination and all the files that are associated with it. You must close the
destination before you can view the output in Microsoft Word. Also, closing the output prevents
all subsequent ODS jobs from automatically producing RTF output.

ods RTF close;

Output Delivery System and the DATA Step � Example 4: Creating and Using a User-Defined Table Definition Template 57

RTF Output

Display 3.4 RTF Output Viewed with Microsoft Word

58

59

P A R T3

ODS Language Statements

Chapter 4.Introduction to ODS Language Statements 61

Chapter 5.Dictionary of ODS Language Statements 67

60

61

C H A P T E R

4
Introduction to ODS Language
Statements

Definition of ODS Statements 61
Types of ODS Statements 61

DATA Step Statements 61

Global Statements 61

Procedure Statements 62

ODS Statement Category Descriptions 62
ODS Statements by Category 63

Definition of ODS Statements

ODS statements provide greater flexibility in generating, storing, and reproducing
SAS procedure and DATA step output. You can use the ODS statements to control
different features of the Output Delivery System. ODS statements can be used
anywhere in your SAS program. Some ODS statements remain in effect until you
explicitly change them. Others are automatically cleared at particular times (see the
documentation for individual statements).

Types of ODS Statements

DATA Step Statements
DATA step statements are either executable or declarative statements that appear in

the DATA step. The ODS statements that are used in the DATA step are executable
statements. Executable statements result in some action during individual iterations of
the DATA step. For information about declarative statements, see SAS Language
Reference: Dictionary.

Global Statements
Global statements

� provide information to SAS

� request information or data

� move between different modes of execution

� set values for system options

62 Procedure Statements � Chapter 4

The global ODS statements deliver or store output in a variety of formats. You can
use global statements anywhere in a SAS program. Global statements are not
executable; they take effect as soon as SAS compiles program statements.

Global ODS statements are organized into three categories:

ODS: Output Control
statements that provide descriptive information about the specified output objects
and indicate whether the style definition or table definition is supplied by SAS.
The Output Control statements can do the following:

� select or exclude specific output objects for specific destinations

� specify the location where you want to search for or store style definitions or
table definitions

� verify if you are using a style definition or a table definition that is supplied
by SAS

� provide descriptive information about each specified output object, such as
name, label, template, path, and label path

ODS: SAS Formatted
statements that enable you to produce items that are specifuc to SAS, such as a
SAS data set, SAS output listing, or an ODS document. The statements in the
ODS SAS Formatted category create the SAS entities. For more information, see
“The SAS Formatted Destinations” on page 25.

ODS: Third-Party Formatted
statements that enable you to apply styles and markup languages, or produce
output to physical printers using page description languages. For more
information, see “The Third-Party Formatted Destinations” on page 26.

Procedure Statements

For information about the TEMPLATE procedure, see Chapter 7, “TEMPLATE
Procedure: Overview,” on page 395. For information about the DOCUMENT procedure,
see Chapter 6, “The DOCUMENT Procedure,” on page 333.

ODS Statement Category Descriptions

The following table lists and describes the categories of ODS global statements:

Table 4.1 Global Statements by Category

Statement Category Function

ODS: Output Control Provide descriptive information about the specified output
objects and their locations.

ODS: SAS Formatted Produce listing output, a SAS output data set, or a
hierarchy file.

ODS: Third-Party Formatted Produce files that are formatted in the proper destination
format.

� ODS Statements by Category 63

ODS Statements by Category

Table 4.2 Categories and Descriptions of ODS Statements

Category Dictionary of ODS
Language Statements

Description

Data Access “ODS PACKAGE
Statement” on page 198

The ODS PACKAGE statement opens, adds to, publishes,
or closes one SAS Output Delivery System (ODS)
package object.

File-handling “FILE Statement for ODS”
on page 68

Creates an ODS output object by binding the data
component to the table definition (template). As an
option, the FILE Statement lists the variables to include
in the ODS output, and it specifies options that control
the way that the variables are formatted.

“PUT Statement for ODS”
on page 81

Writes data values to a special buffer from which they
can be written to the data component and then formatted
by ODS.

ODS: Output Control “LIBNAME Statement,
SASEDOC” on page 77

Uses the SASEDOC engine to associate a SAS libref
(library reference) with one or more ODS output objects
that are stored in an ODS document.

“ODS _ALL_ CLOSE
Statement” on page 85

Closes all open ODS output destinations.

“ODS DOCUMENT
Statement” on page 94

Opens, manages, or closes the DOCUMENT destination,
which produces a hierarchy of output objects that
enables you to produce multiple ODS output formats
without rerunning a PROC or DATA step.

“ODS ESCAPECHAR
Statement” on page 97

Defines a representative character to be used in output
strings.

“ODS EXCLUDE
Statement” on page 110

Specifies output objects to exclude from ODS
destinations.

Enables or disables ODS graphics processing and sets
graphics environment options. This statement affects
ODS template-based graphics only. The ODS GRAPHICS
statement does not affect device-based graphics.

“ODS PATH Statement” on
page 206

Specifies locations to write to or read from when creating
or using PROC TEMPLATE definitions and the order in
which to search for them.

“ODS PROCLABEL
Statement” on page 237

Enables you to change a procedure label.

“ODS PROCTITLE
Statement” on page 238

Determines whether to write the title that identifies the
procedure that produces the results in the output.

“ODS RESULTS
Statement” on page 241

Tracks ODS output in the Results window.

“ODS SELECT Statement”
on page 264

Specifies output objects for ODS destinations.

64 ODS Statements by Category � Chapter 4

Category Dictionary of ODS
Language Statements

Description

“ODS SHOW Statement”
on page 277

Writes the specified selection or exclusion list to the SAS
log.

“ODS TEXT= Statement”
on page 313

Inserts text into your ODS output.

“ODS TRACE Statement”
on page 317

Writes to the SAS log a record of each output object that
is created, or suppresses the writing of this record.

“ODS USEGOPT
Statement” on page 322

Determines whether ODS uses traditional SAS/GRAPH
option settings.

“ODS VERIFY Statement”
on page 325

Prints or suppresses a message indicating that a style
definition or a table definition being used is not supplied
by SAS.

ODS: SAS Formatted “ODS DECIMAL_ALIGN
Statement” on page 91

Controls the justification of numeric columns when no
justification is specified.

“ODS LISTING
Statement” on page 143

Opens, manages, or closes the LISTING destination.

“ODS OUTPUT
Statement” on page 184

Produces a SAS data set from an output object and
manages the selection and exclusion lists for the
OUTPUT destination.

ODS: Third-Party
Formatted

“ODS CHTML Statement”
on page 85

Opens, manages, or closes the CHTML destination,
which produces a compact, minimal HTML that does not
use style information.

“ODS CSVALL Statement”
on page 88

Opens, manages, or closes the CSVALL destination,
which produces HTML output containing columns of
data values that are separated by commas, and produces
tabular output with titles, notes, and bylines.

“ODS DOCBOOK
Statement” on page 91

Opens, manages, or closes the DOCBOOK destination,
which produces XML output that conforms to the
DocBook DTD by OASIS.

“ODS HTML Statement”
on page 124

Opens, manages, or closes the HTML destination, which
produces HTML 4.0 output that contains embedded style
sheets.

“ODS HTMLCSS
Statement” on page 135

Opens, manages, or closes the HTMLCSS destination,
which produces HTML output with cascading style
sheets.

“ODS HTML3 Statement”
on page 137

Opens, manages, or closes the HTML3 destination, which
produces HTML 3.2 formatted output.

“ODS IMODE Statement”
on page 140

Opens, manages, or closes the IMODE destination, which
produces HTML output as a column of output, separated
by lines.

“ODS MARKUP
Statement” on page 147

Opens, manages, or closes the MARKUP destination,
which produces SAS output that is formatted using one
of many different markup languages.

“ODS PCL Statement” on
page 208

Opens, manages, or closes the PCL destination, which
produces printable output for PCL (HP LaserJet) files.

� ODS Statements by Category 65

Category Dictionary of ODS
Language Statements

Description

“ODS PDF Statement” on
page 210

Opens, manages, or closes the PDF destination, which
produces PDF output, a form of output that is read by
Adobe Acrobat and other applications.

“ODS PHTML Statement”
on page 215

Opens, manages, or closes the PHTML destination, which
produces simple HTML output that uses twelve style
elements and no class attributes for the presentation.
Class attributes are used only for the justification.

“ODS PRINTER
Statement” on page 218

Opens, manages, or closes the PRINTER destination,
which produces printable output.

“ODS PS Statement” on
page 239

Opens, manages, or closes the PS destination, which
produces PostScript (PS) output.

“ODS RTF Statement” on
page 242

Opens, manages, or closes the RTF destination, which
produces output written in Rich Text Format for use with
Microsoft Word 2002.

“ODS Tagset Statement”
on page 278

Opens, manages, or closes the specified tagset
destination.

“ODS TAGSETS.RTF
Statement” on page 286

Opens, manages, or closes the RTF destination, which
produces measured output that is written in Rich Text
Format for use with Microsoft Word 2002.

“ODS WML Statement” on
page 326

Opens, manages, or closes the WML destination, which
uses the Wireless Application Protocol (WAP) to produce
a Wireless Markup Language (WML) DTD with a simple
list for a table of contents.

66

67

C H A P T E R

5
Dictionary of ODS Language
Statements

FILE Statement for ODS 68
LIBNAME Statement, SASEDOC 77

PUT Statement for ODS 81

ODS _ALL_ CLOSE Statement 85

ODS CHTML Statement 85

ODS CSVALL Statement 88
ODS DECIMAL_ALIGN Statement 91

ODS DOCBOOK Statement 91

ODS DOCUMENT Statement 94

ODS ESCAPECHAR Statement 97

ODS EXCLUDE Statement 110

ODS GRAPHICS Statement 116
ODS HTML Statement 124

ODS HTMLCSS Statement 135

ODS HTML3 Statement 137

ODS IMODE Statement 140

ODS LISTING Statement 143
ODS MARKUP Statement 147

ODS OUTPUT Statement 184

ODS PACKAGE Statement 198

ODS PATH Statement 206

ODS PCL Statement 208
ODS PDF Statement 210

ODS PHTML Statement 215

ODS PRINTER Statement 218

ODS PROCLABEL Statement 237

ODS PROCTITLE Statement 238

ODS PS Statement 239
ODS RESULTS Statement 241

ODS RTF Statement 242

ODS SELECT Statement 264

ODS SHOW Statement 277

ODS Tagset Statement 278
ODS TAGSETS.RTF Statement 286

Controlling Page Breaks in Long Tables 294

Supporting RTF Readers Other than Word 294

Controlling Titles, Footnotes, and Other Page Elements 294

Measured RTF and Graphics 294
ODS TEXT= Statement 313

ODS TRACE Statement 317

ODS USEGOPT Statement 322

68 FILE Statement for ODS � Chapter 5

ODS VERIFY Statement 325
ODS WML Statement 326

FILE Statement for ODS
Creates an ODS output object by binding the data component to the table definition (template). As
an option, the FILE Statement lists the variables to include in the ODS output, and it specifies
options that control the way that the variables are formatted.

Valid: in a DATA step

Category: File-handling

Type: Executable

Default: ODS sends the output object to all open ODS destinations.

Syntax
FILE PRINT ODS <=(ODS-suboption(s))><options> ;

Note: This syntax shows only the ODS form of the FILE statement. For the
complete syntax, see the FILE statement in SAS Language Reference: Dictionary. �

Required Arguments

PRINT
is a reserved fileref that you must use when you direct output to ODS.

Requirement: You must use PRINT in a FILE statement that uses the ODS option.

Featured in: “Example 1: Creating a Report with the DATA Step and the Default
Table Definition” on page 41

ODS<=(ODS-suboptions)>
defines the structure of the data component and binds the data component to a table
definition. The result is an ODS output object. ODS sends this object to all open
ODS destinations.

See also: “ODS Suboptions” on page 69 for information about the ODS suboptions

Featured in: All examples

Options

N=number
specifies the number of lines that are available to the output pointer in the current
iteration of the DATA step.

overflow-control
determines the PUT statement behavior when the output pointer attempts to move
past the last ODS column in the buffer.

Dictionary of ODS Language Statements � FILE Statement for ODS 69

overflow-control is one of the following:

DROPOVER
discards items when a PUT statement attempts to write beyond the last ODS
column in the buffer. A message in the log at the end of the DATA step informs
you if data was not written to the buffer.

FLOWOVER
moves the output pointer to a new line if a PUT statement attempts to write an
item beyond the last ODS column in the buffer. The PUT statement writes the
next item in the first ODS column of the new line.

STOPOVER
stops processing the DATA step immediately if a PUT statement attempts to write
beyond the last ODS column in the buffer. SAS discards the data item, writes the
portion of the buffer that was built before the error occurred, and issues an error
message.

Default: FLOWOVER

Without ODS Suboptions
If you do not specify any ODS suboptions, the DATA step uses a default table

definition (BASE.DATASTEP.TABLE) that is stored in the SASHELP.TMPLMST
template store. This definition defines two generic columns: one for character variables
and one for numeric variables. ODS associates each variable in the DATA step with one
of these columns and displays the variables in the order in which they are defined in
the DATA step.

If there are no suboptions, the default table definition uses the variable’s label as its
column heading. If no label exists, the definition uses the variable’s name as the
column heading.

ODS Suboptions

Task Suboption

Specify one or more columns for the data component COLUMNS=
or VARIABLES=

Specify default values for dynamic-attribute values DYNAMIC=

Specify whether all column definitions in the table
definition can be used by more than one variable

GENERIC=

Specify a column heading to use for any column that
does not have a column heading specified in the
COLUMNS= or VARIABLES= suboption

LABEL=

Specify a name for the output object that the DATA
step produces

OBJECT=

70 FILE Statement for ODS � Chapter 5

Task Suboption

Specify a label for the output object that the DATA
step produces

OBJECTLABEL=

Specify the table definition to use with the data
component to produce the output object

TEMPLATE=

COLUMNS=(column-specification(s))
specifies one or more columns for the data component and determines their order in
the data component.
Restriction: You can use only one COLUMNS= suboption in a FILE PRINT ODS

statement.
Restriction: You can use either the COLUMNS= suboption or the VARIABLES=

suboption, but not both, in a single FILE PRINT ODS statement.
Requirement: You must enclose a column-specification in parentheses.
Tip: The order of the columns in the output object is determined by their order in

the table definition, not by their order in the data component.
Tip: To override the default order, use the ORDER_DATA= table attribute in the

PROC TEMPLATE step that creates the definition. The default DATA step table
definition uses this attribute. For more information, see the discussion of
ORDER_DATA= table attribute.

Tip: If you do not specify COLUMNS= or VARIABLES=, then the order of columns
in the data component matches the order of the corresponding variables in the
program data vector.

Each column-specification associates a DATA step variable with a column that is
defined in the table definition. column-specification has this general form:

(column-name-1<=variable-name-1<(attribute-suboptions)>> <…
column-name-n<=variable-name-n<(attribute-suboptions)>>>)

column-name
is the name of a column. This name must match the name that is defined in the
table definition that you use.
Restriction: column-name must conform to the rules for SAS variable names. For

information, see the SAS Language Reference: Dictionary.
Requirement: You must enclose a column-name in parentheses.
Tip: You can use list notation (for example, score1-score5) to specify multiple

column names.
Featured in: “Example 4: Creating and Using a User-Defined Table Definition

Template” on page 53

variable-name
specifies a variable in the DATA step to place in the specified column.
Default: If you omit variable-name, then ODS looks for a DATA step variable

named column-name to place in the specified column. If no such variable exists,
then ODS returns an error.

Tip: You can use list notation (for example, score1-score5) to specify a range of
variable names.

Featured in: “Example 4: Creating and Using a User-Defined Table Definition
Template” on page 53

Dictionary of ODS Language Statements � FILE Statement for ODS 71

(attribute-suboptions)
assigns a characteristic, such as a label or a format, to a particular column in the
data component. These individual specifications override any attributes that are
set by the DATA step.

The following table lists the attribute suboptions that are available for the
COLUMNS= suboption. For a complete description, see “Attribute Suboptions” on
page 75.

Task Attribute Suboption

Specify a value for the variable defined by the
DYNAMIC statement in a table template

DYNAMIC=

Specify a format for the current column FORMAT=

Specify whether the DATA step uses this column
definition for multiple variables

GENERIC=

Specify a label for a particular column LABEL=

Requirement: You must enclose attribute-suboptions in parentheses.

DYNAMIC=(dynamic-specification(s))
specifies default values for dynamic-attribute values.

A dynamic-attribute value is defined in the table definition. Its name serves as a
placeholder for the value that is supplied to the data component with the
DYNAMIC= suboption. When ODS creates the output object from the table definition
and the data component, it substitutes the appropriate value from the data
component for the value’s name in the table definition.

Each dynamic-specification has the following form:

dynamic-value-name<=variable-name | constant>

dynamic-value-name
is the name that the table definition gives to a dynamic-attribute value.

variable-name
specifies a variable whose value is assigned to dynamic-value-name and passed to
ODS to substitute for the placeholder in the table definition when it creates the
output object.

constant
specifies a constant to assign to dynamic-value-name and pass to ODS to substitute
for the placeholder in the table definition when it creates the output object.

Default: By default, the DYNAMIC= suboption applies to all columns in the data
component.

Interaction: Columns that do not contain their own DYNAMIC= suboption
specifications use these dynamic-specifications.

Tip: You can override the default specification for an individual column by
specifying the DYNAMIC= suboption as an attribute for that column in the
COLUMNS= or the VARIABLES= suboption.

See also: “DYNAMIC Statement” on page 619

GENERIC=ON | OFF
indicates whether the DATA step uses all column definitions for multiple variables.

ON

72 FILE Statement for ODS � Chapter 5

indicates that the DATA step uses all column definitions for multiple variables.

OFF
indicates that the DATA step uses no column definitions for multiple variables.

Default: OFF

Default: By default, the GENERIC= suboption applies to all columns in the data
component.

Restriction: ODS does not recognize the column names as a match unless you
specify the (COLUMNS=(GENERIC=ON)) suboption.

Interaction: If you do not specify a table definition, the GENERIC= suboption is set
to ON.

Tip: To override the default specification for an individual column, specify the
GENERIC= suboption as an attribute for that column in the COLUMNS= or the
VARIABLES= suboption.

Tip: The GENERIC= option in the DATA step is used in conjunction with the
GENERIC= column attribute in the table template. See the GENERIC= column
attribute in “Column Attributes” on page 601.

LABEL=’column-label’
specifies a label for any column that does not have a label specified in the
COLUMNS= or VARIABLES= suboption.

Default: If you use the LABEL= suboption, ODS uses the first of these labels that it
finds:

� a label that is specified with HEADER= attribute for a particular column in
the table definition (see HEADER= on page 607 column attribute)

� a label that is specified for a particular column with LABEL= suboption in
the COLUMNS= or VARIABLES= suboption

� a label that is specified with LABEL= suboption in the ODS= option

� a label that is assigned with the LABEL statement in the DATA step

Tip: If you omit the LABEL= suboption, the contents of the table definition
determines whether the column heading contains the variable name or is blank.

Featured in: “Example 3: Assigning Attributes to Columns in ODS Output” on
page 48

OBJECT= object-name
specifies a name for the output object.

The Results window and the HTML contents file both contain a description of, and
a link to, each output object. The description contains the first of the following items
that ODS finds:

� the object’s label

� the current title if it is not the default title, “The SAS System”

� the object’s name

� the string FilePrint#, in which # increases by 1 for each DATA step that you
run in the current SAS process without specifying an object name or an object
label

Restriction: object-name must conform to the rules for SAS variable names. For
information about these rules, see Rules for Words and Names in the SAS
Language in SAS Language Reference: Concepts.

OBJECTLABEL=’object-label’
specifies a label for the output object.

Dictionary of ODS Language Statements � FILE Statement for ODS 73

The Results window and the HTML contents file both contain a description of, and
a link to, each output object. The description contains the first of the following items
that ODS finds:

� the object’s label
� the current title if it is not the default title, “The SAS System”
� the object’s name (see OBJECT= on page 72)
� the string FilePrint#, in which # increases by 1 for each DATA step that you

run in the current SAS process without specifying an object name or an object
label

Requirement: You must enclose an object-label in quotation marks.
Featured in: “Example 3: Assigning Attributes to Columns in ODS Output” on

page 48

TEMPLATE= ’table-definition-name’
specifies the table definition to use with the data component to produce the output
object.

table-definition-name
is the path to the table definition. SAS stores a table definition as an item in an
item store.

Default: If you do not specify the TEMPLATE= option, ODS uses
BASE.DATASTEP.TABLE, the default table definition.

Default: If you do specify the TEMPLATE= suboption, ODS first looks for
table-definition-name in SASUSER.TEMPLAT, and then it looks in
SASHELP.TMPLMST.

Requirement: You must enclose a table-definition-name in quotation marks.
Interaction: When you use the default table definition, the GENERIC= suboption is

set to ON for all columns in the data component. For more information, see
GENERIC= on page 71.

Tip: When you use the BASE.DATASTEP.TABLE template, character values are
left-justified. If you want character values to be right-justified, specify the
BASE.DATASTEP.TABLENOJUST template.

Tip: You can change the locations in which ODS searches for the
table-definition-name by using the “ODS PATH Statement” on page 206.

Featured in: “Example 4: Creating and Using a User-Defined Table Definition
Template” on page 53

VARIABLES=(variable-specification(s))
specifies one or more columns for the data component of the output object. Each
variable-specification associates a DATA step variable with a column that is defined
in the table definition. The variable-specification value has this general form:

(variable-name-1<=column-name-1<(attribute-suboptions)>> <…
variable-name-n<=column-name-n<(attribute-suboptions)>>>)

variable-name
specifies a variable in the DATA step to use as a column in the data component.
Tip: You can use list notation (for example, score1-score5) to specify a range of

variable names.
Featured in: “Example 2: Producing ODS Output That Contains Selected

Variables” on page 44 and “Example 3: Assigning Attributes to Columns in ODS
Output” on page 48

74 FILE Statement for ODS � Chapter 5

column-name
is the name of a column. This name must match a name that is defined in the
table definition.
Default: If you are using the default table definition and you omit column-name,

then ODS uses the variable label to name the column. If the variable has no
label, then ODS uses the variable name.

Default: If you use a table definition other than the default table definition and
you omit column-name, ODS looks in the table definition for a column that is
named variable-name and places the variable in that column. ODS returns an
error if no such column exists.

Restriction: column-name must match a column name in the table definition that
you are using. It must also conform to the rules for SAS variable names. For
information about these rules, see Rules for Words and Names in the SAS
Language in SAS Language Reference: Concepts.

Tip: You can use list notation (for example, score1-score5) to specify a range of
column names.

(attribute-suboptions)
assigns a characteristic, such as a label or a format, to a particular column in the
data component. These individual specifications override any attributes that are
set in the DATA step for the entire data component.

The following table lists the attribute suboptions available for the VARIABLES=
suboption. For a complete description, see “Attribute Suboptions” on page 75.

Task Attribute Suboption

Specify a value for the variable defined by the
DYNAMIC statement in a table template

DYNAMIC=

Specify a format for the current column FORMAT=

Specify whether the DATA step uses this column
definition for multiple variables

GENERIC=

Specify a label for a particular column LABEL=

Default: If you specify the VARIABLES= suboption, the order of the columns in the
output object is determined by their order in the table definition, not by their
order in the data component. If you do not specify COLUMNS= or VARIABLES=
suboptions, the order of columns in the data component matches the order of the
corresponding variables in the program data vector.

Restriction: You can use only one VARIABLES= suboption in a FILE PRINT ODS
statement.

Restriction: You can use either the COLUMNS= suboption or the VARIABLES=
suboption to associate variables with columns, but you cannot use both suboptions
in the same FILE PRINT ODS statement.

Tip: To override the default order, use the ORDER_DATA table attribute in the
PROC TEMPLATE step that creates the definition. The default DATA step table
definition uses this attribute. For more information see the ORDER_DATA= table
attribute.

Tip: The VARIABLES= suboption is for use primarily with the default DATA step
table definition. When you use the default definition, the DATA step can map
variables to the appropriate column in the definition so you do not need to specify
a column name.

Dictionary of ODS Language Statements � FILE Statement for ODS 75

Featured in: “Example 2: Producing ODS Output That Contains Selected
Variables” on page 44 and “Example 3: Assigning Attributes to Columns in ODS
Output” on page 48.

Attribute Suboptions

DYNAMIC=dynamic-specification(s)
specifies a value for the variable defined by the DYNAMIC statement in a table
template.
Main discussion: DYNAMIC= on page 71
Featured in: “Example 4: Creating and Using a User-Defined Table Definition

Template” on page 53
See also: “DYNAMIC Statement” on page 619

FORMAT=format-name
specifies a format for the current column.
Default: ODS uses the first of these formats for the variable that it finds:

� for nongeneric columns, a format that is specified in the column definition
� a format that is specified in the FORMAT= column attribute
� a format that is specified in a FORMAT statement
� the default format ($w. for character variables; BEST12. for numeric

variables)

Featured in: “Example 4: Creating and Using a User-Defined Table Definition
Template” on page 53
Note: Formats for generic columns that are specified in the table definition are

ignored by the DATA step interface to ODS. �

GENERIC=ON | OFF
specifies whether the DATA step uses this column definition for multiple variables.
Default: OFF
Main discussion: GENERIC= on page 71
Featured in: “Example 4: Creating and Using a User-Defined Table Definition

Template” on page 53
See also: GENERIC on page 607
Tip: The GENERIC= option in the DATA step is used in conjunction with the

GENERIC= column attribute in the table template. See the GENERIC= column
attribute in “Column Attributes” on page 601.

LABEL=’column-label’
specifies a label for the specified column.
Main discussion: LABEL= on page 72
Featured in: “Example 3: Assigning Attributes to Columns in ODS Output” on

page 48

76 FILE Statement for ODS � Chapter 5

Details

Restrictions When Using the FILE Statement with ODS
The following restrictions apply to the FILE statement when you use it with ODS:

� These arguments affect only listing output:
� FOOTNOTES and NOFOOTNOTES
� LINESIZE
� PAGESIZE
� TITLE and NOTITLES

� Do not use these arguments:
� DELIMITER=
� DLMSTR=
� DSD
� _FILE_=
� FILEVAR=
� HEADER=
� PAD

Using Options and Suboptions Options apply to all columns and suboptions apply to
specific columns.

For example, both of the following DATA steps produce the same output. This DATA
step specifies the suboption GENERIC=ON for every column.

Example Code 5.1 Data Step Using the GENERIC=ON Suboption

data _null_;
set top3list;

file print ods = (
template=’means.topn’
columns=(

class=school(generic=on)
class=year(generic=on)
sum=moneyRaised_sum(generic=on)
mean=moneyRaised_mean(generic=on)
raised=moneyRaised_1(generic=on)
raised=moneyRaised_2(generic=on)
raised=moneyRaised_3(generic=on)
name=name_1(generic=on)
name=name_2(generic=on)
name=name_3(generic=on)
school=school_1(generic=on)
school=school_2(generic=on)
school=school_3(generic=on)
year=year_1(generic=on)
year=year_2(generic=on)
year=year_3(generic=on)
)

);

put _ods_;
run;

This DATA step uses the GENERIC=ON option, which has to be specified only once.

Dictionary of ODS Language Statements � LIBNAME Statement, SASEDOC 77

Example Code 5.2 Data Step Using the GENERIC=ON Option

data _null_;
set top3list;

file print ods = (
template=’means.topn’
generic=on
columns=(

class=school
class=year
sum=moneyRaised_sum
mean=moneyRaised_mean
raised=moneyRaised_1
raised=moneyRaised_2
raised=moneyRaised_3
name=name_1
name=name_2
name=name_3
school=school_1
school=school_2
school=school_3
year=year_1
year=year_2
year=year_3
)

);

put _ods_;
run;

See Also

Statement:

“PUT Statement for ODS” on page 81

Chapter 3, “Output Delivery System and the DATA Step,” on page 39

“Examples” on page 41

LIBNAME Statement, SASEDOC

Uses the SASEDOC engine to associate a SAS libref (library reference) with one or more ODS
output objects that are stored in an ODS document.

Valid: anywhere

Category: ODS: Output Control

Restriction: The LIBNAME statement that is used with the SASEDOC engine provides
read access to an output object. You cannot write an output object to a library with the
SASEDOC engine, but you can delete or rename a data set.

78 LIBNAME Statement, SASEDOC � Chapter 5

Syntax
LIBNAME libref SASEDOC ’path’ <sasedoc-engine-option> <options>;

Required Arguments

libref
is a shortcut name or a nickname for the aggregate storage location where your SAS
files are stored. It is any SAS name that you choose for assigning a new libref. When
you are disassociating a libref from a SAS library, or when you are listing attributes,
specify a libref that was previously assigned or else use the CLEAR argument.

Tip: The association between a libref and a SAS library lasts only for the duration
of the SAS session or until you change it or discontinue it with another LIBNAME
statement for the same libref.

SASEDOC
is the name of the engine that associates a SAS libref (library reference) with one or
more ODS output objects that are stored in an ODS document.

path
is the fully specified location of an ODS document directory.

SASEDOC Engine Options

DOC_SEQNO=sequence-number
permits you to specify the sequence number of the output object to be accessed. This
is necessary when multiple output objects that are in the same directory have the
same name. By default, the SASEDOC LIBNAME engine can access only the most
recently created output object, which might not be the one that you want to access.
Specify DOC_SEQNO to override the default.

sequence-number
is a number which, when combined with a pathname, uniquely identifies the entry
in the directory.

See also: “Understanding Sequence Numbers” on page 366

Additional LIBNAME Statement Arguments and Options
For additional arguments and options that are valid for the LIBNAME statement, see
the LIBNAME statement in SAS Language Reference: Dictionary.

Details

Using the LIBNAME Statement The SASEDOC LIBNAME engine permits you to
access output objects that are stored in an ODS document. A data set that is accessed
by using the SASEDOC LIBNAME engine might differ structurally from one created by
replaying the ODS document output object to the ODS OUTPUT destination. This is
because the ODS OUTPUT destination recognizes the output object’s template, but the
SASEDOC LIBNAME engine does not.

Dictionary of ODS Language Statements � LIBNAME Statement, SASEDOC 79

Examples

Example 1: Assigning a LIBNAME to an ODS DOCUMENT

LIBNAME statement:

Option:

DOC_SEQNO=

ODS DOCUMENT statement:

Option:

NAME=

Other SAS features:

PROC DATASETS

PROC GLM

PROC PRINT

Data Sets:

“Creating the Plants Data Set” on page 880.

“Creating the Plant_Stat Data Set” on page 880.

Program Description This example assigns a libref to an ODS document directory that
contains four output objects created by PROC GLM. The four output objects are tables:

Overall ANOVA

Fit statistics

Type I model ANOVA

Type III model ANOVA

Program

Create the ODS document sasuser.odsglm and open the DOCUMENT destination. The
ODS DOCUMENT statement opens the DOCUMENT destination. The NAME= option assigns
the name sasuser.odsglm to the ODS document that will contain the output from the PROC
GLM program. The access-option WRITE provides Write access to the document. Note that
odsglm will be created in the SASUSER library.

ods document name=sasuser.odsglm(write);

Create the output objects. The GLM procedure creates the output objects. The Plant_Stats
data set contains the statistical information that PROC GLM uses to create the output objects.
For information about viewing a record of each output object that is created, see the “ODS
TRACE Statement” on page 317.

proc glm data=plant_stats;
class month;
model age age2 age3=month / nouni;
manova h=month /print;

run;

80 LIBNAME Statement, SASEDOC � Chapter 5

Create the output objects. The GLM procedure creates the output objects. The Plants data
set contains the statistical information that PROC GLM uses to create the output objects. For
information about viewing a record of each output object that is created, see “ODS TRACE
Statement” on page 317.

proc glm data=plants order=data;
class type block;
model stemleng=type block;
means type;
contrast ’compost vs others’ type -1 -1 -1 -1 6 -1 -1;
contrast ’river soils vs.non’ type -1 -1 -1 -1 0 5 -1,

type -1 4 -1 -1 0 0 -1;
contrast ’glacial vs drift’ type -1 0 1 1 0 0 -1;
contrast ’clarion vs webster’ type -1 0 0 0 0 0 1;
contrast ’knox vs oneill’ type 0 0 1 -1 0 0 0;

quit;

Close the DOCUMENT destination. If you do not close the DOCUMENT destination, you
will be unable to see DOCUMENT procedure output.

ods document close;

Associate the libref mylib with the directory stemleng. The LIBNAME statement uses the
SASEDOC engine to associate the SAS libref mylib with the directory stemleng that is stored
in the ODS document sasuser.odsglm. Notice that the path includes anova#1 and not just
anova. This is because there are two anova directories, and this code is specifying the first
directory. If the sequence number was omitted, then ODS would associate the libref with the
second directory.

libname mylib sasedoc ’\sasuser.odsglm\glm\anova#1\stemleng’;

The LIBRARY= option specifies mylib as the procedure input library. The QUIT statement
stops the DATASETS procedure.

proc datasets lib=mylib;
run;
quit;

Print the data sets. Since two output objects have the same name (ModelANOVA), the
SASEDOC LIBNAME engine recognizes only the second table, because it was created more
recently than the first table. The DOC_SEQNO= data set option specifies a sequence number of
1 in order to access the first table .

proc print data=mylib.modelanova;
run;
proc print data=mylib.modelanova(doc_seqno=1);
run;

Dictionary of ODS Language Statements � PUT Statement for ODS 81

Output

Display 5.1 Explorer Window

The following display shows the Explorer window that contains the SAS library Mylib which is
associated with the directory stemleng. The stemleng directory is stored in the ODS
document sasuser.odsglm.

Display 5.2 The Contents of Mylib

The following display shows the Explorer window that contains the contents of the SAS library
Mylib. The three output objects are actually stored in an ODS document.

See Also

Procedures:

Chapter 6, “The DOCUMENT Procedure,” on page 333

Statements:

“ODS DOCUMENT Statement” on page 94

“ODS TRACE Statement” on page 317

PUT Statement for ODS

Writes data values to a special buffer from which they can be written to the data component and
then formatted by ODS.

Valid: in a DATA step

Category: File-handling

Type: Executable

Requirement: If you use the _ODS_ option in the PUT statement, then you must use the
FILE PRINT ODS statement.

82 PUT Statement for ODS � Chapter 5

Syntax
PUT <specification><_ODS_><@|@@>;

Note: This syntax shows only the ODS form of the PUT statement when you are
binding to a template. For the complete syntax, see the PUT statement in SAS
Language Reference: Dictionary. �

Options

specification
specifies one or more variables to write and where to write them. Specification has
the following form:

<ods-pointer-control-1> variable-1 <...<ods-pointer-control-n>variable-n>

ods-pointer-control
moves the pointer in the buffer to a specified line or column.

See also: “When the Pointer Moves Past the End of a Line” on page 84

variable
identifies the variable to write.
Featured in: “Example 4: Creating and Using a User-Defined Table Definition

Template” on page 53

ODS
specifies that the PUT statement writes values to the data component for each of the
variables that were defined as columns with the FILE PRINT ODS COLUMNS=
statement.
Default: The order of these columns is determined by the order that is specified by

the COLUMNS= suboption in the FILE PRINT ODS statement. If you omit the
COLUMNS= suboption, then the order of the variables in the program data vector
determines their order in the output object.

Requirement: If you specify the _ODS_ option, then you must use the FILE PRINT
ODS statement and the FILE PRINT ODS statement must precede the PUT
ODS statement. For more information, see ODS<=(ODS-suboptions)> on page
68.

Interaction: You can use _ODS_ in a PUT statement that specifies the placement of
individual variables. _ODS_ writes to a particular row and column only if another
PUT statement has not already written a variable to that same row and column.
The position of _ODS_ in the PUT statement does not affect the outcome in the
data component.

Tip: By default, the order of the columns in the data component matches the order
of the columns in the buffer. However, if you have specified a table definition, it
might override this order. For more information, see the discussion of
ORDER_DATA in Chapter 12, “TEMPLATE Procedure: Creating Tabular Output,”
on page 593 .

@ | @@
holds an output line for the execution of the next PUT statement across iterations of
the DATA step. The line-hold specifiers are called trailing @ and double trailing @.

Default: If you do not use @ or @@, then each PUT statement in a DATA step
writes a new line to the buffer.

Main discussion: “When the Pointer Moves Past the End of a Line” on page 84

Dictionary of ODS Language Statements � PUT Statement for ODS 83

Details

ODS Column Pointer Controls ODS column pointer controls differ slightly from column
pointer controls in a PUT statement that does not use ODS. An ODS column refers not
to a single character space but to a column that contains an entire variable value.
Therefore, an ODS column pointer control moves from one entire value to the next, not
from one character space to another. Column 1 contains values for the first variable in
the output; column 2 contains values for the second variable, and so on.

ODS column pointer controls have the following general forms:

@ods-column
moves the pointer to the specified ODS column. ods-column is a number, a
numeric variable, or an expression that identifies the column to write to.

Requirement: If ods-column is a number, then it must be a positive integer.
If ods-column is a numeric variable or an expression, then SAS treats it as

follows:

Variable or Expression SAS Response

Not an integer Truncates the decimal portion and uses only
the integer value.

0 or negative Moves the pointer to column 1.

Default: If ods-column exceeds the number of columns in the data component,
then ODS does the following:

1 writes the current line

2 moves the pointer to the first ODS column on the next line

3 continues to process the PUT statement

Tip: You can alter the default behavior with options in the FILE PRINT ODS
statement. For more information, see the discussion of overflow control on page
68.

Featured in: “Example 4: Creating and Using a User-Defined Table Definition
Template” on page 53

+ods-column
moves the pointer by the specified number of ODS columns. ods-column is a
number, a numeric variable, or an expression that specifies the number of columns
to move the pointer.

Requirement: If ods-column is a number, then it must be an integer.
If ods-column is a numeric variable or an expression, then it does not have to

be an integer. If it is not an integer, then SAS truncates the decimal portion
and uses only the integer value.

ods-column SAS Response

A positive integer Moves the pointer to the right.

A negative integer Moves the pointer to the left.

0 Pointer does not move.

84 PUT Statement for ODS � Chapter 5

Tip: If the current column position becomes less than 1, then the pointer moves
to column 1. If the current column position exceeds the number of columns in
the data component, then ODS does the following:

1 writes the current line

2 moves the pointer to the first ODS column on the next line

3 continues to process the PUT statement

See also: “Example 4: Creating and Using a User-Defined Table Definition
Template” on page 53

@ ’column-name’
moves the pointer to the ODS column identified by ’column-name’. The column
name is a data component variable name.

Requirement: column-name must be enclosed in quotation marks.

ODS Line Pointer Controls Line pointer controls in a DATA step that uses ODS are
the same as line pointer controls in a DATA step that does not use ODS. However, you
can use only those listed below with ODS. Line pointer controls have the following
general forms:

#line
moves the pointer to the specified line. line is a number, a numeric variable, or an
expression that identifies the line that specifies where to write.

Requirement: If line is a number, then it must be an integer. If line is a numeric
variable or an expression, it does not have to be an integer. If it is not an
integer, then SAS truncates the decimal portion and uses only the integer value.

/
moves the pointer to the first column of the next line.

Featured in: “Example 4: Creating and Using a User-Defined Table Definition
Template” on page 53

Note: If you use a line pointer control to skip lines in ODS output, then SAS sets to
a missing value all columns that are not referenced on the current line or skipped lines
to a missing value. Columns that contain numeric values will display a period for the
missing value. If you prefer not to include these periods in your ODS output, you can
display missing numeric values as a blank by using the MISSING statement or the
MISSING= system option. For more information about the MISSING statement or the
MISSING= option, see SAS Language Reference: Dictionary. �

When the Pointer Moves Past the End of a Line In a DATA step that uses ODS, the
number of columns in the buffer and in the data component are determined in one of
three ways:

� By default, the number of variables in the program data vector determines the
number of ODS columns.

� You can override the default by defining ODS columns with the COLUMNS=
suboption in the FILE PRINT ODS statement.

� If you associate a template with the data component, then the specifications in the
template take precedence and might change the number of columns that actually
appear in the output object.

When using pointer controls and the @ or @@, you might inadvertently position the
pointer beyond the last ODS column. You can control how SAS handles this situation
with options in the FILE PRINT ODS statement. For more information see the
discussion of overflow control on page 68.

Dictionary of ODS Language Statements � ODS CHTML Statement 85

See Also

Statement:

“FILE Statement for ODS” on page 68

Chapter 3, “Output Delivery System and the DATA Step,” on page 39

“Examples” on page 41

ODS _ALL_ CLOSE Statement

Closes all open ODS output destinations.

Valid: anywhere

Category: ODS: Output Control

Syntax
ODS _ALL_ CLOSE;

Details
The ODS _ALL_ CLOSE statement closes all open ODS output destinations.

Note: Be sure to open one or more ODS destinations before you execute your next
program so that you can view or print your output within the same SAS session. �

ODS CHTML Statement

Opens, manages, or closes the CHTML destination, which produces a compact, minimal HTML
that does not use style information.

Valid: anywhere

Category: ODS: Third-Party Formatted

Syntax
ODS CHTML<(<ID=>identifier)> <action>;

ODS CHTML <(<ID=>identifier)> <option(s)>;

Without an Action or Options
If you use the ODS CHTML statement without an action or options, then it opens the

CHTML destination and creates CHTML output.

86 ODS CHTML Statement � Chapter 5

Actions
The following table lists the actions available for the ODS CHTML statement. For

complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.1 ODS CHTML Action Summary Table

Task Action

Close the CHTML destination and the file that is
associated with it

CLOSE

Exclude output objects from the CHTML destination EXCLUDE

Select output objects for the CHTML destination SELECT

Write to the SAS log the current selection or exclusion
list for the CHTML destination

SHOW

Options
The following table lists the options that are available for the ODS CHTML

statement, which is part of the markup family of statements. For complete descriptions
of these options, see “Options” on page 148 in the ODS MARKUP statement.

Table 5.2 ODS CHTML Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view the HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the CHTML destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the CHTML destination and specify the file that
contains a table of contents for the output

CONTENTS=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Dictionary of ODS Language Statements � ODS CHTML Statement 87

Task Option

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify HTML code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
CHTML files that the destination writes to

METATEXT=

Create a new body file at the specified starting
point.opens a markup family destination and specifies
the file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specifies tagset-specific suboptions and a named value OPTIONS

Specifies that the output from the destination be
added to an ODS package

PACKAGE

Open the CHTML destination and specify the file that
contains a description of each page of the body file,
and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the CHTML destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert text into your document TEXT=

88 ODS CSVALL Statement � Chapter 5

Task Option

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS CHTML statement is part of the ODS markup family of statements. ODS

statements in the markup family produce output that is formatted using one of many
different markup languages such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

ODS CSVALL Statement

Opens, manages, or closes the CSVALL destination, which produces HTML output containing
columns of data values that are separated by commas, and produces tabular output with titles,
notes, and bylines.

Valid: anywhere

Category: ODS: Third-Party Formatted

Syntax
ODS CSVALL < (<ID=>identifier)> <action>;

ODS CSVALL <(<ID=>identifier)> <option(s)>;

Without an Action or Options
If you use the ODS CSVALL statement without an action or options, then it opens

the CSVALL destination and creates CSVALL output.

Actions
The following table lists the actions available for the ODS CSVALL statement. For

complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.3 ODS CSVALL Action Summary Table

Task Action

Close the CSVALL destination and the file that is
associated with it

CLOSE

Exclude output objects from the CSVALL destination EXCLUDE

Dictionary of ODS Language Statements � ODS CSVALL Statement 89

Task Action

Select output objects for the CSVALL destination SELECT

Write to the SAS log the current selection or exclusion
list for the CSVALL destination

SHOW

Options
The following table lists the options that are available for the ODS CSVALL

statement, which is part of the markup family of statements. For complete descriptions
of these options, see “Options” on page 148 in the ODS MARKUP statement.

Table 5.4 ODS CSVALL Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view the HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the CSVALL destination and specify the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the CSVALL destination and specify the file
that contains a table of contents for the output

CONTENTS=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

90 ODS CSVALL Statement � Chapter 5

Task Option

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the CSVALL destination and specify the file
that contains a description of each page of the body
file, and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the CSVALL destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS CSVALL statement is part of the ODS markup family of statements. ODS
statements in the markup family open the markup destination and produce output that
is formatted using one of many different markup languages such as HTML (Hypertext
Markup Language), XML (Extensible Markup Language), and LaTeX. You can specify a
markup language that SAS supplies, or create one of your own and store it as a
user-defined markup language.

Dictionary of ODS Language Statements � ODS DOCBOOK Statement 91

ODS DECIMAL_ALIGN Statement

Controls the justification of numeric columns when no justification is specified.

Valid: anywhere
Category: ODS: SAS Formatted
See: “Values in Table Columns and How They Are Justified” on page 754
Interaction: The ODS DECIMAL_ALIGN statement only effects the RTF destination and
the printer family of destinations.
Default: ODS NO_DECIMAL_ALIGN

Syntax
ODS DECIMAL_ALIGN | NO_DECIMAL_ALIGN;

ODS DECIMAL_ALIGN
aligns values by the decimal point in numeric columns when no justification is
specified.
Alias: ODS DECIMAL_ALIGN=YES

ODS NO_DECIMAL_ALIGN
right justifies numeric columns when no justification is specified.
Alias: ODS DECIMAL_ALIGN=NO

Details
The ODS DECIMAL_ALIGN statement has no effect on any column that is assigned a
justification from a procedure or column definition.

ODS DOCBOOK Statement
Opens, manages, or closes the DOCBOOK destination, which produces XML output that conforms
to the DocBook DTD by OASIS.

Valid: anywhere
Category: ODS: Third-Party Formatted

Syntax
ODS DOCBOOK < (<ID=>identifier)> <action>;

ODS DOCBOOK <(<ID=>identifier)> <option(s)>;

Without an Action or Options
If you use the ODS DOCBOOK statement without an action or options, then it opens

the DOCBOOK destination and creates XML output.

92 ODS DOCBOOK Statement � Chapter 5

Actions
The following table lists the actions available for the ODS DOCBOOK statement.

For complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.5 ODS DOCBOOK Action Summary Table

Task Action

Close the DOCBOOK destination and the file that is
associated with it

CLOSE

Exclude output objects from the DOCBOOK
destination

EXCLUDE

Select output objects for the DOCBOOK destination SELECT

Write to the SAS log the current selection or exclusion
list for the DOCBOOK destination

SHOW

Options
The following table lists the options that are available for the ODS DOCBOOK

statement, which is part of the markup family of statements. For complete descriptions
of these options, see “Options” on page 148 in the ODS MARKUP statement.

Table 5.6 ODS DOCBOOK Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view the XML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the XML output

CHARSET=

Open the DOCBOOK destination and specify that the
file that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the DOCBOOK destination and specify the file
that contains a table of contents for the output

CONTENTS=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Dictionary of ODS Language Statements � ODS DOCBOOK Statement 93

Task Option

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify XML tags to place between the <HEAD> and
</HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify XML code to use as the <META> tag between
the <HEAD> and </HEAD> tags in all the
DOCBOOK files that the destination writes to

METATEXT=

Create a new body file at the specified starting
point.opens a markup family destination and specifies
the file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the DOCBOOK destination and specify the file
that contains a description of each page of the body
file, and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the DOCBOOK destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert text into your document TEXT=

94 ODS DOCUMENT Statement � Chapter 5

Task Option

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS DOCBOOK statement is part of the ODS markup family of statements.

ODS statements in the markup family produce output that is formatted using one of
many different markup languages such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. SAS supplies many markup languages for
you to use ranging from DOCBOOK to TROFF. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

ODS DOCUMENT Statement

Opens, manages, or closes the DOCUMENT destination, which produces a hierarchy of output
objects that enables you to produce multiple ODS output formats without rerunning a PROC or
DATA step.

Valid: anywhere

Category: ODS: Output Control

Syntax
ODS DOCUMENT action;

ODS DOCUMENT

<NAME=<libref.>member-name <(access–option)>>

<DIR=(<PATH=path<(access-option)> <LABEL=“label”>>)>

<CATALOG=permanent-catalog | _NULL_>;

Actions

An action is any one of the following:

CLOSE
closes the destination and any files that are associated with it.

Tip: When an ODS destination is closed, ODS does not send output to that
destination. Closing an unneeded destination frees some system resources.

EXCLUDE exclusion(s)| ALL | NONE
excludes one or more output objects from the DOCUMENT destination.

Default: NONE

Dictionary of ODS Language Statements � ODS DOCUMENT Statement 95

Restriction: The DOCUMENT destination must be open for this action to take
effect.

Main discussion: “ODS EXCLUDE Statement” on page 110

SELECT selection(s) | ALL | NONE
selects one or more output objects for the DOCUMENT destination.

Default: ALL
Restriction: The DOCUMENT destination must be open for this action to take

effect.
Main discussion: “ODS SELECT Statement” on page 264

SHOW
writes the current selection or exclusion list for the destination to the SAS log.
Restriction: The destination must be open for this action to take effect.

Tip: If the selection or exclusion list is the default list (SELECT ALL), then SHOW
also writes the entire selection or exclusion list.

See also: “ODS SHOW Statement” on page 277

Options

CATALOG=permanent-catalog | _NULL_

CAUTION:
If you do not specify a value (other than _NULL_) for this option, then you can replay
temporary GRSEGs only during the session in which they are created, not in subsequent
sessions. �

permanent-catalog
copies any temporary GRSEG to the specified permanent catalog and keeps a
reference to the permanent GRSEG in the document. This value persists until the
ODS DOCUMENT statement is closed, or until you delete it by specifying
CATALOG=_NULL_.

The permanent catalog has the following form:

<libref.><member-name>;

NULL
deletes the catalog name that was previously specified for the CATALOG= option.
Thereafter, temporary GRSEGs are not copied into the permanent catalog, and
thus are unavailable in subsequent sessions.

Alias: CAT=
Default: By default, no value is assigned to CATALOG=, which means that

temporary GRSEGs are not copied to a permanent catalog.

DIR=

(<PATH=path <(access-option)>> <LABEL=’label’>);
specifies the directory path and/or label for ODS output.

LABEL=label
assigns a label to a path.
Requirement: The label that you assign must be enclosed in quotation marks.

96 ODS DOCUMENT Statement � Chapter 5

Interaction: If LABEL= is used with the PATH= option, then the label applies to
the path. If LABEL= is used without the PATH= option, then the label applies
to the entire document.

PATH=

path <(access-option)>
is specified as a sequence of entries that are delimited by backslashes.

path
can have the form:

path<#sequence–number>

where

path
is the name of the path.

#sequence–number
is a number which, when combined with a pathname, uniquely identifies the
entry in the directory that contains it.

Default: The default path is “\” (root).
Tip: You can specify a directory that contains entries that do not exist in the

document.

access-option
specifies the access mode for the ODS document.

WRITE
opens a document and provides write access as well as read access.
Caution: If the ODS document already exists, then it will be overwritten.
Interaction: If a label has been specified with the LABEL= option, then it

will override any existing label assigned to the document.
Tip: If the ODS document does not exist, then it will be created.

UPDATE
opens an ODS document and appends new content to the document.
UPDATE provides update access as well as read access.
Caution: If the document already exists, then its contents will not be

changed.
Interaction: If a label has been specified with the LABEL= option, then it

will be assigned to the document.
Tip: If the ODS document does not exist, then the document will be created.

Default: UPDATE
Note: Procedure output or data queries will be added at the end of the directory. �

NAME=

<libref.>member-name<(access-option)>

libref
specifies the SAS library where the document is stored.
Default: If no library name is specified, the WORK library is used.

member-name
specifies the document name.
Default: If no NAME= is specified, the specified options apply to the currently

open document.

Dictionary of ODS Language Statements � ODS ESCAPECHAR Statement 97

Default: If you do not specify an access-option with NAME=, then your directories
will open in UPDATE mode.

access-option
specifies the access mode for the ODS document.

WRITE
opens a document and provides write access as well as read access.

Caution: If the ODS document already exists, then it will be overwritten.

Interaction: If a label has been specified with the LABEL= option, then it will
override any existing label assigned to the document.

Tip: If the ODS document does not exist, then it will be created.

UPDATE
opens an ODS document and appends new content to the document. UPDATE
provides update access as well as read access.

Caution: If the document already exists, then its contents will not be changed.

Interaction: If a label has been specified with the LABEL= option, then it will
be assigned to the document.

Tip: If the ODS document does not exist, then the document will be created.

Default: UPDATE

Interaction: If you use the NAME= option in an ODS DOCUMENT statement
without closing any instances of the DOCUMENT destination that are already
open, the option will force ODS to close the destination and all files associated
with it, and to open a new instance of the destination.

ODS ESCAPECHAR Statement

Defines a representative character to be used in output strings.

Valid: anywhere

Category: ODS: Output Control

Restriction: Affects all open destinations except for the LISTING destination.

Restriction: SAS/GRAPH does not support inline formatting.

Syntax
ODS ESCAPECHAR= ’escape-character’;

Required Arguments

escape-character
specifies the special character that identifies the inline formatting symbol. The
escape-character should be one of the following rarely used characters: @, ^, or \.

Note: For RTF output, the ~, *, or # can also be used. The \ is a special RTF
character. Therefore, it is recommended that you use an escape character other than
\ for RTF output. �

98 ODS ESCAPECHAR Statement � Chapter 5

Note: There is no default value for the escape character, but you can use the
special escape sequence (*ESC*) in the same way as an escape character. �

With the ODS ESCAPECHAR statement, you can define an escape character for use
with the inline formatting functions. These functions provide the ability to enhance and
interpret text strings that are used by statements and variables. You can use these
functions to modify text strings within table cells and title and footnotes.

Refer to “Using the ODS ESCAPECHAR Functions” on page 101 for a complete list of
the inline formatting functions and a detailed description.

Details

Basic Inline Formatting
Inline formatting functions enable you to change styles in title and footnotes, text
strings, and table cells. You can insert subscript or superscript into SAS output,
underline text, justify text, insert page X of Y numbers into output, insert line feeds into
long text strings, and insert destination-specific, raw text into HTML or RTF output.

Existing style elements and style attributes can be used with the STYLE functions.
See the explanation of using styles in “Inline Style Attributes and Nesting” on page 98.

Inline Style Attributes and Nesting
You can use the ODS ESCAPECHAR statement and inline formatting syntax to justify
text or change the color of titles, footnotes, and text. Other style attributes that are
useful and that can add emphasis are font size, underlining, overlining, and
strikethrough.

You can change the styles, too. For example, ODS PRINTER now supports two style
settings for underlining. ODS PRINTER recognizes the SAS/GRAPH syntax
UNDERLIN=1,2,3 for underlining text. However, this option does not change the
thickness of the line. The new style element in SAS 9.2 is TextDecoration, which allows
you to set the underline, overline, or strike-through styles on titles, footnotes, and text
strings. Refer to Appendix 4, “ODS Style Elements,” on page 905 and “Style Attributes
and Their Values” on page 498 for more details on these functions. See the global title
and footnote style options in the TITLES and FOOTNOTE statements in SAS
Language Reference: Dictionary.

Nested inline formatting is also supported. This feature enables you to set several
style attributes for a string without resetting the previously used style. You can start a
string with one set of style attributes and add to them later in the string. The first
thing to notice is the new syntax:

^{style <style-element-name><[style-attribute-specification(s)]> formatted text}

The syntax begins with the function name STYLE. Next you can add a style element
like Headerfixed, SystemTitle, and so on, as needed. Then you can add new attributes
such as fontstyle, color, and so on, within brackets. The syntax ends with the text you
want to format. The following code is a good example of nested formatting for RTF
output:

title "test of ^{super ^{style [color=red] red ^{style [color=green] green} and
^{style [color=blue] blue }formatting }} and such" ;

In the example code, the ^{super<text> is invoked to start using the superscript
function. Then the style function is used to add another style attribute, ^{style
[color=red]<text> for your text.

Dictionary of ODS Language Statements � ODS ESCAPECHAR Statement 99

To understand this nesting, think of a stack in which the first item that is placed on
the stack is the last item to come off of the stack (FILO). The superscript function is
pushed onto the stack first. Then the style function is used to push a red color onto the
stack, resulting in a text string that is superscripted and red in color. Next, the green
color is pushed onto the stack. Because the new style attribute is a color, the text
changes to the new color. Continuing the string processing, this style attribute is then
closed with a close bracket. After the green color is closed or popped off the stack, the
red color becomes the active style attribute for the text. Next the blue color is pushed
onto the stack, and the text string uses that color. After the blue color is closed, the red
and superscript are closed. Now the stack is empty, so ODS uses the default style
attributes to finish processing the text string.

Note: Each output destination has limitations. When you use the PRINTER
destination, you can only nest styles. The SUB and SUPER functions cannot be nested
with the STYLE function. However, the HTML and RTF destinations can nest the
STYLE function with the SUB and SUPER functions. �

Using Unicode Symbols
ODS now supports the ability to incorporate Unicode symbols such as Greek symbols
into your output. The new inline formatting function is UNICODE, and the syntax is
^{unicode < value>). The syntax is similar to other inline formatting functions in that
you can use a four-digit Unicode value that is predefined in a list. Another way to use
the UNICODE function is to predefine a list that is stored as a tagset. See “Concepts:
Markup Languages and the TEMPLATE Procedure” on page 838 for information on
tagsets.

There is a new tagset that contains a predefined list of common Greek symbols and
their Unicode values. You can update this template as needed. The template increases
the flexibility of the new inline style function. You can still use existing inline style
functions, ^{dagger} and ^{sigma}.

To find out what symbols are available to you for Windows XP, you can select Start
� Programs � Accessories � System Tools � Character Map. The window that
appears shows you the font and all of the symbols available for a given font. For the
font displayed, you can highlight a symbol and see the Unicode value for that symbol.
The Unicode value is displayed at the bottom of the Character Map window. You can
use that Unicode value in the argument to the UNICODE function. For example,
Unicode value 216b displays a Roman Numeral 12. The following code illustrates the
use of this value:

title ’Roman Numeral twelve is ^{unicode 216b}’;

The Base.Template.Tagsets tagset contains a table of Unicode values and their
mnemonics. To add or change a mnemonic, you must SOURCE the tagset, make the
desired changes, and then run the modified tagset. The following code creates a file
called core.tpl in the current directory that contains the Base.Template.Tagsets tagset
also:

proc template;
source base.template.tagset. / file="core.tpl";
run;

100 ODS ESCAPECHAR Statement � Chapter 5

If you open the core.tpl file, you notice some text that appears similar to the
following text:

set $unicodeMap["ALPHA"] "03B1";
set $unicodeMap["BETA"] "03B2";
set $unicodeMap["DAGGER"] "2020";

To update the file with a new mnemonic and corresponding Unicode value, use the
following syntax and add it to the file:

set $unicodeMap["<new function name>"]"<unicode value";
Save the file and compile the modified tagset using PROC TEMPLATE as follows:

proc template;
%inc "core.tpl";

run;

The modified tagset is stored in the first writable template store in your ODS path. See
“Concepts: Markup Languages and the TEMPLATE Procedure” on page 838 for more
information on PROC TEMPLATE and using tagsets.

A new registry setting holds the Unicode font value. You can change this Unicode
font value to any valid font that is installed on your computer and recognized by SAS.
Refer to “Changing SAS Registry Settings for ODS” on page 32 for specific details on
how to change your font. Refer to “Using TrueType Fonts with Universal Printers and
SAS/GRAPH Devices in SAS 9.2” in SAS Language Reference: Concepts for information
on all the new True Type fonts available in SAS 9.2. This chapter contains information
on how to install the TrueType fonts on your computer, too.

Inline Formatting With the PUT Statement

Inline formatting information that is used in the PUT statement is counted as printed
space that is needed for the ODS Listing output destination. Therefore, the LINESIZE=
system option might need to be set to prevent wrapping of the output. For example, the
inline formatting information shown in the following code, defines the font size, font
face, and font weight for the ’AAA’ and ’BBB’ values.

ods escapechar="^";
ods html file=’file.html’;
ods pdf file=’file.pdf’;
ods rtf file=’file.rtf’;
data _null_;
file print;
put @1 ’^{style [fontsize=8pt] ^{style [fontface=courier]

^{style [fontweight=bold]}}}’ ’AAA’;
put +5 ’^{style [fontsize=8pt] ^{stylefontface=courier]

^{style [fontweight=bold]}}}’ ’BBB’;
run;
ods _all_ close;

The line size needed for printed output is three characters. However the inline
formatting information is also counted as part of the line size, even though that count
only affects the appearance of the output. This increased line size can cause the text to
wrap if it exceeds the current value of the LINESIZE= system option.

To prevent wrapping in the ODS Listing output, increase the value of the
LINESIZE= system option or decrease the font size.

Dictionary of ODS Language Statements � ODS ESCAPECHAR Statement 101

Inline Formatting With ODS Statistical Graphics
ODS Statistical Graphics include template-based procedures (SGPLOT, SGPANEL, and
SGSCATTER) and some statements that support ODS ESCAPECHAR in conjunction
with the UNICODE, SUB, and SUP inline formatting functions. Refer to SAS/GRAPH:
Statistical Graphics Procedures Guide and SAS/GRAPH: Graph Template Language
User’s Guide for information on how to use these functions with ODS Statistical
Graphics.

Interpreting Inline Formatting Output Strings
ODS ESCAPECHAR controls the interpretation of output strings by ODS, except for
the LISTING, the OUTPUT, and the DOCUMENT destinations. Whenever ODS
destinations encounter the specified character in their output, regardless of the source
of the output, ODS interprets the character as a special “escape” character that enables
special formatting options. For example, the following program produces output in
italics.

data italic;
x=’This font is ^{style[fontstyle=italic]italic}.’;
output;
run;

ods listing close;
ods pdf file="italicFont.pdf";
ods escapechar=’^’;
proc print data=italic;
run;
ods _all_ close;

Using the ODS ESCAPECHAR Functions
This section describes the use of the defined ODS ESCAPECHAR character value to
perform inline formatting. After you define the ODS ESCAPECHAR character value,
you can use the available inline formatting functions to change the style within cells,
text, titles, and footnotes. You can use these functions to insert page numbers, line
feeds, destination-specific raw data, additional spaces and formatting into your output.

Note: For traditional RTF output, you must use Print Preview to view your
output. Some of the formatting will not show up in the SAS results viewer window. �

The inline functions available are shown in Table 5.7 on page 102. Here is the
syntax for the ODS ESCAPECHAR functions:

escape-character{function-name, <<arg-1 <arg-2…<arg-n>>>>}

escape-character
is the character defined using the ODS ESCAPECHAR statement.

{ }
enclose the inline formatting grouping characters.

function-name
is the name of the inline formatting function.

102 ODS ESCAPECHAR Statement � Chapter 5

Table 5.7 Valid Functions That Can Be Used with ODS ESCAPECHAR

Function Name Argument

DAGGER None

DATE None

DEST OUTPUT destination

LASTPAGE None

LEADERS String

NBSPACE Optional number

NEWLINE Optional number

PAGEOF None

RAW String

SIGMA None

STYLE Style elements, style attributes, and style=
option formats

SUB Arguments to subscript

SUPER Arguments to superscript

THISPAGE None

TOCENTURYINDENT Length

TOCENTURYPAGE None

UNICODE Unicode value

arg-1, arg-n
arguments that are given to the function. The number of arguments depends on
the function. Some functions have no arguments.

CAUTION:
A space between the escape character and left bracket of the inline formatting style
function will produce undesired results. Here is an example of how the code should look:
“^{style [color=green] title green}”; �

DAGGER Function

^{DAGGER}
produces the Greek dagger sign.
Tip: It is preferable to use the UNICODE function to generate a dagger sign.
Featured in: Example 1 on page 107

DATE Function

^{DATE}
inserts the RTF to express the date.
Tip: You can use this function only with the TAGSETS. RTF destination.

DEST Function
^{DEST <[output-destination] > text}

Dictionary of ODS Language Statements � ODS ESCAPECHAR Statement 103

output-destination
is one of the ODS output destinations, RTF, printer family, or HTML. This is the
destination that will be used by the inline-formatting-function.
Tip: You can specify more than one output-destination.

text
is text that you want to output. An example is:

^{dest [rtf html] ^{raw rawtext string} };

LASTPAGE Function

^{LASTPAGE}

inserts the total number of pages.
Tip: This function works with the PRINTER, RTF, and TAGSETS. RTF

destinations.
Tip: You must use Print Preview to view the resolved LASTPAGE function

output that is generated by the TAGSETS.RTF destination.

LEADERS Function

^{LEADERS <string>}

string
is the string that is repeated to fill the space between the leading text and the
following text. This function is often used when generating Table of Contents.
Example code is:

PostText = " ^{leaders . }^{tocentrypage}

Tip: You can use this function only with the PRINTER destination.

NBSPACE Function

^{NBSPACE (<number>)}

number
is the number of spaces that you want to insert. A single space is inserted if you
do not specify a number argument.
Default: The NBSPACE value defaults to 1. A single space is inserted if a

number is not specified.
Featured in: Example 1 on page 107

NEWLINE Function

^{NEWLINE (<number>)}

number
is the number of lines that you want to insert.
Default: The newline value defaults to 1. A single line is inserted if you do not

specify a number.
Featured in: Example 1 on page 107

104 ODS ESCAPECHAR Statement � Chapter 5

PAGEOF Function

^{PAGEOF}
inserts RTF syntax to express all the controls for Page X of Y.
Tip: You can use the PAGEOF function in the TITLE and FOOTNOTE

statements. However, if the BODYTITLE option is also specified with the ODS
RTF statement, the “page of” information is not written as expected because the
BODYTITLE option removes the titles and footnotes from the header and footer
sections of the RTF file. If the desired location of the page numbering is in the
title or the footnote, remove the BODYTITLE option.

Tip: When the \ character is specified as the ODS ESCAPECHAR character, the
PAGEOF function will not be interpreted properly for the TAGSETS.RTF
destination. Instead, specify a different escape character.

Tip: You can use the PAGEOF function only with the RTF and TAGSETS. RTF
destinations. You must use Print Preview to view the resolved PAGEOF
function output that is generated by the TAGSETS.RTF destination.

RAW Function

^{RAW <string>}

string
is inserted directly without translation. This function allows you to insert control
characters. This function works for markup destinations like HTML and RTF.
Restriction: The RAW function does not work with PDF or Window’s drivers.
Tip: After this function has been turned on in a session, you cannot turn it off for

that session.
Tip: The \ is a special RTF character. The { and } are special function

characters. When you use these special characters with the RAW function, ODS
might generate unexpected output.

Featured in: Example 1 on page 107

SIGMA Function

^{SIGMA}
generates the Greek SIGMA sign �.
Tip: The preferable way to produce a SIGMA sign is to use the UNICODE

function.
Featured in: Example 1 on page 107

STYLE Function

^{STYLE <style-element-name> <[style— attribute-specification] > formatted text}

style-element-name
specifies the style element. For the STYLE function, you can use the same format
that is available for the STYLE= option in all of the templates. For example:

^{style rowheader [color=red] my text};

or

^{style rowheader my text};

Dictionary of ODS Language Statements � ODS ESCAPECHAR Statement 105

See: Appendix 4, “ODS Style Elements,” on page 905

style-attribute-specification
specifies the style attribute. For the STYLE function, you can use the same format
that is available for the STYLE= option in all the templates. For example:

^{style [color=red] my text};

See: The list of Style Attributes and their values in “Style Attributes and Their
Values” on page 498

formatted-text
specifies the text to which to apply the styles.

Note: The style attributes or elements remain in effect until they are overridden by
another style. A default style can also reset the style. The following code illustrates
that the bolded text style is reset by the sub functions default style.

ods pdf text=’^{style [fontweight=bold] BOLDED} ^{sub a} NOT bolded}’

�

Note: You can nest inline styles. The following example illustrates nesting inline
styles.

^{style [color=red] red ^{style [fontsize=18pt] big}}

Refer to “Inline Style Attributes and Nesting” on page 98 for an explanation of
nesting styles. �

SUB Function

^{SUB <subscript-character>}

subscript-value
can be a numeric, alphanumeric, or a character value. This value is written below
and immediately to one side of another character.

Restriction: Microsoft Word honors only one level of subscript for RTF and
TAGSETS RTF.

Restriction: The PRINTER destination does not recognize nesting of the SUB
function. The subscript-value must immediately follow the SUB function.

Featured in: Example 1 on page 107

SUPER Function

^{SUPER <superscript-value>}

superscript-value
can be a numeric, alphanumeric, or a character value. This value is written above
and immediately to one side of another character.

Restriction: Microsoft Word only honors one level of subscript for RTF and
TAGSETS.RTF.

Restriction: Nesting of the SUPER function is not recognized by the PRINTER
destination. The subscript-value must immediately follow the SUPER function.

Featured in: Example 1 on page 107

106 ODS ESCAPECHAR Statement � Chapter 5

THISPAGE Function

^{THISPAGE}
inserts the current page number.
Tip: This function can be used only with the PRINTER, RTF, and TAGSETS.RTF

destinations.
Tip: You must use Print Preview to view the resolved THISPAGE function output

that is generated by the TAGSETS.RTF destination.

TOCENTRYINDENT Function

^{TOCENTRYINDENT <len>}

len
is the amount to be indented per level. Example code is:

PreText = "^{tocentryindent 2em}"

Tip: This function can be used only with the PRINTER destination.

TOCENTRYPAGE Function

^{TOCENTRYPAGE}

is the page number of the current TOC entry. Example code is:

PostText = " ^{leaders . } ^{tocentrypage}"

Tip: This function can be used only with the PRINTER destination.

UNICODE Function

^{UNICODE <unicode-value | ’unicode-value’X>}

unicode-value
can be an actual four-place hexadecimal Unicode value or one of the names listed
in the Base.Template.Tagsets template. For example, 03B2 is the Unicode value
for the Alpha symbol. Refer to “Using Unicode Symbols” on page 99 for details
about Unicode values.
Tip: Thorndale Duospace WT J is the default font used in the inline style

Unicode function for the PDF destination.
Featured in: Example 1 on page 107

’unicode-value’X
is syntax used with STAT/GRAPH. A hexadecimal value is enclosed in single or
double quotes followed by an X. The X specifies that the value in quotes is a
hexadecimal value. This quoted value must be an actual four-place hexadecimal
Unicode value or one of the names listed in the Base.Template.Tagsets template.
For example, 03B2 is the Unicode value for the Alpha symbol. Refer to “Using
Unicode Symbols” on page 99 for details about Unicode values.
Tip: Thorndale Duospace WT J is the default font used in the inline style

Unicode function for the PDF destination.
Tip: The unicode-value can be enclosed with single or double quotes.

Dictionary of ODS Language Statements � ODS ESCAPECHAR Statement 107

Example

Example 1: Basic Inline Formatting Functions

ODS features:

ODS RTF statement:

Action:

CLOSE

Options:

FILE=

Other SAS features:

OPTIONS statement

PROC PRINT

TITLE statement

Program Description The following example highlights inline formatting functions
that are supported for all destinations. It also shows how to nest inline formatting
functions. In this example, RTF is the destination used.

Note: To see all of the styles and colors displayed properly, use Print Preview to
view the output. �

Program

Turn off the Date and Page number. The NODATE option turns off the output of the date
and time, and the NONUMBER option tells SAS not to print the page number on the first title
line of each page of output.

options nodate nonumber;

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Set the escape character for inline formatting.

ods escapechar="^";

Create RTF and PDF output. The ODS RTF statement opens the RTF destination and creates
RTF output. The ODS PDF statement opens the PDF destination and creates PDF output.

ods rtf file="rtfInlinFuncs.rtf";
ods rtf file="pdfInlinFuncs.pdf";

Set the TITLE statement. This TITLE statement provides the topic title for the RTF output.

title "Examples of Inline Formatting Functions";

108 ODS ESCAPECHAR Statement � Chapter 5

Show the NBSPACE function. The non-breaking spaces function, NBSPACE, puts the
number of spaces that you specified in the output of the title.

title2 ’Example of ^{nbspace 3} Non-Breaking Spaces Function’;

Show the NEWLINE function. The NEWLINE function puts the specified number of
additional line feeds in the output of the title.

title3 ’Example of ^{newline 2} Newline Function’;

Show the RAW function. The RAW function puts the escaped text that you specified into the
file exactly as it is shown. Each ODS destination has special instructions that are recognized. In
the following code \cf12 is an instruction that the RTF destination recognizes and can display.
The PDF destination does not recognize this instruction.

title4 ’Example of ^{raw \cf12 RAW} RAW function’;

Show the UNICODE function. This TITLE statement shows how the UNICODE function
works.

title5 ’Example of ^{unicode 03B1} UNICODE function’;

Show the STYLE function and the nesting of functions. This TITLE statement shows the
STYLE function using style attribute FOREGROUND=. This example also shows the nesting of
the STYLE, SUPER, and UNICODE functions.

title6 "Example ^{style [foreground=red] of Super, Alpha ^{super ^{unicode ALPHA}
^{style [foreground=green] Nested}} Formatting} and Scoping";

Show the SUPER function and the nesting of functions. This TITLE statement shows the
STYLE function using style attribute FOREGROUND=. This example also shows the nesting of
the STYLE, SUB, and SIGMA functions.

title7 "Example of SUB, ^{sub
^{style [foreground=red] red
^{style [foreground=green] green } and
^{style [foreground=blue] blue styles }}} and SIGMA Functions";

Print the DATA set.

proc print data=sashelp.class(obs=4);
run;

Close the ODS destinations. The ODS _ALL_ CLOSE statement closes the RTF and PDF
destinations and all of the files that are associated with it. If you do not close the destination,
you cannot view the files in a browser window.

ods _all_close;

Dictionary of ODS Language Statements � ODS ESCAPECHAR Statement 109

RTF Output

This output shows the basic inline formatting functions and how you can use them with the
TITLE statement, starting with the non-breaking line function (NBREAK). The other functions
used in the code and shown in the following output are NEWLINE, RAW, UNICODE, ALPHA,
STYLE, SUPER, SUB, and SIGMA. Nesting functions are also demonstrated in the RTF output.
Note that only one level of nesting occurs with the SUB and SUPER functions in the RTF output.

110 ODS EXCLUDE Statement � Chapter 5

PDF Output

This output shows the basic inline formatting functions and how you can use them with the
TITLE statement, starting with the non-breaking line function(NBREAK). The other functions
used in the code and shown in the following output are NEWLINE, RAW, UNICODE, STYLE,
SUPER, SUB, and SIGMA. Nesting functions are also demonstrated in this PDF output. Note
that the SUB and SUPER functions are not honored when nested in the PDF destination.
Notice that the SUPER function is not recognized in title6 because of where it is nested. The
PDF destination does not recognize the SUB function properly because the subscript-value does
not immediately follow the SUB function.

Also note that in title4, the PDF destination cannot display the special instruction provided
in the RAW function. The \cf12 instruction is an RTF instruction.

ODS EXCLUDE Statement

Specifies output objects to exclude from ODS destinations.

Valid: anywhere
Category: ODS: Output Control

Syntax
ODS <ODS-destination> EXCLUDE exclusion(s)| ALL | NONE;

Dictionary of ODS Language Statements � ODS EXCLUDE Statement 111

Required Arguments

exclusion(s)
specifies one or more output objects to add to an exclusion list.

By default, ODS automatically modifies exclusion lists at the end of a DATA step
that uses ODS, or at the end of a procedure step. For information about modifying
these lists, see “Selection and Exclusion Lists” on page 34.

Each exclusion has the following form:

output-object <(PERSIST)>

output-object
specifies one or more output objects to exclude. To specify an output object, you
need to know which output objects your SAS program produces. The ODS TRACE
statement writes to the SAS log a trace record that includes the path, the label,
and other information about each output object that is produced. You can specify
an output object in any of the following ways:

� a full path. For example,

Univariate.City_Pop_90.TestsForLocation

is the full path of the output object.
� a partial path. A partial path consists of any part of the full path that begins

immediately after a period (.) and continues to the end of the full path. For
example, if the full path is

Univariate.City_Pop_90.TestsForLocation

the partial paths are:

City_Pop_90.TestsForLocation
TestsForLocation

� a label that is enclosed by quotation marks.
For example,

"The UNIVARIATE Procedure"

� a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

Note: The trace record shows the label path only if you specify the
LABEL option in the ODS TRACE statement. �

� a partial label path. A partial label path consists of any part of the label that
begins immediately after a period (.) and continues to the end of the label.
For example, if the label path is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

the partial label paths are:

"CityPop_90"."Tests For Location"
"Tests For Location"

� a mixture of labels and paths.
� any of the partial path specifications, followed by a pound sign (#) and a

number. For example, TestsForLocation#3 refers to the third output object
that is named TestsForLocation.

112 ODS EXCLUDE Statement � Chapter 5

See also: “ODS TRACE Statement” on page 317.

(PERSIST)
keeps the output-object that precedes the PERSIST option in the exclusion list
until you explicitly modify the list with any of the following ODS statements:

� any ODS SELECT statement
� ODS EXCLUDE NONE
� ODS EXCLUDE ALL
� an ODS EXCLUDE statement that applies to the same output object but does

not specify PERSIST

This action is true even if the DATA or procedure step ends.
Requirement: You must enclose PERSIST in parentheses.

ALL
specifies that ODS does not send any output objects to the open destination.
Alias: ODS EXCLUDE DEFAULT
Interaction: If you specify ALL without specifying a destination, ODS sets the

overall list to EXCLUDE ALL and sets all other lists to their defaults.
Tip: Using ODS EXCLUDE ALL is different from closing a destination. The

destination remains open, but no output objects are sent to it.
Tip: To temporarily suspend a destination, use ODS SELECT NONE. Use ODS

SELECT ALL when you want to resume sending output to the suspended
destination.

NONE
specifies that ODS send all of the output objects to the open destination.
Interaction: If you specify the NONE argument without specifying a destination,

ODS sets the overall list to EXCLUDE NONE and sets all other lists to their
defaults.

Tip: ODS EXCLUDE NONE has the same effect as ODS SELECT ALL.
Tip: To temporarily suspend a destination, use ODS SELECT NONE. Use ODS

SELECT ALL when you want to resume sending output to the suspended
destination.

Options

NOWARN
suppresses the warning that an output object was requested but not created.

ODS-destination
specifies to which ODS destination’s exclusion list to write, where ODS-destination
can be any valid ODS destination. For a discussion of ODS destinations, see
“Understanding ODS Destinations” on page 24.
Default: If you omit ODS-destination, ODS writes to the overall exclusion list.
Tip: To set the exclusion list for the output destination to something other than the

default, use the “ODS OUTPUT Statement” on page 184.

WHERE=where-expression
excludes output objects that meet a particular condition. For example, the following
statement excludes only output objects with the word “Histogram” in their name:

ods exclude where=(_name_ ? ’Histogram’);

Dictionary of ODS Language Statements � ODS EXCLUDE Statement 113

where-expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. where-expression has this form:

(subsetting-variable <comparison-operator where-expression-n>)

subsetting-variable
is a special kind of WHERE expression operand used by SAS to help you find
common values in items. For example, this EXCLUDE statement excludes only
output objects with the path City_Pop_90.TestsForLocation :

ods exclude / where=(_path_ = ’City_Pop_90.TestsForLocation’);

subsetting-variable is one of the following:

LABEL
is the label of the output object.

LABELPATH
is the label path of the output object.

NAME
is the name of the output object.

PATH
is the full or partial path of the output object.

operator
compares a variable with a value or with another variable. operator can be
AND, OR NOT, OR, AND NOT, or a comparison operator.

The following table lists some comparison operators:

Table 5.8 Examples of Comparison Operators

Symbol Mnemonic
Equivalent

Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Details
You can maintain a selection list for one destination and an exclusion list for another.
However, the results are less complicated if you maintain the same types of lists for all
the destinations to which you route output.

114 ODS EXCLUDE Statement � Chapter 5

Example

Example 1: Conditionally Excluding Output Objects and Sending Them to Different Output
Destinations

ODS features:

ODS EXCLUDE statement:

ODS-destination option

WHERE= option

ODS HTML statement:

CONTENTS=

FRAME=

PAGE=

TEXT=

ODS PDF statement:

TEXT=

STARTPAGE=

Other SAS features:

PROC UNIVARIATE

Program

Create the BPressure data set.

options nodate;
data BPressure;

length PatientID $2;
input PatientID $ Systolic Diastolic @@;
datalines;

CK 120 50 SS 96 60 FR 100 70
CP 120 75 BL 140 90 ES 120 70
CP 165 110 JI 110 40 MC 119 66
FC 125 76 RW 133 60 KD 108 54
DS 110 50 JW 130 80 BH 120 65
JW 134 80 SB 118 76 NS 122 78
GS 122 70 AB 122 78 EC 112 62
HH 122 82
;
run;

Create HTML output and add text.

ods html text=’Systolic Blood Pressure’ file=’Systolic-body.html’
frame=’Systolic-frame.htm’
contents=’Systolic-contents.htm’
page=’Systolic-page.htm’;

Create PDF output and add text.

ods pdf file=’Diastolic.pdf’ text=’Diastolic Blood Pressure’ startpage=no;

Dictionary of ODS Language Statements � ODS EXCLUDE Statement 115

Exclude output objects from different output destinations. The first ODS EXCLUDE
statement excludes output objects from the HTML destination that have ’Diastolic’ in the path
name. The second ODS EXCLUDE statement excludes output objects from the PDF destination
that have ’Systolic’ in the path name.

ods html exclude where=(_path_ ? "Diastolic") ;
ods pdf exclude where=(_path_ ? "Systolic") ;

Create the output objects. As PROC UNIVARIATE sends each output object to the Output
Delivery System, ODS does not send the output objects from PROC UNIVARIATE that match
the items in the exclusion list to the open destinations.

proc univariate data=BPressure;
var Systolic Diastolic;

run;

Close the HTML destination. This ODS HTML statement closes the HTML destination and
all the files that are associated with it.

ods html close;

Partial HTML Output

Display 5.3 HTML Output with Systolic Output Objects

116 ODS GRAPHICS Statement � Chapter 5

Partial PDF Output

Display 5.4 PDF Output with Diastolic Output Objects

See Also

Statements:
“ODS SELECT Statement” on page 264
“ODS SHOW Statement” on page 277
“ODS TRACE Statement” on page 317

ODS GRAPHICS Statement

Enables or disables ODS graphics processing and sets graphics environment options. This
statement affects ODS template-based graphics only. The ODS GRAPHICS statement does not
affect device-based graphics.

Valid: anywhere
Category: ODS: Output Control
Default: The value of the SAS registry entry "ODS > STATISTICAL GRAPHICS >
Default State", which is usually OFF.
Interaction: SAS/GRAPH device-based global statements such as GOPTIONS, SYMBOL,
PATTERN, AXIS, and LEGEND do not affect template-based graphics. The ODS
GRAPHICS statement does not affect device-based graphics.

Syntax
ODS GRAPHICS <OFF | ON> </ option(s)>;

Dictionary of ODS Language Statements � ODS GRAPHICS Statement 117

Without Arguments
If the ODS automatic graphic capabilities are currently disabled, then specifying the

ODS GRAPHICS statement without options enables them. If the ODS automatic
graphic capabilities are currently enabled, then specifying the ODS GRAPHICS
statement leaves them enabled.

Required Arguments

ON
enables ODS Graphics processing. This is the default if no argument is used.
Alias: YES

OFF
disables ODS Graphics processing.
Alias: NO

Options

Table 5.9 ODS GRAPHICS Option Summary Table

Task Option

Specify whether anti-aliasing is applied to the
rendering of the line and markers in any graph

ANTIALIAS= | ANTIALIAS |
NOANTIALIAS

Specify the maximum number of markers or lines to
be anti-aliased before anti-aliasing is disabled

ANTIALIASMAX=

Specify whether to draw a border around each graph BORDER= | BORDER | NOBORDER

Specify the maximum number of discrete values to be
shown in any graph

DISCRETEMAX=

Specify the maximum number of group values to be
shown in any graph

GROUPMAX=

Specify the height of any graph HEIGHT=

Specify the image format used to generate image files IMAGEFMT=

Specify whether data tips are generated IMAGEMAP=| IMAGEMAP |
NOIMAGEMAP

Specify the base image filename IMAGENAME=

Specify the maximum number of labeled areas before
labeling is disabled

LABELMAX=

Specify an integer that is interpreted as the
maximum percentage of the overall graphics area that
a legend can occupy

MAXLEGENDAREA=

Specify the maximum number of cells in a graph
panel where the number of cells is determined
dynamically by classification variables

PANELCELLMAX=

118 ODS GRAPHICS Statement � Chapter 5

Task Option

Reset one or more ODS GRAPHICS options to its
default

RESET | RESET=

Specify whether the content of any graph is scaled
proportionally

NOSCALE | SCALE | SCALE=

Specify the maximum number of distinct mouse-over
areas allowed before data tips are disabled

TIPMAX=

Specify the width of any graph WIDTH=

ANTIALIAS= | ANTIALIAS | NOANTIALIAS
specifies whether anti-aliasing is applied to the rendering of the line and markers in
any graph. Anti-aliasing smooths the appearance of diagonal lines and some
markers. Text displayed in the graph is always anti-aliased. For graphical displays
that plot large numbers of points it is recommended that ANTIALIAS=OFF be
specified for performance considerations.

ANTIALIAS= OFF | ON
specifies whether anti-aliasing is applied to the rendering of the line and markers
in the graph.

OFF does not smooth jagged edges of components other than text in
the graph.
Alias: NO

ON smooths jagged edges of all components in the graph.
Alias: YES

ANTIALIAS
smooths jagged edges of all components in the graph.

NOANTIALIAS
does not smooth jagged edges of components other than text in the graph.

Default: ON
Restriction: If the number of markers or curve points in the plot exceeds the

number specified by the ANTIALIASMAX= option, then the ANTIALIAS option is
turned off, even if you specify the option ANTIALIAS=ON or ANTIALIAS.

ANTIALIASMAX= n
specifies the maximum number of markers or lines to be anti-aliased before
anti-aliasing is disabled. For example, if there are more than 400 scatterpoint
markers to be anti-aliased and ANTIALIASMAX=400, then no markers will be
anti-aliased.

n
specifies a positive integer.
Default: 600

BORDER= | BORDER | NOBORDER
specifies whether to draw a border around any graph.

BORDER= OFF | ON
specifies whether to draw the graph with a border on the outermost layout.

ON
specifies to draw a border around the graph.
Alias: YES

Dictionary of ODS Language Statements � ODS GRAPHICS Statement 119

OFF
specifies not to draw a border around the graph.
Alias: NO

BORDER
specifies whether to draw a border around the graph.

NOBORDER
specifies not to draw a border around any graph.

Default: BORDER or BORDER=ON

DISCRETEMAX=n
specifies the maximum number of discrete values to be shown in any graph.
Barcharts and box plots are examples of affected plot types. Scatter plots and other
plot types can be affected if the data to be plotted is discrete or the axis is discrete.

n
specifies a positive integer.

Default: 1000
Tip: Some plot layers might be unaffected by the DISCRETEMAX= option, and

those layers will still be rendered. If all layers are affected, a blank graph will be
rendered.

Tip: If the value specified by the DISCRETEMAX= option is exceeded by any plot
layer in the graph, that layer will not be drawn and a warning message is issued.

GROUPMAX=n
specifies the maximum number of group values to be shown in any graph. Any graph
that supports the GROUP= option is affected.

n
specifies a positive integer.

Default: 1000
Tip: If the value specified by the GROUPMAX= option is exceeded by any plot

layer in the graph, that layer will be rendered ignoring the GROUP= option and a
warning message is issued.

HEIGHT=dimension
specifies the height of any graph.

dimension
is a nonnegative number.
See: dimension on page 535

Default: The value of the SAS registry entry "ODS > STATISTICAL GRAPHICS >
Design Height" or the value of the DesignHeight= option in a STATGRAPH
template. Typically, the value is 480px.

IMAGEFMT= image–file–type | STATIC
specifies the image format to be used. If the image format is not valid for the active
output destination, the format is automatically changed to the default image format
for that destination.

image-file-type
is the image format to be generated. See “Supported Image File Types for Output
Destinations” on page 123.

STATIC
uses the best quality static image format for the active output destination. This is
the default.

120 ODS GRAPHICS Statement � Chapter 5

Default: STATIC

IMAGEMAP= | IMAGEMAP | NOIMAGEMAP
controls data tips generation. Data tips are pieces of explanatory text that appear
when you mouse-over the data portions of a graph contained in an HTML page.

IMAGEMAP= ON | OFF
controls data tips generation.

OFF specifies not to generate data tips.
Alias: NO

ON specifies to generate data tips.
Alias: YES

IMAGEMAP
specifies to generate data tips.

NOIMAGEMAP
specifies not to generate data tips.

Default: OFF or NOIMAGEMAP
Restriction: This option applies only when the ODS HTML destination is used.

IMAGENAME=”filename”
specifies the base image filename.

If more than one image is generated, each is assigned filename as a base name
followed by a number in order to create unique names. This numbering can be reset
with the RESET=INDEX option. Path information (if needed) can be set with the
GPATH= option on the ODS destination statement. The default path is the current
output directory. A file extension for filename is automatically generated based on
the IMAGEFMT= option.
Requirement: You must enclose filename in quotation marks.
Restriction: filename must be a single name. It must not include any path

specification or image-format name extension.
Default: The name of the output object.

LABELMAX= n
specifies the maximum number of labeled areas before labeling is disabled. For
example, if there are more than 50 points to be labeled and LABELMAX=50, then no
points will be labeled.

n
specifies a positive integer.
Default: 200

MAXLEGENDAREA= n
specifies an integer that is interpreted as the maximum percentage of the overall
graphics area that a legend can occupy.

n
specifies a positive integer.
Default: 20
Tip: To turn off the legend, specify MAXLEGENDAREA=0. No warning will be

issued when the legend is turned off in this way.

PANELCELLMAX=n
specifies the maximum number of cells in a graph panel where the number of cells is
determined dynamically by classification variables.

Dictionary of ODS Language Statements � ODS GRAPHICS Statement 121

n
specifies a positive integer.

Default: 10000
Tip: Graphs with DataPanel or DataLattice layouts are affected. If the value

specified by the PANELCELLMAX= option is exceeded by either of these layouts,
an empty graph will be rendered and a warning message is issued.

RESET | RESET= option
resets one or more ODS GRAPHICS options to its default.

RESET
resets all of the options to their defaults.

RESET=
resets one of the following to its default:

ALL
resets all of the reset-options to their defaults.

ANTIALIAS
resets the ANTIALIAS option to its default.
See also: ANTIALIAS=

ANTIALIASMAX
resets the ANTIALIASMAX option to its default.
See also: ANTIALIASMAX

BORDER
resets the BORDER= option to its default.
See also: BORDER=

IMAGEMAP
resets the IMAGEMAP= option to its default.

INDEX
resets the index counter that is appended to static image files.

HEIGHT
resets the HEIGHT= option to its default.
See also: HEIGHT=

IMAGEMAP
resets the IMAGEMAP= option to its default.

Note: Not all output destinations support this feature. �

See also: IMAGEMAP=

LABELMAX
resets the LABELMAX= option to its default.
See also: LABELMAX=

MAXLEGENDAREA=
resets the LABELMAX= option to its default.
See also: MAXLEGENDAREA=

SCALE
resets the SCALE= option to its default.
See also: SCALE=

TIPMAX
resets the TIPMAX= option to its default.

122 ODS GRAPHICS Statement � Chapter 5

See also: TIPMAX =

WIDTH=
resets the WIDTH= option to its default.

SCALE= | SCALE | NOSCALE
specifies whether the content of any graph is scaled proportionally.

NOSCALE
does not scale the components of graph proportionally.

SCALE
scales the components of graph proportionally.

SCALE=
specifies whether the content of the graph is scaled proportionally.

OFF does not scale the components of graph proportionally.
Alias: NOSCALE
Alias: NO

ON scales the components of graph proportionally.
Alias: YES

Default: ON or SCALE

TIPMAX=n
specifies the maximum number of distinct mouse-over areas allowed before data tips
are disabled. For example, if there are more than 400 points in a scatterplot, and
TIPMAX=400, then no data tips will appear.

n
specifies a positive integer.
Default: 500

WIDTH=dimension
specifies the width of any graph.

dimension
is a nonnegative number.
Default: The value of the SAS registry entry "ODS > STATISTICAL GRAPHICS >

Design Width" or the value of the DesignWidth= option in a STATGRAPH
template. Typically, this value is 640px.

See: dimension on page 535

Details

Using the ODS GRAPHICS Statement You can enable ODS graphics by using either of
the following equivalent statements:

ods graphics on;
ods graphics;

When you specify one of these statements before your procedure invocation, Base, SAS/
STAT, SAS/ETS, and SAS/QC procedures support ODS graphics, either by default or
when you specify procedure options for requesting particular graphs.

To disable ODS graphics, specify the following statement:

ods graphics off;

Dictionary of ODS Language Statements � ODS GRAPHICS Statement 123

Note: For SAS/GRAPH procedures that use ODS graphics (SGPLOT, SGPANEL,
SGSCATTER, and SGRENDER), ODS graphics is always ON and cannot be disabled.
For other products, the initial state ODS graphics is determined by a SAS Registry
setting. �

Using the ODS GRAPHICS Statement for Batch Jobs To generate ODS graphics output
in UNIX batch jobs, you must set the DISPLAY system option before creating the
output. To set the display, enter the following command:

export DISPLAY=<ip_address>:0

The ip_address is the TCP/IP address, or the name of a UNIX terminal. Usually, the IP
address of the UNIX system where SAS is running would be used. If you do not set the
DISPLAY variable, then you get an error message in the SAS log.

Supported Image File Types for Output Destinations The following table lists all of the
supported image file types for ODS output destinations.

Output Destination Supported Image File Types

HTML PNG (default), GIF, JPEG, JPG

LISTING PNG (default), BMP, DIB, EMF, EPSI, GIF, JFIF, JPEG, JPG,
PBM, PDF, PS, SASEMF, STATIC, TIFF, WMF

LATEX PS(default), EPSI, GIF, PNG, PDF, JPG

PRINTER Family PNG(default), JPEG, JPG, GIF

RTF PNG(default), JPEG, JPG, JFIF

Markup Tagsets All Markup family tagsets have the default imagefmt value built
in.

Description of Supported Image File Types

Table 5.10 Description of Supported Image File Types

Image File Type Description

BMP (Microsoft Windows Device Independent
Bitmap)

Supports color-mapped and true color images
that are stored as uncompressed or run-length
encoded data. BMP was developed by Microsoft
Corporation.

DIB (Microsoft Windows Device Independent
Bitmap)

See the description of BMP. DIB is supported
only under the OS/2 operating system.

EMF (Microsoft NT Enhanced Metafile) Supported only under Windows 95, Windows 98,
and Windows NT.

EPSI (Microsoft NT Enhanced Metafile) An extended version of the standard PostScript
(PS) format. Files that use this format can be
printed on PostScript printers and can also be
imported into other applications. Notice that
EPSI files can be read, but PS files cannot be
read.

124 ODS HTML Statement � Chapter 5

Image File Type Description

GIF (Graphics Interchange Format) Supports only color-mapped images. GIF is
owned by CompuServe, Inc.

JFIF (JPEG File Interchange Format) Supports JPEG image compression. JFIF
software is developed by the Independent JPEG
Group.

JPEG or JPG (Joint Photographic Experts
Group)

A file format that is used for storing
noninteractive images.

PBM (Portable Bitmap Utilities) Supports gray, color, RGB, and bitmap files. The
Portable Bitmap Utilities are a set of free utility
programs that were developed primarily by Jef
Poskanzer.

PDF (Portable Document Format) A file format for electronic distribution and
exchange of documents.

PNG (Portable Network Graphic) Supports true color, gray-scale, and 8-bit images.

PS (PostScript Image File Format) The Image classes use only PostScript image
operators. A level II PS printer is required for
color images. PostScript was developed by
Adobe Systems, Inc.

SASEMF (Enhanced Metafile) EMF image tuned for RTF output.

STATIC Chooses the best image format for the current
ODS destination.

TIFF (Tagged Image File Format) Internally supports a number of compression
types and image types, including bitmapped,
color-mapped, gray-scaled, and true color. TIFF
was developed by Aldus Corporation and
Microsoft Corporation and is used by a wide
variety of applications (available if licensed).

WMF (Microsoft Windows Metafile) Supported only under MicroSoft Windows
operating systems.

ODS HTML Statement

Opens, manages, or closes the HTML destination, which produces HTML 4.0 output that contains
embedded style sheets.

Valid: anywhere

Category: ODS: Third-Party Formatted
Restriction: When you open the destination, a style sheet is written and linked to the
body file. Therefore, you cannot make style sheet changes from within your SAS
program. For example, after the destination is open, changing the value of the STYLE=
option has no effect. You can make style changes in either of the following ways:

� Close the destination, edit or create a new style sheet, and submit the program
again specifying the new or modified style sheet.

� Edit the body file, changing the style sheet url to the desired style sheet.

Interaction: By default, when you execute a procedure that uses the FORMCHAR system
option (for example, PROC PLOT or PROC CHART), ODS formats the output in SAS

Dictionary of ODS Language Statements � ODS HTML Statement 125

Monospace font. If you are creating output that will be viewed in an operating
environment where SAS software is not installed, this output will not display correctly
because without SAS, the SAS Monospace font is not recognized. To make your
document display correctly, include the following statement before your SAS program:

OPTIONS FORMCHAR="|----|+|---+=|-/\<>*";

Operating Environment Information: If you use graphics that are created with either the
ACTXIMG or JAVAIMG device drivers in the z/OS operating environment, then specify
either the GPATH= or the PATH= option in the ODS HTML statement.

Syntax
ODS HTML <(<ID=>identifier)> <action>;

ODS HTML <(<ID=>identifier)><option(s)>;

Without an Action or Options
If you use the ODS HTML statement without an action or options, then it opens the

HTML destination and creates HTML output.

Actions
The following table lists the actions available for the ODS HTML statement. For

complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.11 ODS HTML Action Summary Table

Task Action

Close the HTML destination and the file that is
associated with it

CLOSE

Exclude output objects from the HTML destination EXCLUDE

Select output objects for the HTML destination SELECT

Write to the SAS log the current selection or exclusion
list for the HTML destination

SHOW

Options
The following table lists the options that are available for the ODS HTML statement,

which is part of the markup family of statements. For complete descriptions of these
options, see “Options” on page 148 in the ODS MARKUP statement.

126 ODS HTML Statement � Chapter 5

Table 5.12 ODS HTML Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view ODS HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the HTML destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the HTML destination and specify the file that
contains a table of contents for the output

CONTENTS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify a device for the HTML output destination DEVICE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify HTML code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
HTML files that the destination writes to

METATEXT=

Dictionary of ODS Language Statements � ODS HTML Statement 127

Task Option

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the HTML destination and specify the file that
contains a description of each page of the body file,
and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the HTML destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert text into your document TEXT=

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS HTML statement is part of the ODS markup family of statements. ODS
statements in the markup family produce output that is formatted using one of many
different markup languages such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

Examples

Example 1: Creating a Separate Body File for Each Page of Output

ODS features:
ODS HTML statement:

Action:
CLOSE

Arguments:
CONTENTS=

128 ODS HTML Statement � Chapter 5

BODY=

FRAME=

PAGE=

Options:

BASE=

NEWFILE=

Other SAS features:

#BYVAL parameter in titles

NOBYLINE|BYLINE system option

OPTIONS statement

PROC FORMAT

PROC SORT

PROC REPORT

PROC TABULATE

TITLE statement

Data set:
See “Creating the Grain_Production Data Set” on page 878.

Format:
See “Creating the $CNTRY Format” on page 869.

Program Description The following example creates a separate HTML file for each
page of procedure output, as well as a table of contents, a table of pages, and a frame
file. The table of contents and table of pages do not appear any different or behave any
differently from those that would be created if all the output were in a single file.
Because the output is in separate files, you cannot scroll from one page of output to the
next. However, you can select individual HTML files to include in a report.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Sort the data set Grain_Production. PROC SORT sorts the data, first by values of the
variable Year, then by values of the variable Country, and finally by values of the variable Type.

proc sort data=grain_production;
by year country type;

run;

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Dictionary of ODS Language Statements � ODS HTML Statement 129

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output.

The FRAME=, CONTENTS=, and PAGE= options create a frame that includes a table of
contents and a table of pages that link to the contents of the body file. The body file also appears
in the frame. BASE= specifies a string to use as the first part of all links and references to the
HTML files. Because no URL is specified for individual files, the final part of the link will match
the filename.

CAUTION:
The string that the BASE= option specifies must be a valid path to your HTML files. �

ods html body=’grain-body.htm’
contents=’grain-contents.htm’

frame=’grain-frame.htm’
page=’grain-page.htm’
base=’http://www.yourcompany.com/local-address/’

Specify that SAS create a new body file for each page of output. The NEWFILE=PAGE
option opens and creates a new body file for each page of output.

newfile=page;

Suppress the default BY line and specify a new value into the BY line. The NOBYLINE
option suppresses the default BY line variable. The #BYVAL parameter specification inserts the
current value of the BY variable Year into the title.

options nobyline;
title ’Leading Grain-Producing Countries’;
title2 ’for #byval(year)’;

Produce a report. This PROC REPORT step produces a report on grain production. Each BY
group produces a page of output, so ODS creates a new body file for each BY group. The
NOWINDOWS option specifies that PROC REPORT runs without the REPORT window and
sends its output to the open output destination(s).

proc report data=grain_production nowindows;
by year;
column country type kilotons;
define country / group width=14 format=$cntry.;
define type / group ’Type of Grain’;
define kilotons / format=comma12.;
footnote ’Measurements are in metric tons.’;

run;

Restore the default BY line and clear the second TITLE statement. The BYLINE option
restores the default BY line. The TITLE2 statement clears the second TITLE statement.

options byline;
title2;

Produce a report. The TABLE statement in this PROC TABULATE step has the variable
Year has the page dimension. Therefore, PROC TABULATE explicitly produces one page of
output for 1995 and one for 1996. ODS starts a new body file for each page.

proc tabulate data=grain_production format=comma12.;
class year country type;

130 ODS HTML Statement � Chapter 5

var kilotons;
table year,

country*type,
kilotons*sum=’ ’ / box=_page_ misstext=’No data’;

format country $cntry.;
footnote ’Measurements are in metric tons.’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are associated with it. If you do not close the destination, then
you will not be able to view the files in a browser window.

ods html close;

HTML Output

Display 5.5 HTML Frame File

This frame file shows the first body file. Links in the table of contents and the table of pages
point to the other body files.

Links That Are Created in the HTML Output These HREF= attributes from the links in
the contents file point to the HTML tables that ODS creates from the PROC REPORT
and PROC TABULATE steps.

HREF=’http://www.yourcompany.com/local-address/grain-body.htm#IDX’
HREF=’http://www.yourcompany.com/local-address/grain-body1.htm#IDX1’
HREF=’http://www.yourcompany.com/local-address/grain-body2.htm#IDX2’
HREF=’http://www.yourcompany.com/local-address/grain-body3.htm#IDX3’

Notice how these HREF attributes are constructed:

Dictionary of ODS Language Statements � ODS HTML Statement 131

� The value of the BASE= option provides the first part of the HREF, which is http://
www.yourcompany.com/local-address/. This part of the HREF is the same for all
the links that ODS creates.

� The value of the BODY= option, grain-body, provides the basis for the next part
of the HREF. However, because the NEWFILE= option creates a new file for each
output object, ODS increments this base value each time that it creates a file. The
resulting filenames become part of the HREF. They are Grain-Body.htm,
Grain-Body1.htm, Grain-Body2.htm, and Grain-Body3.htm.

� The value of the ANCHOR= option provides the basis for the last part of the
HREF, which follows the pound sign (#). Because the ANCHOR= option is not
used in this example, ODS uses the default value of IDX. With each use, ODS
increments the value of the anchor.

Example 2: Appending to HTML Files

ODS features:
ODS HTML statement:

Argument:
BODY= with a fileref

NO_BOTTOM_MATTER suboption
NO_TOP_MATTER suboption

Options:
ANCHOR=
STYLE=

Other SAS features:
FILENAME statement
PROC PRINT
PROC REPORT
DATA _NULL_ statement

Data set:
See “Creating the Grain_Production Data Set” on page 878.

Format:
See “Creating the $CNTRY Format” on page 869.

Program Description The following example creates HTML output from PROC PRINT
and PROC REPORT. It also uses the DATA step to write customized HTML code to the
file that contains the HTML output. The DATA step executes between procedure steps.

Program

Close the LISTING destination so that no listing output is produced. The ODS LISTING
statement closes the LISTING destination to conserve resources. If the destination is left open,
then ODS will produce both Listing and HTML output.

ods listing close;
options obs=10;

Assign a fileref to the file GrainReport.html. The FILENAME statement assigns the fileref
REPORTS to the file GrainReport.html that will contain the HTML output.

filename reports ’GrainReport.html’;

132 ODS HTML Statement � Chapter 5

Create HTML output and suppress the writing of the default HTML code that would
be written at the end of the file. The ODS HTML statement opens the HTML destination
and creates HTML output. The NO_BOTTOM_MATTER option suppresses the writing of the
default HTML code that, by default, ODS writes at the end of a file.

ods html body=reports (no_bottom_matter)

Specify the style definition for formatting the HTML output. The STYLE= option
specifies that the style D3D be used.

style=D3D;

Create a report that contains only the data from 1996. Select and format the variables
that you want to include, specify a title, and specify a footnote. This PROC PRINT step
prints the observations in the data set Grain_Production that have a value of 1996 for the
variable Year. The VAR statement selects Country, Type, and Kilotons as the variables that you
want to be displayed in the output. The TITLE and FOOTNOTE statements specify the title
and footnote.

proc print data=grain_production;
var country type kilotons;
format country $cntry. kilotons comma12.;
where year=1996;
title ’Leading Grain-Producing Countries’;
footnote ’Measurements are in metric tons.’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are associated with it.

ods html close;

Assign the fileref REPORTS to the file ’GrainReport.html’. This FILENAME statement
assigns a fileref to the file to be updated, GrainReport.html. The MOD option opens the file in
update mode.

Operating Environment Information: The MOD option might not be valid in all
operating environments. See your operating environment documentation for more
information. �

filename reports ’GrainReport.html’ mod;

Append text to the HTML file REPORTS. This DATA step writes to the file that is
referenced by REPORTS. The PUT statements create an H2 header in the HTML file.

data _null_;
file reports;
put ‘‘<h2>The preceding output is from PROC PRINT.’’;
put ‘‘I am going to try a variety of procedures.’’;
put ‘‘Let me know which procedure you prefer.’’;
put ‘‘By the way, this report uses the D3D style.</h2>’’;

run;

Create HTML output. This ODS HTML statement opens the HTML destination and creates
HTML output. The NO_TOP_MATTER and the NO_BOTTOM_MATTER suboptions suppress
the default HTML code that ODS writes to the top and the bottom of a file.

ods html body=reports (no_top_matter no_bottom_matter)

Dictionary of ODS Language Statements � ODS HTML Statement 133

Specify the root name for the HTML anchor tags. The ANCHOR= option specifies report
as the root name for the HTML anchor tags.

Note: When you use ODS to append to an HTML file that ODS created, you must
specify a new anchor name each time that you open the file from ODS so that you do
not write the same anchors to the file again. (ODS cannot recognize anchors that are
already in the file when it opens it, and by default it uses IDX as the base for anchor
names). �

anchor=’report’;

Create a report that contains only the 1996 data. The PROC REPORT step prints the data
set. ODS adds HTML output to the body file. The NOWINDOWS option specifies that PROC
REPORT runs without the REPORT window and sends its output to the open output
destination(s).

proc report data=grain_production nowindows;
where year=1996;
column country type kilotons;
define country / group width=14 format=$cntry.;
define type / group ’Type of Grain’;
define kilotons / format=comma12.;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are associated with it.

ods html close;

Append text to the HTML file REPORTS. This DATA step writes to the file that is
referenced by REPORTS. The PUT statements create an H2 header in the HTML file.

data _null_;
file reports;
put ‘‘<h2>The preceding output is from PROC REPORT.’’;
put ‘‘It doesn’t repeat the name of the country on every line.’’;
put ‘‘This report uses the default style.</h2>’’;

run;

Create HTML output to write the bottom matter to the file, repress the printing of the
top matter, and provide a new root name for the anchor tags. In order to write the
bottom matter to the HTML file so that it contains valid HTML code, you must open the HTML
destination one more time. NO_TOP_MATTER ensures that the top matter is not placed in the
file again. ANCHOR= provides a new root name for the anchors in the bottom matter.

ods html body=reports(no_top_matter)anchor=’end’;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are open for that destination.

ods html close;

134 ODS HTML Statement � Chapter 5

HTML Output

Display 5.6 HTML Output with Appended HTML

This output is created by appending HTML output to an existing HTML file.

Dictionary of ODS Language Statements � ODS HTMLCSS Statement 135

See Also

Statements:
“ODS MARKUP Statement” on page 147

Appendix 2, “ODS and the HTML Destination,” on page 891

ODS HTMLCSS Statement

Opens, manages, or closes the HTMLCSS destination, which produces HTML output with
cascading style sheets.

Valid: anywhere
Category: ODS: Third-Party Formatted

Syntax
ODS HTMLCSS< (<ID=>identifier)> <action>;

ODS HTMLCSS <(<ID=>identifier)><option(s)>;

Without an Action or Options
If you use the ODS HTMLCSS statement without an action or options, then it opens

the HTMLCSS destination and creates HTMLCSS output.

Actions
The following table lists the actions available for the ODS HTMLCSS statement. The

ODS HTMLCSS statement is part of the markup family of statements. For complete
descriptions of these options, see“Actions” on page 147 in the ODS MARKUP statement.

Table 5.13 ODS HTMLCSS Action Summary Table

Task Action

Close the HTMLCSS destination and the file that is
associated with it

CLOSE

Exclude output objects from the HTMLCSS
destination

EXCLUDE

Select output objects for the HTMLCSS destination SELECT

Write to the SAS log the current selection or exclusion
list for the HTMLCSS destination

SHOW

Options
The following table lists the options that are available for the ODS HTMLCSS

statement, which is part of the markup family of statements. For complete descriptions
of these options, see “Options” on page 148 in the ODS MARKUP statement.

136 ODS HTMLCSS Statement � Chapter 5

Table 5.14 ODS HTMLCSS Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view the HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the HTMLCSS destination and specify that the
file that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the HTMLCSS destination and specify the file
that contains a table of contents for the output

CONTENTS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify HTML code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
HTMLCSS files that the destination writes to

METATEXT=

Dictionary of ODS Language Statements � ODS HTML3 Statement 137

Task Option

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the HTMLCSS destination and specify the file
that contains a description of each page of the body
file, and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the HTMLCSS destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert text into your document TEXT=

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS HTMLCSS statement is part of the ODS markup family of statements. ODS
statements in the markup family produce output that is formatted using one of many
different markup languages such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

ODS HTML3 Statement

Opens, manages, or closes the HTML3 destination, which produces HTML 3.2 formatted output.

Valid: anywhere
Category: ODS: Third-Party Formatted

Syntax
ODS HTML3<(<ID=>identifier)> <action>;

ODS HTML3 <(<ID=>identifier)><option(s)>;

138 ODS HTML3 Statement � Chapter 5

Without an Action or Options
If you use the ODS HTML3 statement without an action or options, then it opens the

HTML3 destination and creates HTML3 output.

Actions
The following table lists the actions available for the ODS HTML3 statement. For

complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.15 ODS HTML3 Action Summary Table

Task Action

Close the HTML3 destination and the file that is
associated with it

CLOSE

Exclude output objects from the HTML3 destination EXCLUDE

Select output objects for the HTML3 destination SELECT

Write to the SAS log the current selection or exclusion
list for the HTML3 destination

SHOW

Options
The following table lists the options available for the ODS HTML3 statement, which

is part of the markup family of statements. For complete descriptions of these options,
see “Options” on page 148 in the ODS MARKUP statement.

Table 5.16 ODS HTML3 Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view the HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the HTML3 destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Dictionary of ODS Language Statements � ODS HTML3 Statement 139

Task Option

Open the HTML3 destination and specify the file that
contains a table of contents for the output

CONTENTS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify a device for the HTML output destination DEVICE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify HTML code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
HTML3 files that the destination writes to

METATEXT=

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the HTML3 destination and specify the file that
contains a description of each page of the body file,
and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the HTML3 destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

140 ODS IMODE Statement � Chapter 5

Task Option

Insert text into your document TEXT=

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS HTML3 statement is part of the ODS markup family of statements. ODS
statements in the markup family produce output that is formatted using one of many
different markup languages such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

By default, the SAS registry is configured to generate HTML 4 output when you
specify the ODS HTML statement. To permanently change the default HTML version
to 3.2, you can change the setting of the HTML version in the SAS registry. The ODS
HTML statement will then produce HTML 3.2 output. For information about how to
change your default HTML version, see “Changing Your Default HTML Version Setting”
on page 32.

See Also

Statements:
“ODS MARKUP Statement” on page 147
“ODS HTML Statement” on page 124

Appendix 2, “ODS and the HTML Destination,” on page 891
“Changing SAS Registry Settings for ODS” on page 32

ODS IMODE Statement
Opens, manages, or closes the IMODE destination, which produces HTML output as a column of
output, separated by lines.

Valid: anywhere
Category: ODS: Third-Party Formatted

Syntax
ODS IMODE < (<ID=>identifier)> <action>;

ODS IMODE (<ID=>identifier) <option(s)>;

Without an Action or Options
If you use the ODS IMODE statement without an action or options, then it opens the

IMODE destination and creates IMODE output.

Dictionary of ODS Language Statements � ODS IMODE Statement 141

Actions
The following table lists the actions available for the ODS IMODE statement. For

complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.17 ODS IMODE Action Summary Table

Task Action

Close the IMODE destination and the file that is
associated with it

CLOSE

Exclude output objects from the IMODE destination EXCLUDE

Select output objects for the IMODE destination SELECT

Write to the SAS log the current selection or exclusion
list for the IMODE destination

SHOW

Options
The following table lists the options available for the ODS IMODE statement, which

is part of the markup family of statements. For complete descriptions of these options,
see “Options” on page 148 in the ODS MARKUP statement.

Table 5.18 ODS IMODE Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view the HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the IMODE destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the IMODE destination and specify the file that
contains a table of contents for the output

CONTENTS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

142 ODS IMODE Statement � Chapter 5

Task Option

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify HTML code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
IMODE files that the destination writes to

METATEXT=

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the IMODE destination and specify the file that
contains a description of each page of the body file,
and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the IMODE destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert text into your document TEXT=

Dictionary of ODS Language Statements � ODS LISTING Statement 143

Task Option

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS IMODE statement is part of the ODS markup family of statements. ODS

statements in the markup family produce output that is formatted using one of many
different markup languages such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

ODS LISTING Statement

Opens, manages, or closes the LISTING destination.

Valid: anywhere
Category: ODS: SAS Formatted

Syntax
ODS LISTING <action>;

ODS LISTING <DATAPANEL=number | DATA | PAGE > <FILE=file-specification>;

Without an Action or Options
If you use the ODS LISTING statement without an action or options, it opens the

LISTING destination.

Actions
An action performs one of the following procedures:
� closes the destination
� excludes output objects
� selects output objects
� writes the current exclusion list or selection list to the SAS log

An action is one of the following:

CLOSE
closes the LISTING destination and any files that are associated with it.
Tip: When you close an ODS destination, ODS does not send output to that

destination. Closing an unneeded destination frees some system resources.

EXCLUDE exclusion(s)| ALL | NONE
excludes one or more output objects from the LISTING destination.
Default: NONE

144 ODS LISTING Statement � Chapter 5

Restriction: The LISTING destination must be open for this action to take effect.
Main discussion: “ODS EXCLUDE Statement” on page 110

SELECT selection(s) | ALL | NONE
selects output objects for the LISTING destination.
Default: ALL
Restriction: The LISTING destination must be open for this action to take effect.
Main discussion: “ODS SELECT Statement” on page 264

SHOW
writes the current selection or exclusion list for the LISTING destination to the SAS
log.
Restriction: The LISTING destination must be open for this action to take effect.
Tip: If the selection or exclusion list is the default list (SELECT ALL), then SHOW

also writes the entire selection or exclusion list.
See also: “ODS SHOW Statement” on page 277

Options

DATAPANEL=number | DATA | PAGE
suggests how to split a table that is too wide to fit on a single page into sections of
columns and rows. Each section of columns and rows is a data panel. Each data
panel has column headings at the top.

Note: In this context, a page is what the procedure uses as a page in creating the
listing output. The SAS system options LINESIZE= and PAGESIZE= generally
determine the page size, although some procedures (PROC REPORT, for example)
can temporarily override the values that the system options specify. �

number
writes the specified number of observations in a panel, if possible. More than one
panel can occur on every page if space permits.
Range: 1 to the largest integer that the operating system supports

DATA
bases the size of the panel on the way that the table is stored in memory. This
value provides the fastest performance. However, if the table contains many
columns, the number of rows in each panel might be small.

PAGE
tries to make panels that match the page size. If the table contains more columns
than can fit on a page, the first page is filled with as many observations as
possible for as many columns as can fit on a single line. The second page contains
the same observations for the next group of columns, and so on, until all rows and
columns have been printed.

This arrangement minimizes the amount of space that is used for column
headings because most pages contain observations for only one set of columns.
Restriction: If the page size is greater than 200, ODS uses DATAPANEL=200.

Default: PAGE

DEVICE= device-driver
specifies the name of a device driver. ODS automatically selects an optimal default
device for each open output destination.

The following table lists default devices for the most common ODS output
destinations.

Dictionary of ODS Language Statements � ODS LISTING Statement 145

Output Destination Default Device

HTML PNG

LISTING Host Specific Display Device (PC- WIN, UNIX - XColor, MVS
-Display Device)

Measured RTF PNG

RTF SASEMF

PCL SASPRTM (Monochrome Output)*

PDF SASPRTC (Color Output)*

POSTSCRIPT SASPRTC (Color Output)*

PRINTER Host Specific Default Printer*

* Does not support changing the default device in the SAS Registry.

Tip: Specifying a device on the ODS DEVICE= option takes precedence over the
SAS global option and the graphics option.

See: “DEVICE= System Option” in SAS Language Reference: Dictionary. See
“Device Drivers” in SAS/GRAPH: Reference for information on selecting device
drivers.

FILE=file-specification
specifies the file to write to. file-specification is one of the following:

’external-file’
is the name of an external file to which to write.

fileref
is a file reference that has been assigned to an external file. Use the FILENAME
statement to assign a fileref. (For information about the FILENAME statement,
see SAS Language Reference: Dictionary.)

Default: If you do not specify a file to write to, ODS writes the output to the
LISTING window.

GPATH= file-specification <(url=’Uniform-Resource-Locator’ | NONE)>
specifies the location for all graphics output that is generated while the destination is
open.

file-specification
specifies the file or SAS catalog to which to write. ODS names automatically each
output object that it places in the file. If you specify an invalid filename, the
ActiveX and Java devices send output to the default filename. Other devices
create the file as a directory and write output to that directory using the default
filename. For more information about how ODS names catalog entries and
external files, see SAS/GRAPH: Reference. file-specification is one of the following:

external-file
is the name of an external file to write to.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref. For information about the
FILENAME statement, see SAS Language Reference: Dictionary.

146 ODS LISTING Statement � Chapter 5

Interaction: If you specify a fileref in the GPATH= option, ODS does not use
information from the GPATH= option when it constructs links.

libref.catalog
specifies a SAS catalog to which to write.

URL= ’Uniform-Resource-Locator’ | NONE
specifies a URL for file-specification.

Uniform-Resource-Locator
is the URL you specify. ODS uses this URL instead of the filename in all the
links and references that it creates to the file.
Requirement: You must enclose Uniform-Resource-Locator in quotation marks.

NONE
specifies that no information from the GPATH= option appears in the links or
references.

Tip: This option is useful for building output files that can be moved from one
location to another. If the links from the contents and page files are constructed
with a simple URL (one name), they will resolve if the contents, the page, and
body files are all in the same location.

IMAGE_DPI=
specifies the image resolution of ODS graphics output. Output from device-based
graphics is not affected.
Default: 100
Restriction: The IMAGE_DPI= option affects template-based graphics only.

PACKAGE <package-name>
specifies that the output from the destination be added to a package.

package-name
specifies the name of a package that was created with the ODS PACKAGE
statement. If no name is specified, then the output is added to the unnamed
package that was opened last.

See also:
“ODS PACKAGE Statement” on page 198

SGE= ON | OFF
determines whether you can edit ODS graphics output with the ODS Graphics Editor.
Default: OFF
Restriction: The SGE= option affects template-based graphics only.
See also: SAS/GRAPH: ODS Graphics Editor User’s Guide

Dictionary of ODS Language Statements � ODS MARKUP Statement 147

ODS MARKUP Statement

Opens, manages, or closes the MARKUP destination, which produces SAS output that is formatted
using one of many different markup languages.

Valid: anywhere
Category: ODS: Third-Party Formatted
Interaction: The output type is determined by the TAGSET | TYPE= option, which
specifies the kind of markup language that is applied to the output.
Interaction: By default, when you execute a procedure that uses the FORMCHAR system
option (for example, PROC PLOT or PROC CHART), ODS formats the output in SAS
Monospace font. If you are creating output that will be viewed in an operating
environment where SAS software is not installed, this output will not display correctly
because without SAS, the SAS Monospace font is not recognized. To make your
document display correctly, include the following statement before your SAS program:

OPTIONS FORMCHAR="|----|+|---+=|-/\<>*";

Syntax
ODS MARKUP <(<ID=>identifier)> <action>;

ODS MARKUP <(<ID=>identifier)> <option(s)><TAGSET=tagset-name> <action>;

Actions

An action is one of the following:

CLOSE
closes the destination and any files that are associated with it.
Tip: When an ODS destination is closed, ODS does not send output to that

destination. Closing an unneeded destination conserves system resources.
Feature in: All examples

EXCLUDE exclusion(s)| ALL | NONE
excludes one or more output objects from the destination.
Default: NONE
Restriction: A destination must be open for this action to take effect.
Main discussion: “ODS EXCLUDE Statement” on page 110

SELECT selection(s) | ALL | NONE
selects output objects for the specified destination.
Default: ALL
Restriction: A destination must be open for this action to take effect.
Main discussion: “ODS SELECT Statement” on page 264

SHOW
writes the current selection or exclusion list for the destination to the SAS log.

148 ODS MARKUP Statement � Chapter 5

Restriction: A destination must be open for this action to take effect.
See also: “ODS SHOW Statement” on page 277
Tip: If the selection or exclusion list is the default list (SELECT ALL), then SHOW

also writes the entire selection or exclusion list. For information about selection
and exclusion lists, see “Selection and Exclusion Lists” on page 34.

Options

Table 5.19 ODS MARKUP Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view ODS HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the HTML destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the HTML destination and specify the file that
contains a table of contents for the output

CONTENTS=

Specify a device for the output destination DEVICE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Dictionary of ODS Language Statements � ODS MARKUP Statement 149

Task Option

Open multiple instances of the same destination at
the same time

ID=

Specify the image resolution for graphical output IMAGE_DPI =

Specify HTML code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
HTML files that the destination writes to

METATEXT=

Create a new body file at the specified starting point NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the HTML destination and specify the file that
contains a description of each page of the body file,
and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the HTML destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Specify a keyword value for a tagset. A tagset is a
template that defines how to create a markup
language output type from a SAS format.

TAGSET=

Insert text into your document TEXT=

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

ANCHOR= ’anchor-name’
specifies a unique base name for the anchor tag that identifies each output object in
the current body file.

Each output object has an anchor tag for the contents, page, and frame files to
reference. The links and references, which are automatically created by ODS, point
to the name of an anchor. Therefore, each anchor name in a file must be unique.

anchor-name
is the base name for the anchor tag that identifies each output object in the
current body file.

ODS creates unique anchor names by incrementing the name that you specify.
For example, if you specify ANCHOR= ’tabulate’, then ODS names the first anchor

150 ODS MARKUP Statement � Chapter 5

tabulate. The second anchor is named tabulate1; the third is named
tabulate2, and so on.

Requirement: You must enclose anchor-name in quotation marks.

Tip: You can change anchor names as often as you want by specifying the
ANCHOR= option in a markup family statement anywhere in your program.
Once you have specified an anchor name, it remains in effect until you specify a
new one.

Restriction: Each anchor name in a file must be unique.

Interaction: If you open a file to append to it, then be sure to specify a new
anchor name so that you do not write the same anchors to the file again. ODS
does not recognize anchors that are already in a file when it opens the file.

Tip: Specifying new anchor names at various points in your program is useful
when you want other web pages to link to specific parts of your markup
language output. Because you can control where the anchor name changes, you
know in advance what the anchor name will be at those points.

ARCHIVE=’string’
The ARCHIVE= option is valid only for the GOPTIONS java device. The ARCHIVE=
option enables you to specify which applet to use in order to view the ODS HTML
output.

The string must be one that the browser can interpret. For example, if the archive
file is local to the computer that you are running SAS on, you can use the FILE
protocol to identify the file. If you want to point to an archive file that is on a web
server, use the HTTP protocol.

Default: If you do not specify ARCHIVE= and you are using the JAVA device
driver, ODS uses the value of the SAS system option APPLETOC=. This value
points to the location of the Java archive files that ship with the SAS system. To
find out what the value of this option is, you can either look in the Options window
in the Files folder under Environment Control, or you can submit the following
procedure step:

proc options option=appletloc;
run;

There is no default if you are using the ACTIVEX device driver.

Requirement: You must enclose string in quotation marks.

Requirement: The ARCHIVE attribute is a feature of Java 1.1. Therefore, if you
are using the Java device driver, your browser must support this version of Java.
Both Internet Explorer 4.01 and Netscape 4.05 support Java 1.1.

Interaction: Use ARCHIVE= in conjunction with SAS/GRAPH procedures and the
DEVICE=JAVA or DEVICE=ACTIVEX option in the GOPTIONS statement.

Tip: Typically, this option should not be used, because the SAS server automatically
determines the correct SAS/GRAPH applets to view the ODS HTML output.
However, if you have renamed the JAR files, or have other applets with which to
view the ODS HTML output, this option enables you to access these applets.

Tip: Use the CODEBASE= option to specify the file path. It is recommended that
you do not put a file path in your ARCHIVE= option.

ATTRIBUTES= (attribute-pair-1 ... attribute-pair-n)
writes the specified attributes between the tags that generate dynamic graphics
output.

Dictionary of ODS Language Statements � ODS MARKUP Statement 151

attribute-pair
specifies the name and value of each attribute. attribute-pair has the following
form:

’attribute-name’= ’attribute-value’

attribute-name
is the name of the attribute.

attribute-value
is the value of the attribute.

Requirement: You must enclose attribute-name and attribute-value in quotation
marks.

Interaction: Use the ATTRIBUTES= option in conjunction with SAS/GRAPH
procedures and with the DEVICE=JAVA, JAVAMETA, or ACTIVEX options in the
GOPTIONS statement.

See also: SAS/GRAPH: Reference for valid attributes for the following applets:

� Graph Applet

� Map Applet

� Contour Applet

� MetaView Applet

BASE= ’base-text’
Specifies the text to use as the first part of all links and references that ODS creates
in the output files.

base-text
is the text that ODS uses as the first part of all links and references that ODS
creates in the file.

Consider this specification:

BASE= ’http://www.your-company.com/local-url/’

In this case, ODS creates links that begin with the string http://
www.your-company.com/local-url/. The appropriate anchor-name completes
the link.

Requirement: You must enclose base-text in quotation marks.

BODY= ’file-specification’ <(suboption(s))>
opens a markup family destination and specifies the file that contains the primary
output that is created by the ODS statement. These files remain open until you do
one of the following:

� close the destination with either an ODS markup-family-destination CLOSE
statement or ODS _ALL_ CLOSE statement.

� open the same destination with a second markup family statement. This closes
the first file and opens the second file.

file-specification
specifies the file, fileref, or SAS catalog to write to.

file-specification is one of the following:

external-file
is the name of an external file to write to.

Requirement: You must enclose external-file in quotation marks.

152 ODS MARKUP Statement � Chapter 5

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.

Restriction: The BODY=fileref option cannot be used in conjunction with the
NEWFILE= option.

See: For information about the FILENAME statement, see SAS Language
Reference: Dictionary.

entry.markup
specifies an entry in a SAS catalog to write to.

Interaction: If you specify an entry name, you must also specify a library and
catalog. See the discussion of the PATH= option on page 162.

(suboption(s))
specifies one or more suboptions in parentheses. Suboptions are instructions for
writing the output files. For a list of suboptions, see “Suboptions” on page 166.

Note: For some values of TAGSET=, this output will be an HTML file, for other
TAGSET= values, the output will be an XML file, and so on. �

Alias: FILE=

Interaction: If you use the BODY= option in an ODS markup family statement
that refers to an open ODS markup destination, the option will force ODS to close
the destination and all files associated with it, and then to open a new instance of
the destination. For more information see “Opening and Closing the MARKUP
Destination” on page 167.

Featured in: All examples

CHARSET= character-set
specifies the character set to be generated in the META declaration for the HTML
output.

See: For information about the CHARSET option, see SAS National Language
Support (NLS): Reference Guide.

CODE= ’file-specification’ <(suboption(s))>
opens a markup family destination and specifies the file that contains relevant style
information, such as XSL (Extensible Stylesheet Language). These files remain open
until you do one of the following:

� close the destination with either an ODS markup-family-destination CLOSE
statement or ODS _ALL_ CLOSE statement.

� open the same destination with a second markup family statement. This closes
the first file and opens the second file.

file-specification
specifies the file, fileref, or SAS catalog to write to.

file-specification is one of the following:

external-file
is the name of an external file to write to.

Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.

See: For information about the FILENAME statement, see SAS Language
Reference: Dictionary.

Dictionary of ODS Language Statements � ODS MARKUP Statement 153

entry.markup
specifies an entry in a SAS catalog to write to.
Interaction: If you specify an entry name, you must also specify a library and

catalog. See the discussion of the PATH= option.

suboption(s)
specifies one or more suboptions in parentheses. Suboptions are instructions for
writing the output files. For a list of suboptions, see “Suboptions” on page 166.

CODEBASE=’string’
specifies the location of the executable Java applet or the ActiveX control file. string
is specified as a pathname or as a URL. The CODEBASE file path option has two
definitions, depending on the GOPTIONS device used.

When you generate Web presentations with the JAVA and ActiveX device drivers,
SAS generates HTML pages that automatically look for the JAVA archive files or the
ActiveX control file in the default installation location.

For the ActiveX device:
If you use the ActiveX device driver with ODS to generate output containing an
ActiveX control, then specify the CODEBASE= option in the ODS statement. The
value of the CODEBASE= option should include the location and the version of the
EXE file.
Tip: You do not need to specify the CODEBASE= option with the

DEVICE=ACTIVEX option unless the users that view your output do not have
the ActiveX control installed on their machine. When users that do not have the
control installed view your output, they are prompted to download the control.

See also: SAS/GRAPH: Reference for information on specifying the location of
control and applet files using the CODEBASE= and ARCHIVE= options.

For the Java device:
If you use the Java device driver with ODS to generate output containing a SAS/
GRAPH applet, specify the path to the JAR file with the CODEBASE= option in
the ODS statement.

When you specify DEVICE=JAVA, the users that view your output must have
access to the appropriate Java applet. By default, SAS sets the value of
CODEBASE= to refer to the executable file for the applet that is automatically
installed with SAS. The default location of the SAS Java archive files is specified
by the APPLETLOC= system option. If the default location is accessible by users
who will be viewing your Web presentation, and the SAS Java archive is installed
at that location, then you do not need to specify the CODEBASE= option.
Tip: Specify only the directory of the JAR file. The CODEBASE= location can be

specified as a pathname or as a URL
See also: SAS/GRAPH: Reference for information on specifying the location of

control and applet files using the CODEBASE= and ARCHIVE= options.

CONTENTS= ’file-specification’ <(suboption(s))>
opens a markup family destination and specifies the file that contains a table of
contents for the output. These files remain open until you do one of the following:

� close the destination with either an ODS markup-family-destination CLOSE
statement or ODS _ALL_ CLOSE statement.

� open the same destination with a second markup family statement. This closes
the first file and opens the second file.

file-specification
specifies the file, fileref, or SAS catalog to write to.

file-specification is one of the following:

154 ODS MARKUP Statement � Chapter 5

external-file
is the name of an external file to write to.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

entry.markup
specifies an entry in a SAS catalog to write to.
Interaction: If you specify an entry name, you must also specify a library and

catalog. See the discussion of the PATH= option.

suboption(s)
specifies one or more suboptions in parentheses. Suboptions are instructions for
writing the output files. For a list of suboptions, see “Suboptions” on page 166.

CSSSTYLE= ’file-specification’<(media-type-1 <…media-type-10>)>
specifies a cascading style sheet to apply to your output.

file-specification
specifies a file, fileref, or URL that contains CSS code..

file-specification is one of the following:

"external-file"
is the name of the external file.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

"URL"
is a URL to an external file.
Requirement: You must enclose external-file in quotation marks.

(media-type-1<.. media-type-10>)
specifies one or more media blocks that corresponds to the type of media that your
output will be rendered on. CSS uses media type blocks to specify how a document
is to be presented on different media: on the screen, on paper, with a speech
synthesizer, with a braille device, and so on.

The media block is added to your output in addition to the CSS code that is not
contained in any media blocks. By using the media-type suboption, in addition to
the general CSS code, you can import the section of a CSS file intended only for a
specific media type.
Default: If no media-type is specified in your ODS statement, but you do have

media types specified in your CSS file, then ODS uses the Screen media type.
Range: You can specify up to ten different media types.
Requirement: You must enclose media-type in parentheses.
Requirement: You must specify media-type next to the file-specification specified

by the CSSSTYLE= option.
Tip: If you specify multiple media types, all of the style information in all of the

media types is applied to your output. However, if there is duplicate style

Dictionary of ODS Language Statements � ODS MARKUP Statement 155

information in different media blocks, then the styles from the last media block
are used.

Interaction: If both the STYLE= option and the CSSSTYLE= option are specified
on an ODS statement, the option specified last it the option that is used.

Requirement: CSS files must be written in the same type of CSS produced by the
ODS HTML statement. Only class names are supported, with no IDs and no
context based selectors. To view the CSS code that ODS creates, you can specify
the STYLESHEET= option, or you can view the source of an HTML file and look
at the code between the <STYLE> </STYLE> tags at the top of the file. For an
example of a valid for ODS CSS file, see Example 6 on page 178.

Featured in: Example 6 on page 178

DEVICE= device-driver
specifies the name of a device driver. ODS automatically selects an optimal default
device for each open output destination.

The following table lists default devices for the most common ODS output
destinations.

Output Destination Default Device

HTML PNG

LISTING Host Specific Display Device (PC- WIN, UNIX - XColor, MVS
-Display Device)

Measured RTF PNG

RTF SASEMF

PCL SASPRTM (Monochrome Output)*

PDF SASPRTC (Color Output)*

POSTSCRIPT SASPRTC (Color Output)*

PRINTER Host Specific Default Printer*

* Does not support changing the default device in the SAS Registry.

Tip: Specifying a device on the ODS DEVICE= option takes precedence over the
SAS global option and the graphics option.

See: “Device= System Option” in SAS Language Reference: Dictionary. See “Device
Drivers” in SAS/GRAPH: Reference for information on selecting device drivers.

ENCODING= local-character-set-encoding
overrides the encoding for input or output processing (transcodes) of external files.

See: For information about the ENCODING= option, see SAS National Language
Support (NLS): Reference Guide.

EVENT=event-name (FILE= | FINISH | LABEL= | NAME= | START | STYLE=
|TARGET= | TEXT= | URL=)

specifies an event and the value for event variables that are associated with the event.

(FILE= BODY | CODE | CONTENTS | DATA | FRAME | PAGES |
STYLESHEET);

triggers one of the known types of output files that correspond to the BODY=,
CODE=, CONTENTS=, FRAME=, PAGES=, and STYLESHEET= options.

156 ODS MARKUP Statement � Chapter 5

(FINISH)
triggers the finish section of an event.
See: For information about events, see “Understanding Events” on page 839.

(LABEL=’variable-value’)
specifies the value for the LABEL event variable.
Requirement: variable-value must be enclosed in quotation marks.
See: For information about the LABEL event variable, see “Event Variables” on

page 833.

(NAME=’variable-value’)
specifies the value for the NAME event variable.
Requirement: variable-value must be enclosed in quotation marks.
See: For information about the NAME event variable, see “Event Variables” on

page 833.

(START)
triggers the start section of an event.
See: For information about events, see “Understanding Events” on page 839.

(STYLE=style-element)
specifies a style element.
See: For information about style elements, see “Style Attributes and Their Values”

on page 498.

(TARGET=’variable-value’)
specifies the value for the TARGET event variable.
Requirement: variable-value must be enclosed in quotation marks.
See: For information about the TARGET event variable, see “Event Variables” on

page 833.

(TEXT=’variable-value’)
specifies the value for the TEXT event variable.
Requirement: variable-value must be enclosed in quotation marks.
See: For information about the TEXT event variable, see “Event Variables” on

page 833.

(URL=’variable-value’)
specifies the value for the URL event variable.
Requirement: variable-value must be enclosed in quotation marks.
See: For information about the URL event variable, see “Event Variables” on page

833.
Default: (FILE=’BODY’)
Requirement: The EVENT= option’s suboptions must be enclosed in parenthesis.

FRAME= ’file-specification’ <(suboption(s))>
opens a markup family destination and, for HTML output, specifies the file that
integrates the table of contents, the page contents, and the body file. If you open the
frame file, then you see a table of contents, a table of pages, or both, as well as the
body file. For XLM output, FRAME= specifies the file that contains the DTD. These
files remain open until you do one of the following:

� close the destination with either an ODS markup-family-destination CLOSE
statement or ODS _ALL_ CLOSE statement.

� open the same destination with a second markup family statement. This closes
the first file and opens the second file.

Dictionary of ODS Language Statements � ODS MARKUP Statement 157

file-specification
specifies the file, fileref, or SAS catalog to write to.

file-specification is one of the following:

external-file
is the name of an external file to write to.

Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.

See: For information about the FILENAME statement, see SAS Language
Reference: Dictionary.

entry.markup
specifies an entry in a SAS catalog to write to.

Interaction: If you specify an entry name, you must also specify a library and
catalog. See the discussion of the PATH= option.

suboption(s)
specifies one or more suboptions in parentheses. Suboptions are instructions for
writing the output files. For a list of suboptions, see “Suboptions” on page 166.

Restriction: If you specify the FRAME= option, then you must also specify the
CONTENTS= option, the PAGE= option, or both.

Featured in: Example 2 on page 172

GFOOTNOTE | NOGFOOTNOTE
controls the location where footnotes are printed in the graphics output.

GFOOTNOTE
prints footnotes that are created by SAS/GRAPH, the SGPLOT procedure, the
SGPANEL procedure, or the SGSCATTER procedure. The footnotes appear inside
the graph borders.

NOGFOOTNOTE
prints footnotes that are created by ODS, which appears outside the graph borders.

Default: GFOOTNOTE

Restriction: Footnotes that are displayed by a markup language statement support
all SAS/GRAPH FOOTNOTE statement options. The font must be valid for the
browser. Options that ODS cannot handle, such as text angle specifications, are
ignored. For details about the SAS/GRAPH FOOTNOTE statement, see
SAS/GRAPH: Reference.

Restriction: This option applies only to SAS programs that produce one or more
device-based graphics, or graphics created by the SGPLOT procedure, the
SGPANEL procedure, or the SGSCATTER procedure.

GPATH= ’aggregate-file-storage-specification’ | fileref | libref.catalog (URL=
’Uniform-Resource-Locator’ | NONE)

specifies the location for all graphics output that is generated while the destination is
open. Use this option when you want to write graphics output files to a location
different that specified by the PATH= option for markup files. If you specify an
invalid filename, the ActiveX and Java devices send output to the default filename.
Other devices create the file as a directory and write output to that directory using
the default filename. For more information about how ODS names catalog entries
and external files, see SAS/GRAPH: Reference.

158 ODS MARKUP Statement � Chapter 5

’aggregate-file-storage-location’
specifies an aggregate storage location such as directory, folder, or partitioned data
set.
Requirement: You must enclose aggregate-file-storage-location in quotation marks.

fileref
is a file reference that has been assigned to an aggregate storage location. Use the
FILENAME statement to assign a fileref. For information about the FILENAME
statement, see SAS Language Reference: Dictionary.
Interaction: If you specify a fileref in the GPATH= option, then ODS does not use

information from the GPATH= option when it constructs links.

libref.catalog
specifies a SAS catalog to write to.

URL= ’Uniform-Resource-Locator’ | NONE
specifies a URL for file-specification.

Uniform-Resource-Locator
is the URL you specify. ODS uses this URL instead of the filename in all the
links and references that it creates to the file.
Requirement: You must enclose Uniform-Resource-Locator in quotation marks.

NONE
specifies that no information from the GPATH= option appears in the links or
references.

Tip: This option is useful for building output files that can be moved from one
location to another. If the links from the contents and page files are constructed
with a simple URL (one name), then they will resolve, as long as the contents,
page, and body files are all in the same location.

Default: If you omit the GPATH= option, then ODS stores graphics in the location
that is specified by the PATH= option. If you do not specify the PATH= option,
then ODS stores the graphics in the current directory. For more information, see
the PATH= option on page 162.

GTITLE | NOGTITLE
controls the location where titles are printed in the graphics output.

GTITLE
prints the title that is created by SAS/GRAPH, the SGPLOT procedure, the
SGPANEL procedure, or the SGSCATTER procedure. The title appears inside the
graph borders

NOGTITLE
prints the title that is created by ODS, which appears outside of the graph borders.

Default: GTITLE
Restriction: Titles that are displayed by any markup language statement support

most SAS/GRAPH TITLE statement options. The font must be valid for the
browser. Options that ODS cannot handle, such as text angle specifications, are
ignored. For details about the SAS/GRAPH TITLE statement, see SAS/GRAPH:
Reference.

Restriction: This option applies only to SAS programs that produce one or more
device-based graphics, or graphics created by the SGPLOT procedure, the
SGPANEL procedure, or the SGSCATTER procedure.

HEADTEXT= ’markup-document-head’

Dictionary of ODS Language Statements � ODS MARKUP Statement 159

specifies markup tags to place between the <HEAD> and </HEAD> tags in all the
files that the destination writes to.

markup-document-head
specifies the markup tags to place between the <HEAD> and </HEAD> tags.

Requirement: You must enclose markup-document-head in quotation marks.

Tip: ODS cannot parse the markup that you supply. It should be well-formed
markup that is correct in the context of the <HEAD> and </HEAD> tags.

Tip: Use the HEADTEXT= option to define programs (such as JavaScript) that you
can use later in the file.

(ID= identifier)
enables you to run multiple instances of the same destination at the same time.
Each instance can have different options.

identifier
specifies another instance of the destination that is already open. identifier is
numeric or a series of characters that begin with a letter or an underscore.
Subsequent characters can include letters, underscores, and numeric characters.

Restriction: If identifier is numeric, it must be a positive integer.

Requirement: The ID= option must be specified immediately after the ODS
MARKUP/TAGSET statement keywords.

Tip: You can omit the ID= option, and instead use a name or a number to identify
the instance.

Featured in: Example 1 on page 212

IMAGE_DPI=
specifies the image resolution for graphical output.

Restriction: The IMAGE_DPI= option affects template-based graphics only.

METATEXT= ’metatext-for-document-head’
specifies HTML code to use as the <META> tag between the <HEAD> and </HEAD>
tags of all the HTML files that the destination writes to.

’metatext-for-document-head’
specifies the HTML code that provides the browser with information about the
document that it is loading. For example, this attribute could specify the content
type and the character set to use.

Requirement: You must enclose metatext-for-document-head in quotation marks.

Default: If you do not specify METATEXT=, then ODS writes a simple <META>
tag, which includes the content-type of the document and the character set to use,
to all the HTML files that it creates.

Tip: ODS cannot parse the HTML code that you supply. It should be well-formed
HTML code that is correct in the context of the <HEAD> tags. If you are using
METATEXT= as it is intended, then your META tag should look like this:

<META your-metatext-is-here>

Restriction: METATEXT= cannot exceed 256 characters.

NEWFILE= starting-point
creates a new body file at the specified starting-point.

160 ODS MARKUP Statement � Chapter 5

starting-point
is the location in the output where you want to create a new body file.

ODS automatically names new files by incrementing the name of the body file.
In the following example, ODS names the first body file REPORT.XML. Additional
body files are named REPORT1.XML, REPORT2.XML, and so on.

Example:

BODY= ’REPORT.XML’

starting-point is one of the following:

BYGROUP
starts a new file for the results of each BY group.

NONE
writes all output to the body file that is currently open.

OUTPUT
starts a new body file for each output object. For SAS/GRAPH this means that
ODS creates a new file for each SAS/GRAPH output file that the program
generates.

Alias: TABLE

PAGE
starts a new body file for each page of output. A page break occurs when a
procedure explicitly starts a new page (not because the page size was exceeded)
or when you start a new procedure.

PROC
starts a new body file each time that you start a new procedure.

Default: NONE

Restriction: The NEWFILE= option cannot be used in conjunction with the
BODY=fileref option.

Tip: If you end the filename with a number, then ODS begins incrementing with
that number. In the following example, ODS names the first body file MAY5.XML.
Additional body files are named MAY6.XML, MAY7.XML, and so on.

Example:

BODY= ’MAY5.XML’

NOGFOOTNOTE

See: GFOOTNOTE | NOGFOOTNOTE options

NOGTITLE

See: GTITLE | NOGTITLE options

OPTIONS (DOC= | <suboption(s)>)
specifies tagset-specific suboptions and a named value.

(DOC=’QUICK’ | ’HELP’ | ’SETTINGS’)
provides information about the specified tagset.

QUICK
describes the options available for this tagset.

HELP
provides generic help and information with a quick reference.

SETTINGS

Dictionary of ODS Language Statements � ODS MARKUP Statement 161

provides the current option settings.
Requirement: All values must be enclosed in quotation marks.

suboption(s)
specifies one or more suboptions that are valid for the specified tagset. Supoptions
have the following format:

keyword=’value’

You can get information about suboptions for a specific tagset by specifying one of
the following options when opening an ODS tagset statement or at any time after
the destination has been opened.

� options(doc=’help’);

� options(doc=’quick’);

� options(doc=’settings’);

Requirement: The OPTION suboption’s must be enclosed in parentheses.
Featured in: Example 1 on page 285

PACKAGE <package-name>
specifies that the output from the destination be added to a package.

package-name
specifies the name of a package that was created with the ODS PACKAGE
statement. If no name is specified, then the output is added to the unnamed
package that was opened last.
See also: “ODS PACKAGE Statement” on page 198
Featured in: Example 1 on page 202

PAGE= ’file-specification’ <(suboption(s))>
opens a markup family destination and specifies the file that contains a description
of each page of the body file, and contains links to the body file. ODS produces a new
page of output whenever a procedure requests a new page. These files remain open
until you do one of the following:

� close the destination with either an ODS markup-family-destination CLOSE
statement or ODS _ALL_ CLOSE statement.

� open the same destination with a second markup family statement. This closes
the first file and opens the second file.

file-specification
specifies the file, fileref, or SAS catalog to write to.

file-specification is one of the following:

external-file
is the name of an external file to write to.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

entry.markup
specifies an entry in a SAS catalog to write to.
Interaction: If you specify an entry name, you must also specify a library and

catalog. See the discussion of the PATH= option.

162 ODS MARKUP Statement � Chapter 5

suboption(s)
specifies one or more suboptions in parentheses. Suboptions are instructions for
writing the output files. For a list of suboptions, see “Suboptions” on page 166.

Interaction: The SAS system option PAGESIZE= has no effect on pages in HTML
output except when you are creating batch output. For information about the
PAGESIZE= option see SAS Language Reference: Dictionary.

PARAMETERS= (parameter-pair-1 ... parameter-pair-n)
writes the specified parameters between the tags that generate dynamic graphics
output.

parameter-pair
specifies the name and value of each parameter. parameter-pair has the following
form:

’parameter-name’= ’parameter-value’

parameter-name
is the name of the parameter.

parameter-value
is the value of the parameter.

Requirement: You must enclose parameter-name and parameter-value in
quotation marks.

Interaction: Use PARAMETERS= in conjunction with SAS/GRAPH procedures and
the DEVICE=JAVA, JAVAMETA, or ACTIVEX options in the GOPTIONS
statement.

See also: SAS/GRAPH: Reference for valid parameters for the following applets:
� Graph Applet
� Map Applet
� Contour Applet
� MetaView Applet

PATH= ’aggregate-file-storage-specification’ | fileref | libref.catalog (URL=
’Uniform-Resource-Locator’ | NONE)

specifies the location of an aggregate storage location or a SAS catalog for all markup
files. If the GPATH= option is not specified, all graphics output files are written to
the “aggregate-file-storage-specification” or libref.

’aggregate-file-storage-location’
specifies an aggregate storage location such as directory, folder, or partitioned data
set.
Requirement: You must enclose aggregate-file-storage-location in quotation marks.

fileref
is a file reference that has been assigned to an aggregate storage location. Use the
FILENAME statement to assign a fileref.
Interaction: If you use a fileref in the PATH= option, then ODS does not use

information from PATH= when it constructs links.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

libref.catalog
specifies a SAS catalog to write to.
See: For information about the LIBNAME statement, see SAS Language

Reference: Dictionary.

Dictionary of ODS Language Statements � ODS MARKUP Statement 163

URL= ’Uniform-Resource-Locator’ | NONE
specifies a URL for the file-specification.

Uniform-Resource-Locator
is the URL you specify. ODS uses this URL instead of the filename in all the
links and references that it creates to the file.

NONE
specifies that no information from the PATH= option appears in the links or
references.

Tip: This option is useful for building output files that can be moved from one
location to another. The links from the contents and page files must be
constructed with a single-name URL, and the contents, page, and body files
must be in the same location.

Interaction: If you use the BODY= or FILE= external file option in conjunction
with the PATH= option, the external file specification should not include path
information.

RECORD_SEPARATOR= ’alternative-separator’ | NONE
specifies an alternative character or string that separates lines in the output files.

Different operating environments use different separator characters. If you do not
specify a record separator, then the files are formatted for the environment where
you run the SAS job. However, if you are generating files for viewing in a different
operating environment that uses a different separator character, then you can specify
a record separator that is appropriate for the target environment.

alternative-separator
represents one or more characters in hexadecimal or ASCII format. For example,
the following option specifies a record separator for a carriage return character
and a linefeed character for use with an ASCII file system:

RECORD_SEPARATOR= ’0D0A’x

Operating Environment Information: In a mainframe environment, the option
that specifies a record separator for a carriage return character and a linefeed
character for use with an ASCII file system is:

RECORD_SEPARATOR= ’0D25’x

�

Requirement: You must enclose alternative-separator in quotation marks.

NONE
produces the markup language that is appropriate for the environment where you
run the SAS job.

Operating Environment Information: In a mainframe environment, by default,
ODS produces a binary file that contains embedded record separator characters.
This binary file is not restricted by the line-length restrictions on ASCII files.
However, if you view the binary files in a text editor, then the lines run together.

If you want to format the files so that you can read them with a text editor, then
use RECORD_SEPARATOR= NONE. In this case, ODS writes one line of markup
language at a time to the file. When you use a value of NONE, the logical record
length of the file that you are writing to must be at least as long as the longest
line that ODS produces. If the logical record length of the file is not long enough,
then the markup language might wrap to another line at an inappropriate place. �

164 ODS MARKUP Statement � Chapter 5

Alias:
RECSEP=
RS=

STYLE= style-definition
specifies the style definition to use in writing the output files.

style-definition
describes how to display the presentation aspects (color, font face, font size, and so
on) of your SAS output. A style definition determines the overall appearance of the
documents that use it. Each style definition consists of style elements.
Main discussion: For a complete discussion of style definitions, see Chapter 11,

“TEMPLATE Procedure: Creating a Style Template (Definition),” on page 487.
Interaction: The STYLE= option is not valid when you are creating XML output.

Default: If you do not specify a style definition, then ODS uses the file that is
specified in the SAS registry subkey ODS � DESTINATIONS � MARKUP. By
default, this value specifies Default.

Interaction: If you specify the STYLE= option on an ODS HTML4 statement and
want to change the style definition with another ODS HTML4 statement , you
must close the first statement before specifying the second statement, in order for
any PROC PRINT output to use the second style definition.

STYLESHEET= ’file-specification’ <(suboption(s))>
opens a markup family destination and places the style information for markup
output into an external file, or reads style sheet information from an existing file.
These files remain open until you do one of the following:

� close the destination with either an ODS markup-family-destination CLOSE
statement or ODS _ALL_ CLOSE statement.

� open the same destination with a second markup family statement. This closes
the first file and opens the second file.

file-specification
specifies the file, fileref, or SAS catalog to write to.

file-specification is one of the following:

external-file
is the name of an external file to write to.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

entry.markup
specifies an entry in a SAS catalog to write to.
Interaction: If you specify an entry name, you must also specify a library and

catalog. See the discussion of the PATH= option.

suboption(s)
specifies one or more suboptions in parentheses. Suboptions are instructions for
writing the output files. For a list of suboptions, see “Suboptions” on page 166.

Note: By default, if you do not specifically send the information to a separate file,
then the style sheet information is included in the specified HTML file. �
Featured in: Example 5 on page 176

Dictionary of ODS Language Statements � ODS MARKUP Statement 165

TAGSET= tagset-name
specifies a keyword value for a tagset. A tagset is a template that defines how to
create a markup language output type from a SAS format. Tagsets produce markup
output such as Hypertext Markup Language (HTML), Extensible Markup Language
(XML), and LaTeX.

An alternate form for specifying a tagset is as follows:

ODS directory.tagset-name file-specification(s)<option(s)>;

ODS directory.tagset-name action;

A directory can be TAGSET, a user defined entry, or a libref. By default, the
tagsets that SAS supplies are located in the directory TAGSETS, which is
within the item store SASUSER.TMPLMST. For more information about user
defined tagsets and item stores, see Chapter 7, “TEMPLATE Procedure:
Overview,” on page 395.

Alias: TYPE=

Default: If you do not specify a TAGSET= value, then the ODS MARKUP
statement defaults to XML output.

Interaction: If you use the TAGSET= option in an ODS markup family statement
that refers to an open ODS markup destination, then the option will force ODS to
close the destination and all files associated with it, and then to open a new
instance of the destination. For more information, see “Opening and Closing the
MARKUP Destination” on page 167.

Tip: SAS provides a set of tagset definitions. To get a list of the tagset names that
SAS supplies, plus any tagsets that you created and stored in the
SASUSER.TMPLMST template store, submit the following SAS statements:

proc template;
list tagsets;

run;

See: For a list of valid tagsets and their descriptions, see “ODS Tagset Statement”
on page 278.

See also: For additional information about specifying tagsets, see Chapter 13,
“TEMPLATE Procedure: Creating Markup Language Tagsets,” on page 795.

Featured in: Example 2 on page 172, Example 3 on page 173, Example 4 on page
176

TEXT=text-string
inserts text into your document by triggering the paragraph event and specifying a
text string to be assigned to the VALUE event variable.

Default: By default the TEXT= option is used in a paragraph event.

Tip: You can specify a text-string for a specific event by using the TEXT= option
with the EVENT= option by using the following syntax:

EVENT=event-name (TEXT=text-string)

Featured in: Example 1 on page 114

See also: For information about events and event variables, see Chapter 13,
“TEMPLATE Procedure: Creating Markup Language Tagsets,” on page 795.

TRANTAB= ’translation-table’
specifies the translation table to use when transcoding a file for output.

See: For information about the TRANTAB= option, see SAS National Language
Support (NLS): Reference Guide.

166 ODS MARKUP Statement � Chapter 5

Suboptions
The following suboptions can be used with the BODY=, CODE=, CONTENTS=,

FRAME=, PAGE=, and STYLESHEET= options:

(NO_BOTTOM_MATTER)
specifies that no ending markup language source code be added to the output file or.
Alias: NOBOT
Requirement: You must enclose NO_BOTTOM_MATTER in parentheses.

Requirement: You must specify NO_BOTTOM_MATTER next to the
file-specification specified by the BODY=, CONTENTS=, PAGE=, FRAME=, or
STYLESHEET= option, or next to the tagset-name specified by the TAGSET=
option.

Requirement: If you append text to an external file you must use a FILENAME
statement with the appropriate option for the operating environment.

Interaction: The NO_BOTTOM_MATTER suboption, in conjunction with the
NO_TOP_MATTER suboption, makes it possible for you to add output to an
existing file and then to put your own markup language between output objects in
the file.

Interaction: When you are opening a file that ODS has previously written to, you
must use the ANCHOR= option to specify a new base name for the anchors in
order to avoid duplicate anchors.

Tip: If you want to leave a body file in a state that you can append to with ODS,
then use NO_BOTTOM_MATTER with the file-specification in the BODY= option
in any markup language statement.

See also: NO_TOP_MATTER on page 166

(NO_TOP_MATTER)
specifies that no beginning markup language source code be added to the top of the
output file. For HTML 4.0, the NO_TOP_MATTER option removes the style sheet.
Alias: NOTOP

Requirement: You must enclose NO_TOP_MATTER in parentheses.
Requirement: You must specify NO_TOP_MATTER next to the file-specification

specified by the BODY=, CONTENTS=, PAGE=, FRAME=, or STYLESHEET=
option, or next to the tagset-name specified by the TAGSET= option.

Requirement: If you append text to an external file you must use a FILENAME
statement with the appropriate option for the operating environment.

Interaction: The NO_TOP_MATTER suboption, in conjunction with the
NO_BOTTOM_MATTER suboption, makes it possible for you to add output to an
existing file and then to put your own markup language between output objects in
the file.

Interaction: When you are opening a file that ODS has previously written to, you
must use the ANCHOR= option to specify a new base name for the anchors in
order to avoid duplicate anchors.

See also: NO_BOTTOM_MATTER on page 166 and ANCHOR= on page 149

(TITLE=’title-text’)
inserts into the metadata of a file, the text string that you specify as the text to
appear in the browser window title bar.

title-text
is the text in the metadata of a file that indicates the title.

Requirement: You must enclose TITLE= in parentheses.

Dictionary of ODS Language Statements � ODS MARKUP Statement 167

Requirement: You must enclose title-text in quotation marks.
Tip: If you are creating a web page that uses frames, then it is the TITLE=

specification for the frame file that appears in the browser window title bar.
Featured in: Example 3 on page 173

(URL= ’Uniform-Resource-Locator’)
specifies a URL for the file-specification. ODS uses this URL (instead of the filename)
in all the links and references that it creates and that point to the file.
Requirement: You must enclose URL= ’Uniform-Resource-Locator’ in parentheses.
Requirement: You must enclose Uniform-Resource-Locator in quotation marks.
Requirement: You must specify URL= ’Uniform-Resource-Locator’ next to the

file-specification specified by the BODY=, CONTENTS=, PAGE=, FRAME=, or
STYLESHEET= option, or next to the tagset-name specified by the TAGSET=
option.

Tip: This option is useful for building HTML files that can be moved from one
location to another. The links from the contents and page files must be constructed
with a single name URL, and the contents, page, and body files must all be in the
same location.

Tip: You never need to specify this suboption with the FRAME= option because
ODS files do not reference the frame file.

Featured in: Example 5 on page 176

(DYNAMIC)
enables you to send output directly to a web server instead of writing it to a file. This
option sets the value of the CONTENTTYPE= style attribute. For more information
see the CONTENTTYPE= on page 516 style attribute in PROC TEMPLATE.
Default: If you do not specify DYNAMIC, then ODS sets the value of

HTMLCONTENTTYPE= for writing to a file.
Requirement: You must enclose DYNAMIC in parentheses.
Requirement: You must specify DYNAMIC next to the file-specification specified by

the BODY=, CONTENTS=, PAGE=, FRAME=, or STYLESHEET= option, or next
to the tagset-name specified by the TAGSET= option.

Restriction: If you specify the DYNAMIC suboption with the BODY=,
CONTENTS=, PAGE=, FRAME=, STYLESHEET= or TAGSET= option in the ODS
HTML statement, then you must specify it for all the BODY=, CONTENTS=,
PAGE=, FRAME=, STYLESHEET= or TAGSET= options in that statement.

Details

Opening and Closing the MARKUP Destination
You can modify an open MARKUP destination with many ODS MARKUP options.

However, the BODY= and TAGSET= options will automatically close the open
destination that is referred to in the ODS MARKUP statement, and will also close any
files associated with it, and then will open a new instance of the destination. If you use
one of these options, it is best if you explicitly close the destination yourself.

Specifying Multiple ODS Destinations The ODS MARKUP statement opens or closes
one destination. Like all single output destinations, you can have only one markup
destination open at one time, unless you use the ID= option.

However, you can specify multiple simultaneous ODS destinations to produce
multiple markup output by doing both of the following:

� specifying some of the TAGSET= value keywords as a destination

168 ODS MARKUP Statement � Chapter 5

� specifying any two-level tagset name, such as TAGSETS.PYX,
TAGSETS.STYLE_DISPLAY, or one of your own tagset names.

Specifying a Tagset Keyword As an ODS Destination You can specify some tagset
keywords as ODS destinations. The tagset determines the type of markup that you will
have in your output file. For example, either of the following sets of statements are
acceptable:

ods markup body=’class.html’ tagset=phtml;
...more SAS statements...
ods markup close;

ods phtml body=’class.html’;
...more SAS statements...
ods phtml close;

The ODS statement that you use to close a destination must be in the same form as
the ODS statement that you used to open the destination. Therefore, the following is
not acceptable, because SAS considers MARKUP and PHTML as separate destinations.

ods markup body=’class.html’ tagset=phtml;
...more SAS statements...
ods phtml close;

The tagsets that you can specify as both a TAGSET= value for ODS MARKUP or as a
separate ODS destination are as follows:

CHTML
CSV
CSVALL
DOCBOOK
HTML4
HTMLCSS
IMODE
LATEX
PHTML
SASREPORT
TROFF
WML
WMLOLIST

Specifying a Two-Level Tagset Name As an ODS Destination You can open a
destination by specifying the markup that you want to produce by naming its two-level
tagset name. You can specify all tagsets in this manner. For example, the following
ODS statements open the SASIOXML and MYTAGSET destinations. The ODS _ALL_
CLOSE statement closes the SASIOXML and MYTAGSET destinations as well as all
other open destinations.

ods tagsets.sasioxml body=’test1.xml’;
ods tagsets.mytagset body=’test2.xml’;
...more SAS statements...
ods _all_ close;

You can also specify tagset names as follows, using the TYPE= option with a
two-level tagset name:

Dictionary of ODS Language Statements � ODS MARKUP Statement 169

ods markup type=tagsets.sasioxml body=’test.xml’;

Examples

Example 1: Creating an XML FILE

ODS features:
ODS LISTING statement:

Action:
CLOSE

ODS MARKUP statement:
Action:

CLOSE
Options:

BODY=

Other SAS features:
PROC PRINT

Data Set:
See “Creating the StatePop Data Set” on page 881.

Program Description The following ODS MARKUP example creates XML markup
from PRINT procedure output. The TAGSET= option for the ODS MARKUP statement
is not specified, which defaults to XML output.

Program

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Create XML output. The ODS MARKUP BODY= statement creates an XML file.

ods markup body=’population.xml’;

Print the data set. The PRINT procedure prints the data set StatePop.

proc print data=statepop;
run;

Close the MARKUP destination. The ODS MARKUP CLOSE statement closes the MARKUP
destination and all the files that are associated with it. If you do not close the destination, then
you will not be able to view the files.

ods markup close;

170 ODS MARKUP Statement � Chapter 5

XML Output The following partial output is tagged with XML (Extensible Markup
Language) tags.

Dictionary of ODS Language Statements � ODS MARKUP Statement 171

Output 5.1 XML Markup from PRINT Procedure Output

<?xml version="1.0" encoding="windows-1252"?>

<odsxml>

<head>

<meta operator="user"/>

</head>

<body>

<proc name="Univariate">

<label name="IDX"/>

<title class="SystemTitle" toc-level="1">US Census of Population and Housing</title>

<proc-title class="ProcTitle" toc-level="1">The UNIVARIATE Procedure</proc-title>

<proc-title class="ProcTitle" toc-level="1">Variable: CityPop_90 (1990 metropolitan pop in millions)</proc-title>

<branch name="Univariate" label="The Univariate Procedure" class="ContentProcName" toc-level="1">

<branch name="CityPop_90" label="CityPop_90" class="ContentFolder" toc-level="2">

<leaf name="Moments" label="Moments" class="ContentItem" toc-level="3">

<output name="Moments" label="Moments" clabel="Moments">

<output-object type="table" class="Table">

<style>

<border spacing="1" padding="7" rules="groups" frame="box"/>

</style>

<colspecs columns="4">

<colgroup>

<colspec name="1" width="15" type="string"/>

<colspec name="2" width="10" align="right" type="string"/>

<colspec name="3" width="16" type="string"/>

<colspec name="4" width="10" align="right" type="string"/>

</colgroup>

</colspecs>

<output-head>

<row>

<header type="string" class="Header" row="1" column="1" column-end="4">

<style>

</style>

<value>Moments</value>

</header>

</row>

</output-head>

<output-body>

... more tagged output ...

<data raw-value="P8jU/fO2RaI=" name="Low" type="double" class="Data" row="8" column="1">

<value>0.194</value>

</data>

<data raw-value="QEIAAAAAAAA=" name="LowObs" type="double" class="Data" row="8" column="2">

<value>36</value>

</data>

<data raw-value="QDboMSbpeNU=" name="High" type="double" class="Data" row="8" column="3">

<value>22.907</value>

</data>

<data raw-value="QEiAAAAAAAA=" name="HighObs" type="double" class="Data" row="8" column="4">

<value>49</value>

</data>

</row>

</output-body>

</output-object>

</output>

</leaf>

</branch>

</branch>

<footnote class="SystemFooter" toc-level="1">^{super *}This is a ^S={foreground=black}footnote.</footnote>

</proc>

</body>

</odsxml>

172 ODS MARKUP Statement � Chapter 5

Example 2: Creating an XML File and a DTD

ODS features:
ODS LISTING statement:

Action:
CLOSE

ODS MARKUP statement:
Actions:

CLOSE
Options:

BODY=
FRAME=
TAGSET=

Other SAS features:
PROC UNIVARIATE
TITLE statement

Data Set:
See “Creating the StatePop Data Set” on page 881

Program Description The following ODS MARKUP example creates an XML file and
its Document Type Definition (DTD) related information document from PROC
UNIVARIATE output.

Program

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Create XML output and a DTD. The ODS MARKUP BODY= statement creates an XML file.
The FRAME= option specifies that you want the DTD in a frame file, and the TAGSET= option
specifies that you want the default tagset, which is XML.

ods markup body=’statepop.xml’
frame=’statepop.dtd’ tagset=default;

Generate the statistical tables for the analysis variables. The UNIVARIATE procedure
calculates univariate statistics for numeric variables in the StatePop data set. The VAR
statement specifies the analysis variables and their order in the output. The TITLE statement
specifies a title for the output object.

proc univariate data=statepop;
var citypop_90 citypop_80;

title ’US Census of Population and Housing’;
run;

Dictionary of ODS Language Statements � ODS MARKUP Statement 173

Close the MARKUP destination. The ODS MARKUP CLOSE statement closes the MARKUP
destination and all the files that are associated with it. If you do not close the destination, then
you will not be able to view the files.

ods markup close;

Output This DTD specifies how the markup tags in a group of SGML or XML
documents should be interpreted by an application that displays, prints, or otherwise
processes the documents.

Output 5.2 DTD Created by the ODS MARKUP Statement

<!ELEMENT odsxml (head?,body)>

<!ELEMENT head (meta|css)*>

<!ELEMENT body ((label|page)*|proc)+>

<!ELEMENT meta EMPTY>
<!ATTLIST meta

operator CDATA #IMPLIED
author CDATA #IMPLIED>

<!ELEMENT css EMPTY>
<!ATTLIST css

file CDATA #IMPLIED>

<!ELEMENT label EMPTY>
<!ATTLIST label

name ID #IMPLIED>

<!ELEMENT proc (title|proc-title|note|page|label|style|branch|output)*>
<!ATTLIST proc

class CDATA #IMPLIED>

... more tagged output ...

<!ELEMENT br EMPTY>
<!ELEMENT page EMPTY>

<!ELEMENT b (#PCDATA|it|b|ul)*>
<!ELEMENT ul (#PCDATA|it|b|ul)*>
<!ELEMENT it (#PCDATA|it|b|ul)*>
<!ELEMENT style (span|align|border)*>

<!ELEMENT span EMPTY>
<!ATTLIST span

columns CDATA #IMPLIED
rows CDATA #IMPLIED>

<!ELEMENT align EMPTY>
<!ATTLIST align

horiz (left|center|right|justify) "left">

<!ELEMENT border EMPTY>
<!ATTLIST border

rules (none|groups|rows|cols|all) #IMPLIED
frame (void|above|below|hsides|lhs|rhs|vsides|box|border) #IMPLIED
padding CDATA #IMPLIED
spacing CDATA #IMPLIED>

Example 3: Creating Multiple Markup Output

ODS features:
ODS LISTING statement:

Action:

174 ODS MARKUP Statement � Chapter 5

CLOSE
ODS CSVALL statement:

Options:
BODY=

ODS MARKUP statement:
Options:

BODY=
TAGSET=
TITLE=

Other SAS features:
OPTIONS statement
PROC PRINT
TITLE statement

Data set:
See “Creating the Grain_Production Data Set” on page 878.

Program Description The following ODS example creates two different types of
markup output from the same procedure output. To create two markup outputs
requires two ODS destinations. Because ODS MARKUP is considered one destination,
you cannot specify two tagsets without the use of the ID= option. However, you can
specify one output using ODS MARKUP. You can then specify the other output using
ODS syntax in which the tagset is the destination.

Program

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources. The OPTIONS statement specifies that only fifteen observations be used.

ods listing close;
options obs=15;

Create tabular output. The ODS CSVALL statement produces tabular output with titles that
contain columns of data values that are separated by commas

ods csvall body=’procprintcsvall.csv’;

Create CHTML output. The ODS MARKUP TAGSET=CHTML statement produces compact,
minimal HTML output that does not use style information, and a hierarchical table of contents.
The TITLE= option specifies the text that will appear in the browser window title bar.

ods markup tagset=chtml body=’procprintchtml.html’
(title= ’This Text Identifies Your Content.’);

Print the data set. The PRINT procedure prints the data set Grain_Production. The TITLE
statement specifies the title.

title ’Leading Grain-Producing Countries’;
proc print data=grain_production;

Dictionary of ODS Language Statements � ODS MARKUP Statement 175

run;

Close the open destinations so that you can view or print the output. The ODS CSVALL
CLOSE statement closes the CSVALL destination and all of the files that are associated with it.
The ODS MARKUP TAGSET=CHTML L CLOSE statement closes the MARKUP destination
and all of the files that are associated with it. You must close the destinations before you can
view the output with a browser or before you can send the output to a physical printer.

ods csvall close;
ods markup tagset=chtml close;

Output

Display 5.7 CHTML Output

The following output was created by specifying the MARKUP TAGSET=CHTML statement. The
text “This Text Identifies Your Content.” was specified by the TITLE= option.

176 ODS MARKUP Statement � Chapter 5

Display 5.8 CSVALL Output Viewed in Microsoft Excel

The following output was created by specifying the ODS CSVALL statement.

Note: Note that you cannot specify ODS MARKUP TAGSET=CSVALL and ODS
MARKUP TAGSET=CHTML together, or ODS CSVALL and ODS CHTML together. �

Example 4: Specifying Tagset Names As ODS Destinations When you specify tagsets
and two-level tagset names as destinations, you can open and close multiple
destinations, producing multiple markup output. For example:

ods htmlcss body=’test1.html’;
ods phtml body=’test2.html’;
ods chtml body=’test3.html’;
ods markup body=’test1.xml’;
ods tagsets.event_map body=’test2.xml’;
...more SAS statements...
ods htmlcss close;
...more SAS statements...
ods chtml close;
...more SAS statements...
ods _all_ close;

Example 5: Including Multiple Cascading Style Sheets in One HTML Document

ODS features:

ODS LISTING statement:

Action:

CLOSE

ODS HTML statement:

Dictionary of ODS Language Statements � ODS MARKUP Statement 177

Actions:
CLOSE

Options:
BODY=
STYLESHEET= option
URL= suboption

Other SAS features:
OPTIONS statement
PROC PRINT
TITLE statement

Data set:
See “Creating the Grain_Production Data Set” on page 878 .

Program Description The following example creates one HTML document and two
style sheets which are included in the HTML document. The URLs are created in the
order specified by the URL= suboption.

Program

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources. The OPTIONS statement specifies that only fifteen observations be used.

ods listing close;
options obs=15;

Create the HTML output and two style sheets. The ODS HTML statements opens the
HTML destination and creates HTML output. The STYLESHEET= option places the style
information for the HTML output into two external files. The URL= suboption specifies a URL
for the two files, File1.css and File2.css. ODS uses these URLs (instead of the filename) in all
the links and references that it creates and that point to those files.

ods html body=’StylesheetExample.html’
stylesheet=(url=’/css/file1.css /css/file2.css’);

Print the data set. The PRINT procedure prints the data set Grain_Production. The TITLE
statement specifies the title.

proc print data=grain_production;
title ’Leading Grain-Producing Countries’;
run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are associated with it. If you do not close the destination, then
you will not be able to view the files.

ods html close;

178 ODS MARKUP Statement � Chapter 5

Output

Display 5.9 HTML Code

The two links to the style sheets that the STYLESHEET= option creates are at the bottom of
the partial output. The links are created in the order that they were specified by the URL=
suboption.

Example 6: Applying a CSS File to ODS Output

ODS features:

ODS HTML statement:

BODY= option

CSSSTYLE= option:

media-type suboption

TEXT= options

ODS PDF statement:

BODY= option

CSSSTYLE= option:

media-type suboption

STARTPAGE= option

TEXT= option

ODS RTF statement:

BODY= option

CSSSTYLE= option:

media-type suboption

TEXT= options

Other SAS features:

PROC CONTENTS

Program Description The following program applies a style sheet created in a CSS file
to HTML, PDF, and RTF output. Because the CSS file has media blocks with additional
information for screen and print media types, you can specify that each output
destination use the additional style information for a specific media type.

Dictionary of ODS Language Statements � ODS MARKUP Statement 179

Program

Example CSS file. The following code is an example of the external CSS file StyleSheet.css.
There are two media types specified in this program, Print and Screen.

.body {
background-color: white;
color: black;
font-family: times, serif;

}
.header, .rowheader, .footer, .rowfooter, .data {

border: 1px black solid;
color: black;
padding: 5px;
font-family: times, serif;

}
.header, .rowheader, .footer, .rowfooter {

background-color: #a0a0a0;
}
.table {

background-color: #dddddd;
border-spacing: 0;
border: 1px black solid;

}
.proctitle {

font-family: helvetica, sans-serif;
font-size: x-large;
font-weight: normal;

}

@media screen {

.header, .rowheader, .footer, .rowfooter,{
color: white;
background-color: green;}

.table {
background-color: yellow;
border-spacing: 0;
font-size: small
border: 1px black solid;

}
}
@media print {

.header, .rowheader, .footer, .rowfooter,{
color: white;
background-color: blue;
padding: 5px;

}
.data {

font-size: small;
}
}

180 ODS MARKUP Statement � Chapter 5

Apply the CSS file to your output. The CSSSTYLE= option on the ODS HTML, ODS RTF,
and ODS PDF statements applies the CSS file StyleSheet.css to the output for each destination.
Because the media-type Screen is specified with the CSSSTYLE= option in the ODS HTML
statement, the HTML output has the style information in the Screen media type block applied
to it in addition to the style information that is outside of any media blocks. Similarly, the RTF
output uses the additional information from the Print media block. The PDF output uses all of
the code in the CSS file, because both Print and Screen are specified.

options nodate pageno=1 linesize=80 pagesize=40 obs=10;

ods html file="StyleSheet.html" cssstyle=’stylesheet.css’(screen) text="Style Sheet Using Scr

ods rtf file="StyleSheet.rtf" cssstyle=’stylesheet.css’(print) text="Style Sheet Using Print

ods pdf file="StyleSheet.pdf" cssstyle=’stylesheet.css’(print screen) STARTPAGE=no text="Styl

View the contents of the SAS data set. The CONTENTS procedure shows the contents of the
SAS data set SasHelp.Class.

proc contents data=sashelp.class;
run;

Close the open destinations. The ODS _ALL_ CLOSE statement closes all open destinations
and the files that are associated with them. If you do not close the destinations, then you will
not be able to view the files.

ods _all_ close;

Dictionary of ODS Language Statements � ODS MARKUP Statement 181

Output

Display 5.10 HTML Output Using Both a Style Sheet with Screen Media Type

The yellow and green background colors, the white font color, the font size and border
information all come from the Screen media block. All other style information comes from the
code outside of the media blocks. No information from the Print media block is used.

182 ODS MARKUP Statement � Chapter 5

Display 5.11 RTF Output Using a Style Sheet with Print Media Type

The white font, small font size, cell padding, and the blue background color all come from the
Print media block. All other style information comes from the code outside of the media blocks.
No information from the Screen media block is used.

Dictionary of ODS Language Statements � ODS MARKUP Statement 183

Display 5.12 PDF Output Using Both a Style Sheet with both Print and Screen Media Types

The PDF output uses all of the style information in the CSS file, including the information from
both media types. However, both the Print and Screen media blocks have a background color
specified for row and column headings. The blue background color is picked up because it is
specified last.

Example 7: Using the DOC Suboption to Get ODS TAGSETS.HTMLPANEL Information
ODS features:

ODS TAGSETS.HTMLPANEL statement:
Action:

CLOSE
Options:

OPTIONS
(DOC=”HELP”)

FILE=

Other SAS features:
PROC PRINT

Program Description The following example prints to the SAS log the OPTIONS
suboptions and a description of each available suboption.

Program

Print information about the OPTIONS suboptions to the SAS log file. Specifying the
OPTIONS suboption (DOC=’HELP’) prints Help for the ODS TAGSETS.HTMLPANEL
statement suboptions to the SAS log file. The FILE= option prints the data results to an RTF
file named Help.rtf.

ods tagsets.panel file=’Help.html’ options (doc="help");

184 ODS OUTPUT Statement � Chapter 5

Print the data set SASHELP.CLASS. The PROC PRINT statement prints the
SASHELP.CLASS data set.

proc print data=Sashelp.Class;
run;

Close all destinations. Close the ODS TAGSETS.HTMLPANEL destination and any other
open destinations. This statement also closes all the files that are associated with each open
destination. If you do not close a destination, then you cannot view the files in a browser window.

ods _all_ close;

SAS Log Output Specify the “DOC=’help’ suboption to print all of the OPTIONS
suboptions and information about each of the suboptions to the SAS log.

ODS OUTPUT Statement

Produces a SAS data set from an output object and manages the selection and exclusion lists for
the OUTPUT destination.

Valid: anywhere
Category: ODS: SAS Formatted

Syntax
ODS OUTPUT action;

ODS OUTPUT data-set-definition(s);

Actions
An action can be one of the following:

CLEAR
sets the list for the OUTPUT destination to EXCLUDE ALL.

CLOSE
closes the OUTPUT destination. When an ODS destination is closed, ODS does not
send output to that destination. Closing a destination frees some system resources.

SHOW
writes to the SAS log the current selection or exclusion list for the OUTPUT
destination. If the list is the default list (EXCLUDE ALL), then SHOW also writes
the current overall selection or exclusion list.

Required Arguments

data-set-definition
provides instructions for turning an output object into a SAS data set. ODS
maintains a list of these definitions. This list is the selection list for the OUTPUT

Dictionary of ODS Language Statements � ODS OUTPUT Statement 185

destination. For information about how ODS manages this list, see “Selection and
Exclusion Lists” on page 34. Each data-set-definition has the following form:

output-object-specification<=data-set>

output-object-specification
has the following form:

output-object<(MATCH_ALL<=macro-var-name> PERSIST=PROC | RUN)>

output-object
identifies one or more output objects to turn into a SAS data set.

To specify an output object, you need to know which output objects your SAS
program produces. The ODS TRACE statement writes to the SAS log a trace
record that includes the path, the label, and other information about each
output object that is produced. For more information, see the ODS TRACE
statement“ODS TRACE Statement” on page 317. Output Objects can be
specified as the following:

� a full path. For example,

Univariate.City_Pop_90.TestsForLocation

is the full path of the output object.
� a partial path. A partial path consists of any part of the full path that

begins immediately after a period (.) and continues to the end of the full
path. For example, if the full path is

Univariate.City_Pop_90.TestsForLocation

then the partial paths are:

City_Pop_90.TestsForLocation
TestsForLocation

� a label that is enclosed in quotation marks.
For example,

"Tests For Location"

� a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

Note: The trace record shows the label path only if you specify the
LABEL option in the ODS TRACE statement. �

� a partial label path. A partial label path consists of any part of the label
that begins immediately after a period (.) and continues to the end of the
label. For example, if the label path is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

then the partial label paths are:

"CityPop_90"."Tests For Location"
"Tests For Location"

� a mixture of labels and paths.
� any of the partial path specifications, followed by a pound sign (#) and a

number. For example, TestsForLocation#3 refers to the third output
object that is named TestsForLocation.

Tip: To create multiple data sets from the same output object, list the output
object as many times as you want. Each time that you list the output object,
specify a different data set.

186 ODS OUTPUT Statement � Chapter 5

MATCH_ALL=<macro-var-name>
creates a new data set for each output object. For an explanation of how ODS
names these data sets, see the discussion of data-set on page 186.

macro-var-name
specifies the macro variable where a list of all the data sets that are created
are stored. Thus, if you want to concatenate all the data sets after the PROC
step, then you can use the macro variable to specify all the data sets in a
DATA step.

Tip: The MATCH_ALL option is not needed to merge conflicting output objects
into one data set.

CAUTION:
A data set that is produced by SAS 9.1 without MATCH_ALL will not necessarily
be identical to a data set produced by SAS 9.0 with MATCH_ALL and then
concatenated in a DATA step. With SAS 9.0, merging dissimilar output objects
with the MATCH_ALL option could result in missing columns or truncated
variables. With SAS 9.1, these restrictions do not apply. For more information
about merging output objects, see “Merging Dissimilar Output Objects into One
Data Set” on page 187. �

PERSIST=PROC | RUN
determines when ODS closes any data sets that it is creating, and determines
when ODS removes output objects from the selection list for the OUTPUT
destination.

PROC
maintains the list of definitions even after the procedure ends, until you
explicitly modify it. To modify the list, use ODS OUTPUT with one or more
data-set-specifications. To set the list for the OUTPUT destination to
EXCLUDE ALL, use the following statement:

ods output clear;

RUN
maintains the list of definitions and keeps open the data sets that it is
creating even if the procedure or DATA step ends, or until you explicitly
modify the list.

See also: “How ODS Determines the Destinations for an Output Object” on
page 35

data-set
names the SAS output data set. You can use a one-level or two-level (with a libref)
name.

If you are creating a single data set, then the ODS OUTPUT statement simply
uses the name that you specify. If you are creating multiple data sets with
MATCH_ALL, then the ODS OUTPUT statement appends numbers to the name.
For example, if you specify test as data-set and you create three data sets, then
ODS names the first data set test. The additional data sets are named test1 and
test2.

Note: If you end the filename with a number, then ODS begins incrementing
the name of the file with that number. For example, if you specify may5 as data-set
and you create three data sets, then ODS names the first data set may5. The
additional data sets are named may6 and may7. �

Default: If you do not specify a data set, then ODS names the output data set
DATAn, where n is the smallest integer that makes the name unique.

Dictionary of ODS Language Statements � ODS OUTPUT Statement 187

Tip: You can specify data set options in parentheses immediately after data-set.

NOWARN
suppresses the warning that an output object was requested but not created.

SHOW
functions just like the ODS SHOW statement except that it writes only the selection
or exclusion list for the OUTPUT destination.

Details

Merging Dissimilar Output Objects into One Data Set By default, the ODS OUTPUT
statement puts all output objects that have the same output-path into one SAS data set,
regardless of any conflicting variables in the output objects. Variables created by a later
output object will get a value of missing in the observations created by the earlier
output object. Variables created by an earlier output object that do not exist in a
subsequent output object will get a value of missing in the observations added by the
later output object. If a variable created by an output object has a different type than a
variable with the same name created by an earlier output object, it will be added to the
output data set using a new name formed by adding a numeric suffix.

Examples

Example 1: Creating a Combined Output Data Set

ODS features:

ODS _ALL_ CLOSE statement

ODS HTML statement:

BODY=
CONTENTS=

FRAME=

PAGE=

ODS LISTING statement:

CLOSE
ODS OUTPUT statement

Other SAS features:

PROC FORMAT

PROC PRINT

PROC TABULATE

KEEP= data set option

Data Sets:
See “Creating the Energy Data Set” on page 875.

Program Description This example routes two output objects that PROC TABULATE
produces to both the OUTPUT destination and the HTML destination. The result is two
output objects that are combined by the ODS OUTPUT statement to create an output
data set formatted as HTML output by the ODS HTML statement.

188 ODS OUTPUT Statement � Chapter 5

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Format the variables Region, Division, and Type. PROC FORMAT creates formats for
Region, Division, and Type.

proc format;
value regfmt 1=’Northeast’

2=’South’
3=’Midwest’
4=’West’;

value divfmt 1=’New England’
2=’Middle Atlantic’
3=’Mountain’
4=’Pacific’;

value usetype 1=’Residential Customers’
2=’Business Customers’;

run;

Do not produce listing output. The ODS LISTING statement closes the LISTING destination
to conserve resources. Otherwise, output would be written to the LISTING destination by
default.

ods listing close;

Create the SAS output data set. The ODS OUTPUT statement creates the SAS data set
EnergyOutput from the output objects that PROC TABULATE produces. The name of each
output object is Table. You can determine the name of the output objects by using the ODS
TRACE ON statement. For information about the ODS TRACE statement, see “ODS TRACE
Statement” on page 317.

Specify the variables that you want to be written to the output SAS data set. The
KEEP= data set option limits the variables in the output data set EnergyOutput to Region,
Division, Type, and Expenditures_sum. The variable name Expenditures_sum is
generated by PROC TABULATE to indicate that the sum statistic was generated for the
Expenditures variable.

ods output Table=energyoutput(keep=region division type expenditures_sum);

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output. The output from PROC TABULATE is sent to the body file. FRAME=,
CONTENTS=, and PAGE= create a frame that includes a table of contents and a table of pages
that link to the contents of the body file. The body file also appears in the frame.

ods html body=’your_body_file.html’
frame=’your_frame_file.html’

contents=’your_contents_file.html’
page=’your_page_file.html’;

Dictionary of ODS Language Statements � ODS OUTPUT Statement 189

Create output data sets and an HTML report. This PROC TABULATE step creates two
output objects named Table, one for each BY group, and adds them to the EnergyOutput data
set. Because the HTML destination is open, ODS writes the output to the body file.

proc tabulate data=energy format=dollar12.;
by region;
class division type;
var expenditures;
table division,

type*expenditures;

format region regfmt. division divfmt. type usetype.;
title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Close the current body file and open a new file. The ODS HTML BODY= statement closes
the original body file and opens a new one. The contents, page, and frame files remain open. The
contents and page files will contain links to both body files.

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output. The output from PROC TABULATE is sent to the body file. FRAME=,
CONTENTS=, and PAGE= create a frame that includes a table of contents and a table of pages
that link to the contents of the body file. The body file also appears in the frame.

ods html body=’your_body_file_2.html’;

Print the combined data set. This PROC PRINT step prints the data set EnergyOutput that
contains both BY groups. The output is added to the current body file,
your_body_file_2.html.

proc print data=energyoutput noobs;
title ’Combined Output Data Set’;

run;

Close all of the open destinations. The ODS _ALL_ CLOSE statement closes all open ODS
output destinations. To return ODS to its default setup, the ODS LISTING statement opens the
LISTING destination.

ods _all_ close;
ods listing;

190 ODS OUTPUT Statement � Chapter 5

HTML Output

Display 5.13 Combined Data Set

The following HTML output shows the output DATA set that is created by the ODS OUTPUT
statement.

Display 5.14 Output Objects Created by PROC TABULATE

The following output shows the two separate BY groups that are created by the TABULATE
procedure.

Dictionary of ODS Language Statements � ODS OUTPUT Statement 191

Example 2: Using Different Procedures to Create a Data Set from Similar Output
Objects

ODS features:
ODS HTML statement:

BODY=
CONTENTS=
FRAME=

ODS OUTPUT statement
ODS SELECT statement

Other SAS features:
PROC GLM
PROC PRINT
PROC REG

Data set:
See “Creating the Iron Data Set” on page 879.

Program Description This example creates and prints a data set that is created from
the parameter estimates that PROC REG and PROC GLM generate. These procedures
are part of SAS/STAT software.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Set the SAS system options for the listing output. The NODATE option suppresses the
display of the date and time in the listing output. The PAGENO= option specifies the starting
page number. The PAGESIZE= option specifies the number of lines on an output page. The
LINESIZE= option specifies the output line length.

options nodate pageno=1 pagesize=60 linesize=72;

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output. The FRAME= and CONTENTS= options create a frame that includes a table of
contents that links to the contents of the body file. The body file also appears in the frame.

ods html body=’parameter-estimates-body.htm’
frame=’parameter-estimates-frame.htm’

contents=’parameter-estimates-contents.htm’;

Specify the output objects to be sent to all open ODS destinations. The ODS SELECT
statement specifies that output objects named ParameterEstimates should be sent to all open
ODS destinations that do not specifically exclude them. The LISTING destination is open by
default, and its default list is SELECT ALL. The ODS HTML statement has opened the HTML
destination, and its default list is also SELECT ALL. Thus any object that is named
ParameterEstimates will go to both these destinations. The PERSIST option specifies that
ParameterEstimates should remain in the overall selection list until the list is explicitly
modified.

ods select ParameterEstimates(persist);

192 ODS OUTPUT Statement � Chapter 5

Create the IronParameterEstimates data set. The ODS OUTPUT statement opens the
OUTPUT destination and creates the SAS data set IronParameterEstimates. By default, the list
for the OUTPUT destination is EXCLUDE ALL. This ODS OUTPUT statement puts
ParameterEstimates in the selection list for the destination. The PERSIST=PROC option
specifies that ParameterEstimates should remain in the overall selection list until the procedure
ends or the list is explicitly modified.

ods output ParameterEstimates(persist=proc)=IronParameterEstimates;

Create the output objects. PROC REG and PROC GLM each produce an output object named
ParameterEstimates. Because the data set definition persists when the procedure ends, ODS
creates a output object from each one.

proc reg data=iron;
model loss=fe;

title ’Parameter Estimate from PROC REG’;
run;
quit;

proc glm data=iron;
model loss=fe;

title ’Parameter Estimate from PROC GLM’;
run;
quit;

Enable all open destinations to receive output objects. The ODS SELECT ALL statement
sets the lists for all destinations to their defaults so that ODS sends all output objects to the
HTML and LISTING destinations. (Without this statement, none of the output objects from the
following PROC PRINT steps would be sent to the open destinations.)

ods select all;

Print the reports. The PROC PRINT steps print the data set that ODS created from PROC
REG and PROC GLM. The output from these steps goes to both the HTML and the LISTING
destinations. Links to the HTML output are added to the contents file.

proc print data=IronParameterEstimates noobs;
title ’PROC PRINT Report of the Data set from PROC REG’;
run;

Close the OUTPUT and HTML destinations. The ODS _ALL_ CLOSE statement closes all
open destinations except for the LISTING destination, which is open by default.

ods _all_ close;

Dictionary of ODS Language Statements � ODS OUTPUT Statement 193

HTML Output

Display 5.15 HTML Output from the REG, GLM, and PRINT Procedures

The HTML output includes the parameter estimates from PROC REG, the parameter estimates
from PROC GLM, and a report of the data set that ODS created from each set of parameter
estimates.

The table of contents identifies output objects by their labels. The label for ParameterEstimates
in PROC REG is Parameter Estimates. The corresponding label in PROC GLM is Solution.
Notice how the column widths in the HTML output are automatically adjusted to fit the data.
Compare this layout to the layout of the columns in the listing output.

194 ODS OUTPUT Statement � Chapter 5

Listing Output

Output 5.3 Listing Output from the REG, GLM, and PRINT Procedures

Parameter Estimate from PROC REG 1

The REG Procedure
Model: MODEL1

Dependent Variable: Loss

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 129.78660 1.40274 92.52 <.0001
Fe 1 -24.01989 1.27977 -18.77 <.0001

Parameter Estimate from PROC GLM 2

The GLM Procedure

Dependent Variable: Loss

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 129.7865993 1.40273671 92.52 <.0001
Fe -24.0198934 1.27976715 -18.77 <.0001

PROC PRINT Report of the Data Set Created from PROC GLM and PROC REG 3

Model Dependent Variable DF Estimate StdErr tValue Probt

MODEL1 Loss Intercept 1 129.78660 1.40274 92.52 <.0001
MODEL1 Loss Fe 1 -24.01989 1.27977 -18.77 <.0001

Example 3: Creating a Data Set with and without The MATCH_ALL Option

ODS features:
ODS HTML statement:

BODY=
ODS LISTING
ODS OUTPUT statement:

MATCH_ALL
ODS TRACE statement

Other SAS features:
PROC PRINT
PROC REG

Data set:
See “Creating the Model Data Set” on page 879.

Program Description This example illustrates the differences in the data sets created
by specifying the MATCH_ALL option and by not specifying the MATCH_ALL option.

Dictionary of ODS Language Statements � ODS OUTPUT Statement 195

The first program creates a merged data set by specifying the MATCH_ALL option. The
second program creates a merged data set without specifying the MATCH_ALL option.

The data sets that are printed are parameter estimates that PROC REG generates.
The PROC REG procedure is part of SAS/STAT software.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program 1

Do not create listing output. The ODS LISTING statement closes the LISTING destination to
conserve resources. Otherwise, output would be written to the LISTING destination by default.

ods listing close;

Prepare a SAS data set to be created. The ODS OUTPUT statement opens the OUTPUT
destination. By default, the list for the OUTPUT destination is EXCLUDE ALL. This ODS
OUTPUT statement puts SelectionSummary in the selection list for the destination.

The MATCH_ALL option produces a SAS data set for each instance of SelectionSummary. The
name of the first data set is Summary, and the name of the second data set is Summary1 . ODS
stores a list of these names in the macro variable list. This variable is used later in the
example to combine the data sets.

ods output SelectionSummary(match_all=list) = summary;
title1 ’Using the MATCH_ALL Option Produces Two Data Sets With Different Columns’;

Create the output objects and view a record of them in the log. PROC REG creates the
output objects.

The ODS TRACE statement writes to the SAS log a record of each output object that is created.
The ODS TRACE OFF statement represses the printing of the records.

ods trace on;
proc reg data=model;
model r33=a b r4 r8 c d e r23 r24 r29/ selection=forward

sle=.5 maxstep=3;
model r33=a b r4 r8 c d e r23 r24 r29/ selection=backward

sls=0.05 maxstep=3;
run;
ods trace off;

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output.

ods html body=’combined.html’;

196 ODS OUTPUT Statement � Chapter 5

Print the reports. The PROC PRINT steps print the data sets that ODS created from PROC
REG. The output from these steps is sent to both the HTML destination.

title2 ’The First Data Set Has the VARENTERED Column’;
proc print data=summary;
run;

title1;
title2 ’The Second Data Set Has the VERREMOVED Column’;
proc print data=summary1;
run;

Create a data set that contains all of the data sets. The DATA set SummaryM combines all
the data sets that were created by the ODS OUTPUT statement. The macro variable list
contains the list of data set names.

data summarym;
set &list;

run;

Print the merged report and specify the title. The PROC PRINT step prints the merged
data set created from the DATA step. The output from this step is sent to the HTML destination.

The TITLE1 statement cancels the first title, and the TITLE2 statements specify a new title for
the output.

title1;
title2 ’The Merged Data Set Has Both Columns’;
proc print data=summarym;
run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all of the files that are associated with it.

ods html close;

Dictionary of ODS Language Statements � ODS OUTPUT Statement 197

HTML Output

Display 5.16 Three Data Sets Created When Using the MATCH_ALL Option

The First Data Set Created When Using the MATCH_ALL Option This HTML output
contains a printed report of the Summary data set created by the ODS OUTPUT statement with
the MATCH_ALL option specified. It has no VERREMOVED column.

The Second Data Set Created When Using the MATCH_ALL Option This HTML output
contains a printed report of the Summary1 data set created by the ODS OUTPUT statement
with the MATCH_ALL option specified. It has no VARENTERED column.

The Merged Data Set Created When Using the MATCH_ALL Option This HTML output
contains a printed report of the SummaryM data set created by the ODS OUTPUT statement
with the MATCH_ALL option specified. This is the data set created from Summary and
Summary1. It contains both the VARENTERED and VERREMOVED columns.

Program 2

Prepare a SAS data set to be created. The ODS OUTPUT statement opens the OUTPUT
destination and creates the SAS data set Summary. Because the MATCH_ALL option is not
specified, ODS creates one data set that contains all instances of the output object
SelectionSummary.

ods output SelectionSummary=summary;
title1 ’Without the MATCH_ALL Option, ODS Produces a Single Data Set With All

Of the Columns’;

Create the output objects and view a record of them in the log. PROC REG creates the
output objects.

The ODS TRACE statement writes to the SAS log a record of each output object that is created.
The ODS TRACE OFF statement represses the printing of the records.

ods trace on;
proc reg data=model;
model r33=a b r4 r8 c d e r23 r24 r29/ selection=forward

198 ODS PACKAGE Statement � Chapter 5

sle=.5 maxstep=3;
model r33=a b r4 r8 c d e r23 r24 r29/ selection=backward

sls=0.05 maxstep=3;
run;
ods trace off;

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output.

ods html body=’combined2.html’;

Print the combined data set. The PROC PRINT step prints the merged data set created by
ODS. The output from this step is sent to the HTML destination.

proc print data=summary;
run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all of the files that are associated with it.

ods html close;

HTML Output

Display 5.17 Using the ODS OUTPUT Statement Without the MATCH_ALL Option to Combine Data Sets

This HTML output contains a printed report of the Summary data set created by the ODS
OUTPUT statement without the MATCH_ALL option specified. Note that to merge data sets,
you do not have to specify the MATCH_ALL option.

ODS PACKAGE Statement

The ODS PACKAGE statement opens, adds to, publishes, or closes one SAS Output Delivery
System (ODS) package object.

Valid: anywhere
Category: Data Access
Requirement: The destination must specify the PACKAGE option to connect with the
package.

Syntax
ODS PACKAGE (<name>) OPEN <options>;

Dictionary of ODS Language Statements � ODS PACKAGE Statement 199

ODS PACKAGE (<name>) ADD FILE=”file-specification” |
DATA=member-specification MIMETYPE=’’string”
<PATH=”path-specification”><options>;

ODS PACKAGE (<name>) PUBLISH transport
PROPERTIES(transport-property-1=”value-1” … transport-property-n=”value-n”);

ODS PACKAGE (<name>) CLOSE <CLEAR>;

Required Arguments

ADD
adds a file or data set to an ODS package using the specified Multipurpose Internet
Mail Extensions (MIME) type.

Requirement: When using the ADD argument, you must also use the MIMETYPE=,
FILE=, or DATA= arguments to specify a file or data set and a MIME type.

FILE=”file-specification” <TEXT | BINARY>
specifies the file that you want to add to an ODS package.

file-specification
specifies one of the following:

external-file is the name of an external file to add.

Requirement: You must enclose external-file in quotation
marks.

fileref is a file reference that has been assigned to an external file.
Use the FILENAME statement to assign a fileref.

TEXT
specifies that the file is a text file.

BINARY
specifies that the file is a binary file.

Default: If you do not specify the TEXT or BINARY values, then file is text if the
mimetype is text, and binary if the mimetype is anything else.

Example: Use the following statement to add the Test.Sas file as plain text to the
ODS package directory SAS:

ods package add file="test.sas" mimetype="text/plain" path="sas/";

Restriction: You can use the FILE= argument only with the ADD argument.

Restriction: You cannot add a file and a data set to an ODS package.

DATA=member-specification
specifies the data set that you want to add to an ODS package. member-specification
can be in the form libname.membername or membername.

Restriction: You can use the DATA= argument only with the ADD argument.

Restriction: You cannot add a file and a data set to an ODS package.

MIMETYPE=’’string”
specifies the Multipurpose Internet Mail Extensions (MIME) type for the file or data
set that you are adding to an ODS package.

Restriction: You can use the MIMETYPE= argument only with the ADD argument.

200 ODS PACKAGE Statement � Chapter 5

OPEN EXPIRATION= <’expiration-date’>
creates the ODS package object to which the ODS destinations can connect. The
ODS package object holds the package metadata and tracks the locations of any files
that are added to the package metadata.

Example: The following ODS PACKAGE statement opens an unnamed package
with an abstract and a description.

ods package open abstract="this is my abstract" description="this is
description";

PUBLISH EXPIRATION=<’expiration-date’>
builds the ODS package and sends it to the chosen delivery transport.

expiration-date
specifies an expiration date for the package. The date must be a SAS date value.

Requirement: expiration-date must be enclosed in quotation marks.

CLOSE
deletes the package object. As long as you have not closed a package, you can publish
it as many ways and times as you want.

Tip: Use the CLEAR option to remove files that have been added to the package.

transport
specifies the deliver transport to use with the PUBLISH action. transport can be one
of the following:

ARCHIVE PROPERTIES(transport-property-1="value-1"…
transport-property-n="value-n"")

publishes a package to an archive. For a list of transport properties and their
values, see the section on transport properties in SAS Integration Technologies
Developer’s Guide at http://support.sas.com/rnd/itech/doc9/dev_guide/
app/pkgintf/pkg_publ.html.

Example: The following statement publishes an ODS package to the archive
Test.spk:

ods package publish archive properties(archive_path="./"
archive_name="test.spk");

EMAIL PROPERTIES(transport-property-1="value-1" . . .
transport-property-n="value-n") ADDRESSES("e-mail-address-1" . . .
"e-mail-address-n")

publishes a package to one or more e-mail addresses. For a list of transport
properties and their values, see the section on transport properties in SAS
Integration Technologies Developer’s Guide at http://support.sas.com/rnd/
itech/doc9/dev_guide/app/pkgintf/pkg_publ.html.

Example: The following statement publishes an ODS package to the e-mail
addresses your.email@company.com and your.second.email@company.com:

ods package publish email addresses("your.email@company.com"
"your.second.email@company.com")
properties(archive_name="testPackage" archive_path="./");

QUEUE PROPERTIES(transport-property-1="value-1" . . .
transport-property-n="value-n") QUEUES("queue-1" . . . "queue-n")

publishes a package to one or more message queues. For a list of transport
properties and their values, see the section on transport properties in SAS
Integration Technologies Developer’s Guide at http://support.sas.com/rnd/
itech/doc9/dev_guide/app/pkgintf/pkg_publ.html.

http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html

Dictionary of ODS Language Statements � ODS PACKAGE Statement 201

SUBSCRIBERS PROPERTIES(transport-property-1="value-1" . . .
transport-property-n="value-n")

publishes a package to subscribers who are associated with the specified channel.
For a list of transport properties and their values, see the section on transport
properties in SAS Integration Technologies Developer’s Guide at http://
support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html.

WEBDAV PROPERTIES(transport-property-1="value-1" . . .
transport-property-n="value-n")

publishes a package to a WebDAV-compliant server. For a list of transport
properties and their values, see the section on transport properties in SAS
Integration Technologies Developer’s Guide at http://support.sas.com/rnd/
itech/doc9/dev_guide/app/pkgintf/pkg_publ.html.

Options

ABSTRACT=string
specifies a string for the abstract metadata of the package or file.
Restriction: You can use the ABSTRACT= option only with the ADD or OPEN

arguments.

CLEAR
specifies that all files that were automatically added to the package will be removed
from the location to which ODS wrote them.
Restriction: You can use the CLEAR option only with the CLOSE argument.

DESCRIPTION=string
specifies a string for the description metadata for the package or file.
Restriction: You can use the DESCRIPTION= option only with the ADD or OPEN

arguments.

(name)
specifies the name of a package. Naming a package enables you to open more than
one package at a time. Each destination can connect with any package by specifying
the package name in the same way.
Requirement: You must place name directly after the PACKAGE keyword in the

ODS PACKAGE statement.
Requirement: name must be enclosed in parenthesis.

NAMEVALUE="<name-1="value-1" . . . name-n="value-n">"
specifies a string of name/value pairs for the name/value metadata on the package or
file.
Restriction: The NAMEVALUE= option can be used only with the ADD or OPEN

arguments.

PATH="path-specification"
places the file or data set at the specified pathname within an ODS package.
Restriction: You can use the PATH= option only with the ADD argument.
Example: Use the following statement to add the Test.Sas file as plain text to the

ODS package directory SAS:

ods package add file="test.sas" mimetype="text/plain" path="sas/";

TEMPLATE=
specifies the name of a package template to use.

http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html

202 ODS PACKAGE Statement � Chapter 5

Restriction: You can use the TEMPLATE= option only with the ADD or OPEN
arguments.

Details

A package is a container for digital content that is generated or collected for delivery
to a consumer. ODS packages allow ODS destinations to use the SAS Publishing
Framework. An ODS package is an object that contains output files and data sets that
are associated with any open ODS destinations. ODS packages hold the package
metadata and track the output from any active destinations that connect to it. After the
destinations are closed, the package can be published to any of the publish destinations.
You can continue to use the package, or you can close it. A package remains active until
explicitly closed.

Examples

Example 1: Creating an ODS Package

Program Description: The following example creates a simple ODS package. The
package is created in your default directory, if you do not specify a different directory.

Program

Close the LISTING destination and specify graphical options with the GOPTIONS
statement.

ods listing close;
goptions dev=gif xpixels=480 ypixels=320;

Open an ODS package and specify that HTML output be added to the package. The
ODS PACKAGE statement opens an ODS package with no name. The PACKAGE option
specified by the ODS HTML statement specifies that output from the HTML destination be
added to the package.

ods package open;
ods html package;

Create graphical output with the GPLOT statement and close the HTML destination.

proc gplot data=sashelp.class;
plot height*weight;
by name;

run;
quit;
ods html close;

Dictionary of ODS Language Statements � ODS PACKAGE Statement 203

Build the package and publish it to an archive. The PUBLISH option builds the ODS
package. The ARCHIVE property publishes the package to the archive named
SimpleExample.zip in the default directory.

ods package publish archive properties(archive_name="SimpleExample.zip"
archive_path="./");

ods package close;

Program Output

Display 5.18 Simple ODS Package

Example 2: Listing Package Contents with the ODS DOCUMENT Statement

Program Description: In the following program, PROC DOCUMENT imports the
archive SimpleExample.zip into a PROC DOCUMENT package named myPackage.You
can then use PROC DOCUMENT to list the contents and details of the package.

Program

Open the LISTING destination.

ods listing;

204 ODS PACKAGE Statement � Chapter 5

Create an ODS document and import SimpleExample.zip. The DOCUMENT procedure
creates the ODS document Archive. The IMPORT TO statement imports SimpleExample.zip
into the package myPackage. The LIST statement lists all of the levels of Archive.

proc document name=archive;
import archive="SimpleExample.zip" to myPackage;

list/levels=all;
run;

List the details of the file SasHtml.htm. The DIR statement changes the directory to
myPackage. The LIST statement lists the details of SasHtml.htm.

dir myPackage;
list ’sashtml.htm’n/details;
run;

quit;

Dictionary of ODS Language Statements � ODS PACKAGE Statement 205

Program Output

Output 5.4 Listing of Work.Archive and Details of HTM File

The SAS System

Listing of: \Work.Archive\

Order by: Insertion

Number of levels: All

Obs Path Type

1 \myPackage#1 Dir

2 \myPackage#1\’sashtml.htm’n#1 File

3 \myPackage#1\’gplot.gif’n#1 File

4 \myPackage#1\’gplot1.gif’n#1 File

5 \myPackage#1\’gplot2.gif’n#1 File

6 \myPackage#1\’gplot3.gif’n#1 File

7 \myPackage#1\’gplot4.gif’n#1 File

8 \myPackage#1\’gplot5.gif’n#1 File

9 \myPackage#1\’gplot6.gif’n#1 File

10 \myPackage#1\’gplot7.gif’n#1 File

11 \myPackage#1\’gplot8.gif’n#1 File

12 \myPackage#1\’gplot9.gif’n#1 File

13 \myPackage#1\’gplot10.gif’n#1 File

14 \myPackage#1\’gplot11.gif’n#1 File

15 \myPackage#1\’gplot12.gif’n#1 File

16 \myPackage#1\’gplot13.gif’n#1 File

17 \myPackage#1\’gplot14.gif’n#1 File

18 \myPackage#1\’gplot15.gif’n#1 File

19 \myPackage#1\’gplot16.gif’n#1 File

20 \myPackage#1\’gplot17.gif’n#1 File

21 \myPackage#1\’gplot18.gif’n#1 File

The SAS System

Listing of: \Work.Archive\myPackage#1\’sashtml.htm’n#1

Order by: Insertion

Number of levels: 1

Size

Type in Bytes Created Modified Symbolic Link Template

File 4762 17OCT2008:14:32:52 17OCT2008:14:32:52

Label

MARKUP, Proc, Gplot, GPLOT, Plot of Height by Weight, GPLOT1, Plot of Height by Weight, GPLOT2,

Plot of Height by Weight, GPLOT3, Plot of Height by Weight, GPLOT4, Plot of Height by Weight,

GPLOT5, Plot of Height by Weight, GPLOT6, Plot of Height by Weigh

See Also

Publishing Framework feature of SAS Integrated Technologies
http://support.sas.com/rnd/itech/doc9/dev_guide/publish/index.html

Packages with Publishing Framework
http://support.sas.com/rnd/itech/doc9/dev_guide/publish/
package.html

Transport properties in the SAS Integration Technologies Developer’s Guide
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/
pkg_publ.html

http://support.sas.com/rnd/itech/doc9/dev_guide/publish/package.html
http://support.sas.com/rnd/itech/doc9/dev_guide/publish/package.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html
http://support.sas.com/rnd/itech/doc9/dev_guide/app/pkgintf/pkg_publ.html

206 ODS PATH Statement � Chapter 5

ODS PATH Statement

Specifies locations to write to or read from when creating or using PROC TEMPLATE definitions
and the order in which to search for them.

Valid: anywhere
Category: ODS: Output Control
Tip: This statement overrides the ODS PATH statement for the duration of a PROC
TEMPLATE step.
Tip: You can use the SYSODSPATH automatic macro variable to store the current ODS
path. For information on the SYSODSPATH macro variable, see SAS Macro Language:
Reference.

Syntax
PATH <(APPEND) | (PREPEND) | (REMOVE) > location(s);

PATH path-argument;

Required Arguments

location(s)
specifies one or more locations to write to or read from when creating or using PROC
TEMPLATE definitions and the order in which to search for them. ODS searches the
locations in the order that they appear on the statement. It uses the first definition
that it finds that has the appropriate access mode (read, write, or update) set.

Each location has the following form:

<libref.>item-store <(READ | UPDATE | WRITE)>

<libref.>item-store
identifies an item store to read from, to write to, or to update. If an item store
does not already exist, then the ODS PATH statement will create it.

(READ | UPDATE | WRITE)
specifies the access mode for the definition. The access mode is one of the following:

READ
provides read-only access.

WRITE
provides Write access (always creating a new template store) as well as Read
access.

UPDATE
provides Update access (creating a new template store only if the specified one
does not exist) as well as Read access.

Default: READ
Default: The general default path is:

SASUSER.TEMPLAT (UPDATE)

Dictionary of ODS Language Statements � ODS PATH Statement 207

SASHELP.TMPLMST (READ)

Note: SAS stores all the definitions that it provides in SASHELP.TMPLMST. �

If you have the RSASUSER SAS system option specified, the default path is:
WORK.TEMPLAT(UPDATE)
SASUSER.TEMPLAT (READ)
SASHELP.TMPLMST (READ)

Note: See the RSASUSER SAS system option in SAS Language Reference:
Dictionary for more information. �

Interaction: You can use the PATH statement in a PROC TEMPLATE step to
temporarily override the ODS PATH statement (see “PATH Statement” on page
416 in PROC TEMPLATE).

Tip: If you want to be able to ignore all definitions that you create, then keep them
in their own item stores so that you can leave them out of the list of item stores
that ODS searches.

path-argument
specifies the setting or displaying of the ODS path.

path-argument can be one of the following:

RESET
sets the ODS path to the default settings SASUSER.TEMPLAT (UPDATE) and
SASHELP.TMPLMST (READ).

SHOW
displays the current ODS path.

VERIFY
sets the ODS path to include only templates supplied by SAS. VERIFY is the same
as specifying ODS PATH SASHELP.TMPLMST (READ).

Options

(APPEND | PREPEND | REMOVE)
adds or removes one or more locations to a path.

APPEND
adds one or more locations to the end of a path. When you append a location to a
path, all duplicate instances (same name and same permissions) of that item store
are removed from the path. Only the last item store with the same name and
permissions are kept.

PREPEND
adds one or more locations to the beginning of a path. When you prepend a
location with update permissions to a path, all duplicate instances (same name
and same permissions) of that item store are removed from the path. Only the
first item store with the same name and permissions are kept.

REMOVE
removes one or more locations from a path.

Default: If you do not specify an APPEND, PREPEND, or REMOVE option, then
the ODS PATH statement overwrites the complete path.

208 ODS PCL Statement � Chapter 5

ODS PCL Statement

Opens, manages, or closes the PCL destination, which produces printable output for PCL (HP
LaserJet) files.

Valid: anywhere
Category: ODS: Third-Party Formatted

Syntax
ODS PCL <(<ID=>identifier)> <action>;

ODS PCL <(<ID=>identifier)> <option(s)>;

Without an Action or Options
If you use the ODS PCL statement without an action or options, then it opens the

PCL destination and creates PCL output.

Actions
The following table lists the actions available for the ODS PCL statement. For

complete descriptions of actions, see“Actions” on page 219 in the ODS PRINTER
statement.

Table 5.20 ODS PCL Action Summary Table

Task Action

Close the PCL destination and the file that is
associated with it

CLOSE

Exclude output objects from the PCL destination EXCLUDE

Select output objects for the PCL destination SELECT

Write to the SAS log the current selection or exclusion
list for the PCL destination

SHOW

Options
The following table lists the options that are available for the ODS PCL statement.

For more detailed descriptions of these options, see “Options” on page 219 in the ODS
PRINTER statement.

Dictionary of ODS Language Statements � ODS PCL Statement 209

Table 5.21 ODS PCL Option Summary Table

Task Option

Apply a specified color scheme to your output COLOR=

Specify the number of columns to create on each page
of output

COLUMNS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify the image resolution for output files DPI=

Specify the file to write to FILE=

Open multiple instances of the same destination at
the same time

ID=

Create a new file at the specified starting-point NEWFILE=

Specify that the output from the destination be added
to an ODS package

PACKAGE

Control page breaks STARTPAGE=

Specify the style definition to use in writing the PCL
output

STYLE=

Insert text into your output TEXT=

For tables with multiple pages, ensure uniformity
from page to page within a single table

UNIFORM

Details

Opening and Closing the PCL Destination You can modify an open PCL destination
with many ODS PCL options. However, the FILE= and SAS options will automatically
close the open destination that is referred to in the ODS PCL statement, and will also
close any files associated with it, and then open a new instance of the destination. If
you use one of these options, it is best if you explicitly close the destination yourself.

The ODS Printer Family of Statements The ODS PCL statement is part of the ODS
printer family of statements. Statements in the printer family open the PCL, PDF,
PRINTER, or PS destination, producing output that is suitable for a high-resolution
printer. The ODS PDF, ODS PRINTER, and ODS PS statements are also members of
the ODS printer family of statements.

See Also

Statements:
“ODS PDF Statement” on page 210
“ODS PRINTER Statement” on page 218
“ODS PS Statement” on page 239

“The Third-Party Formatted Destinations” on page 26

210 ODS PDF Statement � Chapter 5

ODS PDF Statement

Opens, manages, or closes the PDF destination, which produces PDF output, a form of output that
is read by Adobe Acrobat and other applications.

Valid: anywhere

Category: ODS: Third-Party Formatted

Tip: The PDF driver that SAS uses does not recognize all Microsoft Windows fonts. You
must enter any such fonts into the SAS registry in order for SAS to find them. See the
SAS registry information in SAS Language Reference: Concepts.

Syntax

ODS PDF <(<ID=>identifier)> <action>;

ODS PDF <(<ID=>identifier)> <option(s)>;

Without an Action or Options

If you use the ODS PDF statement without an action or options, then it opens the
PDF destination and creates PDF output.

Actions

The following table lists the actions available for ODS PDF statement. For complete
descriptions see “Actions” on page 219 in the ODS PRINTER statement.

Table 5.22 ODS PDF Action Summary Table

Task Action

Close the PCL destination and the file that is
associated with it

CLOSE

Exclude output objects from the PCL destination EXCLUDE

Select output objects for the PCL destination SELECT

Write to the SAS log the current selection or exclusion
list for the PCL destination

SHOW

Options

The following table lists the options that are available for the ODS PDF statement.
For more detailed descriptions of these options, see “Options” on page 219 in the ODS
PRINTER statement.

Dictionary of ODS Language Statements � ODS PDF Statement 211

Table 5.23 ODS PDF Option Summary Table

Task Option

Specify the root name for the anchor tag that
identifies each output object in the current file

ANCHOR=

Insert the text string that you specify as the author in
the metadata of a file

AUTHOR=

Specify a string to use as the first part of all
references that ODS creates in the file

BASE=

Specify whether to generate and display the list of
bookmarks for a PDF file

BOOKMARKLIST=

Control the generation of bookmarks in a PDF file BOOKMARKGEN=

Apply a specified color scheme to your output COLOR=

Specify the number of columns to create on each page
of output

COLUMNS=

Specify the compression of a PDF file. Compression
reduces the size of the file

COMPRESS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify the image resolution for output files DPI=

Specify the file to write to FILE=

Open multiple instances of the same destination at
the same time

ID=

Insert a string of keywords into the output file’s
metadata

KEYWORDS=

Create a new file at the specified starting-point NEWFILE=

Specify that the output from the destination be added
to an ODS package

PACKAGE

Control whether notes are added to a PDF file for
items that are associated with the FLYOVER= style
attribute

PDFNOTE

Control the level of the expansion of the table of
contents in PDF documents

PDFTOC=

Control page breaks STARTPAGE=

Specify the style definition to use in writing the PDF
output

STYLE=

Insert the text string that you specify as the subject
in the metadata of a file

SUBJECT=

Insert text into your output TEXT=

212 ODS PDF Statement � Chapter 5

Task Option

Insert the text string that you specify as the title in
the metadata of a file

TITLE=

For multi-page tables, provide uniformity from page
to page within a single table

UNIFORM

Details

The ODS Printer Family of Statements The ODS PDF statement is part of the ODS
printer family of statements. Statements in the printer family open the PCL, PDF,
PRINTER, or PS destination, producing output that is suitable for a high-resolution
printer. The ODS PCL, ODS PRINTER, and ODS PS statements are also members of
the ODS printer family of statements.

Opening and Closing the PDF Destination You can modify an open PDF destination
with many ODS PDF options. However, the FILE= and SAS options will automatically
close the open destination that is referred to in the ODS PDF statement, and will also
close any files associated with it, and then open a new instance of the destination. If
you use one of these options, it is best if you explicitly close the destination yourself.

Examples

Example 1: Opening Multiple Instances of the Same Destination at the Same Time

ODS features:
ODS PDF statement:

Options:
ID=
STYLE=
FILE=

Other SAS features:
PROC FORMAT
PROC SORT
PROC REPORT
NOBYLINE|BYLINE system option
#BYVAL parameter in titles

Data set:
See “Creating the Grain_Production Data Set” on page 878.

Format:
See “Creating the $CNTRY Format” on page 869.

This example opens multiple instances of the PDF destination to create PDF output.
One instance uses the default style definition and the second instance uses the STYLE=
option to specify the D3D style definition.

Program

Sort the data set Grain_Production. PROC SORT sorts the data first by values of Year, then
by values of Country, and finally by values of Type.

proc sort data=grain_production;
by year country type;

Dictionary of ODS Language Statements � ODS PDF Statement 213

run;

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources. If the destination were left open, then ODS would produce both Listing and
PDF output.

ods listing close;

Create two different PDF output files at the same time. The ODS PDF statement opens
the PDF destination and creates PDF output.

The file Grain-1.pdf is created by the first ODS PDF statement. Because no style definition is
specified, the default style, Styles.Printer, is used. The PDFTOC=2 option specifies that the
table of contents is expanded two levels.

The file Grain-2.pdf is created by the second ODS PDF statement with the ID= option specified.
The STYLE= option specifies that ODS use the style definition Brick. The ID= option gives this
instance of the PDF destination the name BrickStyle. The PDFTOC=3 option specifies that the
table of contents is expanded three levels.

Note: If you do not specify the ID= option, this ODS PDF statement will close the
instance of the PDF destination that was opened by the previous ODS PDF statement
and open a new instance of the PDF destination. The file Grain-1.pdf will contain no
output. �

ods pdf file=’grain-1.pdf’ pdftoc=2;
ods pdf (id=brickstyle) style=brick file=’grain-2.pdf’ pdftoc=3;

Suppress the default BY line, suppress the printing of the date, and use the BY value
in a title. The NOBYLINE option suppresses the BY line. The #BYVAL specification inserts the
current value of the BY variable Year into the title.

options nobyline nodate;
title ’Leading Grain-Producing Countries’;
title2 ’for #byval(year)’;

Produce a report. This PROC REPORT step produces a report on grain production. Each BY
group produces a page of output.

proc report data=grain_production nowindows;
by year;
column country type kilotons;
define country / group width=14 format=$cntry.;
define type / group ’Type of Grain’;
define kilotons / format=comma12.;
footnote ’Measurements are in metric tons.’;

run;

Restore the BY line and clear the second title statement. The BYLINE option restores the
BY line. The TITLE2 statement clears the second TITLE statement.

options byline;
title2;

214 ODS PDF Statement � Chapter 5

Produce a report that contains one table for each year. The TABLE statement in this
PROC TABULATE step has Year as the page dimension. Therefore, PROC TABULATE
explicitly produces one table for 1995 and one for 1996.

proc tabulate data=grain_production format=comma12.;
class year country type;
var kilotons;
table year,

country*type,
kilotons*sum=’ ’ / box=_page_ misstext=’No data’;

format country $cntry.;
footnote ’Measurements are in metric tons.’;

run;

Close the open destinations so that you can view or print the output. The ODS PDF
CLOSE statement closes the first instance of the PDF destination and all of the files that are
associated with it. The ODS PDF (ID=d3dstyle) statement closes the second instance of the PDF
destination and all of the files that are associated with it. You must close the destinations before
you can view the output with a browser or before you can send the output to a physical printer.

ods pdf close;
ods pdf(id=d3dstyle) close;

PDF Output

Display 5.19 PDF Output With the Default Style Definition

Dictionary of ODS Language Statements � ODS PHTML Statement 215

Display 5.20 PDF Output Using Brick Style Definition

See Also

Statements:
“ODS PCL Statement” on page 208
“ODS PRINTER Statement” on page 218
“ODS PS Statement” on page 239

“The Third-Party Formatted Destinations” on page 26

ODS PHTML Statement

Opens, manages, or closes the PHTML destination, which produces simple HTML output that uses
twelve style elements and no class attributes for the presentation. Class attributes are used only
for the justification.

Valid: anywhere
Category: ODS: Third-Party Formatted

Syntax
ODS PHTML action;

ODS PHTML <option(s)>;

Without an Action or Options
If you use the ODS PHTML statement without an action or options, then it opens the

PHTML destination and creates PHTML output.

216 ODS PHTML Statement � Chapter 5

Actions
The following table lists the actions available for the ODS PHTML statement. For

complete descriptions of these actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.24 ODS PHTML Action Summary Table

Task Action

Close the PHTML destination and the file that is
associated with it

CLOSE

Exclude output objects from the PHTML destination EXCLUDE

Select output objects for the PHTML destination SELECT

Write to the SAS log the current selection or exclusion
list for the PHTML destination

SHOW

Options
The following table lists the options available for the ODS PHTML statement, which

is part of the markup family of statements. For complete descriptions of these options,
see “Options” on page 148 in the ODS MARKUP statement.

Table 5.25 ODS PHTML Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view the HTML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the HTML output

CHARSET=

Open the PHTML destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the PHTML destination and specify the file that
contains a table of contents for the output

CONTENTS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Dictionary of ODS Language Statements � ODS PHTML Statement 217

Task Option

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify HTML tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify HTML code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
PHTML files that the destination writes to

METATEXT=

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the PHTML destination and specify the file that
contains a description of each page of the body file,
and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the PHTML destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert text into your document TEXT=

218 ODS PRINTER Statement � Chapter 5

Task Option

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS PHTML statement is part of the ODS markup family of statements. ODS
statements in the markup family produce output that is formatted using one of many
different markup languages such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. SAS supplies many markup languages for
you to use ranging from DOCBOOK to TROFF. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

ODS PRINTER Statement

Opens, manages, or closes the PRINTER destination, which produces printable output.

Valid: anywhere

Category: ODS: Third-Party Formatted

Interaction: By default, when you execute a procedure that uses the FORMCHAR system
option (for example, PROC PLOT or PROC CHART), ODS formats the output in SAS
Monospace font. If you are creating output that will be viewed in an operating
environment where SAS software is not installed, this output will not display correctly,
because without SAS, the SAS Monospace font is not recognized. To make your
document display correctly, include the following statement before your SAS program:

OPTIONS FORMCHAR="|----|+|---+=|-/\<>*";

CAUTION:
When you are producing PostScript output, verify that your online viewer or printer is set
to use the same paper size as the value that is specified by the OPTIONS PAPERSIZE=
statement. Otherwise, some parts of your output might appear to be missing. �

Syntax
ODS PRINTER <(<ID=>identifier)> <action>;

ODS PRINTER <(<ID=>identifier)> <option(s)>;

Without an Action or Options
If you use the ODS PRINTER statement in the UNIX, VMS, or z/OS operating

environments without an action or options, then it opens the PRINTER destination and
creates PostScript output, unless otherwise configured by your system administrator.

If you use the ODS PRINTER statement in the Windows operating environment
without an action or options, then it prints to the default Windows printer.

Dictionary of ODS Language Statements � ODS PRINTER Statement 219

Actions
An action can be one of the following:

CLOSE
closes the destination and the file that is associated with it. You cannot print the file
until you close the destination.
Tip: When an ODS destination is closed, ODS does not send output to that

destination. Closing an unneeded destination frees some system resources.

EXCLUDE exclusion(s)| ALL | NONE
excludes output objects from the destination.
Default: NONE
Restriction: The destination must be open for this action to take effect.
Main discussion: “ODS EXCLUDE Statement” on page 110

SELECT selection(s) | ALL | NONE
selects output objects for the destination.
Default: ALL
Restriction: The destination must be open for this action to take effect.
Main discussion: “ODS SELECT Statement” on page 264

SHOW
writes the current selection or exclusion list for the destination to the SAS log.
Restriction: The destination must be open for this action to take effect.
Tip: If the selection or exclusion list is the default list (SELECT ALL), then SHOW

also writes the entire selection or exclusion list.
See also: “ODS SHOW Statement” on page 277

Options

Table 5.26 ODS PRINTER Option Summary Table

Task Option

Specify the root name for the anchor tag that
identifies each output object in the current file

ANCHOR=

Insert the text string that you specify as the author in
the metadata of a file

AUTHOR=

Specify a string to use as the first part of all
references that ODS creates in the file

BASE=

Specify whether to generate and display the list of
bookmarks for a PDF file

BOOKMARKLIST=

Control the generation of bookmarks in a PDF file BOOKMARKGEN=

Apply a specified color scheme to your output COLOR=

Specify the number of columns to create on each page
of output

COLUMNS=

Specify the compression of a PDF file. Compression
reduces the size of the file

COMPRESS=

Control the generation of a printable table of contents CONTENTS=

220 ODS PRINTER Statement � Chapter 5

Task Option

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify the image resolution in dots per inch for
output images

DPI=

Specify the file to write to FILE=

Use the printer drivers that the host system provides HOST

Open multiple instances of the same destination at
the same time

ID=

Insert a string of keywords into the output file’s
metadata

KEYWORDS=

Create a new file at the specified starting-point NEWFILE=

Omit the table of contents (Bookmark list) that is
produced by default when producing PDF or
PDFMARK output

NOTOC

Specify that the output from the destination be added
to an ODS package

PACKAGE

Create PCL output PCL

Create PDF output PDF

Insert special markup which is used when converting
a PostScript file to a PDF file

PDFMARK

Control whether notes are added to a PDF file for
items that are associated with the FLYOVER= style
attribute

PDFNOTE

Control the level of the expansion of the table of
contents in PDF documents

PDFTOC=

Create output that is formatted for the specified
printer

PRINTER=

Create PostScript output PS

Control page breaks STARTPAGE=

Specify the style definition to use in writing the PDF
output

STYLE=

Insert the text string that you specify as the subject
in the metadata of a file

SUBJECT=

Insert text into your output TEXT=

Insert the text string that you specify as the title in
the metadata of a file

TITLE=

For multi-page tables, provide uniformity from page
to page within a single table

UNIFORM

ANCHOR=’anchor-name’
specifies the root name for the anchor tag that identifies each output object in the
current file.

Each output object must have an anchor tag for the bookmarks to reference. The
references, which are automatically created by ODS, point to the name of an anchor.
Therefore, each anchor name in a file must be unique.

Dictionary of ODS Language Statements � ODS PRINTER Statement 221

anchor-name
is the root name for the anchor tag that identifies each output object in the current
file.

ODS creates unique anchor names by incrementing the name that you specify.
For example, if you specify ANCHOR=’tabulate’, then ODS names the first anchor
tabulate. The second anchor is named tabulate1; the third is named
tabulate2, and so on.

Requirement: You must enclose anchor-name in quotation marks.

Alias: NAMED_DEST= | BOOKMARK=
Restriction: Use this option only with the ODS PDF statement, the ODS PS

statement with the PDFMARK option specified, and the ODS PRINTER statement
with the PDFMARK option specified.

Tip: You can change anchor names as often as you want by submitting the
ANCHOR= option in a valid statement anywhere in your program. Once you have
specified an anchor name, it remains in effect until you specify a new one.

Tip: Specifying new anchor names at various points in your program is useful when
you want to link to specific parts of your PRINTER output. Because you can
control where the anchor name changes, you know in advance what the anchor
name will be at those points.

AUTHOR= ’author-text’
inserts into the metadata of a file, the text string that you specify as the author.

author-text
is the text in the metadata of an open file that indicates the author.

Restriction: Use this option only with the ODS PDF statement, the ODS PS
statement with the PDFMARK option specified, and the ODS PRINTER statement
with the PDFMARK option specified.

Restriction: The AUTHOR= option takes effect only if specified at the opening of a
file.

Requirement: You must enclose author-text in quotation marks.

BASE=’base-text’
specifies the text to use as the first part of all references that ODS creates in the
output file.

base-text
is the text that ODS uses as the first part of all references that ODS creates in the
file.

Consider this specification:

BASE=’http://www.your-company.com/local-url/’

In this case, ODS creates references that begin with the string http://
www.your-company.com/local-url/. The appropriate anchor-name completes
the link.

Restriction: Use this option only with the ODS PDF statement, the ODS PS
statement with the PDFMARK option specified, and the ODS PRINTER statement
with the PDFMARK option specified.

Requirement: You must enclose base-text in quotation marks.

BOOKMARKLIST= HIDE | NONE | SHOW
specifies whether to generate and display the list of bookmarks for a PDF file.

Note: The generation of the bookmarks is not affected by the setting of this
option. Bookmarks are generated by the BOOKMARKGEN= option. �

222 ODS PRINTER Statement � Chapter 5

HIDE generates a list of bookmarks for your PDF file. The bookmarks
are not automatically displayed when you open the PDF file.

NONE specifies not to generate a list of bookmarks for your PDF file.
Alias: NO | OFF
Alias: NOBOOKMARKLIST is an alias for

BOOKMARKLIST=NONE | NO | OFF.

SHOW generates a list of bookmarks for your PDF file. The bookmarks
are automatically displayed when you open the PDF file.
Alias: YES | ON
Alias: BOOKMARKLIST is an alias for

BOOKMARKLIST=SHOW | YES | ON.
Default: SHOW
Restriction: This option can be set only when you first open the destination.
Restriction: This option has an affect only when creating PDF or PDFMARK

output.
Interaction: The NOTOC option specifies BOOKMARKLIST= OFF and

CONTENTS= OFF.

BOOKMARKGEN | NOBOOKMARKGEN | BOOKMARKGEN=
controls the generation of bookmarks in a PDF file.

BOOKMARKGEN
specifies to generate bookmarks in the PDF file.

BOOKMARKGEN=
controls the generation of bookmarks in a PDF file.

NO specifies not to generate bookmarks in the PDF file.
Alias: OFF

YES specifies to generate bookmarks in the PDF file.
Alias: ON

NOBOOKMARKGEN
specifies not to generate bookmarks in the PDF file.

Default: YES or BOOKMARKGEN
Restriction: This option can be set only when you first open the destination.
Interaction: If you set BOOKMARKGEN=NO, then the BOOKMARKLIST option is

set to NO also.

COLOR=FULL | GRAY | MONO | NO | YES
applies the specified color scheme to your output.

FULL
creates full color output for both text and graphics.

GRAY
creates gray scale output for both text and graphics.
Alias: GREY

MONO
creates monochromatic output for both text and graphics.
Alias: BW

NO

Dictionary of ODS Language Statements � ODS PRINTER Statement 223

does not use all the color information that the style definition provides.
Tip: If you specify COLOR=NO, then the destination does this:

� generates black and white output
� creates all text and rules in black
� sets the SAS/GRAPH device to produce SAS/GRAPH output in gray scale
� ignores specifications for a background color from the style definition

except for the purposes of determining whether to print rules for the table

YES
uses all the color information that a style definition provides, including
background color.

Default: YES
Tip: If you choose color output for a printer that does not support color, then your

output might be difficult to read.
Tip: In order to actually print in color, you must also

� use a printer that is capable of printing in color
� use the COLORPRINTING SAS system option. For information about the

COLORPRINTING system option, see SAS Language Reference: Dictionary.

COLUMNS=n
specifies the number of columns to create on each page of output.

n
is the number columns per page.

Default: 1

COMPRESS=n
controls the compression of a PDF file. Compression reduces the size of the file.

n
specifies the level of compression. The larger the number, the greater the
compression. For example, n=0 is completely uncompressed, and n=9 is the
maximum compression level.

Default: 6
Range: 0–9
Restriction: Use this option only with the ODS PDF statement and the ODS

PRINTER statement with the PDF option specified.
Restriction: The COMPRESS= option takes effect only if specified at the opening of

a file.
Interaction: The COMPRESS= option overrides the DEFLATION system option.

First, the DEFLATION system option checked. Next, the ODS PDF statement
COMPRESS= option is checked. If the COMPRESS= option is specified, that value
is used regardless of the value specified for the DEFLATION system option. For
more information, refer to the DEFLATION option in SAS Language Reference:
Dictionary.

Interaction: The COMPRESS= option overrides the UPRINTCOMPRESSION
option. If COMPRESS= is specified, the UPRINTCOMPRESSION system option is
then queried. If the system option is off, it will be turned on for this one PDF
statement and the PDF file will be compressed. When compression is complete,
the UPRINTCOMPRESSION system option is again enabled for all other files to
use. For more information, refer to the UPRINTCOMPRESSION system option in
SAS Language Reference: Dictionary.

CONTENTS= NO | YES

224 ODS PRINTER Statement � Chapter 5

controls the generation of a printable table of contents.

NO
does not generate a printable table of contents.

Alias: NOCONTENTS is an alias for CONTENTS=NO

YES
generates a printable table of contents.

Alias: CONTENTS is an alias for CONTENTS=YES

CSSSTYLE= ’file-specification’<(media-type-1 <..media-type-10>)>
specifies a cascading style sheet to apply to your output.

file-specification
specifies a file, fileref, or URL that contains CSS code.

file-specification is one of the following:

"external-file"
is the name of the external file.

Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

"URL"
is a URL to an external file.

Requirement: You must enclose external-file in quotation marks.

(media-type-1<.. media-type-10>)
specifies one or more media blocks that corresponds to the type of media that your
output will be rendered on. CSS uses media type blocks to specify how a document
is to be presented on different media: on the screen, on paper, with a speech
synthesizer, with a braille device, and so on.

The media block is added to your output in addition to the CSS code that is not
contained in any media blocks. By using the media-type suboption, in addition to
the general CSS code, you can import the section of a CSS file intended only for a
specific media type.

Default: If no media-type is specified in your ODS statement, but you do have
media types specified in your CSS file, then ODS uses the Screen media type.

Range: You can specify up to ten different media types.

Requirement: You must enclose media-type in parentheses.

Requirement: You must specify media-type next to the file-specification specified
by the CSSSTYLE= option.

Tip: If you specify multiple media types, all of the style information in all of the
media types is applied to your output. However, if there is duplicate style
information in different media blocks, then the styles from the last media block
are used.

Requirement: CSS files must be written in the same type of CSS produced by the
ODS HTML statement. Only class names are supported, with no IDs and no
context based selectors. To view the CSS code that ODS creates, you can specify
the STYLESHEET= option, or you can view the source of an HTML file and look

Dictionary of ODS Language Statements � ODS PRINTER Statement 225

at the code between the <STYLE> </STYLE> tags at the top of the file. For an
example of a valid for ODS CSS file, see Example 6 on page 178.

Interaction: If both the STYLE= option and the CSSSTYLE= option are specified
on an ODS statement, the option specified last is the option that is used.

Featured in: Example 6 on page 178

DPI=
specifies the image resolution for output files.
Default= 150
Restriction: The DPI= option takes effect only if specified at the opening of a file.

FILE=’external-file’ | fileref
specifies the file that contains the output.

external-file
is the name of an external file to write to.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the FILENAME
statement to assign a fileref.
Restriction: The FILE=fileref option cannot be used in conjunction with the

NEWFILE= option .
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.
Default: If you do not specify a file to write to, then ODS writes to the file that is

specified by one of two SAS system options:

SYSPRINT=
if you are using the Windows operating environment and do not specify any of
the following options: PCL, PDF, PDFMARK, PS, or SAS.

PRINTERPATH=
in all other cases.

If the system option does not specify a file, then ODS writes to the default
printer. For more information, see the PRINTER= option on page 228.

Interaction: In an ODS printer family statement that refers to an open ODS
PRINTER destination, the FILE= option forces ODS to close the destination and
all files that are associated with it, and to open a new instance of the destination.
For more information, see “Opening and Closing the PRINTER Destination” on
page 231.

See: For information about the FILENAME statement, see SAS Language
Reference: Dictionary.

HOST
specifies that ODS use the printer drivers that the host system provides.
Interaction: In an ODS printer family statement that refers to an open ODS

PRINTER destination, the HOST option forces ODS to close the destination and
all files that are associated with it, and to open a new instance of the destination.
For more information, see “Opening and Closing the PRINTER Destination” on
page 231.

(<ID=> identifier)
enables you to open multiple instances of the same destination at the same time.
Each instance can have different options.

226 ODS PRINTER Statement � Chapter 5

identifier
can be numeric or can be a series of characters that begin with a letter or an
underscore. Subsequent characters can include letters, underscores, and numerals.

Restriction: If identifier is numeric, it must be a positive integer.
Requirement: The ID= option must be specified immediately after the destination

name.

KEYWORDS=’keywords-text’
inserts into the output file’s metadata, a string of keywords . The keywords enable a
document management system to do topic-based searches.

keywords-text
is the string of keywords.

Restriction: Use this option only with the ODS PDF statement, the ODS PS
statement with the PDFMARK option specified, and the ODS PRINTER statement
with the PDFMARK option specified.

Restriction: The KEYWORDS= option takes effect only if specified at the opening
of a file.

Requirement: You must enclose keywords-text in quotation marks.

NEWFILE= starting-point
creates a new file at the specified starting-point.

starting-point
is the location in the output where you want to create a new file.

ODS automatically names new files by incrementing the name of the file. In the
following example, ODS names the first file REPORT.PS. Additional body files are
named REPORT1.PS, REPORT2.PS, and so on.

Example:

FILE= ’REPORT.PS’

starting-point can be one of the following:

BYGROUP
starts a new file for the results of each BY group.

NONE
writes all output to the file that is currently open.

OUTPUT
starts a new file for each output object. For SAS/GRAPH this means that ODS
creates a new file for each SAS/GRAPH output file that the program generates.
Alias: TABLE

PAGE
starts a new file for each page of output. A page break occurs when a procedure
explicitly starts a new page (not because the page size was exceeded) or when
you start a new procedure.

PROC
starts a body file each time that you start a new procedure.

Default: NONE

Dictionary of ODS Language Statements � ODS PRINTER Statement 227

Restriction: The NEWFILE= option cannot be used in conjunction with the
FILE=fileref option.

Restriction: The NEWFILE= option cannot be used if you are sending output to a
physical printer.

Tip: If you end the filename with a number, then ODS begins incrementing with
that number. In the following example, ODS names the first file MAY5.PS.
Additional body files are named MAY6.PS, MAY7.PS, and so on.

Example:

FILE= ’MAY5.PS’

NOTOC
specifies that ODS omit the table of contents (Bookmark list) that is produced by
default when producing PDF or PDFMARK output.
Interaction: The NOTOC option specifies BOOKMARKLIST=OFF and

CONTENTS= OFF.

PACKAGE <package-name>
specifies that the output from the destination be added to a package.

package-name
specifies the name of a package that was created with the ODS PACKAGE
statement. If no name is specified, then the output is added to the unnamed
package that was opened last.

See also:
“ODS PACKAGE Statement” on page 198

PCL
creates PCL output.
Restriction: Do not use this option in conjunction with the PDF or PS option.
Interaction: If you use the PCL option in an ODS PRINTER statement that refers

to an open ODS PRINTER destination, the option will force ODS to close the
destination and all files that are associated with it, and to open a new instance of
the destination. For more information, see “Opening and Closing the PRINTER
Destination” on page 231.

PDF
creates PDF output.
Restriction: Do not use this option in conjunction with the PCL or PS options.
Interaction: If you use the PDF option in an ODS PRINTER statement that refers

to an open ODS PRINTER destination, the option will force ODS to close the
destination and all files that are associated with it, and to open a new instance of
the destination. For more information, see “Opening and Closing the PRINTER
Destination” on page 231.

PDFMARK
enables ODS to insert special tags into a PostScript file. When you use software such
as Adobe Acrobat (not Adobe Viewer), Acrobat Distiller interprets the tags to create a
PDF file that contains the following items:

� bookmarks for each section of the output and for each table.
� references for items that are associated with the URL= style attribute.
� notes for items that are associated with the FLYOVER= style attribute. Notes

are optional, and are based on the PDFNOTE option.
� author, keywords, subject, and title in the metadata of a file.

228 ODS PRINTER Statement � Chapter 5

Default: Because using PDFMARK implies PostScript output, SAS automatically
uses the PostScript driver that SAS supplies with this option.

Restriction: You cannot use the PRINTER= option with the PDFMARK option.
Requirement: To create a PDF file, you must use specialized software, such as

Adobe Acrobat Distiller to convert the marked-up PostScript file into a PDF
formatted file.

Interaction: In an ODS printer family statement that refers to an open ODS
PRINTER destination, the PDFMARK option forces ODS to close the destination
and all files that are associated with it, and to open a new instance of the
destination. For more information, see “Opening and Closing the PRINTER
Destination” on page 231.

Tip: Use this option only if you plan to distill the output. Otherwise, it uses excess
resources and does not enhance the results.

PDFNOTE | NOPDFNOTE
controls whether notes are added to a PDF file for items that are associated with the
FLYOVER= style attribute.

PDFNOTE
adds notes to a PDF file for items that are associated with the FLYOVER= style
attribute.

NOPDFNOTE
modifies the behavior of PDFMARK so that notes are not added to the file for
items that are associated with the FLYOVER= style attribute.

Default: PDFNOTE
Restriction: Use this option only with the ODS PDF statement, the ODS PS

statement with the PDFMARK option specified, and ODS PRINTER statement
with the PDFMARK option specified.

PDFTOC=n
controls the level of the expansion of the table of contents in PDF documents.

n
specifies the level of expansion. For example, PDFTOC=0 results in a fully
expanded table of contents, while PDFTOC=2 results in a table of contents that is
expanded to two levels.
Default: 0
Tip: The PDFTOC= can be set after the file has been opened, but only the last

specification for a given file is used.
Featured in: Example 1 on page 212

PRINTER= printer-name
creates output that is formatted for the specified printer.

printer-name
is the name of the printer for which you want output formatted.

Alias: PRT
Default: If you do not specify a printer, then ODS formats the printer output for the

printer that is specified by one of two SAS system options:
� SYSPRINT= if you are using the Windows operating environment and do not

specify any of the following options: PCL, PDFMARK, POSTSCRIPT, PS, or
SAS.

� PRINTERPATH= in all other cases.

Dictionary of ODS Language Statements � ODS PRINTER Statement 229

If the system option does not specify a printer, then ODS writes to the default
printer driver as specified in the SAS registry or the Windows registry. In the SAS
registry, the default printer is specified in CORE � PRINTING � Default Printer

Restriction: printer-name must match a subkey in either the SAS registry or the
Windows printer registry.

Restriction: You cannot use the PRINTER= option with the PCL, PDF, PDFMARK,
or PS options.

Interaction: In an ODS printer family statement that refers to an open ODS
PRINTER destination, the PRINTER= option forces ODS to close the destination
and all files that are associated with it, and to open a new instance of the
destination. For more information, see “Opening and Closing the PRINTER
Destination” on page 231.

Tip: The description of the printer includes its destination and device type. If you
are using the SAS printer drivers, then you can find a description of the printer in
CORE � PRINTING � PRINTERS � selected-printer � PRINTER SETUP �

OUTPUT.
If you are using the Windows operating environment and you do not specify the

SAS option in the ODS PRINTER statement, then a description of the printer is
located in the Windows registry.

Note: printer-name is not necessarily a physical printer. It is a description that
tells SAS how to format the output, and where the output is located. For example,
it could be a file on a disk. �

Tip: To see a list of available printers for SAS printing, use the REGEDIT
command. The printers are listed in the Registry Editor window under CORE �

PRINTING � PRINTERS.

PS
creates PostScript output.
Alias: POSTSCRIPT
Restriction: Do not use this option in conjunction with the PDF or PCL options.
Interaction: If you use the PS option in an ODS PRINTER statement that refers to

an open ODS PRINTER destination, the option will force ODS to close the
destination and all files that are associated with it, and to open a new instance of
the destination. For more information, see “Opening and Closing the PRINTER
Destination” on page 231.

Tip: Specifying this option is equivalent to specifying both the SAS option and
PRINTER= POSTSCRIPT.

STARTPAGE=NEVER | NO | NOW | YES
controls page breaks.

NEVER specifies not to insert page breaks, even before graphics
procedures.

CAUTION:
Each graph normally requires an entire page. The default behavior
forces a new page after a graphics procedure. STARTPAGE=NEVER
turns off that behavior, so specifying STARTPAGE= NEVER might
cause graphics to overprint. �

NO specifies that no new pages be inserted at the beginning of each
procedure, or within certain procedures, even if new pages are
requested by the procedure code. A new page will begin only
when a page is filled or when you specify STARTPAGE=NOW.

230 ODS PRINTER Statement � Chapter 5

CAUTION:
Each graph normally requires an entire page. The default behavior
forces a new page after a graphics procedure, even if you use
STARTPAGE=NO. STARTPAGE=NEVER turns off that behavior, so
specifying STARTPAGE= NEVER might cause graphics to overprint.
�

Alias: OFF
Tip: When you specify STARTPAGE=NO, system titles and

footnotes are still produced only at the top and bottom of each
physical page, regardless of the setting of this option. Thus,
some system titles and footnotes that you specify might not
appear when this option is specified.

NOW forces the immediate insertion of a new page.
Tip: This option is useful primarily when the current value of the

STARTPAGE= option is NO. Otherwise, each new procedure
forces a new page automatically.

YES inserts a new page at the beginning of each procedure, and within
certain procedures, as requested by the procedure code.
Alias: ON

Default: YES

STYLE=style-definition
specifies the style definition to use in writing the printer output.
Default: If you do not specify a style definition, then ODS uses the style definition

that is specified in the SAS registry subkey: ODS � DESTINATIONS �
PRINTER. By default, this value is Printer for the PRINTER, PDF, and PS
destinations and MonochromePrinter for the PCL destination.

Main discussion: For a complete discussion of style definitions, see “Working with
Styles” on page 538.

See also: For instructions on making your own user-defined style definitions, see
Chapter 11, “TEMPLATE Procedure: Creating a Style Template (Definition),” on
page 487.

SUBJECT=’subject-text’
inserts into the metadata of a file the text string that you specify as the subject.

subject-text
is the text in the metadata of a file that indicates the subject.

Restriction: Use this option only with the ODS PDF statement, the ODS PS
statement with the PDFMARK option specified, and the ODS PRINTER statement
with the PDFMARK option specified.

Restriction: The SUBJECT= option takes effect only if specified at the opening of a
file.

Requirement: You must enclose subject-text in quotation marks.

TEXT=’text-string’
inserts a text string into your output.

text-string
is the text that you want to insert into your output.

Requirement: You must enclose text-string in quotation marks.

Dictionary of ODS Language Statements � ODS PRINTER Statement 231

Tip: If you are submitting more than one procedure step and you do not specify the
STARTPAGE=NO option, each procedure will force a new page before the output.
Therefore, any text that you specify with TEXT= will be on the same page as the
previous procedure.

Featured in: Example 1 on page 114

TITLE=’title-text’
inserts into the metadata of a file the text string that you specify as the title.

title-text
is the text in the metadata of a file that indicates the title.

Restriction: Use this option only with the ODS PDF statement, the ODS PS
statement with the PDFMARK option specified, and the ODS PRINTER statement
with the PDFMARK option specified.

Restriction: The TITLE= option takes effect only if specified at the opening of a file.

Requirement: You must enclose title-text in quotation marks.

UNIFORM
for multiple page tables, ensures uniformity from page to page within a single table.
When the UNIFORM option is in effect, ODS reads the entire table before it starts to
print it so that it can determine the column widths that are necessary to
accommodate all the data. These column widths are applied to all pages of a multiple
page table.

Note: With BY-group processing, SAS writes the results of each BY group to a
separate table, so the output might not be uniform across BY groups. �

Default: If you do not specify the UNIFORM option, then ODS prints a table one
page at a time. This approach ensures that SAS does not run out of memory while
processing very large tables. However, it can also mean that column widths vary
from one page to the next.

Tip: The UNIFORM option can cause SAS to run out of memory if you are printing
a very large table. If this happens, then you can explicitly set the width of each of
the columns in the table, and then print the table one page at a time. To do so,
you must edit the table definition that you use. For more information, see “What
You Can Do With a Table Template” on page 594.

Details

Opening and Closing the PRINTER Destination You can modify an open PRINTER
destination with many ODS PRINTER options. However, any of the following options
will automatically close the open destination that is referred to in the ODS PRINTER
statement, and will also close any files that are associated with it, and then open a new
instance of the destination: FILE=, HOST, PCL, PDF, PDFMARK, PRINTER=, PS, or
SAS. If you use one of these options, it is best if you explicitly close the destination
yourself.

For example, in the following ODS program, the second ODS PRINTER statement
closes the PRINTER destination that is opened by the first ODS PRINTER statement.
Therefore, the file brickstyle.ps will not contain output that is formatted with the
d3d style. However, the second ODS PRINTER statement does not affect the PS
destination that is opened by the ODS PS statement. The PS destination is still open
and the file nostyle.ps could be modified.

232 ODS PRINTER Statement � Chapter 5

The ODS PRINTER statement opens the PRINTER destination and creates PostScript
output.

ods printer ps style=brick file=’brickstyle.ps’;
proc print data=statepop;
run;

The ODS PS statement opens the PS destination and creates PostScript output.

ods ps file=’nostyle.ps’;
proc print data=statepop;
run;

The ODS PRINTER statement closes the open PRINTER destination and the files that
are associated with it. It then opens a new instance of the PRINTER destination and
creates PostScript output.

ods printer ps style=d3d file=’d3dstyle.ps’;
proc print data=statepop;
run;
ods printer ps close;
ods ps close;

Printing Output Directly to a Printer Printing output directly to a printer using the
ODS PRINTER statement depends on your host operating environment.

Note: To print directly to a printer in the z/OS, UNIX, or VMS operating
environment, you can use the FILENAME statement. Specific information about your
operating environment is required when using the FILENAME statement. See the SAS
documentation for your operating environment before using this statement. Commands
are also available in some operating environments that associate a fileref with a file
and that break that association.
�

Platform Method for Sending SAS Output to a Printer

z/OS Use the FILENAME statement with the SYSOUT= DATA set
option specified. You can then print to the fileref.

Syntax:
filename your-fileref sysout=a dest=printer-name;
ods printer file=your-fileref;

Example:
filename local sysout=a dest=chpljj21;
ods printer file=local;

UNIX Use the FILENAME statement with the PIPE command to
associate a fileref with your lpr print command.

Syntax:
filename your-fileref pipe ’lpr -P printer-name’;
ods printer file=your-fileref;

Example:
filename local pipe ’lpr -P chpljj21’;
ods printer file=local;

Dictionary of ODS Language Statements � ODS PRINTER Statement 233

Platform Method for Sending SAS Output to a Printer

VMS Use the FILENAME statement with the PRINTER device type
specified to create a printer fileref that you can print to.

Syntax:
filename your-fileref printer passall=yes queue=printer-name;
ods printer file=your-fileref;

Example:
filename local printer passall=yes queue=chpljj21;
ods printer file=local;

Windows If you want to print to your default printer use this code.

Syntax:
ods printer;

If you want to print to a printer that is not the default, then use
the PRINTER= option to specify the printer name.

Syntax:
ods printer printer=printer-name;

Example:
ods printer printer=chpljj21;

Note: To find out what printers are available, select
Start � Settings � Printers from the Taskbar. If a
printer is listed there, then you can use it with the
ODS PRINTER statement. If the printer name has
spaces, then you must put the printer name in
quotation marks. �

Using ODS PRINTER with Windows When you use the ODS PRINTER statement in the
Windows operating environment, ODS will produce output that is formatted for your
default Windows printer unless you specify a different printer by using the PRINTER=
option on page 228. You can also produce printable output files in PCL, PDF, or
PostScript format by using the appropriate option.

Using ODS PRINTER with All Other Hosts When you use the ODS PRINTER statement
in any other operating environment, ODS uses the SAS drivers to produce output files
in PCL, PDF, or PostScript formats. By default, the ODS PRINTER statement produces
PostScript output files. You can also produce printable output files in PCL or PDF
format by using the appropriate option or registry setting.

PDF Security In SAS 9.2, you can easily encrypt and password-protect your PDF
output files. Two levels of security are available: 40-bit (low) and 128-bit (high). With
either of these settings, a password will be required to open a PDF file that has been
generated with ODS.

To enable encryption and password protection, specify the OPTIONS statement. The
following code shows how to encrypt your PDF output file with a low level of encryption.
The PDF file generated will be password protected.

options pdfsecurity=low pdfpw=(open=testpw);

The following code shows how to encrypt your PDF output file with a high level of
encryption that is password protected:

options pdfsecurity=high pdfpw=(open=testpw);

234 ODS PRINTER Statement � Chapter 5

The following code shows the PDF security option used with the PDF destination:

options pdfsecurity=high pdfpw=(open=testpw);
ods pdf file="secure.pdf";
proc contents data=sashelp.class;
run;
ods pdf close;

For detailed information on the PDF Security options, see “Securing ODS Generated
PDF Files” on page 36.

Note: Encryption requires Acrobat version 5.0 or later. �

PDF Views Is SAS 9.2, Two new system options enable you to control the way you
view your PDF document. The PDFPAGELAYOUT system option controls the page
layout. This setting is equivalent to selecting View � Page Display in Adobe Acrobat
Reader when a document is open. The PDFPAGEVIEW system option controls the page
viewing mode. This setting is equivalent to selecting View � Zoom in Adobe Acrobat
Reader.

Refer to SAS Language Reference: Dictionary for detailed information on these
system options.

Example

Example 1: Selecting Output for the HTML and PRINTER Destinations
ODS features:

ODS _ALL_ CLOSE

ODS HTML statement:
BODY=

ODS PRINTER statement:

FILE=

PS

ODS LISTING statement:

CLOSE
ODS SELECT statement:

with label

with name

with path

Other SAS features:

PROC UNIVARIATE
Data set:

See “Creating the StatePop Data Set” on page 881.

This example selects three output objects from a UNIVARIATE procedure step to send
to both the HTML destination and to the PRINTER destination.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you

Dictionary of ODS Language Statements � ODS PRINTER Statement 235

might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Prevent listing output from being created. The ODS LISTING statement closes the
LISTING destination in order to conserve resources.

ods listing close;

Set the SAS system options. The OPTIONS statement controls several aspects of the
PRINTER output. The NODATE system option specifies that SAS not print the date and the
time. The NONUMBER system option specifies that SAS not print the page number on the first
title line of each page of SAS output. These options do not affect the HTML output.

options nodate nonumber;

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output. BODY= sends all output objects to the external file that you specify. Some
browsers require an extension of HTM or HTML on the filename.

ods html body=’your_file.html’;

Create PostScript output. The ODS PRINTER statement opens the PRINTER destination
and the PS option specifies PostScript output. FILE= sends all output objects to the external
file that you specify.

ods printer ps file=’your_file.ps’;

Specify the output objects to send to the open destinations. The ODS SELECT
statement specifies three output objects to send to all open destinations. The first output object
is selected by its name, BasicMeasures. The second output object is selected by its label,
Tests For Location. These two selection criteria select the output objects for the analysis of
both variables. The third output object is selected by its full path
Univariate.CityPop_90.ExtremeObs. This selection criterion selects the output object for
only one variable, CityPop_90.

ods select BasicMeasures
’Tests For Location’
Univariate.CityPop_90.ExtremeObs;

Compute descriptive statistics for two variables. PROC UNIVARIATE computes
descriptive statistics for two variables, CityPop_80 and CityPop_90. ODS routes the selected
output objects to the HTML and PRINTER destinations.

proc univariate data=statepop mu0=3.5;
var citypop_90 citypop_80;

run;

Close the open destinations so that you can view or print the output. The ODS _ALL_
CLOSE statement closes all of the open destinations and all of the files that are associated with
them. You must close the destinations before you can view the output with a browser, or before
you can send the output to a physical printer.

ODS _all_ close;

236 ODS PRINTER Statement � Chapter 5

Reset the default output type to LISTING. The ODS LISTING statement opens the
LISTING destination to return ODS to its default setup.

ods listing;

HTML Output

Display 5.21 HTML Output for the Variables CityPop_90 and CityPop_80

The HTML output includes three output objects for the variable CityPop_90, and two output
objects for the variable CityPop_80.

Dictionary of ODS Language Statements � ODS PROCLABEL Statement 237

Printer Output

Display 5.22 Partial PostScript Output for the Variables CityPop_90 and CityPop_80

The printer output includes three output objects for the variable CityPop_90, and two output
objects for the variable CityPop_80.

ODS PROCLABEL Statement

Enables you to change a procedure label.

Valid: anywhere
Category: ODS: Output Control
Interaction: This statement applies to all open destinations, except for the output
destination, where a procedure label is not an option. However, this setting lasts for
only one procedure step. You must issue an ODS PROCLABEL statement for each
procedure step that you have.

238 ODS PROCTITLE Statement � Chapter 5

Syntax
ODS PROCLABEL ’string’;

Required Arguments

’string’
is the procedure label that you specify.
Interaction: The NOLABEL system option overrides the ODS PROCLABEL

statement. Therefore, to produce labels using the ODS PROCLABEL statement,
you must specify the LABEL system option also.

Details
ODS PROCLABEL affects the item names in the outer list of the table of contents.

See Also

System Option:
“Label System Option” in SAS Language Reference: Dictionary

ODS PROCTITLE Statement

Determines whether to write the title that identifies the procedure that produces the results in the
output.

Valid: anywhere
Category: ODS: Output Control
Interaction: This statement applies to all open destinations, except for the output
destination, where a procedure label is not an option. This setting persists until you
issue an ODS NOPROCTITLE statement. You do not have to issue an ODS
PROCTITLE statement for each procedure step.

Syntax
ODS PROCTITLE | NOPROCTITLE;

Required Arguments

ODS PROCTITLE
writes, in the output, the name of the procedure that produces the results.

Dictionary of ODS Language Statements � ODS PS Statement 239

Note: Not all procedures use a procedure title. �
Default: ODS PROCTITLE is the default.

ODS NOPROCTITLE
suppresses the writing of the title of the procedure that produces the results.

Details
The following table lists the aliases for the ODS PROCTITLE statement:

Statement Alias

ODS PROCTITLE ODS PROCTITLE=ON

ODS PTITLE

ODS PTITLE=ON

ODS PTITLE=YES

ODS NOPROCTITLE ODS PROCTITLE=OFF

ODS NOPTITLE

ODS PTITLE=OFF

ODS PTITLE=NO

ODS PS Statement

Opens, manages, or closes the PS destination, which produces PostScript (PS) output.

Valid: anywhere
Category: ODS: Third-Party Formatted
Interaction: By default, when you execute a procedure that uses the FORMCHAR system
option (for example, PROC PLOT or PROC CHART), ODS formats the output in SAS
Monospace font. If you are creating output that will be viewed in an operating
environment where SAS software is not installed, this output will not display correctly,
because without SAS, the SAS Monospace font is not recognized. To make your
document display correctly, include the following statement before your SAS program:

OPTIONS FORMCHAR="|----|+|---+=|-/\<>*";

CAUTION:
When you are producing PostScript output, verify that your online viewer or printer is set
to use the same paper size as the value that is specified by the OPTIONS PAPERSIZE=
statement. Otherwise, some parts of your output might appear to be missing. �

Syntax
ODS PS <(<ID=>identifier)> <action>;

ODS PS <(<ID=>identifier)> <option(s)>;

240 ODS PS Statement � Chapter 5

Without an Action or Options
If you use the ODS PS statement without an action or options, then it opens the PS

destination and creates PostScript output.

Actions
The following table lists the actions that are available for the ODS PS statement.

For complete descriptions of actions see “Actions” on page 219 in the ODS PRINTER
statement.

Table 5.27 ODS PS Action Summary Table

Task Action

Close the PCL destination and the file that is
associated with it

CLOSE

Exclude output objects from the PCL destination EXCLUDE

Select output objects for the PCL destination SELECT

Write to the SAS log the current selection or exclusion
list for the PCL destination

SHOW

Options
The following table lists the options available for the ODS PS statement. For more

detailed descriptions of these options, see “Options” on page 219 in the ODS PRINTER
statement.

Table 5.28 ODS PS Option Summary Table

Task Option

Specify the root name for the anchor tag that
identifies each output object in the current file

ANCHOR=

Insert the text string that you specify as the author in
the metadata of a file

AUTHOR=

Specify a string to use as the first part of all
references that ODS creates in the file

BASE=

Specify whether to generate and display the list of
bookmarks for a PS file

BOOKMARKLIST=

Control the generation of bookmarks in a PS file BOOKMARKGEN=

Apply a specified color scheme to your output COLOR=

Specify the number of columns to create on each page
of output

COLUMNS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify the image resolution for output files DPI=

Specify the file to write to FILE=

Dictionary of ODS Language Statements � ODS RESULTS Statement 241

Task Option

Open multiple instances of the same destination at
the same time

ID=

Insert a string of keywords into the output file’s
metadata

KEYWORDS=

Create a new file at the specified starting-point NEWFILE=

Specify that the output from the destination be added
to an ODS package

PACKAGE

Insert special markup which is used when converting
a PostScript file to a PDF file

PDFMARK

Control whether notes are added to a PDF file for
items that are associated with the FLYOVER= style
attribute

PDFNOTE

Control page breaks STARTPAGE=

Specify the style definition to use in writing the PS
output

STYLE=

Insert text into your output TEXT=

For multipage tables, ensure uniformity from page to
page within a single table

UNIFORM

Details
The ODS PS statement is part of the ODS printer family of statements. Statements in
the printer family open the PCL, PDF, PRINTER, or PS destination, producing output
that is suitable for a high-resolution printer. The ODS PCL, ODS PDF, and ODS
PRINTER statements are also members of the ODS printer family of statements.

Opening and Closing the PS Destination You can modify an open PS destination with
many ODS PS options. However, the FILE=, PDFMARK, and SAS options will
automatically close the open destination that is referred to in the ODS PS statement
and will also close any files associated with it, and then open a new instance of the
destination. If you use one of these options, it is best if you explicitly close the
destination yourself.

See Also

Statements:
“ODS PCL Statement” on page 208
“ODS PDF Statement” on page 210
“ODS PRINTER Statement” on page 218

“The Third-Party Formatted Destinations” on page 26

ODS RESULTS Statement

Tracks ODS output in the Results window.

242 ODS RTF Statement � Chapter 5

Valid: anywhere
Category: ODS: Output Control
Restriction: Valid in a windowing environment only, not in batch mode.
Alias: ODS RESULTS|NORESULTS;

Syntax
ODS RESULTS ON | OFF;

Required Arguments

ON
tracks output that ODS generates in the Results window.

OFF
turns off the tracking of output that ODS generates in the Results window.

Details
Using ODS RESULTS ON sends all output to the Results window. This is the default
setting. Using ODS RESULTS OFF disables ODS tracking, and output is not sent to
the Results window. The OFF option is recommended for long-running jobs, such as
regression analyses, when you do not want to track all of the output.

ODS RTF Statement

Opens, manages, or closes the RTF destination, which produces output written in Rich Text Format
for use with Microsoft Word 2002.

Valid: anywhere
Category: ODS: Third-Party Formatted
Interaction: By default, when you execute a procedure that uses the FORMCHAR system
option (for example, PROC PLOT or PROC CHART), ODS formats the output in SAS
Monospace font. If you are creating output that will be viewed in an operating
environment that does not have SAS software installed, this output will not be
displayed correctly. The SAS Monospace font is not recognized if SAS is not installed.
For the correct display of your document, include the following statement before your
SAS program:

OPTIONS FORMCHAR="|----|+|---+=|-/\<>*";

Interaction: To change the page orientation of the RTF output, specify the system option
ORIENTATION=. To change the orientation, you will need to trigger the change by
issuing the ODS RTF statement after the global options statement. See Example 3 on
page 261 for details.
Tip: Microsoft Word 2002 is the current, official, minimum level that is supported.
However, no problems have been found with Microsoft Word 2000 and SAS RTF files.
Tip: When producing large tables, use the ODS TAGSETS.RTF statement. For detailed
information, see “ODS TAGSETS.RTF Statement” on page 286.

Dictionary of ODS Language Statements � ODS RTF Statement 243

Syntax
ODS RTF <(<ID=> identifier)> action;

ODS RTF <(<ID=> identifier)> <option(s)>;

Actions
The following table lists the actions that are available for the ODS RTF statement.

Table 5.29 ODS RTF Action Summary Table

Task Action

Close the RTF destination and the file that is
associated with it

CLOSE

Exclude output objects from the RTF destination EXCLUDE

Select output objects for the RTF destination SELECT

Write to the SAS log the current selection or exclusion
list for the RTF destination

SHOW

CLOSE
closes the RTF destination and any files that are associated with it.
Tip: When you close an ODS destination, ODS does not send output to that

destination. To free more system resources, close destinations that you do not need.

EXCLUDE exclusion(s)| ALL | NONE
excludes output objects from the RTF destination.
Restriction: The destination must be open for this action to take effect.
Default: NONE
See also: “ODS EXCLUDE Statement” on page 110

SELECT selection(s) | ALL | NONE
selects output objects for the RTF destination.
Default: ALL
Restriction: The destination must be open for this action to take effect.
See also: “ODS SELECT Statement” on page 264

SHOW
writes the current selection list or exclusion list for the destination to the SAS log.
Restriction: The destination must be open for this action to take effect.
See also: “ODS SHOW Statement” on page 277
Tip: If the selection or exclusion list is the default list (SELECT ALL), then SHOW

also writes the entire selection or exclusion list.

Options
The following table lists the options that are available for the ODS RTF statement.

244 ODS RTF Statement � Chapter 5

Table 5.30 ODS RTF Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify the text string that identifies the author. This
text string is inserted into the metadata of a file.

AUTHOR=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Specify that the titles and footnotes are to be placed
into the body of the RTF document and not into the
header and footer sections

BODYTITLE

Specify that the titles and footnotes are to be placed
into the body of the RTF document and not into the
header and footer sections. The titles and footnotes
will also be placed into cells or tables.

BODYTITLE_AUX

Specify the number of columns to create on each page
of output

COLUMNS=

Specify whether to produce a table of contents page CONTENTS

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify a device for the RTF output destination DEVICE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Open the ODS RTF destination and specify the name
of the file to which to write information

FILE=

Specify the location where footnotes are printed in the
graphics output

GFOOTNOTE | NOGFOOTNOTE

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Open multiple instances of the same destination at
the same time

ID=

Specify the image resolution for the graphical output IMAGE_DPI=

Control where tables split on a page KEEPN | NOKEEPN

Create a new body file at the specified starting point NEWFILE=

Suppress currently defined footnotes in the graphics
file. They appear in the RTF file instead.

NOGFOOTNOTE

Suppress currently defined titles in the graphics file.
They appear in the RTF file instead.

NOGTITLE

Specify whether contents data is inserted into the
RTF file

NOTOC_DATA |TOCDATA

Insert the text that you specify into the metadata of
the RTF file

OPERATOR=

Specify that the output from the destination be added
to an ODS package

PACKAGE

Dictionary of ODS Language Statements � ODS RTF Statement 245

Task Option

Specify the location of an aggregate storage location
or a SAS catalog for all RTF files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Write to the RTF file the time and date that you
started your SAS session

SASDATE

Control page breaks STARTPAGE=

Specify a style definition to use in writing the RTF
files

STYLE=

Insert text into your RTF output TEXT=

Insert the text string that you want as your title into
the metadata of a file

TITLE=

Specify a translation table to use when you transcode
a file for output

TRANTAB=

ANCHOR= ’anchor-name’
specifies the base name for the RTF anchor tag that identifies each output object in
the current file.

Each output object must have an anchor tag to which other files will link or
reference. The references, which ODS automatically creates, point to the name of an
anchor. Therefore, each anchor name in a file must be unique.

anchor-name
is the base name for the RTF anchor tag that identifies each output object in the
current file.

ODS increments the name that you specify and creates unique anchor names.
For example, if you specify ANCHOR= ’tabulate’, then ODS names the first anchor
tabulate. The second anchor is named tabulate1; the third is named
tabulate2, and so on.
Requirement: You must enclose anchor-name in quotation marks.

Alias: NAMED_DEST= | BOOKMARK=
Tip: It is useful to specify new anchor names at various points in your program

when you want other RTF files to link to specific parts of your RTF output.
Because you can control where the anchor name changes, you know in advance
what the anchor name will be at those points.

Tip: You can change anchor names as often as you want by submitting the
ANCHOR= option in an ODS RTF statement anywhere in your program. After
you specify an anchor name, it remains in effect until you specify a new one.

AUTHOR= ’author-text’
inserts the text string that you specify as the author into the metadata of a file.

author-text
is the text in the metadata of an open file that indicates the author.

Requirement: You must enclose author-text in quotation marks.

BASE= ’base-text’
specifies the text to use as the first part of references that ODS creates in the output
file.

base-text

246 ODS RTF Statement � Chapter 5

is the text that ODS uses as the first part of all references that ODS creates in the
file.

Consider this specification:

BASE=’http://www.your-company.com/local-url/’

In this case, ODS creates links that begin with the string
http://www.your-company.com/local-url/.

Requirement: You must enclose base-text in quotation marks.

BODYTITLE
specifies that SAS titles and footnotes are placed into the body of the RTF document
instead of into the headers and footers section of the RTF document.
Restriction: The BODYTITLE option can be specified only when you create a new

RTF file.
Interaction: When you set the STARTPAGE= option to YES (the default), ODS

inserts a new page at the start of each procedure. ODS relies on Word to place
headers and footers correctly before and after the procedures. When you specify
BODYTITLE, titles and footnotes are removed from the header and footer sections
of the RTF document. Titles and footnotes are then placed into the body of the
document, and are appended to every TABLE. Therefore, when you set the
STARTPAGE= option to YES and specify the BODYTITLE option, the titles and
footnotes might not repeat on every page. For example, if there is a table that
spans multiple pages, the title will be on the first page only, and the footnote will
be on the last page only.

Note: When you specify the BODYTITLE option, Microsoft Word no longer
controls the placement of the header and footer text, but Microsoft Word still
controls other header and footer information, such as page number and date. �

Tip: The background is not honored on the title cells.
See also: BODYTITLE_AUX option. Use the BODYTITLE_AUX option when you

want titles and footnotes placed in tables in the body of the RTF document.

BODYTITLE_AUX
specifies that SAS titles and footnotes be placed into the body of the RTF document
instead of into the headers and footers section of the RTF document. These titles and
footnotes are put into cells, which allows titles and footnotes to be centered,
left-justified, or right-justified.
Restriction: You can specify the BODYTITLE_AUX option only when you are

creating a new RTF file.
Interaction: When you set the STARTPAGE= option to YES (the default), ODS

inserts a new page at the start of each procedure and relies on Word for the
correct placement of headers and footers before and after the procedures. When
you specify BODYTITLE_AUX, titles and footnotes are removed from the header
and footer sections of the RTF document. Titles and footnotes are then placed into
the body of the document, and they are appended to every TABLE. Therefore,
when you set the STARTPAGE= option to YES and you specify the
BODYTITLE_AUX option, the titles and footnotes might not repeat on every page.
For example, if there is a table that spans multiple pages, then the title will be on
the first page only, and the footnote will be on the last page only.

Note: When you specify the BODYTITLE_AUX option, Microsoft Word no
longer controls the placement of the header and footer text, but Microsoft Word
still controls other header and footer information, such as page number and date. �

See also: BODYTITLEoption
Featured in: Example 2 on page 259

Dictionary of ODS Language Statements � ODS RTF Statement 247

COLUMNS= n | MAX
specifies the number of columns to place across each page of output.

n
is the number of one-inch columns that you want on the page.

MAX
specifies the maximum number of one-inch-wide columns for the paper size and
margin setting. This value is dependent upon the paper size and page orientation.

Default: the number of one-inch columns that fit on the page.
Tip: Titles are considered tables and not RTF instructions in Measured RTF (ODS

TAGSETS.RTF statement). When you use the COLUMNS= option with Measured
RTF, titles will appear at the top of each column. However, ODS truncates the
titles to fit the column width.

Tip: If you specify a value greater than the maximum number of one inch columns
that can fit on the page, a note is printed to the SAS log that states what the
maximum value can be for that page.

Interaction: When you specify the COLUMNS= option, the STARTPAGE=NO
option will not be honored.

CONTENTS
produces a table of contents page for RTF documents that are opened in Microsoft
Word. The table of contents page contains a Table of Contents field, which puts all of
the contents information that is embedded in the document into a table of contents.
To expand the table of contents, right-click under the title in Microsoft Word and
select Update Field from the selection list.
Restriction: Do not use the CONTENTS option with the NEWFILE option.
Tip: To go to a specific topic in the document, you can double-click or hold down the

CTRL key and click on the topic in the table of contents. You might have to
configure Microsoft Word to use the CTRL-click method by selecting Tools �
Options � Edit and checking Use CTRL + Click to follow hyperlink.

Tip: You must specify the TOC_DATA option to view the text that is captured in the
Table of Contents. If not, the Table of Contents page displays the error message
“Error! No table of contents entries found.” NOTOC_DATA is the default option
that is used.

See also: TOC_DATA option
Featured in: Example 1 on page 256

CSSSTYLE= ’file-specification’<(media-type-1 <…media-type-10>)>
specifies a cascading style sheet to apply to your output.

file-specification
specifies a file, fileref, or URL that contains CSS code.

file-specification is one of the following:

"external-file"
is the name of the external file.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the
FILENAME statement to assign a fileref.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

248 ODS RTF Statement � Chapter 5

“URL”
is a URL to an external file.
Requirement: You must enclose external-file in quotation marks.

(media-type-1<… media-type-10>)
specifies one or more media blocks that correspond to the type of media to which
your output will be rendered. CSS uses media type blocks to specify the different
media on which a document is to be presented: on the screen, on paper, with a
speech synthesizer, with a braille device, and so on.

ODS adds the media block to your output in addition to the CSS code that is not
contained in any media blocks. By using the media-type suboption and the general
CSS code, you can import the section of a CSS file intended only for a specific
media type.
Default: If you do not specify a media-type in your ODS statement, but you do

specify media types in your CSS file, ODS uses the Screen media type.
Range: You can specify up to ten different media types.
Requirement: You must enclose media-type in parentheses.
Requirement: You must specify media-type next to the file-specification specified

by the CSSSTYLE= option.
Tip: If you specify multiple media types, ODS applies all of the style information

in all of the media types to your output. However, if there is duplicate style
information in different media blocks, then ODS uses the styles from the last
media block.

Interaction: If you specify both the STYLE= option and the CSSSTYLE= option on
an ODS statement, ODS uses the last option that you specified.

Requirement: CSS files must be written in the same type of CSS produced by the
ODS HTML statement. Only class names are supported, with no IDs and no
context-based selectors. To view the CSS code that ODS creates, you can specify
the STYLESHEET= option, or you can view the source of an HTML file and look
at the code between the <STYLE> </STYLE> tags at the top of the file. For an
example of a valid ODS CSS file, see Example 6 on page 178.

Featured in: Example 6 on page 178

DEVICE= device-driver
specifies the name of a device driver. ODS automatically selects an optimal default
device for each open output destination.

The following table lists default devices for the most common ODS output
destinations.

Output Destination Default Device

HTML PNG

LISTING Host Specific Display Device (PC- WIN, UNIX - XColor, MVS
-Display Device)

Measured RTF PNG

RTF SASEMF

PCL SASPRTM (Monochrome Output)*

PDF SASPRTC (Color Output)*

POSTSCRIPT SASPRTC (Color Output)*

PRINTER Host Specific Default Printer*

* Does not support changing the default device in the SAS Registry.

Dictionary of ODS Language Statements � ODS RTF Statement 249

Tip: Specifying a device on the ODS DEVICE= option takes precedence over the
SAS global option and the graphics option.

See: “DEVICE= System Option” in SAS Language Reference: Dictionary. Also refer
to “Device Drivers” in SAS/GRAPH: Reference for information on selecting device
drivers.

ENCODING= local-character-set-encoding
overrides the encoding for input or output processing (transcodes) of external files.
See: For information about the ENCODING= option, see SAS National Language

Support (NLS): Reference Guide.

FILE= ’external-file’ | fileref
opens the RTF destination and specifies the RTF file or SAS catalog to which to
write. This file remains open until you do one of the following actions:

� Close the RTF destination with ODS RTF CLOSE or ODS _ALL_ CLOSE.
� Specify a different file to which to write.

external-file
is the name of an external file to which to write.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external file. Use the FILENAME
statement to assign a fileref.
See also: The section on statements in SAS Language Reference: Dictionary for

information about the FILENAME statement.
Restriction: You cannot use the FILE=fileref option with the NEWFILE= option.

Alias: BODY=
Interaction: In an ODS RTF statement that refers to an open RTF destination, the

FILE= option forces ODS to close the destination and all files that are associated
with it, and to open a new instance of the destination. For more information, see
“Opening and Closing the RTF Destination” on page 255.

See also: NEWFILE=

GFOOTNOTE | NOGFOOTNOTE
controls the location of the footnotes that are defined by the graphics program that
generates the RTF output.

GFOOTNOTE
includes all of the currently defined footnotes within the graphics output.

NOGFOOTNOTE
prevents all of the currently defined footnotes from appearing in the graphics file.
Instead, they become part of the RTF file.

Default: GFOOTNOTE
Restriction: This option applies only to SAS programs that produce one or more

device-based graphics, or graphics created by the SGPLOT procedure, the
SGPANEL procedure, or the SGSCATTER procedure.

GTITLE | NOGTITLE
controls the location of the titles that are defined by the graphics program that
generates the RTF output.

GTITLE

250 ODS RTF Statement � Chapter 5

includes all of the currently defined titles within the graphics output that is called
by the body file.

NOGTITLE
prevents all of the currently defined titles from appearing in the graphics output.
Instead, the titles become part of the RTF file.

Default: GTITLE

Restriction: This option applies only to SAS programs that produce one or more
device-based graphics, or graphics created by the SGPLOT procedure, the
SGPANEL procedure, or the SGSCATTER procedure.

(ID= identifier)

identifier
can be a number or a series of characters that begin with a letter or an underscore.

Restriction: If identifier is a number, the number must be positive.

Requirement: You must specify the ID= option immediately after the destination
name.

Tip: You can omit the ID= option, and use a name or a number instead to identify
the instance.

Featured in: Example 1 on page 212

IMAGE_DPI
specifies the image resolution for graphical output.

Default: 200

Restriction: The IMAGE_DPI= option affects template-based graphics only.

KEEPN | NOKEEPN
controls where tables split on a page.

KEEPN
ODS allows table splits only if the entire table cannot fit on one page.

NOKEEPN
ODS lets a table split at a page break.

Tip: Although KEEPN minimizes page breaks in tables, it might use substantially
more paper than NOKEEPN because the KEEPN option issues a page break
before starting to print any table that does not fit on the remainder of the page.

NEWFILE= starting-point
creates a new file at the specified starting-point.

starting-point can be one of the following:

BYGROUP
starts a new file for the results of each BY group.

NONE
writes all output to the next file that you open, and then stops incrementing.

OUTPUT
starts a new file for the results of each BY group.

Alias: TABLE

PROC
starts a new file each time that you start a new procedure.
Default: NONE

Dictionary of ODS Language Statements � ODS RTF Statement 251

Restriction: You cannot use both the NEWFILE= and TEXT= options in the same
ODS RTF statement. You must use a separate ODS RTF statement for each of
these options.

Restriction: You cannot use the NEWFILE= option with the FILE=fileref option.
Tip: If you end the filename with a number, then ODS begins incrementing with

that number. In the following example, ODS names the first body file MAY5.XML,
and names additional body files MAY6.XML, MAY7.XML, and so on.

NOGFOOTNOTE
See the description of GFOOTNOTE | NOFOOTNOTE in this section.

NOGTITLE
See the description of GTITLE | NOGTITLE in this section.

NOTOC_DATA
See the description of TOC_DATA in this section.

OPERATOR= ’text-string’
inserts the text you specify into the metadata of the RTF file.

text-string
is the text in the metadata of a file that indicates the author.
Requirement: You must enclose text-string in quotation marks.

PACKAGE <package-name>
specifies that the output from the destination be added to a package.

package-name
specifies the name of a package that was created with the ODS PACKAGE
statement. If no name is specified, then the output is added to the unnamed
package that was opened last.
See also: “ODS PACKAGE Statement” on page 198

PATH= ’aggregate-file-storage-specification’ | fileref | libref.catalog (URL=
’Uniform-Resource-Locator’ | NONE)

specifies the location of an aggregate storage location or a SAS catalog for all RTF
files. If the GPATH= option is not specified, all graphics output files are written to
the “aggregate-file-storage-specification” or libref.

’aggregate-file-storage-location’
specifies an aggregate storage location such as directory, folder, or partitioned data
set.
Requirement: You must enclose aggregate-file-storage-location in quotation marks.

fileref
is a file reference that has been assigned to an aggregate storage location. Use the
FILENAME statement to assign a fileref.
Interaction: If you use a fileref in the PATH= option, then ODS does not use

information from PATH= when it constructs links.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

libref.catalog
specifies a SAS catalog to write to.
See: For information about the LIBNAME statement, see SAS Language

Reference: Dictionary.

URL= ’Uniform-Resource-Locator’ | NONE
specifies a URL for the file-specification.

252 ODS RTF Statement � Chapter 5

Uniform-Resource-Locator
is the URL you specify. ODS uses this URL instead of the filename in all the
links and references that it creates to the file.

NONE
specifies that no information from the PATH= option appears in the links or
references.

Tip: This option is useful for building output files that can be moved from one
location to another. The links from the contents and page files must be
constructed with a single-name URL, and the contents, page, and body files
must be in the same location.

Interaction: If you use the BODY= or FILE= external file option in conjunction
with the PATH= option, the external file specification should not include path
information.

RECORD_SEPARATOR= ’alternative-separator’ | NONE
specifies an alternative record separator, which is a character or string that
separates lines in the output files.

Different operating environments use different separator characters. If you do not
specify a record separator, ODS formats the RTF files for the environment in which
you run the SAS job. However, if you are generating files in one operating
environment to view in another operating environment that uses a different
separator character, you can specify a record separator that is appropriate for the
target environment.

alternative-separator
represents one or more characters in hexadecimal or ASCII format. For example,
the following option specifies a record separator of a carriage-return character and
a linefeed character (on an ASCII file system):

RECORD_SEPARATOR= ’0D0A’x

Operating Environment Information: In a mainframe environment, the option
that specifies a record separator for a carriage-return character and a linefeed
character for use with an ASCII file system is:

RECORD_SEPARATOR= ’0D25’x

�

Requirement: You must enclose alternative-separator in quotation marks.

NONE
produces RTF output that is appropriate for the environment in which you run the
SAS job.

Operating Environment Information: In many operating environments, using a
value of NONE has the same result as omitting the RECORD_SEPARATOR
option. �

Operating Environment Information: In a mainframe environment, by default,
ODS produces a binary file that contains embedded record-separator characters.
This approach means that the file is not restricted by the line-length restrictions
on ASCII files, but it also means that the lines are concatenated if you view the
file in an editor.

If you want to format the RTF files in a manner that allows you to read them
with an editor, use RECORD_SEPARATOR= NONE. In this case, ODS writes one

Dictionary of ODS Language Statements � ODS RTF Statement 253

line of RTF at a time to the file. When you use a value of NONE, the logical record
length of the file to which you are writing must be at least as long as the longest
line that ODS produces. Otherwise, RTF might wrap to another line at an
inappropriate place. �

Alias:

RECSEP=

RS=

SASDATE
writes to the RTF file the time and the date that you started your SAS session.

Restriction: You can specify SASDATE only when you open a new file. If you specify
the option at any other time, ODS writes a warning message to the SAS log.

Interaction: To reset the SAS session time that is input into the RTF file, use the
DTRESET system option.

See: For information about the DTRESET system option, see SAS Language
Reference: Dictionary.

STARTPAGE= YES | NO | NOW
controls page breaks.

YES
inserts a new page at the start of each procedure and within certain procedures, as
is requested by the procedure code.

Alias: ON

Interaction: When the STARTPAGE= option is set to YES (the default), ODS
inserts a new page at the start of each procedure and relies on Word for the
correct placement of headers and footers before and after the procedures. When
you specify BODYTITLE, titles and footnotes are removed from the header and
footer sections of the RTF document. Titles and footnotes are then placed into
the body of the document, and they are appended to every TABLE. Therefore,
when you set the STARTPAGE= option to YES and you specify the BODYTITLE
option, the titles and footnotes might not repeat on every page. For example, if
there is a table that spans multiple pages, the title will appear on only the first
page, and the footnote will appear on only the last page.

Note: When you specify the BODYTITLE= option, Microsoft Word no longer
controls the placement of the headers and footers text, but it still controls other
header and footer information, such as page number and date. �

NO
instructs ODS not to insert any new pages at the start of each procedure or within
certain procedures, even if the procedure code requests new pages. A new page
begins only when a page is filled or when you specify STARTPAGE= NOW.

Alias: NEVER

Tip: This option prints only the first set of titles and the first set of footnotes to
the RTF file.

Interaction: When you specify the COLUMNS= option, the STARTPAGE=NO
option is not honored.

NOW
forces the immediate insertion of a new page.

Tip: This option is useful primarily when the current value of the STARTPAGE=
option is NO. Otherwise, each new procedure forces a new page automatically.

254 ODS RTF Statement � Chapter 5

Tip: Specifying STARTPAGE= NO prevents forced page breaks. You can turn on
forced page breaking again by specifying STARTPAGE=YES. You can insert a page
break at any time by specifying STARTPAGE=NOW.

Default: YES

STYLE= style-definition
specifies the style definition for ODS to use to write the RTF files.

style-definition
describes how to display the presentation aspects (color, font face, font size, and so
on) of your SAS output. A style definition determines the overall appearance of the
documents that use that style definition. Each style definition consists of style
elements.
Main discussion: For a complete discussion of style definitions, see Chapter 11,

“TEMPLATE Procedure: Creating a Style Template (Definition),” on page 487.
Default: If you do not specify a style definition, ODS uses the file that is specified in

the SAS registry subkey: ODS � DESTINATIONS � RTF. By default, this value
specifies RTF for traditional RTF and Measured RTF.

TEXT= ’text-string’
inserts text into your RTF output.

text-string
is the text that you want to insert into your RTF output. You can also use TEXT=
to annotate other output.

Restriction: You cannot use both the NEWFILE= and TEXT= options in the same
ODS RTF statement. You must use a separate ODS RTF statement for each of
these options.

Requirement: You must enclose a text-string in quotation marks.

TITLE= ’title-text’
inserts the text string that you specify as the title into the metadata of a file.

title-text
is the text in the metadata of a file that indicates the title.

Requirement: You must enclose a title-text in quotation marks.

TOC_DATA | NOTOC_DATA
specifies whether contents data is embedded in the RTF file as hidden text.

NOTOC_DATA
instructs ODS not to insert contents data into the RTF file.

TOC_DATA
instructs ODS to insert contents data into the RTF file.
Tip: Insertion of table of contents data can be resumed in the middle of a SAS

program by including the following statement:

ods rtf toc_data;

Default: NOTOC_DATA
Tip: To create a visible table of contents from the inserted table of contents data,

specify the CONTENTS option.
See also: CONTENTS option
Featured in: Example 1 on page 256

Dictionary of ODS Language Statements � ODS RTF Statement 255

TRANTAB= translation-table
specifies the translation table for ODS to use when it transcodes a file for output.
See: For information about the TRANTAB= option see SAS National Language

Support (NLS): Reference Guide.

Details

Opening and Closing the RTF Destination You can modify an open RTF destination
with many ODS RTF options. However, the FILE= option automatically closes the open
destination that is referred to in the ODS RTF statement and closes any files that are
associated with it, and then opens a new instance of the destination. If you use one of
these options, you should explicitly close the destination yourself.

Understanding How RTF Formats Output RTF produces output for Microsoft Word
2002. Although other applications can read RTF files, the RTF output might not work
successfully with the other applications.

The RTF destination enables you to view and edit the RTF output. ODS does not
define the “vertical measurement,” which means that SAS does not determine the
optimal place to position each item on the page. For example, page breaks are not
always fixed because you do not want your RTF output tables to split at inappropriate
places when you edit your text. Your tables remain intact on one page, or break where
you specify.

However, Microsoft Word needs to know the widths of table columns; and Microsoft
Word cannot adjust tables if they are too wide for the page. Therefore, ODS measures
the width of the text and tables (horizontal measurement). All of the column widths can
be set properly by SAS and the table can be divided into panels if it is too wide to fit on
a single page.

In short, when producing RTF output for input to Microsoft Word, SAS determines
the horizontal measurement and Microsoft Word controls the vertical measurement.
Because Microsoft Word can determine how much room there is on the page, your
tables display consistently even after you modify your RTF file.

However, in SAS version 9.2, the ODS Measured tagset is introduced. This tagset
enables users to specify how and where page breaks occur and when to place titles and
footnotes into the body of a page. Refer to “ODS TAGSETS.RTF Statement” on page
286 for information on using Measured RTF.

Note: Complex tables that contain a large number of observations can reduce
system efficiencies and take longer to process. �

ODS RTF and Graphics ODS RTF produces output in rich text format, which supports
three formats for graphics that MS Word can read.

Format for Graphics Corresponding SAS Graphics Driver

emfblips SASEMF

pngblips PNG

jpegblips JPEG

When you do not specify a target device, the default target is SASEMF. You can also
use the ACTIVEX, ACTXIMG, JAVAIMG graphics drivers to generate graphics in your

256 ODS RTF Statement � Chapter 5

RTF documents. The ACTIVEX driver generates an ActiveX control. The ACTXIMG
and JAVAIMG drivers generate PNG files with the ACTIVEX Control or JAVA Applets
appropriately. For more information about graphics devices, see SAS/GRAPH:
Reference.

Note: When you specify the JAVA device in the ODS RTF statement, the JAVAIMG
driver is used. �

Examples

Example 1: Creating a Table of Contents from Embedded Data

ODS features:

ODS RTF statement:

Action:

CLOSE

Options:

CONTENTS

NOTOC_DATA

TOC_DATA

Other SAS features:

#BYVAL parameter in titles

NOBYLINE|BYLINE system option

OPTIONS statement

PROC FORMAT

PROC PRINT

PROC SORT

PROC REPORT

PROC TABULATE

TITLE statement

Data set:
See “Creating the Grain_Production Data Set” on page 878.

Format:
See “Creating the $CNTRY Format” on page 869.

Program Description The following example creates a table of contents page that
contains embedded table of contents data for some procedures but not for others. The
insertion of the table of contents data can be turned on and off in the middle of a
program.

Program

Sort the data set Grain_Production. PROC SORT sorts the data, first by values of the
variable Year, then by values of the variable Country, and finally by values of the variable Type.

proc sort data=Grain_Production;
by year country type;

run;

Dictionary of ODS Language Statements � ODS RTF Statement 257

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Create RTF output and create a new body file for each page of output. The ODS RTF
statement opens the RTF destination and creates RTF output. The CONTENTS option creates a
table of contents page that contains a Table of Contents field, which puts all of the contents
information that is embedded in the document into a table of contents. However, the table of
contents information is not embedded by default into your RTF file. The default is
NOTOC_DATA. The embedded TOC data is not shown until you specify the option TOC_DATA.

ods rtf file=’Grain.Rtf’ contents toc_data;

Replace the default BY line with a new value in the BY line. The NOBYLINE option
suppresses the default BY line variable. The #BYVAL parameter specification inserts the
current value of the BY variable Year into the title.

options nobyline;
title ’Leading Grain-Producing Countries’;
title2 ’for #byval(year)’;

Produce a report. This PROC REPORT step produces a report on grain production. Each BY
group produces a page of output, and ODS creates a new body file for each BY group. The
NOWINDOWS option instructs PROC REPORT to run without the REPORT window and to
send its output to the open output destinations.

proc report data=Grain_Production nowindows;
by year;
column country type kilotons;
define country / group width=14 format=$cntry.;
define type / group ’Type of Grain’;
define kilotons / format=comma12.;
footnote ’Measurements are in metric tons.’;

run;

Restore the default BY line and clear the second TITLE statement. The BYLINE option
restores the default BY line. The TITLE2 statement clears the second TITLE statement.

options byline;
title2;

Suppress the insertion of table of contents data into the RTF file. The NOTOC_DATA
option instructs ODS not to insert the table of contents data into the RTF file. There will be no
entry for the TABULATE procedure in the table of contents page.

ods rtf notoc_data;

Produce a report. The TABLE statement in the PROC TABULATE step uses three
dimensions. Year defines pages, Country and Type define the rows, and Kilotons defines the
columns. Therefore, PROC TABULATE explicitly produces one page of output for 1995 and one
page for 1996, based on the years specified in the Grain_Production data set. ODS also starts a
new body file for each page.

proc tabulate data=Grain_Production format=comma12.;
class year country type;

258 ODS RTF Statement � Chapter 5

var kilotons;
table year,

country*type,
kilotons*sum=’ ’ / box=_page_ misstext=’No data’;

format country $cntry.;
footnote ’Measurements are in metric tons.’;

run;

Enable the insertion of table of contents data into the RTF file. The TOC_DATA option
instructs ODS to insert the table of contents data into the RTF file. There will be an entry for
the PRINT procedure in the table of contents page.

ods rtf toc_data;

Print the Grain_Production DATA set.

proc print data=Grain_Production;
run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF destination and
all the files that are associated with it. If you do not close the destination, you cannot view the
files in a browser window.

ods rtf close;

RTF Output

By default the table of contents is collapsed on the table of contents page. To expand the table of
contents, right-click under the title in Microsoft Word and select “Update Field” from the
selection list.

Dictionary of ODS Language Statements � ODS RTF Statement 259

The table of contents contains only entries for PROC REPORT and PROC PRINT. By default
the table of contents data is not embedded in the RTF document. To embed the table of contents
data, specify the TOC_DATA option, which results in an entry for PROC REPORT. If you specify
the NOTOC_DATA option before the TABULATE procedure, ODS does not insert contents
information into the RTF document, and no entry for PROC TABULATE appears in the table of
contents. If you specify the TOC_DATA option before the PRINT procedure, ODS inserts
contents data, and an entry for PROC PRINT appears in the table of contents.

Example 2: Justifying Title and Footnotes When You Specify the BODYTITLE_AUX
Option

ODS features:

ODS RTF statement:

Action:

CLOSE

Options:

BODYTITLE_AUX

FILE=

Other SAS features:

OPTIONS statement

PROC PRINT

TITLE statement

Program Description When you want to place the titles and footnotes in the body of
the RTF output, you usually specify the BODYTITLE option. However, to center your
titles and footnotes or to justify them, you need to specify the BODYTITLE_AUX
option. The following example shows how to left justify, right justify, and center titles
and footnotes in the body of the output.

Note: The preferred way to accomplish this functionality is to use the measured
ODS TAGSETS.RTF statement that was introduced in 9.2. Refer to “ODS
TAGSETS.RTF Statement” on page 286. �

260 ODS RTF Statement � Chapter 5

Program

Specify the layout of the output. Instruct ODS not to print the date or time on the page and
not to write any SAS statistics to the SAS log. Set the page size to 60 and the line size to 78.

OPTIONS NODATE NOSTIMER LS=78 PS=60;

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Create RTF output. The ODS RTF statement opens the RTF destination and creates RTF
output. The BODYTITLE_AUX option tells SAS to place the titles and footnotes in the body of
the output. Additionally, this option places the titles and footnotes into cells.

ods rtf file="bodytitle_aux.rtf" bodytitle_aux;

Print the SASHELP DATA set.

proc print data=sashelp.class;
run;

Add titles and footnotes to the output. Because you have specified the BODYTITLE_AUX
option, ODS adds the titles and footnotes to the body of the output and places the text into cells.
The J= style specifies the position of the title and footnote text on the page: left, center, or right.

title j=l "left" j=c "center" j=r "right";
title2 j=l "left";
title3 j=c "center";
title4 j=r "right";
footnote j=l "left" j=c "center" j=r "right";
run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF destination and
all the files that are associated with it. If you do not close the destination, you cannot view the
files in a browser window.

ods rtf close;

Dictionary of ODS Language Statements � ODS RTF Statement 261

RTF Output

The following output shows how ODS places the titles and footnotes into the body of the output
when you specify the BODYTITLE_AUX option. The text of the titles and footnotes are then
placed into cells and tables. The JUSTIFY style element is then used to center, right justify, or
left justify the title and footnote text.

Example 3: RTF Interaction with the ORIENTATION= System Option

ODS features:

ODS RTF statement:
Action:

CLOSE

Options:

FILE=

Other SAS features:

OPTIONS statement:
ORIENTATION option

PROC PRINT

TITLE statement

262 ODS RTF Statement � Chapter 5

Program Description When you want to change the RTF page orientation, specify the
ORIENTATION= system option. To activate or trigger this change of the page
orientation, the ODS RTF statement needs to follow the ORIENTATION= option. The
following example provides example code for specifying a page orientation change
within an RTF file.

Program

Specify the layout of the output. Instruct ODS not to print the date or time on the page and
not to write any SAS statistics to the SAS log. Set the page size to 60 and the line size to 78.

OPTIONS NODATE NOSTIMER LS=78 PS=60;

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Add titles and footnotes to the output. Add a title for the overall file output and then titles
that describe the changing orientation.

title ’Page Orientation’;
title2 ’Default’;

Create RTF output. The ODS RTF statement opens the RTF destination and creates RTF
output.In this case, the statement also triggers the change in the page orientation from the
default.

ods rtf file="ChgOrientation.rtf";

Print the SASHELP DATA set with only one observation. The page orientation is the
default orientation which is portrait.

proc print data=sashelp.class (obs=1);
run;

Add a title to change the page orientation in the output file. Add a title to change the
page orientation to landscape.

title ’Page Orientation’;
title2 ’Landscape’;

Specify the system option that will change the page orientation.

options orientation=landscape;

Trigger the page orienation change. This RTF statement triggers the change of the page
orientation from protrait to landscape.

ods rtf;

Print the SASHELP DATA set with only one observation.

proc print data=sashelp.class (obs=1);
run;

Dictionary of ODS Language Statements � ODS RTF Statement 263

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF destination and
all the files that are associated with it. If you do not close the destination, you cannot view the
files in a browser window.

ods rtf close;

RTF Output

The following shows the RTF output for the first page. The orientation is portrait, which is the
default.

264 ODS SELECT Statement � Chapter 5

The following shows the RTF output for the second page. The orientation was changed to
landscape.

ODS SELECT Statement

Specifies output objects for ODS destinations.

Valid: anywhere
Category: ODS: Output Control
See also: “ODS EXCLUDE Statement” on page 110
Tip: You can maintain a selection list for one destination and an exclusion list for
another. However, it is easier to understand the results if you maintain the same types
of lists for all of the destinations to which you route output.

Syntax
ODS <ODS-destination> SELECT selection(s) | ALL | NONE;

Required Arguments

selection(s)
specifies output objects to add to a selection list. ODS sends the items in the
selection list to all active ODS destinations. By default, ODS automatically modifies
selection lists when a DATA step that uses ODS or a procedure step ends. For
information about modifying these lists, see “Selection and Exclusion Lists” on page
34. For information about ending DATA and procedure steps, see the section on
DATA Step Processing in SAS Language Reference: Concepts.

Dictionary of ODS Language Statements � ODS SELECT Statement 265

Each selection has the following form:

output-object <(PERSIST)>

output-object
specifies the output object to select.

To specify an output object, you need to know which output objects your SAS
program produces. The ODS TRACE statement writes to the SAS log a trace
record that includes the path, the label, and other information about each output
object that your SAS program produces. You can specify an output object as one of
the following:

� a full path. For example,

Univariate.City_Pop_90.TestsForLocation

is the full path of the output object.
� a partial path. A partial path consists of any part of the full path that begins

immediately after a period (.) and continues to the end of the full path. For
example, if the full path is

Univariate.City_Pop_90.TestsForLocation

then the partial paths are:

City_Pop_90.TestsForLocation
TestsForLocation

� a label that is enclosed by quotation marks.
For example,

"The UNIVARIATE Procedure"

� a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

Note: The trace record shows the label path only if you specify the
LABEL option in the ODS TRACE statement. �

� a partial label path. A partial label path consists of any part of the label that
begins immediately after a period (.) and continues to the end of the label.
For example, if the label path is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

then the partial label paths are:

"CityPop_90"."Tests For Location"
"Tests For Location"

� a mixture of labels and paths.
� any of the partial path specifications, followed by a pound sign (#) and a

number. For example, TestsForLocation#3 refers to the third output object
that is named TestsForLocation.

Restriction:

See also: “ODS TRACE Statement” on page 317

266 ODS SELECT Statement � Chapter 5

(PERSIST)
keeps the output-object that precedes the PERSIST option in the selection list,
even if the DATA or procedure step ends, until you explicitly modify the list with
one of the following:

� any ODS EXCLUDE statement

� ODS SELECT NONE

� ODS SELECT ALL

� an ODS SELECT statement that applies to the same output object but does
not specify PERSIST

Requirement: You must enclose PERSIST in parentheses.

ALL
specifies that ODS send all of the output objects to the open destination.

Alias: ODS SELECT DEFAULT

Interaction: If you specify ALL without specifying a destination, ODS sets the
overall list to SELECT ALL and sets all other lists to their defaults.

NONE
specifies that ODS does not send any output objects to the open destination.

Interaction: If you specify NONE and you do not specify a destination, ODS sets
the overall list to SELECT NONE and sets all other lists to their defaults.

Tip: Using the NONE action is different from closing a destination. The output
destination is still open, but ODS restricts the output that it sends to the
destination.

Tip: To temporarily suspend a destination, use ODS SELECT NONE. Use ODS
SELECT ALL when you want to resume sending output to the suspended
destination.

Options

NOWARN
suppresses the warning that an output object was requested but not created.

ODS-destination
specifies to which ODS destination’s selection list to write, where ODS-destination
can be any valid ODS destination except for the OUTPUT destination. For a
discussion of ODS destinations, see “Understanding ODS Destinations” on page 24.

Default: If you omit ODS-destination, ODS writes to the overall selection list.

Restriction: You cannot write to the OUTPUT destination’s selection list.

Tip: To set the selection list for the Output destination to something other than the
default, see the “ODS OUTPUT Statement” on page 184.

WHERE=where-expression
selects output objects that meet a particular condition. For example, the following
statement selects only output objects with the word “Histogram” in their name:

ods select where=(_name_ ? ’Histogram’);

where-expression

Dictionary of ODS Language Statements � ODS SELECT Statement 267

is an arithmetic or logical expression that consists of a sequence of operators and
operands. where-expression has this form:

(subsetting-variable <comparison-operator where-expression-n>)

subsetting-variable
Subsetting variables are a special kind of WHERE expression operand used by
SAS to help you find common values in items. For example, this ODS SELECT
statement selects only output objects with the path
City_Pop_90.TestsForLocation :

ods select / where=(_path_ = ’City_Pop_90.TestsForLocation’);

subsetting-variable is one of the following:

LABEL
is the label of the output object

LABELPATH
is the label path of the output object

NAME
is the name of the output object.

PATH
is the full or partial path of the output object.

operator
compares a variable with a value or with another variable. operator can be
AND, OR NOT, OR, AND NOT, or a comparison operator.

The following table lists some comparison operators:

Table 5.31 Examples of Comparison Operators

Symbol Mnemonic
Equivalent

Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Example

Example 1: Using a Selection List with Multiple Procedure Steps

ODS features:
ODS SELECT statement:

with label
with name
with and without PERSIST
ALL

268 ODS SELECT Statement � Chapter 5

ODS SHOW statement
ODS HTML statement:

BODY=
CONTENTS=
FRAME=
PAGE=

Other SAS features:
PROC GLM
PROC PRINT
PROC PLOT

Data Sets:
See “Creating the Iron Data Set” on page 879.

This example runs the same procedures multiple times to illustrate how ODS
maintains and modifies a selection list. The ODS SHOW statement writes the overall
selection list to the SAS log. The example does not alter selection lists for individual
destinations. The contents file that is generated by the ODS HTML statement shows
which output objects are routed to both the HTML and the LISTING destinations.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

This example creates and prints data sets from the parameter estimates that PROC
GLM generates. This procedure is part of SAS/STAT software.

Program

Create HTML output. The ODS HTML statement opens the HTML destination and creates
HTML output. The output from the procedures is sent to the file odspersist-body.htm. The
FRAME=, CONTENTS=, and PAGE= options create the files OdsPersist-Frame.htm,
OdsPersist-Contents.htm, and OdsPersist-Page.htm, respectively. These files, together with the
file OdsPersist-Body.htm, create a frame that includes a table of contents and a table of pages
that link to the contents of the body file.

ods html body=’odspersist-body.htm’
frame=’odspersist-frame.htm’

contents=’odspersist-contents.htm’
page=’odspersist-page.htm’;

Write the overall selection list to the SAS log. The ODS SHOW statement writes to the SAS
log the overall list, which is set to SELECT ALL by default. See [1] in “SAS Log” on page 271.

ods show;

Specify the output objects that will be sent to the open destinations. The ODS SELECT
statement determines which output objects ODS sends to the LISTING and HTML destinations.
In this case, ODS sends all output objects that are named ParameterEstimates and all output
objects that are labeled “Type III Model ANOVA” to the two destinations.

ods select ParameterEstimates
"Type III Model ANOVA";

Dictionary of ODS Language Statements � ODS SELECT Statement 269

Write the modified overall selection list to the SAS log. The ODS SHOW statement writes
to the SAS log the overall selection list, which now contains the two items that were specified in
the ODS SELECT statement. See [2] in the “SAS Log” on page 271.

ods show;

Create the output objects and send the selected output objects to the open
destinations. As PROC GLM sends each output object to the Output Delivery System, ODS
sends the two output objects from PROC GLM that match the items in the selection list to the
open destinations. See 1. in the table of contents in “HTML Output” on page 273. Note that it
is the label of an output object, not its name, that appears in the table of contents. The label for
ParameterEstimates is “Solution”.

proc glm data=iron;
model loss=fe;
title ’Parameter Estimates and Type III Model ANOVA’;

run;

Write the overall selection list to the SAS log. PROC GLM supports run-group processing.
Therefore, the RUN statement does not end the procedure, and ODS does not automatically
modify the selection list. See [3] in the “SAS Log” on page 271.

ods show;

End the GLM procedure. The QUIT statement ends the procedure. ODS removes all objects
that are not specified with PERSIST from the selection list. Because this action removes all
objects from the list, ODS sets the list to its default, SELECT ALL.

quit;

Write the current selection list to the SAS log. The ODS SHOW statement writes the
current selection list to the SAS log. See [4] in the “SAS Log” on page 271.

ods show;

Create the output objects, send the selected output objects to the open destinations,
and end the procedure. As PROC GLM sends each output object to the Output Delivery
System, ODS sends all the output objects to the HTML and LISTING destinations. See 2. in
the table of contents in “HTML Output” on page 273.

The QUIT statement ends the procedure. Because the list uses the argument ALL, ODS does
not automatically modify it when the PROC step ends.

proc glm data=iron;
model loss=fe;
title ’All Output Objects Selected’;

run;
quit;

Modify the overall selection lists. This ODS SELECT statement modifies the overall
selection list so that it sends all output objects that are named OverallANOVA, and all output
objects that are labeled Fit Statistics, to both the HTML and LISTING destinations. The
PERSIST option specifies that OverallANOVA should remain in the selection list when ODS
automatically modifies it.

ods select OverallANOVA(persist) "Fit Statistics";

270 ODS SELECT Statement � Chapter 5

Create the output objects and send the selected output objects to the open
destinations. As PROC GLM sends each output object to the Output Delivery System, ODS
sends the two output objects from PROC GLM that match the items in the selection list to the
HTML and LISTING destinations. See 3. in the table of contents in “HTML Output” on page
273.

proc glm data=iron;
model loss=fe;
title ’OverallANOVA and Fitness Statistics’;

run;

End the GLM procedure and automatically modify the selection list. When the QUIT
statement ends the procedure, ODS automatically modifies the selection list. Because
OverallANOVA was specified with the PERSIST option, it remains in the selection list. Because
Fitness Statistics was not specified with the PERSIST option, ODS removes it from the selection
list.

quit;

Write the current selection list to the SAS log. The ODS SHOW statement writes the
current selection list to the SAS log. See [5] in the “SAS Log” on page 271.

ods show;

Create the output objects and send the selected output objects to the open
destinations. As PROC GLM sends each output object to the Output Delivery System, ODS
sends only the output object that is named OverallANOVA to the HTML and LISTING
destinations. See 4. in the table of contents in “HTML Output” on page 273.

proc glm data=iron;
model loss=fe;
title ’OverallANOVA’;
title2 ’Part of the Selection List Persists’;

run;

End the GLM procedure and automatically modify the selection list. When the QUIT
statement ends the procedure, ODS automatically modifies the selection list. Because
OverallANOVA was specified with the PERSIST option, it remains in the selection list.

quit;

PROC PRINT does not produce any output that is named OverallANOVA. Therefore, no PROC
PRINT output is sent to the ODS destinations.

proc print data=iron;
title ’The IRON Data Set’;

run;

Reset all selection lists. This ODS SELECT statement resets all selection lists to their
defaults.

ods select all;

Dictionary of ODS Language Statements � ODS SELECT Statement 271

Create the plots. As PROC PLOT creates and sends each output object to the Output Delivery
System, ODS sends each one to the HTML and LISTING destinations because their lists and
the overall list are set to SELECT ALL (the default).

proc plot data=iron;
plot fe*loss=’*’ / vpos=25 ;
label fe=’Iron Content’

loss=’Weight Loss’;
title ’Plot of Iron Versus Loss’;

run;

End the PLOT procedure. The QUIT statement ends the PLOT procedure. Because the list
uses the argument ALL, ODS does not automatically modify the list when the PROC step ends.

quit;

Close the HTML destination. This ODS HTML statement closes the HTML destination and
all the files that are associated with it.

ods html close;

SAS Log

Output 5.5 The ODS SHOW Statement Writes the Current Selection List to the SAS
Log.

10 ods html body=’odspersist-body.htm’
11 contents=’odspersist-contents.htm’
12 frame=’odspersist-frame.htm’
13 page=’odspersist-page.htm’;
NOTE: Writing HTML Body file: odspersist-body.htm
NOTE: Writing HTML Contents file: odspersist-contents.htm
NOTE: Writing HTML Pages file: odspersist-page.htm
NOTE: Writing HTML Frames file: odspersist-frame.htm
14 ods show;
Current OVERALL select list is: ALL [1]
15 ods select ParameterEstimates
16 "Type III Model ANOVA";
17 ods show;
Current OVERALL select list is: [2]
1. ParameterEstimates
2. "Type III Model ANOVA"
18 proc glm data=iron;
19 model loss=fe;
20 title ’Parameter Estimates and Type III Model ANOVA’;
21 run;
22 ods show;
Current OVERALL select list is: [3]
1. ParameterEstimates
2. "Type III Model ANOVA"
23 quit;
NOTE: PROCEDURE GLM used:

real time x.xx seconds
cpu time x.xx seconds

24 ods show;
Current OVERALL select list is: ALL [4]
25 proc glm data=iron;
26 model loss=fe;
27 title ’All Output Objects Selected’;
28 run;
29 quit;
NOTE: PROCEDURE GLM used:

real time x.xx seconds
cpu time x.xx seconds

272 ODS SELECT Statement � Chapter 5

30 ods select OverallANOVA(persist) "Fit Statistics";
31 proc glm data=iron;
32 model loss=fe;
33 title ’OverallANOVA and Fitness Statistics’;
34 run;
35 quit;
NOTE: PROCEDURE GLM used:

real time x.xx seconds
cpu time x.xx seconds

36
37 ods show;
Current OVERALL select list is: [5]
1. OverallANOVA(PERSIST)
38 proc glm data=iron;
39 model loss=fe;
40 title ’OverallANOVA’;
41 title2 ’Part of the Selection List Persists’;
42 run;
43 quit;
NOTE: PROCEDURE GLM used:

real time x.xx seconds
cpu time x.xx seconds

44 proc print data=iron;
45 title ’The IRON Data Set’;
46 run;
NOTE: PROCEDURE PRINT used:

real time x.xx seconds
cpu time x.xx seconds

47 ods select all;
48 proc plot data=iron;
49 plot fe*loss=’*’ / vpos=25 ;
50 label fe=’Iron Content’
51 loss=’Weight Loss’;
52 title ’Plot of Iron Versus Loss’;
53 run;
54 quit;

Dictionary of ODS Language Statements � ODS SELECT Statement 273

HTML Output

Display 5.23 Contents File Produced by the ODS HTML Statement

The contents file shows the output objects from each procedure that ODS sent to the open ODS
destinations. You can see that no output was written to the HTML destination for PROC PRINT
(because PROC PRINT did not produce anything whose name matched the name in the
selection list). You can also see that the PROC PLOT output was written to the HTML
destination after the ODS SELECT ALL statement was executed.

Example 2: Conditionally Selecting Output Objects

ODS features:
ODS SELECT statement:

WHERE= option
ODS TRACE statement:

274 ODS SELECT Statement � Chapter 5

LABEL option
EXCLUDED

ODS HTML statement

Other SAS features:
PROC UNIVARIATE

Program

Create the BPressure data set.

data BPressure;
length PatientID $2;
input PatientID $ Systolic Diastolic @@;
datalines;

CK 120 50 SS 96 60 FR 100 70
CP 120 75 BL 140 90 ES 120 70
CP 165 110 JI 110 40 MC 119 66
FC 125 76 RW 133 60 KD 108 54
DS 110 50 JW 130 80 BH 120 65
JW 134 80 SB 118 76 NS 122 78
GS 122 70 AB 122 78 EC 112 62
HH 122 82
;
run;

Create HTML output and add a title.

ods html file=’MyOutputObjects.html’;
title ’Systolic and Diastolic Blood Pressure’;

Specify that SAS write the trace record to the SAS log. This ODS TRACE statement
writes the trace record to the SAS log. The LABEL option includes label paths in the trace
record. The EXCLUDED option includes information on output objects that SAS excludes from
the output destination.

ods trace on / label excluded;

Select output objects. The ODS SELECT statement with the WHERE = option specified
selects output objects that are named ’Moments’ and that have ’Diastolic’ in the path name.

ods select where=(_path_ ? "Diastolic" and _name_=’Moments’) ;

Create the output objects and send the selected output objects to the open
destinations. As PROC UNIVARIATE sends each output object to the Output Delivery System,
ODS sends the output object from PROC UNIVARIATE that matches the items in the selection
list to the open destinations.

proc univariate data=BPressure;
var Systolic Diastolic;

run;

Close the HTML destination. This ODS HTML statement closes the HTML destination and
all the files that are associated with it.

ods html close;

Dictionary of ODS Language Statements � ODS SELECT Statement 275

SAS Log: Trace Record

Output 5.6 Partial SAS Log Including Trace Record

Output Excluded:

Name: Moments
Label: Moments
Template: base.univariate.Moments
Path: Univariate.Systolic.Moments
Label Path: ’The Univariate Procedure’.’Systolic’.’Moments’

Output Excluded:

Name: BasicMeasures
Label: Basic Measures of Location and Variability
Template: base.univariate.Measures
Path: Univariate.Systolic.BasicMeasures
Label Path: ’The Univariate Procedure’.’Systolic’.

’Basic Measures of Location and Variability’

Output Excluded:

Name: TestsForLocation
Label: Tests For Location
Template: base.univariate.Location
Path: Univariate.Systolic.TestsForLocation
Label Path: ’The Univariate Procedure’.’Systolic’.

’Tests For Location’

Output Excluded:

Name: Quantiles
Label: Quantiles
Template: base.univariate.Quantiles
Path: Univariate.Systolic.Quantiles
Label Path: ’The Univariate Procedure’.

’Systolic’.’Quantiles’

Output Excluded:

Name: ExtremeObs
Label: Extreme Observations
Template: base.univariate.ExtObs
Path: Univariate.Systolic.ExtremeObs
Label Path: ’The Univariate Procedure’.

’Systolic’.’Extreme Observations’

276 ODS SELECT Statement � Chapter 5

Output Added:

Name: Moments
Label: Moments
Template: base.univariate.Moments
Path: Univariate.Diastolic.Moments
Label Path: ’The Univariate Procedure’.’Diastolic’.’Moments’

Output Excluded:

Name: BasicMeasures
Label: Basic Measures of Location and Variability
Template: base.univariate.Measures
Path: Univariate.Diastolic.BasicMeasures
Label Path: ’The Univariate Procedure’.’Diastolic

’.’Basic Measures of Location and Variability’

Output Excluded:

Name: TestsForLocation
Label: Tests For Location
Template: base.univariate.Location
Path: Univariate.Diastolic.TestsForLocation
Label Path: ’The Univariate Procedure’.’Diastolic’.

’Tests For Location’

Output Excluded:

Name: Quantiles
Label: Quantiles
Template: base.univariate.Quantiles
Path: Univariate.Diastolic.Quantiles
Label Path: ’The Univariate Procedure’.’Diastolic’.’Quantiles’

Output Excluded:

Name: ExtremeObs
Label: Extreme Observations
Template: base.univariate.ExtObs
Path: Univariate.Diastolic.ExtremeObs
Label Path: ’The Univariate Procedure’.’Diastolic’.
’Extreme Observations’

Dictionary of ODS Language Statements � ODS SHOW Statement 277

HTML Output

See Also

Statements:
“ODS EXCLUDE Statement” on page 110
“ODS SHOW Statement” on page 277
“ODS TRACE Statement” on page 317

ODS SHOW Statement

Writes the specified selection or exclusion list to the SAS log.

Valid: anywhere
Category: ODS: Output Control

Syntax
ODS <ODS-destination> SHOW;

Options

ODS-destination
specifies which ODS destination’s selection or exclusion list to write to the SAS log.
ODS-destination must be a valid ODS destination. For information about ODS
destinations, see “Understanding ODS Destinations” on page 24. For information
about selection and exclusion lists, see “Selection and Exclusion Lists” on page 34.

278 ODS Tagset Statement � Chapter 5

Default: If you omit ODS-destination, ODS SHOW writes the overall selection or
exclusion list.

See Also

Statements:

“ODS EXCLUDE Statement” on page 110

“ODS SELECT Statement” on page 264

“ODS TRACE Statement” on page 317

ODS Tagset Statement

Opens, manages, or closes the specified tagset destination.

Valid: anywhere

Category: ODS: Third-Party Formatted

Interaction: If you use the ODS tagset statement in an ODS markup family statement
that refers to an open ODS markup destination, then the option will force ODS to close
the destination and all files associated with it, and then to open a new instance of the
destination. For more information, see “Opening and Closing the MARKUP
Destination” on page 167.

See also: For additional information about specifying tagsets, see Chapter 13,
“TEMPLATE Procedure: Creating Markup Language Tagsets,” on page 795 or “ODS
MARKUP Statement” on page 147.

Syntax
ODS directory.tagset-name file-specification <option(s)>;

ODS directory.tagset-name file-specification action;

Actions
The following table lists the actions available for the ODS tagset statement. For

complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.32 ODS Tagset Action Summary Table

Task Action

Close the destination and the file that is associated
with it

CLOSE

Exclude output objects from the destination EXCLUDE

Dictionary of ODS Language Statements � ODS Tagset Statement 279

Task Action

Select output objects for the destination SELECT

Write to the SAS log the current selection or exclusion
list for the destination

SHOW

Options
The following table lists the options that are available for the ODS Tagset statement,

which is part of the markup family of statements. For complete descriptions of these
options, see “Options” on page 148 in the ODS MARKUP statement.

Table 5.33 ODS Tagset Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view ODS output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

Specify the character set to be generated in the META
declaration for the output

CHARSET=

Open the tagset destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the tagset destination and specify the file that
contains a table of contents for the output

CONTENTS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

280 ODS Tagset Statement � Chapter 5

Task Option

Specify markup tags to place between the <HEAD>
and </HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify markup code to use as the <META> tag
between the <HEAD> and </HEAD> tags in all the
markup files that the destination writes to

METATEXT=

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Open the destination and specify the file that contains
a description of each page of the body file, and
contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an external file or a SAS
catalog for all HTML files

PATH=

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the destination and place style information for
output into an external file, or read style sheet
information from an existing file

STYLESHEET=

Insert text into your document TEXT=

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

The following table lists the options that are most useful for the ODS tagset
statement. You can use the ODS tagset options and the ODS MARKUP statement
options together.

Table 5.34 ODS Tagset Option Summary Table

Task Option

Specify tagset-specific options OPTIONS

Specify a directory where the tagset is stored directory

Specify a tagset tagset-name

OPTIONS (DOC=)| sub-option(s)

Dictionary of ODS Language Statements � ODS Tagset Statement 281

specifies ODS tagset-specific sub-options and a named value.

(DOC=’QUICK’ | ’HELP’ | ’SETTINGS’)
provides information about the specified tagset.

QUICK
describes the options available for this tagset.

HELP
provides generic help and information with a quick reference.

SETTINGS
provides the current option settings.

Requirement: All values must be enclosed in quotation marks.

sub-option(s)
specifies one or more suboptions that are valid for the specified tagset. To list
suboptions that are valid for a tagset, specify DOC=”HELP” or DOC=”QUICK”
with the OPTIONS option.

Requirement: The OPTION suboptions must be enclosed in parenthesis.
Featured in: Example 1 on page 285

directory
specifies the directory where the specified tagset is stored. directory can be a
directory supplied by SAS, a user- defined entry, or a libref. By default, the tagsets
that SAS supplies are located in the directory TAGSETS, which is within the item
store SASHELP.TMPLMST.

tagset-name
specifies the name of the tagset. tagset-name can be one of the following:

CHTML
produces compact, minimal HTML output that does not use style information. It
does produce a hierarchical table of contents.
See: “ODS CHTML Statement” on page 85

CORE
contains a table of Unicode values and mnemonics. Refer to “Using Unicode
Symbols” on page 99 for a detailed description on using this tagset.

CSV
produces tabular output that contains columns of data values that are separated
by commas.

Interaction: The TEXT= option has no affect in the CSV file output.
Featured in: “Defining a Tagset Using SAS DATA Step Functions” on page 846.

CSVALL
produces HTML output containing columns of data values that are separated by
commas, and produces tabular output with titles, notes, and bylines.

Interaction: The TEXT= option has no affect in the CSV file output.
See also: “ODS CSVALL Statement” on page 88
Feature in: Example 3 on page 173

CSVBYLINE
produces output with comma-separated values and columns of data that are
separated by commas.

Interaction: The TEXT= option has no affect in the CSV file output.

DEFAULT

282 ODS Tagset Statement � Chapter 5

produces XML output.

DOCBOOK
produces XML output that conforms to the DocBook DTD by OASIS.
See also: “ODS DOCBOOK Statement” on page 91

ExcelXP
produces Microsoft spreadsheetML XML. This tagset is used to import data into
Excel. Execute the following code to get detailed information on this tagset:

ods tagsets.excelxp file=’test.xml’ options(doc=’help’);

HTML4
produces HTML 4.0 embedded style sheets.
See also: “ODS HTML Statement” on page 124

HTMLCSS
produces HTML output with cascading style sheets that is similar to ODS HTML
output.
See also: “ODS HTMLCSS Statement” on page 135

HTMLPANEL
creates panels for BY grouped graphs. It also has controls for semi-automatic and
manually controlled paneling. This tagset makes it easy to put graphs and tables
side-by-side on a page. Also included are controls for titles, footnotes, and bylines.

To get detailed help on this tagset, any of the following three lines of code can
be executed:

ods tagsets.htmlpanel file=’’gbypanel.html’’ options(doc=’help’);

ods tagsets.htmlpanel options(doc=’quick’);

ods tagsets.htmlpanel options(doc=’settings’);

IMODE
produces HTML output as a column of output that is separated by lines. This
tagset is used by the Japanese telephone service provider NTT.
See also: “ODS IMODE Statement” on page 140

MSOFFICE2K
produces HTML code for output generated by ODS for Microsoft Office products.

MVSHTML
produces URLs within HTML files that are used in the z/OS operating
environment.

PHTML
produces simple HTML output that uses twelve style elements and no class
attributes for the presentation. Class attributes are used only for the justification.
See also: “ODS PHTML Statement” on page 215

PYX
produces PYX, which is a simple, line-oriented notation used by Pyxie to describe
the information communicated by an XML parser to an XML application. Pyxie is
an Open Source library for processing XML with the Python programming
language.

RTF

Dictionary of ODS Language Statements � ODS Tagset Statement 283

produces measured RTF. This tagset allows the user to specify how and where
page breaks occur and when to place titles and footnotes into the body of a page.
The RTF tagset enables SAS to place titles and footnotes into the body of the
document so that it is outside of the control of Microsoft Word. Therefore, SAS
becomes responsible for the implicit page breaks.

Refer to “ODS TAGSETS.RTF Statement” on page 286 for details on how to use
the RTF tagset.

SASREPORT
causes embedded data to be produced in CSV format. SASREPORT11 and
SASREPORT12 are the supported tagsets. For more information on how to use
this tagset, execute one line of the following code:

ods tagsets.sasreport11 file=’test.xml’ options(doc=’help’);

ods tagsets.sasreport12 file=’test.xml’ options(doc=’help’);

user-defined-tagset
specifies the tagset that you created using PROC TEMPLATE.
Main discussion: “Creating Custom Tagsets” on page 842.

WML
uses the Wireless Application Protocol (WAP) to produce a Wireless Markup
Language (WML) DTD with a list of URLs as a table of contents.
See also: “ODS WML Statement” on page 326

WMLOLIST
uses the Wireless Application Protocol (WAP) to produce a Wireless Markup
Language (WML) DTD with an option list for the table of contents. For more
information, see Wireless Application Protocol.

XHTML
produces output in HTML format. For details on using this tagset, execute the
following code:

ods tagsets.xhtml file=’test.html’ options(doc=’help’);

Note: There are also preproduction tagsets. These tagsets can be found at http:/
/support.sas.com and are not supported by SAS. �

The following are diagnostic tagsets:

EVENT_MAP
creates XML output that shows which events are being triggered and which
variables are used by an event to send output from a SAS process to an output file.
When you run a SAS process with EVENT_MAP, ODS writes XML to an output
file that shows all event names and variable names as tags. The output helps you
to create your own tagsets.

NAMEDHTML
creates HTML output similar to STYLE_POPUP, but with all the objects labeled
as they are when using ODS TRACE.

SHORT_MAP
creates a subset of the XML output that is created by the EVENT_MAP tagset.

STYLE_DISPLAY
creates a sample page of HTML output that is similar to STYLE_POPUP output.
The output helps you to create and modify styles.

284 ODS Tagset Statement � Chapter 5

See also: STYLE_POPUP

STYLE_POPUP
creates HTML like HTMLCSS, but if you’re using Internet Explorer,
STYLE_POPUP displays a window that shows the resolved ODS style definition
for any item that you select.

TEXT_MAP
creates text output that shows which events are being triggered as ODS handles
the output objects.

Tip: You can use the TEXT_MAP output as an alternative to the output that is
created by the EVENT_MAP tagset.

See also: EVENT_MAP

TPL_STYLE_LIST
creates HTML output in a bulleted list similar to EVENT_MAP but lists only a
subset of the possible attributes.
Tip: The output helps you to understand tagsets and styles.

TPL_STYLE_MAP
creates XML output similar to EVENT_MAP but lists only a subset of the possible
attributes.

Tip: The output helps you to understand tagsets and styles.

Details

Understanding Tagsets A tagset is a type of template that defines how to generate a
markup language output type from SAS data. A markup language is a set of tags and
format codes that are embedded in text in order to define layout and certain content.

Starting with SAS 8.2 software, you can use the ODS tagset statement to specify a
tagset to create markup language output from the Output Delivery System. SAS
provides tagset definitions for a variety of markup language output. For example, there
are several SAS tagsets for XML output, HTML output, XSL, and so on. In addition to
using the tagsets provided by SAS, you can modify the SAS tagsets, and you can create
your own. By supplying new tagset definitions, ODS output and XML LIBNAME engine
output is user-configurable, generating a wider variety of markup language output. For
information on modifying SAS tagsets and creating your own tagsets, see Chapter 13,
“TEMPLATE Procedure: Creating Markup Language Tagsets,” on page 795.

Listing Tagset Names To see a list of available tagsets, issue the following SAS
statements or view them in the Templates window.

� Templates window:

To display a list of the available tagsets using the SAS Explorer window, follow
these steps:

1 From any window in an interactive SAS session, select View � Results.
2 In the Results window, select View � Templates.

3 In the Templates window, select and open Sashelp.tmplmst.
4 Select and open the Tagsets folder, which contains a list of available tagsets.

If you want to view the underlying SAS code for a tagset, then select the
tagset and open it.

Operating Environment Information: For information on navigating in the
Explorer window without a mouse, see “Window Controls and General
Navigation” in the SAS documentation for your operating environment. �

Dictionary of ODS Language Statements � ODS Tagset Statement 285

� TEMPLATE procedure:
You can also display a list of the available tagsets by submitting the following

PROC TEMPLATE statements:

proc template;
list tagsets;

quit;

By default, PROC TEMPLATE lists the tagsets in SASHELP.TMPLMST and
SASUSER.TEMPLAT. Typically, SASHELP.TMPLMST is a read-only item store for the
SAS tagsets, and SASUSER.TEMPLAT is the item store for user-defined tagsets.

Viewing the Source of a Tagset To see the source for a tagset definition, you can
either open the tagset in the SAS Explorer window, or use PROC TEMPLATE and
specify the two-level name of the tagset. For example, to see the source of the SAS
tagset CHTML, issue these SAS statements:

proc template;
source tagsets.chtml;

quit;

Viewing Available Options for a Tagset To view the options that are available for a
specific tagset, use the OPTIONS (DOC=) option with one of the following specified:

QUICK
describes the options available for this tagset.

HELP
provides generic help and information with a quick reference.

SETTINGS
provides the current option settings.

Examples

Example 1: Using the DOC Suboption to Get ODS TAGSETS.HTMLPANEL Information
ODS features:

ODS TAGSETS.HTMLPANEL statement:
Action:

CLOSE
Options:

OPTIONS
(DOC=”HELP”)

FILE=

Other SAS features:
PROC PRINT

Program Description The following example prints to the SAS log the OPTIONS
suboptions for the HTMLPANEL tagset and a description of each available suboption.

Program

Print information about the OPTIONS suboptions to the SAS log file. Specifying the
OPTIONS suboption (DOC=’HELP’) prints Help for the ODS TAGSETS.HTMLPANEL
statement suboptions to the SAS log file. The FILE= option prints the data results to an RTF
file named Help.rtf.

ods tagsets.htmlpanel file=’Help.rtf’ options (doc="help");

286 ODS TAGSETS.RTF Statement � Chapter 5

Print the data set SASHELP.CLASS. The PROC PRINT statement prints the
SASHELP.CLASS data set.

proc print data=Sashelp.Class;
run;

Close all destinations. Close the ODS TAGSETS.HTMLPANEL destination and any other
open destinations. This statement also closes all the files that are associated with each open
destination. If you do not close a destination, then you cannot view the files in a browser window.

ods _all_ close;

Output

Display 5.24 Options Available for the HTMLPANEL Tagset

Specify the “DOC=’HELP’ suboption to print all of the OPTIONS suboptions and information
about each of the suboptions to the SAS log.

See Also

Statement:

“ODS MARKUP Statement” on page 147

Chapter 13, “TEMPLATE Procedure: Creating Markup Language Tagsets,” on page
795

ODS TAGSETS.RTF Statement

Opens, manages, or closes the RTF destination, which produces measured output that is written in
Rich Text Format for use with Microsoft Word 2002.

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 287

Valid in: anywhere
Category: ODS: Third-Party Formatted
Interaction: By default, when you execute a procedure that uses the FORMCHAR system
option (for example, PROC PLOT or PROC CHART), ODS formats the output in SAS
Monospace font. If you are creating output that will be viewed in an operating
environment that does not have SAS software installed, this output will not be
displayed correctly. The SAS Monospace font is not recognized if SAS is not installed.
For the correct display of your document, include the following statement before your
SAS program:

OPTIONS FORMCHAR="|----|+|---+=|-/\<>*";

Tip: Microsoft Word 2002 is the current official minimum level that is supported.
However, no problems have been found with Microsoft Word 2000 and SAS RTF files.

Syntax
ODS TAGSETS.RTF <(<ID=> identifier)> action;

ODS TAGSETS.RTF <(<ID=> identifier)> <option(s)>;

Actions
The following table lists the actions that are available for the ODS RTF statement

and for the ODS TAGSETS.RTF statement. For a complete description, see “Actions” on
page 243 in the ODS RTF Statement.

Table 5.35 ODS TAGSETS.RTF Action Summary Table

Task Action

Close the RTF destination and the file that is
associated with it

CLOSE

Exclude output objects from the RTF destination EXCLUDE

Select output objects for the RTF destination SELECT

Write to the SAS log the current selection or exclusion
list for the RTF destination

SHOW

Options
The following table lists a subset of the options that traditional ODS RTF statement

also supports. For a complete description of these options, see “Options” on page 243 in
the ODS RTF Statement.

Note: The BODYTITLE and SAS DATE options are supported options for the
traditional ODS RTF statement. However, they are not supported options for the ODS
TAGSETS.RTF statement because their functionality is built into the ODS
TAGSETS.RTF statement. �

288 ODS TAGSETS.RTF Statement � Chapter 5

Table 5.36 Options Supported for ODS RTF and ODS TAGSETS.RTF

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify the text string that identifies the author. This
identifier is inserted into the metadata of a file.

AUTHOR=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Specify the number of columns to create on each page
of output

COLUMNS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Specify a device for the RTF output destination DEVICE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Open the ODS RTF destination and specify the name
of the file to which to write information

FILE=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Open multiple instances of the same destination at
the same time

ID=

Specify the image resolution for the graphical output IMAGE_DPI=

Control where tables split on a page KEEPN | NOKEEPN

Create a new body file at the specified starting point NEWFILE=

Suppress currently defined footnotes in the graphics
file. They appear in the RTF file instead.

NOGFOOTNOTE

Suppress currently defined titles in the graphics file.
They appear in the RTF file instead.

NOGTITLE

Insert the text that you specify into the metadata of
the RTF file

OPERATOR=

Specify that the output from the destination be added
to an ODS package

PACKAGE

Specify the location of an aggregate storage location
or a SAS catalog for all RTF files

PATH=

Specify an alternative character or string to separate
lines in the output file

RECORD_SEPARATOR=

Control page breaks STARTPAGE=

Specify a style definition to use when writing the RTF
files

STYLE=

Insert text into your RTF output TEXT=

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 289

Task Option

Insert the text string that you want as your title into
the metadata of a file

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

The following table lists the options available exclusively for the ODS TAGSETS.RTF
statement. You can use the ODS RTF options and the ODS TAGSETS.RTF options
together.

Table 5.37 ODS TAGSETS.RTF Option Summary Table

Task Option

Specify TAGSETS.RTF specific options OPTIONS

Specify the number of panels that will be rendered for
a multipanel table

PAGEPANELS=

Specify the number of rows that will be rendered in a
table

TABLEROWS=

Specify that every page of a table is formatted the
same

UNIFORM

OPTIONS (CONTENTS= | DOC= | SECT= | TABLES_OFF= |TOC_DATA=
|TROWD= |TRHDR= | TROWHDRCELL=)

specifies ODS TAGSETS.RTF specific suboptions and a named value.

(CONTENTS= ’YES’)
produces a table of contents (TOC) page for RTF documents that are opened in
Microsoft Word. The table of contents page contains a Table of Contents field that
puts all of the contents information that is embedded in the document into a table
of contents. To display the captured TOC data, you must turn on the TOC_DATA
option. To expand the table of contents right-click under the title in Microsoft
Word and select Update Field from the selection list.

Note: From Microsoft Word, you might need to right-click lower on the page to
get the Update Field value to appear in the selection list. �

YES adds a table of contents page to the top of the RTF file. This
table of contents page is followed by a page break.

Alias: ON

Requirement: All values must be enclosed in quotation marks.

Tip: To go to a specific topic in the document you can double-click or hold down
the CTRL key and click on the topic in the table of contents. You might have to
configure Microsoft Word to use the CTRL-click method. Select Tools � Options
� Edit and then check Use CTRL + Click to follow hyperlink.

Tip: The TOC_DATA option must be set to YES to capture TOC data. If you
specify CONTENTS=YES, but you do not specify TOC_DATA, no Table of
Contents data is captured. The error displayed on the Table of Contents page is
“Error! No table of contents entries found”.

See: Suboption TOC_DATA for details on displaying the contents embedded in the
document.

290 ODS TAGSETS.RTF Statement � Chapter 5

Featured in: Example 1 on page 295

(DOC=’QUICK’ | ’HELP’ | ’SETTINGS’)
provides information about the tagset.

QUICK
describes the options available for this tagset.

HELP
provides generic help and information with a quick reference.

SETTINGS
provides the current option settings.

Requirement: All values must be enclosed in quotation marks.
Featured in: Example 2 on page 299

(SECT=’rtf_control_string’ | ’OFF’ | ’NONE’)
inserts RTF control words into the section data specifications.

rtf_control_string specifies RTF control words used to format the section data.

OFF turns off the usage of RTF control words for the section data
and resets the rtf_control_string to null.
Alias: NO

NONE stops new RTF control words from being inserted into the file
for the section data. ODS continues to use the section data
information that was set before the use of NONE until it is
reset.

Requirement: All values must be enclosed in quotation marks.
Tip: To reset the rtf_control_string, assign a different value or use the OFF or NO

values.
See: Rich Text Format (RTF) Specification, version 1.6 available on the MSDN

home Web page for information on RTF control words. Simply search for the
document.

(TABLES_OFF=’style_elements’ | ’STYLE_ELEMENTS’ | ’OFF’)
determines whether tables will be used. A table can consist of one cell or many
cells. SAS puts all of the text that you create into tables for RTF output. Use this
suboption for tables that are text holders like titles, footnotes, and TEXT=. You
should not use this suboption for tables produced by reporting procedures.

Note: To view the gridlines of tables in Microsoft Word, select Show Gridlines
from the Table drop-down menu. �

style_elements
specifies the style element for formatting. For example, the following statement
turns off tables that use the USERTEXT style element. The text specified by
the TEXT= option is not placed in the table..

ods tagsets.rtf options (Tables_OFF=’usertext’);
ods tagsets.rtf text=’’Text is not placed in a table’’);

STYLE_ELEMENTS
lists the output style elements in the SAS log.

OFF
turns the option off. Therefore, ODS places the information output next into the
RTF file inside a table. This action is the default option.
Alias: NO

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 291

Requirement: You must enclose all values in quotation marks.
See: “General ODS Style Elements” on page 905 for information about style

elements

Featured in: Example 3 on page 300

(TOC_DATA =’ON’ | ’OFF’)
specifies whether to show the contents data in the RTF file.

OFF instructs ODS not to display the table of contents data in the
RTF file.
Alias: NO

ON instructs ODS to display the hidden text of the table of
contents in the RTF file.
Alias: YES

Requirement: You must enclose all values in quotation marks.

Featured in: Example 1 on page 295

(TROWD=’rtf_control_string’ | ’OFF’)
inserts raw RTF specifications directly into header descriptions of the table row.

rtf_control_string specifies RTF control words and symbols.

OFF RTF controls are no longer inserted.

Alias: NO

Requirement: You must enclose all values in quotation marks.

See: Rich Text Format (RTF) Specification, version 1.6 available on the MSDN
home Web page for information on RTF control words. Search for the RTF 1.6
document.

Featured in: Example 4 on page 302

(TRHDR=’rtf_control_string’ | ’OFF’)
inserts raw tablerow RTF specifications directly into the header description of the
table row.

rtf_control_string specifies Microsoft RTF control words or symbols.

OFF RTF controls are no longer inserted.

Alias: NO

Requirement: You must enclose all values in quotation marks.

See: Rich Text Format (RTF) Specification, version 1.6 available on the MSDN
home Web page for information on RTF control words. Search for the RTF 1.6
document.

Featured in: Example 4 on page 302

(TROWHDRCELL=’text_string’ | ’OFF’)
inserts raw text into the table row cells. If the RTF Reader does not recognize this
text_string, it applies the raw text to the location where the RTF is being written
in the documentation. Otherwise, the RTF Reader interprets the text_string as
RTF control words.

text_string any text specified.

OFF inserts a null string. Text is no longer inserted.
Alias: NO

Requirement: You must enclose all values in quotation marks.

292 ODS TAGSETS.RTF Statement � Chapter 5

See: Rich Text Format (RTF) Specification, version 1.6 available on the MSDN
home Web page for information on RTF control words. Search for the RTF 1.6
document.

Featured in: Example 4 on page 302
Requirement: The OPTION suboption’s must be enclosed in parentheses.

PAGEPANELS= n | NONE
specifies the number of panels permitted per page before ODS inserts a page break.

n
specifies a positive integer.
Default: 0
Tip: Setting the value to 0 resets the action to the default action.

NONE
specifies that paneling will be handled the way that it has always been handled by
traditional ODS RTF. That is, all of the first panel is written, then all of the
second panel, and so on, until all of the table information is written.

Default: If you do not specify paneling, ODS tries to fit the full set of panels on a
single page. ODS measures the width of the text and tables (horizontal
measurement) and determines what the column widths should be. ODS then
divides the page into panels if it is too wide to fit on a page.

ODS always determines the column widths and determines whether panels are
required. When there are multiple panels, ODS attempts to place a reasonable
number of rows in each panel.

Featured in: Example 5 on page 304

TABLEROWS= n
specifies the number of rows in each table before ODS inserts a page break. If the
table is narrow enough to fit on a page, n lines will be written to the table before a
page break. If the table is too wide for a page, the page is broken into panels. In
each panel, n rows will be written. When all the panels for n rows have been written,
a page break is inserted before the next group of panels is written.

Note: Page breaks are not forced between panels. �

n
is a positive integer.
Alias: 0 | NONE
Default: Allow SAS to determine the number of rows per table.
Tip: 0 or NONE returns to the default, which allows SAS to determine the

number of rows per table.
Featured in: Example 5 on page 304

UNIFORM
ensures uniformity from page to page within a single table that requires multiple
pages. When the UNIFORM option is in effect, ODS reads the entire table before it
starts to print it and determines the column widths that are necessary to
accommodate all of the data. ODS applies these column widths to all pages of a
multiple page table.

Note: With BY-group processing, SAS writes the results of each BY group to a
separate table, so the output might not be uniform across BY groups. �

Default: If you do not specify the UNIFORM option, ODS prints a table one page at
a time. This approach ensures that SAS does not run out of memory while it

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 293

processes very large tables. However, column widths might vary from one page to
the next.

Tip: After this option is turned on, you cannot turn it off for that SAS session.
Tip: The UNIFORM option can cause SAS to run out of memory if you are printing

a very large table. If this happens, you can specify the width of each of the
columns in the table. Then print the table one page at a time. To do so, you must
edit the table definition that you use. For more information, see “What You Can
Do With a Table Template” on page 594.

Featured in: Example 6 on page 308

Details

Opening and Closing the ODS TAGSETS.RTF Destination You can modify and open an
RTF destination with many ODS TAGSETS.RTF options. However, the FILE= option
automatically closes the open destination that is referred to by the ODS TAGSETS.RTF
statement. The option also closes any files associated with it and opens a new instance
of the destination. If you use one of the ODS TAGSETS.RTF options, you should close
the destination yourself.

Understanding How Traditional RTF Formats Output RTF produces output for Microsoft
Word 2002. Although other applications can read RTF files, the RTF output might not
work successfully with them.

The RTF destination enables you to view and edit the RTF output. ODS does not
define the “vertical measurement,” which means that SAS does not determine the
optimal place to position each item on the page. For example, page breaks are not
always fixed because you do not want your RTF output tables to split at inappropriate
places. Your tables can remain intact on one page, or can have logical breaks where you
specify.

Microsoft Word needs to know the widths of table columns, and it cannot adjust tables
if they are too wide for the page. However, ODS measures the width of the text and
tables (horizontal measurement). Therefore, all the column widths can be set properly
by SAS, and the table can be divided into panels if it is too wide to fit on a single page.

In short, when producing RTF output for input to Microsoft Word, SAS determines
the horizontal measurement and Microsoft Word controls the vertical measurement.
Because Microsoft Word can determine how much room there is on the page, your
tables will display consistently even after you modify your RTF file.

Note: The creation of complex tables that contain a large number of observations
can reduce system efficiencies and increase processing time. �

ODS Measured RTF Versus Traditional ODS RTF The ODS RTF tagset (ODS
TAGSETS.RTF), which is also referred to as the measured tagset, is new for SAS 9.2.
This tagset enables users to specify how and where page breaks occur and when to
place titles and footnotes into the body of a page. Traditional ODS RTF relies on
Microsoft Word to make implicit page breaks for tables that are too long to fit on a
single page. Traditional RTF also places titles and footnotes in the RTF instructions
that enable Microsoft Word to apply them to pages as they are needed. In contrast, the
RTF tagset enables SAS to place titles and footnotes into the body of the document so
that it is outside of the control of Microsoft Word. Therefore, SAS becomes responsible
for the implicit page breaks.

RTF Tagset Features The new “measured” RTF tagset does the following:

294 ODS TAGSETS.RTF Statement � Chapter 5

� controls page breaks on very large tables
� supports RTF readers other than Microsoft Word
� controls titles, footnotes, and other page elements

Controlling Page Breaks in Long Tables
Multiple-page tables can be a problem for ODS RTF. Like the ODS PRINTER
destinations, SAS determines where to wrap a wide table. But for a long table, the
entire table is loaded into memory before being rendered. When tables become longer
than a physical page, Microsoft Word determines the page break. Microsoft word
re-creates the column heading information in the table and applies titles and footnotes
as needed. If a table is later edited in Microsoft Word, the information remains valid.

Unfortunately, a lot of information is associated with each cell of a table. No matter
how much memory is added to the system, it is possible to create a table that can
exceed it. Furthermore, an exhausted memory condition cannot be anticipated because
it varies with the machine setup and with the table that you are creating.

However, with the ODS RTF tagset, SAS determines where to break the page and
puts the titles and footnotes in the body of the document. When the table is broken into
pages and SAS controls the page breaks, approximately a page of data is needed in
memory at any one time. Therefore, a much smaller memory footprint is consumed and
extremely large tables can be created. The ODS RTF tagset accommodates users who
need large tables and users who want the old style RTF behavior. Both RTF
implementations can be supported simultaneously.

Supporting RTF Readers Other than Word
Before SAS version 9.2, the traditional RTF architecture supported only the Microsoft
Word RTF. The problem with supporting multiple readers is that RTF readers interpret
the RTF specification in different ways. Now with the RTF tagset, you can enable
subtle changes in one reader without impacting another RTF reader.

Controlling Titles, Footnotes, and Other Page Elements
Measured RTF uses a tagset that places the titles and footnotes on the page as tables
instead of as RTF control words that are passed to Microsoft Word. With traditional
RTF, the titles and footnotes are placed in the RTF header and footer information
unless you specify the BODYTITLE option. Because the headers and footers are
automatically placed in the body of the document with measured RTF, the
TAGSET.RTF destination does not need the BODYTITLE option.

Measured RTF and Graphics
Measured RTF produces output in rich text format, which supports three formats for
graphics that MS Word can read.

Format for Graphics Corresponding SAS Graphics Driver

emfblips SASEMF

pngblips PNG

jpegblips JPEG

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 295

When you do not specify a target device, the default target is PNG. You can also use
the ACTIVEX, ACTXIMG, JAVAIMG graphics drivers to generate graphics in your
measured RTF documents. The ACTIVEX driver generates an ActiveX control. The
ACTXIMG and JAVAIMG drivers generate PNG files with the ACTIVEX Control or
JAVA Applets appropriately. For more information about graphics devices, see
SAS/GRAPH: Reference.

Note: When you specify the JAVA device in the ODS TAGSET.RTF statement, the
JAVAIMG driver is used. �

Note: You cannot use UTF-8 encoding with the ACTIVEX device in RTF. When
UTF-8 encoding is used, the ACTXIMG (activex image) device is used. �

Examples

Example 1: Creating a Table of Contents

ODS features:

ODS TAGSETS.RTF statement:

Action:

CLOSE

Options:

CONTENTS

TOC_DATA

Other SAS features:

OPTIONS statement

PROC FORMAT

PROC PRINT

PROC SORT

PROC REPORT

PROC TABULATE

Data set:
See “Creating the Grain_Production Data Set” on page 878.

Format:
See “Creating the $CNTRY Format” on page 869.

Program Description The following example creates a table of contents page that
contains embedded table of contents data for some procedures, but not for others. The
insertion of the table of contents data can be turned on and off in the middle of a
program.

Program

Sort the data set Grain_Production. PROC SORT sorts the data, first by values of the
variable Year, then by values of the variable Country, and finally by values of the variable Type.

proc sort data=Grain_Production;
by year country type;

run;

296 ODS TAGSETS.RTF Statement � Chapter 5

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Create RTF output and create a new body file for each page of output. The ODS
TAGSETS.RTF statement opens the RTF destination and creates RTF output. The CONTENTS
suboption creates a table of contents page that contains a table of contents field that puts all of
the contents information that is embedded in the document into a table of contents. This action
occurs only if the TOC_DATA suboption is specified along with the CONTENTS suboption. The
table of contents information is not embedded by default into the RTF file. You can turn on the
insertion of the TOC data by specifying TOC_DATA=’YES’ or instruct ODS to not nsert this
information by specifying TOC_DATA =’NO’.

ods tagsets.rtf file=’Grain_Tagset.rtf’ options(contents=’yes’ toc_data=’yes’);

Suppress the default BY line and specify a new value into the BY line. The NOBYLINE
option suppresses the default BY line variable. The #BYVAL parameter specification inserts the
current value of the BY variable Year into the title.

options nobyline;
title ’Leading Grain-Producing Countries’;
title2 ’for #byval(year)’;

Produce a report. This PROC REPORT step produces a report on grain production. Each BY
group produces a page of output. ODS creates a new body file for each BY group. The
NOWINDOWS option instructs ODS to run PROC REPORT without the REPORT window and
sends its output to the open output destinations.

proc report data=Grain_Production nowindows;
by year;
column country type kilotons;
define country / group width=14 format=$cntry.;
define type / group ’Type of Grain’;
define kilotons / format=comma12.;
footnote ’Measurements are in metric tons.’;

run;

Restore the default BY line and clear the second TITLE statement. The BYLINE option
restores the default BY line. The TITLE2 statement clears the second TITLE statement.

options byline;
title2;

Suppress the insertion of table of contents data into the RTF file. The TOC_DATA=’NO’
option instructs ODS not to insert the table of contents data into the RTF file. Therefore,
because the TABULATE procedure follows the TOC_DATA=’NO’ option, there will be no entry
for the TABULATE procedure in the table of contents page.

ods tagsets.rtf options(toc_data=’no’);

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 297

Produce a report. The TABLE statement in the PROC TABULATE step uses three
dimensions. Year defines pages, Country and Type define the rows, and Kilotons defines the
columns. Therefore, PROC TABULATE explicitly produces one page of output for 1995 and one
page for 1996 based on the years specified in the Grain_Production dead set. ODS also starts a
new body file for each page.

proc tabulate data=Grain_Production format=comma12.;
class year country type;
var kilotons;
table year,

country*type,
kilotons*sum=’ ’ / box=_page_ misstext=’No data’;

format country $cntry.;
footnote ’Measurements are in metric tons.’;

run;

Enable the insertion of table of contents data into the RTF file. The TOC_DATA=’YES’
option instructs ODS to insert the table of contents data into the RTF file. There will be an
entry for the PRINT procedure in the table of contents page when the PROC PRINT statement
is executed.

ods tagsets.rtf options(toc_data=’yes’);

Print the Grain_Production DATA set.

proc print data=Grain_Production;
run;

Close the RTF destination. The ODS TAGSETS.RTF CLOSE statement closes the RTF
destination and all the files that are associated with it. If you do not close the destination, then
you cannot view the files in a browser window.

ods tagsets.rtf close;

298 ODS TAGSETS.RTF Statement � Chapter 5

RTF Output

By default the table of contents is collapsed on the table of contents page. To expand the table of
contents from Microsoft Word, right-click beneath the title until the "Update Field" option is
shown in the selection list. Then select “Update Field”.

The table of contents contains entries for PROC REPORT and PROC PRINT only. By default,
ODS does not embed the table of contents data in the RTF document until you specify the
TOC_DATA=’YES’ option, which results in an entry for PROC REPORT and all other data. If
you turn off the TOC_DATA option before the TABULATE procedure, ODS does not insert
information into the RTF document for PROC TABULATE. No other contents information is
inserted into the RTF document until you specify TOC_DATA=’YES’. In this example, the
TOC_DATA=’YES’ option is specified before the PRINT procedure. Therefore, ODS inserts
contents data for PROC PRINT into the table of contents.

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 299

Example 2: Using the DOC Suboption to Get ODS TAGSETS.RTF Information

ODS features:
ODS TAGSETS.RTF statement:

Action:
CLOSE

Options:
OPTIONS

(DOC=”HELP”)
FILE=

Other SAS features:
PROC PRINT

Program Description The following example prints to the SAS log the OPTIONS
suboptions and a description of each available suboption.

Program

Print information about the OPTIONS suboptions to the SAS log file. Specifying the
OPTIONS suboption (DOC=’HELP’) prints Help for the ODS TAGSETS.RTF statement
suboptions to the SAS log file. The FILE= option prints the data results to an RTF file named
Help.rtf.

ods tagsets.rtf file=’Help.rtf’ options (doc="help");

Print the data set SASHELP.CLASS. The PROC PRINT statement prints the
SASHELP.CLASS data set.

proc print data=Sashelp.Class;
run;

Close all destinations. Close the ODS TAGSETS.RTF destination and any other open
destinations. This statement also closes all the files that are associated with each open
destination. If you do not close a destination, then you cannot view the files in a browser window.

ods _all_ close;

300 ODS TAGSETS.RTF Statement � Chapter 5

RTF Output

Specify the “DOC=’help’ suboption to print all of the OPTIONS suboptions and information
about each of the suboptions to the SAS log.

Example 3: Using the TABLES_OFF Suboption

ODS features:
ODS TAGSETS.RTF statement:

Action:
CLOSE

Options:
OPTIONS

(TABLES_OFF=”OFF”)
(TABLES_OFF=”USERTEXT”)
(TABLES_OFF=”STYLE_ELEMENTS”)

FILE=
TEXT=

Other SAS features:
PROC PRINT

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 301

Program Description The following example turns on and off the tables in RTF output
and applies the style element specified by the TABLES_OFF suboption.

Program

List the style elements that can be applied in the SAS log file ODS TAGSETS.RTF
enaables you to apply a style element to the RTF output. To determine the style elements that
you can use, list them by specifying the TABLES_OFF suboption. This information is output to
the SAS Log. Notice that you can use different style elements with each statement.

ods tagsets.rtf file="tablesOff.rtf" options(TABLES_OFF=’STYLE_ELEMENTS’);
proc print data=sashelp.class(obs=1) ;
run;
ods tagsets.rtf text="TEXT is placed in a table by default" ;

Turn off tables and apply the USERTEXT style element. Specifying
TABLES_OFF=”USERTEXT”, applies the USERTEXT style to the text being output.

ods tagsets.rtf options(TABLES_OFF=’usertext’);
ods tagsets.rtf text="TEXT is not placed in a table (table is removed when
style element is specified)" ;

Return to the default — tables are on. Specifying TABLES_OFF =”OFF”, returns the option
to the default and turns the tables back on.

ods tagsets.rtf options(TABLES_OFF=’off’);
ods tagsets.rtf text="TEXT is placed in a table (returned to default when
tables_off is set to off)" ;

Close all destinations. Close the ODS TAGSETS.RTF destination and any other open
destinations. This statement also closes all of the files that are associated with each open
destination. If you do not close a destination, you cannot view the files in a browser window.

ods _all_ close;

RTF Output

If you specify the ODS TAGSETS.RTF suboption, TABLES_OFF= style_element lists the style
elements that are being used and are output to the SAS log.

302 ODS TAGSETS.RTF Statement � Chapter 5

The following output illustrates what happens when the TABLES_OFF suboption is used. In
this example, ODS places the output text in a table by default. Specifying
TABLES_OFF=”USERTEXT” turns off the table and applies the USERTEXT style to the
output. Lastly, TABLES_OFF=’OFF’ is specified, which causes the text to be output in a table.

Example 4: Column Heading Rotation Using the TRHDR, TROWHDRCELL, and TROWD
Options

ODS features:

ODS TAGSETS.RTF statement:

Action:

CLOSE

Options:

OPTIONS

TRHDR=

TROWHDRCELL=

TROWD=

Other SAS features:

PROC PRINT

OPTIONS statement

Program Description The following example creates an RTF file in which the headers
and contents of the row and column headings are rotated within the table.

Program

Specify the orientation of the page. The ORIENTATION option sets the page to landscape,
the NODATE option turns off the output of the date and time, and the NONUMBER option tells
SAS not to print the page number on the first title line of each page of output.

options orientation=landscape nodate nonumber;

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 303

Close the LISTING destination so that no listing output is produced. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Create RTF output using the ODS TAGSETS.RTF statement and rotate the rows and
header information in the table. The ODS TAGSETS.RTF statement opens the RTF
destination and creates RTF output that will be sent to the Mrotate.rtf file. The three options
allow you to manipulate the row and header descriptions. TRHDR enables change to the table
row headers. In this example, the RTF string that is specified adds more space to the row
headers. TROWHDRCELL allows you to manipulate the table-row cell information. In this case,
the information is rotated to vertical. The TROWD option allows you to change the table row
description. The RTF string specified changes the first table row to the rightmost row.

ods tagsets.rtf file=’Mrotate.rtf’
OPTIONS (TRHDR=’’\trrh750’’

TROWHDRCELL=’’\cltxbtlr’’
TROWD=’’\rtlrow’’);

Print the Sashelp.Class data set.

proc print data=Sashelp.Class(obs=5);
run;

Close the RTF destination. Close all destinations and all the files that are associated with
each destination. If you do not close the destination, you cannot view the files in a browser
window.

ods _all_ close;

304 ODS TAGSETS.RTF Statement � Chapter 5

RTF Output

The Mrotate.rtf output shows how ODS has rotated the first row of the table to the rightmost
column, added more space to the row headers, and made the cell contents of the header row
vertical. This table manipulation was caused by using the TRHDR=, TROWHDCELL=, and
TROWD= suboptions of OPTIONS.

Example 5: Paneling Using the TABLEROWS and PAGEPANELS Options

ODS features:
ODS TAGSETS.RTF statement:

Action:
CLOSE

Options:
TABLEROWS
PAGEPANELS

Other SAS features:
OPTIONS statement
PROC PRINT
DATA statement

Program Description The following program provides various examples of how ODS
creates panels when a table is wider than a page and presents some different choices
for controlling the paneling.

Program

Specify the system options. The NODATE option turns off the output of the date and time,
and the NONUMBER option tells SAS not to print the page number on the first title line of
each page of output.

option nodate nonumber;

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 305

Close the LISTING destination so that SAS produces no listing output. The LISTING
destination is open by default. The ODS LISTING statement closes the LISTING destination to
conserve resources.

ods listing close;

Open the RTF and file destination. Open the RTF destination and name the output file
Panel.rtf. If you do not specify a file name, the output file name defaults to Sasmeas.rtf.

ods tagsets.rtf file=’’Panel.rtf’’;

Produce a large data set. Create a large data set in order to show how paneling works.

data temp;
array values val1--val50;
do j = 1 to 6;

do i = 1 to dim(values);
values(i) = i;

end;
output;

end;
run;

Create RTF output that uses the default paneling. The ODS TAGSETS.RTF statement
opens the RTF destination and creates RTF output. Default paneling is used to print the TEMP
data set that was created earlier in this program. The title of the table is “Default Paneling”.

ods tagsets.rtf;
title ‘‘Default Paneling’’;
proc print data=Temp;
run;

Create RTF output where the number of panels is specified. The ODS TAGSETS.RTF
statement opens the RTF destination and creates RTF output. RTF tagset options
TABLEROWS and PAGEPANELS enable you to control the number of panels on a page and the
number of rows of data that you want output for each table. The title of this multi-paneled table
is “Paneling with TABLEROWS=5 and PAGEPANELS=4”.

ods tagsets.rtf tablerows=5 pagepanels=4;
title ’Paneling with TABLEROWS=5 and PAGEPANELS=4’;
proc print data=Temp;
run;

Close all destinations and restart the LISTING destination. The ODS TAGSETS.RTF
CLOSE statement closes the open RTF destination and all of the files that are associated with
it. If you do not close the destination, you cannot view the files in a browser window. The ODS
LISTING statement opens the LISTING destination for output.

ods tagsets.rtf close;
ods listing;

306 ODS TAGSETS.RTF Statement � Chapter 5

RTF Output with Default Page Paneling

Page paneling occurs when a table is wider than a page. By default in measured ODS RTF,
panels are grouped together so that all observations are close together. The first column holds
as many columns as can fit on one line. The number of rows in each panel is determined by the
number that fit on a logical page.

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 307

RTF Output with Options PAGEPANELS and TABLEROWS

The TABLEROWS option enables you to specify the number of rows for a panel. Note that only
five rows are produced for each panel. The other row is presented on a separate page in three
different panels.

308 ODS TAGSETS.RTF Statement � Chapter 5

Example 6: Repeating Headers Using the UNIFORM Option

ODS features:
ODS TAGSETS.RTF statement:

Action:
CLOSE

Options:
UNIFORM
FILE=

ODS RTF statement

Other SAS features:
OPTIONS statement
PROC FORMAT
PROC TABULATE
DATA statement

Program Description The following example creates a multi-page table that is
uniform across several pages. The row and column heading labels are also carried over
to each page.

Program

Specify the orientation of the page and name the RTF output. Specify landscape as the
orientation of the page. Name the RTF output file to RtfTab.rtf.

options orientation=landscape;
ods rtf file=’’RtfTab.rtf’’;

Open the RTF file and create output that has UNIFORM header information The ODS
TAGSETS.RTF statement opens the RTF file. The UNIFORM option ensures that the column
headings and header information appear on each page.

ods tagsets.rtf file=’’MrtfTab.rtf’’ uniform;

Close the LISTING destination. The LISTING destination is open by default. The ODS
LISTING statement closes the LISTING destination to conserve resources.

ods listing close;

Create the data set One. Create a data set that has five columns. Each column is composed of
one to five subcolumns.

data one;
do a=1 to 2;

do b=1 to 2;
do c=1 to 3;

do d=1 to 3;
do e=1 to 5;

output;
end;

end;
end;

end;

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 309

end;
run;

Create user-defined formats PROC FORMAT creates the formats that SAS will use in the
columns and subcolumns of the table.

proc format;
value cars 1=’DATSUN 200SX’

2=’PONTIAC FIERO’;
value colors 1=’RED’

2=’LIGHT BLUE’
3=’YELLOW’
4=’GREEN’
5=’BROWN’;

value luxury 1=’ALL THE WAY’
2=’STANDARD OPTIONS’
3=’STRIPPED DOWN’;

value opts 1=’POWER STEERING’
2=’SUN ROOF’
3=’AUTOMATIC’
4=’T-TOP’
5=’HATCHBACK’
6=’FUEL-INJECTION’
7=’HUBCAPS’
8=’AM/FM STEREO’
9=’FLOOR MATS’
10=’CASSETTE PLAYER’;

value perform 1=’VERY SLOW’
2=’SLOW’
3=’AVERAGE’
4=’FAST’
5=’VERY FAST’;

run;

Create data set Two. Data set Two populates the data set with the formats supplied by PROC
FORMAT.

data two (keep=model color luxury options perform);
length model color luxury options perform $ 20;

set one;
model=put(a,cars.);
color=put(b,colors.);
luxury=put(c,luxury.);
options=put(d,opts.);
perform=put(e,perform.);

run;

Create titles for the Output Provide two titles for the output.

title2 ’My Favorite Cars’;
title3 ’(large data set)’;

Produce a report. PROC TABULATE creates the table of cars and their attributes.

proc tabulate data=two order=data ;
class model color luxury options perform;

310 ODS TAGSETS.RTF Statement � Chapter 5

table model*color*luxury*options*perform,n / indent=4 condense;
label model=’MODEL CAR’

color=’COLOR OF CAR’
luxury=’CONDITION OF CAR’
perform=’SPEED’;

keylabel n=’NUMBER’;
run;

Close all destinations. The ODS_ALL_CLOSE statement closes any open destinations and all
of the files that are associated with them. If you do not close the destination, you cannot view
the files in a browser window.

ods _all_ close;

Measured RTF Output

The following output is from the measured RTF output file Mrtftab.rtf. This output is generated
using the ODS TAGSETS.RTF statement. Note the differences between the measured output
and the traditional RTF output. Note that the cell header information is carried to each page
and that the word “Continued” appears at the bottom of each page of RTF output.

Dictionary of ODS Language Statements � ODS TAGSETS.RTF Statement 311

312 ODS TAGSETS.RTF Statement � Chapter 5

Traditional RTF Output

The following output is a portion of the Rtftab.rtf file that was generated using the traditional
ODS RTF statement. Notice that header information is not carried over to page two of the
output. Also note that page one does not indicate that more pages of output follow.

Dictionary of ODS Language Statements � ODS TEXT= Statement 313

ODS TEXT= Statement

Inserts text into your ODS output.

Valid in: anywhere
Category: ODS: Output Control
Tip: The ODS TEXT= statement is sent only to output destinations that are open.
Therefore, it must be specified after an ODS destination statement.

Syntax
ODS TEXT= ’text-string’

Required Arguments

text-string
specifies the text to insert into your output. This text is sent to all open supported
output destinations.
Restriction: The ODS TEXT= statement does not support the OUTPUT

destination or the LISTING destination. All other ODS destinations are supported.

314 ODS TEXT= Statement � Chapter 5

Requirement: You must enclose ’text-string’ in parentheses.

Tip: The UserText style element controls text specified with the TEXT= statement.

Examples

Example 1: Adding Text to Multiple Destinations

ODS features:

ODS HTML statement

ODS PDF statement

ODS RTF statement

ODS TEXT= statement

PROC TEMPLATE:

DEFINE STYLE statement

PARENT= statement

STYLE statement

Other SAS features:

PROC PRINT

Data set:
See “Creating the Exprev Data Set” on page 875.

Program Description The following example uses a single ODS TEXT= statement to
add text to PDF, HTML, and traditional RTF output. PROC TEMPLATE modifies the
UserText style element which controls the font style, font color, and other attributes of
the text that the ODS TEXT= statement adds.

Program

options obs=10;

Create the MyStyle style template. The MyStyle style templates modifies the Usertext style
element to change the font color of text created by the TEXT= statement to red.

proc template;
define style mystyle;
parent=styles.default;
style usertext from usertext /

foreground=red;
end;

run;

Send output to multiple ODS destinations. The following statements open the HTML, PDF,
and RTF destinations.

ods html file="text.html" style=mystyle;
ods pdf file="text.pdf" startpage=never notoc style=mystyle;
ods rtf file="text_trad.rtf" style=mystyle;

Dictionary of ODS Language Statements � ODS TEXT= Statement 315

Add text strings before the ouput is printed. The ODS TEXT= statements add the text
strings “My Text 1” and “My Text 2”. The text is added to the output before the data set is
printed.

ods text="My Text 1";
ods text="My Text 2";

Add a title and footnote. The TITLE and FOOTNOTE statements specify the title and
footnote.

title "January Orders ";
footnote " For All Employees9";

Print the data set Exprev. The PRINT procedure prints the Exprev data set.

proc print data=exprev;
run;

Add a third text string after the data set. The third ODS TEXT= statement adds the text
string “My Text 3” after the data set is printed.

ods text="My Text 3";

Close all open destinations and remove the titles and footnotes. The ODS _ALL_ CLOSE
statement closes all open ODS destinations. The TITLE and FOOTNOTE statements remove
any titles and footnotes previously specified.

ods _all_ close;

title;
footnote;

Delete the MyStyle style template. The DELETE statement deletes the MyStyle style
template.

proc template;
delete mystyle;
run;

316 ODS TEXT= Statement � Chapter 5

Output

Display 5.25 HTML Output with Text Added

Display 5.26 PDF Output with Text Added

Dictionary of ODS Language Statements � ODS TRACE Statement 317

Display 5.27 Traditional RTF Output with Text Added

ODS TRACE Statement

Writes to the SAS log a record of each output object that is created, or suppresses the writing of
this record.

Valid: anywhere
Category: ODS: Output Control
Default: OFF
Featured in: Example 3 on page 194

Syntax
ODS TRACE ON</option(s)>;

ODS TRACE OFF;

Required Arguments

OFF
turns off the writing of the trace record.
Alias: NO

ON
turns on the writing of the trace record.
Alias: OUTPUT

318 ODS TRACE Statement � Chapter 5

Alias: YES

Options

EXCLUDED
includes, in the trace record, information for excluded output objects.

Featured in: Example 2 on page 273

LABEL
includes the label path for the output object in the record. You can use a label path
anywhere that you can use a path.

Tip: This option is helpful for users who are running a localized version of SAS,
because the labels are translated from English to the local language. The names
and paths of output objects are not translated because they are part of the syntax
of the Output Delivery System.

LISTING
writes the trace record to the Listing destination, so that each part of the trace
record immediately precedes the output object that it describes.

Details

Contents of the Trace Record ODS produces an output object by combining data from
the data component with a table definition. The trace record provides information about
the data component, the table definition, and the output object. By default, the record
that the ODS TRACE statement produces contains these items:

Name
is the name of the output object. You can use the name to reference this output
object and others with the same name. For details on how to reference an output
object, see “How ODS Determines the Destinations for an Output Object” on page
35. For example, you could use this name in an ODS OUTPUT statement to make
a data set from the output object, or you could use it in an ODS SELECT or an
ODS EXCLUDE statement.

Tip: The name is the rightmost part of the path that appears in the trace record.

Label
briefly describes the contents of the output object. This label also identifies the
output object in the Results window.

Data name
is the name of the data component that was used to create this output object. The
data name appears only if it differs from the name of the output object.

Data label
describes the contents of the data.

Template
is the name of the table definition that ODS uses to format the output object. You
can modify this definition with PROC TEMPLATE. See the “EDIT Statement” on
page 597 for more information.

Path
is the path of the output object. You can use the path to reference this output
object. For example, you could use the path in the ODS OUTPUT statement to

Dictionary of ODS Language Statements � ODS TRACE Statement 319

make a data set from the output, or you could use it in an ODS SELECT or an
ODS EXCLUDE statement.

The LABEL option modifies the trace record by including the label path for the object
in the record. See the discussion of the LABEL option.

Specifying an Output Object After you have determined which output objects your
SAS program produces, you can specify the output objects in statements such as ODS
EXCLUDE, ODS SELECT, and so on. You can specify an output object by using one of
the following:

� a full path. For example,

Univariate.City_Pop_90.TestsForLocation

is the full path of the output object.
� a partial path. A partial path consists of any part of the full path that begins

immediately after a period (.) and continues to the end of the full path. For
example, if the full path is

Univariate.City_Pop_90.TestsForLocation

then the partial paths are:

City_Pop_90.TestsForLocation
TestsForLocation

� a label that is enclosed by quotation marks.
For example,

"The UNIVARIATE Procedure"

� a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

Note: The trace record shows the label path only if you specify the LABEL
option in the ODS TRACE statement. �

� a partial label path. A partial label path consists of any part of the label that
begins immediately after a period (.) and continues to the end of the label. For
example, if the label path is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

then the partial label paths are:

"CityPop_90"."Tests For Location"
"Tests For Location"

� a mixture of labels and paths.
� any of the partial path specifications, followed by a pound sign (#) and a number.

For example, TestsForLocation#3 refers to the third output object that is named
TestsForLocation.

Example

Example 1: Determining Which Output Objects a Procedure Creates

ODS features:

320 ODS TRACE Statement � Chapter 5

ODS TRACE statement:
LABEL
OFF
ON

Other SAS features:
PROC UNIVARIATE

Data set:
See “Creating the StatePop Data Set” on page 881.

This example shows how to determine the names and labels of the output objects that a
procedure creates. You can use this information to select and exclude output objects.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Specify that SAS write the trace record to the SAS log and include label paths. This
ODS TRACE statement writes the trace record to the SAS log. The LABEL option includes
label paths in the trace record.

ods trace on / label;

Create descriptive statistics for two variables. PROC UNIVARIATE computes descriptive
statistics for two variables, CityPop_80 and CityPop_90. As PROC UNIVARIATE sends each
output object to the Output Delivery System, ODS writes the pertinent information for that
output object to the trace record.

proc univariate data=statepop mu0=3.5;
var citypop_90 citypop_80;

run;

Specify that SAS stop writing the trace record. The ODS TRACE OFF statement stops the
writing of the trace record to the SAS log.

ods trace off;

Dictionary of ODS Language Statements � ODS TRACE Statement 321

SAS Log

This partial SAS log shows the trace record that the ODS TRACE statement creates. For each analysis variable
PROC UNIVARIATE creates five output objects : Moments, BasicMeasures, TestsForLocation, Quantiles,
and ExtremeObs.

Notice that an output object has the same name and label, regardless of which variable is analyzed. Therefore,
you can select all the moments tables that PROC UNIVARIATE produces by using the name or label in an ODS
SELECT statement. The path and label path are unique for each output object because they include the name
of the variable that is analyzed. You can, therefore, select an individual moments table by using the path or the
label path in an ODS SELECT statement.

Output Added:

Name: Moments

Label: Moments

Template: base.univariate.Moments

Path: Univariate.CityPop_90.Moments

Label Path: "The Univariate Procedure"."CityPop_90"."Moments"

Output Added:

Name: BasicMeasures

Label: Basic Measures of Location and Variability

Template: base.univariate.Measures

Path: Univariate.CityPop_90.BasicMeasures

Label Path: "The Univariate Procedure"."CityPop_90"."Basic Measures of Location and Variability"

Output Added:

Name: TestsForLocation

Label: Tests For Location

Template: base.univariate.Location

Path: Univariate.CityPop_90.TestsForLocation

Label Path: "The Univariate Procedure"."CityPop_90"."Tests For Location"

Output Added:

Name: Quantiles

Label: Quantiles

Template: base.univariate.Quantiles

Path: Univariate.CityPop_90.Quantiles

Label Path: "The Univariate Procedure"."CityPop_90"."Quantiles"

Output Added:

Name: ExtremeObs

Label: Extreme Observations

Template: base.univariate.ExtObs

Path: Univariate.CityPop_90.ExtremeObs

Label Path: "The Univariate Procedure"."CityPop_90"."Extreme Observations"

322 ODS USEGOPT Statement � Chapter 5

Output Added:

Name: Moments

Label: Moments

Template: base.univariate.Moments

Path: Univariate.CityPop_80.Moments

Label Path: "The Univariate Procedure"."CityPop_80"."Moments"

Output Added:

Name: BasicMeasures

Label: Basic Measures of Location and Variability

Template: base.univariate.Measures

Path: Univariate.CityPop_80.BasicMeasures

Label Path: "The Univariate Procedure"."CityPop_80"."Basic Measures of Location and Variability"

Output Added:

Name: TestsForLocation

Label: Tests For Location

Template: base.univariate.Location

Path: Univariate.CityPop_80.TestsForLocation

Label Path: "The Univariate Procedure"."CityPop_80"."Tests For Location"

Output Added:

Name: Quantiles

Label: Quantiles

Template: base.univariate.Quantiles

Path: Univariate.CityPop_80.Quantiles

Label Path: "The Univariate Procedure"."CityPop_80"."Quantiles"

Output Added:

Name: ExtremeObs

Label: Extreme Observations

Template: base.univariate.ExtObs

Path: Univariate.CityPop_80.ExtremeObs

Label Path: "The Univariate Procedure"."CityPop_80"."Extreme Observations"

See Also

Statements:
“ODS EXCLUDE Statement” on page 110
“ODS SELECT Statement” on page 264

ODS USEGOPT Statement

Determines whether ODS uses traditional SAS/GRAPH option settings.

Valid: anywhere
Category: ODS: Output Control
See also: SAS/GRAPH: Reference
Restriction: The ODS USEGOPTS option has no effect on graphics produced as a result
of any of the ODS graphics functionality or the ODS GRAPHICS statement.

Dictionary of ODS Language Statements � ODS USEGOPT Statement 323

Syntax
ODS USEGOPT | NOUSEGOPT;

ODS USEGOPT
specifies that ODS use traditional SAS/GRAPH option settings for non-graphical
output.

ODS NOUSEGOPT
specifies that ODS not use traditional SAS/GRAPH option settings for non-graphical
output.

Details

Enabling Traditional SAS/GRAPH Graphics Options While ODS USEGOPT is in effect,
the settings for the following graphics options will affect all of your ODS output,
including tables:

CTEXT=
CTITLE=
FTITLE=
FTEXT=
HTEXT=
HTITLE=

If ODS NOUSEGOPT is in effect, the settings for these graphics options will not
override the value in the style definition for titles and footnotes in your ODS output.

Examples

Example 1: Enabling and Disabling Graphics Options
ODS features:

ODS HTML statement:
FILE=

ODS LISTING statement:
CLOSE

ODS NOUSEGOPT statement
ODS USEGOPT statement

Other SAS features:
GOPTIONS statement:

FCTEXT=
FTITLE=
HTEXT=

PROC PRINT
TITLE statement

Data set:
See “Creating the Exprev Data Set” on page 875.

324 ODS USEGOPT Statement � Chapter 5

Program Description This example creates two HTML reports, one with the
GOPTIONS enabled by using the ODS USEGOPT statement, and one with GOPTIONS
disabled by using the ODS NOUSEGOPT statement.

Program

Specify the GOPTIONS. The RESET=ALL option sets all graphics options to their default
values and cancels all global statements. The HTEXT= option specifies that the text height for
titles and footnotes be two units. The FTITLE= option specifies the font for titles and footnotes.
The FTEXT option specifies the font for the text.

goptions reset=all htext=2 ftitle=script ftext=script;

Do not produce listing output. The ODS LISTING statement closes the LISTING destination
to conserve resources. Otherwise, output would be written to the LISTING destination by
default.

ods listing close;

Enable the graphics options. While ODS USEGOPT is in effect, the settings for HTEXT=
and CTEXT= graphics options will override values that are specified for titles and footnotes in
the style definition.

ods usegopt;

Create HTML output, specify titles, and print the data set. The ODS HTML statement
opens the HTML destination and creates HTML output. The output from PROC PRINT is sent
to the body file specified by the FILE= option.

The TITLE statements specify the titles for your output.

The PRINT procedure prints the SAS data set Exprev. The OBS= option specifies two
observations to be printed.

ods html file=’opts.html’;
title ’This Title Was Created With the USEGOPT Option Specified ’ ;
title2 ’The Graphics Option Settings are Turned On’;
proc print data=exprev(obs=2);
run;

Disable the graphics options. The NOUSEGOPT statement suppresses the use of the
HTEXT= and CTEXT= graphics option settings for your output.

ods nousegopt;

Dictionary of ODS Language Statements � ODS VERIFY Statement 325

Create HTML output, specify titles, and print the data set. The ODS HTML statement
opens the HTML destination and creates HTML output. The output from PROC PRINT is sent
to the body file specified by the FILE= option.

The TITLE statements specify the titles for your output.

The PRINT procedure prints the SAS data set Exprev. The OBS= option specifies two
observations to be printed.

title ’This Title Was Created With the NOUSEGOPT Option Specified’ ;
title2 ’The Graphics Option Settings are Turned Off’;
proc print data=exprev (obs=2) ;
run;

Close the HTML destination and open the LISTING destination. The ODS HTML
CLOSE statement closes the HTML destination. To return ODS to its default setup, the ODS
LISTING statement opens the LISTING destination.

ods html close;
ods listing;

Display 5.28 HTML Output

In the following example, the heights and fonts for the titles of the first table are specified by
the FTITLE, FTEXT, and HTEXT options in the GOPTIONS statement. The heights and fonts
for the titles of the second table are specified by the default style definition.

ODS VERIFY Statement

Prints or suppresses a message indicating that a style definition or a table definition being used is
not supplied by SAS.

Valid: anywhere

326 ODS WML Statement � Chapter 5

Category: ODS: Output Control

Default: If you do not specify the ODS VERIFY statement, then ODS runs with the
verification process turned off. If you specify the ODS VERIFY statement but do not
specify an argument, then ODS runs with verification turned on.

See also: For information about how to ignore user-created definitions, see “ODS PATH
Statement” on page 206.

Syntax
ODS VERIFY <ON | OFF | ERROR | WARN>;

Options

ON
prints the warning and sends output objects to open destinations.

Alias: ODS VERIFY

Alias: YES

OFF
suppresses the warning.

Alias: ODS NOVERIFY

Alias: NO

ERROR
prints an error message instead of a warning message and does not send output
objects to open destinations.

WARN
prints a warning message and does not send output objects to open destinations.

Details

Using the ODS VERIFY Statement PROC TEMPLATE can modify the values in an
output object. None of the definitions that SAS provides modifies any values. If you
receive a warning from the ODS VERIFY statement, then look at the source code to
verify that the values have not been modified.

ODS WML Statement

Opens, manages, or closes the WML destination, which uses the Wireless Application Protocol
(WAP) to produce a Wireless Markup Language (WML) DTD with a simple list for a table of
contents.

Valid: anywhere

Category: ODS: Third-Party Formatted

Dictionary of ODS Language Statements � ODS WML Statement 327

Syntax
ODS WML < (<ID=>identifier)> action;

ODS WML< (<ID=>identifier)> <option(s)>;

Without an Action or Options
If you use the ODS WML statement without an action or options, then it opens the

WML destination and creates WML output.

Actions
The following table lists the actions available for the ODS WML statement. For

complete descriptions of actions see “Actions” on page 147 in the ODS MARKUP
statement.

Table 5.38 ODS WML Action Summary Table

Task Action

Close the WML destination and the file that is
associated with it

CLOSE

Exclude output objects from the WML destination EXCLUDE

Select output objects for the WML destination SELECT

Write to the SAS log the current selection or exclusion
list for the WML destination

SHOW

Options
The following table lists the options available for the ODS WML statement, which is

part of the markup family of statements. For complete descriptions of these options, see
“Options” on page 148 in the ODS MARKUP statement.

Table 5.39 ODS WML Option Summary Table

Task Option

Specify a unique base name for the anchor tag that
identifies each output object in the current body file

ANCHOR=

Specify which applet to use to view ODS WML output ARCHIVE=

Specify attributes to write between the tags that
generate dynamic graphics output

ATTRIBUTES=

Specify text to use as the first part of all links and
references that ODS creates in output files

BASE=

Open a markup family destination and specify the file
that contains the primary output that is created by
the ODS statement

BODY=

328 ODS WML Statement � Chapter 5

Task Option

Specify the character set to be generated in the META
declaration for the WML output

CHARSET=

Open the WML destination and specify that the file
that contains relevant style information

CODE=

Create a file path that can be used by the GOPTIONS
devices

CODEBASE=

Open the WML destination and specify the file that
contains a table of contents for the output

CONTENTS=

Specify a cascading style sheet to apply to your output CSSSTYLE=

Override the encoding for input or output processing
(transcodes) of external files

ENCODING=

Specify an event and the value for event variables
that is associated with the event

EVENT=

Specify the file that integrates the table of contents,
the page contents, and the body file

FRAME=

Control the location where footnotes are printed in
the graphics output

GFOOTNOTE | NOGFOOTNOTE

Specify the location for all graphics output that is
generated while the destination is open

GPATH=

Control the location where titles are printed in the
graphics output

GTITLE | NOGTITLE

Specify WML tags to place between the <HEAD> and
</HEAD> tags in all the files that the destination
writes to

HEADTEXT=

Open multiple instances of the same destination at
the same time

ID=

Specify WML code to use as the <META> tag between
the <HEAD> and </HEAD> tags in all the WML files
that the destination writes to

METATEXT=

Create a new body file at the specified starting point.
Opens a markup family destination and specifies the
file that contains a description of each page of the
body file, and contains links to the body file

NEWFILE=

Specify tagset-specific suboptions and a named value OPTIONS

Specify that the output from the destination be added
to an ODS package

PACKAGE

Open the WML destination and specify the file that
contains a description of each page of the body file,
and contains links to the body file

PAGE=

Write the specified parameters between the tags that
generate dynamic graphics output

PARAMETERS=

Specify the location of an aggregate storage location
or a SAS catalog for all markup files

PATH=

Dictionary of ODS Language Statements � ODS WML Statement 329

Task Option

Specify an alternative character or string to separate
lines in the output files

RECORD_SEPARATOR=

Specify a style definition to use in writing output files STYLE=

Open the WML destination and place style
information for output into an external file, or read
style sheet information from an existing file

STYLESHEET=

Insert text into your document TEXT=

Insert into the metadata of a file, a text string that
you want to specify as the text to appear in the
browser window title bar

TITLE=

Specify a translation table to use when transcoding a
file for output

TRANTAB=

Details
The ODS WML statement is part of the ODS markup family of statements. ODS

statements in the markup family produce output that is formatted using one of many
different markup languages, such as HTML (Hypertext Markup Language), XML
(Extensible Markup Language), and LaTeX. You can specify a markup language that
SAS supplies, or create one of your own and store it as a user-defined markup language.

330

331

P A R T4

The DOCUMENT Procedure

Chapter 6.The DOCUMENT Procedure 333

332

333

C H A P T E R

6
The DOCUMENT Procedure

Overview: DOCUMENT Procedure 334
Using the DOCUMENT Procedure 334

DOCUMENT Procedure Terminology 335

Syntax: DOCUMENT Procedure 335

PROC DOCUMENT Statement 337

COPY TO Statement 339
DELETE Statement 340

DIR Statement 341

DOC Statement 341

DOC CLOSE Statement 343

HIDE Statement 343

IMPORT TO Statement 343
LINK Statement 345

LIST Statement 346

MAKE Statement 347

MOVE TO Statement 348

NOTE Statement 349
OBANOTE Statement 350

OBBNOTE Statement 351

OBFOOTN Statement 352

OBPAGE Statement 353

OBSTITLE Statement 354
OBTEMPL Statement 355

OBTITLE Statement 356

RENAME TO Statement 356

REPLAY Statement 357

SETLABEL Statement 358

UNHIDE Statement 359
Customizing Labels, Titles, and Footnotes with BY Variables 359

Using WHERE Expressions with the DOCUMENT Procedure 361

Concepts: DOCUMENT Procedure 364

About ODS Documents 364

Definition 364
Items Included in an ODS Document 364

Items Not Included in an ODS Document 365

ODS Document Persistence 365

Understanding an ODS Document Path 365

Definition of ODS Document Path 365
Entry Names 365

Understanding Sequence Numbers 366

ODS Documents and Base SAS Procedures 366

334 Overview: DOCUMENT Procedure � Chapter 6

Getting Familiar with Output Objects 366
Understanding How ODS Documents Interact across Operating Environments 367

Compatibility across SAS Versions 367

Results: DOCUMENT Procedure 367

ODS Documents in the Documents Window 367

Understanding When to Use the Documents Window 367
Viewing an ODS Document in the Documents Window 367

ODS Document Icon 368

Using the Documents Window Pop-up Menu 369

ODS Documents in the Results Window 370

Understanding When to Use the Results Window 370

Viewing Entries in the Results Window 370
Comparisons between the Documents Window and the Results Window 371

Viewing the Properties of an Entry 372

Creating Shortcuts in the Documents Window 372

Comparisons between the Documents Window and the Document Procedure 373

Examples: DOCUMENT Procedure 374
Example 1: Navigating the File Location and Listing the Entries 374

Example 2: Opening and Listing ODS Documents 378

Example 3: Managing Entries 381

Example 4: Listing BY-Group Entries 387

Overview: DOCUMENT Procedure

Using the DOCUMENT Procedure
In ODS documents, the DOCUMENT procedure enables you to rearrange, duplicate,

or remove output from the results of a procedure or a database query. Also, you can
generate output for one or more ODS destinations using the newly transformed output
hierarchy file. Thus, the DOCUMENT procedure enables you to do the following:

� transform a report without rerunning an analysis or repeating a database query

� have more control over the structure of output

� display output to any ODS output format without executing SAS programs again

� navigate the current file location and list entries

� open and list ODS documents

� manage output

� store the ODS output objects in raw form

Note: The output is kept in the original internal representation as a data
component plus a table template. �

The DOCUMENT procedure is an interactive procedure that enables you to use ODS
and global statements within the PROC DOCUMENT step.

Unlike other ODS destinations, the DOCUMENT destination has a graphical user
interface (GUI) for performing tasks. However, you can perform the same tasks with
batch statement syntax using the DOCUMENT procedure. For a comparison of the

The DOCUMENT Procedure � Syntax: DOCUMENT Procedure 335

Documents window and the DOCUMENT procedure, see “Comparisons between the
Documents Window and the Results Window” on page 371.

DOCUMENT Procedure Terminology
current
document

is the open document.

current path is your current location in the open document. The ’^’ symbol
represents the current path.

entry is one or more links, output objects, files, or partitioned data sets.

graph segment is a file type or output object that contains a graph. Graphs are
created in some SAS procedures, including those in SAS/GRAPH.
The graph output object is referenced as a GRSEG.
See: For more information about GRSEG and SAS/GRAPH

procedures, see SAS/GRAPH: Reference.

ODS document is the hierarchy of output objects that are created by the
DOCUMENT procedure. These objects are unformatted and are
placed in a SAS item store.

path is the route through a hierarchal file system, leading to a particular
file or file location of an entry within an ODS document. path refers
to the physical location of an entry. The ’^’ symbol represents the
current path and the ’^^’ symbol represents the parent path.

replay is the regeneration of output, in the same or different format,
without rerunning analyses or data queries.

root file location is the top level of a file location in an ODS document. A root file
location is not contained within another file location and it does not
have a name assigned. A root file location is similar to the root
directory of a Windows operating environment.

Syntax: DOCUMENT Procedure

PROC DOCUMENT <options>;
COPY path<(where-expression)> <, path-2<(where-expression-2)>>

<, …path-n<(where-expression-n)>> TO path </ option(s)>;
DELETE path<(where-expression)> <, path-2<(where-expression-2)>>

<, …path-n<(where-expression-n)>> < / LEVELS= ALL | value>;
DIR <path>;
DOC <options>;
DOC CLOSE;
HIDE path < , path-2, …path-n>;
IMPORT DATA= data-set-name | GRSEG=grseg TO path </options>;
LINK path TO path </ options>;
LIST path<(where-expression)> <, path-2<(where-expression-2)>>

336 Syntax: DOCUMENT Procedure � Chapter 6

<, …path-n<(where-expression-n)>> </option(s)>;
MAKE path < , path-2, …path-n> </ options>;

MOVE path<(where-expression)> <, path-2<(where-expression-2)>>
<, …path-n<(where-expression-n)>> TO path </ option(s) >;

NOTE path < ’text’> </ option(s)>;

OBANOTE<n> output-object < ’text’> </option>;

OBBNOTE<n> output-object < ’text’> </ option>;

OBFOOTN<n> output-object < ’text’>;

OBPAGE output-object </ option(s)>;
OBSTITLE<n> output-object < ’text’> </ options>;

OBTEMPL output-object;

OBTITLE<n> output-object < ’text’>;

RENAME path-1 TO path-2;

REPLAY path<(where-expression)> <, path-2<(where-expression-2)>>
<, …path-n<(where-expression-n)>> </ options>;

SETLABEL path ’label’;
UNHIDE path < , path-2, …path-n>;

QUIT;

Table 6.1 PROC DOCUMENT Statements

Task Statement

Render ODS output without rerunning procedures
and gain more control over the structure and
hierarchy of the output

“PROC DOCUMENT Statement” on page
337

Insert a copy of an entry into a specified path “COPY TO Statement ”on page 339

Delete entries from a specified path or paths “DELETE Statement” on page 340

Set or display the current directory “DIR Statement” on page 341

Open a document and its contents to browse or edit “DOC Statement” on page 341

Close the current document “DOC CLOSE Statement” on page 343

Prevent output from being displayed when the
document is replayed

“HIDE Statement” on page 343

Import a data set or graph segment into the current
directory

“IMPORT TO Statement” on page 343

Create a symbolic link from one output object to
another output object

“LINK Statement” on page 345

List the content of one or more entries “LIST Statement” on page 346

Create one or more new directories “MAKE Statement” on page 347

Move entries from one directory to another directory “MOVE TO Statement” on page 348

Create text strings in the current directory “NOTE Statement” on page 349

Create or modify lines of text after the specified
output object

“OBANOTE Statement” on page 350

The DOCUMENT Procedure � PROC DOCUMENT Statement 337

Task Statement

Create or modify lines of text before the specified
output object

“OBBNOTE Statement” on page 351

Create or modify lines of text at the bottom of the
page in which the output object is displayed

“OBFOOTN Statement” on page 352

Create or delete a page break for an output object “OBPAGE Statement” on page 353

Create or modify subtitles “OBSTITLE Statement” on page 354

Write the source code of the ODS template that is
associated with a specified output object

“OBTEMPL Statement” on page 355

Create or modify lines of text at the top of the page
where the output object is displayed

“OBTITLE Statement” on page 356

Assign a different name to a directory or output object “RENAME TO Statement” on page 356

Replay one or more entries to the specified open ODS
destinations

“REPLAY Statement” on page 357

Assign a label to the current entry “SETLABEL Statement” on page 358

Enable the output of a hidden entry to be displayed
when it is replayed

“UNHIDE Statement” on page 359

PROC DOCUMENT Statement

Creates or opens a document to modify.

Default: Documents are opened in the UPDATE access mode.
Caution: If the DOCUMENT destination is not closed with an ODS DOCUMENT
CLOSE statement, then ODS continues to append files to the document.

PROC DOCUMENT <options <access-option(s)>>;

Without Options
If no options are specified, then the PROC DOCUMENT statement opens the last

document that was created in the current SAS session.

Options

NAME= <libref.>member-name <access-option(s)>
specifies the name of a new or existing document and its access mode.

<libref.>member-name
identifies a new or existing ODS document.
Default: If no library is specified, then the WORK library is used.
Restriction: The ODS document must be a SAS library member.

338 PROC DOCUMENT Statement � Chapter 6

access-option(s)
specifies the access mode for the ODS document.
For example, the following PROC DOCUMENT statement opens the document
WORK.MyDoc in update mode:

proc document name=mydoc;
run;

Default: UPDATE

READ
opens a document and provides read-only access.
Requirement: To open a document in the READ access mode, the document

must already exist.
Interaction: If a label has been specified with the LABEL= option, then the

label is ignored.

WRITE
opens a document and provides Read and Write access.
For example, the following PROC DOCUMENT statement opens the document
WORK.YourDoc in Write mode:

proc document name=yourdoc(write);
run;

Caution: If the ODS document already exists, then it will be overwritten.
Interaction: If a label has been specified with the LABEL= option, then it will

override any existing label assigned to the document.
Tip: If the ODS document does not exist, then it will be created.

UPDATE
opens an ODS document and appends new content to the document. UPDATE
provides Update access as well as Read access.
Caution: If the document already exists, then its contents will not be changed.
Interaction: If a label has been specified with the LABEL= option, then it will

be assigned to the document.
Tip: If the ODS document does not exist, then the document will be created.

LABEL= ’label’
assigns a label to a document.
For example, the following PROC DOCUMENT statement opens the document
WORK.YourDoc in Write mode and assigns a label to it:

proc document name=yourdoc(write) label=’repeated measures results’;
run;

Restriction: Labels can be assigned only to documents with Write-access
permissions.

Requirement: Enclose labels in quotation marks.

The DOCUMENT Procedure � COPY TO Statement 339

COPY TO Statement

Copies an entry into the specified path.

Default: If you do not specify a location to insert the entry into the path, then the entry
is inserted at the end of the path.

COPY path<(where-expression)> <, path-2<(where-expression-2)>>
<, …path-n<(where-expression-n)>> TO path </option(s)>;

Required Arguments

path
is the location where a link, output object, or file is copied.

Requirement: Separate multiple paths with commas.

Tip: The ’^’ symbol represents the current path and the ’^^’ symbol represents the
parent path.

Options

AFTER= path
inserts a copy of an entry after the specified path.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

BEFORE= path
inserts a copy of an entry before the specified path.

Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to
represent the parent path.

FIRST
inserts a copy of an entry at the beginning of the specified path.
For example, the following COPY TO statement inserts a copy of the entry
Monday_Report at the beginning of the root directory:

copy weekly\monday_report to \ /first;
run;

LAST
inserts a copy of an entry at the end of the specified path.

LEVELS= ALL | value
specifies the number of levels below the specified path that you want to copy.

ALL
specifies all levels of the path.

value
specifies the numeric value of the path level.

340 DELETE Statement � Chapter 6

For example, the following COPY TO statement copies two levels of the entry
Weekly to the entry Monthly:

copy weekly to \work.mydoc\monthly /levels = 2;
run;

Default: ALL
Restriction: The LEVELS= option is valid only when you specify a directory.

where-expression
selects, for copying, entries in an ODS document that meet a particular condition.
See: “Using WHERE Expressions with the DOCUMENT Procedure” on page 361

DELETE Statement

Deletes entries from the current file location.

Restriction: The root file location cannot be deleted or moved.
Caution: The DELETE statement affects all levels of a file location below the specified
path.

DELETE path<(where-expression)> <, path-2<(where-expression-2)>>
<, …path-n<(where-expression-n)>> </ LEVELS= ALL | value>;

Required Arguments

path
specifies the location of one or more links, output objects, or file locations.
For example, the following DELETE statement removes the ClassLevels and Nobs
entries from the current directory:

delete classlevels, nobs;
run;

Requirement: Separate multiple paths with commas.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

Options

LEVELS= ALL | value
specifies the level of the path that you want to delete.

ALL
specifies all levels of the path.

value
specifies the numeric value of the path level.

The DOCUMENT Procedure � DOC Statement 341

Default: ALL
Restriction: The LEVELS= option is valid only when you specify a directory.

where-expression
selects, for deletion, entries in an ODS document that meet a particular condition.

See also: “Using WHERE Expressions with the DOCUMENT Procedure” on page
361

DIR Statement

Sets or displays the current file location.

Featured in: Example 1 on page 374, Example 2 on page 378, and Example 3 on page 381

DIR <path>;

Without Options
If no options are specified, then the DIR statement displays the current path.

Options

path
sets the current file location.
For example, the following DIR statement sets the current directory to ’\report\glm’
within the current document:

dir \report\glm;
run;

Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to
represent the parent path.

DOC Statement

Opens a document and its contents to browse or edit.

Default: Documents are opened in the UPDATE access mode.

Featured in: Example 1 on page 374 and Example 2 on page 378

DOC <options <access-option(s)>>;

342 DOC Statement � Chapter 6

Without Options
If no options are specified, then the DOC statement lists the ODS documents in all

SAS libraries in alphabetical order. Document labels, if any, are displayed.

Options

LABEL= ’label’
assigns a label to a document.
For example, the following DOC statement opens the document WORK.YourDoc in
Write mode and assigns a label to it:

doc name=yourdoc(write) label=’repeated measures results’;
run;

Restriction: A label can be assigned only to documents with Write access
permission.

Requirement: To use the LABEL= option, specify the NAME= option on the DOC
statement.

Requirement: Enclose labels in quotation marks.

LIBRARY=library-name
specifies that only the documents in the specified library-name are listed.
Alias: LIB=
Interaction: The LIBRARY= option cannot be specified with the NAME= or

LABEL= options.

NAME= libref.member-name <access-option(s)>
specifies the name that you assign to a document and its access mode.

<libref.>member-name
identifies a document.
Default: If no library is specified, then the WORK library is used.
Restriction: The document must be a SAS library member.

access-option(s)
specifies the access mode for the document.

READ
opens a document and provides read-only access.
Interaction: If a label has been specified with the LABEL= option, then the

label is ignored.

WRITE
opens a document and provides Write access, but only if you have Write
permission.
Caution: If the document already exists, then it will be overwritten. If the

document does not exist, then it will be created.
Interaction: If a label has been specified with the LABEL= option, then it will

override any existing label assigned to the document.

UPDATE
opens a document and provides Update access, but only if you have Update
permission.
Interaction: If a label has been specified with the LABEL= option, then it will

be assigned to the document.

The DOCUMENT Procedure � IMPORT TO Statement 343

Tip: If the document already exists, then its contents will not be changed and
the new contents will be appended to the document. If the document does not
exist, then it will be created.

DOC CLOSE Statement

Closes the current document.

DOC CLOSE;

HIDE Statement

Prevents output from being displayed when the document is replayed.

Tip: To see entries that might be hidden in the current document, use the LIST
statement.

HIDE path < , path-2, …path-n>;

Required Arguments

path
specifies the location of the file or files that you want to hide.

Requirement: Separate multiple paths with commas.

Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to
represent the parent path.

IMPORT TO Statement

Imports the specified SAS data set or graph segment to the current file location.

IMPORT DATA= data-set-name<data-set-option(s)>| GRSEG=grseg TO path </
option(s)>;

344 IMPORT TO Statement � Chapter 6

Required Arguments

DATA= data-set-name
specifies an existing SAS data set that you want to import.

GRSEG= grseg
stores a reference to a graph segment.

grseg
specifies the 3-level catalog path name. For example,
GRSEG=SASUSER.grseg.mygraph.
See: GRSEG= option in the SAS/GRAPH: Reference

path
specifies the location where you want to import the data set or graph segment.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’

to represent the parent path.

Options

AFTER= path
imports the data set or graph segment into the file location after the specified path.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

BEFORE= path
imports the data set or graph segment into the file location before the specified path.
For example, the following IMPORT TO statement imports the data set
SASHELP.Class to the current directory, and inserts the data set before the entry
MyInfo:

import data=sashelp.class to ^ /before=MyInfo;
run;

Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to
represent the parent path.

data-set-option(s)
specify actions that apply only to the SAS data set.
See also: SAS Language Reference: Dictionary for information about SAS data sets

and their options

FIRST
imports the data set or graph segment at the beginning of the file location.

LAST
imports the data set or graph segment at the end the file location.

The DOCUMENT Procedure � LINK Statement 345

LINK Statement

Creates a symbolic link from one specified output object to another in the current file location.

LINK path TO path </ option(s)>;

Required Arguments

path
specifies the locations of the output objects that you want to link to one another.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

Options

AFTER= path
links to the entry that follows the specified path in the current file location.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

BEFORE= path
links to the entry that precedes the specified path in the current file location.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

FIRST
links to the first entry in the current file location.

HARD
specifies a type of link that refers to a copy of an output object within the ODS
document. All data is shared between the link and the target, except names and
labels.
For example, the following LINK statement creates a hard link from the output
object ErrorSSCP to the output object LinkedErrorSSCP in the current directory:

link errorSSCP to linkederrorSSCP /hard;
run;

Restriction: A hard link can reference only an output object, and the source and
target paths must be in the same ODS document. The target must exist when you
create the hard link.

Interaction: A hard link and its target exist independently. Deleting a hard link
does not affect the target. Similarly, deleting a target does not affect the link.

LABEL
copies the source label to the link.
Default: The source label is not copied unless the LABEL option is specified.

LAST
links to the last entry in the current file location.

346 LIST Statement � Chapter 6

LIST Statement

Lists the contents of one or more entries.

Default: Only summary information is displayed if the DETAILS option is omitted.

Default: If the ORDER= option is omitted, then the contents of the specified entries are
listed in the order specified by the INSERT option.

Tip: To see any entries that might be hidden in the current file location, use the LIST
statement.

Featured in: Example 1 on page 374, Example 2 on page 378, and Example 3 on page 381

LIST path<(where-expression)> <, path-2<(where-expression-2)>>
<, ...path-n<(where-expression-n)>> </ option(s)>;

Required Arguments

path
specifies the location of an entry. An entry can be one or more file locations, links, or
output objects.
For example, the following LIST statement lists all of the entries within the Report
entry:

list \sasuser.imports\report;
run;

Requirement: Separate multiple paths with commas.

Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to
represent the parent path.

Options

BYGROUPS
creates, in the entry list, columns for BY variables. The name of the BY variable
becomes the column name. The values of the BY variables are listed in the columns.

Note: When you specify the BYGROUPS option, only entries containing BY group
information are listed. �

Interaction: It is recommended that when you specify the BYGROUPS option,
specify the LEVELS=ALL option also. If the LEVELS=ALL option is not specified,
then ODS cannot find BY group information within all levels of the directories.
Therefore, no list can be produced because only entries containing BY group
information are listed.

Featured in: Example 4 on page 387

The DOCUMENT Procedure � MAKE Statement 347

DETAILS
specifies the properties of the entries.
For example, the following LIST statement lists the details of three levels of the
Report entry:

list \sasuser.imports\report /details levels=3;
run;

FOLLOW
resolves all links and lists the contents of the entries.

LEVELS= ALL | value
specifies the level of the path that you want to list.

ALL
specifies all levels of the path.

value
specifies the numeric value of the path level.
For example, the following LIST statement lists the details of three levels of the
Report entry:

list \sasuser.imports\report /details levels=3;
run;

Default: If you omit the LEVELS= option, then the default value of the level is 1.
Restriction: The LEVELS= option is valid only when you specify a directory.

ORDER= ALPHA | DATE | INSERT
specifies the order in which the entries are listed.

ALPHA
lists the entries in alphabetical order.

DATE
lists the file locations in ascending order based on the date and time the files were
created.

INSERT
lists the file locations in the order in which you arranged the entries.

where-expression
selects, for listing, entries in an ODS document that meet a particular condition.
Featured in: Example 2 on page 378
See: “Using WHERE Expressions with the DOCUMENT Procedure” on page 361

MAKE Statement

Creates one or more new file locations.

Default: If no location is specified, the newly created file location is appended to the end
of the current file location.

MAKE path < , path-2, …path-n> </ option(s)>;

348 MOVE TO Statement � Chapter 6

Required Arguments

path
specifies the newly created file location.
Requirement: Separate multiple paths with commas.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

Options

AFTER= path
adds the newly created file location after the specified path in the current file location.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

BEFORE= path
adds the newly created file location before the specified path in the current file
location.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

FIRST
adds the newly created file location to the beginning of the current file location.

LAST
adds the newly created file location to the end of the current file location.

MOVE TO Statement

Moves entries from the specified location to another location.

Restriction: The root file location cannot be moved or deleted.
Requirement: Separate multiple paths with commas.
Caution: The MOVE TO statement affects all levels of a file location below the specified
starting level.

MOVE path<(where-expression)> <, path-2<(where-expression-2)>>
<, …path-n<(where-expression-n)>> TO path </ option(s)>;

Required Arguments

path
specifies the location of links, output objects, or files that you want to move.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

The DOCUMENT Procedure � NOTE Statement 349

Options

AFTER= path
moves the entry after the specified entry in the path.

Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to
represent the parent path.

BEFORE= path
moves the entry before the specified entry in the path.

Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to
represent the parent path.

FIRST
moves the entry to the beginning of the specified file location.

LAST
moves the entry to the end of the specified file location.

LEVELS= ALL | value
specifies the level of the path that you want to move.

ALL
specifies all levels of the path.

value
specifies the numeric value of the path level.
For example, the following MOVE TO statement moves two levels of the directory
Weekly to the Monthly directory of WORK.MyDoc:

move weekly to \work.mydoc\monthly /levels = 2;
run;

Default: ALL
Restriction: The LEVELS= option is valid only when you specify a directory.

where-expression
selects, for moving, entries in an ODS document that meet a particular condition.

See: “Using WHERE Expressions with the DOCUMENT Procedure” on page 361

NOTE Statement

Creates text strings in the current file location.

Default: If you omit the JUST= option, then the note is centered between the left and
right margins.

Default: If no location is specified, then the note is added to the end of the current
location.
Featured in: Example 3 on page 381

NOTE path < ’text’> </ option(s)>;

350 OBANOTE Statement � Chapter 6

Without Options
If no text string is specified, then the NOTE statement creates a blank note.

Required Arguments

path
specifies the location where the note is stored.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

Options

AFTER= path
inserts the text string after the specified path.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

BEFORE= path
inserts the text string before the specified path.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

FIRST
inserts the text string at the beginning of the path.

JUST= LEFT | CENTER | RIGHT
specifies the alignment of the text string.

LEFT
aligns the text string with the left margin.

CENTER
centers the text string between the left and right margins.

RIGHT
aligns the text string with the right margin.

LAST
inserts the text string at the end of the path.

’text’
specifies the text string.
Requirement: All text strings must be enclosed in quotation marks.

OBANOTE Statement

Creates or modifies an object footer (lines of text) after the specified output object.

Featured in: Example 3 on page 381

OBANOTE<n> output-object < ’text’> </ JUST= LEFT | CENTER | RIGHT>;

The DOCUMENT Procedure � OBBNOTE Statement 351

Required Arguments

output-object
specifies the name of the ODS output object.

Options

JUST= LEFT | CENTER | RIGHT
specifies the alignment of the object footer.

LEFT
aligns the object footer with the left margin.

CENTER
centers the object footer between the left and right margins.

RIGHT
aligns the object footer with the right margin.

n
specifies the relative line that contains the object footer.
Default: If you omit n, then SAS assumes a value of 1. Therefore, specify either

OBANOTE or OBANOTE1 for the first text line.
Range: 1–10
Tip: The OBANOTE line with the highest number appears on the bottom line.
Tip: You can create notes that contain blank lines between them. For example, if

you specify a text string with an OBANOTE1 statement that is followed by an
OBANOTE3 statement, then a blank line separates the two lines of text.

’text’
specifies the text string that becomes the object footer.

You can customize object footers by inserting BY variable values (#BYVALn), BY
variable names (#BYVARn), or BY lines (#BYLINE) into object footers that are
specified in PROC DOCUMENT steps. After you specify the object footer, embed the
items at the position where you want them to appear. For more information, see
“Customizing Labels, Titles, and Footnotes with BY Variables” on page 359.
Requirement: All text strings must be enclosed in quotation marks.
Caution: If no text string is specified, then the OBANOTE statement deletes all

object footers for the specified output object only.

OBBNOTE Statement

Creates or modifies an object heading (lines of text) before the output object.

Featured in: Example 3 on page 381

OBBNOTE<n> output-object <’text’> </ JUST= LEFT | CENTER | RIGHT>;

352 OBFOOTN Statement � Chapter 6

Required Arguments

output-object
specifies the name of the ODS output object.

Options

JUST= LEFT | CENTER | RIGHT
specifies the alignment of the object heading.

LEFT
aligns the object heading with the left margin.

CENTER
centers the object heading between the left and right margins.

RIGHT
aligns the object heading with the right margin.

n
specifies the relative line that contains the object heading.
Default: If you omit n, then SAS assumes a value of 1. Therefore, specify either

OBBNOTE or OBBNOTE1 for the first text line.
Range: 1– 10
Tip: The OBBNOTE line with the highest number appears on the bottom line.
Tip: You can create notes that contain blank lines between them. For example, if

you specify a text string with an OBBNOTE statement that is followed by an
OBBNOTE3 statement, then a blank line separates the two lines of text.

’text’
specifies the text string that becomes the object heading.

You can customize object headings by inserting BY variable values (#BYVALn), BY
variable names (#BYVARn), or BY lines (#BYLINE) into object headings that are
specified in PROC DOCUMENT steps. After you specify the object heading text,
embed the items at the position where you want them to appear. For more
information, see “Customizing Labels, Titles, and Footnotes with BY Variables” on
page 359.
Requirement: All text strings must be enclosed in quotation marks.
Caution: If no text string is specified, then the OBBNOTE statement deletes all

existing object headings for the specified output object only.

OBFOOTN Statement

Creates or modifies lines of text at the bottom of the page on which the output object is displayed.

Restriction: You can print up to ten lines of text.
Tip: The OBFOOTN statement is similar to the global FOOTNOTE statement.
Featured in: Example 3 on page 381

The DOCUMENT Procedure � OBPAGE Statement 353

OBFOOTN<n> output-object < ’text’>;

Required Arguments

output-object
specifies the ODS output object.

Options

n
specifies the relative line that contains the footnote.
Range: 1–10
Tip: The OBFOOTN line with the highest number appears on the bottom line. If

you omit n, then SAS assumes a value of 1. Therefore, specify OBFOOTN or
OBFOOTN1 for the first text line.

Tip: You can create footnotes that contain blank lines between them. For example,
if you specify a text string with an OBFOOTN statement that is followed by an
OBFOOTN3 statement, then a blank line separates the two lines of text.

’text’
specifies the text string that becomes the footnote.

You can customize footnotes by inserting BY variable values (#BYVALn), BY
variable names (#BYVARn), or BY lines (#BYLINE) into footnotes that are specified
in PROC DOCUMENT steps. After you specify the text, embed the items at the
position where you want them to appear. For more information, see “Customizing
Labels, Titles, and Footnotes with BY Variables” on page 359.
Requirement: All text strings must be enclosed by quotation marks.
Caution: If you use the OBFOOTN statement without a text string, then all

existing footnotes for the specified output object are deleted.

OBPAGE Statement

Creates or deletes a page break for an output object.

Featured in: Example 3 on page 381

OBPAGE output-object< / <DELETE > <AFTER>>;

354 OBSTITLE Statement � Chapter 6

Required Arguments

output-object
specifies the name of the output object.

Without Options
If no options are specified, then the OBPAGE statement inserts a page break before

an output object.

Options

AFTER
inserts a page break after an output object.
Tip: To delete a page break after an output object, use the AFTER option as well as

the DELETE option.

DELETE
removes the page break for an output object.

OBSTITLE Statement

C

Featured in: Example 3 on page 381

OBSTITLE<n> output-object < ’text’> </ JUST= LEFT | CENTER | RIGHT>;

Required Arguments

output-object
specifies the ODS output object.

Options

JUST= LEFT | CENTER | RIGHT
specifies the alignment of the text string.

LEFT
aligns the text string with the left margin.

CENTER
aligns the text string in the center between the left and right margins.

RIGHT

The DOCUMENT Procedure � OBTEMPL Statement 355

aligns the text string with the right margin.

n
specifies the relative line that contains the subtitle.
Range: 1–10
Tip: The OBSTITLE line with the highest number appears on the bottom line. If

you omit n, then SAS assumes a value of 1. Therefore, you can specify OBSTITLE
or OBSTITLE1 for the first text line.

Tip: You can create subtitles that contain blank lines between them. For example,
if you specify a text string with an OBSTITLE statement that is followed by an
OBSTITLE3 statement, then a blank line separates the two lines of text.

’text’
specifies the text string.

You can customize subtitles by inserting BY variable values (#BYVALn), BY
variable names (#BYVARn), or BY lines (#BYLINE) into subtitles that are specified
in PROC DOCUMENT steps. After you specify text, embed the items at the position
where you want them to appear. For more information, see “Customizing Labels,
Titles, and Footnotes with BY Variables” on page 359.
Requirement: All text strings must be enclosed in quotation marks.
Caution: If no arguments are specified, then the OBSTITLE statement deletes all

existing subtitles for the specified output object only.

OBTEMPL Statement

Writes, to any open ODS destination, the source code of the ODS template that is associated with
the specified output object.

Restriction: If the output object that is specified has no ODS template associated with it,
then no output is created.

OBTEMPL output-object;

Required Arguments

output-object
specifies the path name of the output object.
See also: “Getting Familiar with Output Objects” on page 366
Featured in: Example 4 on page 387

356 OBTITLE Statement � Chapter 6

OBTITLE Statement

Creates or modifies title lines for the output.

Tip: The OBTITLE is similar to the global TITLE statement.

Featured in: Example 3 on page 381

OBTITLE<n> output-object < ’text’>;

Required Arguments

output-object
specifies the name of the output object.

Options

n
specifies the relative line that contains the title.

Range: 1–10

Tip: The OBTITLE line with the highest number appears on the bottom line. If you
omit n, then SAS assumes a value of 1. Therefore, specify OBTITLE or OBTITLE1
for the first text line.

Tip: You can create titles that contain blank lines between them. For example, if
you specify a text string with an OBTITLE statement that is followed by an
OBTITLE3 statement, then a blank line separates the two lines of text.

’text’
specifies the text string.

You can customize titles by inserting BY variable values (#BYVALn), BY variable
names (#BYVARn), or BY lines (#BYLINE) into output titles that are specified in
PROC DOCUMENT steps. After you specify the text, embed the items at the position
where you want them to appear. For more information, see “Customizing Labels,
Titles, and Footnotes with BY Variables” on page 359.

Requirement: All text strings must be enclosed in quotation marks.

Caution: If no text is specified, then the OBTITLE statement deletes all existing
titles for the specified output object only.

RENAME TO Statement

Assigns a different name to a file location or output object.

RENAME path-1 TO path-2;

The DOCUMENT Procedure � REPLAY Statement 357

Required Arguments

path-1
specifies the current file location or output object.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

path-2
specifies the new name of the file location or output object.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

REPLAY Statement

Displays one or more entries to the specified open ODS destination(s).

Default: If you omit the LEVELS= option, then all levels of the file are displayed to all
open destinations.
Featured in: Example 2 on page 378 and Example 3 on page 381

REPLAY path<(where-expression)> <, path-2<(where-expression-2)>>
<, …path-n<(where-expression-n)>> </ option(s)>;

Options

ACTIVEFOOTN
specifies that footnotes that are active in a SAS session will override the footnotes
that are stored in an ODS document.
Alias: ACFOOTN

ACTIVETITLE
specifies that titles that are active in a SAS session will override the titles that are
stored in an ODS document.
Alias: ACTITLE

DEST= (ODS-destination(s))
specifies one or more ODS destinations to display the output objects.
For example, the following REPLAY statement replays two levels of the entry Data
to the HTML and RTF destinations:

replay \Report\GLM#1\Data /levels=2 dest=(html rtf);
run;

Requirement: When you specify the DEST= option, surround the ODS destinations
with parentheses and separate each destination with a blank space. For example,
DEST=(HTML RTF LISTING)

358 SETLABEL Statement � Chapter 6

Tip: When you specify only one destination, you do not need to use parentheses.
For example, DEST=HTML

See also: For information about ODS destinations, see “Understanding ODS
Destinations” on page 24.

LEVELS= ALL | value
specifies the level of the path that you want to replay.

ALL
specifies that all levels of the path are displayed to all open destinations.

value
specifies the numeric value of the path level.
For example, the following REPLAY statement replays two levels of the entry
Data to the HTML and RTF destinations:

replay \Report\GLM#1\Data /levels=2 dest=(html rtf);
run;

Default: ALL
Restriction: The LEVELS= option is valid only when you specify a directory.

path
specifies the location of an entry. An entry can be one or more file locations, links, or
output objects.
Requirement: Separate multiple paths with commas.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

where-expression
selects, for replaying, entries in an ODS document that meet a particular condition.
See: “Using WHERE Expressions with the DOCUMENT Procedure” on page 361

Replaying Graphics
When replaying graphics created by a device driver from the following list, you must

also specify a device driver from the list with the DEVICE= option in the GOPTIONS
statement:

� ACTIVEX
� ACTXIMG
� JAVA
� JAVAIMG

See the GOPTIONS statement in SAS/GRAPH: Reference for more information.

SETLABEL Statement

Assigns a label to the specified path.

SETLABEL path ’label’;

The DOCUMENT Procedure � Customizing Labels, Titles, and Footnotes with BY Variables 359

Required Arguments

’label’
specifies the text of the label. You can customize labels by inserting BY variable
values (#BYVAL), BY variable names (#BYVAR), or BY lines (#BYLINE) into labels
that are specified in PROC DOCUMENT steps.
Requirement: The label must be enclosed in quotation marks.
See also: For more information, see “Customizing Labels, Titles, and Footnotes with

BY Variables” on page 359.

path
specifies the location of a link, output object, or file location.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

UNHIDE Statement

Enables the output of a hidden entry to be displayed when it is replayed.

UNHIDE path < , path-2, …path-n>;

Required Arguments

path
specifies the location of a link, output object, or file.
Requirement: Separate multiple paths with commas.
Tip: You can use the symbol ’^’ to represent the current path and the symbol ’^^’ to

represent the parent path.

Customizing Labels, Titles, and Footnotes with BY Variables

You can customize labels, titles, and footnotes with these statements by inserting BY
variable values (#BYVAL), BY variable names (#BYVAR), or BY lines (#BYLINE) in
labels that are specified in the following PROC DOCUMENT statements:

“OBANOTE Statement” on page 350
“OBBNOTE Statement” on page 351
“OBFOOTN Statement” on page 352
“OBSTITLE Statement” on page 354
“OBTITLE Statement” on page 356
“SETLABEL Statement” on page 358

360 Customizing Labels, Titles, and Footnotes with BY Variables � Chapter 6

Note: The #BYVAL, #BYVAR, and #BYLINE substitutions only show up for
replayed output objects that belong to a BY group. Examples of output objects that do
not belong to a BY group are data sets that are imported into a document with the
IMPORT TO statement, and notes that are created with the NOTES statement. �

To create these substitutions, embed the items in the specified object text string at
the position where you want the substitution text to appear. The #BYVAL, #BYVAR,
and #BYLINE substitutions have this form:

#BYVALn | #BYVAL(variable-name)
substitutes the current value of the specified BY variable for #BYVAL in the text
string and displays the value in the label.

Follow these rules when you use #BYVAL in a statement of a PROC DOCUMENT
step:

� Specify the variable that is used by #BYVAL in the BY statement.

� Insert #BYVAL in the specified text string at the position where you want the
substitution text to appear.

� Follow #BYVAL with a delimiting character, either a space or other
nonalphanumeric character (for example, a quotation mark) that ends the text
string.

� To immediately follow the #BYVAL substitution with other text and no
delimiter, use a trailing dot (as with macro variables).

� Specify the variable with one of the following:

n
specifies which variable in the BY statement that #BYVAL should use. The
value of n indicates the position of the variable in the BY statement.

Example: #BYVAL2 specifies the second variable in the BY statement.

variable-name
names the BY variable.

Example: #BYVAL(YEAR) specifies the BY variable, YEAR.

Tip: variable-name is not case sensitive.

Requirement: You must enclose variable-name in parentheses.

#BYVARn | #BYVAR(variable-name)
substitutes the name of the BY variable or label that is associated with the variable
(whatever the BY line would normally display) for #BYVAR in the text string and
displays the name or label.

Follow these rules when you use #BYVAR in a statement of a PROC DOCUMENT
step:

� Specify the variable that is used by #BYVAR in the BY statement.

� Insert #BYVAR in the specified text string at the position where you want the
substitution text to appear.

� Follow #BYVAR with a delimiting character, either a space or other
nonalphanumeric character (for example, a quotation mark) that ends the text
string.

� To immediately follow the #BYVAR substitution with other text and no
delimiter, use a trailing dot (as with macro variables).

The DOCUMENT Procedure � Using WHERE Expressions with the DOCUMENT Procedure 361

� Specify the variable with one of the following:

n
specifies the variable in the BY statement that #BYVAR should use. The
value of n indicates the position of the variable in the BY statement.

Example: #BYVAR2 specifies the second variable in the BY statement.

variable-name
names the BY variable.

Example: #BYVAR(SITES) specifies the BY variable SITES.

Tip: variable-name is not case sensitive.

Requirement: You must enclose variable-name in parentheses.

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in the
text string and displays the BY line in the label.

Using WHERE Expressions with the DOCUMENT Procedure

You can conditionally select a subset of entries in an ODS document for copying,
listing, deleting, moving, or replaying by using WHERE expressions with the following
statements:

“COPY TO Statement ”on page 339

“DELETE Statement” on page 340

“LIST Statement” on page 346

“MOVE TO Statement” on page 348

“REPLAY Statement” on page 357

WHERE expressions have this form:

(WHERE=(where-expression-1 <operator where-expression-n>))

where-expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands.

operand
is one of the following:

constant
is a fixed value such as a date literal, a value, or a BY variable.

SAS function
For information on SAS functions, see SAS Language Reference: Dictionary.

subsetting variable
is a special kind of WHERE expression operand used by the DOCUMENT
procedure to help you find common values in ODS documents. Here are the
subsetting variables:

CDATE
is the creation date of the current entry.

362 Using WHERE Expressions with the DOCUMENT Procedure � Chapter 6

Example: The following MOVE TO statement moves all entries of the type
’Graph’ with a creation date of 16JUL2004 to the Monthly directory of
WORK.MyDoc:

move ^(where=(_type_ = ’Graph’ and _cdate_ = ’16JUL2004’d)) to
\ work.mydoc\monthly;

run;

CDATETIME
is the creation datetime of the current entry.

Example: The following COPY TO statement copies all entries with a
creation datetime of May 1, 2003, at 9:30 to the Monthly directory of
WORK.MyDoc:

copy ^(where=(_cdatetime_ = ’01may04:9:30:00’dt)) to \work.mydoc\monthly;
run;

CTIME
is the creation time of the current entry.

Example: The following DELETE statement deletes all entries with a
creation time of 9:25:19 PM:

delete ^(where=(_ctime_ = ’9:25:19pm’t));
run;

LABEL
is the label of the current entry.

Example: The following LIST statement lists all tables containing the label
’Type III Model’ within the GLM procedure:

list glm(where=(_type_ = ’table’ _label_ ? ’Type III Model’));
run;

LABELPATH
is the path to the label of the current entry. Document label paths are formed
by concatenating the labels and sequence numbers, and then separating them
with the forward slash (/) symbol. Document label paths are similar to the
label paths specified by the ODS TRACE statement.

For example, if the ODS TRACE label path is:

’The Univariate Procedure’.’Normal_x’.’Histogram 1’

The corresponding document label path is:

’The Univariate Procedure’#1\’Normal_x’#1\’Histogram 1’#1

Note that in document label paths, the instances of ’.’ are replaced with ’\’.

Example: The following LIST statement lists all items containing “Fit
Statistics” in the label path.

list gml(where=(_labelpath_ ? "Fit Statistics"))/levels=all;
run;

See also: “ODS TRACE Statement” on page 317

MDATE
is the modification date of the current entry.

Example: The following MOVE TO statement moves all entries of the type
’Graph’ with a modification date of 16JUL2004 to the Monthly directory of
WORK.MyDoc:

The DOCUMENT Procedure � Using WHERE Expressions with the DOCUMENT Procedure 363

move ^(where=(_type_ = ’Graph’ and _mdate_ = ’16JUL2004’d)) to
\work.mydoc\monthly;

run;

MDATETIME
is the modification datetime of the current entry.

Example: The following REPLAY statement replays all entries with a
modification datetime of May 1, 2003, at 9:30:

replay ^(where=(_mdatetime_ = ’01may04:9:30:00’dt));
run;

MTIME
is the modification time of the current entry.

Example: The following COPY TO statement copies all entries with a
modification time of 9:25:19 PM to the Monthly directory of WORK.MyDoc:

copy ^(where=(_mtime_ = ’9:25:19pm’t)) to \work.mydoc\monthly;
run;

NAME
is the name of the current entry.

Example: The following DELETE statement deletes all entries that contain
the name “stemleng” within the GLM procedure:

delete glm(where=(_name_ ? ’stemleng’));

PATH
is the path of the current entry.

Example: The following LIST statement lists all entries with a path
containing the substring ’Anova’ at all levels of the current directory:

list ^(where=(_path_ ? ’Anova’));
run;

SEQNO
is the sequence number of the current entry.

Example: The following REPLAY statement replays all entries that have a
sequence number of 2 in the GLM procedure:

replay glm(where=(_seqno_ = 2));

See also: “Understanding Sequence Numbers” on page 366

TYPE
is the type of the current entry.

Example: The following MOVE TO statement moves all entries of the type
’Graph’ with a creation date of July 16, 2004, to the Monthly directory of
WORK.MyDoc:

move ^(where=(_type_ = ’Graph’ and _cdate_ = ’16JUL2004’d)) to
\work.mydoc\monthly;

run;

variable- name
is the name of a BY variable.

Example: The following MOVE TO statement moves all entries where the
value of the variable Gender is ’F’ to the Monthly directory of
WORK.MyDoc:

364 Concepts: DOCUMENT Procedure � Chapter 6

move ^(where=(gender=’F’)) to \work.mydoc\monthly;
run;

operator
compares one variable with a value or another variable. operator can be AND, OR
NOT, OR, AND NOT, or a comparison operator.

Table 6.2 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Requirement: Enclose where-expression in quotation marks.
See also: You can use any expression that can be used in the WHERE= data set

option. For information on expressions that you can use in the WHERE= data set
option, see the WHERE= data set option in SAS Language Reference: Dictionary
and “WHERE-Expression Processing” in SAS Language Reference: Concepts.

Concepts: DOCUMENT Procedure

About ODS Documents

Definition
An ODS document is a hierarchical file of output objects that is created from a

procedure or data query. The output objects are in unformatted form, and they are
stored in a SAS item store. The hierarchy is controlled by the internal logic of the
procedure or data query.

Items Included in an ODS Document
In an ODS document, each level of the hierarchical file represents a path which

refers to the location of a file, link, or output object. An output object can be one of the
following:

� table
� graph
� equation
� note

The DOCUMENT Procedure � Understanding an ODS Document Path 365

Items Not Included in an ODS Document
An ODS document does not store the following items:
� SAS logs
� SAS system options
� procedure options
� ODS options
� SAS/GRAPH options

� SAS/GRAPH external graph titles
� GRSEGs (references to GRSEGs, but not GRSEGs themselves, are stored)

ODS Document Persistence
An ODS document is a member of a SAS library. Therefore, you can browse, edit,

and replay the output contained in the ODS document to any ODS destination without
rerunning the SAS programs that created the initial output. An ODS document persists
in the SAS System until the document, or the SAS library containing the document, is
deleted. Thus an ODS document that was created in the SASUSER library, or in
another permanent SAS library, can persist indefinitely because it is considered a
permanent archive of SAS procedure output. However, an ODS document that is
created in the WORK library does not persist longer than the SAS session that created
it. For information about SAS libraries, see SAS Language Reference: Concepts.

Understanding an ODS Document Path

Definition of ODS Document Path
Because an ODS document is stored as an item store, this file format enables client

applications to define a “hierarchal file system within a file.” This is similar to a
directory system in a Windows operating environment, or a partitioned data set in a
mainframe operating environment. Therefore, an ODS document path means the
location of an entry.

Entry Names
Entry names follow these rules:
� must be alphanumeric

� must begin with an alphabetical character
� can contain underscores
� can have no more than 32 characters
� are preserved with casing (uppercase, lowercase, or mixed case) that is specified in

the operating environment
� can have labels which are no more than 256 characters

Entries are inserted into an ODS document in the following three ways:
� ordered by insertion, which is the default order
� ordered by ascending date-and-time stamp
� ordered alphabetically

366 Understanding Sequence Numbers � Chapter 6

Understanding Sequence Numbers
Entry names are not required to be unique within an ODS document. However, they

are uniquely identifiable because they contain sequence numbers. Every entry in an
ODS document, except for the root file location, has a sequence number. A sequence
number is a positive integer that is unique with respect to the name of the entry within
the same file location level. Entries are assigned sequence numbers according to the
sequence in which they are added to a file location. For example, the first entry myname
is assigned a sequence number 1, myname#1. The second entry myname is assigned a
sequence number 2, myname#2. Sequence numbers are never reassigned, unless all
entries with the same name are deleted. In this case, the sequence numbers are reset
to an initial number of 1.

ODS Documents and Base SAS Procedures
You can create an ODS document from almost any Base SAS procedure. The PRINT,

REPORT, and TABULATE procedures use table templates that are created by the user,
and not defined by a template in ODS. These procedures use custom table templates,
custom data components, and custom formats for their output objects. Nevertheless, the
ODS document and all of its features are supported for the TABULATE and REPORT
procedures. ODS documents do not support some features of PROC PRINT. For
example, BY group processing in the PRINT procedure is not supported.

Getting Familiar with Output Objects
An output object is one of the following:

� equation

� graph

� note

� table

Output objects have associated information and attributes. Some or all of these
attributes pertain to output objects.

after-note is the note assigned to the output object by the procedure that
produced the object. This note is displayed every time the output
object is displayed. After-notes display after the output object.

before-note is the note assigned to the output object by the procedure that
produced the object. This note is displayed every time the output
object is displayed. Before-notes display before the output object.

footnote is created by the FOOTNOTE statement and is displayed when the
output object is created.

page break causes a page break prior to displaying the output object and any
associated titles and notes.

subtitle is the title that is assigned to the output object by the procedure
that produced the output object. This title is displayed every time a
new page of output is started.

title is created by the TITLE statement and is displayed when the output
object is created.

The DOCUMENT Procedure � ODS Documents in the Documents Window 367

Here is the order in which the attributes of an output object are displayed:
1 page break
2 titles
3 subtitles
4 before-notes
5 output object
6 after-notes
7 footnotes

Understanding How ODS Documents Interact across Operating
Environments

Compatibility across SAS Versions
An ODS document that is created in the current version of SAS is compatible with

later versions of SAS. In most cases, an ODS document created in a later version of
SAS will still be compatible with an earlier version of SAS.

ODS documents are not portable across operating environments. For example, an
ODS document created in a Windows operating environment cannot be used in a
mainframe operating environment.

Results: DOCUMENT Procedure

ODS Documents in the Documents Window

Understanding When to Use the Documents Window
The Documents window displays ODS documents in a hierarchical tree structure.

The Documents window does the following:
� displays all ODS documents, including ODS documents stored in SAS libraries
� organizes, manages, and customizes the layout of the entries contained in ODS

documents
� displays the property information of ODS documents
� replays entries
� renames, copies, moves, or deletes ODS documents
� creates shortcuts to ODS documents

For a comparison of the Documents window to the Results Window, see “Comparisons
between the Documents Window and the Results Window” on page 371.

Viewing an ODS Document in the Documents Window
To view the Documents window, submit this command in the command bar:

368 ODS Documents in the Documents Window � Chapter 6

odsdocuments

This display shows the Documents window that contains the ODS document named
Sasuser.Univ. In the display, notice that Sasuser.Univ contains several file location
levels. The Exponential_x file location contains the Exp output object. When you
double-click an output object, such as Exp, that output object is replayed in the Results
window to all open destinations.

Display 6.1 Documents Window

A Documents window contains these items:

entry is an output object, link, or file location.

Note: Only output objects of the type Document are displayed in
the Documents window. �

file location is a grouping of ODS document entries.

link is a symbolic link from one specified output object to another output
object.

Note: Within the Documents window, a link is called a shortcut. �

ODS document is the name of an ODS document.

ODS Document Icon
The Results window and the Documents window use this icon to indicate an ODS

document output object:

Display 6.2 ODS Document Icon

The DOCUMENT Procedure � ODS Documents in the Documents Window 369

Operating Environment Information: The ODS Documents window on z/OS has the
same functionality, but does not use graphical icons. �

Using the Documents Window Pop-up Menu
The Documents window has a pop-up menu with features that are also available

through batch processing. To view the Documents window pop-up menu, follow these
steps:

1 Type odsdocuments in the command bar. The Documents window appears.

2 Right-click any entry in the Documents window. The pop-up menu appears.

Display 6.3 Pop-up Menu for the Documents Window

The following table describes the pop-up menu item features. The availability of each
pop-up menu item depends on which entry you select in the Documents window.

Table 6.3 Tasks You Can Do with the Documents Window Pop-up Menu *

Task Menu Item

Open the selected object in the Results Viewer Open

Select a new ODS destination output type Open As

Open a window in tree view and list view Explore From Here

Create a new folder New Folder

Remove the selected entry from the Documents
window

Cut

Copy the selected entry to system memory Copy

Paste the copied entry to the selected location Paste

Create a shortcut to the entry Create Shortcut

Delete the selected entry Delete

370 ODS Documents in the Results Window � Chapter 6

Task Menu Item

Rename the selected entry Rename

Show the entries that were previously excluded Show Excluded

Remove from the tree, but do not delete the
selected entry

Exclude

Expand all the levels of the tree Expand All

Collapse all the levels in the tree Collapse All

Replay the selected entry to all open ODS
destinations

Replay

Print the selected entry Print

Display the properties of the selected entry Properties

* Available menu choices vary, depending on the selected entry.

ODS Documents in the Results Window

Understanding When to Use the Results Window
Although the Results window (like the Documents window) lists ODS documents, the

Results window also lists other types of output objects, such as PDF and HTML. The
Results window displays the following information:

� the output object types that are created when you run a SAS program in the
current SAS session. SAS creates an output object for each ODS destination that
was open at the time you executed a procedure during the current SAS session
only.

� the results after you create a new output object from the Documents window using
the Open As or Replay feature.

� the properties of an entry.

The results window also deletes or renames entries.
See “Comparisons between the Documents Window and the Results Window” on page

371.

Viewing Entries in the Results Window
To view the Results window, submit this command in the command bar:

odsresults

You can also view the Results window by selecting: View � Results
The following display shows the Results window with files and output objects. The

last file is Univariate:100 Obs Sampled from a Normal Distribution. Under this
file is the same output object sent to three different destinations. Each output object is
named Normal, and the destinations are LISTING, HTML, and DOCUMENT.

The DOCUMENT Procedure � Comparisons between the Documents Window and the Results Window 371

Display 6.4 Results Window Showing the Output Object Normal in Three Formats

For more information about using the Results window, make the Results window the
active window and select Help � Using This Window.

Comparisons between the Documents Window and the Results Window

Table 6.4 Tasks That You Can and Cannot Do in the Documents Window and the
Results Window

Task Documents window Results window

View all SAS documents including
those stored in SAS libraries

Yes Yes

View output object types that are
created when you run a SAS
program, such as HTML, PDF, and
SAS document

No Yes

View the results after you create a
new output object

Yes Yes

Customize the layout of output
objects

Yes No

View the property information of
SAS documents

Yes Yes

View the properties of an output
object

No Yes

Delete or rename entries Yes Yes

Copy or move SAS documents Yes No

372 Viewing the Properties of an Entry � Chapter 6

Task Documents window Results window

Create shortcuts to SAS documents Yes No

Drag and drop output objects Yes No

Viewing the Properties of an Entry
Any entry that you select in either the Results window or the Documents window has

an associated Properties window. To view the properties of an entry, follow these steps:
1 Select an entry from either the Results Window or the Documents window.
2 Right-click the entry. A pop-up menu appears.
3 Select Properties. The Properties window for the entry appears.

Display 6.5 Entry Properties Window

Items will vary, depending on the entry that you select in the Documents or Results
windows. The Properties window for an ODS document output object can contain these
items:

Created is the date that the entry was created.

Document is the SAS filename where the entry is located. The filename is in
the form of libref.filename

Document path the location of the entry in the tree structure. If you move the entry
to another location in the Documents window, then this path will
change.

Modified is the date that the entry was modified.

Name is the name of the entry.

Path is the storage location inside the document of the entry.

Type is the classification of the entry.

Creating Shortcuts in the Documents Window
The Documents window pop-up menu provides you with a Create Shortcut option.

Shortcut links are useful when you are creating output that uses the same entry in

The DOCUMENT Procedure � Comparisons between the Documents Window and the Document Procedure 373

more than one place. Instead of copying the entry to each location, consider using a
shortcut. Shortcuts have these advantages:

� Because a shortcut is a link to the original entry, any changes that you make to
the original entry will appear when you select the shortcut.

� A shortcut uses fewer computer resources.

To create a shortcut, do this:

1 Right-click an entry in the Documents window. A pop-up menu appears.

2 Select Create Shortcut. A new shortcut entry appears below the selected entry.

Comparisons between the Documents Window and the Document
Procedure

Table 6.5 Tasks That You Can and Cannot Do in the Documents Window and with
the DOCUMENT Procedure

Task Documents Window Document Procedure

Create a new ODS document Yes Yes

Create a new folder Yes Yes

Import a data set or graph
segment

No Yes

Copy folders or output objects Yes Yes

Move folders or output objects Yes Yes

Create a symbolic link from
one output object to another
output object

Yes Yes

Delete a document, folder, or
output object

Yes Yes

Rename a folder or output
object

Yes Yes

Assign a description to a folder
or output object

Yes Yes

Prevent entries from being
displayed when they are
replayed

Yes Yes

Show entries that are excluded Yes Yes

Enable hidden entries to be
displayed

Yes Yes

Replay to the specified open
ODS destinations

Yes Yes

Determine the path
specification

Yes Yes

Set or display the current
directory

No Yes

374 Examples: DOCUMENT Procedure � Chapter 6

Task Documents Window Document Procedure

Create or delete a page break No Yes

Create or modify title lines No Yes

Create or modify subtitles No Yes

Create of modify the lines of
text before output objects

No Yes

Create or modify the lines of
text after output objects

No Yes

Create or modify footnote lines No Yes

Create text strings in the
current folder

No Yes

Examples: DOCUMENT Procedure

Example 1: Navigating the File Location and Listing the Entries

Procedure features:
ODS DOCUMENT statement option:

NAME=
DOC statement option:

NAME=
LIST statement options:

entry
LEVELS=
DETAILS

DIR statement option:
path

ODS destinations:
DOCUMENT
LISTING
HTML

Procedure output:
PROC DOCUMENT

Program Description
This example shows you how to do these tasks:
� name an ODS document
� see what ODS documents exist
� open a document for browsing or editing purposes

The DOCUMENT Procedure � Program 375

� list one or more entries
� change file locations

Program

Set the SAS system options. The NODATE option suppresses the display of the date and
time in the output. The NONUMBER option suppresses the printing of page numbers.

options nodate nonumber;

Create the DistrData data set. The DistrData data set contains the statistical information
that PROC UNIVARIATE uses to create the histograms.

data distrdata;
drop n;
label Normal_x=’Normal Random Variable’

Exponential_x=’Exponential Random Variable’;
do n=1 to 100;

Normal_x=10*rannor(53124)+50;
Exponential_x=ranexp(18746363);
output;

end;
run;

Create the ODS document Univ and open the DOCUMENT destination. The ODS
DOCUMENT statement opens the DOCUMENT destination. The NAME= option assigns the
name Univ to the ODS document that contains the information from this PROC UNIVARIATE
program. Note that by default Univ will be created in the WORK library. Assign a libref to
create Univ in a permanent library.

ods document name=univ;

Create a normal distribution histogram. The TITLE statement specifies the title of the
normal distribution histogram. The PROC UNIVARIATE step creates a normal distribution
histogram from the DistrData data set.

title ’100 Obs Sampled from a Normal Distribution’;
proc univariate data=distrdata noprint;
var Normal_x;

histogram Normal_x /normal(noprint) cbarline=grey name=’normal’;
run;

Create an exponential distribution histogram. The TITLE statement specifies the title of
the exponential histogram. The PROC UNIVARIATE step creates an exponential distribution
histogram from the DistrData data set.

title ’100 Obs Sampled from an Exponential Distribution’;

proc univariate data=distrdata noprint;
var Exponential_x;

histogram /exp(fill l=3) cfill=yellow midpoints=.05 to 5.55 by .25
name=’exp’;

run;

376 Output � Chapter 6

Close the DOCUMENT destination. If the DOCUMENT destination is not closed, no
DOCUMENT procedure output can be viewed.

ods document close;
title;

View the ODS documents, choose an ODS document, and list the entries of the opened
ODS document. The DOC statement (with no arguments specified) prints a listing of all of the
available documents that are in the SAS System.

The DOC statement with the NAME= option specifies the current document, WORK.Univ. The
LIST statement with the LEVELS=ALL option lists detailed information on all levels of the
document WORK.Univ.

proc document;
doc;
doc name=univ;
list/levels=all;

Set the path to EXPONENTIAL, list the contents of the EXPONENTIAL file location,
select a table, and list the details of the table you selected. The DIR statement changes
the current file location to
univariate#2\exponential_x\fitteddistributions\exponential. The path
univariate#2\exponential_x\fitteddistributions\exponential was obtained from
the listing of the WORK.Univ document.

The LIST statement (with no arguments) lists the contents of EXPONENTIAL (see Display 6.8 on
page 377). The LIST FITQUANTILES\DETAILS statement specifies that ODS opens the
FitQuantiles table and lists its details (see Display 6.9 on page 377).

dir univariate#2\exponential_x\fitteddistributions\exponential;
list;
list fitquantiles/details;

run;

Terminate the DOCUMENT procedure. Specify the QUIT statement to terminate the
DOCUMENT procedure. If you omit QUIT, then you will not be able to view DOCUMENT
procedure output.

quit;

Output

Display 6.6 Current ODS Document in Output

The DOCUMENT Procedure � Output 377

Display 6.7 List of the Entries of the ODS Document WORK.Univ and the Properties of Those Entries

Display 6.8 List of the Entries of the Exponential#1 Entry and the Properties of Those Entries

Display 6.9 Details of the FitQuantiles#1 Table

378 Example 2: Opening and Listing ODS Documents � Chapter 6

Example 2: Opening and Listing ODS Documents
Procedure features:

PROC DOCUMENT statement option:
NAME=

DIR statement
LIST statement options:

DETAILS
LEVELS
where-expression

REPLAY statement
ODS destinations:

DOCUMENT
LISTING
PDF

Procedure output:
PROC DOCUMENT
PROC UNIVARIATE

Data set: See “DistrData on page 375”
ODS document: See “Creating the Univ ODS Document” on page 872

Program Description
This example shows you how to do these tasks:
� open an ODS document
� replay a table and send the output to the LISTING and PDF destinations
� list specific entries in an ODS document by using WHERE expressions
� change file locations
� list the details of a specified entry
� replay an ODS document to a PDF file

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. The NONUMBER option suppresses the printing of page numbers.

options nodate nonumber;

Open the ODS document WORK.Univ. The PROC DOCUMENT statement with the NAME=
option specified opens the ODS document WORK.Univ, which was created in Example 1 on page
374, for updates.

proc document name=univ;

Specify that you want to replay the output to a PDF file. The ODS PDF statement opens
the PRINTER destination and replays the histogram to the PDF destination. The FILE=
statement sends all output objects to the external file that you specify.

ods pdf file= ’your_file.pdf’;

The DOCUMENT Procedure � Program 379

List the entries that are associated with the current document and replay a histogram.

By using a WHERE expression, the LIST statement lists only entries that are graphs or tables.
The LEVELS=ALL option specifies that detailed information on all levels be shown. The ^
symbol represents the current path.

The REPLAY statement replays the Normal#1 entry to all open ODS destinations.

list ^ (where=(_type_ = ’Graph’ or _type_ = ’Table’)) /levels=all;
replay univariate#1\Normal_x#1\Normal#1;

Change the current file location, list the details of the FitQuantiles table, and replay
the FitQuantiles table. The DIR statement changes the current file location to
univariate#2\exponential_x\fitteddistributions\exponential#1.

The LIST statement with the DETAILS option specifies the listing of the properties of the entry
FitQuantiles table.

The REPLAY statement replays FITQUANTILES to open destinations.

dir univariate#2\exponential_x\fitteddistributions\exponential#1;
list fitquantiles/details;
replay fitquantiles;

run;

Terminate the DOCUMENT procedure and close the PDF destination. Specify the QUIT
statement to terminate the DOCUMENT procedure. If you omit QUIT, then you will not be able
to view DOCUMENT procedure output. The ODS PDF CLOSE statement closes the PDF
destination and all the files that are associated with it. If you do not close the destination, then
you will not be able to view the files.

quit;
ods pdf close;

380 Output � Chapter 6

Output

Display 6.10 List of the Graphs and Tables Found in WORK.Univ, Viewed in Acrobat Reader

This display is page 1 of the ODS document WORK.Univ that was sent to the PDF destination.
You can browse the output by clicking the bookmarks.

Display 6.11 Replayed Normal Distribution Histogram

The DOCUMENT Procedure � Example 3: Managing Entries 381

Display 6.12 Details of the FitQuantiles#1 Table

Display 6.13 Replayed FitQuantiles#1 Table

Example 3: Managing Entries
Procedure features:

PROC DOCUMENT statement option:
NAME=

DIR statement

382 Program Description � Chapter 6

LIST statement option:
LEVELS=

NOTE statement
OBANOTE statement
OBBNOTE statement
OBFOOTN statement
OBPAGE statement
OBSTITLE statement
OBTITLE statement
REPLAY statement

ODS destinations:
DOCUMENT
HTML
LISTING

Procedure output:
PROC CONTENTS

Program Description
This example shows you how to do these tasks:
� generate PROC CONTENTS output to the DOCUMENT destination
� change the title and footnote of the output
� add object footer and object heading notes to the output
� change the subtitle of the output
� add a note to the document
� add a page break to the output

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. The PAGENO= option specifies the starting page number.

options nodate pageno=1;

Close the LISTING destination and open the DOCUMENT destination. The NAME=
option creates an ODS document named Class.

ods listing close;
ods document name=class;

Specify a global title and footnote. The TITLE statement creates a title that is used until
you change it with another statement. The FOOTNOTE statement creates a footnote that is
used until you change it with another statement.

title ’Title Specified by the Global TITLE Statement’;
footnote ’Footnote Specified by the Global FOOTNOTE Statement’;

The DOCUMENT Procedure � Program 383

View the contents of the SAS data set. The CONTENTS procedure shows the contents of
the SAS data set SASHELP.Class.

proc contents data=sashelp.class;
run;

Close the DOCUMENT destination and create LISTING output. The entries in the ODS
document Class are used in the remainder of this example. The ODS LISTING statement opens
the LISTING destination and creates listing output.

ods document close;
ods listing;

Change the global title.

� The OBTITLE statement assigns a new title to the Attributes#1 entry. See Display 6.14 on
page 386

� The NAME= option specifies the current ODS document.

� The LIST statement with the LEVELS=ALL option shows a list of entries in the Class
document. Note that PROC DOCUMENT is still running after the RUN statement executes.

� The DIR statement changes the current path to \Contents#1\DataSet#1.

� The QUIT statement terminates PROC DOCUMENT.

proc document name=class;
list /levels=all;

run;
dir \Contents#1\DataSet#1;

run;
obtitle Attributes#1 ’Title Specified by the OBTITLE Statement’;

run;
quit;

Add an object heading note to the output.

� The OBBNOTE statement assigns an object heading note to the Attributes#1 entry. See
Display 6.14 on page 386

� The NAME= option specifies the current ODS document.

� The DIR statement changes the current file location to \Contents#1\DataSet#1.

� The QUIT statement terminates PROC DOCUMENT.

proc document name=class;
dir \Contents#1\DataSet#1;

run;
obbnote Attributes#1 ’Object Heading Note Specified by the OBBNOTE Statement’;

run;
quit;

384 Program � Chapter 6

Change the global footnote.
� The OBFOOTN statement assigns a new footnote to the Variables#1 entry.

� The NAME= option specifies the current ODS document.

� The DIR statement changes the current file location to \Contents#1\DataSet#1.
� The QUIT statement terminates PROC DOCUMENT.

proc document name=class;
dir \Contents#1\DataSet#1;

run;
obfootn Variables#1 ’Change the Global Footnote with the OBFOOTN Statement’;

run;
quit;

Add an object footer note
� The OBANOTE statement assigns an object footer note to the Attributes#1 entry. See Display

6.14 on page 386

� The NAME= option specifies the current ODS document.

� The DIR statement changes the current file location to \Contents#1\DataSet#1.
� The QUIT statement terminates PROC DOCUMENT.

proc document name=class;
dir \Contents#1\DataSet#1;

run;
obanote Attributes#1 ’Object Footer Note Specified by the OBANOTE Statement’;

run;
quit;

Change the subtitle of the output.
� The OBSTITLE statement changes the subtitle. The subtitle identifies the procedure that

produced the output. See Display 6.14 on page 386

� The NAME= option specifies the current ODS document.

� The DIR statement changes the current file location to \Contents#1\DataSet#1.
� The QUIT statement terminates PROC DOCUMENT.

proc document name=class;
dir \Contents#1\DataSet#1;

run;
obstitle Attributes#1 ’Subtitle Specified by the OBSTITLE Statement’;

run;
quit;

Add a note to the document.
� The NOTE statement adds a note object named ADDNOTE to the ODS document.
� The NAME= option specifies the current ODS document.

� The LIST statement with the LEVELS=ALL option shows a list of entries in the Class
document.

� The QUIT statement terminates PROC DOCUMENT.

proc document name=class;
note addnote ’Note added to the document’;

The DOCUMENT Procedure � Program 385

list /levels=all;
run;
quit;

Add a page break to the output, create HTML output, and replay Variables#1.

� The ODS HTML statement opens the HTML destination and creates HTML 4.0 output.

� The STYLE= option specifies that ODS use the style D3D.

� The OBPAGE statement inserts a page break.

� The NAME= option specifies the current ODS document.

� The REPLAY statement replays the Variables#1 object and generates output for all open
ODS destinations.

� The QUIT statement terminates PROC DOCUMENT.

ods html file=’your_file.html’ style=d3d;
proc document name=class;

obpage \Contents#1\DataSet#1\Variables#1;
replay;

run;
quit;

Close the HTML and LISTING destinations. The ODS _ALL_ CLOSE statement closes all
open ODS output destinations so that you can view the output.

ods _all_ close;

386 Output � Chapter 6

Output

Display 6.14 Global Title, Global Footnote, Subtitle, Object Heading Note, Object Footer Note, and Note

The DOCUMENT Procedure � Program 387

Example 4: Listing BY-Group Entries
Procedure features:

LIST statement options:
BYGROUPS
LEVELS
LIST

PROC DOCUMENT statement option:
NAME=

OBTEMPL statement
ODS destinations:

DOCUMENT
LISTING

Procedure output:
PROC DOCUMENT
PROC STANDARD

Program Description
This example shows you how to do these tasks:
� generate PROC STANDARD output to the DOCUMENT destination
� view the table template that describes how to display the PROC STANDARD

output
� create an ODS document
� open an ODS document
� list the BY group entries in an ODS document

Program

Set the SAS system options, create the ODS document MyDocument, and open the
DOCUMENT destination. The NODATE option suppresses the display of the date and time in
the output. The NONUMBER option suppresses the printing of page numbers. The ODS
DOCUMENT statement with the NAME= option specified opens the ODS document
MyDocument and provides Write access as well as Read access. Note that by default
MyDocument will be created in the WORK library. Assign a libref to create MyDocument in a
permanent library.

options nodate nonumber;
ods document name=mydocument(write);

Create and sort the Score data set. This data set contains test scores for students who took
two tests and a final exam. The SORT procedure sorts the data set by the BY variables Section
and Student.

data score;
input Student Section Test1-Test3;
stest1=test1;
stest2=test2;
stest3=test3;

388 Program � Chapter 6

datalines;
238900545 1 94 91 87
254701167 1 95 96 97
238806445 2 91 86 94
999002527 2 80 76 78
263924860 1 92 40 85
459700886 2 75 76 80
416724915 2 66 69 72
999001230 1 82 84 80
242760674 1 75 76 70
990001252 2 51 66 91
;
run;

proc sort data=score;
by Section Student;

run;

Generate the standardized data and create the output data set StndScore. PROC
STANDARD uses a mean of 80 and a standard deviation of 5 to standardize the values. OUT=
identifies StndScore as the data set to contain the standardized values. The PRINT option
prints the statistics. The ODS LISTING statement closes the listing output so that no output
will be viewed.

ods listing close;
proc standard mean=80 std=5 out=StndScore print;

Create the standardized values for each BY group and specify the variables to
standardize. The BY statement standardizes the values separately by section number and
student id. The VAR statement specifies the variables to standardize and their order in the
output.

by section student;
var stest1-stest3;

run;

Close the DOCUMENT destination. If the DOCUMENT destination is not closed, no
DOCUMENT procedure output can be viewed.

ods document close;

The DOCUMENT Procedure � Output 389

Open the ODS document MyDocument, list the entries, and view the table template
that determines how the PROC STANDARD output will display. The PROC DOCUMENT
statement with the NAME= option specified opens the ODS document WORK.MyDocument. The
LIST statement with the LEVELS=ALL option lists detailed information on all levels of the
document WORK.MyDocument. The BYGROUPS option creates columns in the list statement
output for BY group information. The names of the columns with the BY group information are
the names of the BY variables, Section and Student. To see what the output will look like if you
omit the BYGROUPS option, see Display 6.15 on page 389. The OBTEMPL statement writes
the table template that is associated with the output object Standard#1 to the listing
destination. The ODS DOCUMENT CLOSE statement closes the DOCUMENT destination. If
the DOCUMENT destination is not closed, no DOCUMENT procedure output can be viewed.

Note: If you omit LEVELS=ALL, then no entry list will be created. This is because
ODS cannot find any BY groups at the directory level and only BY groups are listed
when the BYGROUPS option is specified �

ods listing;
proc document name=mydocument;

list/ levels=all bygroups;
obtempl \Standard#1\ByGroup1#1\Standard#1;

run;

Terminate the DOCUMENT procedure. Specify the QUIT statement to terminate the
DOCUMENT procedure. If you omit QUIT, then you will not be able to view DOCUMENT
procedure output.

quit;

Output

Display 6.15 Listing of WORK.MyDocument without the BYGROUPS Option Specified

Without the BYGROUPS option specified, there are only three columns for this output: Obs,
Path, and Type. All levels and all entries of WORK.MyDocument are displayed.

390 Output � Chapter 6

Display 6.16 Listing of WORK.MyDocument with the BYGROUPS Option Specified

With the BYGROUPS option specified there are now five columns. The additional columns,
named Section and Student, were created by the BYGROUPS option. The BY variable names
become the names of the columns. Only the entries containing BY group information are
displayed. The entries that are directories are not displayed because they do not contain any
actual BY group information.

The DOCUMENT Procedure � Output 391

Output 6.1 Listing View of the Table Template Associated with PROC STANDARD
Output

proc template;
define table Base.Standard;

notes "Table template for PROC Standard.";
column name mean std n label;

define name;
header = "Name";
varname = Name;
style = RowHeader;

end;

define mean;
header = "Mean";
format = D12.;
varname = Mean;

end;

define std;
header = "/Standard/Deviation";
format = D12.;
varname = stdDev;

end;

define n;
header = "N";
format = best.;

end;

define label;
header = "Label";
varname = Label;

end;
required_space = 3;
byline;
wrap;

end;
run;

392

393

P A R T5

The TEMPLATE Procedure

Chapter 7.TEMPLATE Procedure: Overview 395

Chapter 8.TEMPLATE Procedure: Managing Template Stores 407

Chapter 9.TEMPLATE Procedure: Creating Crosstabulation Table
Templates 429

Chapter 10.TEMPLATE Procedure: Creating ODS Graphics 483

Chapter 11.TEMPLATE Procedure: Creating a Style Template
(Definition) 487

Chapter 12.TEMPLATE Procedure: Creating Tabular Output 593

Chapter 13.TEMPLATE Procedure: Creating Markup Language
Tagsets 795

394

395

C H A P T E R

7
TEMPLATE Procedure: Overview

Introduction to the TEMPLATE Procedure 395
Using the TEMPLATE Procedure 395

What Can You Do with the TEMPLATE Procedure? 396

The Backward Compatibility of ODS Templates 401

Terminology: TEMPLATE Procedure 402

PROC TEMPLATE Statements by Category 403
Syntax: TEMPLATE Procedure 404

Where to Go from Here 406

Introduction to the TEMPLATE Procedure

Using the TEMPLATE Procedure
The TEMPLATE procedure enables you to customize the appearance of your SAS

output. For example, you can create, extend, or modify existing templates for various
types of output:

� styles

� tables

� crosstabulation tables

� columns

� headers

� footers

� tagsets

� ODS Graphics

ODS then uses these templates to produce formatted output.
You can also use the TEMPLATE procedure to navigate and manage the templates

stored in template stores. Here are some tasks that you can do with PROC TEMPLATE:

� edit an existing template

� create links to an existing template

� change the location where you write new templates

� search for existing templates

� view the source code of a template

396 What Can You Do with the TEMPLATE Procedure? � Chapter 7

What Can You Do with the TEMPLATE Procedure?

Modify a Table Template That a SAS Procedure Uses
This output shows the use of a customized table template for the Moments output

object from PROC UNIVARIATE. The program used to create the modified table
template does the following:

� creates and edits a copy of the default table template
� edits a header within the table template
� sets column attributes to enhance the appearance of both the HTML and the

Listing output

Output 7.1 Listing Output (Customized Moments Table) from PROC UNIVARIATE

Custom Moments Table 1

The UNIVARIATE Procedure
Variable: CityPop_90 (1990 metropolitan pop in millions)

Moments

N 51 Sum Weights 51

Mean 3.87701961 Sum Observations 197.728

Std Deviation 5.16465302 Variance 26.6736408

Skewness 2.87109259 Kurtosis 10.537867

Uncorrected SS 2100.27737 Corrected SS 1333.68204

Coeff Variation 133.21194 Std Error Mean 0.72319608

TEMPLATE Procedure: Overview � What Can You Do with the TEMPLATE Procedure? 397

Display 7.1 Customized HTML Output (Customized Moments Table) from PROC UNIVARIATE (Viewed with
Microsoft Internet Explorer)

Modify a Style
When you are working with styles (definitions), you are more likely to modify a style

that SAS supplies than to write a completely new style. The following output uses the
Styles.Default template that SAS provides, but includes changes made to the style in
order to customize the output’s appearance. Display 7.2 on page 398 shows changes
made to both the contents file and the body file in the HTML output. In the contents
file, the modified style makes changes to the following:

� the text of the header and the text that identifies the procedure that produced the
output

� the colors for some parts of the text
� the font size for some parts of the text
� the spacing in the list of entries in the table of contents

In the body file, the modified style makes changes to the following:
� two of the colors in the color list. One of these colors is used as the foreground color

for the table of contents, the byline, and column headings. The other is used for
the foreground of many parts of the body file, including SAS titles and footnotes.

� the font size for titles and footnotes
� the font style for headers
� the presentation of the data in the table by changing attributes like cellspacing,

rules, and borderwidth

398 What Can You Do with the TEMPLATE Procedure? � Chapter 7

Display 7.2 HTML Output (Viewed with Microsoft Internet Explorer)

Create Your Own Tagset
Tagsets are used to create custom markup. You can create your own tagsets, extend

existing tagsets, or modify a tagset that SAS supplies. This display shows the results
from a new tagset TAGSET.MYTAGS.

TEMPLATE Procedure: Overview � What Can You Do with the TEMPLATE Procedure? 399

Display 7.3 MYTAGS.CHTML Output (Viewed with Microsoft Internet Explorer)

To see the customized CHTML tagset, view the source from your web browser:

� Select View � Source from your browser’s toolbar.

Create a Template-Based Graph
STATGRAPH templates are used to create output called ODS Graphics. For complete

information see SAS/GRAPH: Graph Template Language User’s Guide.
The following code creates the STATGRAPH template MyGraphs.Regplot, which

creates the following graph.

400 What Can You Do with the TEMPLATE Procedure? � Chapter 7

proc template;
define statgraph mygraphs.regplot;
begingraph;

entrytitle "Regression Plot";
layout overlay;

modelband "mean";
scatterplot x=height y=weight;

regressionplot x=height y=weight / clm="mean";
endlayout;

endgraph;
end;
run;

ods listing style=analysis;
ods graphics / reset imagename="reg" width=500px;

proc sgrender data=sashelp.class template=mygraphs.regplot;
run;

Display 7.4 Graph Created with a STATGRAPH Template

The following display shows a scatter plot with an overlaid regression line and confidence limits
of the mean for the HEIGHT and WEIGHT variables of a data set.

Modify a Crosstabulation Table
The TEMPLATE procedure enables you to customize the appearance of

crosstabulation (contingency) tables that are created with the FREQ procedure. By
default, crosstabulation tables are formatted according to the CrossTabFreqs template
that SAS provides. However, you can create a customized CrossTabFreqs table template
by using the TEMPLATE procedure with the DEFINE CROSSTABS statement.

This output shows the use of a customized crosstabulation table template for the
CrossTabFreqs table. The program used to create the modified crosstabulation table
template does the following:

� modifies table regions

TEMPLATE Procedure: Overview � The Backward Compatibility of ODS Templates 401

� customizes legend text
� modifies headers and footers

� modifies variable labels used in headers

� customizes styles for cellvalues

The Backward Compatibility of ODS Templates
ODS templates are not binary compatible between SAS versions. However, with

some templates, you can use a template created with an earlier version of SAS with a
later version of SAS. The following table lists the ODS templates and whether they are
forward or backward compatible between SAS versions.

Table 7.1 Compatibility of ODS Templates between SAS Versions

ODS Template Backward Compatible Forward Compatible

table no yes

crosstabs no yes

style no yes *

tagset no no

ODS Graphics no no

* Styles that use inheritance may not be compatible forwards or backwards. See
“Inheritance Compatibility across Versions” on page 548 for more information.

If you would like to use a template created with a later version of SAS with an
earlier version of SAS, you might be able to extract the template source and use it to
compile the template in the earlier release.

402 Terminology: TEMPLATE Procedure � Chapter 7

Terminology: TEMPLATE Procedure
These terms frequently appear in discussions of PROC TEMPLATE:

aggregate storage location
is a location on an operating system that can contain a group of distinct files.
Different host operating systems call an aggregate grouping of files different
names, such as a directory, a maclib, or a partitioned data set. The standard form
for referencing an aggregate storage location from within SAS is fileref(name),
where fileref is the entire aggregate and (name) is a specific file or member of that
aggregate.

graph template
describes the contents and structure of a single-cell or multi-cell graph.

item store
is a member of a SAS library. An item store is a hierarchical file system that is
implemented as a single physical file. An item store can contain directories and
files (called items) similar to the file systems in the UNIX and Windows operating
environments. An item store is referenced by a two-level name: a libref and the
name of the item store in the SAS library that the libref references. For example,
the SAS registry is stored in two items stores, SASUSER.REGISTRY and
SASHELP.REGISTRY.

template store
is an item store that stores templates that were created by the TEMPLATE
procedure. Templates that SAS provides are in the item store
SASHELP.TMPLMST. You can store templates that you create in any template
store where you have write access.

Note: A template store can contain multiple levels known as directories. When
you specify a template store in the ODS PATH statement, however, you specify a
two-level name that includes a libref and the name of a template store in the SAS
library that the libref references. �

style (template)
describes how to display the presentation aspects (color, font face, font size, and so
on) of your SAS output. A style determines the overall appearance of the
documents that use it. Each style consists of style elements.

style element
is a collection of style attributes that apply to a particular part of the output. For
example, a style element can contain instructions for the presentation of column
headings or for the presentation of the data inside cells. Style elements can also
specify default colors and fonts for output that uses the style. Each style attribute
specifies a value for one aspect of the presentation. For example, the
BACKGROUND= attribute specifies the color for the background of an HTML
table, and the FONTSTYLE= attribute specifies whether to use a Roman, a slant,
or an italic font.

table template
describes how to display the output for a tabular output object. (Most ODS output
is tabular.) A table template determines the order of table headers and footers, the
order of columns, and the overall appearance of the output object that uses it.
Each table template contains or references table elements.

table element
is a collection of attributes that apply to a particular column, header, or footer.
Typically, these attributes specify something about the data rather than about its

TEMPLATE Procedure: Overview � PROC TEMPLATE Statements by Category 403

presentation. For example, FORMAT= specifies the SAS format to use in a
column. However, some attributes describe presentation aspects of the data.

Note: You can also define table elements such as columns, headers, and footers
outside of a table template. Any table template can then reference these table
elements. For more information about defining columns, headers, and footers
outside of the table template, see Chapter 12, “TEMPLATE Procedure: Creating
Tabular Output,” on page 593. �

tagset
specifies instructions for creating a markup language for your SAS output. The
resulting output contains embedded instructions in order to define layout and
some content. Each tagset contains event templates and event attributes that
control the generation of the output. SAS provides tagsets for a variety of markup
languages. With the TEMPLATE procedure, you can modify any of these SAS
tagsets, or you can create your own tagsets.

event
specifies the text that the markup destination produces when the specified event
occurs. For example, the template of an event called ROW might specify to place
the appropriate tags for starting a row at the beginning of an event and the
appropriate tags for ending a row at the end of the event. SAS procedures that
generate ODS output use a standard set of events, which you can customize with
the TEMPLATE procedure.

PROC TEMPLATE Statements by Category

This table lists and describes the categories and statements used in the TEMPLATE
procedure.

Task Statements Category Statements Description

Navigate template
stores and manage
ODS templates

Template store DELETE Deletes the specified
template

LINK Creates a link to an existing
template

LIST Lists items in one or more
template stores

PATH Specifies the locations to
write to or read from when
creating or using PROC
TEMPLATE templates, and
the order in which to search
for them

SOURCE Writes the source code for
the specified template

TEST Tests the most recently
created template by binding
it to the specified data set

404 Syntax: TEMPLATE Procedure � Chapter 7

Task Statements Category Statements Description

Create or modify
ODS style

Style DEFINE
STYLE

Creates a style for any
destination that supports
the STYLE= option

Create and modify
ODS table, column,
header, and footer
templates

Tabular EDIT Edits an existing template

DEFINE
COLUMN

Creates a template for a
column

DEFINE
FOOTER

Creates a template for a
table footer

DEFINE
HEADER

Creates a template for a
header

DEFINE
TABLE

Creates a template for a
table

Create or modify
markup language
tagsets

Markup language tagsets DEFINE
TAGSET

Creates a template for a
tagset

Create or modify a
crosstabulation
table template

Tabular DEFINE
CROSSTABS

Creates a template for a
PROC FREQ
crosstabulation table

Create or modify a
graph template

Graphical DEFINE
STATGRAPH

Creates a template for a
graph

Syntax: TEMPLATE Procedure
PROC TEMPLATE;

DEFINE COLUMN column-path </ STORE=libref.template-store>;
<column-attribute-1; <...column-attribute-n;>>
statements
END;

DEFINE FOOTER footer-path </ STORE=libref.template-store>;
<footer-attribute-1; < ...footer-attribute-n;>>
statements
END;

DEFINE HEADER template-name </ STORE=libref.template-store>;
<header-attribute-1; < ...header-attribute-n;>>
statements
END;

DEFINE STYLE style-path </ STORE=libref.template-store>;
<PARENT=style-path;>
statements
END;

DEFINE TABLE table-path </ STORE=libref.template-store>;

TEMPLATE Procedure: Overview � Syntax: TEMPLATE Procedure 405

<table-attribute-1; <...table-attribute-n;>>
statements
END;

DEFINE TAGSET tagset-path </ STORE=libref.template-store>;
DEFINE EVENT event-name;
<event-attribute-1; <...event-attribute-n;>>
statements
END;

DEFINE CROSSTABS table-path </ STORE=libref.template-store>;
statements
END;

DEFINE STATGRAPH graph-path </ STORE=libref.template-store>;
statements
END;

DELETE template-path </ STORE=libref.template-store >;
EDIT template-path-1 <AS template-path-2> </ STORE=libref.template-store > ;

statements-and-attributes
END;

LINK template-path-1 TOtemplate-path-2 </ option(s)>;
LIST <starting-path></ option(s)>;
PATH location(s);
SOURCE template-path </ option(s)>;
TEST DATA=data-set </ STORE=libref.template-store>;

Task Statement

Create a column template “DEFINE COLUMN Statement” on page
599

Create a crosstabulation template “DEFINE CROSSTABS Statement” on
page 433

Create a footer template “DEFINE FOOTER Statement” on page
625

Create a header template “DEFINE HEADER Statement” on page
626

Create a graph template Chapter 10, “TEMPLATE Procedure:
Creating ODS Graphics,” on page 483

Create a style “DEFINE STYLE Statement” on page 490

Create a table template “DEFINE TABLE Statement” on page 640

Create a tagset “DEFINE TAGSET Statement” on page 796

Delete the specified template “DELETE Statement” on page 409

Edit an existing template “EDIT Statement” on page 597

Create a link to an existing template “LINK Statement” on page 410

List items in one or more template stores “LIST Statement” on page 411

Specify the locations to write to or read from when
creating or using PROC TEMPLATE templates, and
the order in which to search for them

“PATH Statement” on page 416

406 Where to Go from Here � Chapter 7

Task Statement

Write the source code for the specified template to the
SAS log

“SOURCE Statement” on page 417

Test the most recently created template by binding it
to the specified data set

“TEST Statement” on page 422

Where to Go from Here
� Creating statistical graphics with ODS: For reference information about the Graph

Template Language, see SAS/GRAPH: Graph Template Language Reference.
� Creating statistical graphics with ODS: For usage information about PROC

TEMPLATE and the Graph Template Language, see SAS/GRAPH: Graph
Template Language User’s Guide.

� Managing the various templates stored in template stores: For reference
information about the PROC TEMPLATE statements that help you manage and
navigate around the many ODS templates, see Chapter 8, “TEMPLATE Procedure:
Managing Template Stores,” on page 407.

� Modifying an existing style or creating your own style : For reference information
about the style definition statements in PROC TEMPLATE, see Chapter 11,
“TEMPLATE Procedure: Creating a Style Template (Definition),” on page 487.

� Creating and modifying ODS tabular output: For reference information about the
tabular template statements in PROC TEMPLATE, see Chapter 12, “TEMPLATE
Procedure: Creating Tabular Output,” on page 593.

� Modifying markup language tagsets that SAS provides or creating your own
tagsets: For reference information about the markup language tagset statements
in PROC TEMPLATE, see Chapter 13, “TEMPLATE Procedure: Creating Markup
Language Tagsets,” on page 795.

407

C H A P T E R

8
TEMPLATE Procedure: Managing
Template Stores

Overview: Template Stores 407
What Is a Template Store? 407

Why Use the TEMPLATE Procedure to Manage Template Stores? 408

Terminology 408

Template Store Syntax: TEMPLATE Procedure 408

PROC TEMPLATE Statement 409
DELETE Statement 409

LINK Statement 410

LIST Statement 411

PATH Statement 416

SOURCE Statement 417

TEST Statement 422
Concepts: Template Stores and the TEMPLATE Procedure 422

The Contents of Templates That SAS Supplies 422

Examples: Managing Template Stores Using the TEMPLATE Procedure 424

Example 1: Listing Templates in a Template Store 424

Example 2: Using a WHERE Expression to Select Items in a Template Store 425
Example 3: Viewing the Source of a Template 426

Overview: Template Stores

What Is a Template Store?
A template store is an item store which stores items that were created by the

TEMPLATE procedure. Items that SAS provides are in the item store
SASHELP.TMPLMST. You can store items that you create in any template store where
you have Write access.

Note: A template store can contain multiple levels known as directories. When you
specify a template store in the ODS PATH statement, however, you specify a two-level
name that includes a libref and the name of a template store in the SAS library that
the libref references. �

408 Why Use the TEMPLATE Procedure to Manage Template Stores? � Chapter 8

Why Use the TEMPLATE Procedure to Manage Template Stores?
You can use the TEMPLATE procedure to manage and navigate the template stores

that store the items that SAS supplies or that you create. The TEMPLATE procedure
enables you to perform the following management tasks for the template stores:

� delete column templates, header templates, footer templates, styles, table
templates, or tagsets

� list items in one or more template stores

� view the source code of column templates, header templates, footer templates,
styles, table templates, or tagsets

� test the most recently created item

You can navigate around the template stores by doing the following:

� create links to existing items

� specify which locations to write to or read from when you create or use PROC
TEMPLATE items, and specify the order in which to search for them

Terminology
For definitions of terms used in this section, see “Terminology: TEMPLATE

Procedure” on page 402.

Template Store Syntax: TEMPLATE Procedure

PROC TEMPLATE;

DELETE item-path< / STORE=libref.template-store>;

LINK item-path-1 TO item-path-2 </option(s)>;

LIST <starting-path></ option(s)>;

PATH location(s);

SOURCE item-path </option(s)><STORE=libref.template-store>;

TEST DATA=data-set< / STORE=libref.template-store>;

Task Statement

Delete the specified item “DELETE Statement” on page 409

Create a link to an existing item “LINK Statement” on page 410

List items in one or more template stores “LIST Statement” on page 411

Specify which locations to write to or read from when
you create or use PROC TEMPLATE items, and
specify the order in which to search for them

“PATH Statement” on page 416

TEMPLATE Procedure: Managing Template Stores � DELETE Statement 409

Task Statement

Write the source code for the specified item to the SAS
log

“SOURCE Statement” on page 417

Test the most recently created item by binding it to
the specified data set

“TEST Statement” on page 422

PROC TEMPLATE Statement

PROC TEMPLATE;

DELETE Statement

Deletes the specified item.

DELETE item-path;

Required Arguments

item-path
specifies an item to delete. An item-path consists of one or more names, separated by
periods. Each name represents a directory in a template store. (A template store is a
type of SAS file.) If the same item exists in multiple template stores, PROC
TEMPLATE deletes the item from the first template store in the current path where
you have Write access.

CAUTION:
Deleting a directory in a template store deletes all subdirectories and items in the
directory. If the path that you specify is a directory rather than an item, PROC
TEMPLATE deletes all the directories and all the items in that directory. �

410 LINK Statement � Chapter 8

LINK Statement

Creates a link to an existing item.

LINK item-path-1 TO item-path-2 </ option(s)>;

Creating a link to an item has the same effect as creating a new item that inherits
its characteristics from another item (see the discussion of PARENT=“PARENT=
Statement” on page 494 statement). However, using a link is more efficient than using
inheritance, because linking does not actually create a new item.

Required Arguments

item-path-1
specifies the path of the item to create. PROC TEMPLATE creates the item in the
first template store in the path that you can write to.

item-path-2
specifies the path of the item to link to. If the same item exists in multiple template
stores, PROC TEMPLATE uses the one from the first template store in the current
path that you can read.
Tip: PROC TEMPLATE does not confirm that item-path-2 exists when it compiles

the item.

Options

NOTES= ’text’
specifies notes to store in the item.
Requirement: Enclose the text in quotation marks.
Tip: Notes of this type become part of the compiled item, which you can view with

the SOURCE statement, whereas SAS comments do not.

STORE=libref.template-store
specifies the location where the link will be created.
Restriction: The STORE= option syntax does not become part of the compiled item.
Tip: The link always points to the first item with the same name that it finds in the

ODS path.

TEMPLATE Procedure: Managing Template Stores � LIST Statement 411

LIST Statement

Lists the items in one or more template stores.

Featured in: Example 1 on page 424

LIST <starting-path></ option(s)>;

Options

starting-path
specifies a level within each template store where PROC TEMPLATE starts listing
items. For example, if starting-path is base.univariate, PROC TEMPLATE lists
only base.univariate and the items within it and within all the levels that it
contains.
Default: If you omit a starting-path, then the LIST statement lists all items in all

template stores unless the ODS PATH statement confines the search to the
specified template stores.

Restriction: This option must precede the forward slash (/) in the LIST statement.

SORT=statistic <sorting-order>
sorts the list of items by the specified statistic in the specified sorting order.

statistic
is one of the following:

CREATED
is the date that the item was created.

NOTES
is the content of any NOTES statement in the PROC TEMPLATE step that
created the item.
Alias: LABEL

LINK
is the name of the item that the current item links to (see “LINK Statement” on
page 410).

PATH
is the path to the current item in the template store. (The path does not include
the name of the template store).

412 LIST Statement � Chapter 8

SIZE
is the size of the item.

TYPE
is the type of the item: COLUMN, FOOTER, HEADER, STYLE, TABLE, or
LINK. If the item is simply a level in the item store, its type is DIR.

Default: PATH

sorting-order
specifies whether SORT= sorts from low values to high values or from high values
to low values.

ASCENDING
sorts from low values to high values.
Alias: A

DESCENDING
sorts from high values to low values.
Alias: D

Default: ASCENDING

STATS=ALL | (statistic-1 <, … statistic-n>)
specifies the information to include in the list of items.

ALL
includes all available information.

(statistic-1 <, … statistic-n>)
includes the specified information. statistic is one or more of the following:

CREATED
is the date that the item was created.

NOTES
is the content of any NOTES statement in the PROC TEMPLATE step that
created the item.
Alias: LABEL

LINK
is the name of the item that the current item links to (see “LINK Statement” on
page 410).

SIZE
is the size of the item.

Default: Whether or not you specify STATS=, the list of items always includes an
observation number, the path to the item, and its type.

STORE=libref.template-store
specifies the template store to process.
Default: All template stores in the current template path (see “PATH Statement” on

page 416).

WHERE=where-expression
selects, for listing, items that meet a particular condition. For example, the following
statement lists items that contain the word “Default” in the path to the current
template:

list / where=(path ? ’Default’);

TEMPLATE Procedure: Managing Template Stores � LIST Statement 413

where-expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands.

where-expression has this form:

(subsetting-variable <comparison-operator where-expression-n>)

subsetting-variable
a special kind of WHERE expression operand used by the SOURCE statement
to help you find common values in items. Subsetting variables are one or more
of the following:

PATH | _PATH_
is the fully qualified path of a template.
Alias: NAME | _NAME_
Alias: TEMPLATE | _TEMPLATE_
Example: This SOURCE statement displays the code for all items that

contain the word “Default” in the name of the current template:

source / where=(path ? ’Default’);
run;

TYPE | _TYPE_
is the type of the item. TYPE is one of the following:

COLUMN
specifies that the template is a column in a table.

FOOTER
specifies that the template is a footer in a table.

HEADER
specifies that the template is a header in a table.

LINK
specifies that the template is a link or URL.

STYLE
specifies that the definition is a style.

TABLE
specifies that the definition is a table template .

TAGSET
specifies that the definition is a tagset.

Example: This SOURCE statement displays the source code for all tagsets
that have the word “Default” in the path :

source / where=(lowcase(type) = ’tagset’ && _path_ ? ’Default’);

The LOWCASE function converts all letters in an argument to lowercase.

NOTES
is the content of any NOTES statement in the PROC TEMPLATE step that
created the item. The contents is displayed in the LABEL field.
Alias: LABEL
Example: This SOURCE statement displays the source code for all items

where the label contains the words “common matrix” and the item is a link:

source / where=(lowcase(label) ? ’common matrix’ && _type_ = ’Link’);
run;

414 LIST Statement � Chapter 8

The LOWCASE function converts all letters in an argument to lowercase.

SIZE
is the size of the item in bytes.
Example: This SOURCE statement displays the source code for all items

that are larger than 70000 bytes:

source / where=(size > 70000);
run;

CREATED
is the date the item was created.
Example: This SOURCE statement displays the source code for all of the

items that were created today in all of the template stores in the current
template path :

source / where=(datepart(created) = today());

The DATEPART function extracts the date from a SAS datetime value.

CDATE | _CDATE_
is the creation date of the item.
Example: This SOURCE statement displays the source code for all of the

items with a creation date of 16JUL2004:

source / where=(_cdate_ = ’16JUL2004’d);
run;

CDATETIME | _CDATETIME_
is the creation datetime of the item.
Example: This SOURCE statement displays the source code for all items

with a creation SAS datetime of May 1, 2003 at 9:30:

source / where=(_cdatetime_ = ’01may04:9:30:00’dt);
run;

CTIME | _CTIME_
is the creation time of the item.
Example: This SOURCE statement displays the source code of all items with

a creation time of 9:25:19 PM:

source / where=(_ctime_ = ’9:25:19pm’t);
run;

MDATE | _MDATE_
is the modification date of the item.
Example: This SOURCE statement displays the source code of all items with

a modification date of 16JUL2004:

source / where=(_mdate_ = ’16JUL2004’d);
run;

TEMPLATE Procedure: Managing Template Stores � LIST Statement 415

MDATETIME | _MDATETIME_
is the modification datetime of the item.
Example: This SOURCE statement displays the source code of all items with

a modification SAS datetime of May 1, 2003 at 9:30:

source / where=(_mdatetime_ = ’01may04:9:30:00’dt);
run;

MODIFIED
is the date the item was modified.
Example: This SOURCE statement displays the source code of all items that

were modified today in all of the template stores in the current template
path :

source / where=(datepart(modified) = today());

The DATEPART function extracts the date from a SAS datetime value.

MTIME |_MTIME_
is the modification time of the item.
Example: This SOURCE statement displays the source code of all items with

a modification time of 9:25:19 PM:

source / where=(_mtime_ = ’9:25:19pm’t);
run;

comparison-operator
compares a variable with a value or with another variable. The following table
lists the comparison operators:

Table 8.1 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

See also: For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

Featured in: Example 2 on page 425

416 PATH Statement � Chapter 8

PATH Statement

Specifies locations to write to or read from when you create or use PROC TEMPLATE templates or
definitions, and specifies the order in which to search for them. This statement overrides the ODS
PATH statement for the duration of the PROC TEMPLATE step.

Featured in: Example 1 on page 424 and Example 3 on page 426

PATH <(APPEND) | (PREPEND) | (REMOVE) > location(s);

PATH path-argument;

Required Arguments

location(s)
specifies one or more locations to write to or read from when creating or using PROC
TEMPLATE items and the order in which to search for them. ODS searches the
locations in the order that they appear on the statement. It uses the first definition
that it finds that has the appropriate access mode (Read, Write, or Update) set.

Each location has this form:

<libref.>item-store <(READ | UPDATE | WRITE)>

<libref.>item-store
identifies an item store to read from, to write to, or to update. If an item store
does not already exist, then the PATH statement creates it.

(READ | UPDATE | WRITE)
specifies the access mode for the item. An access mode is one of the following:

READ
provides read-only access.

WRITE
provides Write access (always creating a new template store) as well as Read
access.

UPDATE
provides Update access (creating a new template store only if the specified one
does not exist) as well as Read access.

Default: READ
Default: The general default path is as follows:

SASUSER.TEMPLAT (UPDATE))
SASHELP.TMPLMST (READ)

If you have specified the RSASUSER SAS system option, then the default path
is as follows:

WORK.TEMPLAT(UPDATE)
SASUSER.TEMPLAT (READ)
SASHELP.TMPLMST (READ)

TEMPLATE Procedure: Managing Template Stores � SOURCE Statement 417

Note: SAS stores all the items that it provides in SASHELP.TMPLMST. �

Note: See the RSASUSER SAS system option in SAS Language Reference:
Dictionary for more information. �

Tip: If you want to be able to ignore all the items that you create, then keep them
in their own item stores so that you can leave them out of the list of item stores
that ODS searches.

path-argument
sets or displays the ODS path.

path-argument is one of the following:

RESET
sets the ODS path to the default settings SASUSER.TEMPLAT (UPDATE) and
SASHELP.TMPLMST (READ).

SHOW
displays the current ODS path.

VERIFY
sets the ODS path to include only templates supplied by SAS. Specifying VERIFY
is the same as specifying ODS PATH SASHELP.TMPLMST (READ).

Options

(APPEND | PREPEND | REMOVE)
adds one or more locations to a path, or removes one or more locations from a path.

APPEND
adds one or more locations to the end of a path. When you append a location to a
path, all duplicate instances (with the same name and same permissions) of that
item store are removed from the path. Only the last item store with the same
name and permissions is kept.

PREPEND
adds one or more locations to the beginning of a path. When you prepend a
location to a path, all duplicate instances (with the same name and same
permissions) of that item store are removed from the path. Only the first item
store with the same name and permissions is kept.

REMOVE
removes one or more locations from a path.

Default: If you omit an APPEND, PREPEND, or REMOVE option, then the PATH
statement overwrites the complete path.

SOURCE Statement

Writes the source code for the template specified to the SAS log.

Featured in: Example 3 on page 426

SOURCE item-path </ option(s)>;

418 SOURCE Statement � Chapter 8

Required Arguments

item-path
specifies the path of the item that you want to write to the SAS log. If the same item
exists in multiple template stores, PROC TEMPLATE uses the one from the first
template store that you can read in the current path.

Tip: PROC TEMPLATE stores items in compiled form. The SOURCE statement
actually decompiles the item. Because SAS comments are not compiled, comments
that are in the source code do not appear when you decompile the item. If you
want to annotate the item, use the NOTES statement inside the item or the block
of editing instructions, or use the NOTES= option in the LINK statement. These
notes do become part of the compiled item. (See “NOTES Statement” on page 660
and the discussion of the NOTES= option on page 410. You can also specify notes
as quoted strings in the DYNAMIC, MVAR, NMVAR, REPLACE, and STYLE
statements.)

Options

FILE= ’file-specification’ | fileref
specifies a file to write the item to.

’file-specification’
is the name of an external file to write to.

Requirement: The external-file that you specify must be enclosed in quotation
marks.

fileref
is a file reference that has been assigned to an external file. Use the FILENAME
statement to assign a fileref.

Default: If you omit a filename where you want the source code written, then the
SOURCE statement writes the source code to the SAS log.

See: “Statements” in SAS Language Reference: Dictionary for information about
the FILENAME statement.

NOFOLLOW
specifies that the program not resolve links in the PARENT= statement, which
specifies the item that the current item inherits from. For information about the
PARENT= statement, see the PARENT=“PARENT= Statement” on page 494
statement in the styles attribute section.

STORE= libref.template-store
specifies the template store where the item is located.

Interaction: In most cases, the STORE= option is added to the definition statement
when PROC TEMPLATE displays the source code. However, if the template store
specified in the STORE= option is in the ODS path with only read permission,
then PROC TEMPLATE does not include the STORE= option in the source code
that it displays. There will be no STORE= option, which means that if you run the
code, then the item that it creates will go to the first template store for which you
have Update permission in the ODS path.

TEMPLATE Procedure: Managing Template Stores � SOURCE Statement 419

WHERE=(where-expression)
selects items that meet a particular condition. For example, the following statement
displays the source code for items that contain the word “Default” in the path to the
current template:

source / where=(path ? ’Default’);

where-expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands.

where-expression has this form:

(subsetting-variable <comparison-operator where-expression-n>)

subsetting-variable
a special kind of WHERE expression operand used by the SOURCE statement
to help you find common values in items. Subsetting variables are one or more
of the following:

PATH | _PATH_
is the fully qualified path of a template.
Alias: NAME | _NAME_
Alias: TEMPLATE | _TEMPLATE_
Example: This SOURCE statement displays the code for all items that

contain the word “Default” in the name of the current template:

source / where=(path ? ’Default’);
run;

TYPE | _TYPE_
is the type of the item. TYPE is one of the following:

COLUMN
specifies that the template is a column in a table.

FOOTER
specifies that the template is a footer in a table.

HEADER
specifies that the template is a header in a table.

LINK
specifies that the template is a link or URL.

STYLE
specifies that the definition is a style.

TABLE
specifies that the definition is a table template .

TAGSET
specifies that the definition is a tagset.

Example: This SOURCE statement displays the source code for all tagsets
that have the word “Default” in the path :

source / where=(lowcase(type) = ’tagset’ && _path_ ? ’Default’);

The LOWCASE function converts all letters in an argument to lowercase.

NOTES

420 SOURCE Statement � Chapter 8

is the content of any NOTES statement in the PROC TEMPLATE step that
created the item. The contents is displayed in the LABEL field.

Alias: LABEL

Example: This SOURCE statement displays the source code for all items
where the label contains the words “common matrix” and the item is a link:

source / where=(lowcase(label) ? ’common matrix’ && _type_ = ’Link’);
run;

The LOWCASE function converts all letters in an argument to lowercase.

SIZE
is the size of the item in bytes.

Example: This SOURCE statement displays the source code for all items
that are larger than 70000 bytes:

source / where=(size > 70000);
run;

CREATED
is the date the item was created.

Example: This SOURCE statement displays the source code for all of the
items that were created today in all of the template stores in the current
template path :

source / where=(datepart(created) = today());

The DATEPART function extracts the date from a SAS datetime value.

CDATE | _CDATE_
is the creation date of the item.

Example: This SOURCE statement displays the source code for all of the
items with a creation date of 16JUL2004:

source / where=(_cdate_ = ’16JUL2004’d);
run;

CDATETIME | _CDATETIME_
is the creation datetime of the item.

Example: This SOURCE statement displays the source code for all items
with a creation SAS datetime of May 1, 2003 at 9:30:

source / where=(_cdatetime_ = ’01may04:9:30:00’dt);
run;

CTIME | _CTIME_
is the creation time of the item.

Example: This SOURCE statement displays the source code of all items with
a creation time of 9:25:19 PM:

source / where=(_ctime_ = ’9:25:19pm’t);
run;

MDATE | _MDATE_
is the modification date of the item.

Example: This SOURCE statement displays the source code of all items with
a modification date of 16JUL2004:

source / where=(_mdate_ = ’16JUL2004’d);
run;

TEMPLATE Procedure: Managing Template Stores � SOURCE Statement 421

MDATETIME | _MDATETIME_
is the modification datetime of the item.
Example: This SOURCE statement displays the source code of all items with

a modification SAS datetime of May 1, 2003 at 9:30:

source / where=(_mdatetime_ = ’01may04:9:30:00’dt);
run;

MODIFIED
is the date the item was modified.
Example: This SOURCE statement displays the source code of all items that

were modified today in all of the template stores in the current template
path :

source / where=(datepart(modified) = today());

The DATEPART function extracts the date from a SAS datetime value.

MTIME |_MTIME_
is the modification time of the item.
Example: This SOURCE statement displays the source code of all items with

a modification time of 9:25:19 PM:

source / where=(_mtime_ = ’9:25:19pm’t);
run;

comparison-operator
compares a variable with a value or with another variable. The following table
lists the comparison operators:

Table 8.2 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

See also: For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

422 TEST Statement � Chapter 8

TEST Statement

Tests the most recently created item by binding it to the specified data set.

TEST DATA= data-set </ STORE=libref.template-store>;

Required Arguments

DATA=data-set
specifies the SAS data set to bind to the most recently created item. ODS sends this
output object to all open ODS destinations.

Options

STORE=libref.template-store
specifies the template store where the item is located.
Requirement: If you specify this option, then the template store that you specify

must match the template store in the DEFINE statement that created the item.

Concepts: Template Stores and the TEMPLATE Procedure

The Contents of Templates That SAS Supplies
SAS provides templates for these items:
� tables
� crosstabulation tables
� SAS statistical graphics
� styles
� tagsets

To view the contents of a template, use the SAS windowing environment, the SAS
window command ODSTEMPLATES, or the TEMPLATE procedure.

� SAS Windowing Environment
1 From the SAS Explorer, select View � Results.
2 In the Results window, select the Results folder. Right–click to open the

Templates window.
3 To view the definitions or templates that SAS supplies, click the plus sign

that is next to the SASHELP.TMPLMST item store.
4 Click the plus sign that is next to an icon to view the contents of that

template store or directory in a template store. If there is no plus sign next to
the icon, double-click the icon to view the contents of that directory.

TEMPLATE Procedure: Managing Template Stores � The Contents of Templates That SAS Supplies 423

� SAS Windowing Command
1 To view the Templates window, submit this command in the command bar:

odstemplates

This display shows the Templates window that contains the item stores
Sasuser.Templat and Sashelp.Tmplmst.

2 When you double-click an item store, such as Sashelp.Tmplmst, that item store
expands to list the directories where ODS templates are stored. The templates
that SAS provides are in the item store Sashelp.Tmplmst.

� TEMPLATE Procedure

The SOURCE statement writes the source code for the specified template to the
SAS log. For example, if you want to view the source for all the objects in Base
SAS, submit this code:
proc template;
source base;
run;

Note: For more information, see “SOURCE Statement” on page 417. �

Display 8.1 Templates That SAS Supplies

From the Templates window, you can see the definitions and templates that SAS supplies or
that you created. This figure shows the styles that SAS supplies.

424 Examples: Managing Template Stores Using the TEMPLATE Procedure � Chapter 8

Examples: Managing Template Stores Using the TEMPLATE Procedure

Example 1: Listing Templates in a Template Store

PROC TEMPLATE features:
PATH statement
LIST statement:

starting-path option
SORT= option

Program Description
This example lists the items for the Base.Univariate directory in the item store

SASHELP.TMPLMST.

Program

Set the SAS system options. The OPTIONS statement controls several aspects of the Listing
output. None of these options affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

Specify which locations to search for items that were created by PROC TEMPLATE.
The PATH statement specifies to search for templates and definitions that were created by
PROC TEMPLATE in the SASHELP.TMPLMST item store.

proc template;
path sashelp.tmplmst;

List in descending order the items that are stored within a specified level of the
template store. The LIST statement lists the templates and definitions in one or more
template stores. The starting path base.univariate specifies the level within the template
store where PROC TEMPLATE is to start listing the items. The SORT= option sorts the list of
items. The items are sorted in descending order.

list base.univariate / sort=path descending;
run;

TEMPLATE Procedure: Managing Template Stores � Program Program 425

Output 8.1 Listing of Base.Univariate Template Store

1

Listing of: SASHELP.TMPLMST
Path Filter is: Base.Univariate
Sort by: PATH/DESCENDING

Obs Path Type
__
1 Base.Univariate.Wins Table
2 Base.Univariate.Trim Table
3 Base.Univariate.Robustscale Table
4 Base.Univariate.Quantiles Table
5 Base.Univariate.PValue Column
6 Base.Univariate.Normal Table
7 Base.Univariate.Moments Link
8 Base.Univariate.Modes Table
9 Base.Univariate.Missings Table
10 Base.Univariate.Measures Table
11 Base.Univariate.Location Table
12 Base.Univariate.LocCount Table
13 Base.Univariate.Frequency Table
14 Base.Univariate.FitQuant Table
15 Base.Univariate.FitParms Table
16 Base.Univariate.FitGood Table
17 Base.Univariate.ExtVal Table
18 Base.Univariate.ExtObs Table
19 Base.Univariate.ConfLimits Table
20 Base.Univariate.Bins Table
21 Base.Univariate.BinPercents Table
22 Base.Univariate Dir

Example 2: Using a WHERE Expression to Select Items in a Template Store

PROC TEMPLATE features:
PATH statement

LIST statement:

where-expression option
starting-path option
SORT= option

Program Description

This example uses a WHERE expression to select, for listing, fitted distribution table
templates in the Base.Univariate directory.

Program Program

Set the SAS system options. The OPTIONS statement controls several aspects of the Listing
output. None of these options affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

426 Example 3: Viewing the Source of a Template � Chapter 8

Specify which locations to search for items that were created by PROC TEMPLATE.
The PATH statement specifies to search for items that were created by PROC TEMPLATE in
the SASHELP.TMPLMST item store.

proc template;
path sashelp.tmplmst;

List, in descending order, the items with the word “fit” in their path name. The LIST
statement lists the items in one or more template stores. The starting path base.univariate
specifies the level within the template store where PROC TEMPLATE is to start listing the
items. The WHERE expression finds items in the template store that have the word “fit” in their
path name. The LOWCASE function converts all letters in an argument to lowercase. The
SORT= option sorts the list of items. The items are sorted in descending order.

list base.univariate / sort=path descending
where=(lowcase(path) ? ’fit’);
run;

Output 8.2 Listing of Fitted Distribution Templates In the Base.Univariate Template
Store

1

Listing of: SASHELP.TMPLMST
Path Filter is: Base.Univariate
Sort by: PATH/DESCENDING

Obs Path Type

1 Base.Univariate.FitQuant Table
2 Base.Univariate.FitParms Table
3 Base.Univariate.FitGood Table

Example 3: Viewing the Source of a Template

PROC TEMPLATE features:
PATH statement
SOURCE statement

Program Description
This example displays the source code for the Xhtml tagset that SAS provides.

TEMPLATE Procedure: Managing Template Stores � Program 427

Program

Specify which locations to search for items that were created by PROC TEMPLATE.
The PATH statement specifies to search for items that were created by PROC TEMPLATE in
the SASHELP.TMPLMST item store.

proc template;
path sashelp.tmplmst;

Write the source code of the specified item. The SOURCE statement writes the source code
for the tagset Xhtml that SAS provides. The source code is written to the SAS log.

source Tagsets.Xhtml;
run;

Output 8.3 Source Code of the Template Tagset.Xhtml That Is Written to the SAS
Log

proc template;
path sashelp.tmplmst;

source Tagsets.Xhtml;
define tagset Tagsets.Xhtml;

notes "XHTML 1.0";

define event doc;
start:

set $empty_tag_suffix " /";
set $doctype

"";
set $framedoctype

"";
put $doctype NL;
put "" NL;

finish:
put "" NL;

end;
split = "";
parent = tagsets.html4;

end;
NOTE: Path ’Tagsets.Xhtml’ is in: SASHELP.TMPLMST.

run;
NOTE: PROCEDURE TEMPLATE used (Total process time):

real time 2.17 seconds
cpu time 0.17 seconds

428

429

C H A P T E R

9
TEMPLATE Procedure: Creating
Crosstabulation Table Templates

Overview: ODS Crosstabulation Table Template Output 429
Using the TEMPLATE Procedure to Create a Customized Crosstabulation Table 429

What Can You Do with a Crosstabulation Template? 430

Crosstabulation Table Syntax: TEMPLATE Procedure 433

DEFINE CROSSTABS Statement 433

DEFINE CELLVALUE Statement 441
CELLVALUE Statement 449

DEFINE FOOTER Statement 449

DEFINE HEADER Statement 449

END Statement 457

Concepts: Crosstabulation Output and the TEMPLATE Procedure 457

Working with the CrossTabFreqs Crosstabulation Table Template 457
What Makes the Crosstabulation Table Unique? 458

Comparison Between Table Templates and Crosstabulation Table Templates 458

Crosstabulation Table Regions and Corresponding Attributes 459

Examples: Modifying Crosstabulation Output Using the TEMPLATE Procedure 460

Example 1: Creating a Customized Crosstabulation Table Template with No Legend 460
Example 2: Creating a Crosstabulation Table Template with a Customized Legend 469

Example 3: Adding Custom Formats to Cellvalues 478

Overview: ODS Crosstabulation Table Template Output

Using the TEMPLATE Procedure to Create a Customized
Crosstabulation Table

The TEMPLATE procedure enables you to customize the appearance of
crosstabulation (contingency) tables that are created with the FREQ procedure.

430 What Can You Do with a Crosstabulation Template? � Chapter 9

By default, crosstabulation tables are formatted according to the CrossTabFreqs
template that SAS provides. However, you can create a customized CrossTabFreqs table
template by using the TEMPLATE procedure with the statements in the following table.

Table 9.1 PROC TEMPLATE Statements

Task Statement

Create a crosstabulation table template DEFINE CROSSTABS

Define a value that appears in the crosstabulation
cells

DEFINE CELLVALUE

Specify the order in which the cellvalues are stacked
in the cells

CELLVALUE

Create a template for a footer DEFINE FOOTER

Create a template for a header DEFINE HEADER

End a crosstabulation table template END

What Can You Do with a Crosstabulation Template?
The CrossTabFreqs crosstabulation template describes how to display PROC FREQ’s

crosstabulation table. You can create a customized CrossTabFreqs crosstabulation
template to do the following:

� use custom formats for cellvalues
� specify a style for each value in a cell
� change the stacking order of values in a cell
� change and style headers and footers
� use variable labels in headers and footers
� style table regions independently
� change or remove the legend

TEMPLATE Procedure: Creating Crosstabulation Table Templates � What Can You Do with a Crosstabulation Template? 431

The following display shows a crosstabulation table that has been created with the
default crosstabulation table template:

Display 9.1 Crosstabulation Table Created with Default Crosstabulation Table Template

432 What Can You Do with a Crosstabulation Template? � Chapter 9

The following display shows PROC FREQ output that has been created with a
modified CrossTabFreqs template:

Display 9.2 Crosstabulation Table Created with Modified Crosstabulation Table Template

The following are some of the customizations that were made to the crosstabulation
table above:

� The legend text has been italicized and made smaller than the rest of the header
text.

� The header text now uses the variable label “Gender of Patient” instead of the
variable name.

� Row variable labels and column variable labels are used now instead of row
variable names and column variable names.

� The background color of the non-summary rows alternates.
� The values in the grand total cell are now bold and italic.
� The Deviation cellvalues are now red when the deviation exceeds abs (2.0).
� The TotalPercent cellvalue has been moved from the middle of the other cellvalues

to the bottom of the cellvalues.

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DEFINE CROSSTABS Statement 433

Crosstabulation Table Syntax: TEMPLATE Procedure

PROC TEMPLATE
DEFINE CROSSTABS table-path </ STORE=libref.template-store>;

<table-attribute-1; <…table-attribute-n>;>
CELLVALUE cellvalues;
DEFINE CELLVALUE cellvalue;

statements-and-attributes;
END;
DEFINE HEADER header-name;

statements-and-attributes;
END;
DEFINE FOOTER footer-name;

statements-and-attributes;
END;
DYNAMIC variable-1 <’text-1’> <…variable-n <’text-n’>>;
FOOTER footer-name(s);
HEADER header-name(s);
NOTES text;

END;

Table 9.2 PROC TEMPLATE Statements That Add Different Features to
Crosstabulation SAS Output

Task Statement

Create a crosstabulation table template DEFINE CROSSTABS

Define a value that appears in the crosstabulation
cells

DEFINE CELLVALUE

Specify the order in which the cellvalues are stacked
in the cells

CELLVALUE

Create a template for a footer DEFINE FOOTER

Create a template for a header DEFINE HEADER

End a crosstabulation table template END

DEFINE CROSSTABS Statement

Creates a crosstabulation table template.

Featured in: Example 1 on page 460

DEFINE CROSSTABS table-path </ STORE=libref.template-store>;

434 DEFINE CROSSTABS Statement � Chapter 9

<table-attribute-1; <…table-attribute-n>;>
CELLVALUE cellvalues;
DEFINE CELLVALUE cellvalue;

statements-and-attributes;
END;
DEFINE HEADER header-name;

statements-and-attributes;
END;
DEFINE FOOTER footer-name;

statements-and-attributes;
END;
DYNAMIC variable-1 <’text-1’> <…variable-n <’text-n’>>;
FOOTER footer-name(s);
HEADER header-name(s);
NOTES text;

END;

Table 9.3 DEFINE CROSSTABS Statements

Task Statement

Set one or more cell attributes crosstabs-attributes

Specify the order in which the cellvalues are stacked
in the cells

CELLVALUE

Define a value that appears in the crosstabulation
table’s cells

DEFINE CELLVALUE

Create a template for a crosstabulation table header DEFINE HEADER

Create a template for a crosstabulation table footer DEFINE FOOTER

Define a symbol that references a value that the data
component supplies from the procedure

DYNAMIC

Declare a symbol as a footer in the table and specify
the order of the footers

FOOTER

Declare a symbol as a header in the table and specify
the order of the headers

HEADER

Provide information about the crosstabulation table NOTES

End a template, or end the editing of a template END

Required Arguments

table-path
specifies where to store the crosstabulation table template. A table-path consists of
one or more names, separated by periods. Each name represents a directory in a
template store, which is a type of SAS file. For more information on template stores,

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DEFINE CROSSTABS Statement 435

see “Understanding Item Stores, Template Stores, and Directories” on page 31.
PROC TEMPLATE writes the template to the first writable template store in the
current path.

Requirement: Crosstabulation table templates must be named CrossTabFreqs.

Options

STORE= template-store
specifies the template store in which to store the crosstabulation template. If the
template store does not exist, it is created.

Restriction: The STORE= option does not become part of the template.

Requirement: The STORE= option must be proceeded by the forward slash (/)
symbol.

Restriction: If the template is nested inside another template, do not use the
STORE= option for the nested template, because the nested template is stored
where the original template is stored.

DEFINE CROSSTABS Attributes

This section lists all of the attributes that you can use in a crosstabulation template.

Table 9.4 Crosstabulation Attributes

Task Statement

Specify a style element and any changes to its
attributes to use for the cellvalues in the
non-summary rows and columns

CELL_STYLE=

Specify the name of the header to use over the
column variable value columns in the table

COLS_HEADER=

Specify the style element and any changes to its
attributes to use for the cellvalues in the last
row in the table

COL_TOTAL_STYLE=

Specify the style element and any changes to its
attributes to use for the column variable values
used as headers over the column variable value
columns

COL_VAR_STYLE=

Specify the style element and any changes to its
attributes to use for the cellvalues in the
rightmost column of the last row in the table

GRAND_TOTAL_STYLE=

Specify a label for the table LABEL=

Specify the style element and any changes to its
attributes to use for the legend table that
appears near the upper-left corner of the table

LEGEND_STYLE=

Specify the name of the header to use over the
row variable values (leftmost) column in the
table

ROWS_HEADER=

436 DEFINE CROSSTABS Statement � Chapter 9

Task Statement

Specify the style element and any changes to its
attributes to use for the cellvalues in the cells
that contain row totals

ROW_TOTAL_STYLE=

Specify the style element and any changes to its
attributes to use for the row variable values in
the leftmost column of the table

ROW_VAR_STYLE=

Specify a style element and any changes to its
attributes to use for the table

STYLE=

CELL_STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes you can use for the
cellvalues in the non-summary rows and columns. This refers to the cellvalues that
are not in the row totals column (see ROW_TOTAL_STYLE), the column totals row
(see COL_TOTAL_STYLE), or the grand total cell (see GRAND_TOTAL_STYLE).

Default: Data

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

COLS_HEADER=header-name
specifies the name of the header to use over the column variable value columns in
the table.

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

COL_TOTAL_STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the cellvalues
in the last row in the table.

Default: Data

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

COL_VAR_STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the column
variable values used as headers over the column variable value columns.

Default: Header

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

GRAND_TOTAL_STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the cellvalues
in the rightmost column of the last row in the table.

Default: Data

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DEFINE CROSSTABS Statement 437

LABEL="text"
specifies a label for the table.
Default: "Frequency Counts and Percentages"
See also: “Crosstabulation Table Regions and Corresponding Attributes” on page

459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

LEGEND_STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the legend
table that appears near the upper-left corner of the table.
Default: Header
See also: “Crosstabulation Table Regions and Corresponding Attributes” on page

459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

ROWS_HEADER=header-name
specifies the name of the header to use over the row variable values (leftmost)
column in the table.
See also: “Crosstabulation Table Regions and Corresponding Attributes” on page

459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

ROW_TOTAL_STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the cellvalues
that contain row totals.
Default: Data
See also: “Crosstabulation Table Regions and Corresponding Attributes” on page

459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

ROW_VAR_STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the row
variable values in the leftmost column of the table.
Default: RowHeader
See also: “Crosstabulation Table Regions and Corresponding Attributes” on page

459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

STYLE=<style-element-name><[style-attribute-specification(s)]>
Specifies the style element and any changes to its attributes to use for the table.

style-element-name
is the name of the style element to use to display the table. The style element
must be part of a style that is registered with the Output Delivery System. SAS
provides some style. You can create customized styles with PROC TEMPLATE
(see “DEFINE STYLE Statement” on page 490). By default, ODS produces
different parts of ODS output with different elements. For example, by default, a
table is produced with the style element Table. The Table style element that SAS
is provides is uniquely designed to describe elements necessary to a table.
However, you might have a user-defined style element at your site that would be
appropriate to specify.

The style element provides the basis for displaying the table. Additional style
attributes that you provide can modify the display.

style-element-name is either the name of a style element or a variable whose
value is a style element.
See also: “Viewing the Contents of a Style” on page 538

438 DYNAMIC Statement � Chapter 9

See also: “Working with Styles” on page 538

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

See also: “Style Attributes and Their Values” on page 498

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

Default: Table

See also: “Crosstabulation Table Regions and Corresponding Attributes” on page
459 to see an illustration of the crosstabulation table regions and the DEFINE
CROSSTABS attributes that affect each region

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Tip: A dynamic variable that is defined in a template is available to that template and
all the templates that it contains.

DYNAMIC dynamic-variable(s) ;

Required Arguments

dynamic- variable(s)
is a variable that is defined by SAS in the crosstabulation template. After a dynamic
variable has been defined, you can use it in the TEXT statement within a footer or
header template.

FMISSING
is the number of missing values in the table.

Requirement: The FMISSING dynamic variable must be specified by the
DYNAMIC statement before you can use the dynamic variable in an expression.

NOTITLE
is set to 1 if the PROC FREQ’s NOTITLE option was used, and it is set to 0 if the
NOTITLE option was not used.

Requirement: The NOTITLE dynamic variable must be specified by the
DYNAMIC statement before you can use the dynamic variable in an expression.

TEMPLATE Procedure: Creating Crosstabulation Table Templates � FOOTER Statement 439

SAMPLESIZE
is set to 0 if the table is empty. Otherwise, it is set to 1.
Requirement: The SAMPLESIZE dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.

STRATNUM
is the current stratum number if the table has multiple strata. If the table has
only one stratum, then the value is 0.
Requirement: The STRATNUM dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.
Featured in: Example 1 on page 460

STRATAVARIABLENAMES
is a string that identifies the current stratum by the name of the stratum variables.

var-1=value-1<var-n=value-n>

var-1–var-n
specifies the stratum variables.

value-1–value-n
specifies the values of the stratum variables.
Tip: The value is undefined if the table has only one stratum.
Requirement: The DYNAMIC statement must specify the

STRATAVARIABLELABELS dynamic variables before the dynamic variables
can be used in an expression.

STRATAVARIABLELABELS
is a string that identifies the current stratum by the label of the stratum variables.

var-1=value-1<var-n=value-n>

var-1–var-n
specifies the stratum variables.

value-1–value-n
specifies the values of the stratum variables.
Tip: The value is undefined when the table has only one stratum.

Requirement: The DYNAMIC statement must specify the
STRATAVARIABLELABELS dynamic variables before you can use the dynamic
variables in an expression.

Featured in: Example 1 on page 460 and Example 2 on page 469

FOOTER Statement

Declares a symbol as a footer in the table and specifies the order of the footers.

FOOTER footer-specification(s);

Required Arguments

footer-specification(s)

440 HEADER Statement � Chapter 9

specifies a symbol defined by the DEFINE FOOTER statement within the same table
template.
Default: If you omit a FOOTER statement, ODS creates a footer for each footer

template (DEFINE FOOTER statement) and places the footers in the same order
that the footer templates have in the table template.

See also: “DEFINE FOOTER Statement” on page 449

HEADER Statement

Declares a symbol as a header in the table and specifies the order of the headers.

HEADER header-specification(s);

Required Arguments

header-specification(s)
specifies a symbol defined by the DEFINE HEADER statement within the same table
template.
Default: If you omit a HEADER statement, then ODS makes a header for each

header template (DEFINE HEADER statement) and places the headers in the
same order that the header templates have in the table template.

NOTES Statement

Provides information about a template.

Tip: The NOTES statement becomes part of the compiled template, which you can view
with the SOURCE statement. SAS comments do not become part of the compiled
template.

NOTES ’text’;

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DEFINE CELLVALUE Statement 441

Required Arguments

’text’
provides information about the template.

END Statement

Ends a template.

END;

DEFINE CELLVALUE Statement

Defines a value that appears in the crosstabulation cells.

Featured in: Example 1 on page 460

DEFINE CELLVALUE <cellvalue>;

<cellvalue-attribute-1;><…cellvalue-attribute-n>;

CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]
><…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;

DYNAMIC variable-1<’text-1’> <… variable-n<’text-n’>>;

NOTES ’text’;

END;

Table 9.5 DEFINE CELLVALUE Statements

Task Statement

Set one or more cellvalue attributes cellvalue-attributes

Specify the style element of the cells in the column
according to the values of the variables

CELLSTYLE AS

Define a symbol that references a value that the data
component supplies from the procedure

DYNAMIC

Provide information about the crosstabulation table NOTES

End a cellvalue template END

442 DEFINE CELLVALUE Statement � Chapter 9

Options

cellvalue
specifies one of the possible values that PROC FREQ can produce for a
crosstabulation table. For a cellvalue to appear in a cell, it must meet one of these
requirements:

� specified in a DEFINE CELLVALUE statement
� included in the CELLVALUE statement

� not suppressed by one of the following options for the TABLES statement in
PROC FREQ: NOFREQ, NOPERCENT, NOROW, NOCOL, or CUMCOL

� requested by one of the following options: EXPECTED, DEVIATION,
CELLCHI2, or TOTPCT

To prevent a cellvalue from appearing in a table, you need to change only one of the
preceding specifications.

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DEFINE CELLVALUE Statement 443

cellvalue is one of the following:

Frequency
is the frequency count.

Expected
is the expected frequency of the cell.

Deviation
is the deviation of the cell frequency from the expected value.

CellChiSquare
is the cell’s contribution to the total Pearson chi-square statistic.

TotalPercent
is the percentage of total frequency on n-way tables when n>2.

Percent
is the percentage of the table frequency.

RowPercent
is the percentage of the row frequency.

ColPercent
is the percentage of the column frequency.

CumColPercent
is the cumulative percentage of the column frequency.

DEFINE CELLVALUE Attribute Statements
This section lists all the attribute statements that you can use in a cellvalue

template and the tasks that are associated with the statements. For all attributes that
support a value of ON, these forms are equivalent:

ATTRIBUTE-NAME
ATTRIBUTE-NAME=ON

Table 9.6 DEFINE CELLVALUE Attribute Statements

Task Statement

Specify which format to use for the cellvalue if
both a crosstabulation template and a data
component specify a format

DATA_FORMAT_OVERRIDE=

Specify the format for the cellvalue FORMAT=

Override the width specified by the FORMAT=
attribute

FORMAT_WIDTH=

Override the number of decimals specified by
the FORMAT= attribute

FORMAT_NDEC=

Specify the text in the legend HEADER=

For the Output destination, specify the label for
the data set column corresponding to the
cellvalue

LABEL=

Specify whether a cellvalue appears in the
crosstabulation table

PRINT=

444 DEFINE CELLVALUE Statement � Chapter 9

DATA_FORMAT_OVERRIDE=<ON | OFF>;
specifies which format to use if both a crosstabulation template and a data
component specify a format for Frequency, Expected, and Deviation.

ON
selects the format specified in the data component.

OFF
selects the format specified in the crosstabulation template.

Default: OFF
Interaction: If you specify DATA_FORMAT_OVERRIDE=ON, and the FORMAT

option is specified on the TABLES statement in PROC FREQ, then the data
component will specify that format for the Frequency, Expected, and Deviation
cellvalues.

FORMAT=format_name <format-width<decimal-width >>;
specifies the format for the column.
Default: If you omit the FORMAT= option, PROC TEMPLATE uses the format that

the data component provides. If the data component does not provide a format,
PROC TEMPLATE uses one of the following:

� BEST8. for integers
� 12.3 for floating-point values
� the length of the variable for character variables

Interaction: For Listing output, the width of the cells is governed by the format
width. Cells are at least one character wider than the format width.

Range: The minimum cell width is 8, and the maximum width is 25.

FORMAT_WIDTH=positive-integer
overrides the width specified by the FORMAT= attribute statement.
See also: FORMAT= on page 444

FORMAT_NDEC=positive-integer
overrides the number of decimals specified by the FORMAT= attribute statement.
See also: FORMAT= on page 444

HEADER=’text’
specifies the text in the legend.
Tip: For Listing output, only the first 15 characters of text are displayed.

LABEL=’text’
for the Output destination, specifies the label for the data set column that
corresponds to the cellvalue.

PRINT= ON | OFF
specifies whether the cellvalue appears in the crosstabulation table.

Both this attribute and the TABLES statement option for the cellvalue control the
presence of the cellvalue in the table. For example, the expected cell frequency is
present only when the EXPECTED option is used and the Expected cellvalue
template has PRINT=ON specified.

TEMPLATE Procedure: Creating Crosstabulation Table Templates � CELLSTYLE AS Statement 445

CELLSTYLE AS Statement

Sets the style element of the cells in the column according to the values of the variables. Use this
statement to set the presentation characteristics (such as foreground color, font face, and flyover)
of individual cells in all destinations except the LISTING destinations.

Featured in: Example 1 on page 460

CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]
><…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

expression
is an expression that is evaluated for each cell. If expression resolves to TRUE (a
non-zero value), the style element that is specified is used for the current cell. If
expression is FALSE (zero), the next expression in the statement is evaluated. Thus,
you can string multiple expressions together to format cells conditionally.

expression has this form:

expression-1 <comparison-operator expression-n>

expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

1
is a fixed value that you can use to set a constant style element.

Example: These statements set the cellvalue Frequency background to gray:

define cellvalue Frequency;
other--statements ...;
cellstyle 1 as {backgroundcolor=gray};

end;

VAL
is the value of the current cell.

Example: The following statements change the foreground color of the cellvalue
Percent depending on its magnitude:

define cellvalue Percent;
other--statements ...;
cellstyle _val_ > 75.00 as {color=red},

val > 50.00 as {color=orange},
val > 25.00 as {color=green};

end;

comparison-operator
compares a variable with a value or with another variable.

446 CELLSTYLE AS Statement � Chapter 9

Table 9.7 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Tip: Using an expression of 1 as the last expression in the CELLSTYLE AS
statement sets the style element for any cells that did not meet an earlier
condition.

Options

Note: Neither style-attribute-specification nor style-element-name is required.
However, you must use at least one of them. �

style-attribute-specification
describes a style attribute to set. Each style-attribute-specification has this general
form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can set in a column template, see
“Style Attributes and Their Values” on page 498.

Default: If you do not specify any style attributes to modify, ODS uses the
unmodified style-element-name.

style-element-name
is the name of the style element that displays the data in the column. The style
element must be part of a style that is registered with the Output Delivery System.
SAS provides some styles. You can create customized styles by using PROC
TEMPLATE (see “DEFINE STYLE Statement” on page 490). By default, ODS
displays different parts of ODS output with different style elements. For example, by
default, the data in a column is displayed with the style element Data. The style
elements that you would probably use with the CELLSTYLE AS statement in a
column template are the following.

� Data

� DataFixed
� DataEmpty
� DataEmphasis

� DataEmphasisFixed
� DataStrong

� DataStrongFixed

The style element provides the basis for displaying the column. Additional style
attributes that you provide can modify the display.

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DYNAMIC Statement 447

Default: Data
See also: “Viewing the Contents of a Style” on page 538
See also: “Working with Styles” on page 538

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Tip: A dynamic variable that is defined in a template is available to that template and
all the templates that it contains.

DYNAMIC dynamic-variable(s) ;

Required Arguments

dynamic- variable(s)
is a variable that is defined by SAS in the crosstabulation template. After a dynamic
variable has been defined, you can use it in the TEXT statement within a footer or
header template.

FMISSING
is the number of missing values in the table.
Requirement: The FMISSING dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.

NOTITLE
is set to 1 if the PROC FREQ’s NOTITLE option was used, and it is set to 0 if the
NOTITLE option was not used.
Requirement: The NOTITLE dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.

SAMPLESIZE
is set to 0 if the table is empty. Otherwise, it is set to 1.
Requirement: The SAMPLESIZE dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.

STRATNUM
is the current stratum number if the table has multiple strata. If the table has
only one stratum, then the value is 0.
Requirement: The STRATNUM dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.
Featured in: Example 1 on page 460

STRATAVARIABLENAMES
is a string that identifies the current stratum by the name of the stratum variables.

var-1=value-1<var-n=value-n>

var-1–var-n
specifies the stratum variables.

448 NOTES Statement � Chapter 9

value-1–value-n
specifies the values of the stratum variables.
Tip: The value is undefined if the table has only one stratum.
Requirement: The DYNAMIC statement must specify the

STRATAVARIABLELABELS dynamic variables before the dynamic variables
can be used in an expression.

STRATAVARIABLELABELS
is a string that identifies the current stratum by the label of the stratum variables.

var-1=value-1<var-n=value-n>

var-1–var-n
specifies the stratum variables.

value-1–value-n
specifies the values of the stratum variables.
Tip: The value is undefined when the table has only one stratum.

Requirement: The DYNAMIC statement must specify the
STRATAVARIABLELABELS dynamic variables before you can use the dynamic
variables in an expression.

Featured in: Example 1 on page 460 and Example 2 on page 469

NOTES Statement

Provides information about the template.

Tip: The NOTES statement becomes part of the compiled template, which you can view
with the SOURCE statement. SAS comments do not become part of the template.

NOTES ’text’;

Required Arguments

’text’
provides information about the template.

END Statement

Ends the cellvalue template.

END;

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DEFINE HEADER Statement 449

CELLVALUE Statement

Specifies the order in which the cellvalues are stacked in the cells.

Interaction: If a cellvalue symbol that was specified by the DEFINE CELLVALUE
statement is not present in the list, it will not appear in the crosstabulation table.

Featured in: Example 1 on page 460

CELLVALUE cellvalue(s);

Required Arguments

cellvalue(s)
specifies one of the nine possible cellvalues created by the DEFINE CELLVALUE
statement. cellvalues are ordered from the top to the bottom.

See also: “DEFINE CELLVALUE Statement” on page 441

DEFINE FOOTER Statement

Creates a template for a footer.

Featured in: Example 1 on page 460

DEFINE FOOTER symbol;

<attribute-1;><…attribute-n>;

DYNAMIC variable-1<’text-1’> <… variable-n<’text-n’>>;

NOTES ’text’;

TEXT header-specification </ expression>;
END;

The substatements in DEFINE FOOTER and the footer attributes are the same as
the substatements in DEFINE HEADER and the header attributes. For details about
substatements and footer attributes, see the “DEFINE HEADER Statement” on page
449.

DEFINE HEADER Statement

Creates a template for a header.

Featured in: Example 1 on page 460

450 DEFINE HEADER Statement � Chapter 9

DEFINE HEADER symbol;
<attribute-1;><…attribute-n>;
DYNAMIC variable-1<’text-1’> <… variable-n<’text-n’>>;
NOTES ’text’;
TEXT header-specification </ expression>;
END;

Table 9.8 DEFINE HEADER Statements

Task Statement

Set one or more header attributes header-attributes

Define a symbol that references a value that the data
component supplies from the procedure

DYNAMIC

Provide information about the crosstabulation table NOTES

End a header template END

Specify the text of the header or the footer TEXT

Required Arguments

symbol
specifies a name to be referenced by the HEADER statement.

DEFINE HEADER and DEFINE FOOTER Attribute Statements
This section lists all the attributes that you can use in a header or footer template.

Table 9.9 DEFINE HEADER and DEFINE FOOTER Attribute Statements

Task Attribute

Specify alignment for headers and footers that wrap CINDENT=

Specify the number of blank lines to place between
the current header and the next header or between
the current footer and the previous footer

SPACE=

Specify the style element and any changes to its
attributes to use for the header or footer

STYLE=

CINDENT=’character’
specifies alignment for headers or footers that wrap. If a header or footer is too wide
to fit on a single line, insert the specified character at the column position at which
the second and subsequent lines should start. The first use of the CINDENT
character determines the column position. For example, the following TEXT
statement makes wrapped lines start at the same column as the left parenthesis:

text _COL_NAME_ "(;" _COL_LABEL_ ")"; CINDENT=’;’;

TEMPLATE Procedure: Creating Crosstabulation Table Templates � DEFINE HEADER Statement 451

SPACE=positive-integer
specifies the number of blank lines to place between the current header and the next
header or between the current footer and the previous footer.
Default: 0 for headers and 1 for footers
Tip: The SPACE= attribute is valid only in the LISTING destination.
Featured in: Example 1 on page 460

STYLE=<[style-element-specification(s)]>
specifies the style element and any changes to its attributes to use for the current
column. Neither style-attribute-specification nor style-element-name is required.
However, you must use at least one of them.

Note: You can use braces ({ and }) instead of square brackets ([and]). �

style-element-name
is the name of the style element to use to display the data in the column. The
style element must be part of a style template that is registered with the Output
Delivery System. SAS provides some styles. You can create customized styles with
PROC TEMPLATE. For details, see “DEFINE STYLE Statement” on page 490. By
default, ODS produces different parts of ODS output with different elements. For
example, by default, a table header is displayed with the style element Header.
The style elements that you would most likely use with the STYLE= attribute for
a table header are as follows:

� Header
� HeaderFixed
� HeaderEmpty
� HeaderEmphasis
� HeaderEmphasisFixed
� HeaderStrong
� HeaderStrongFixed

The style elements that you would most likely use with the STYLE= attribute
for a footer are as follows:

� Footer
� FooterFixed
� FooterEmpty
� FooterEmphasis
� FooterEmphasisFixed
� FooterStrong
� FooterStrongFixed

452 DYNAMIC Statement � Chapter 9

The style element provides the basis for displaying the header or footer.
Additional style attributes that you provide can modify the display.

For information on viewing a style template and the available style elements,
see “Viewing the Contents of a Style” on page 538. For information about the
default style template that ODS uses, see “Working with Styles” on page 538.

style-element-name is either the name of a style element or a variable whose
value is a style element.

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can specify, see “Style
Attributes and Their Values” on page 498.

Tip: The STYLE= attribute is valid only in the markup family, printer family, and
RTF destinations.

Tip: If you use the STYLE= attribute inside a quoted string, then add a space
before or after the carriage return to prevent errors. SAS does not interpret a
carriage return as a space. You must explicitly specify spaces in quoted strings.

Featured in: Example 1 on page 460

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Tip: A dynamic variable that is defined in a template is available to that template and
all the templates that it contains.

DYNAMIC dynamic-variable(s) ;

Required Arguments

dynamic- variable(s)
is a variable that is defined by SAS in the crosstabulation template. After a dynamic
variable has been defined, you can use it in the TEXT statement within a footer or
header template.

FMISSING
is the number of missing values in the table.

Requirement: The FMISSING dynamic variable must be specified by the
DYNAMIC statement before you can use the dynamic variable in an expression.

NOTITLE
is set to 1 if the PROC FREQ’s NOTITLE option was used, and it is set to 0 if the
NOTITLE option was not used.
Requirement: The NOTITLE dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.

SAMPLESIZE

TEMPLATE Procedure: Creating Crosstabulation Table Templates � NOTES Statement 453

is set to 0 if the table is empty. Otherwise, it is set to 1.
Requirement: The SAMPLESIZE dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.

STRATNUM
is the current stratum number if the table has multiple strata. If the table has
only one stratum, then the value is 0.
Requirement: The STRATNUM dynamic variable must be specified by the

DYNAMIC statement before you can use the dynamic variable in an expression.
Featured in: Example 1 on page 460

STRATAVARIABLENAMES
is a string that identifies the current stratum by the name of the stratum variables.

var-1=value-1<var-n=value-n>

var-1–var-n
specifies the stratum variables.

value-1–value-n
specifies the values of the stratum variables.
Tip: The value is undefined if the table has only one stratum.
Requirement: The DYNAMIC statement must specify the

STRATAVARIABLELABELS dynamic variables before the dynamic variables
can be used in an expression.

STRATAVARIABLELABELS
is a string that identifies the current stratum by the label of the stratum variables.

var-1=value-1<var-n=value-n>

var-1–var-n
specifies the stratum variables.

value-1–value-n
specifies the values of the stratum variables.
Tip: The value is undefined when the table has only one stratum.

Requirement: The DYNAMIC statement must specify the
STRATAVARIABLELABELS dynamic variables before you can use the dynamic
variables in an expression.

Featured in: Example 1 on page 460 and Example 2 on page 469

NOTES Statement

Provides information about the column.

Tip: The NOTES statement becomes part of the compiled column template, which you
can view with the SOURCE statement. The SAS comments do not become part of the
template.

NOTES ’text’;

Required Arguments

454 TEXT Statement � Chapter 9

’text’
provides information about the column.

TEXT Statement

Specifies the text of the header or the footer.

Featured in: Example 1 on page 460

TEXT header-specification(s) </ option(s)>;

Required Arguments

header-specification(s)
specifies the text of the header. header-specification(s) can be any dynamic variable
that is specified by the DYNAMIC statement, or it can be one of the following:

dynamic-variable
is a variable that is automatically defined by SAS in the crosstabulation template.
dynamic-variable can be one of the following:

_COL_LABEL_
is the label of the column variable, which is the last variable in a table request.

_COL_NAME_
is the name of the column variable, which is the last variable in a table request.
If the column variable does not have a name, then the value of _COL_LABEL_
is an empty text string (“ ”).

_ROW_LABEL_
is the label of the row variable, which is the next to the last variable in a table
request. If the row variable does not have a label, the value of _ROW_LABEL_
is an empty text string (“ ”).

_ROW_NAME_
is the name of the row variable, which is the next to the last variable in a table
request.

text-specification(s)
specifies the text to use in the header. Each text-specification is one of the following:

� a quoted string
� a variable followed by an optional format. The variable is any variable that is

declared in a DYNAMIC statement or is any of the variables above.

Tip: If the quoted string is a blank and it is the only item in the header
specification, the header is a blank line.

TEMPLATE Procedure: Creating Crosstabulation Table Templates � TEXT Statement 455

Options

expression
is an expression that is evaluated for a header or footer. If expression is omitted, the
default is 1. Each DEFINE HEADER statement can contain any number of TEXT
statements. The template evaluates each expression in turn from top to bottom and
thereby determines the text of the header. The header-specification in the first TEXT
statement whose expression evaluates to true becomes the header text. After an
expression evaluates to true, the template examines no more TEXT statements. If no
expression is true, then the header is not used.

expression-1 <comparison-operator expression-n>

expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

constant
is a fixed value, such as a number or text string.

dynamic variable
is a variable that is defined by SAS in the crosstabulation template or by the
DYNAMIC statement within a header or footer template.

_COL_LABEL_
specifies the label of the column variable, which is the last variable in a table
request. If the column variable does not have a label, then the value of
_COL_LABEL_ is an empty text string (“ ”).

_COL_NAME_
specifies the name of the column variable, which is the last variable in a
table request. If the column variable does not have a name, then the value of
_COL_NAME_ is an empty text string (“ ”).

FMISSING
is the number of missing values in the table.

Requirement: The FMISSING dynamic variable must be specified by the
DYNAMIC statement before you can use it in an expression.

NOTITLE
is set to 1 if PROC FREQ’s NOTITLE option was used, and it is set to 0 if the
NOTITLE option was not used.

Requirement: The NOTITLE dynamic variable must be specified by the
DYNAMIC statement before you can use it in an expression.

_ROW_LABEL_
is the label of the row variable, which is the next to the last variable in a
table request. If the row variable does not have a name, then the value of
_ROW_LABEL_ is an empty text string (“ ”).

_ROW_NAME_
specifies the name of the row variable, which is the next to the last variable
in a table request. If the row variable does not have a name, then the value
of _ROW_NAME_ is an empty text string (“ ”).

SAMPLESIZE
is set to 0 if the table is empty. Otherwise, it is set to 1.

456 TEXT Statement � Chapter 9

Requirement: The SAMPLESIZE dynamic variable must be specified by the
DYNAMIC statement before you can use it in an expression.

STRATNUM
is the current stratum number if the table has multiple strata. If the table
has only one stratum, then the value is 0.

Requirement: The STRATNUM dynamic variable must be specified by the
DYNAMIC statement before you can use it in an expression.

STRATAVARIABLENAMES
is a string that identifies the current stratum by the name of the stratum
variables.

var-1=value-1<var-n=value-n>

var-1–var-n
specifies the stratum variables.

value-1–value-n
specifies the values of the stratum variables.

Tip: The value is undefined when the table has only one stratum.

Requirement: The STRATAVARIABLENAMES dynamic variable must be
specified by the DYNAMIC statement before you can use it in an
expression.

STRATAVARIABLELABELS
is a string that identifies the current stratum by the label of the stratum
variables. STRATAVARIABLELABELS has the following form:

var-1=value-1<var-n=value-n?>

var-1–var-n
specifies the stratum variables.

value-1–value-n
specifies the values of the stratum variables.

Tip: The value is undefined when the table has only one stratum.

Requirement: The DYNAMIC statement must specify the
STRATAVARIABLELABELS dynamic variables before you can use them in
an expression.

comparison-operator
compares a variable with a value or another variable.

Table 9.10 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Working with the CrossTabFreqs Template 457

END Statement

END;

END Statement

Ends the crosstabulation template.

Featured in: Example 1 on page 460

END;

Concepts: Crosstabulation Output and the TEMPLATE Procedure

Working with the CrossTabFreqs Crosstabulation Table Template
When creating your own crosstabulation table template, you always define the new

table with the same name as the existing table, which is Base.Freq.CrossTabFreqs. By
default, the existing crosstabulation table that PROC FREQ creates is stored in the
SASHELP.TMPLMST template store.

With PROC TEMPLATE, you can create a modified version of
Base.Freq.CrossTabFreqs that you can save in a different template store by using the
ODS PATH statement. All crosstabulation templates must have the same name. If you
want to have multiple crosstabulation templates, put each one in a different template
store. Then you can use the ODS PATH statement to add the template store that
contains the version of the crosstabulation template you want to use.

For example, suppose that you have a crosstabulation template in the template store
Corporat.Template and another crosstabulation template in Govment.Templat. In the
following code, the first ODS PATH statement adds the template store
Corporat.Templat. The first PROC FREQ code is then formatted using the
crosstabulation table template from Corporat.Templat. The second ODS PATH
statement removes Corporat.Templat, and the third ODS PATH statement adds
Govment.Templat. The last PROC FREQ step then uses the crosstabulation template
from Corporat.Templat.

ods path(prepend) corporat.templat(read);
... proc freq code ...
ods path(remove) corporat.templat;
ods path(prepend) govment.templat;
... proc freq code ...

458 What Makes the Crosstabulation Table Unique? � Chapter 9

For more information about the ODS PATH statement, see “ODS PATH Statement” on
page 206.

What Makes the Crosstabulation Table Unique?
Crosstabulation tables produced by PROC FREQ are different from other tables that

SAS produces. Most other tables are composed of rows and columns with one value for
each row-column combination. However, the crosstabulation table has these distinctive
characteristics:

multiple values per cell
The crosstabulation table can have up to nine values for each row-column
combination, depending on the options specified by the TABLES statement. Most
other tables that SAS creates have only one value for each row-column
combination.

legend
Crosstabulation tables have a separate box, which is called a legend, to contain the
labels for the cellvalues. No other table that SAS produces has a legend.

row variable column
The far left column contains the row variable values. Each value in this column
provides a label for the row in the same way that the column variable values
provide labels for the columns.

column variable headers
Each value in these headers provides a label for the columns of the table.

row and column totals
The far right column contains the row totals. The bottom row contains the column
totals.

grand total cell
The grand total cell is the last cell of the row and column totals.

Comparison Between Table Templates and Crosstabulation Table
Templates

Because the crosstabulation table is unique, the syntax used to create
crosstabulation templates differs significantly from other table templates.

� The crosstabulation template has no parent template, and it cannot serve as a
parent to another template.

� Most of the attributes, such as CENTER and PANELS=, that are defined for
classic table templates are not defined in the crosstabulation table template.

� Crosstabulation table templates use DEFINE CELLVALUE blocks instead of the
DEFINE COLUMN blocks that are used in other table templates.

� Crosstabulation table templates use the CELLVALUE statement instead of the
COLUMN statement that is used in other table templates.

� Both crosstabulation table templates and other table templates use DEFINE
HEADER and DEFINE FOOTER blocks. However, the attributes that can be used
in each of these blocks differ.

� DEFINE HEADER and DEFINE FOOTER blocks can contain multiple TEXT
statements only in crosstabulation table templates. ODS then chooses which
TEXT statement to use at execution time.

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Crosstabulation Table Regions and Attributes 459

� A TEXT statement can specify a WHERE expression only in crosstabulation table
templates. ODS uses the WHERE expression to determine whether to use (the
TEXT statement) text as the header text.

� The CELL_STYLE, COLS_HEADER, COL_TOTAL_STYLE, COL_VAR_STYLE,
GRAND_TOTAL_STYLE, LEGEND_STYLE, ROWS_HEADER, and
ROW_VAR_STYLE attributes are unique to the crosstabulation table.

� The ROWS_HEADER and COLS_HEADER attributes are unique to the
crosstabulation table.

� The NVAR, MVAR, and TRANSLATE-INTO statements are not supported for
crosstabulation templates.

Crosstabulation Table Regions and Corresponding Attributes
When creating a crosstabulation template, you can use attributes to modify individual

table regions. The following figure and corresponding table identify the different parts
of the crosstabulation table and the attributes that control the style of each part.

Display 9.3 Crosstabulation Table Regions That Can Be Modified

1 11 10

2

3

4

5 6

9

8

7

The FREQ Procedure

Most regions use DEFINE CROSSTABS style attributes to specify a style. The
following table show the style attribute that effects each table region. For complete
documentation on DEFINE CROSSTABS attributes, see “DEFINE CROSSTABS
Attributes” on page 435. Headers and footers use the STYLE= attribute that is valid for
the DEFINE HEADER and DEFINE FOOTER statements. For information on the
STYLE= attribute, see “DEFINE HEADER and DEFINE FOOTER Attribute
Statements” on page 450.

460 Examples: Modifying Crosstabulation Output Using the TEMPLATE Procedure � Chapter 9

Table 9.11 Table Region and Corresponding Style Attribute

Item Crosstabulation Table Region Style Attribute

u Legend LEGEND_STYLE=

v Row variable name ROWS_HEADER=

w Row variable value ROW_VAR_STYLE=

x Data cell CELL_STYLE=

y Column total COL_TOTAL_STYLE=

U Footer STYLE=

V Grand total GRAND_TOTAL_STYLE=

W Row total ROW_TOTAL_STYLE

X Column variable name COLS_HEADER=

at Header STYLE=

ak Column variable value COL_VAR_STYLE=

Examples: Modifying Crosstabulation Output Using the TEMPLATE
Procedure

Example 1: Creating a Customized Crosstabulation Table Template with No
Legend

PROC TEMPLATE features:
DEFINE CROSSTABS statement:

crosstabs-attributes statements
CELLVALUE statement
DEFINE CELLVALUE statement:

CELLSTYLE AS statement
END statement
FORMAT= attribute
HEADER= attribute
LABEL= attribute

DEFINE HEADER statement:
END statement
SPACE= attribute
STYLE= attribute
TEXT statement

DEFINE FOOTER statement:
END statement
DYNAMIC statement
SPACE= attribute
STYLE= attribute
TEXT statement

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 461

END statement
FOOTER statement
HEADER statement
NOTES statement

Other ODS features:
ODS HTML statement
ODS PATH statement
DEFINE STYLE statement

Program Description
The following example creates the crosstabulation table template

Base.Freq.CrossTabFreqs. The template has the following features:
� footnote used to display cellvalue labels instead of a legend
� modified headers and footers
� variable labels used in headers
� modified table regions

Program

Create the user-defined formats and create the data set. The FORMAT procedure creates
two user-defined formats that can be used in the crosstabulation template. The DATA step
creates the Gov data set.

Proc Format;
Value Govtfmt -3=’Council Manager’

0=’Commission’
3=’Mayor Council’
.N=’Not Applicable’
.=’ ?’;

Value Robfmt 1=’100 or Less’
2=’101-200’
3=’201-300’
4=’Over 300’
.N=’Not Known’
.=’ ?’;

Value Colfg 1=’yellow’
2=’red’
3=’blue’
4=’purple’
.N=’green’
.=’black’
other=’black’;

Value Rowfg -3=’red’
0=’purple’
3=’blue’
.N=’green’
.=’black’
other=’black’;

462 Program � Chapter 9

run;

data gov;
Label Citygovt=’City Government Form’

Robgrp=’Number of Meetings Scheduled’;
Input Citygovt Robgrp Weight; Missing N;
Format Citygovt Govtfmt. Robgrp Robfmt.;
LOOP: OUTPUT; WEIGHT=WEIGHT-1; IF WEIGHT>0 THEN GOTO LOOP;
DROP WEIGHT;

datalines;
0 1 6
0 3 3
0 2 7
0 4 5
N N 10
-3 1 47
-3 3 49
-3 2 63
-3 4 52
. 2 1
3 1 31
3 2 37
3 3 27
3 4 55
3 . 1
;

Establish the ODS path and create the White style. The ODS PATH statement specifies
the locations to write to or read from when creating the PROC TEMPLATE templates. The
PROC TEMPLATE statement, DEFINE STYLE statement, and collection of STYLE statements
create the style template White. The ODS NOPROCTITLE statement suppresses the writing of
the title of the FREQ procedure.

ods path (prepend) work.templat(update);
ods noproctitle;

proc template;
define style white;

parent=styles.default;
style body /

backgroundcolor=white;
style systemtitle /

backgroundcolor=white
fontsize=6
fontweight=bold
fontstyle=italic;

style systemfooter /
backgroundcolor=white
fontsize=2
fontstyle=italic;

style proctitle /

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 463

backgroundcolor=white
color=#6078bf
fontweight=bold
fontstyle=italic;

end;

Create the crosstabulation template Base.Freq.CrossTabFreqs. The DEFINE statement
creates the crosstabulation template Base.Freq.CrossTabFreqs in the first template store in the
path for which you have Write access (Work, in this example). The NOTES statement provides
information about the crosstabulation table.

define crosstabs Base.Freq.CrossTabFreqs;
notes "Crosstabulation table";

Change the appearance of individual table regions. The following DEFINE CROSSTABS
statement attributes modify the appearance of individual table regions. Each attribute
corresponds to a specific region of the table. To see which attribute corresponds to which table
region, see “Crosstabulation Table Regions and Corresponding Attributes” on page 459.

style=table {backgroundcolor=#BFCFFF};
cell_style=data {backgroundcolor=#FFFFF0};
row_var_style=rowheader {backgroundcolor=#BFCFFF color=rowfg.};
col_var_style=header {backgroundcolor=#BFCFFF color=colfg.};
row_total_style=data {backgroundcolor=#F0F0F0};
col_total_style=data {backgroundcolor=#F0F0F0};
grand_total_style=datastrong {backgroundcolor=#F0F0F0};
legend_style=header {backgroundcolor=#BFCFFF color=#6078bf fontstyle=italic};

Specify a row header, a column header, and a label for the table. The ROWS_HEADER=
style attribute specifies RowsHeader as the header for rows. The COLS_HEADER= style
attribute specifies ColsHeader as the header for columns. The LABEL= attribute specifies a
label for the crosstabulation template. The label appears in the Results window.

rows_header=RowsHeader cols_header=ColsHeader;
label = "Frequency Counts and Percentages";

Create the TableOf header template. The DEFINE HEADER statement and its attributes
create the header template TableOf, which is specified by the HEADER statement later on in
the program.

The TEXT statement specifies the text of the header by using dynamic variables that represent
label variables and names. The TEXT statements also use expressions to determine if row labels
and column labels are assigned to the row and column variables. Only TEXT statements that
have true expressions are displayed in the output. In this example, both the row label and the
column label exist. Therefore the first TEXT statement is used and the text resolves to: "Table
of City Government Form by Number of Meetings Scheduled".

The STYLE= attribute specifies style information for the header.

define header TableOf;
text "Table of " _ROW_LABEL_ " by " _COL_LABEL_ / _ROW_LABEL_ ^= ’’

464 Program � Chapter 9

& _COL_LABEL_ ^= ’’;
text "Table of " _ROW_LABEL_ " by " _COL_NAME_ / _ROW_LABEL_ ^= ’’;
text "Table of " _ROW_NAME_ " by " _COL_LABEL_ / _COL_LABEL_ ^= ’’;
text "Table of " _ROW_NAME_ " by " _COL_NAME_;
style=header {backgroundcolor=#BFCFFF color=#6078bf fontstyle=italic};
end;

Create the RowsHeader header template. The DEFINE HEADER statement creates the
header RowsHeader. RowsHeader is specified as a row header by the preceding
ROWS_HEADER= style attribute. The TEXT statements specify the text of the header by using
dynamic variables that represent label variables and names. The first TEXT statement uses an
expression to determine if a label is assigned to the variable. If there is no label, the next TEXT
statement which specifies the row name will be used. In this example there is a row label for
the row variable, so in the output, _ROW_LABEL_ resolves to “City Government Form”.

The STYLE= attribute specifies style information for the header, and the SPACE attribute
specifies that the current header and the previous header should have one blank line between
them.

define header RowsHeader;
text _ROW_LABEL_ / _ROW_LABEL_ ^= ’’;
text _ROW_NAME_;
style=header {backgroundcolor=#BFCFFF color=#6078bf fontstyle=italic};
space=0;
end;

Create the ColsHeader header template. The DEFINE HEADER statement creates the
header ColsHeader. ColsHeader is specified as a column header by the preceding
COLS_HEADER= style attribute. The TEXT statements specify the text of the header by using
dynamic variables that represent label variables and names. The first TEXT statement uses an
expression to determine if a label is assigned to the column variable. If there is no label, the
next TEXT statement, which specifies the row name, will be used. In this example there is a
column label, so in the output, _COL_LABEL_ resolves to “Number of Meetings Scheduled”.

The STYLE= attribute specifies style information for the header, and the SPACE attribute
specifies that the current header and the previous header should have one blank line between
them.

define header ColsHeader;
text _COL_LABEL_ / _COL_LABEL_ ^= ’’;
text _COL_NAME_;
style=header {backgroundcolor=#BFCFFF color=#6078bf fontstyle=italic};
space=1;
end;

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 465

Create the ControllingFor header template. The DEFINE HEADER statement and its
attributes create the header template ControllingFor. The DYNAMIC statement declares
dynamic variables so that they can be used in expressions. The TEXT statement specifies the
text of the header by using dynamic variables that represent label variables and names. In this
example, the expression in the TEXT statement resolves to false, so the ControllingFor header
does not show up in the output.

The STYLE= attribute specifies style information for the headers.

define header ControllingFor;
dynamic StratNum StrataVariableNames StrataVariableLabels;
text "Controlling for" StrataVariableNames / StratNum > 0;
style=header;
end;

Create footer templates. Each of these DEFINE FOOTER statements and its attributes
creates a footer template. For the footers to show up in the output, they must be specified by the
FOOTER statement.

The DYNAMIC statements declare the dynamic variables FMissing and SampleSize, so that
they can be used in the TEXT statements.

The TEXT statements conditionally select text to use as footers. In the first TEXT statement,
the expression is true, because FMissing is not 0. Therefore the first TEXT statement is
displayed in the output. In the second TEXT statement, the expression resolves to false, so the
NoObs footer does not appear in the output.

The STYLE attribute specifies style information for the footers, and the SPACE attribute
specifies that the current footer and the previous footer should have one blank line between
them.

define footer Missing;
dynamic FMissing;
text "Frequency Missing = " FMissing -12.99 / FMissing ^= 0;
style=header {backgroundcolor=#BFCFFF color=#6078bf fontstyle=italic};
space=1;
end;

define footer NoObs;
dynamic SampleSize;
text "Effective Sample Size = 0" / SampleSize = 0;
space=1;
style=header;
end;

466 Program � Chapter 9

Create the cellvalue definitions. The DEFINE CELLVALUE statements define the values
that will appear in the cells of the crosstabulation table.

The HEADER= attribute specifies the text that appears in the legend. Because there is no text
specified for any of these cellvalues, there is no legend in the output.

The FORMAT= attribute specifies the format to use for the cellvalue. The
DATA_FORMAT_OVERRIDE=ON attribute specifies to use the format specified in the data
component. The PRINT=ON attribute specifies the cellvalue to appear in the table.

The CELLSTYLE AS statement uses expressions to set the style element of the cells
conditionally according to the values of the variables for the Frequency cellvalue. The _VAL_
variable represents the value of a cell. Therefore, in this example, if the value in a cell is less
than ten, then the font color for the DataStrong style element is green. If the value in the cell is
between 40 and 50, then the font color for the DataStrong style element is orange. If the value
is greater then 50, then the font color is red.

define cellvalue Frequency;
header="";
label="Frequency Count";
format=BEST7.; data_format_override=on; print=on;
cellstyle _val_ < 10 as datastrong {color=green},

val > 40 & _val_ < 50 as datastrong {color=orange},
val >= 50 as datastrong {color=red};

end;

define cellvalue Expected;
header="";
label="Expected Frequency";
format=BEST6. data_format_override=on print=on;
end;

define cellvalue Deviation;
header="";
label="Deviation from Expected Frequency";
format=BEST6. data_format_override=on print=on;
end;

define cellvalue CellChiSquare;
header="";
label="Cell Chi-Square";
format=BEST6. print=on;
end;

define cellvalue TotalPercent;
header="";
label="Percent of Total Frequency";
format=6.2 print=on;
end;

define cellvalue Percent;
header="";
label="Percent of Two-Way Table Frequency";
format=6.2 print=on;
end;

define cellvalue RowPercent;
header="";

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 467

label="Percent of Row Frequency";
format=6.2 print=on;
end;

define cellvalue ColPercent;
header="";
label="Percent of Column Frequency";
format=6.2 print=on;
end;

define cellvalue CumColPercent;
header="";
label="Cumulative Percent of Column Frequency";
format=6.2 print=on;
end;

Specify which cellvalues appear in the table and the order in which the cellvalues are
stacked in the cells. The CELLVALUE statement specifies which cellvalues appear in the
output. In this example, all of the cellvalues that were created appear in the table. The
CELLVALUE statement also specifies the order in which the cellvalues are stacked in the cells.

cellvalue
Frequency Expected Deviation
CellChiSquare TotalPercent Percent
RowPercent ColPercent CumColPercent;

Specify which headers and footers will appear in the output. The HEADER statement
specifies which header templates are applied to your output. The FOOTER statement specifies
which footer templates are applied to your output. In order for any of the headers and footers
defined by a DEFINE statement to appear in your output, they must be specified by the
FOOTER or HEADER statement.

header TableOf ControllingFor;
footer NoObs Missing;
end;

Create the HTML output and specify the name of the HTML file. The ODS HTML
statement opens the HTML destination and creates HTML output. The STYLE= option
specifies template White for the output style.

ods html file=’MyCrosstabsTable.html’ style=white;

Specify a title and footnote, and suppress the printing of the procedure title. The
TITLE and FOOTNOTE statements specify titles and footnotes for the output. The ODS
NOPROCTITLE statement prevents the printing of the FREQ procedure’s title in the output.

title "City Government Form by Number of Meetings Scheduled";
footnote "Cellvalues are stacked in the following order:";
footnote2 "Frequency";
footnote3 "Percent";

468 Output � Chapter 9

footnote4 "Row Percent";
footnote5 "Column Percent";
ods noproctitle;

Create the crosstabulation table. The FREQ procedure creates a Citygovt by Robgrp
crosstabulation table.

proc freq;
tables citygovt*robgrp / missprint;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination, as well as all the files that are open for that destination.

ods html close;

Output

Display 9.4 Output Using Customized Crosstabulation Table Template

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Example 2: Creating a Customized Legend 469

Display 9.5 Output Using Default Crosstabulation Table

Example 2: Creating a Customized Legend
PROC TEMPLATE features:

DEFINE CROSSTABS statement:
crosstabs-attributes statements
CELLVALUE statement
DEFINE CELLVALUE statement:

CELLSTYLE AS statement
END statement
FORMAT= attribute
HEADER= attribute
LABEL= attribute

DEFINE HEADER statement:
END statement
SPACE= attribute
STYLE= attribute
TEXT statement

DEFINE FOOTER statement:
END statement
DYNAMIC statement
SPACE= attribute
STYLE= attribute
TEXT statement

470 Program Description � Chapter 9

E

END statement
FOOTER statement
HEADER statement
NOTES statement

Other ODS features:
ODS HTML statement
ODS PATH statement
DEFINE STYLE statement

Program Description
The following example creates a new crosstabulation table template for the

CrossTabFreqs table. The template has the following features:
� a legend with customized text
� modified headers and footers
� variable labels used in headers
� modified table regions
� customized styles for cellvalues

Program

Create the user-defined formats and the data set. The FORMAT procedure creates two
user-defined formats that can be used in the crosstabulation template. The DATA step creates
the Gov data set.

Proc Format;
Value Govtfmt -3=’Council Manager’

0=’Commission’
3=’Mayor Council’
.N=’Not Applicable’
.=’ ?’;

Value Robfmt 1=’100 or Less’
2=’101-200’
3=’201-300’
4=’Over 300’
.N=’Not Known’
.=’ ?’;

Value colfg 1=’yellow’
2=’red’
3=’blue’
4=’purple’
.N=’green’
.=’black’
other=’black’;

Value rowfg -3=’red’
0=’purple’
3=’blue’
.N=’green’

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 471

.=’black’
other=’black’;

run;

data gov;
Label Citygovt=’City Government Form’

Robgrp=’Number of Meetings Scheduled’;
Input Citygovt Robgrp Weight; Missing N;
Format Citygovt Govtfmt. Robgrp Robfmt.;
LOOP: OUTPUT; WEIGHT=WEIGHT-1; IF WEIGHT>0 THEN GOTO LOOP;
DROP WEIGHT;

datalines;
0 1 6
0 3 3
0 2 7
0 4 5
N N 10
-3 1 47
-3 3 49
-3 2 63
-3 4 52
. 2 1
3 1 31
3 2 37
3 3 27
3 4 55
3 . 1
;

Establish the ODS path. The ODS PATH statement specifies the locations to write to or read
from when you create the PROC TEMPLATE templates.

ods path (prepend) work.templat(update);

Create the crosstabulation template Base.Freq.CrossTabFreqs. The DEFINE statement
creates the crosstabulation template Base.Freq.CrossTabFreqs in the first template store in the
path for which you have Write access. The NOTES statement provides information about the
crosstabulation table.

proc template;
define crosstabs Base.Freq.CrossTabFreqs;

notes "Crosstabulation table with legend";

472 Program � Chapter 9

Specify a row header, a column header, and a label for the table. The ROWS_HEADER=
style attribute specifies RowsHeader as the header for rows. The COLS_HEADER= style
attribute specifies ColsHeader as the header for columns. The LABEL= attribute specifies a
label for the crosstabulation template. The GRAND_TOTAL_STYLE= changes the FontWeight
style attribute in the Data style element to bold. This change affects the values in the rightmost
column of the last row in the table.

rows_header=RowsHeader cols_header=ColsHeader;
label = "Frequency Counts and Percentages";
grand_total_style=data {fontweight=bold};

Create the ControllingFor header template. The DEFINE HEADER statement and its
attributes create the header template ControllingFor. The DYNAMIC statement declares
dynamic variables so that they can be used in expressions. The TEXT statement specifies the
text of the header by using dynamic variables that represent label variables and names. In this
example, the expression in the TEXT statement resolves to false, so the ControllingFor header
does not show up in the output.

The STYLE= attribute specifies style information for the headers.

define header ControllingFor;
dynamic StratNum StrataVariableNames StrataVariableLabels;
text "Controlling for" StrataVariableNames / StratNum > 0;
style=header;
end;

Create the RowsHeader header template. The DEFINE HEADER statement creates the
header RowsHeader, which is specified by the preceding ROWS_HEADER= style attribute. The
TEXT statements specify the text of the header by using dynamic variables that represent label
variables and names. The first TEXT statement uses an expression to determine if a label is
assigned to the row variable. If there is no label, the next TEXT statement is used, which
specifies the row name. In this example there is a row label for the row variable, so in the
output, _ROW_LABEL_ resolves to "City Government Form".

The STYLE= attribute specifies style information for the header. The SPACE= attribute
specifies that the current header and the previous header should have one blank line between
them. The CINDENT= attribute specifies that wrapped lines start at the same column as the
left parenthesis.

define header RowsHeader;
text _ROW_LABEL_ / _ROW_LABEL_ ^= ’’;
text _ROW_NAME_;
space=0;
style=header;
cindent=’;’;
end;

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 473

Create the ColsHeader header template. The DEFINE HEADER statement creates the
header ColsHeader, which is specified by the preceding COLS_HEADER= style attribute. The
TEXT statements specify the text of the header by using dynamic variables that represent label
variables and names. The first TEXT statement uses an expression to determine if a label is
assigned to the variable. If there is no label, the next TEXT statement is used, which specifies
the row name. In this example there is a column label, so in the output, _COL_LABEL_ resolves
to "Number of Meetings Scheduled".

The STYLE= attribute specifies style information for the header. The SPACE= attribute
specifies that the current header and the previous header should have one blank line between
them. The CINDENT= attribute specifies that wrapped lines start at the same column as the
left parenthesis.

define header ColsHeader;
text _COL_LABEL_ / _COL_LABEL_ ^= ’’;
text _COL_NAME_;
space=1;
style=header;
cindent=’;’;
end;

Create the TableOf footer template. The DEFINE FOOTER statement and its attributes
create the footer template TableOf, which is specified by the FOOTER statement later on in the
program.

The TEXT statements specify the text of the header by using dynamic variables that represent
label variables and names, the NOTITLE option, and the current stratum number. The TEXT
statements use expressions with these variables to determine which text is displayed. Only the
TEXT statements that have a true expression are displayed in the output. In this example, the
only text statement that has a true expression is the fourth TEXT statement, and the text
resolves to: " City Government Form by Number of Meetings Scheduled".

define footer TableOf;
notes ’NoTitle is 1 if the NOTITLE option was specified.’;
dynamic StratNum NoTitle;
text "Table " StratNum 3. " of " _ROW_LABEL_ " by " _COL_LABEL_ / NoTitle = 0

& StratNum > 0 & _ROW_LABEL_ ^= ’’ & _COL_LABEL_ ^= ’’;
text "Table " StratNum 3. " of " _ROW_LABEL_ " by " _COL_NAME_ / NoTitle = 0

& StratNum > 0 & _ROW_LABEL_ ^= ’’ ;
text "Table " StratNum 3. " of " _ROW_NAME_ " by " _COL_LABEL_ / NoTitle = 0

& StratNum > 0 & _COL_LABEL_ ^= ’’;
text _ROW_LABEL_ " by " _COL_LABEL_ / NoTitle = 0 & _ROW_LABEL_ ^= ’’

& _COL_LABEL_ ^= ’’;
text _ROW_LABEL_ " by " _COL_NAME_ / NoTitle = 0 & _ROW_LABEL_ ^= ’’;
text _ROW_NAME_ " by " _COL_LABEL_ / NoTitle = 0 & _COL_LABEL_ ^= ’’;
text "Table " StratNum 3. " of " _ROW_NAME_ " by " _COL_NAME_ / NoTitle = 0

& StratNum > 0;
text _ROW_NAME_ " by " _COL_NAME_ / NoTitle = 0;
style=header;
end;

474 Program � Chapter 9

Create additional footer templates. Each of these DEFINE FOOTER statements and each of
its attributes creates a footer template. To apply these footers to your output, you must specify
them in the FOOTER statement.

The DYNAMIC statements declare the dynamic variables FMissing, Stratnum, NoTitle, and
SampleSize, so that they can be used in the TEXT statements.

The TEXT statements conditionally select text to use as footers. In the first TEXT statement,
the expression is true, because FMissing is not 0. Therefore, the first TEXT statement is
displayed in the output. In the second TEXT statement, the expression resolves to false, and the
NoObs footer does not appear in the output.

The STYLE attribute specifies style information for the footers. The SPACE attribute specifies
that the current footer and the previous footer should have one blank line between them.

define footer Missing;
dynamic FMissing;
text "Frequency Missing = " FMissing -12.99 / FMissing ^= 0;
space=1;
style=header;
end;

define footer NoObs;
dynamic SampleSize;
text "Effective Sample Size = 0" / SampleSize = 0;
space=1;
style=header;
end;

Create the cellvalue definitions. The DEFINE CELLVALUE statements define the values
that appear in the cells of the crosstabulation table.

The HEADER= attribute specifies the text that appears in the legend. The LABEL= attribute
specifies the label for the data set column that corresponds to the cellvalue. The LABEL=
attribute affects only the Output destination.

The DATA_FORMAT_OVERRIDE=ON attribute specifies to use the format specified in the data
component. The PRINT=ON attribute causes the cellvalue to appear in the table.

The CELLSTYLE AS statement uses expressions to conditionally set the style element of the
cells according to the values of the variables for the Percent cellvalue. The _VAL_ variable
represents the value of a cell. Therefore, in this example, if the value in a cell is less than ten,
then the font color for the DataStrong style element is green. If the value in the cell is greater
than twenty, the font color is #BF6930.

define cellvalue Frequency;
header="Frequency";
format=BEST7.;
label="Frequency Count";
data_format_override=on print=on;
end;

define cellvalue Expected;
header="Expected";
format=BEST6.;
label="Expected Frequency";
data_format_override=on print=on;
end;

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 475

define cellvalue Deviation;
header="Deviation";
format=BEST6.;
label="Deviation from Expected Frequency";
data_format_override=on print=on;
end;

define cellvalue CellChiSquare;
header="Cell Chi-Square";
format=BEST6.;
label="Cell Chi-Square";
print=on;
end;

define cellvalue TotalPercent;
header="Total Percent";
format=6.2;
label="Percent of Total Frequency";
print=on;
end;

define cellvalue Percent;
header="Percent";
format=6.2;
label="Percent of Two-Way Table Frequency";
print=on;
cellstyle _val_ > 20.0 as {color=#BF6930};
end;

define cellvalue RowPercent;
header="Row Percent";
format=6.2;
label="Percent of Row Frequency";
print=on;
end;

define cellvalue ColPercent;
header="Column Percent";
format=6.2;
label="Percent of Column Frequency";
print=on;
end;

define cellvalue CumColPercent;
header="Cumulative Column Percent";
format=6.2;
label="Cumulative Percent of Column Frequency";
print=on;

end;

476 Output � Chapter 9

Specify header and footer templates. The HEADER statement specifies the header
templates that are applied to your output. The FOOTER statement specifies the footer
templates that are applied to your output. In order for any of the headers and footers that were
defined by a DEFINE statement to appear in your output, they must be specified by the
FOOTER or HEADER statement.

header ControllingFor;
footer TableOf NoObs Missing;

Specify cellvalues and their order. The CELLVALUE statement specifies which cellvalues
will appear in the table and the order. In this example, all of the cellvalues that you created
appear in the table, in the order specified by the CELLVALUE statement.

cellvalue
Frequency Expected Deviation
CellChiSquare TotalPercent Percent
RowPercent ColPercent CumColPercent;

end;
run;

Specify a title, create the HTML output, and specify the name of the HTML file. The
TITLE statement provides a title for the output. The ODS HTML statement opens the HTML
destination and creates HTML output. The STYLE= option specifies the style template Ocean
for the output.

title "City Government Form by Number of Meetings Scheduled";
ods html file=’MyCrosstabsTableLegend.html’ style=ocean;

Create the crosstabulation table. The FREQ procedure creates a Citygovt by Robgrp
crosstabulation table.

proc freq;
tables citygovt*robgrp / missprint;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are open for that destination.

ods html close;

Output

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Output 477

Display 9.6 Output Using Customized Crosstabulation Table Template

Display 9.7 Output Using Default Crosstabulation Table

478 Example 3: Adding Custom Formats to Cellvalues � Chapter 9

Example 3: Adding Custom Formats to Cellvalues

PROC TEMPLATE features: EDIT statement
Other ODS features:

ODS HTML statement
ODS PATH statement

Program Description
This example does not use the DEFINE CROSSTABS statement. Instead, it uses the

EDIT statement to edit the crosstabulation table template Base.Freq.CrossTabFreqs
that was created in Example 2 on page 469 by changing the formats of several
cellvalues. In Example 2 on page 469, the following format values were used:

Frequency: BEST6
Percent, RowPercent, ColPercent: 6.2

In this example, the Frequency cellvalue is changed to COMMA12; and the Percent,
RowPercent, and ColPercent cellvalues are changed to 6.3.

Program

Create the user-defined formats and the data set. The FORMAT procedure creates four
user-defined formats that can be used in the crosstabulation template. The DATA step creates
the Gov data set.

Proc Format;
Value Govtfmt -3=’Council Manager’

0=’Commission’
3=’Mayor Council’
.N=’Not Applicable’
.=’ ?’;

Value rowfg -3=’red’
0=’purple’
3=’blue’
.N=’green’
.=’black’
other=’black’;

Value Robfmt 1=’100 or Less’
2=’101-200’
3=’201-300’
4=’Over 300’
.N=’Not Known’
.=’ ?’;

Value colfg 1=’yellow’
2=’red’
3=’blue’
4=’purple’
.N=’green’
.=’black’
other=’black’;

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Program 479

run;

data gov;
Label Citygovt=’City Government Form’

Robgrp=’Number of Meetings Scheduled’;
Input Citygovt Robgrp Weight; Missing N;
Format Citygovt Govtfmt. Robgrp Robfmt.;
LOOP: OUTPUT; WEIGHT=WEIGHT-1; IF WEIGHT>0 THEN GOTO LOOP;
DROP WEIGHT;

datalines;
0 1 6
0 3 3
0 2 7
0 4 5
N N 10
-3 1 47
-3 3 49
-3 2 63
-3 4 52
. 2 1
3 1 31
3 2 37
3 3 27
3 4 55
3 . 1
;

Establish the ODS path. The ODS PATH statement specifies the locations to write to or read
from when creating the PROC TEMPLATE templates. The ODS NOPROCTITLE statement
suppresses the title of the FREQ procedure.

ods noproctitle;
ods path (prepend) work.templat(update);

Edit the crosstabulation template Base.Freq.CrossTabFreqs. The EDIT statement
changes the crosstabulation table template Base.Freq.CrossTabFreqs that was created in
Example 2 on page 469.

proc template;
edit Base.Freq.CrossTabFreqs;

Apply new formats to the cellvalues Frequency, Percent, RowPercent, and ColPercent.
The FORMAT= attribute specifies a format for the cellvalues. The format COMMA12. is applied
to Frequency, and the format 6.3 is applied to Percent, RowPercent, and ColPercent.

edit Frequency;
format=COMMA12.;

end;
edit Percent;

480 Output � Chapter 9

format=6.3;
end;
edit RowPercent;

format=6.3;
end;
edit ColPercent;

format=6.3;
end;

end;
run;

Create the HTML output and specify the name of the HTML file. The ODS HTML
statement opens the HTML destination and creates HTML output. The STYLE= option specifies
the style template Ocean for the output.

ods html file="userfmt.html" style=ocean;

Create the crosstabulation table and add a title. The FREQ procedure creates a Citygovt
by Robgrp crosstabulation table. The TITLE statement specifies a title.

title "Applying Custom Formats to Cellvalues";
proc freq;

tables citygovt*robgrp / missprint;
run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are open for that destination.

ods html close;

Output

TEMPLATE Procedure: Creating Crosstabulation Table Templates � Output 481

Display 9.8 Crosstabulation Output with Custom Formats Applied to Cellvalues

482

483

C H A P T E R

10
TEMPLATE Procedure: Creating
ODS Graphics

Introduction to the Graph Template Language 483
STATGRAPH Syntax: TEMPLATE Procedure 484

Where to Go from Here 485

Introduction to the Graph Template Language
Graphics are an indispensable part of statistical analysis. Graphics reveal patterns,

identify differences, and provoke meaningful questions about your data. Graphics add
clarity to an analytical presentation and stimulate deeper investigation.

SAS 9.2 introduces the Graph Template Language (GTL), a powerful new language
for defining clear, effective, statistical graphics. The GTL enables you to generate
various types of plots, such as Model Fit plots, Distribution plots, Comparative plots,
Prediction Plots, and more.

The GTL applies accepted principles of graphics design to produce plots that are
clean and uncluttered. Colors, fonts, and relative sizes of graph elements are all
designed for optimal impact. By default, the GTL produces PNG files, which support
true color (the full 24-bit RGB color model) and enable visual effects such as
anti-aliasing and transparency, but retain a small file size. GTL statement options
enable you to control the content and appearance of the plot down to the smallest detail.

The GTL is designed to produce graphics with minimal syntax. The GTL uses a
flexible, building-block approach to create a graph by combining statements in a
template called a STATGRAPH template. STATGRAPH templates are defined with the
TEMPLATE procedure.

You can create custom graphs by defining your own STATGRAPH templates. To
create a custom graph, you must

1 define a STATGRAPH template with the TEMPLATE procedure
2 use the Graph Template Language to specify the parameters of your graph

3 associate your data with the template by using the SGRENDER procedure.

With a few statements, you can create the plots you need to analyze your data. For
example, you can create the following Model Fit plot with these statements:

Example Code 10.1 Template For Creating a Model Fit Plot

proc template;
define statgraph mytemplate;
beginGraph;

entrytitle "Model Weight by Height";

484 STATGRAPH Syntax: TEMPLATE Procedure � Chapter 10

layout overlay;
bandplot x=height limitupper=upper limitlower=lower;
scatterplot y=weight x=height;
seriesplot y=predict x=height;

endlayout;
endGraph;
end;
run;

proc sgrender data=sashelp.classfit
template=mytemplate;

run;

Display 10.1 Model Fit Plot Using Mytemplate and SASHELP.CLASSFIT

This example defines a STATGRAPH template named mytemplate, which uses
values from the data set SASHELP.CLASSFIT. This data set contains data variables
HEIGHT and WEIGHT and precomputed values for the fitted model (PREDICT) and
confidence band (LOWER and UPPER). The SGRENDER procedure uses the data in
SASHELP.CLASSFIT and the template mytemplate to render the graph. (This example
is member GTLMFIT1 in the SAS Sample Library.)

STATGRAPH Syntax: TEMPLATE Procedure
See: For complete documentation on the syntax and usage of the Graph Template
Language, see the following documentation:

� SAS/GRAPH: Graph Template Language Reference
� SAS/GRAPH: Graph Template Language User’s Guide

TEMPLATE Procedure: Creating ODS Graphics � Where to Go from Here 485

PROC TEMPLATE;
DEFINE STATGRAPH graph-path </ STORE=libref.template-store>;

DYNAMIC variable-1< ’text-1’><variable-n< ’text-n’>>;
MVAR variable-1< ’text-1’><variable-n< ’text-n’>>;
NMVAR variable-1< ’text-1’><variable-n< ’text-n’>>;
NOTES ’text’;
graph-template-language-statements
END;

END;

Where to Go from Here
� Creating statistical graphics with ODS: For reference information about the Graph

Template Language, see SAS/GRAPH: Graph Template Language Reference.
� Creating statistical graphics with ODS: For usage information about PROC

TEMPLATE and the Graph Template Language, see SAS/GRAPH: Graph
Template Language User’s Guide.

� Managing the various templates stored in template stores: For reference
information about the PROC TEMPLATE statements that help you manage and
navigate around the many ODS templates, see Chapter 8, “TEMPLATE Procedure:
Managing Template Stores,” on page 407.

� Modifying an existing style or creating your own style: For reference information
about the style definition statements in PROC TEMPLATE, see Chapter 11,
“TEMPLATE Procedure: Creating a Style Template (Definition),” on page 487.

486

487

C H A P T E R

11
TEMPLATE Procedure: Creating
a Style Template (Definition)

Overview: ODS Style Templates (Definitions) 487
Using the TEMPLATE Procedure to Create a Style 487

Terminology 488

What You Can Do with a Style 488

Style Syntax: TEMPLATE Procedure 489

PROC TEMPLATE Statement 490
DEFINE STYLE Statement 490

Style Attributes and Their Values 498

Concepts: Styles and the TEMPLATE Procedure 538

Viewing the Contents of a Style 538

Working with Styles 538

Finding and Viewing the Default Style for ODS Destinations 538
Modifying Style Elements in the Default Style for HTML and Markup Languages 539

ODS Styles with Graphical Style Information 539

Understanding Styles, Style Elements, and Style Attributes 540

Understanding Inheritance 543

Overview 543
Inheritance Between Styles 543

Inheritance Between Style Elements 544

Understanding Style References 544

Using the FROM Option 546

Inheritance Compatibility across Versions 548
Examples: Creating and Modifying Styles Using the TEMPLATE Procedure 551

Example 1: Creating a Stand-Alone Style 551

Example 2: Using User-Defined Attributes 557

Example 3: Using the CLASS Statement 564

Example 4: Defining a Table and Graph Style 570

Example 5: Defining Multiple Style Elements in One STYLE Statement 576
Example 6: Importing a CSS file 580

Example 7: Table Header and Footer Border Formatting 588

Overview: ODS Style Templates (Definitions)

Using the TEMPLATE Procedure to Create a Style
The TEMPLATE procedure enables you to customize the look of your SAS output.

The TEMPLATE procedure creates and modifies styles. The Output Delivery System
then uses these styles to produce customized formatted output.

488 Terminology � Chapter 11

By default, ODS output is formatted according to the various styles that the
procedure or DATA step specify. However, you can also customize the appearance of the
output by using the DEFINE STYLE statement in the TEMPLATE procedure.

Terminology
For definitions of terms used in this section, see “Terminology: TEMPLATE

Procedure” on page 402.

child
within a dimension hierarchy, a descendant in level n-1 of a member that is at
level n. For example, if a Geography dimension includes the levels Country and
City, then Bangkok would be a child of Thailand, and Hamburg would be a child of
Germany.

parent
within a dimension hierarchy, the ancestor in level n of a member in level n-1. For
example, if a Geography dimension includes the levels Country and City, then
Thailand would be the parent of Bangkok, and Germany would be the parent of
Hamburg. The parent value is usually a consolidation of all of its children’s values.

What You Can Do with a Style

Default Style for HTML
By default, ODS uses styles to display the procedure or DATA step results. Modify

the appearance of the output by customizing these styles. Display 11.1 on page 488
shows the HTML output from PROC PRINT using the default style. Display 11.2 on
page 489 shows the same HTML output from PROC PRINT with a customized style.

Display 11.1 HTML Output from PROC PRINT That Uses the Default Style (Viewed with Microsoft Internet
Explorer)

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Syntax: TEMPLATE Procedure 489

Customized Version of the HTML Style
When you are working with styles, you are more likely to modify a SAS style than to

write a completely new style. The next display shows the kinds of changes that you can
make to the default style for the HTML output. The new style affects both the contents
file and the body file in the HTML output. In particular, in the contents file, the style
makes changes to the following attributes:

� two of the colors in the color list. One of these colors is the foreground color for the
table of contents, the byline, and column headings. The other is the foreground
color of many parts of the body file, including SAS titles and footnotes.

� the font size for titles and footnotes.
� the font style for headers.
� the presentation of the data in the table, by changing attributes such as cell

spacing, rules, and border width.

In the body file, the new style makes changes to the following attributes:
� the text of the header and the text that identifies the procedure that produced the

output
� the colors for some parts of the text
� the font size of some parts of the text
� the spacing in the list of entries in the table of contents

Display 11.2 HTML Output from PROC PRINT with the Customized Style (Viewed with Microsoft Internet
Explorer)

Style Syntax: TEMPLATE Procedure

PROC TEMPLATE;

DEFINE STYLE style-path | Base.Template.Style </ STORE=libref.template-store>;
<PARENT=style-path;>

490 PROC TEMPLATE Statement � Chapter 11

NOTES "text";
CLASS style-element-name(s)<"text">

</ style-attribute-specification(s)>;
STYLE style-element-name(s) <FROM style-element-name | _SELF_ > <"text">

</ style-attribute-specification(s)>;
END;

END;

PROC TEMPLATE Statement
PROC TEMPLATE;

DEFINE STYLE style-path | Base.Template.Style </ STORE=libref.template-store>;

statements-and-attributes
END;

DEFINE STYLE Statement
Creates a style for any destination that supports the STYLE= option.

Requirement: An END statement must be the last statement in the template.
Featured in: Example 1 on page 551

DEFINE STYLE style-path | Base.Template.Style </ STORE=libref.template-store>;
<PARENT=style-path;>
NOTES "text";
CLASS style-element-name(s)<"text">

</ style-attribute-specification(s)>;
IMPORT style-specification<media-type-1 < , …, media-type-10>>
STYLE style-element-name(s) <FROM style-element-name | _SELF_> <"text">

</ style-attribute-specification(s)>;
END;

Table 11.1 DEFINE STYLE Statements

Task Statement

Creates a style element from a style element of the
same name

“CLASS Statement” on page 492

Imports Cascading Style Sheet (CSS) information
from a file into the style

“IMPORT Statement” on page 492

TEMPLATE Procedure: Creating a Style Template (Definition) � DEFINE STYLE Statement 491

Task Statement

Provides information about the style “NOTES Statement” on page 493

Specifies the style from which the current style
inherits its style elements and attributes

“PARENT= Statement” on page 494

Creates or modifies one or more style elements “REPLACE Statement” on page 494

Ends the style “REPLACE Statement” on page 494

Required Arguments

style-path
specifies where to store the style. A style-path consists of one or more names,
separated by periods. Each name represents a directory in a template store. PROC
TEMPLATE writes the style to the first writable template store in the current path.

Base.Template.Style
creates a style that is the parent of all styles that do not explicitly specify a parent.
After this template is created, you do not need to explicitly specify it in your SAS
programs. It is automatically applied to all output until you specifically remove it
from the item store.

CAUTION:
The Base.Template.Style supplied by SAS contains inheritance information used by
many styles. If this inheritance information is not retained, some style elements might
not appear in the output. To safely create your own Base.Template.Style, you can start
with the existing Base.Template.Style template by writing it to an external file and
editing the existing template contents. �

Interaction: The Base.Template.Style master template attributes are overridden by
other style templates.

Restriction: If the PARENT= statement is specified, then PARENT= must refer to
a style other than Base.Template.Style.

Tip: To view an existing style to base your own Base.Template.Style on, see
“Viewing the Contents of a Style” on page 538.

Options

STORE=libref.template-store
specifies the template store in which to store the style. If the template store does not
exist, then it is created.
Restriction: The syntax of the STORE= option does not become part of the

compiled template.

492 CLASS Statement � Chapter 11

CLASS Statement

Creates a style element from a like-named style element.

Example: The following statements are equivalent:

class fonts;
style fonts from fonts;
style fonts from _self_;

CLASS style-element-name(s) <"text"> </ style-attribute-specification(s)>;

Required Arguments

style–element-name
specifies one or more style elements to be duplicated and modified.
Tip: If there are multiple style element names specified within a style and an

attribute is specified more than once, then the value of the last attribute specified
is used.

See: style–element-name in the STYLE statement for a complete description.
See: Appendix 4, “ODS Style Elements,” on page 905 for a list of style elements.

Options
The following table lists the options that are available for the CLASS statement. For

more detailed descriptions of these options, see the “STYLE Statement” on page 495.

Table 11.2 CLASS Statement Options

Task Option

Specify new style attributes or modifications to
existing style attributes for the new style element

style-attribute-specification(s)

Specify information about the CLASS statement "text"

IMPORT Statement

Imports Cascading Style Sheet (CSS) information from a file into the style.

Requirement: CSS files must be written in the same type of CSS that the ODS HTML
statement produces. Only class names that match ODS style element names are
supported, with no IDs and no context based selectors. To view the CSS code that ODS
creates, you can specify the STYLESHEET= option, or you can view the source of an
HTML file and look at the code between the tags at the top of the file.
Featured in: Example 6 on page 580

TEMPLATE Procedure: Creating a Style Template (Definition) � NOTES Statement 493

IMPORT file-specification <media-type-1<, …, media-type-10>>

Required Arguments

file-specification
specifies a file, fileref, or URL that contains CSS code. After you import the CSS
code, it is converted to style attributes and style elements that can be used with
PROC TEMPLATE.

file-specification is one of the following:

"external-file"
is the name of the external CSS file.
Requirement: You must enclose external-file in quotation marks.

fileref
is a file reference that has been assigned to an external CSS file. Use the
FILENAME statement to assign a fileref.
See: For information about the FILENAME statement, see SAS Language

Reference: Dictionary.

"URL"
is a URL to an external CSS file.
Requirement: You must enclose external-file in quotation marks.

Options

media-type-1 <, .. media-type-10>
specifies one or more media blocks that correspond to the type of media on which
your output will be rendered. CSS uses media type blocks to specify how a document
is to be presented on different media—for example, on the screen, on paper, with a
speech synthesizer, or with a braille device.

The media block is added to your output in addition to the CSS code that is not
contained in any media blocks. By using the media-type option, in addition to the
general CSS code, you can import the section of a CSS file intended only for a specific
media type.
Default: If no media-type is specified in your ODS statement, but you have specified

media types in your CSS file, then ODS uses the Screen media type.
Range: You can specify up to ten different media types.
Requirement: You must separate multiple media-types with commas.
Tip: If you specify multiple media types, all of the style information in all of the

media types is applied to your output. However, if there is duplicate style
information in different media blocks, then the styles from the last media block
are used.

NOTES Statement

Provides information about the style.

Tip: The NOTES statement becomes part of the compiled style template, which you can
view with the SOURCE statement, whereas SAS comments do not.

494 PARENT= Statement � Chapter 11

NOTES "text";

Required Arguments

“text”
provides information about the style.

PARENT= Statement

Specifies the style from which the current style inherits.

PARENT=style-path

Required Arguments

style-path
specifies the style to inherit from.

style-path consists of one or more names, separated by periods. Each name
represents a directory in a template store. The current style inherits from the
specified style in the first readable template store in the current path.

When you specify a parent, all of the style elements, style attributes, and
statements that are specified in the parent’s style template are used in the current
style template unless the current style template overrides them.

SAS provides some styles. You can specify one of these styles for style-path, or you
can specify a user-defined style. These are some of the styles that are currently
shipped with SAS:

� styles.default
� styles.beige
� styles.brick
� styles.brown
� styles.d3d
� styles.minimal
� styles.printer
� styles.statdoc.

For information about finding an up-to-date list of the styles and for viewing a
style, see “Viewing the Contents of a Style” on page 538.
Restriction: If the PARENT= statement is specified, then PARENT= must refer to

a style other than Base.Template.Style.

REPLACE Statement

The REPLACE statement is no longer supported. Use the “STYLE Statement” on page 495 or
“CLASS Statement” on page 492 to create and modify style elements.

TEMPLATE Procedure: Creating a Style Template (Definition) � STYLE Statement 495

STYLE Statement

Creates or modifies one or more style elements.

Featured in: Example 1 on page 551

STYLE style-element-name(s)

<FROM existing-style-element-name | _SELF_><"text">
</ style-attribute-specification(s)>;

Required Arguments

style-element-name
specifies one or more style elements to be created or modified. If style-element-name
is a new style element, then PROC TEMPLATE stores the style element in the
current style. If style-element-name overrides a style element that is a parent of
another element, then all of the descendents of style-element-name, including those
inherited from parent styles, also inherit the new attributes.
Tip: If a like-named style element already exists in the child style and it is not

created by using the FROM option, then the style element in the child style
overrides the style element of the same name in the parent style.

Tip: If a like-named style element already exists in the child style and it is created
by using the FROM option, then the style attributes from the parent style element
are absorbed into the style element in the child style.

Tip: If an attribute is defined in a like-named style element in the parent style and
it is not explicitly specified in the STYLE statement of the new like-named style
element, then the attribute is not inherited, unless you specify the FROM option.

Tip: If there are multiple identical style element names specified within a style and
an attribute is specified more then once, then the value of the last attribute
specified is used.

Requirement: Style elements must be separated by commas.

Example: The following STYLE statement u, which uses a style element list, is
equivalent to STYLE statements v-x:

ustyle data, data1, dataempty from _self_ /
color = red
backgroundcolor = black;

vstyle data from data /
color = red
backgroundcolor = black;

wstyle data1 from data1/
color = red
backgroundcolor = black;

496 STYLE Statement � Chapter 11

xstyle dataempty from dataempty /
color = red
backgroundcolor = black

See also: style-element-name on page 495
See: Appendix 4, “ODS Style Elements,” on page 905 for a list of style elements.
Featured in: Example 5 on page 576

Options

FROM existing-style-element-name | _SELF_
specifies that the preceding style-element-name inherit the style attributes from the
existing-style-element-name.

existing-style-element-name
specifies the existing style element that another style element inherits from.
existing-style-element-name can have the same name as the preceding
style-element-name, or it can be the name of another style element. The style
element must exist in the current style or in the parent of the current style.
Tip: If a like-named style element already exists in the child style and it is not

created by using the FROM option, then the style element in the child style
overrides the style element of the same name in the parent style.

Tip: If a like-named style element already exists in the child style and it is
created by using the FROM option, then the style attributes from the parent
style element are absorbed into the style element in the child style.

Tip: If an attribute is defined in a like-named style element in the parent style
and it is not explicitly specified in the STYLE statement of the new like-named
style element, then the attribute is not inherited, unless you specify the FROM
option.

Tip: PROC TEMPLATE looks first in the current style for the style element. If
PROC TEMPLATE does not find the style element, then it looks in the parent
style.

Example: The following statement specifies that the style element Data2 be
created from the style element Data1, and that the COLOR=BLACK style
attribute be added.

style data1 from data2 / color=black;

SELF
specifies that the parent of the style element should have the same name as the
new style element.
Tip: The _SELF_ option is most useful when specifying multiple style elements.
Example: The following STYLE statement u is equivalent to STYLE statements

v-x:

ustyle data, data1, dataempty from _self_ /
color = red
backgroundcolor = black;

vstyle data from data /
color = red
backgroundcolor = black;

wstyle data1 from data1 /

TEMPLATE Procedure: Creating a Style Template (Definition) � END Statement 497

color = red
backgroundcolor = black;

xstyle dataempty from dataempty /
color = red
backgroundcolor = black

See: Appendix 4, “ODS Style Elements,” on page 905 for a list of style elements.

style-attribute-specification(s)
specifies new style attributes or modifications to existing style attributes for the new
style element. Each style-attribute-specification has this general form:

style-attribute-name=<|>style-attribute-value

style-attribute-name
is the name of an attribute that is listed in “Style Attributes and Their Values” on
page 498, or it is the name of a user-defined style attribute.

Restriction: If style-attribute-name refers to a user-defined attribute, then enclose
the name in quotation marks. If style-attribute-name refers to an attribute that
is listed in “Style Attributes and Their Values” on page 498, then do not enclose
the name in quotation marks.

style-attribute-value
assigns the value to the attribute. If an attribute from the list in “Style Attributes
and Their Values” on page 498 is specified, then specify the kind of value that the
attribute expects.

For more information about style-attribute values, see “Style Attributes and
Their Values” on page 498.

|
prevents the style attribute from being inherited by any child style elements.

Restriction: If there are multiple style element names specified within a style and
an attribute is specified more than once, then the value of the last attribute
specified is used.

Tip: Override any attribute of the parent style element, whether it is inherited or
explicitly defined, by specifying it in the STYLE statement without the FROM
option.

Tip: If an attribute is defined in a like-named style element in the parent style and
it is not explicitly specified in the STYLE statement of the new like-named style
element, then the attribute is not inherited, unless you specify the FROM option.

"text"
provides information about the STYLE statement. Text of this type becomes part of
the compiled template, which you can view with the SOURCE statement, whereas
SAS comments do not become part of the compiled style.

END Statement

Ends the style.

END;

498 Style Attributes and Their Values � Chapter 11

Style Attributes and Their Values

Style attributes influence the characteristics of individual cells, tables, documents, graphs, and
HTML frames.

See also: For information about using style attributes with ODS Statistical Graphics,
see the chapter on controlling the appearance of your graphics in SAS/GRAPH: Graph
Template Language User’s Guide.

See also: For a table of style elements that can be used with style attributes, see
Appendix 4, “ODS Style Elements,” on page 905.
See also: For more information about using style attributes and style elements together,
see “Understanding Styles, Style Elements, and Style Attributes” on page 540.
See also: For information about style attribute values, see “Style Attribute Values” on
page 534.

Style Attributes Overview
Style attributes exist within style elements and are specified by the “STYLE

Statement” on page 495 or the “CLASS Statement” on page 492. The default value for
an attribute depends on the style that is in use. For information about styles, style
elements, and style attributes, see “Understanding Styles, Style Elements, and Style
Attributes” on page 540.

Style attributes can be supplied by SAS or user-defined. Style attributes can be
referenced with a style reference. See the style-reference value in the section “Style
Attribute Values” on page 534 for more information.

The implementation of an attribute depends on the ODS destination that formats the
output. When creating HTML output, the implementation of an attribute depends on
the browser that is used. For information about viewing the attributes in a style, see
“Viewing the Contents of a Style” on page 538.

For a list of the values that style attributes can specify, see “Style Attribute Values”
on page 534. For a list of style elements that you can specify style attributes in, see
Appendix 4, “ODS Style Elements,” on page 905.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 499

Style AttributesTables

Table 11.3 Table of General Style Attributes

Attribute Task Destinations Affected
Items

ABSTRACT= on page 509 Specify whether styles
used in an HTML
document are used in
CSS or LaTex style
files

Markup family HTML
documents

ACTIVELINKCOLOR= on page 509 Specify the color that
a link in an HTML
document changes to
after you click it, but
before the browser
opens that file

Markup family HTML
documents

ASIS= on page 509 Specify how to handle
leading spaces and
line breaks in an
HTML document

Markup family,
printer family,
and RTF

Cells and
HTML
documents

BACKGROUNDCOLOR= on page 509 Specify the color of
the background of
tables, cells, or graphs

Markup family,
printer family,
and RTF

Cells,
tables,
graphs

BACKGROUNDIMAGE= on page 510 Specify an image to
use as the background

Markup family,
PCL, and PS

Cells,
tables,
graphs

BACKGROUNDREPEAT= on page 510 Specify whether an
image is repeated
horizontally, vertically,
both, or not repeated

Markup family Individual
tables or
cells,
graphs

BODYSCROLLBAR= on page 510 Specify whether to put
a scroll bar in the
frame that references
the body file

Markup family Individual
frames in
HTML
output

BODYSIZE= on page 510 Specify the width of
the frame that
displays the body file
in the HTML frame
file

Markup family Individual
frames in
HTML
output

BORDERBOTTOMCOLOR= on page 511 Specify the color of
the bottom border of
the table

Markup family,
printer family,
RTF, and
Measured RTF

Bottom
border of
a table

BORDERBOTTOMSTYLE= on page 511 Specify the line style
of the bottom border
of the selected cell

Markup family,
RTF, and
Measured RTF

Bottom
border of
a cell

500 Style Attributes and Their Values � Chapter 11

Attribute Task Destinations Affected
Items

BORDERBOTTOMWIDTH= on page 511 Specify the width of
the bottom border of
the table

Markup family,
printer family,
RTF, and
Measured RTF

Bottom
border of
a table

BORDERCOLOR= on page 511 Specify the color of
the border in a table
or cell if the border is
just one color

Markup family,
printer family,
RTF, and
Measured RTF

Individual
tables or
cells

BORDERCOLORDARK= on page 511 Specify the darker
color to use in a
border that uses two
colors to create a
three-dimensional
effect

Markup family
and printer
family

Individual
tables or
cells

BORDERCOLORLIGHT= on page 512 Specify the lighter
color to use in a
border that uses two
colors to create a
three-dimensional
effect

Markup family
and printer
family

Individual
tables or
cells

BORDERLEFTCOLOR= on page 512 Specify the color of the
left border of a table

Markup family,
printer family,
RTF, and
Measured RTF

Left
border of
the table

BORDERLEFTSTYLE= on page 512 Specify the line style
of the left border of
the specified cell

Markup family,
RTF, and
Measured RTF

Left
border of
the
specified
cell

BORDERLEFTWIDTH= on page 512 Specify the width of
the left border of the
table

Markup family,
printer family,
RTF, and
Measured RTF

Left
border of
a table

BORDERRIGHTCOLOR= on page 512 Specify the color of
the right border of the
table

Markup family,
printer family,
RTF, and
Measured RTF

Right
border of
a table

BORDERRIGHTSTYLE= on page 513 Specify the line style
of the right border of
the selected cell

Markup family,
RTF, and
Measured RTF

Right
border of
the
selected
cell

BORDERRIGHTWIDTH= on page 513 Specify the width of
the right border of the
table

Markup family,
printer family,
RTF, and
Measured RTF

Right
border of
the table

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 501

Attribute Task Destinations Affected
Items

BORDERTOPCOLOR= on page 513 Specify the color of the
top border of the table

Markup family,
printer family,
RTF, and
Measured RTF

Top
border of
the table

BORDERTOPSTYLE= on page 513 Specify the line style
of the top border of
the specified cell

Markup family,
RTF, and
Measured RTF

Top
border of
the
specified
cell

BORDERTOPWIDTH= on page 514 Specify the width of
the top border of the
table

Markup family,
printer family,
RTF, and
Measured RTF

Top
border of
the table

BORDERWIDTH= on page 514 Specify the width of
the border of the table

Markup family,
RTF, printer
family

Individual
tables or
cells

CELLPADDING= on page 514 Specify the amount of
white space on each of
the four sides of the
text in a cell in the
table

Markup family,
RTF, printer
family

Tables

CELLSPACING= on page 514 Specify the thickness
of the spacing between
cells in a table

Markup family,
RTF, printer
family

Tables

CLASS= on page 514 Specify the name of
the style sheet class to
use in an HTML
document for the table
or cell

Markup family Individual
tables or
cells

COLOR= on page 515 Specify the color of the
foreground in tables,
cells, or graphs, which
is primarily the color
of text

Markup family,
RTF, printer
family

Individual
tables or
cells, and
graphs

CONTENTPOSITION= on page 515 Specify the position,
within the frame file,
of the frames that
display the contents
and the page files

Markup family Individual
frames in
HTML
output

CONTENTSCROLLBAR= on page 515 Specify whether to put
a scroll bar in the
frames in the frame
file that display the
contents and the page
files

Markup family Individual
frames in
HTML
output

502 Style Attributes and Their Values � Chapter 11

Attribute Task Destinations Affected
Items

CONTENTSIZE= on page 516 Specify the width of
the frames in the
frame file that display
the contents and the
page files

Markup family Individual
frames in
HTML
output

CONTENTTYPE= on page 516 Specify the value of
the content type for
pages in an HTML
document that is sent
directly to a web
server rather than to
a file

Markup family Individual
frames in
HTML
output

CONTRASTCOLOR= on page 516 Specify the alternate
colors for maps

Markup family,
RTF, printer
family

Graphs

DOCTYPE= on page 517 Specify the entire
doctype declaration for
the HTML document

Markup family HTML
documents

FILLRULEWIDTH= on page 517 Place a rule of the
specified width into
the space around the
text (or entire cell if
there is no text) in a
table where white
space would otherwise
appear

printer family HTML
documents

FLYOVER= on page 518 Specify the text to
show in a data tip for
the cell

Markup family,
PDF

Individual
cells

FONT= on page 518 Specify a font
definition to use in
tables, cells, and
graphs

Markup family,
RTF, printer
family

Individual
tables or
cells,
graphs

FONTFAMILY= on page 518 Specify the font to use
in cells and graphs

Markup family,
RTF, printer
family

Individual
tables or
cells
graphs

FONTSIZE= on page 518 Specify the size of the
font for tables, cells,
and graphs

Markup family,
RTF, printer
family

Individual
tables or
cells
graphs

FONTSTYLE= on page 519 Specify the style of
the font for tables,
cells, and graphs

Markup family,
RTF, printer
family

Individual
tables or
cells
graphs

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 503

Attribute Task Destinations Affected
Items

FONTWEIGHT= on page 519 Specify the font
weight of tables, cells,
and graphs

Markup family,
RTF, printer
family

Individual
tables or
cells
graphs

FONTWIDTH= on page 519 Specify the font width
of tables, cells, and
graphs compared to
the width of the usual
design of the table,
cell, or graph

Markup family,
RTF, printer
family

Individual
tables or
cells
graphs

FRAME= on page 520 Specify the type of
frame to use on a table

Markup family,
RTF, printer
family

Tables

FRAMEBORDER= on page 520 Specify whether to put
a border around the
frame for an HTML
file that uses frames

Markup family Individual
frames in
HTML
output

FRAMEBORDERWIDTH= on page 520 Specify the width of
the border around the
frames for an HTML
file that uses frames

Markup family Individual
frames in
HTML
output

FRAMESPACING= on page 521 Specify the width of
the space between
frames for HTML that
uses frames

Markup family Individual
frames in
HTML
output

HEIGHT= on page 521 Specify the height of a
cell, graph, or
graphics in an HTML
document 1

Markup family,
RTF, printer
family

Cells,
HTML
documents,
and
graphs

HREFTARGET= on page 521 Specify the window or
frame in which to open
the target of the link

Markup family Individual
cells

HTMLID= on page 522 Specify an id for the
table or cell

Markup family Individual
tables or
cells

HTMLSTYLE= on page 522 Specify individual
attributes and values
for a table or cell in
an HTML document

Markup family Individual
tables or
cells

IMAGE= on page 522 Specify the image to
appear in a graph

Markup family,
printer family,
and RTF

Graphs

LINKCOLOR= on page 523 Specify the color for
the links in an HTML
document that have
not yet been visited

Markup family,
printer family,
and RTF

HTML
documents

504 Style Attributes and Their Values � Chapter 11

Attribute Task Destinations Affected
Items

LISTENTRYANCHOR= on page 523 Specify whether to
make the entry in the
table of contents a
link to the body file

Markup family HTML
documents

LISTENTRYDBLSPACE= on page 524 Specify whether to
double space between
entries in the table of
contents

Markup family HTML
documents

LISTSTYLETYPE= on page 524 Specify the string to
use for the bullets in
the contents file

Markup family Individual
frames in
HTML
output

MARGINBOTTOM= on page 525 Specify the bottom
margin for the HTML
document

Markup family,
printer family,
and RTF

HTML
documents

MARGINLEFT= on page 525 Specify the left
margin for the HTML
document

Markup family,
printer family,
and RTF

HTML
documents

MARGINRIGHT= on page 526 Specify the right
margin for the HTML
document

Markup family,
printer family,
and RTF

HTML
documents

MARGINTOP= on page 526 Specify the top margin
for the HTML
document

Markup family,
printer family,
and RTF

HTML
documents

NOBREAKSPACE= on page 526 Specify how to handle
space characters

Markup family,
printer family,
and RTF

Individual
cells

OVERHANGFACTOR= on page 526 Specify an upper limit
for extending the
width of the column in
an HTML document

Markup family
and printer
family

HTML
documents

PAGEBREAKHTML= on page 526 Specify HTML to place
at page breaks in an
HTML document

Markup family Tables,
cells, and
HTML
documents

POSTHTML on page 527 Specify the HTML
code to place after the
table or cell

Markup family Individual
tables or
cells

POSTIMAGE= on page 527 Specify an image to
place before the table
or cell

Markup family Individual
tables or
cells

POSTTEXT= on page 527 Specify text to place
after the cell or table

Markup family,
printer family,
and RTF

Individual
tables or
cells

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 505

Attribute Task Destinations Affected
Items

PREHTML= on page 527 Specify the HTML
code to place before
the table or cell

Markup family Individual
tables or
cells

PREIMAGE= on page 527 Specify an image to
place before the table
or cell

Markup family,
printer family,
and RTF

Individual
tables or
cells

PRETEXT= on page 528 Specify text to place
before the cell or table

Markup family,
printer family,
and RTF

Individual
tables or
cells

PROTECTSPECIALCHARACTERS= on
page 528

Specify how less-than
signs (<), greater-than
signs (>), and
ampersands (&) are
interpreted in cells

Markup family,
printer family,
and RTF

Individual
tables or
cells

RULES= on page 528 Specify the types of
rules to use in tables

Markup family,
printer family,
and RTF

Tables

STARTCOLOR= on page 529 Specify the start fill
color for a graph

HTML Graphs

TAGATTR= on page 529 Specify text to insert
in the HTML

Markup family Individual
cells

TEXTALIGN= on page 529 Specify justification in
tables, cells, and
graphs

printer family
and RTF

Individual
tables or
cells
graphs

TEXTDECORATION= on page 531 Change the visual
presentation of the
text

Markup family,
RTF, and printer
family

Individual
tables or
cells

TEXTINDENT= on page 531 Specify the number of
spaces that the first
line of output will be
indented

Markup family,
RTF, and printer
family

Individual
tables or
cells

TEXTJUSTIFY= on page 532 Specify if the words of
the text are to be
spaced evenly or if the
characters are to be
evenly justified

HTML, RTF, and
TAGSETS.RTF

Titles,
footnotes,
and text

TRANSPARENCY= on page 532 Specify a transparency
level for graphs

HTML Graphs

URL= on page 532 Specify a URL to link
to

Markup family,
RTF, and printer
family

Individual
cells

VERTICALALIGN= on page 532 Specify vertical
justification

Markup family,
printer family,
and RTF

Individual
cells and
graphs

506 Style Attributes and Their Values � Chapter 11

Attribute Task Destinations Affected
Items

VISITEDLINKCOLOR= on page 533 Specify the color for
links that have been
visited in an HTML
document

Markup family HTML
documents

WATERMARK= on page 533 Specify whether to
make the image that
is specified by
BACKGROUNDIMAGE=
into a "watermark "

Markup family HTML
documents

WIDTH= on page 533 Specify the width of a
cell, table, line, or a
graph

Markup family,
printer family,
and RTF

Tables

1 This attribute can also be used to influence other characteristics as described in
another section of the table

Note: You can use the value _UNDEF_ for any style attribute. ODS treats an
attribute that is set to _UNDEF_ as if its value had never been set, even in the parent
or beyond. �

Graphical style attributes can be used in graphical style elements for device-based
graphics or template-based graphics (ODS graphics). Different style attributes are valid
for different style elements. For a table of style elements and the style attributes that
are valid in each one, see “Style Elements Affecting Template-Based Graphics” on page
914 and “Style Elements Affecting Device-Based Graphics” on page 920.

Device-based graphics are all SAS/GRAPH output where there is a user-specified or
default device (DEVICE= option) that controls certain aspects of the graphical output.
Supplied device drivers are stored in the Sashelp.Devices catalog. Examples of devices
drivers are SASPRTC, GIF, WIN, ACTIVEX, PDF, and SVG. Common SAS/GRAPH
procedures that produce device-based graphics are GPLOT, GCHART, and GMAP. Most
device-based graphics produce a GRSEG catalog entry as output and use the
GOPTIONS statement to control the graphical environment.

Template-based graphics graphics include all SAS/GRAPH output where a compiled
ODS template of type STATGRAPH is used to produce graphical ouput. Supplied
templates are stored in Sashelp.Tmplmst. Device drivers and some global statements
such as SYMBOL, PATTERN, AXIS, and LEGEND have no affect on this form of
graphics. Common SAS/GRAPH procedures that produce template-based graphics are
SGPLOT, SGPANEL, and SGRENDER, in addition to many SAS/STAT, SAS/ETS, and
SAS/QC procedures. ODS graphics always produce ouput as image files and use the
ODS GRAPHICS statement to control the graphical environment.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 507

Table 11.4 Table of Graphical Style Attributes

Attribute Task Graphics
Environment

Affected
Items

BACKGROUNDIMAGE= on page
510

Specify an image file
path

Device-based
graphics

Image that
can be
stretched, but
not positioned
in graph,
chart, walls,
floor

CAPSTYLE= on page 514 Specify the shape of
the line at the end of
a box whisker graph

Template-based
graphics

Shape of line
at end of box
whisker

COLOR= on page 515 Specify the color of the
foreground in tables,
cells, or graphs, which
is primarily the color
of text

All graphics
environments

Background
color of the
graph, walls,
or floor; color
of text

CONNECT= on page 515 Specify characteristics
of a box plot connect
line

Template-based
graphics

Box plot
connect line

CONTRASTCOLOR= on page
516

Specify the color a line
or marker

Template-based
graphics

Color of line
or marker

DISPLAYOPTS= on page 516 Specify display
features for graphs

Template-based
graphics

Displayed
features of box
plots, ellipses,
histograms,
bands

DROPSHADOW= on page 517 Specify whether the
drop shadow color for
text is displayed

Device-based
graphics

Drop shadow
color for text

ENDCOLOR= on page 517 Specify the final color
used with a two or
three color ramp

All graphics
environments

Contours,
gradient
legends

FONT= on page 518 Specify a font
definition to use in
tables, cells, and
graphs

All graphics
environments

All text font
attributes

FONTFAMILY= on page 518 Specify the font to use
in cells and graphs

All graphics
environments

Font family

FONTSIZE= on page 518 Specify the size of the
font for tables, cells,
and graphs

All graphics
environments

Font size

FONTSTYLE= on page 519 Specify the style of
the font for tables,
cells, and graphs

All graphics
environments

Font style

508 Style Attributes and Their Values � Chapter 11

Attribute Task Graphics
Environment

Affected
Items

FONTWEIGHT= on page 519 Specify the font
weight of tables, cells,
and graphs

All graphics
environments

Font weight

FRAMEBORDER= on page 520 Specify whether there
is a graph wall border

All graphics
environments

Graph wall
border

GRADIENT_DIRECTION= on
page 521

Specify the direction
of the gradient

Device-based
graphics

Graph
background,
legend
background,
charts, walls,
floors

IMAGE= on page 522 Specify the path to an
image

Device-based
graphics

Image that
can be
positioned, but
not stretched
in graph,
chart, walls,
floor

LINESTYLE= on page 523 Specify the pattern of
a line

All graphics
environments

Borders, axis
lines, grid,
reference

LINETHICKNESS= on page 523 Specify the thickness
of a line

All graphics
environments

Thickness of
line

MARKERSIZE= on page 525 Specify a marker size All graphics
environments

Marker size

MARKERSYMBOL= on page 525 Specify a marker
symbol

All graphics
environments

Marker used

NEUTRALCOLOR= on page 526 Specify the middle
color of a 3–color ramp

Template-based
graphics

Contours,
gradient
legends

OUTPUTHEIGHT= on page 526 Specify the height of a
graph

All graphics
environments

Height of
graph

OUTPUTWIDTH= on page 526 Specify the width of a
graph

All graphics
environments

Width of
graph

STARTCOLOR= on page 529 Specify the start fill
color for a graph

All graphics
environments

Contours,
gradient
legends

TEXTALIGN= on page 529 Specify the alignment
of an image

Device-based
graphics

Image
horizontal
positioning

TICKDISPLAY= on page 532 Specify the placement
of all major and minor
axis tick marks

Template-based
graphics

Placement of
all axis tick
marks, major
and minor

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 509

Attribute Task Graphics
Environment

Affected
Items

TRANSPARENCY= on page 532 Specify the
transparency of
backgrounds, fills,
lines, and markers

All graphics
environments

Backgrounds,
fills, lines,
markers

VERTICALALIGN= on page 532 Specify vertical
justification

Device-based
graphics

Image vertical
positioning

Detailed Information for All Style Attributes

ABSTRACT= ON | OFF
specifies whether styles used in an HTML document are used in CSS or LateX style
files.

ON
specifies that styles are used in CSS or LateX style files.

OFF
specifies that styles are not used in CSS or LateX style files.

Restriction: The ABSTRACT= attribute is valid only in markup family destinations.

ACTIVELINKCOLOR=color
specifies the color that a link in an HTML document changes to after you click it, but
before the browser opens that file.
Restriction: The ACTIVELINKCOLOR= attribute is valid only in markup family

destinations.
See: color on page 534

ASIS=ON|OFF
specifies how to handle leading spaces and line breaks in an HTML document.

ON
prints text with leading spaces and line breaks, in the same manner as the listing
output.

OFF
trims leading spaces and ignores line breaks.

Default: OFF
Restriction: The ASIS= attribute is valid only in markup family destinations,

printer family destinations, and the RTF destination.

BACKGROUNDCOLOR= color
specifies the color of the background of the tables, cells, or graphs.
Alias: BACKGROUND=
Interaction: The CBACK= option in the SAS/GRAPH GOPTIONS statement

overrides the BACKGROUNDCOLOR= attribute.
Restriction: The BACKGROUNDCOLOR= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
Tip: Generally, the background color of the cell overrides the background color of

the table. You see the background color for the table only as the space between
cells (see CELLSPACING= on page 514).

510 Style Attributes and Their Values � Chapter 11

See: color on page 534

Featured in: Example 1 on page 551 and Example 3 on page 564

BACKGROUNDIMAGE=“string”
specifies an image in a table, cell, or graph to use as the background. Viewers can
tile or stretch the image as the background for the HTML table or graph that the
procedure creates. For graphs, the specified image is stretched.

string
is the name of a GIF or JPEG file. Use a simple file name, a complete path, or a
URL. However, the most versatile approach is to use a simple filename and to
place all image files in the local directory.

Restriction: The BACKGROUNDIMAGE= attribute is valid only in markup family
destination, the PCL destination, and the PS destination.

Interaction: The BACKGROUNDIMAGE= attribute is overridden by the IBACK=
and IMAGESTYLE=FIT options in the SAS/GRAPH GOPTIONS statement.

See: string on page 537

BACKGROUNDREPEAT= REPEAT | REPEAT_X | REPEAT_Y | NO_REPEAT
specifies whether an image is repeated horizontally, vertically, both, or not repeated.

NO_REPEAT
specifies that the image is not repeated.

REPEAT
specifies that the image is repeated both horizontally and vertically.

REPEAT_X
specifies that the image is repeated horizontally.

REPEAT_Y
specifies that the image is repeated vertically.

Restriction: The BACKGROUNDREPEAT= attribute is valid only in markup
family destinations.

BODYSCROLLBAR=YES | NO | AUTO
specifies whether to put a scroll bar in the frame that references the body file.

YES
places a scroll bar in the frame that references the body file.

NO
specifies not to put a scroll bar in the frame that references the body file.

AUTO
places a scroll bar in the frame that references the body file only if needed.

Tip: Typically, BODYSCROLLBAR= is set to AUTO.

Restriction: The BODYSCROLLBAR= attribute is valid only in markup family
destinations.

BODYSIZE= dimension | dimension% | *
specifies the width of the frame that displays the body file in the HTML frame file.

dimension
is a nonnegative number or the width of the frame specified as a percentage of the
entire display.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 511

*
specifies to use whatever space is left after displaying the content and page files as
specified by the CONTENTSIZE= attribute.

Tip: If dimension is a nonnegative number then the unit of measure is pixels.

Restriction: The BODYSIZE= attribute is valid only in markup family destinations.

See: dimension on page 535

See also: For information about the HTML files that ODS creates, see “HTML
Links and References Produced by the HTML Destination” on page 891.

BORDERBOTTOMCOLOR=color
specifies the color of the bottom border of the table.

Restriction: The BORDERBOTTOMCOLOR= attribute is valid only in markup
family destinations, printer family destinations, RTF destination, and the
Measured RTF destination.

See also: color on page 534

BORDERBOTTOMSTYLE= line-style
specifies the line style of the bottom border of the specified cell.

line-style
can be one of the following:

DASHED

DOTTED

DOUBLE

GROOVE

HIDDEN

INSET

OUTSET

RIDGE

SOLID

Restriction: The BORDERBOTTOMSTYLE= attribute is valid only in markup
family destinations, RTF destination, and the Measured RTF destination.

BORDERBOTTOMWIDTH=dimension
specifies the width of the bottom border of the table.

Restriction: The BORDERBOTTOMWIDTH= attribute is valid only in markup
family destinations, RTF destination, printer family destinations, and the
Measured RTF destination.

See: dimension on page 535

BORDERCOLOR= color
specifies the color of the border in a table or cell if the border is just one color.

Restriction: The BORDERCOLOR= attribute is valid only in markup family
destinations, RTF destination, printer family destinations, and the Measured RTF
destination.

See also: color on page 534

BORDERCOLORDARK= color
in a table or cell , specifies the darker color to use in a border that uses two colors to
create a three-dimensional effect.

512 Style Attributes and Their Values � Chapter 11

Interaction: The BORDERCOLORDARK style attribute is ignored in HTML4
output because it is not part of the HTML4 standard. To create a color border in
the HTML4 output, use the BORDERCOLOR= style attribute.

Restriction: The BORDERCOLORDARK= attribute is valid only in markup family
destinations and printer family destinations.

See: color on page 534

Featured in: Example 4 on page 570

BORDERCOLORLIGHT= color
in a table or cell, specifies the lighter color to use in a border that uses two colors to
create a three-dimensional effect.

Interaction: The BORDERCOLORLIGHT style attribute is ignored in the creation
of HTML4 output because it is not part of the HTML4 standard. To create a color
border in HTML4 output, use the BORDERCOLOR= style attribute.

Restriction: The BORDERCOLORLIGHT= attribute is valid only in markup family
destinations and printer family destinations.

See: color on page 534

Featured in: Example 4 on page 570

BORDERLEFTCOLOR=color
specifies the color of the left border of the table.

Restriction: The BORDERLEFTCOLOR= attribute is valid only in markup family
destinations, RTF destination, printer family destinations, and the Measured RTF
destination.

See also: color on page 534

BORDERLEFTSTYLE= line-style
specifies the line style of the left border of the specified cell.

line-style
can be one of the following:

DASHED
DOTTED

DOUBLE
GROOVE

HIDDEN
INSET

OUTSET
RIDGE

SOLID
Restriction: The BORDERLEFTSTYLE= attribute is valid only in markup family

destinations, RTF destination, and the Measured RTF destination.

BORDERLEFTWIDTH=dimension
specifies the width of the left border of the table.
Restriction: The BORDERLEFTWIDTH= attribute is valid only in markup family

destinations, RTF destination, printer family destinations, and the Measured RTF
destination.

See: dimension on page 535

BORDERRIGHTCOLOR=color
specifies the color of the right border of the table.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 513

Restriction: The BORDERRIGHTCOLOR= attribute is valid only in markup family
destinations, RTF destination, printer family destinations, and the Measured RTF
destination.

See also: color on page 534

BORDERRIGHTSTYLE= line-style
specifies the line style of the right border of the selected cell.

line-style
can be one of the following:

DASHED
DOTTED
DOUBLE
GROOVE
HIDDEN
INSET
OUTSET
RIDGE
SOLID

Restriction: The BORDERRIGHTSTYLE= attribute is valid only in markup family
destinations, RTF destination, and the Measured RTF destination.

BORDERRIGHTWIDTH=dimension
specifies the width of the right border of the table.
Restriction: The BORDERRIGHTWIDTH= attribute is valid only in markup family

destinations, printer family destinations, RTF destination, and the Measured RTF
destination.

See: dimension on page 535

BORDERTOPCOLOR=color
specifies the color of the top border of the table.
Restriction: The BORDERTOPCOLOR= attribute is valid only in markup family

destinations, printer family destinations, RTF destination, and the Measured RTF
destination.

Restriction: To ensure that the top border color is created, specify the
BORDERTOPWIDTH= and the BORDERTOPCOLOR= attribute for the RTF
destination.For the RTF destination, specify the BORDERTOPCOLOR= attribute
in conjunction with the BORDERTOPWIDTH= attribute to ensure that the top
border color is created.

See also: color on page 534

BORDERTOPSTYLE= line-style
specifies the line style of the top border of the specified cell.

line-style
can be one of the following:

DASHED
DOTTED
DOUBLE
GROOVE
HIDDEN
INSET

514 Style Attributes and Their Values � Chapter 11

OUTSET
RIDGE
SOLID

Restriction: The BORDERTOPSTYLE= attribute is valid only in markup family
destinations, the RTF destination, and the Measured RTF destination.

Restriction: For the RTF destination, specify the BORDERTOPSTYLE= attribute
in conjunction with the BORDERTOPWIDTH= attribute to ensure that the style of
the top border is the style that you specified.

BORDERTOPWIDTH=dimension
specifies the width of the top border of the table.
Restriction: The BORDERTOPWIDTH= attribute is valid only in markup family

destinations, printer family destinations, RTF destination, and the Measured RTF
destination.

See: dimension on page 535

BORDERWIDTH= dimension
specifies the width of the border of the table.
Restriction: The BORDERWIDTH= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
Tip: Typically, when BORDERWIDTH=0, the ODS destination sets RULES=NONE

(see the discussion about RULES= on page 528) and FRAME=VOID (see the
discussion about FRAME= on page 520).

Featured in: Example 1 on page 551 and Example 3 on page 564
See: dimension on page 535

CAPSTYLE= "SERIF" | "LINE" | "BRACKET" | "NONE"
specifies the shape of the line at the end of a box whisker.

CELLPADDING=dimension | dimension%
specifies the amount of white space on each of the four sides of the text in a cell in
the table.

dimension
is a nonnegative number or the amount of white space on each of the four sides of
the text in a cell specified as a percentage of the table.

Restriction: The CELLPADDING= attribute is valid only in markup family
destinations, printer family destinations, and the RTF destination.

See: dimension on page 535
Featured in: Example 3 on page 564

CELLSPACING=dimension
specifies the thickness of the spacing between cells in a table.
Interaction: If BORDERWIDTH= is nonzero, and if the background color of the

cells contrasts with the background color of the table, then the color of the cell
spacing is determined by the table’s background.

Restriction: The CELLSPACING= attribute is valid only in markup family
destinations, printer family destinations, and the RTF destination.

See: dimension on page 535
Featured in: Example 1 on page 551 and Example 3 on page 564

CLASS="string"
specifies the name of the style sheet class to use in an HTML document for the table
or cell.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 515

Alias: HTMLCLASS=
Restriction: The CLASS= attribute is valid only in markup family destinations.
See: string on page 537

COLOR=color
specifies the color of the foreground in tables, cells, or graphs, which is primarily the
color of text.
Alias: FOREGROUND=
Interaction: The COLOR= attribute is overridden by the CBACK= option in the

SAS/GRAPH GOPTIONS statement.
Restriction: The COLOR= attribute is valid only in markup family destinations,

printer family destinations, and the RTF destination.
Tip: In a table, the COLOR= attribute affects only the text that is specified with the

PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the
font for the text that appears in the table, set the attribute for a cell.

See: color on page 534
Featured in: Example 3 on page 564

CONNECT= "MEDIAN" | "MEAN" | "Q1" | "Q3" | "MIN" | "MAX"
specifies the characteristics of a box plot connect line.

CONTENTPOSITION= LEFT | RIGHT | TOP | BOTTOM
specifies the position, within the frame file, of the frames that display the contents
and the page files.

LEFT
places the frames on the left.
Alias: L

RIGHT
places the frames on the right.
Alias: R

TOP
places the frames at the top.
Alias: T

BOTTOM
places the frames at the bottom.
Alias: B

Restriction: The CONTENTPOSITION= attribute is valid only in markup family
destinations.

See also: For information about the HTML files that ODS creates, see “HTML
Links and References Produced by the HTML Destination” on page 891.

CONTENTSCROLLBAR=YES | NO |AUTO
specifies whether to put a scroll bar in the frames in the frame file that display the
contents and the page files. (For information about the HTML files that ODS creates,
see “HTML Links and References Produced by the HTML Destination” on page 891.)

YES
places a scroll bar in the frames in the frame file that display the contents and the
page files.

NO
specifies not to put a scroll bar in the frames in the frame file that display the
contents and the page files.

516 Style Attributes and Their Values � Chapter 11

AUTO
specifies

Tip: Typically, CONTENTSCROLLBAR= is set to AUTO.
Restriction: The CONTENTSCROLLBAR= attribute is valid only in markup

family destinations.
See also: For information about the HTML files that ODS creates, see “HTML

Links and References Produced by the HTML Destination” on page 891.

CONTENTSIZE=dimension | dimension % | *
specifies the width of the frames in the frame file that display the contents and the
page files.

dimension
is a nonnegative number or the width of the frames specified as a percentage of
the entire display.

*
specifies to use whatever space is left after displaying the body file as specified by
the BODYSIZE= attribute.

Requirement: dimension % must be a positive number between 0 and 100.
Tip: If dimension is a nonnegative number, then the unit of measure is pixels.
Restriction: The CONTENTSIZE= attribute is valid only in markup family

destinations.
See: dimension on page 535
See also: BODYSIZE= on page 510
See also: For information about the HTML files that ODS creates, see “HTML

Links and References Produced by the HTML Destination” on page 891

CONTENTTYPE="string"
specifies the value of the content type for pages in an HTML document that is sent
directly to a web server rather than to a file.

string
is the content type for the pages.
Requirement: string must be enclosed in quotation marks.
Tip: The value of string is usually “text/html”.
See: string on page 537

Alias: HTMLCONTENTTYPE=
Restriction: The CONTENTTYPE= attribute is valid only in markup family

destinations.

CONTRASTCOLOR=color
specifies the alternate colors for maps. The alternate colors are applied to the blocks
on region areas in block maps.
Restriction: The CONTRASTCOLOR= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
See: color on page 534

DISPLAYOPTS= “CAPS” | “CONNECT” | “FILL” | “MEAN” | “MEDIAN” |
“NOTCHES” | “OUTLIERS” | “OUTLINE”

specifies one or more display features for ODS graphs. To specify multiple features,
enclose the list of features in quotation marks, for example:

displayopts="fill caps mean’’

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 517

CAPS
displays caps at the ends of the whiskers.
Restriction: CAPS can be used only for box plots.

CONNECT
displays the line connecting multiple boxes.
Restriction: CONNECT can be used only for box plots.

FILL
displays filled boxes, bars, ellipses, and bands.
Restriction: FILL can be used only for box plots, histograms, ellipses, and

confidence bands.

MEAN
displays the mean symbol within a box.
Restriction: MEAN can be used only for box plots.

MEDIAN
displays the median line within the box.

NOTCHES
displays notched boxes.
Restriction: NOTCHES can be used only for box plots.

OUTLIERS
displays markers for the outliers.
Restriction: OUTLIERS can be used only for box plots.

OUTLINE
displays outlined ellipses and bars.
Restriction: OUTLINE can be used only for ellipses, bands, and histograms.

DOCTYPE="string"
specifies the entire doctype declaration for the HTML document, including the
opening “<!DOCTYPE” and the closing “>”.

string
is the doctype declaration.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Alias: HTMLDOCTYPE=
Restriction: The DOCTYPE= attribute is valid only in markup family destinations.

DROPSHADOW= ON | OFF
specifies whether the drop shadow color for text is displayed.

ENDCOLOR=color
specifies the final color used with a two or three color ramp.
See: color on page 534

FILLRULEWIDTH= dimension
places a rule of the specified width into the space around the text (or entire cell if
there is no text) in a table where white space would otherwise appear.
Tip: If no text is specified, then FILLRULEWIDTH= fills the space around the text

with dash marks. For example: –this– or this ——.
Restriction: The FILLRULEWIDTH= attribute is valid only in printer family

destinations.

518 Style Attributes and Their Values � Chapter 11

See: dimension on page 535

FLYOVER="string"
specifies the text to show in a data tip for the cell.

string
is the text of the data tip.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Restriction: The FLYOVER= attribute is valid only in markup family destinations
and the PDF destination.

FONT=font-definition
specifies a font definition to use in tables, cells, and graphs.
Tip: For a table, the FONT= attribute affects only the text that is specified with the

PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the
font for the text that appears in the table, set the attribute for a cell.

Tip: If the system does not recognize the font specified, then it will refer to the
system’s default font. This attribute does not accept concatenated fonts. SAS
Graph Styles can only specify one font.

Restriction: The FONT= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

Featured in: Example 3 on page 564
See: font-definition on page 536

FONTFAMILY="string-1<…, string-n>"
specifies the font to use in cells and graphs. If you supply multiple fonts, then the
destination device uses the first one that is installed on the system.

string
is the name of the font.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Alias: FONT_FACE=
Restriction: The FONTFAMILY= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
Tip: For a table, the FONTFAMILY= attribute affects only the text that is specified

with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To
alter the font for the text that appears in the table, set the attribute for a cell.

Tip: You cannot be sure what fonts are available to someone who is viewing the
output in a browser or printing it on a high-resolution printer. Most devices
support the following fonts:

� Times
� Courier
� Arial, Helvetica.

Featured in: Example 1 on page 551

FONTSIZE=dimension | size
specifies the size of the font for tables, cells, and graphs.

dimension
is a nonnegative number.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 519

Alias: FONT_SIZE=
Restriction: If you specify a dimension, then specify a unit of measure. Without a

unit of measure, the number becomes a relative size.
See: dimension on page 535

size
The value of size is relative to all other font sizes in the HTML document.
Range: 1 to 7

Tip: For a table, the FONTSIZE= attribute affects only the text that is specified
with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To
alter the font for the text that appears in the table, set the attribute for a cell.

Restriction: The FONTSIZE= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

Featured in: Example 1 on page 551

FONTSTYLE= ITALIC | ROMAN | SLANT
specifies the style of the font for tables, cells, and graphs. In many cases, italic and
slant map to the same font.
Alias: FONT_STYLE=
Restriction: The FONTSTYLE= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
Tip: For a table, the FONTSTYLE= attribute affects only the text that is specified

with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To
alter the font for the text that appears in the table, set the attribute for a cell.

Featured in: Example 1 on page 551 and Example 3 on page 564

FONTWEIGHT= weight
specifies the font weight of tables, cells, and graphs. weight is any of the following:

� MEDIUM
� BOLD
� DEMI_BOLD
� EXTRA_BOLD
� LIGHT
� DEMI_LIGHT
� EXTRA_LIGHT.

Alias: FONT_WEIGHT=
Restriction: You cannot be sure what font weights are available to someone who is

viewing the output in a browser or printing it on a high-resolution printer. Most
devices support only MEDIUM and BOLD, and possibly LIGHT.

Restriction: The FONTWEIGHT= attribute is valid only in markup family
destinations, printer family destinations, and the RTF destination.

Tip: For a table, the FONTWEIGHT= attribute affects only the text that is specified
with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To
alter the font for the text that appears in the table, set the attribute for a cell.

Featured in: Example 1 on page 551

FONTWIDTH=relative-width
specifies the font width of tables, cells, and graphs compared to the width of the
usual design of the table, cell, or graph. relative-width is any of the following:

� NORMAL

520 Style Attributes and Their Values � Chapter 11

� COMPRESSED
� EXTRA_COMPRESSED
� NARROW
� WIDE
� EXPANDED.

Alias: FONT_WIDTH=
Restriction: Few fonts honor these values.
Restriction: The FONTWIDTH= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
Tip: For a table, the FONTWIDTH= attribute affects only the text that is specified

with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To
alter the font for the text that appears in the table, set the attribute for a cell.

Featured in: Example 1 on page 551

FRAME=frame-type
specifies the type of frame to use on a table. This table shows the possible values for
frame-type and their meanings:

Table 11.5 Frame-type Values

Value for frame-type Frame Type

ABOVE A border at the top

BELOW A border at the bottom

BOX Borders at the top, bottom, and both sides

HSIDES Borders at the top and bottom

LHS A border at the left side

RHS A border at the right side

VOID No borders

VSIDES Borders at the left and right sides

Restriction: The FRAME= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

Featured in: Example 3 on page 564

FRAMEBORDER=ON | OFF
specifies whether to put a border around the frame for an HTML file that uses frames.

ON
places a border around the frame for an HTML file that uses frames.

OFF
specifies not to put a border around the frame for an HTML file that uses frames.

Restriction: The FRAMEBORDER= attribute is valid only in markup family
destinations.

FRAMEBORDERWIDTH=dimension
specifies the width of the border around the frames for an HTML file that uses
frames.
Restriction: The FRAMEBORDERWIDTH= attribute is valid only in markup

family destinations.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 521

See: dimension on page 535

FRAMESPACING=dimension
specifies the width of the space between frames for HTML that uses frames.

Restriction: The FRAMESPACING= attribute is valid only in markup family
destinations.

See: dimension on page 535

GRADIENT_DIRECTION= “YAXIS” | “XAXIS ”
specifies the direction of the gradient.

“YAXIS”
specifies a vertical gradient.

“XAXIS”
specifies a horizontal gradient.

HEIGHT=dimension
specifies the height of a cell, graph, or graphics in an HTML document.

dimension
is a nonnegative number.

See: dimension on page 535
Alias: CELLHEIGHT=

Alias: OUTPUTHEIGHT=

Restriction: The HEIGHT= option does not apply to output generated as a result
of GRSEG (graph segment) output.

Interaction: The YPIXELS= option in the SAS/GRAPH GOPTIONS statement
overrides the HEIGHT= attribute.

Tip: HTML automatically sets cell height appropriately. You will seldom need to
specify this attribute in the HTML destination.

Restriction: The HEIGHT= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

HREFTARGET=target
specifies the window or frame in which to open the target of the link. target is one of
these values:

_BLANK
opens the target in a new, blank window. The window has no name.

_PARENT
opens the target in the window from which the current window was opened.

_SEARCH
opens the target in the browser’s search pane.

Restriction: Only available in Internet Explorer 5.0 or later.

_SELF
opens the target in the current window.

_TOP
opens the target in the topmost window.

"name"
opens the target in the specified window or the frame.

Default: _SELF

522 Style Attributes and Their Values � Chapter 11

Restriction: The HREFTARGET= attribute is valid only in markup family
destinations.

HTMLID="string"
specifies an ID for the table or cell. The ID is for use by a Java Script.

string
is the ID text.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Restriction: The HTMLID= attribute is valid only in markup family destinations.

HTMLSTYLE="string"
specifies individual attributes and values for a table or cell in an HTML document.

string
is the name of an attribute or value.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Restriction: The HTMLSTYLE= attribute is valid only in markup family
destinations.

IMAGE="string"
specifies the image to appear in a graph. This image is positioned or tiled.

string
is the name of the image.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Interaction: The BACK= and IMAGESTYLE=TILE options in the SAS/GRAPH
GOPTIONS statement override the IMAGE= attribute.

Restriction: The IMAGE= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 523

LINESTYLE=pattern-number
specifies the pattern of a line.Valid pattern numbers range from 1 to 46. Not all
pattern numbers have names.You must specify the line pattern by it’s number.
pattern-number can be one of the following:

Display 11.3 Table of Line Patterns

LINETHICKNESS=dimension
specifies the thickness of a line.
See: dimension on page 535

LINKCOLOR=color
specifies the color for the links in an HTML document that have not yet been visited.
Restriction: The LINKCOLOR= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
See: color on page 534

LISTENTRYANCHOR=ON | OFF
in an HTML document, the LISTENTRYANCHOR= attribute specifies whether to
make the entry in the table of contents a link to the body file.

ON
specifies to make this entry in the table of contents a link to the body file.

OFF
specifies not to make this entry in the table of contents a link to the body file.

Restriction: The LISTENTRYANCHOR= attribute is valid only in markup family
destinations.

524 Style Attributes and Their Values � Chapter 11

LISTENTRYDBLSPACE=ON | OFF
in an HTML document, the LISTENTRYDBLSPACE= attribute specifies whether to
double space between entries in the table of contents.

ON
specifies to double space between entries in the table of contents.

OFF
specifies not to double space between entries in the table of contents.

Restriction: The LISTENTRYDBLSPACE= attribute is valid only in markup
family destinations.

LISTSTYLETYPE=string
specifies the string to use for the bullets in the contents file. ODS uses bullets in the
contents file.

string
is one of the following:

� circle
� decimal
� disc
� lower_alpha
� lower_roman
� none
� square
� upper_alpha
� upper_roman.

Alias: BULLET
See: string on page 537

Restriction: The LISTSTYLETYPE= attribute is valid only in markup family
destinations.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 525

MARKERSIZE=dimension
specifies the marker size (both width and height).
See: dimension on page 535

MARKERSYMBOL=marker-symbol
specifies a marker symbol. marker-symbol can be one of the following:

Display 11.4 Table of Marker Symbols

MARGINBOTTOM= dimension
specifies the bottom margin for the HTML document.
Alias: BOTTOMMARGIN=
Restriction: The MARGINBOTTOM= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
See: dimension on page 535

MARGINLEFT=dimension
specifies the left margin for the HTML document.
Alias: LEFTMARGIN=
Restriction: The MARGINLEFT= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
See: dimension on page 535

526 Style Attributes and Their Values � Chapter 11

MARGINRIGHT=dimension
specifies the right margin for the HTML document.
Alias: RIGHTMARGIN=
Restriction: The MARGINRIGHT= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
See: dimension on page 535

MARGINTOP= dimension
specifies the top margin for the HTML document.
Alias: TOPMARGIN=
Restriction: The MARGINTOP= attribute is valid only in markup family

destinations, printer family destinations, and the RTF destination.
See: dimension on page 535

NEUTRALCOLOR=color
specifies the middle color in a 3-color ramp.
See: color on page 534

NOBREAKSPACE= ON | OFF
specifies how to handle space characters in cells.

ON
does not let SAS break a line at a space character.

OFF
lets SAS break a line at a space character if appropriate.

Restriction: The NOBREAKSPACE= attribute is valid in markup family
destinations, printer family destinations, and the RTF destination.

OUTPUTHEIGHT=dimension
specifies the height of a graph.
See: dimension on page 535

OUTPUTWIDTH=dimension
specifies the width of a graph.
See: dimension on page 535

OVERHANGFACTOR= nonnegative-number
specifies an upper limit for extending the width of the column in an HTML document.
Tip: Typically, an overhang factor between 1 and 2 works well.
Tip: The HTML that is generated by ODS tries to ensure that the text in a column

wraps when it reaches the requested column width. When the overhang factor
greater than 1, the text can extend beyond the specified width.

Restriction: The OVERHANGFACTOR= attribute is valid only in markup family
and printer family destinations.

PAGEBREAKHTML= "string"
specifies HTML to place at page breaks in an HTML document.

string
is the HTML code used to place at page breaks.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Restriction: The PAGEBREAKHTML= attribute is valid only in markup family
destinations.

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 527

POSTHTML= "string"
specifies the HTML code to place after the table or cell.

string
is the HTML code to place after a table or cell.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

Restriction: The POSTHTML= attribute is valid only in markup family
destinations.

Featured in: Example 3 on page 564

POSTIMAGE= "string" | fileref
specifies an image to place before the table or cell.

string
names a GIF or JPEG file. Use a simple filename, a complete path, or a URL.
Requirement: string must be enclosed in quotation marks.
See: string on page 537

fileref
is a reference that has been assigned to an external file. Use the FILENAME
statement to assign a fileref. (
See: “Statements” in SAS Language Reference: Dictionary for information about

the FILENAME statement.

Restriction: The POSTIMAGE= attribute is valid only in markup family
destinations, printer family destinations, and the RTF destination.

POSTTEXT= "string"
specifies text to place after the cell or table.
Requirement: string must be enclosed in quotation marks.
Restriction: The POSTTEXT= attribute is valid only for markup family

destinations, printer family destinations, and the RTF destination.
See: string on page 537

PREHTML="string"
specifies the HTML code to place before the table or cell.
Restriction: The PREHTML= attribute is valid only for markup family

destinations.
See: string on page 537

PREIMAGE= "string" | fileref
specifies an image to place before the table or cell.

string
names a GIF or JPEG file. Use a simple filename, a complete path, or a URL.
Requirement: Enclose string in quotation marks.
See: string on page 537

fileref
is a reference that has been assigned to an external file. Use the FILENAME
statement to assign a fileref. (For information about the FILENAME statement,
see “Statements” in SAS Language Reference: Dictionary.)

528 Style Attributes and Their Values � Chapter 11

Restriction: The PREIMAGE= attribute is valid only in markup family
destinations, printer family destinations, and the RTF destination.

PRETEXT="string"
specifies text to place before the cell or table.

string
text that is placed before the cell or table.

Requirement: Enclose string in quotation marks.

See: string on page 537

Restriction: The PRETEXT= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

PROTECTSPECIALCHARACTERS=ON | OFF | AUTO
specifies how less-than signs (<), greater-than signs (>), and ampersands (&) are
interpreted in cells. In HTML and other markup languages, these characters
indicate the beginning of a markup tag, the end of a markup tag, and the beginning
of the name of a file or character entity.

ON
interprets special characters as the characters themselves. That is, when ON is in
effect the characters are protected before they are passed to the HTML or other
markup language destination so that the characters are not interpreted as part of
the markup language. Using ON enables you to show markup language tags in
the HTML document.

OFF
interprets special characters as markup language tags. That is, when OFF is in
effect, the characters are passed to the HTML or other markup language
destination without any protection so that the special characters are interpreted
as part of the markup language.

AUTO
interprets any string that starts with a < and ends with a > as a markup language
tag (ignoring spaces that immediately precede the <, spaces that immediately
follow the >, and spaces at the beginning and end of the string). In any other
string, AUTO protects the special characters from their markup language meaning.

Restriction: The PROTECTSPECIALCHARACTERS= attribute is valid only in
markup family destinations, printer family destinations, and the RTF destination.

RULES=rule-type
specifies the types of rules to use in tables. This table shows the possible values for
the RULES= attribute and their meanings:

Table 11.6 RULES= Attribute Values

Value of RULES= Attribute Locations of Rules

ALL Between all rows and columns

COLS Between all columns

GROUPS Between the table header and the table and
between the table and the table footer, if there
is one

NONE No rules anywhere

ROWS Between all rows

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 529

Restriction: The RULES= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

Featured in: Example 4 on page 570

STARTCOLOR= color
specifies the start fill color for a graph. It is used to create a gradient effect.

Note: You can have either a start and end gradient effect or no gradient effect. If
you specify a TRANSPARENCY level and you only specify the STARTCOLOR, then
the end color will be completely transparent gradationally to the specified start
color. �
Restriction: The STARTCOLOR= attribute is valid only for the HTML destination.
See: color on page 534

TAGATTR="string"
specifies text to insert into HTML.

string
is the text that is inserted into HTML tags.
Requirement: string must be enclosed in quotation marks.

Requirement: string must be valid HTML for the context in which the style
element is created.

Tip: Many style elements are created between <TD> and </TD> tags. To
determine how a style element is created, look at the source for the output.

See: string on page 537
Restriction: The TAGATTR= attribute is valid only in markup family destinations.

TEXTALIGN= CENTER | DEC | LEFT | RIGHT
specifies justification in tables, cells, and graphs. In graphs, this option specifies the
justification of the image specified with the IMAGE= statement.

CENTER
specifies center justification.
Alias: C

DEC
specifies aligning the values by the decimal point.

Alias: D
Restriction: Decimal alignment is supported for the printer family and RTF

destinations only.

LEFT
specifies left justification.
Alias: L

RIGHT
specifies right justification.
Alias: R

Restriction: Not all contexts support RIGHT. If RIGHT is not supported, it is
interpreted as CENTER.

Alias: JUST=

Restriction The TEXTALIGN= attribute is valid only in markup family
destinations, printer family destinations, and the RTF destination.

530 Style Attributes and Their Values � Chapter 11

Tip: For the printer family destinations and the MARKUP destination, use the
style attribute TEXTALIGN= with the style attribute VERTICALALIGN= in the
style element PAGENO to control the placement of page numbers.

For example, this statement would produce a page number that is centered at
the bottom of the page:

style PageNo from TitleAndFooters / textalign=c verticalalign=b;

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 531

Tip: For printer family destinations and the MARKUP destination, control the
placement of dates by using the style attribute TEXTALIGN= with the style
attribute VERTICALALIGN= in any of these style elements:

BODYDATE
DATE

For example, this statement would produce a date in the body file that is left
justified at the top of the page:

style BodyDate from Date / textalign=l verticalalign=t;

TEXTDECORATION= BLINK | LINE_THROUGH | OVERLINE | UNDERLINE
changes the visual presentation of the text.

BLINK
specifies that the text’s visual presentation alternates rapidly between visible and
invisible.
Restriction: TEXTDECORATION=BLINK is valid only in the HTML and RTF

destinations.

LINE_THROUGH
specifies that a line is drawn through the text.
Restriction: TEXTDECORATION=LINE_THROUGH is valid only in the HTML

destination, the printer family, the measured RTF destination, and the RTF
destinations.

OVERLINE
specifies that a line is drawn above the text.
Restriction: TEXTDECORATION=OVERLINE is valid only in the HTML

destination and the printer family destinations.

UNDERLINE
specifies that a line is drawn below the text.
Restriction: TEXTDECORATION=UNDERLINE is valid only in the HTML

destination, the printer family destinations, the measured RTF destination, and
the RTF destination.

Tip: TEXTDECORATION= can be used with inline formatting and the ODS PDF
statement to enhance PDF files.

TEXTINDENT=n
specifies the number of spaces that the first line of output will be indented.
Default: The default value for XML is 2. For all other ODS destinations, the

default value is 0.
Alias: INDENT=
Restriction: The TEXTINDENT= attribute is valid only in the markup family

destinations, the printer family destinations, and the RTF destination.

n
specifies the number of spaces to indent the output.

532 Style Attributes and Their Values � Chapter 11

TICKDISPLAY= "INSIDE" | "OUTSIDE" | "ACROSS"
specifies the placement of all major and minor axix tick marks.

TEXTJUSTIFY= INTER_WORD | INTER_CHARACTER
specifies how to evenly distribute text.

INTER_WORD
specifies that the words will be evenly distributed across the page.

INTER_CHARACTER
specifies that all characters will be evenly distributed across a page.

Tip Use the TEXTJUSTIFY= style attribute with the TEXTALIGN=J (alias JUST=)
style attribute.

TRANSPARENCY=dimension
specifies a transparency level for graphs. The values are 0.0 (opaque) to 1.0
(transparent).

Restriction: The TRANSPARENCY= attribute is valid only in the HTML
destination.

See: dimension on page 535

URL="uniform-resource-locator"
specifies a URL to link to from the current cell.
Requirement: uniform-resource-locator must be enclosed in quotation marks.

Restriction: The URL= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

VERTICALALIGN= BOTTOM | MIDDLE | TOP
specifies vertical justification for graphs and cells. In graphs, this option specifies the
vertical justification of the image specified with IMAGE=.

BOTTOM
specifies bottom justification.

Alias: B

MIDDLE
specifies center justification.
Alias: M

TOP
specifies top justification.
Alias: T

Alias: VJUST=

Restriction: The VERTICALALIGN= attribute is valid only in markup family
destinations, printer family destinations, and the RTF destination.

Tip: For printer and markup family destinations, use the style attribute
VERTICALALIGN= with the style attribute TEXTALIGN= in the style element
PAGENO to control the placement of page numbers.

For example, this statement produces a page number that is centered at the
bottom of the page:

style PageNo from TitleAndFooters / textalign=c verticalalign=b;

Tip: For printer and markup family destinations, control the placement of dates by
using the style attribute VERTICALALIGN= with the style attribute
TEXTALIGN= in any of these style elements:

BODYDATE

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 533

DATE

.
For example, this statement produces a date in the body file that is left justified

at the top of the page:

style BodyDate from Date / textalign=l verticalalign=t;

VISITEDLINKCOLOR= color
specifies the color for links that have been visited in an HTML document.

Restriction: The VISITEDLINKCOLOR= attribute is valid only in markup family
destinations.

See: color on page 534

WATERMARK= ON | OFF
specifies whether to make the image that is specified by BACKGROUNDIMAGE=
into a watermark. A watermark appears in a fixed position as the window is scrolled.

ON
specifies to make the image that is specified by BACKGROUNDIMAGE= into a
watermark.

OFF
specifies not to make the image that is specified by BACKGROUNDIMAGE= into
a watermark.

Restriction: The WATERMARK= attribute is valid only in markup family
destinations.

See also: BACKGROUNDIMAGE= on page 510

WIDTH= dimension
specifies the width of a cell, table, line, or a graph.

dimension
is a nonnegative number.

See: dimension on page 535

Alias: CELLWIDTH=

Alias: OUTPUTWIDTH=

Restriction: The HEIGHT= option does not apply to output generated as a result
of GRSEG (graph segment) output.

Interaction: The XPIXELS= option in the SAS/GRAPH GOPTIONS statement
overrides the WIDTH= attribute.

Tip: When used with graphs, the HEIGHT=dimension must be specified as a pixel
or percentage value. If a unit of measure is not specified with the dimension, then
the value will be in pixels. If a unit of measure other than pixels or percentage is
specified with the dimension, then the HEIGHT=dimension is not applied to the
graph.

Tip: A column of cells will have the width of the widest cell in the column.

Tip: Use WIDTH=100% to make the table or graph as wide as the window that it is
open in.

Restriction: The WIDTH= attribute is valid only in markup family destinations,
printer family destinations, and the RTF destination.

534 Style Attributes and Their Values � Chapter 11

Style Attribute Values
Values for style attributes are one of the following:

color
is a string that identifies a color. A color is defined in the following ways:

� most of the color names that are supported by SAS/GRAPH. These names
include the following:
� a predefined SAS color (for example, blue or VIYG)
� a red/green/blue (RGB) value (for example, CX0023FF)
� a hue/light/saturation (HLS) value (for example, H14E162D)
� a gray-scale value (for example, GRAYBB).

� an RGB value with a leading pound sign (#) rather than CX (for example,
#0023FF).

� one of the colors that exists in the SAS session when the style is used:
� DMSBLUE
� DMSRED
� DMSPINK
� DMSGREEN
� DMSCYAN
� DMSYELLOW
� DMSWHITE
� DMSORANGE
� DMSBLACK
� DMSMAGENTA
� DMSGRAY
� DMSBROWN
� SYSBACK
� SYSSECB
� SYSFORE

Note: Use these colors only when running SAS in the windowing
environment. �

� an English description of an HLS. Such descriptions use a combination of words
to describe the lightness, the saturation, and the hue (in that order). Use the
Color Naming System to form a color in the following ways:

� combining a chromatic hue with a lightness, a saturation, or both
� combining the achromatic hue gray with a lightness
� combining the achromatic hue black or white without qualifiers

Use the words in the following table:

Table 11.7 Hue/Light/Saturation (HLS) Values

Lightness Saturation Chromatic Hue Achromatic Hue

Blue Black *

Very dark Grayish Purple

Dark Moderate Red

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 535

Lightness Saturation Chromatic Hue Achromatic Hue

Medium Strong Orange | brown Gray **

Light Vivid Yellow

Very light Green

White *

* Black and white cannot be combined with a lightness or a saturation value.
** Gray cannot be combined with a saturation value.

Combine these words to form a wide variety of colors. Here are examples:

� light vivid green

� dark vivid orange

� light yellow

Note: The Output Delivery System first tries to match a color with a SAS/GRAPH
color. Thus, although brown and orange are interchangeable in the table, if you use
them as unmodified hues, then they are different. The reason for this is that ODS
interprets them as SAS colors, which are mapped to different colors. �

You can also specify hues that are intermediate between two neighboring colors.
To do so, combine one of these adjectives with one of its neighboring colors:

� reddish

� orangish

� brownish

� yellowish

� greenish

� bluish

� purplish

For example, you can use the following as hues:

� bluish purple

� reddish orange

� yellowish green

See also: RBG Color Codes, HLS Color Codes, and Gray-Scale Color codes in
SAS/GRAPH: Reference for information about SAS/GRAPH colors.

dimension
is a whole number, a percentage, or a nonnegative number followed by one of these
units of measure:

Table 11.8 Units of Measure for Dimension

cm Centimeters

em Standard typesetting measurement unit for width

ex Standard typesetting measurement unit for height

in Inches

536 Style Attributes and Their Values � Chapter 11

mm Millimeters

pt A printer’s point

Default: For the PRINTER destination, units of 1/150 of an inch

font-definition
is the name of a font, the font size, and font keywords. A font definition has this
general format:

(“font-face-1 <… , font-face-n>”, font-size, keyword-list)

“font-face”
specifies the name of the font.

ODS styles can now use new TrueType fonts. All Universal Printers and many
SAS/GRAPH devices use the FreeType library to render TrueType fonts for output
in all of the operating environments that SAS software supports. In addition, by
default, many SAS/GRAPH device drivers and all Universal Printers generate
output using ODS styles, and these ODS styles use TrueType fonts. In addition to
SAS Monospace and SAS Monospace Bold, 21 new TrueType fonts are made
available when you install SAS:

� five Latin fonts compatible with Microsoft

� eight multilingual Unicode fonts

� eight monolingual Asian fonts

For more information about the TrueType fonts, see the section “Printing with
SAS” in SAS Language Reference: Concepts.

Restriction: You must enclose multiple font-face in quotation marks. If you
specify only one font and if its name does not include a space character, then
omit the quotation marks.

Tip: If you specify more than one font, then the destination device uses the first
one that is installed on the system.

font-size
specifies the size of the font. font-size is a dimension or a number without units of
measure. If you specify a dimension, then specify a unit of measure. Without a
unit of measure the number becomes a size that is relative to all other font sizes
in the HTML document. For more information, see dimension on page 535.

keyword-list
specifies the font weight, font style, and font width. Include one value for each, in
any order. This table shows the keywords to use:

Table 11.9 Font Keywords

Keywords for Font Weight Keywords for Font Style Keywords for Font Width

MEDIUM ITALIC NORMAL*

BOLD ROMAN COMPRESSED*

DEMI_BOLD* SLANT EXTRA_COMPRESSED*

EXTRA_BOLD* NARROW*

LIGHT WIDE*

TEMPLATE Procedure: Creating a Style Template (Definition) � Style Attributes and Their Values 537

Keywords for Font Weight Keywords for Font Style Keywords for Font Width

DEMI_LIGHT* EXPANDED*

EXTRA_LIGHT*

* Few fonts honor these values.

Featured in: Example 2 on page 557

format
is a SAS format or a user-defined format.

integer | integer-list | integer-column-list
specifies a column variable that contains integer values, or a dynamic variable that
refers to such a column variable.

integer
specifies a single integer.

integer-list
specifies a sequence of integer values, or a column variable that contains integer
values, or a dynamic variable that refers to such a column variable or to a string.

integer-column-list
specifies a sequence of column variables, or a column variable that contains
column variables, or a dynamic variable that refers to such a column variable, or a
dynamic variable that refers to a string containing a list of column variables.
Values within the columns must be integers.

style-reference
is a reference to an attribute that is defined in the current style or in the parent style
(or beyond). The value used is the name of the style element followed by the name of
an attribute, in parentheses, within that element. Style references have the following
form:

style-attribute=target-style-element("target-style-attribute")

style-attribute specifies the name of the style attribute.

target-style-
element

specifies the name of the style element that contains the style
attribute that you want to reference.

target-style-
attribute

specifies the style attribute with the value that you want to use.

Requirement: You must enclose target-style-attribute in quotation marks if it is a
user-supplied style attribute.

Featured in: Example 2 on page 557
See also: “Understanding Style References” on page 544

"string"
is a quoted character string.

user-defined-format
specifies a format created with the FORMAT procedure.
Restriction user-defined-format can only be specified for data cells.

538 Concepts: Styles and the TEMPLATE Procedure � Chapter 11

Concepts: Styles and the TEMPLATE Procedure

Viewing the Contents of a Style
To view the contents of a style, use the SAS windowing environment, the command

line, or the TEMPLATE procedure.
� Using the SAS Windowing Environment

1 In the Results window, select the Results folder. Right-click and select
Templates to open the Templates window.

2 Double-click Sashelp.Tmplmst to view the contents of that directory.
3 Double-click Styles to view the contents of that directory.

� Using the Command Line
1 To view the Templates window, submit this command in the command line:

odstemplates

The Templates window contains the item stores Sasuser.Templat and
Sashelp.Tmplmst.

2 Double-click an item store, such as Sashelp.Tmplmst, to expand the list of
directories where ODS templates are stored. The templates that SAS provides
are in the item store Sashelp.Tmplmst.

3 To view the styles that SAS provides, double-click the Styles item store.
4 Right-click the style, such as Journal, and select Open. The style template is

displayed in the Template Browser window.
� Using the TEMPLATE Procedure

1 Submit this code to view the contents of the default HTML style that SAS
supplies.

proc template;
source styles.default;
run;

2 View any of the SAS styles by specifying the styles.style-template in the
SOURCE statement. The SAS styles are in the Sashelp.Tmplmst item store.

Working with Styles

Finding and Viewing the Default Style for ODS Destinations
The default styles for the ODS output destinations are stored in the STYLES

directory in the template store Sashelp.Tmplmst, along with the other styles that are
supplied by SAS. You can view the styles from the TEMPLATE window, or you can
submit this PROC TEMPLATE step to write the style to the SAS log:

proc template;
source styles.template-name;

run;

TEMPLATE Procedure: Creating a Style Template (Definition) � ODS Styles with Graphical Style Information 539

The following table lists the ODS destinations and their default styles:

Table 11.10 Destination Category Table

Destinations Default Style Name

LISTING Listing

HTML Default

MARKUP Language Tagsets Default

PRINTER Printer for PDF and PS, monochromePrinter for PCL

RTF RTF

Modifying Style Elements in the Default Style for HTML and Markup
Languages

When you work with styles, it is often more efficient to modify a SAS style than to
write a completely new style. Example 3 on page 564 shows you how to modify the
default style.

To customize the style for use at a specific site, it is helpful to know what each style
element in the style specifies. For a list of the default HTML and markup languages
style elements, see Appendix 4, “ODS Style Elements,” on page 905.

ODS Styles with Graphical Style Information
SAS provides ODS styles that incorporate graph style information. These styles

utilize a number of style attributes that are used by other style elements, but they also
use several style attributes that are unique to graph styles. For example, use the
STARTCOLOR= style attribute and the ENDCOLOR= style attribute to produce a
gradient effect that gradually changes from the starting color to the ending color in a
specified element. When either the STARTCOLOR= style attribute or the
ENDCOLOR= style attribute, but not both, is specified, then the style attribute that
was not specified is transparent when the TRANSPARENCY= style attribute is being
used. In Example 4 on page 570, only the ENDCOLOR= style attribute is specified.
Therefore, the starting color is transparent.

The TRANSPARENCY= style attribute is another style attribute that is unique to
graph styles. With transparency, specify the level of transparency (from 0.0 to 1.0) to
indicate the percentage of transparency (0 to 100 %) for the graph element. While you
can use the BACKGROUNDIMAGE= style attribute in other style elements to stretch
an image, in graph styles, you can also use the IMAGE= style attribute to position or
tile an image.

With graph styles, elements, or templates you can also combine images and colors to
create a blending affect. The blending works best when you use a grayscale image with
a specified color. Blending is done in these style elements: GraphLegendBackground,
GraphCharts, GraphData#, GraphFloor, and GraphWalls. To blend, specify a color
using the BACKGROUNDCOLOR= or COLOR= style attribute and specify an image
using the BACKGROUNDIMAGE= or IMAGE= style attribute.

Note: When using the GraphData# style element, you can use the COLOR= style
attribute, but not the BACKGROUNDCOLOR= style attribute to specify a color value.
�

540 Understanding Styles, Style Elements, and Style Attributes � Chapter 11

See “Style Attributes and Their Values” on page 498 for a complete listing of style
attributes. For a complete list of style elements see Appendix 4, “ODS Style Elements,”
on page 905.

In addition to using defined ODS styles, you can also modify an existing style or
create an entirely new style using the new graph style elements. Example 4 on page
570 describes how a defined ODS style was generated.

See “Viewing the Contents of a Style” on page 538 for information about viewing the
code for the ODS styles that are delivered with SAS.

Understanding Styles, Style Elements, and Style Attributes
To help you become familiar with styles, style elements, and style attributes, look at

the relationship between them. The following program creates a style, Concepts.Style.
The diagram that follows the program shows the relationship between the style, the
style elements, and the style attributes.

proc template;
define style concepts.style;

style celldata /
fontfamily="roman, arial"
color=blue
fontweight =bold
"dark"=black;

style cellemphasis from celldata /
color=celldata("dark")
cellspacing=10;

end;
run;

TEMPLATE Procedure: Creating a Style Template (Definition) � Understanding Styles, Style Elements, and Style Attributes 541

Display 11.5 Diagram of a Style, Including Style Elements and Style Attributes

Concepts.Style

CellData

fontfamily=’roman,arial’

color=blue

fontweight=bold

‘dark’=black

CellEmphasis

color=celldata(’dark’)

cellspacing=10

2

1

3

4

2

5

3

The following list corresponds to the numbered items in the preceding diagram:

u Concepts.Style is a style. Styles describe how to display presentation
aspects (color, font, font size, and so on) of the output for an entire
SAS job. A style determines the overall appearance of the ODS
documents that use it. Each style is composed of style elements.
Styles are created with the “DEFINE STYLE Statement” on page
490.

New styles can be created independently or from an existing
style. You can use the “PARENT= Statement” on page 494 to create
a new style from an existing style.

v CellData and CellEmphasis are style elements. A style element is a
collection of style attributes that apply to a particular part of the
output for a SAS program. For example, a style element might
contain instructions for the presentation of column headings or for
the presentation of the data inside table cells. Style elements might
also specify default colors and fonts for output that uses the style.
Style elements exist inside of styles and are defined by the “STYLE
Statement” on page 495.

Note: For a list of the default style elements used for HTML and
markup languages and their inheritance, see Appendix 4, “ODS
Style Elements,” on page 905. �

542 Understanding Styles, Style Elements, and Style Attributes � Chapter 11

w The following are style attribute-value pairs:
� fontfamily="roman, arial"

� color=blue

� fontweight=bold

� "dark"=black

� color=celldata("dark")

� cellspacing=10

Style attributes specify a value for one aspect of the presentation.
For example, the COLOR= attribute specifies the value blue for the
foreground color of a table, and the FONTFAMILY= attribute
specifies the values roman and arial as the font to use.

Style attributes exist within style elements and can be supplied
by SAS or be user-defined. FONTFAMILY=, COLOR=,
FONTWEIGHT=, and CELLSPACING= are style attributes supplied
by SAS. For a list of style attributes supplied by SAS, see “Style
Attributes and Their Values” on page 498.

x "Dark" is a user-defined style attribute. It specifies to substitute the
value black whenever the value "dark" is specified.

y The value celldata("dark") is a style reference. Style attributes
can be referenced with style references. This style reference specifies
that PROC TEMPLATE go to the CellData style element and use
the value that is specified for the "dark" style attribute. See the
style-reference value in the section “Style Attribute Values” on page
534 for more information about style references.

TEMPLATE Procedure: Creating a Style Template (Definition) � Understanding Inheritance 543

Understanding Inheritance

Overview
Inheritance can be initiated by the PARENT= statement or the FROM= option in the

STYLE statement.
The PARENT= statement specifies that PROC TEMPLATE copy all of the style

elements from the parent style to the new child style. The style elements are used in
the new template unless the new template has style elements that overrides them.

The FROM= option specifies that PROC TEMPLATE copy all of the style attributes
from the parent style element to the specified child style element.

Inheritance Between Styles
Inheritance between styles is initiated by the PARENT= option, and involves the

following process:

1 When the PARENT= statement is specified, style elements in the parent style are
copied into the new style. This copying occurs before any inheritance can occur
within the new style.

2 If there is a like-named style element within the child style that does not have a
FROM option specified, then the style element from the child style overrides the
style element from the parent style.

3 If there is a like-named style element within the child style that does have the
FROM option specified, then the child style element absorbs the style attributes
from the parent style element. If there are like-named style attributes in the two
style elements, then the style attributes from the child style element are used.

The following code shows an example of inheritance between two styles:

Example Code 11.1 Original Code for Creating Style2

define style style1;
style fonts /

"docfont" = ("Arial", 3)
"tablefont" = ("Times", 2);

style output /
cellpadding = 5
cellspacing = 0
font = fonts("docfont");

style table from output /
cellspacing = 2
font = fonts("tablefont");

style header /
backgroundcolor=white
color=blue
fontfamily="arial, helvetica"
fontweight=bold;

end;

define style style2;
parent = style1;
style fonts from fonts /

544 Understanding Style References � Chapter 11

"docfont" = ("Helvetica", 3);
style table from table /

cellspacing = 4;
style header /

fontstyle=roman
fontsize=5;

end;

The Style2 style from the previous code could also be written this way:

Example Code 11.2 Expanded Version of Style2

define style style2;
style fonts/

"docfont" = ("Helvetica", 3)
"tablefont" = ("Times", 2);

style output /
cellpadding = 5
cellspacing = 0
font = fonts("docfont");

style table from output /
cellspacing=4
font = fonts("tablefont");

style header /
fontstyle=roman
fontsize=5;

end;

Inheritance Between Style Elements
The FROM option on a STYLE statement is used to initiate inheritance from another

style element. The style element referenced by the FROM option can exist in either the
current style or the parent style (if a parent template is specified using the PARENT=
statement).

For example, in both the original Style2 style and the expanded version from the
section “Inheritance Between Styles” on page 543 the Table style element, which is
created with the style table from output / ... statement, ends up with the
following style attributes:

� cellpadding= 5

� cellspacing= 4

� font=fonts("tablefont")

Understanding Style References
A style reference references a style attribute in a style element. The style element

can exist either in the current style or in the parent style.
For example, suppose that you create a style element named DataCell that uses the

COLOR= and BACKGROUNDCOLOR= style attributes:

style datacell / backgroundcolor=blue
color=white;

To ensure that another style element, NewCell, uses the same background color, use a
style reference in the NewCell element, like this:

style newcell / backgroundcolor=datacell(backgroundcolor);

TEMPLATE Procedure: Creating a Style Template (Definition) � Understanding Style References 545

The style reference datacell(backgroundcolor) indicates that the value for the style
attribute BACKGROUNDCOLOR= of the style element named DataCell should be used.

Similarly, suppose that you create a style element named HighLighting that defines
three style attributes:

style highlighting /
"go"=green
"caution"=yellow
"stop"=red;

You can then define a style element named Messages that references the colors that are
defined in the HighLighting style element:

style messages;
"note"=highlighting("go")
"warning"=highlighting("caution")
"error"=highlighting("stop");

Because you used style references, multiple style elements can use the colors defined in
the HighLighting style element. If you change the value of go to blue in the
HighLighting style element, then every style element that uses the style reference
highlighting("go") will use blue instead of green.

In the following code, the FONT= style attribute in the Output style element is
defined in terms of the Fonts style element. The value fonts("docfont") tells PROC
TEMPLATE to go to the last instance of the style element named Fonts and use the
value for the style attribute DocFont.

The FONT= style attribute in the Table style element is also defined in terms of the
Fonts style element. The value fonts("tablefont") tells PROC TEMPLATE to go to
the last instance of the style element named Fonts and use the value for the style
attribute TableFont.

Example Code 11.3 Program with Unresolved Style References

define style style1;
style fonts /

"docfont" = ("Arial", 3)
"tablefont" = ("Times", 2);

style output /
cellpadding = 5
cellspacing = 0
font = fonts("docfont");

style table from output /
cellspacing = 2
font = fonts("tablefont");

style header /
backgroundcolor=white
color=blue
fontfamily="arial, helvetica"
fontweight=bold;

end;

define style style2;
parent = style1;
style fonts from fonts /

"docfont" = ("Helvetica", 3);
style table from table /

cellspacing = 4;

546 Using the FROM Option � Chapter 11

style header /
fontstyle=roman
fontsize=5;

end;

When you submit the code in SAS, the output is created as if you submitted the
following program. Notice that in the Output style element, the style reference resolves
to ("helvetica", 3), not ("Arial", 3). This is because the "DocFont" user-supplied
style attribute in the Style2 style overrides the like-named style attribute in the Style1
style.

Example Code 11.4 Program with Resolved Style References

define style style1;
style fonts /

"docfont" = ("Arial", 3)
"tablefont" = ("Times", 2);

style output /
cellpadding = 5
cellspacing = 0

/*** Resolved from "docfont" in Style2***/
font = fonts("helvetica", 3);

style table from output /
cellspacing = 2

/*** Resolved from "tablefont" in Style1***/
font = fonts("Times", 2);

style header /
backgroundcolor=white
color=blue
fontfamily="arial, helvetica"
fontweight=bold;

end;

define style style2;
parent = style1;
style fonts from fonts /

"docfont" = ("Helvetica", 3);
style table from table /

cellspacing = 4;
style header /

fontstyle=roman
fontsize=5;

end;

Using the FROM Option
The FROM option is used with a style element in order to inherit from another style

element. This can result in an incomplete style element in the child style.
For example, in Program 1 the style Concepts.Style2 inherits all of its style elements

and style attributes from the style Concepts.Style1. However, the instance of the style
element Colors in Concepts.Style2 overrides the instance of Colors in Concepts.Style1.
This is because there is no FROM option in the STYLE statement that creates Colors in
Concepts.Style2. Therefore, Colors has one style attribute: "dark"=dark blue.

When you run the program, the only style references to Color that resolve are
references that refer to the "dark" style attribute. Style references in Concepts.Style1

TEMPLATE Procedure: Creating a Style Template (Definition) � Using the FROM Option 547

and Concepts.Style2 such as colors("fancy") and colors("medium") do not resolve
because they refer to attributes that were not copied into the current instance of the
Colors style element. The resulting output is Display 11.6 on page 548.

To correct this, you can add the FROM option to the STYLE statement that creates
the Colors style element in Concepts.Style2:

style colors from colors /
"dark"=dark blue;

Example Code 11.5 Program 1: Creating the Colors Style Element without the FROM Option

proc template;
define style concepts.style1;

style colors /
"default"=white
"fancy"=very light vivid blue
"medium"=red ;

style celldatasimple /
fontfamily=arial
backgroundcolor=colors("fancy")
color=colors("default");

style celldataemphasis from celldatasimple /
color=colors("medium")
fontstyle=italic;

style celldatalarge from celldataemphasis /
fontweight=bold
fontsize=3;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style colors /

"dark"=dark blue;
style celldataemphasis from celldataemphasis /

backgroundcolor=white;
style celldatasmall from celldatalarge /

fontsize=5
color=colors("dark")
backgroundcolor=colors("medium");

end;
run;

For the complete SAS code that created the following output, see the version of the
code without the FROM option in “Using the FROM option” on page 883.

548 Inheritance Compatibility across Versions � Chapter 11

Display 11.6 Output Created without the FROM Option

For the complete SAS code that created the following output, see the version of the
code with the FROM option in “Using the FROM option” on page 883.

Display 11.7 Output Created with the FROM Option

Inheritance Compatibility across Versions
In most cases, an ODS style element or style that was created in a previous version

of SAS will still be compatible with later versions of SAS. However, beginning with SAS
9.2, style inheritance is completely expanded before style element inheritance takes
place. This change can cause discrepancies between the output a program creates in a
previous version of SAS and the output that same program creates in SAS 9.2.

The following program creates different output depending on whether it is run in
SAS 9.2 or in a previous version of SAS. In SAS 9.2, the yellow background that

TEMPLATE Procedure: Creating a Style Template (Definition) � Inheritance Compatibility across Versions 549

CellDataEmphasis has in Concepts.Style2 is passed to CellDataLarge and
CellDataSmall. However, in previous versions of SAS, the yellow background is not
passed to CellDataLarge and CellDataSmall. For more information about the using the
FROM option, see “Using the FROM Option” on page 546.

Example Code 11.6 Program 2: Using Inheritance to Create a New Style Element from a Style Element in the
Parent Style

proc template;
define style concepts.style1;

style celldatasimple /
fontfamily=arial
backgroundcolor=very light vivid blue
color=white;

style celldataemphasis from celldatasimple /
color=red u

fontstyle=italic;
style celldatalarge from celldataemphasis /

fontweight=bold
fontsize=5;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style celldataemphasis from celldataemphasis/ w

backgroundcolor=yellow; v

style celldatasmall from celldatalarge /
fontsize=2;

end;
run;

The output this program creates when you run it in a previous version of SAS is
different from the output the program creates in SAS 9.2. This is because, when you
change the value of the COLOR= attribute in CellDataEmphasis from red (u) to yellow
(v), the change affects only style elements that inherit from CellDataEmphasis in
Concepts.Style2 (w). Within Concepts.Style2, there are no style elements that inherit
from CellDataEmphasis. Therefore, only CellDataEmphasis in Concepts.Style2 has
yellow text. Beginning with SAS 9.2, all style elements in parent style definitions also
pick up the color change.

For the complete SAS code that created this output, see the SAS 9.1 version of the
code in “Inheritance Compatibility Across SAS Versions” on page 886.

550 Inheritance Compatibility across Versions � Chapter 11

Display 11.8 SAS 9.2 Output

Display 11.9 SAS 9.1 Output

TEMPLATE Procedure: Creating a Style Template (Definition) � Program Description 551

Examples: Creating and Modifying Styles Using the TEMPLATE
Procedure

Example 1: Creating a Stand-Alone Style
PROC TEMPLATE features:

DEFINE STYLE statement:
STYLE statement:

BACKGROUNDCOLOR=
BORDERWIDTH=
CELLSPACING=
FONTFAMILY=
FONTSIZE=
FONTSTYLE=
FONTWEIGHT=
COLOR=

DEFINE TABLE statement:
CLASSLEVELS= table attribute
DYNAMIC statement
MVAR statement

DEFINE COLUMN statement:
BLANK_DUPS=
GENERIC=
HEADER=
STYLE=

DEFINE FOOTER statement:
TEXT statement

Other ODS features:
ODS HTML statement
ODS LISTING statement
FILE statement with ODS= option
PUT statement with _ODS_ argument

Data set: See “Creating the Grain_Production Data Set” on page 878.
Format: See “Creating the $CNTRY Format” on page 869.

Program Description
This example creates a style that is not based on any other style. When you create a

style, you will usually base it on one of the styles that SAS provides (see Example 3 on
page 564). However, this example is provided to show you some of the basic ways to
create a style.

It is important to understand that by default, certain table elements are created with
certain style elements. For example, unless you specify a different style element with

552 Program � Chapter 11

the STYLE= attribute, ODS produces SAS titles with the SystemTitle style element.
Similarly, unless you specify otherwise, ODS produces headers with the Header style
element. (For information about each style element, see Appendix 4, “ODS Style
Elements,” on page 905.

Program

Create a new style named NewStyle with the style element CellContents. The PROC
TEMPLATE statement starts the TEMPLATE procedure. The DEFINE STYLE statement
creates a new style called NewStyle. This STYLE statement defines the style element
CellContents. This style element is composed of the style attributes that appear on the STYLE
statement. The FONTFAMILY= attribute tells the browser to use the Arial font if it is available,
and to look for the Helvetica font if Arial is not available.

proc template;
define style newstyle;

style cellcontents /
fontfamily="arial, helvetica"
fontweight=medium
backgroundcolor=blue
fontstyle=roman
fontsize=5
color=white

Create the style element Header. This STYLE statement creates the style element Header.
By default, ODS uses Header to produce both spanning headers and column headings. This
style element uses a different background color from CellContents. It uses the same font (Arial
or Helvetica), the same font style (roman), the same font color (white), and the same font size
(5) as CellContents.

style header /
backgroundcolor=very light blue
fontfamily="arial, helvetica"
fontweight=medium
fontstyle=roman
fontsize=5
color=white;

Create the style element SystemTitle. This STYLE statement creates the style element
SystemTitle. By default, ODS uses SystemTitle to produce SAS titles. This style element uses a
color scheme of a red foreground on a white background. It uses the same font and font weight
as Header and CellContents, but it adds an italic font style and uses a larger font size.

style systemtitle /
fontfamily="arial, helvetica"
fontweight=medium
backgroundcolor=white
fontstyle=italic
fontsize=6
color=red;

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 553

Create the style element Footer. This STYLE statement creates the style element Footer.
This style element inherits all the attributes of SystemTitle. However, the font size that it
inherits is overwritten by the FONTSIZE= attribute in its template.

style footer from systemtitle /
fontsize=3;

Create the style element Table. This STYLE statement creates the style element Table. By
default, ODS uses this style element to display tables.

style table /
cellspacing=5
borderwidth=10;

End the style. The END statement ends the style template. The RUN statement executes the
TEMPLATE procedure.

end;
run;

Create the table template Table1. The PROC TEMPLATE statement starts the TEMPLATE
procedure. The DEFINE TABLE statement creates a new table template called Table1.

proc template;
define table table1;

Specify the symbol that references one macro variable. The MVAR statement defines a
symbol, SysDate9, that references a macro variable. ODS will use the value of this macro
variable as a string. References to the macro variable are resolved when ODS binds the table
template to the data component to produce an output object. SYSDATE9 is an automatic macro
variable whose value is always available.

mvar sysdate9;

Specify the symbol that references a value to be supplied by the data component. The
DYNAMIC statement defines a symbol, Colhd, that references a value that the data component
supplies when ODS binds the template and the data component to produce an output object.
The values for Colhd are provided in the FILE statement in the DATA step that appears later in
the program. Using dynamic column headings gives you more flexibility than does hard-coding
the headers in the table template.

dynamic colhd;

Control the repetition of values that do not change from one row to the next row. The
CLASSLEVELS= attribute suppresses the display of the value in a column that is marked with
BLANK_DUPS=ON if the value changes in a previous column that is also marked with
BLANK_DUPS=ON. Because BLANK_DUPS= is set in a generic column, set this attribute as
well.

classlevels=on;

554 Program � Chapter 11

Create the column Char_Var. This DEFINE statement and its attributes create the column
template Char_Var.

GENERIC= specifies that multiple variables can use the same column template.

BLANK_DUPS= suppresses the display of the value in the column if it does not change from
one row to the next (and, because CLASSLEVELS=ON for the table, if no values in preceding
columns that are marked with BLANK_DUPS=ON changes).

HEADER= specifies that the header for the column will be the text of the dynamic variable
Colhd, whose value will be set by the data component.

The STYLE= attribute specifies that the style element for this column template is CellContents.

The END statement ends the template.

define column char_var;
generic=on;
blank_dups=on;
header=colhd;
style=cellcontents;

end;

Create the column template Num_Var. This DEFINE statement and its attributes create the
column template Num_Var. GENERIC= specifies that multiple variables can use the same
column template. HEADER= specifies that the header for the column will be the text of the
dynamic variable Colhd, whose value will be set by the data component.

The STYLE= attribute specifies that the style element for this column template is CellContents.

The END statement ends the template.

define column num_var;
generic=on;
header=colhd;
style=cellcontents;

end;

Create the footer element Table_Footer. The DEFINE statement and its substatement
define the table element Table_Footer. The FOOTER argument declares Table_Footer as a
footer. The TEXT statement specifies the text of the footer. When ODS binds the data
component to the table template (in the DATA step that follows), it will resolve the value of the
macro variable SYSDATE9.

define footer table_footer;
text "Prepared on " sysdate9;

end;

End the table template. This END statement ends the table template. The RUN statement
executes the PROC TEMPLATE step.

end;
run;

Stop the creation of the listing output. The ODS LISTING statement closes the LISTING
destination in order to conserve resources. The LISTING destination is open by default.

ods listing close;

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 555

Create HTML output and specify the location for storing the HTML output. Specify
the style to use for the output. The ODS HTML statement opens the HTML destination and
creates HTML output. It sends all output objects to the external file NewStyle-Body in the
current directory. The STYLE= option tells ODS to use NewStyle as the style when it formats
the output.

ods html body="newstyle-body.htm"
style=newstyle;

Specify the titles for the report. The TITLE statements provide two titles for the output.

title "Leading Grain Producers";
title2 "in 1996";

Create the data component. This DATA step does not create a data set. Instead, it creates a
data component and, eventually, an output object.

The SET statement reads the data set Grain_Production. The WHERE statement subsets the
data set so that the output object contains information only for rice and corn production in 1996.

data _null_;
set grain_production;
where type in ("Rice", "Corn") and year=1996;

Route the DATA step results to ODS and use the Table1 table template. The combination
of the fileref PRINT and the ODS option in the FILE statement routes the results of the DATA
step to ODS. (For more information about using the DATA step with ODS, see Chapter 3,
“Output Delivery System and the DATA Step,” on page 39.) The TEMPLATE= suboption tells
ODS to use the table template named Table1, which was previously created with PROC
TEMPLATE.

file print ods=(
template="table1"

Specify the column template to use for each variable. The COLUMNS= suboption places
DATA step variables into columns that are defined in the table template. For example, the first
column-specification specifies that the first column of the output object contains the values of
the variable COUNTRY and that it uses the column template named Char_Var. GENERIC=
must be set to ON in both the table template and each column assignment in order for multiple
variables to use the same column template. The FORMAT= suboption specifies a format for the
column. The DYNAMIC= suboption provides the value of the dynamic variable Colhd for the
current column. Notice that for the first column the column header is Country, and for the
second column, which uses the same column template, the column header is Year.

columns=(
char_var=country(generic=on format=$cntry.

dynamic=(colhd="Country"))
char_var=type(generic dynamic=(colhd="Year"))
num_var=kilotons(generic=on format=comma12.

dynamic=(colhd="Kilotons"))
)

);

556 HTML Output: Specifying Colors and Fonts with User-Defined Attributes � Chapter 11

Write the data values to the data component. The _ODS_ option and the PUT statement
write the data values for all columns to the data component. The RUN statement executes the
DATA step.

put _ods_;
run;

Stop the creation of the HTML output and create the listing output. The ODS HTML
statement closes the HTML destination and all the files that are associated with it. Close the
destination so that you can view the output with a browser. The ODS LISTING statement opens
the LISTING destination to return ODS to its default setup.

ods html close;
ods listing;

HTML Output: Specifying Colors and Fonts with User-Defined Attributes

Display 11.10 HTML Output

Use the fonts to confirm that SAS titles use the SystemTitle style element, that column
headings use the Header style element, that the footer uses the Table-Footer style element, and
that the contents of both character and numeric cells use the CellContents style element. Use
the width of the table border and the spacing between cells to confirm that the table itself is
produced with the Table style element.

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 1: Creating the Style 557

Example 2: Using User-Defined Attributes

PROC TEMPLATE features:
DEFINE STYLE statement:

STYLE statement with user-defined attributes:
DEFINE TABLE statement:

CLASSLEVELS= table attribute
DYNAMIC statement
MVAR statement

DEFINE COLUMN statement:
BLANK_DUPS=
GENERIC=
HEADER=
STYLE=

DEFINE COLUMN statement:
BLANK_DUPS= attribute
CELLSTYLE-AS statement
GENERIC= attribute

DEFINE FOOTER statement:
TEXT statement

Other ODS features:
ODS HTML statement
ODS LISTING statement
FILE statement with ODS= option
PUT statement with _ODS_ argument

Data set: See “Creating the Grain_Production Data Set” on page 878.
Format: See “Creating the $CNTRY Format” on page 869.

Program 1: Description
This example creates a style that is equivalent to the style that Example 1 on page

551 creates. However, this style uses user-defined attributes to specify colors and fonts.
This technique makes it possible to easily make changes in multiple places in the
output.

Program 1: Creating the Style

Create the style NewStyle2. The PROC TEMPLATE statement starts the TEMPLATE
procedure. The DEFINE STYLE statement creates a new style called NewStyle2. This STYLE
statement defines the style element Fonts.

This style element is composed of three user-defined attributes: CellFont, HeadingFont, and
TitleFont. Each of these attributes describes a font. This style specifies the fontfamily, fontsize,
fontweight, and the fontstyle for each of the three attributes. The font and fontwidth attributes
are still defined by the default style.

proc template;
define style newstyle2;

558 Program 1: Creating the Style � Chapter 11

style fonts /
"cellfont"=("arial, helvetica", 4, medium roman)
"headingfont"=("arial, helvetica", 5, bold roman)
"titlefont"=("arial, helvetica", 6, bold italic);

Create the style element Colors. This STYLE statement defines the style element Colors.
This style element is composed of four user-defined attributes: light, medium, dark, and bright.
The values for medium and dark are RGB values equivalent to very light blue and blue.

style colors /
"light"=white
"medium"=cxaaaaff
"dark"=cx0000ff
"bright"=red;

Create the three style elements CellContents, Header, and SystemTitle. Create the
style element Footer using inheritance. The style attributes are defined in terms of the
user-defined attributes that were created earlier in the style. For example, the foreground color
in CellContents is set to colors("light"). Looking at the template of Colors, you can see that
this is white. However, by setting the colors up in a style element with user-defined attributes,
you can change the color of everything that uses a particular color by changing a single value in
the style element Colors.

style cellcontents /
backgroundcolor=colors("dark")
color=colors("light")
font=fonts("cellfont");

style header /
backgroundcolor=colors("medium")
color=colors("dark")
font=fonts("headingfont");

style systemtitle /
backgroundcolor=colors("light")
color=colors("bright")
font=fonts("titlefont");

style footer from systemtitle /
fontsize=3;

style table /
cellspacing=5
borderwidth=10;

End the style. The END statement ends the style. The RUN statement executes PROC
TEMPLATE.

end;
run;

Create the table template Table1. The PROC TEMPLATE statement starts the TEMPLATE
procedure. The DEFINE TABLE statement creates a new table template called Table1.

proc template;
define table table1;

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 1: Creating the Style 559

Specify the symbol that references one macro variable.The MVAR statement defines a
symbol, Sysdate9, that references a macro variable. ODS will use the value of this macro
variable as a string. References to the macro variable are resolved when ODS binds the table
template to the data component to produce an output object. SYSDATE9 is an automatic macro
variable whose value is always available.

mvar sysdate9;

Specify the symbol that references a value to be supplied by the data component. The
DYNAMIC statement defines a symbol, Colhd, that references a value that the data component
supplies when ODS binds the template and the data component to produce an output object.
The values for Colhd, are provided in the FILE statement in the DATA step that appears later
in the program. Using dynamic column headings gives you more flexibility than hard-coding the
headers in the table template does.

dynamic colhd;

Control the repetition of values that do not change from one row to the next row. The
CLASSLEVELS= attribute suppresses the display of the value in a column that is marked with
BLANK_DUPS=ON if the value changes in a previous column that is also marked with
BLANK_DUPS=ON. Because BLANK_DUPS= is set in a generic column, set this attribute as
well.

classlevels=on;

Create the column Char_Var. This DEFINE statement and its attributes create the column
template Char_Var.

GENERIC= specifies that multiple variables can use the same column template.

BLANK_DUPS= suppresses the display of the value in the column if it does not change from
one row to the next (and, because CLASSLEVELS=ON for the table, if no values in preceding
columns that are marked with BLANK_DUPS=ON changes).

HEADER= specifies that the header for the column will be the text of the dynamic variable
Colhd, whose value will be set by the data component.

The STYLE= attribute specifies that the style element for this column template is CellContents.

The END statement ends the template.

define column char_var;
generic=on;
blank_dups=on;
header=colhd;
style=cellcontents;

end;

Create the column Num_Var. This DEFINE statement and its attributes create the column
template Num_Var. GENERIC= specifies that multiple variables can use the same column
template.

HEADER= specifies that the header for the column will be the text of the dynamic variable
Colhd, whose value will be set by the data component.

The STYLE= attribute specifies that the style element for this column template is CellContents.

The END statement ends the template.

define column num_var;
generic=on;
header=colhd;

560 Program 1: Creating the Style � Chapter 11

style=cellcontents;
end;

Create the footer element Table_Footer. The DEFINE statement and its substatement
define the table element Table_Footer. The FOOTER argument declares Table_Footer as a
footer. The TEXT statement specifies the text of the footer. When ODS binds the data
component to the table template (in the DATA step that follows), it will resolve the value of the
macro variable SYSDATE9.

define footer table_footer;
text ‘‘Prepared on ‘‘ sysdate9;

end;

End the table template. This END statement ends the table template. The RUN statement
executes the PROC TEMPLATE step.

end;
run;

Stop the creation of the listing output. The ODS LISTING statement closes the LISTING
destination to conserve resources. The LISTING destination is open by default.

ods LISTING close;

Create the HTML output and specify the style to use for the output. The ODS HTML
statement opens the HTML destination and creates HTML output. It sends all output objects to
the external file newstyle2-body.htm in the current directory. The STYLE= option tells ODS
to use NewStyle2 as the style when it formats the output.

ods html body="newstyle2-body.htm"
style=newstyle2;

Specify the titles for the report. The TITLE statements provide two titles for the output.

title "Leading Grain Producers";
title2 "in 1996";

Create the data component. This DATA step does not create a data set. Instead, it creates a
data component and, eventually, an output object.

The SET statement reads the data set Grain_Production. The WHERE statement subsets the
data set so that the output object contains information only for rice and corn production in 1996.

data _null_;
set grain_production;
where type in ("Rice", "Corn") and year=1996;

Route the DATA step results to ODS and use the Table1 table template. The combination
of the fileref PRINT and the ODS option in the FILE statement routes the results of the DATA
step to ODS. (For more information about using the DATA step with ODS, see
Chapter 3, “Output Delivery System and the DATA Step,” on page 39. The TEMPLATE=
suboption tells ODS to use the table template named Table1, which was previously created with
PROC TEMPLATE.

file print ods=(
template="table1"

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 1: Creating the Style 561

Specify the column template to use for each variable. The COLUMNS= suboption places
DATA step variables into columns that are defined in the table template. For example, the first
column-specification specifies that the first column of the output object contains the values of
the variable COUNTRY and that it uses the column template named Char_Var. GENERIC=
must be set to ON in both the table template and each column assignment in order for multiple
variables to use the same column template. The FORMAT= suboption specifies a format for the
column. The DYNAMIC= suboption provides the value of the dynamic variable Colhd for the
current column. Notice that for the first column the column header is Country, and for the
second column, which uses the same column template, the column header is Year.

columns=(
char_var=country(generic=on format=$cntry.

dynamic=(colhd="Country"))
char_var=type(generic dynamic=(colhd="Year"))
num_var=kilotons(generic=on format=comma12.

dynamic=(colhd="Kilotons"))
)

);

Write the data values to the data component. The _ODS_ option and the PUT statement
write the data values for all columns to the data component. The RUN statement executes the
DATA step.

put _ods_;
run;

Stop the creation of the HTML output and create the listing output. The ODS HTML
statement closes the HTML destination and all the files that are associated with it. Close the
destination so that you can view the output with a browser. The ODS LISTING statement opens
the LISTING destination to return ODS to its default setup.

ods html close;
ods listing;

562 Original HTML Output � Chapter 11

Original HTML Output

Display 11.11 HTML Output

This HTML output is identical to “HTML Output: Specifying Colors and Fonts with
User-Defined Attributes” on page 556, which was produced with a style that used predefined
style attributes. You can use the fonts to confirm that SAS titles use the SystemTitle style
element, that column headings use the Header style element, that the footer uses the
Table-Footer style element, and that the contents of both character and numeric cells use the
CellContents style element. Use the width of the table border and the spacing between cells to
confirm that the table produced with the Table style element.

Program 2: Description
In the program Example 1 on page 551, to change the color scheme so that the blues

are replaced by pink and red, change each occurrence of “blue” and “very light blue.” In
this program, because colors are defined as user-defined attributes, make the change
only once.

Program 2: Changing User-Defined Attributes
To make the color scheme change, change only this section of code:

TEMPLATE Procedure: Creating a Style Template (Definition) � HTML Output: Changing Colors and Fonts 563

style colors /
"light"=white
"medium"=cxaaaaff
"dark"=cx0000ff
"bright"=red;

Change the attributes as follows:

style colors /
"light"=white
"medium"=pink
"dark"=red
"bright"=red;

Similarly, to change the font in any style element that uses cellfont, change this
section of code:

"cellfont"=("arial, helvetica", 4, medium roman)

Here is one example of how to change the code:

"cellfont"=("courier, arial, helvetica", 4, medium roman)

This HTML output shows the results of running the same program with these
changes.

HTML Output: Changing Colors and Fonts of User-Defined Attributes

Display 11.12 HTML Output with Changed Colors and Fonts

The font in the cells is now Courier. This change occurs in multiple places even though you
made only one change to the code for the font.

564 Example 3: Using the CLASS Statement � Chapter 11

Example 3: Using the CLASS Statement

PROC TEMPLATE features:
DEFINE STYLE statement:

CLASS statement:
PARENT= statement:
Style attributes:

User-defined attributes
BACKGROUNDCOLOR=
BORDERWIDTH=
CELLPADDING=
CELLSPACING=
COLOR=
FONT=
FONTSTYLE=
FRAME=
POSTHTML=
RULES=
VISITEDLINKCOLOR=

Other ODS features:
ODS HTML statement:

STYLE= option
ODS LISTING statement
ODS PATH statement

Data set: See “Creating the Energy Data Set” on page 875.
Formats: See “Creating the DIVFMT. and USETYPE. Formats” on page 872.

Program 1: Description
When you are working with styles, you are more likely to modify a SAS style than to

write a completely new style. This example makes changes to the default style for the
HTML destination. The new style affects both the contents file and the body file in the
HTML output. In the contents file, the modified style makes changes to the following:

� the text of the header and the text that identifies the procedure that produced the
output

� the colors for some parts of the text
� the font size of some parts of the text
� the spacing in the list of entries in the table of contents.

In the body file, the modified style makes changes to the following:
� two of the colors in the color list. Style1 of these colors is the foreground color for

the table of contents, the byline, and column headings. The other is the foreground
of many parts of the body file, including SAS titles and footnotes.

� the font size for titles and footnotes
� the font style for headers
� the presentation of the data in the table by changing attributes such as

cellspacing, rules, and border width.

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 1: Using the Default Style with PROC PRINT 565

When you modify a style element in a new style that has a like-named style element
in the parent style, then you must use the CLASS statement or the STYLE statement
with the FROM option specified. This example uses the CLASS statement to produce a
shorter, easier to read program.

Program 1: Using the Default Style with PROC PRINT

Specify the search path in order to locate the table template. This statement specifies
which locations to search for templates that were created by PROC TEMPLATE, as well as the
order in which to search for them. The statement is included to ensure that the example works
correctly. However, if you have not changed the path, then you do not need to include this
statement because it specifies the default path.

ods path sasuser.templat(update) sashelp.tmplmst(read);

Stop the creation of the listing output. The ODS LISTING statement closes the LISTING
destination to conserve resources. The LISTING destination is open by default.

ods listing close;

Create the HTML output and specify the name of the HTML file. Specify the style to
use for the output. The ODS HTML statement opens the HTML destination and creates
HTML output. The output from PROC PRINT is sent to the body file. FRAME= and
CONTENTS= create a frame that includes a table of contents that links to the contents of the
body file. The body file also appears in the frame.
The STYLE= option tells ODS to use Styles.Default as the style when it formats the output.
Strictly speaking, this option is unnecessary because it specifies the default style, but it is
included for clarity.

ods html body="sasdefaultstyle-body.htm"
contents="sasdefaultstyle-content.htm"
frame="sasdefaultstyle-frame.htm"
style=styles.default;

Specify the titles and footnote for the report. The TITLE and FOOTNOTE statements
provide two titles and a footnote for the output.

title "Energy Expenditures for Each Region";
title2 "(millions of dollars)";

Print the report. PROC PRINT creates a report that includes three variables. ODS writes the
report to the BODY file.

proc print data=energy noobs;
var state type expenditures;
format division divfmt. type usetype. expenditures comma12.;
by division;
where division=2 or division=3;

run;

Stop the creation of the HTML output and initiate the creation of listing output. The
ODS HTML statement closes the HTML destination and all the files that are associated with it.
Close the destination so that you can view the output with a browser. The ODS LISTING
statement opens the LISTING destination to return ODS to its default setup.

ods html close;
ods listing;

566 Program 2: Modifying the Default Style with the CLASS Statement � Chapter 11

Display 11.13 HTML Output from PROC PRINT Using the Default Style

Program 2: Modifying the Default Style with the CLASS Statement

Create the style CustomDefault. The PROC TEMPLATE statement starts the TEMPLATE
procedure. The DEFINE STYLE statement creates a new style called CustomDefault.

proc template;
define style customdefault;

Specify the parent style from which the CustomDefault style inherits its attributes.
The PARENT= attribute specifies Styles.Default as the style from which the current style
inherits. All the style elements, attributes, and statements that are specified in the parent’s style
template are used in the child style template unless the child style template overrides them.

parent=styles.default;

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 2: Modifying with the CLASS Statement 567

Change the attributes of the style element Color_List. This STYLE statement adds to the
child style the style element Color_List, which also exists in the parent style. The CLASS
stament adds all of the style attributes that are in the original instance of the Color_List style
element to the new instance of Color_List, except for those that are overriden by the new
instance of Color_List. By using the CLASS statement, you do not need to specify the FROM
option.

Note: If you did not use the CLASS statement or the FROM option, then the
attributes from the original instance of Color_List would not be added to the new
instance of Color_List. The Color_List style element in CustomDefault would conatain
only the style statements that it specifically specifies. �
All style elements that use the user-defined attributes that Color_List defines (fgB2, fgB1, etc.)
use the style attributes that are specified in Custom.Default, not the ones that are specified in
Styles.Default. Therefore, if you change a color here, then you change every occurrence of the
color in the HTML output. This CLASS statement changes the values of five of the user-defined
style attributes.

class color_list/
/* changed from cxD3D3D3*/

"bgA3" = #778899
/* changed from cx0033AA */

"fgA2" = #68228b
/* changed from cxB0B0B0 */

"bgA2" = #fff8dc
/* changed from cx000000 */

"fgA1" = #fff8dc
/* changed from cxE0E0E0 */

"bgA" = #c6e2ff;

Change the attributes of the style element TitlesandFooters. This CLASS statement adds
to the child style the style element TitlesandFooters, which also exists in the parent style. By
using the CLASS statement, you do not need to specify the FROM option. The style attributes
in the new instance of TitlesandFooters override the style attributes from the parent style
element, which is TitlesandFooters from Styles.Default. The new instance of TitlesandFooters
will pass its attributes to any style element that inherits from it. This style element uses
systitlefg and systitlebg for colors, but it changes the font size from the relative size of 4
that is specified in TitleFont2 to a relative size of 3. As a result, the titles and footnotes in
Display 11.14 on page 570 are smaller than the ones in
Display 11.13 on page 566.

class titlesandfooters/
color=colors("systitlefg")
backgroundcolor=colors("systitlebg")
font=fonts("titlefont2") fontsize=3;

568 Program 2: Modifying with the CLASS Statement � Chapter 11

Change the attributes of the style element Byline. Specify that the style element
Byline inherits its attributes from the TitlesandFooters style element. This STYLE
statement adds to the child style the style element Byline, which also exists in the parent style.
This style element inherits all attributes from TitlesandFooters as it is specified in the previous
STYLE statement. Therefore, the initial template for the byline includes the font colors and
background colors that are used for system titles, and a smaller version of TitleFont2. However,
the COLOR= attribute overrides the font color with the headers" font color. In the default style,
the background color for the byline differs from the background color for the document, so it
appears as a gray stripe in Display 11.13 on page 566. In this customized style, the stripe
disappears because the background color for the byline and the document are the same.

style byline from titlesandfooters /
color=colors("headerfg");

Change one attribute in the style Header. This STYLE statement adds the italic font style
to the attributes that Header inherits from the Header style element that is defined in the
parent style. You could have also specified the STYLE statement with the FROM option
specified. Because this change occurs after the initial merge of the two styles, the change will
effect HeaderFixed and the other style elements that inherit from Header in the parent style.

class header /
fontstyle=italic;

Customize the text used in parts of the output. This CLASS statement alters the text that
is used in parts of the HTML output. In the contents file, the default style uses “The” as the
value of prefix1 and “Procedure” as the value of suffix1. Thus, in HTML output that uses
the default style, the output from PROC PRINT is identified by “1. The PRINT Procedure” (see
Display 11.13 on page 566). In the customized style, the text that identifies the output reads “1.
PROC PRINT”. The heading that appears at the top of the contents file has been changed from
“Table of Contents” to “Contents”, and the heading at the top of the table of pages has been
changed from “Table of Pages” to “Pages”. The banners have been changed to use mixed case.
(Note that neither these banners nor the table of pages is visible in the HTML output from this
example, but the attributes are included so that you can use the style in a variety of
circumstances.)

class text /
"prefix1" = "PROC "
"suffix1" = ":"
"Content Title" = "Contents"
"Pages Title" = "Pages"
"Note Banner" = "Note:"
"Warn Banner" = "Warning:"
"Error Banner" = "Error:"
"Fatal Banner" = "Fatal:"
;

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 2: Modifying with the CLASS Statement 569

Customize the presentation of the HTML table that contains the output from PROC
PRINT. This CLASS statement changes the presentation of the HTML table that contains the
output from PROC PRINT. The background color, the kind of box that surrounds the table, and
the cell padding remain the same as in Styles.Default, but all the other attributes are changed.
RULES=COLS draws rules only between the columns of the table. CELLSPACING=0 removes
the spacing between the cells of the table so that the data appear on a continuous background.
BORDERWIDTH= increases the width of the table’s border. The changes dramatically alter the
appearance of the HTML output.

class table /
rules=cols
cellspacing=0
borderwidth=5;

Change the color of links and the foreground. This CLASS statement changes the value of
the VISITEDLINKCOLOR= attribute in the style element Contents so that the links in the
table of contents appear in the same color as the rest of the table of contents. It also changes the
foreground color so that the title of the table of contents appears in the same color as system
titles.

class contents /
visitedlinkcolor=colors(’systitlefg")
color=colors(’systitlefg");

Add more space between the items in the table of contents. This CLASS statement adds
the POSTHTML= attribute so that the items in the table of contents are displayed with extra
space between them.

class contentitem /
posthtml="<p>";

Stop the creation of the customized style. The END statement ends the style. The RUN
statement executes the PROC TEMPLATE step.

end;
run;

Create the HTML output and specify the specify the style to use for the output. The
ODS HTML statement opens the HTML destination and creates HTML output. The output from
PROC PRINT is sent to the body file. FRAME= and CONTENTS= create a frame that includes
a table of contents that links to the contents of the body file. The body file also appears in the
frame.

The STYLE= option tells ODS to use CustomDefault as the style when it formats the output.

ods html body="customdefaultstyle-body.htm"
contents="customdefaultstyle-content.htm"
frame="customdefaultstyle-frame.htm"
style=customdefault;

Specify the titles and footnote for the report. The TITLE and FOOTNOTE statements
provide two titles and a footnote for the output.

title "Energy Expenditures for Each Region";
title2 "(millions of dollars)";

570 Example 4: Defining a Table and Graph Style � Chapter 11

Print the customized report. PROC PRINT creates a report that includes three variables.
ODS writes the report to the body file. This PROC PRINT step is the same one that was used
with the default style earlier.

proc print data=energy noobs;
var state type expenditures;
format

division divfmt. type usetype. expenditures comma12.;
by division;
where division=2 or division=3;

run;

Stop the creation of the HTML output and initiate the creation of listing output. The
ODS HTML statement closes the HTML destination and all the files that are associated with it.
Close the destination so that you can view the output with a browser. The ODS LISTING
statement opens the LISTING destination to return ODS to its default setup.

ods html close;
ods listing;

Display 11.14 HTML Output from PROC PRINT with the Customized Style

Example 4: Defining a Table and Graph Style
PROC TEMPLATE features:

DEFINE STYLE statement:
PARENT= attribute
STYLE statement
Style attributes:

User-defined attributes

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 571

BACKGROUNDCOLOR=
BORDERCOLORDARK=
BORDERCOLORLIGHT=
BORDERWIDTH=
CELLPADDING=
CELLSPACING=
DROPSHADOW=
ENDCOLOR=
FONT=
COLOR=
FRAME=
GRADIENTDIRECTION=
IMAGE=
TEXTALIGN=
WIDTH=
RULES=
TRANSPARENCY=
VERTICALALIGN=

Style elements:

GraphAxisLines
GraphBackground
GraphBorderLines
GraphCharts
GraphLabelText
GraphWalls

Program Description
When you are working with styles, you are more likely to modify a SAS style than to

write a completely new style. This example shows you how the SAS defined graph style,
Science, was created.

Note: Remember that when a STYLE statement creates a style element in the new
style, only style elements that explicitly inherit from that style element in the new style
inherit the change. When a STYLE statement creates a style element in the new style,
all style elements that inherit from that element inherit the definition that is in the
new style, so the change appears in all children of the element. �

Program

Create the style Science. The PROC TEMPLATE statement starts the TEMPLATE procedure.
The DEFINE STYLE statement creates a new style in the STYLES catalog called Science.

proc template;
define style Styles.Science;

Specify the parent style from which the Science style inherits its attributes. The
PARENT= attribute specifies Styles.Default as the style that the current style inherits from. All
the style elements that are specified in the parent’s style are used in the current style unless
the current style overrides them.

parent = styles.default;

572 Program � Chapter 11

Change the style attributes of the Fonts style element in the parent style by replacing
Fonts in the child style Science. The STYLE statement adds to the child style the style
element Fonts, which also exist in the parent style. All style elements that use the
user-defined attributes that Fonts define use the attributes that are specified in the STYLE
statement, not the ones that are specified in the Styles.Default style. Because no FROM option
is specified, the instance of Fonts in the Science style completely replaces the instance from the
Styles.Default style. No style element inheritance occurs.

style fonts /
"TitleFont2" = ("Verdana, Verdana, Helvetica, sans-serif",14pt,Bold)
"TitleFont" = ("Verdana, Verdana, Helvetica, sans-serif",18pt,Bold)
"StrongFont" = ("Verdana, Verdana, Helvetica, sans-serif",14pt,Bold)
"EmphasisFont" = ("Verdana, Verdana, Helvetica, sans-serif",10pt,
Italic)
"FixedEmphasisFont" = (""Courier New", Courier, monospace",10pt,
Italic)
"FixedStrongFont" = (""Courier New", Courier, monospace",10pt,Bold)
"FixedHeadingFont" = (""Courier New", Courier, monospace",10pt)
"BatchFixedFont" = (""Courier New", Courier, monospace",10pt)
"FixedFont" = (""Courier New", Courier, monospace",10pt)
"headingEmphasisFont" = ("Verdana, Verdana, Helvetica, sans-serif",14
pt,Bold Italic)
"headingFont" = ("Verdana, Verdana, Helvetica, sans-serif",14pt,Bold)

"docFont" = ("Verdana, Verdana, Helvetica, sans-serif",8pt,Bold);

Change the attributes for graph style specific fonts. The STYLE statement adds to the
child styles the style element GraphFonts, which also exists in the parent style. All the style
elements that use the user-defined attributes that GraphFonts defines use the attributes
specified in the STYLE statement, not those specified in the STYLES.DEFAULT style. Because
the FROM option is specified, GraphFonts in the Science style will inherit all of the style
attributes from GraphFonts in Styles.Default, except those that specifically specified in Science.

Note: Instead of the one that is used in this program, you could have used the
following STYLE statement :

style graphfaonts from graphfonts;

�

style GraphFonts from _self_/
"GraphValueFont" = ("Verdana",10pt)
"GraphLabelFont" = ("Verdana",14pt,Bold);

Change the style attributes of the Colors style element in the parent style by
replacing Colors in the style Science. The STYLE statement adds to the child styles the
style element Colors, which also exists in the parent style. All style elements that use the
user-defined attributes that Colors defines use the attributes that are specified in the STYLE
statement, not the ones that are specified in the Styles.Default style. Because no FROM option
is specified, the instance of Colors in the Science style completely replaces the instance from the
Styles.Default style. No style element inheritance occurs.

style colors /
"headerfgemph" = cx31035E
"headerbgemph" = cxFFFFFF
"headerfgstrong" = cx31035E
"headerbgstrong" = cxFFFFFF

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 573

"headerfg" = cx31035E
"headerbg" = cxFFFFFF
"datafgemph" = cx31035E
"databgemph" = cxDFECE1
"datafgstrong" = cx31035E
"databgstrong" = cxDFECE1
"datafg" = cx31035E
"databg" = cxDFECE1
"batchfg" = cx31035E
"batchbg" = cxDFECE1
"tablebg" = cx31035E
"tableborderdark" = cx909090
"tableborderlight" = cxFFFFFF
"tableborder" = cxFFFFFF
"notefg" = cx31035E
"notebg" = cxDFECE1
"bylinefg" = cx31035E
"bylinebg" = cxDFECE1
"captionfg" = cx31035E
"captionbg" = cxDFECE1
"proctitlefg" = cx31035E
"proctitlebg" = cxDFECE1
"titlefg" = cx31035E
"titlebg" = cxDFECE1
"systitlefg" = cx31035E
"systitlebg" = cxDFECE1
"Conentryfg" = cx31035E
"Confolderfg" = cx31035E
"Contitlefg" = cx31035E
"link2" = cx800080
"link1" = cx0000FF
"contentfg" = cx31035E
"contentbg" = cxDFECE1
"docfg" = cx31035E
"docbg" = cxDFECE1;

Change the style attributes for the GraphColors style element. The STYLE statement
adds to the child styles the style element GraphColors, which also exists in the parent style. All
of the style elements that use the user-defined attributes that GraphColors define use the
attributes that are specified in the Science style, not the attributes that are specified in the
Styles.Default style. Because no FROM option is specified, the instance of GraphColors in the
Science style completely replaces the instance from the Styles.Default style. No style element
inheritance occurs.

style GraphColors /
"gconramp3cend" = cxDD6060
"gconramp3cneutral" = cxFFFFFF
"gconramp3cstart" = cx6497EB
"gramp3cend" = cxBED8D3
"gramp3cneutral" = cxFFFFFF
"gramp3cstart" = cxAAB6DF
"gconramp2cend" = cx6497EB
"gconramp2cstart" = cxFFFFFF
"gramp2cend" = cx548287
"gramp2cstart" = cxFFFFFF

574 Program � Chapter 11

"gtext" = CX31035E
"glabel" = CX31035E
"gborderlines" = CX31035E
"goutlines" = CX31035E
"ggrid" = CX31035E
"gaxis" = CX31035E
"gshadow" = CX707671
"glegend" = CXFFFFFF
"gfloor" = CXDFECE1
"gwalls" = CXFFFFFF
"gcdata12" = cxFF667F
"gcdata11" = cx5050CC
"gcdata10" = cxE100BF
"gcdata9" = cx007F00
"gcdata8" = cxB99600
"gcdata7" = cx7F7F7F
"gcdata6" = cx984EA3
"gcdata5" = cx4DAF4A
"gcdata4" = cxA65628
"gcdata3" = cxFF7F00
"gcdata2" = cx377DB8
"gcdata1" = cxE31A1C
"gdata12" = CX4A5573
"gdata11" = CXCFB1E2
"gdata10" = CX8E829D
"gdata9" = CX2952B1
"gdata8" = CXAAB6DF
"gdata7" = CX6771C2
"gdata6" = CXBED8D3
"gdata5" = CX8B65A3
"gdata4" = CXBCD3AB
"gdata3" = CX548287
"gdata2" = CX7DC1C9
"gdata1" = CX9580D5;

Specify attributes for the table. This STYLE statement is applied to tables. Although these
specific attributes are set with this STYLE statement, all other table attributes are inherited
from the style elements that are defined in the parent styles.

style Table from Output /
cellpadding = 5
cellspacing = 2
bordercolordark = colors("tableborderdark")
bordercolorlight = colors("tableborderlight")
borderwidth = 2;

Specify attributes for the GraphLabelText element. This STYLE statement is applied to
the graph’s label text. A DROPSHADOW attribute is applied.

style GraphLabelText from GraphLabelText
"Label attributes" /
dropshadow = on;

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 575

Replace the background for the Graph. This STYLE statement is applied to the graph’s
background. DOCBG is specified as the background colors, with SCIENCE.GIF justified to the
left and bottom as the background image.

style GraphBackground
"Graph backgroundcolor attributes" /
backgroundcolor = colors("docbg")
image = "!sasroot\common\textures\Science.gif"
textalign = L
verticalalign = B;

Specify attributes for the GraphAxisLines element. This STYLE statement is applied to
the graph’s axis line. The WIDTH is 2.

style GraphAxisLines from GraphAxisLines
"Axis line attributes" /
width = 2;

Specify attributes for the GraphBorderLines element. This STYLE statement is applied
to the border lines in the graph. The width is 2 and the foreground color defined in Gaxis,
which is CX31035E, is used.

style GraphBorderLines from GraphBorderLines
"Border attributes" /
width = 2
color=colors("gaxis");

Specify attributes for the GraphCharts element. This STYLE statement is applied to the
graph’s chart. The data elements of the graph have a TRANSPARENCY of 25 percent.

style GraphCharts from GraphCharts
"Chart Attributes" /
transparency = 0.25;

Specify attributes for the GraphWalls element. This STYLE statement is applied to the
walls inside of the graph’s axes. The GRADIENTDIRECTION is set to Xaxis, meaning the
gradient is going left to right. The ENDCOLOR, defined in Gwalls, which is CXFFFFFF, is the
final color used with the gradient. The data elements of the graph have a TRANSPARENCY of
100 percent. Because a STARTCOLOR is not specified, the beginning of the gradient is
completely transparent.

style GraphWalls from GraphWalls
"Wall Attributes" /
gradientdirection = "Xaxis"
endcolor = colors("gwalls")
transparency = 1.0;

Add the style to the specified catalog. The END statement ends the style. The RUN
statement executes the PROC TEMPLATE step.

end;
run;

576 Example 5: Defining Multiple Style Elements in One STYLE Statement � Chapter 11

Example 5: Defining Multiple Style Elements in One STYLE Statement

PROC TEMPLATE features:
DEFINE STYLE statement:

STYLE statement:
FROM option
Style attributes:

BACKGROUNDCOLOR=
BORDERWIDTH=
CELLSPACING=
FONTFAMILY=
FONTSIZE=
FONTSTYLE=
FONTWEIGHT=
COLOR=

DEFINE TABLE statement:
CLASSLEVELS= table attribute
DYNAMIC statement
MVAR statement

DEFINE COLUMN statement:
BLANK_DUPS=
GENERIC=
HEADER=
STYLE=

DEFINE FOOTER statement:
TEXT statement

Other ODS features:
ODS HTML statement
ODS LISTING statement
FILE statement with ODS= option
PUT statement with _ODS_ argument

Data set: See “Creating the Grain_Production Data Set” on page 878.
Format: See “Creating the $CNTRY Format” on page 869.
Table template: See “Creating the Table1 Table Definition” on page 882.

Program Description
This example creates a style that defines multiple style elements concurrently. When

style element names are specified multiple times, all of the attributes from all instances
of that name are collected to create the final set of style attributes. Defining multiple
style elements in one STYLE statement makes it possible to create shorter, easier to
read programs and to make changes to style attributes in a single STYLE statement
rather than in many STYLE statements.

For example, if you wanted to add the style element BorderColor=black to the style
elements CellContents, Header, and SystemTitle in the program below, you could add it
once, to the first STYLE statement, instead of adding it three times, to each individual
STYLE statement.

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 577

Program

Create a new style NewStyle. The PROC TEMPLATE statement starts the TEMPLATE
procedure. The DEFINE STYLE statement creates a new style called NewStyle.

proc template;
define style newstyle;

Create the CellContents, Header, and SystemTitle style elements.

This STYLE statement defines three style elements: CellContents, Header, and SystemTitle.
They are all composed of the style attributes that appear on the STYLE statement.

The FONTFAMILY= attribute tells the browser to use the Arial font if it is available, and to
look for the Helvetica font if Arial is not available. These three syle elements use a color scheme
of a white foreground on a blue background, and the font for all three is medium roman with a
size of five.

style cellcontents, header, systemtitle /
fontfamily="arial, helvetica"
fontweight=medium
backgroundcolor=blue
fontstyle=roman
fontsize=5
color=white;

Modify the Header style element. The STYLE statement with the FROM option specified
creates the new instance of Header from the previous instance of Header, but changes the
background color from white to very light blue. By default, ODS uses Header to produce both
spanning headers and column headings.

class header /
backgroundcolor=very light blue;

Modify the SystemTitle style element. By default, ODS uses SystemTitle to produce SAS
titles.

class systemtitle /
backgroundcolor=white
color=red
fontstyle=italic
fontsize=6;

Create the style element Footer. This STYLE statement creates the style element Footer.
This style element inherits all the attributes of SystemTitle. However, the font size that it
inherits is overwritten by the FONTSIZE= attribute in its template.

style footer from systemtitle /
fontsize=3;

Create the style element Table. This STYLE statement creates the style element Table. By
default, ODS uses this style element to display tables.

class table /
cellspacing=5
borderwidth=10;

end;
run;

578 Program � Chapter 11

Stop the creation of the listing output. The ODS LISTING statement closes the LISTING
destination in order to conserve resources. The LISTING destination is open by default.

ods listing close;

Create HTML output and specify the location for storing the HTML output. Specify
the style to use for the output. The ODS HTML statement opens the HTML destination and
creates HTML output. It sends all output objects to the external file NewStyle-Body in the
current directory. The STYLE= option tells ODS to use NewStyle as the style when it formats
the output.

ods html body="newstyle-body.htm"
style=newstyle;

Specify the titles for the report. The TITLE statements provide two titles for the output.

title "Leading Grain Producers";
title2 "in 1996";

Create the data component. This DATA step does not create a data set. Instead, it creates a
data component and, eventually, an output object.

The SET statement reads the data set Grain_Production. The WHERE statement subsets the
data set so that the output object contains information only for rice and corn production in 1996.

data _null_;
set grain_production;
where type in ("Rice", "Corn") and year=1996;

Route the DATA step results to ODS and use the Table1 table template. The combination
of the fileref PRINT and the ODS option in the FILE statement routes the results of the DATA
step to ODS. (For more information about using the DATA step with ODS, see Chapter 3,
“Output Delivery System and the DATA Step,” on page 39.) The TEMPLATE= suboption tells
ODS to use the table template named Table1, which was previously created with PROC
TEMPLATE.

file print ods=(
template="table1"

Specify the column template to use for each variable. The COLUMNS= suboption places
DATA step variables into columns that are defined in the table template. For example, the first
column-specification specifies that the first column of the output object contains the values of
the variable COUNTRY and that it uses the column template named Char_Var. GENERIC=
must be set to ON in both the table template and each column assignment in order for multiple
variables to use the same column template. The FORMAT= suboption specifies a format for the
column. The DYNAMIC= suboption provides the value of the dynamic variable Colhd for the
current column. Notice that for the first column the column header is Country, and for the
second column, which uses the same column template, the column header is Year.

columns=(
char_var=country(generic=on format=$cntry.

dynamic=(colhd="Country"))
char_var=type(generic dynamic=(colhd="Year"))
num_var=kilotons(generic=on format=comma12.

dynamic=(colhd="Kilotons"))
)

);

TEMPLATE Procedure: Creating a Style Template (Definition) � HTML Output: Specifying Colors and Fonts 579

Write the data values to the data component. The _ODS_ option and the PUT statement
write the data values for all columns to the data component. The RUN statement executes the
DATA step.

put _ods_;
run;

Stop the creation of the HTML output and create the listing output. The ODS HTML
statement closes the HTML destination and all the files that are associated with it. Close the
destination so that you can view the output with a browser. The ODS LISTING statement opens
the LISTING destination to return ODS to its default setup.

ods html close;
ods listing;

HTML Output: Specifying Colors and Fonts

Display 11.15 HTML Output

You can use the fonts to confirm that SAS titles use the SystemTitle style element, that column
headings use the Header style element, that the footer uses the Table-Footer style element, and
that the contents of both character and numeric cells use the CellContents style element. Use
the width of the table border and the spacing between cells to confirm that the table itself is
produced with the Table style element.

580 Example 6: Importing a CSS file � Chapter 11

Example 6: Importing a CSS file
PROC TEMPLATE features:

DEFINE STYLE statement:
CLASS statement
IMPORT statement:

media-type

PARENT= statement
Other ODS features:

ODS HTML statement
ODS PDF statement
ODS _ALL_ CLOSE statement

Program Description
The following program imports the external CSS file StyleSheet.css and converts the

CSS code into style elements and style attributes. These style elements and attributes
then become part of the style.

Your CSS file can contain media blocks that correspond to the type of media that
your output will be rendered on. The IMPORT statement allows you to specify one or
more media blocks to be imported along with the rest of the CSS code. In this example,
the Print media block is included in the style that is applied to the PDF output.

Program

Example CSS file. The following code is an example of the external CSS file StyleSheet.css.
There are two media type blocks specified in this program, Print and Screen.

.body {
background-color: white;
color: black;
font-family: times, serif;

}
.header, .rowheader, .footer, .rowfooter, .data {

border: 1px black solid;
color: black;
padding: 5px;
font-family: times, serif;

}
.header, .rowheader, .footer, .rowfooter {

background-color: #a0a0a0;
}
.table {

background-color: #dddddd;
border-spacing: 0;
border: 1px black solid;

}
.proctitle {

font-family: helvetica, sans-serif;

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 581

font-size: x-large;
font-weight: normal;

}

@media screen {

.header, .rowheader, .footer, .rowfooter,{
color: white;
background-color: green;}

.table {
background-color: yellow;
border-spacing: 0;
font-size: small
border: 1px black solid;

}
}@media print {

.header, .rowheader, .footer, .rowfooter,{
color: white;
background-color: Blue;
padding: 5px;

}
.data {

font-size: small;
}
}

options nodate pageno=1 linesize=80 pagesize=40 obs=10;

Define a style that imports a CSS file and defines style elements as well. The PROC
TEMPLATE statement starts the TEMPLATE procedure. The DEFINE STYLE statement
creates a new style called MyCssStyle. The IMPORT statement imports the CSS file
StyleSheet.css, and converts the CSS code into ODS style elements and style attributes.
Because no media-type option is specified, the Screen media block is imported along with the
CSS code that is not in any media blocks. The Print media block is not imported. The CLASS
statement specifies a red font color in the Data style element.

Note: Specifying:

class data / color=red;

is the same as specifying:

style data from data / color=red;

�

proc template;
define style styles.mycssstyle;

import "StyleSheet.css";
class data /

color = red;
end;

582 Output � Chapter 11

Define a style that imports a CSS file that includes a specific media type templates.
The DEFINE STYLE statement creates a new style called MyCssStylePrinter. The IMPORT
statement imports the CSS file StyleSheet.css, and converts the CSS code into ODS style
elements and style attributes. The Print option specifies that the Print media block be imported
along with the CSS code that is not in any media blocks. The code in the Screen media block is
not imported.

define style styles.mycssstyleprinter;
parent=styles.mycssstyle;
import "StyleSheet.css" print;

end;
run;

Create HTML and PDF output and view the contents of the SAS data set. The ODS
HTML and ODS PDF statements specify the destination to write to, the file name of the output,
and the style to use. The CONTENTS procedure shows the contents of the SAS data set
SasHelp.Class.

ods html file="css.html" style=styles.mycssstyle;
ods pdf file="css.pdf" style=styles.mycssstyleprinter;

proc contents data=sashelp.class;
run;

Close the open destinations. The ODS _ALL_ CLOSE statement closes all open destinations
and the files that are associated with them. If you do not close the destinations, then you will
not be able to view the files.

ods _all_ close;

Output

TEMPLATE Procedure: Creating a Style Template (Definition) � Output 583

Output 11.1 MyCssStyle Style

proc template;
define style Styles.Mycssstyle / store = SASUSER.TEMPLAT;

class body /
fontfamily = "times, serif"
color = #000000
backgroundcolor = #FFFFFF;

class header /
backgroundcolor = #008000
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #FFFFFF
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class rowheader /
backgroundcolor = #008000
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #FFFFFF
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class footer /
backgroundcolor = #008000
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #FFFFFF
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

584 Output � Chapter 11

class rowfooter /
backgroundcolor = #A0A0A0
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #000000
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class data /
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = red
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class table /
fontsize = 3
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px
borderspacing = 0
backgroundcolor = #FFFF00;

class proctitle /
fontweight = medium
fontsize = 6
fontfamily = "helvetica, sans-serif";

end;
run;

TEMPLATE Procedure: Creating a Style Template (Definition) � Output 585

Display 11.16 MyCssStyle Style Applied to HTML Output

The yellow and green background colors, the white font color, the font size and border
information all come from the Screen media block. The red font color comes from the CLASS
statement. All other style information comes from the code outside of the media blocks. No
information from the Print media block is used.

586 Output � Chapter 11

Output 11.2 MyCssStylePrinter Style

proc template;
define style Styles.Mycssstyleprinter / store = SASUSER.TEMPLAT;

parent = styles.mycssstyle;
class body /

fontfamily = "times, serif"
color = #000000
backgroundcolor = #FFFFFF;

class header /
backgroundcolor = #0000FF
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #FFFFFF
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class rowheader /
backgroundcolor = #0000FF
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #FFFFFF
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class footer /
backgroundcolor = #0000FF
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #FFFFFF
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

TEMPLATE Procedure: Creating a Style Template (Definition) � Output 587

class rowfooter /
backgroundcolor = #A0A0A0
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #000000
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class data /
fontsize = 3
fontfamily = "times, serif"
paddingleft = 5px
paddingbottom = 5px
paddingright = 5px
paddingtop = 5px
color = #000000
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px;

class table /
borderleftstyle = solid
borderleftcolor = #000000
borderleftwidth = 1px
borderbottomstyle = solid
borderbottomcolor = #000000
borderbottomwidth = 1px
borderrightstyle = solid
borderrightcolor = #000000
borderrightwidth = 1px
bordertopstyle = solid
bordertopcolor = #000000
bordertopwidth = 1px
borderspacing = 0
backgroundcolor = #DDDDDD;

class proctitle /
fontweight = medium
fontsize = 6
fontfamily = "helvetica, sans-serif";

end;
run;

588 Example 7: Table Header and Footer Border Formatting � Chapter 11

Display 11.17 MyCssStylePrinter Style Applied to PDF Output

The white font, small font size, cell padding, and the blue background color all come from the
Print media block. All other style information comes from the code outside of the media blocks.
No information from the Screen media block is used.

Example 7: Table Header and Footer Border Formatting
PROC TEMPLATE features:

Border control style attributes:
BORDERBOTTOMCOLOR=
BORDERBOTTOMSTYLE=
BORDERBOTTOMWIDTH=
BORDERTOPCOLOR=
BORDERTOPSTYLE=
BORDERTOPWIDTH=

DEFINE statement
DEFINE STYLE statement
EDIT statement
FOOTER statement
HEADER statement
PARENT= statement
PREFORMATTED= header attribute

TEMPLATE Procedure: Creating a Style Template (Definition) � Program 589

STYLE statement

WIDTH= header attribute

Other ODS features:
ODS RTF

ODS SELECT

Data set: See “Creating the Nlits Data Set” on page 889.

Program Description

You can use the TableHeaderContainer and TableFooterContainer style elements
along with the border control style attributes to change the borders of the regions
surrounding the table header and footer.

Note: The TableHeaderContainer and TableFooterContainer style elements are only
valid in the RTF destination. �

Program

Set the SAS system options and specify titles. The OPTIONS statement sets the SAS
system options and the TITLE statements specify titles for the output.

options nodate nonumber;

ods listing close;

title "TableHeaderContainer, TableFooterContainer, and Border Control Style
Attributes";

title2 "Allows Control of Borders Between the Header, Body, and Footer of a
Table";

Create the new style HeadersFootersBorders. The PROC TEMPLATE statement starts the
TEMPLATE procedure. The DEFINE STYLE statement creates a new style
HeadersFootersBorders. The PARENT= statement specifies that the new style inherits all of its
style elements and style attributes from the Styles.RTF style.

proc template;
define style HeadersFootersBorders;
parent=styles.rtf;

Modify the TableHeaderContainer style element. The STYLE statement with the FROM
option specified creates the style element TableHeaderContainer which inherits all of its style
elements and style attributes from the instance of TableHeaderContainer in the Styles.RTF
style. The BORDERBOTTOMWIDTH=, BORDERBOTTOMCOLOR=, and
BORDERBOTTOMSTYLE= style attributes specify the width, color, and line style of the bottom
border of the table header.

style TableHeaderContainer from TableHeaderContainer /
borderbottomwidth=12
borderbottomcolor=blue
borderbottomstyle=dotted;

590 Program � Chapter 11

Modify the TableFooterContainer style element. The STYLE statement with the FROM
option specified creates the style element TableFooterContainer which inherits all of its style
elements and style attributes from the instance of TableFooterContainer in the Styles.RTF
style. The BORDERTOPWIDTH=, BORDERTOPCOLOR=, and BORDERTOPSTYLE= style
attributes specify the width, color, and line style of the top border of the table footer.

style TableFooterContainer from TableFooterContainer /
bordertopwidth=6
bordertopcolor=red
bordertopstyle=double;

Modify the Table style element. The STYLE statement with the FROM option specified
creates the style element Table which inherits all of its style elements and style attributes from
the instance of Table in the Styles.RTF style. The CELLSPACING=, RULES=, and FRAME=
attributes modify the cellspacing, rules, and frame of the table.

style table from table /
cellspacing=0 rules=groups frame=void;

end;
run;

Edit the Base.Datasets.Members table template. The EDIT statement, along with the
table template DEFINE statements and attributes, modifies the Base.Datasets.Members table
template. For more information about creating and modifying table templates, see Chapter 12,
“TEMPLATE Procedure: Creating Tabular Output,” on page 593.

proc template;
edit Base.Datasets.Members;

header hd1;
footer ft1;
define hd1;

preformatted=on;
just=l;
text" Table Header with Leading and Trailing Blanks ";

end;
define ft1;

preformatted=on;
just=l;
text" Table Footer with Leading and Trailing Blanks ";

end;
edit name;
define header myheader;
just=l;
preformatted=on;
text " My new header";

end;
header=myheader;
width=memname_width width_max=memname_width_max;
preformatted=on;
end;

end;
run;

TEMPLATE Procedure: Creating a Style Template (Definition) � RTF Output 591

Create the RTF file, select the output object and run PROC DATASETS. The ODS RTF
statement specifies the file that will contain the RTF output. The STYLE= option specifies the
style to apply to the output. The ODS SELECT statement selects the output object Members to
be sent to the open destinations.

ods rtf file="headerfooters.rtf" style=HeadersFootersBorders;
ods select members;
proc datasets lib=nlits;
run;
quit;

Close the open destinations and open the LISTING destination. The ODS _ALL_ CLOSE
statement closes all open destinations and the files that are associated with them. If you do not
close the destinations, then you will not be able to view the files. The ODS LISTING statement
opens the LISTING destination.

ods _all_ close;
ods listing;

RTF Output

Display 11.18 RTF Output with Custom Headers and Footers

592

593

C H A P T E R

12
TEMPLATE Procedure: Creating
Tabular Output

Overview: ODS Tabular Output 593
Using the TEMPLATE Procedure to Create or Customize Tabular Output 593

Terminology 594

What You Can Do With a Table Template 594

Comparing the Edit of an Existing Table Template with Creating a New Table Template 596

Tabular Syntax: TEMPLATE Procedure 596
EDIT Statement 597

DEFINE COLUMN Statement 599

DEFINE FOOTER Statement 625

DEFINE HEADER Statement 626

DEFINE TABLE Statement 640

ODS Output Object Table Names 664
Concepts: Tabular Output and the TEMPLATE Procedure 753

Viewing the Contents of a Table Template 753

Values in Table Columns and How They Are Justified 754

Formatting Values in Table Columns 755

Examples: Modifying Tabular Output by Using the TEMPLATE Procedure 756
Example 1: Editing a Table Template That a SAS Procedure Uses 756

Example 2: Comparing the EDIT Statement with the DEFINE TABLE Statement 762

Example 3: Creating a New Table Template 769

Example 4: Setting the Style Element for Cells Based on Their Values 777

Example 5: Setting the Style Element for a Specific Column, Row, and Cell 782
Example 6: Creating Master Templates 788

Example 7: Table Header and Footer Border Formatting 791

Overview: ODS Tabular Output

Using the TEMPLATE Procedure to Create or Customize Tabular Output
The TEMPLATE procedure enables you to customize the tabular appearance of your

SAS output. With the TEMPLATE procedure, you can create and modify table
templates, column templates, header templates, and footer templates. The Output
Delivery System then uses these templates to produce customized tabular output for
better data presentations and reports than what you get with the default SAS output.
You can also create you own master tables using templates.

By default, ODS output is formatted according to the various definitions or templates
that the procedure or DATA step specify. However, you can customize existing tabular
output templates, or create your own new tabular output templates, by using the
TEMPLATE procedure with these statements.

594 Terminology � Chapter 12

Table 12.1 PROC TEMPLATE Statements

Customization Element Modified Statement

Column presentation Column template DEFINE COLUMN

Table footer Footer template DEFINE FOOTER

Table header Header template DEFINE HEADER

Single output object Table template DEFINE TABLE

An existing template for a
table, column, header, or footer

Table, column, header, footer EDIT

Terminology
For definitions of terms used in this section, see “Terminology: TEMPLATE

Procedure” on page 402.

What You Can Do With a Table Template

Default Listing and RTF Display of an Output Object
By default, ODS uses the table template specified by the procedure or DATA step to

create ODS output. For example, the following display shows the default listing output
of the Moments output object created by PROC UNIVARIATE. The second display
shows the default RTF output of the same output object.

Display 12.1 Listing Output from PROC UNIVARIATE (Default Moments Table)

TEMPLATE Procedure: Creating Tabular Output � What You Can Do With a Table Template 595

Display 12.2 RTF Output of Sales Statistics from PROC UNIVARIATE (Default Moments Table)

Customized Version of the Listing and RTF Display of an Output Object
With PROC TEMPLATE, you can change many of the table elements and obtain a

customized format for the output objects. Here are some of the elements that you can
change:

� the color and the font of the text of the first table header
� the justification of the first table header
� the setting of the table attributes UNDERLINE and OVERLINE
� the line spacing between the rows

Note: Not all table template changes affect all destinations. For example, font
changes are ignored in the LISTING destination. �

The following displays show the results of using a customized table template that
changes the first table header attributes, sets underlining and overlining in the table,
and changes the amount of spacing between rows.

Display 12.3 Listing Output from PROC UNIVARIATE (Customized Moments Table)

596 Comparing the Edit of an Existing Table Template with Creating a New Table Template � Chapter 12

Display 12.4 RTF Output of Sales Statistics from PROC UNIVARIATE (Customized Moments Table)

Comparing the Edit of an Existing Table Template with Creating a New
Table Template

To change a table template without completely redefining it, use an EDIT statement.
Using the EDIT statement keeps all of the templates and attributes that already exist in
the table template, and changes only the templates or attributes specified in the EDIT
statement. By default, the modified table template is stored in SASUSER.TEMPLAT
with the same name as the table template specified in the EDIT statement.

To create a new table template, use the DEFINE TABLE statement. A table
template cannot be a parent to itself because creating a table through inheritance
causes an error, and then the template must be deleted. When you create a new table
template, only the columns, headers, footers, and table attributes that you define exist
in the new table template.

Note: If you edit an existing table or define a new table with the same name as an
existing table, then the table template is stored in the SASUSER.TEMPLAT item store.
This table template is used, by default, unless you specify that the Sashelp.Tmplmst
path is searched first. However, you can use the ODS PATH statement to store the
template elsewhere and access it differently. See the “ODS PATH Statement” on page
206 for more information. �

Tabular Syntax: TEMPLATE Procedure

PROC TEMPLATE;
EDIT template-path-1 <AS template-path-2> < / STORE=libref.template-store > ;

statements-and-attributes
END;

TEMPLATE Procedure: Creating Tabular Output � EDIT Statement 597

DEFINE COLUMN column-path | Base.Template.Column
< / STORE=libref.template-store>;
statements-and-attributes
END;

DEFINE FOOTER footer-path | Base.Template.Footer
< / STORE=libref.template-store>;
statements-and-attributes
END;

DEFINE HEADER template-name | Base.Template.Header;
statements-and-attributes
END;

DEFINE TABLE table-path | Base.Template.Table
</ STORE=libref.template-store>;
statements-and-attributes
END;

This table lists the statements that add different features to tabular SAS output.

Table 12.2 PROC TEMPLATE Statements

Task Statement

Edit an existing template for a table, column, header,
or footer

EDIT

Create a column template DEFINE COLUMN

Create a footer template DEFINE FOOTER

Create a header template DEFINE HEADER

Create a table template DEFINE TABLE

EDIT Statement

Edits an existing template for a table, column, header, or footer.

Requirement: An END statement must follow the EDIT statement and all of the editing
instructions.
Interaction: In some cases, you can use an EDIT statement inside a set of editing
instructions.

When you edit a table template, you can also edit one or more column, header, or
footer templates that are defined in the table.

When you edit a column template, you can also edit one or more header templates
that are defined for that column.

Restriction: If you edit a template that is a link, the link is broken and a separate
template is created.
Featured in: Example 1 on page 756 and Example 2 on page 762

EDIT template-path-1 <AS template-path-2 > </ STORE=libref.template-store>;
attribute-statements;

598 EDIT Statement � Chapter 12

END;

Required Arguments

template-path-1
specifies a template to edit. template-path-1 consists of one or more names that are
separated by periods. Each name represents a directory in a template store, which is
a type of SAS file.

Interaction: The STORE= option specifies a particular template store to read from
and write to.

Tip: To determine the templates that a procedure or DATA step uses, submit the
ODS TRACE ON statement before you run the SAS program. (See “ODS TRACE
Statement” on page 317.)

Options

AS template-path-2
specifies the location in which to store the edited template, where template-path-2
consists of one or more names that are separated by periods. Each name represents a
directory in a template store, which is a type of SAS file. By default, PROC
TEMPLATE writes the edited template to the first writable template store in the
current path.
Default: If you omit AS template-path-2, PROC TEMPLATE writes the edited

template to template-path-1 in the first writable template store.
Restriction: If the current EDIT statement is inside a set of editing instructions, do

not use the AS template-path-2 option.

STORE=libref.template-store
specifies the template store from which to read template-path-1 and in which to store
template-path-2.

Statements and Attributes
The EDIT statement supports the same statements and attributes as the DEFINE

TABLE statements. For more information, see “DEFINE TABLE Statement” on page
640.

Editing an Existing Template
There are two steps to follow to edit an existing template.
1 Open a copy of the specified file.

By default, PROC TEMPLATE looks for template-path-1 in the list of template
stores that is defined by the PATH statement. (See “PATH Statement” on page
416.) It opens a copy of the first template path that it finds in a template store
that has Read access.

2 Save the modified file.
PROC TEMPLATE writes the modified template to the first template store in

the current path with update access. If you omit a second template path to write
to, then PROC TEMPLATE uses template-path-1. Therefore, if the template store
from which template-path-1 is read has Update access, you are actually modifying

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 599

the original template. Otherwise, the modified file is written to a template store to
which you do have Update access.

If you do specify a second template path, then PROC TEMPLATE writes the
edited template to the specified path in the first template store to which you have
Write access.

DEFINE COLUMN Statement

Creates a template for a column.

Requirement: An END statement must be the last statement in the template.

Interaction: A column template can include one or more header templates.

See also: “DEFINE HEADER Statement” on page 626

Featured in: Example 3 on page 769 and Example 4 on page 777

DEFINE COLUMN column-path | Base.Template.Column
< / STORE=libref.template-store>;

<column-attribute-1; <… column-attribute-n; >>

CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]
><…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;

COMPUTE AS expression;

DEFINE HEADER | Base.Template.Header template-path;
statements-and-attributes
END;

DYNAMIC variable-1<"text-1"> <… variable-n<"text-n">>;

MVAR variable-1<"text-1"> <… variable-n<"text-n">>;

NMVAR variable-1<"text-1"> <… variable-n<"text-n">>;

NOTES "text";

TRANSLATE expression-1 INTO expression-2 <…, expression-n INTO
expression-m>;

END;

Table 12.3 DEFINE COLUMN Statements

Task Statement

Set one or more column attributes column-attribute(s)

Set the style element of the cells in the column
according to the values of the variables

CELLSTYLE AS

Compute values for a column that is not in the data
component, or modify the values of a column that is in
the data component

COMPUTE AS

Create a template for a column header DEFINE HEADER

600 DEFINE COLUMN Statement � Chapter 12

Task Statement

Define a symbol that references a value that the data
component supplies from the procedure or DATA step

DYNAMIC

Define a symbol that references a macro variable.
ODS will use the variable as a string. References to
the macro variable are resolved when ODS binds the
template and the data component to produce an
output object.

MVAR

Define a symbol that references a macro variable.
ODS will convert the variable’s value to a number
(stored as a double) before using it. References to the
macro variable are resolved when ODS binds the
template and the data component to produce an
output object.

NMVAR

Provide information about the column NOTES

Translate the specified values to other values TRANSLATE INTO

End the template END

Required Arguments

column-path
specifies where to store the column template. A column-path consists of one or more
names that are separated by periods. Each name represents a directory in a
template store, which is a type of SAS file. PROC TEMPLATE writes the template to
the first writable template store in the current path.
Restriction: If the template is nested inside another template, template-path must

be a single-level name because the nested template is stored in the same location
as the original template.

Restriction: To reference the template that you are creating from another
template, do not nest the template inside another one. For example, to reference a
column template from multiple tables, do not define the column inside a table
template.

Base.Template.Column
creates a master column template that is globally applied to all of your tabular
output. After you create this template, you do not need to specify it explicitly in your
SAS programs. It is automatically applied to all tabular output until you specifically
remove the template from the item store.
Interaction: The Base.Template.Column master template attributes are overridden

by other table templates.
Featured in: Example 6 on page 788

Options

STORE=libref.template-store
specifies the template store in which to store the template. If the template store does
not exist, it is created.

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 601

Restriction: If the template is nested inside another template, do not use the
STORE= option for the nested template because it is stored in the same location
as the original template.

Restriction: The STORE= option does not become part of the template.

Column Attributes
This section lists all of the attributes that you can use in a column template. For all

of the attributes that support a value of ON, these forms are equivalent:

ATTRIBUTE-NAME
ATTRIBUTE-NAME=ON

For all of the attributes that support a value of variable, variable is any variable that
you declare in the column template with the DYNAMIC, MVAR, or NMVAR statement.
If the attribute is Boolean, then the value of variable should resolve to either true or
false as shown in this table:

Table 12.4 Boolean Values

True False

ON OFF

ON _OFF_

1 0

TRUE FALSE

YES NO

YES _NO_

Table 12.5 Column Attributes

Task Attribute Destinations

Influence the appearance of the cells
contents

Specify whether to suppress the
value of a variable from one row to
the next, if the value does not
change based on the formatted value
of the variable

BLANK_DUPS All except OUTPUT

Specify whether to suppress the
value of a variable from one row to
the next if the value does not change
based on the raw value of the
variable

BLANK_INTERNAL_DUPS All except OUTPUT

Select the best format for a column
of a table

CHOOSE_FORMAT= All

Specify whether to wrap the text in
the current column

FLOW LISTING

602 DEFINE COLUMN Statement � Chapter 12

Task Attribute Destinations

Specify the format for the column FORMAT= All

Specify the number of decimals for
the column if it is not specified with
FORMAT= column attribute

FORMAT_NDEC= All

Specify the format width for the
column if it is not specified with
FORMAT= column attribute

FORMAT_WIDTH= All

Supply a numeric value against
which values in the column are
compared to eliminate trivial values
from printing

FUZZ= All except OUTPUT

Specify the horizontal justification of
the format field within the column
(and for the column header if the
template for the header does not
include JUST=)

JUST= All except OUTPUT

Specify whether to justify the format
field within the column, or to justify
the value within the column,
without regard to the format field

JUSTIFY All destinations except
LISTING behave as if
JUSTIFY=ON

When the text in the column uses
more than one line, specify whether
to try to divide the text equally
among all lines or to maximize the
amount of text in each line

MAXIMIZE LISTING

Specify whether to draw a
continuous line in the current
column above the first table footer
or below the last row of the column
if there is no table footer

OVERLINE LISTING

Specify whether to treat the text as
preformatted text

PREFORMATTED Markup family, printer
family, and RTF

Specify whether to print the column PRINT All except OUTPUT

Specify a separator character to
append to each value in the column

SEPARATOR= LISTING

Specify the style element and style
attributes to use for the column

STYLE= Markup family, printer
family, and RTF

Specify that the text graphic
columns be turned off when a
procedure is going to output a graph

TEXT_GRAPHIC= All except OUTPUT and
DOCUMENT

Specify the split character for the
data in the column

TEXT_SPLIT= All except OUTPUT

Specify whether to draw a
continuous line in the current
column below the column header, or
above the first row of the column if
there is no column header

UNDERLINE= LISTING

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 603

Task Attribute Destinations

Specify the vertical justification for
the column

VJUST= Markup family, printer
family, and RTF

Specify the width of the column in
characters

WIDTH= LISTING

Specify the maximum width for this
column

WIDTH_MAX= LISTING

Customize column headers

Specify the text for the column
header or the name of the header
template

HEADER= All

Specify whether to print the column
header

PRINT_HEADERS All except OUTPUT

Influence the relationship to other
columns

Specify whether the column
template is generic; that is, whether
more than one variable use the
template

GENERIC= All except OUTPUT

Specify whether the column is an ID
column

ID LISTING and printer family

Specify whether to merge the
current column with the column
immediately to its right

MERGE All except OUTPUT

Specify whether to merge the
current column with the column
immediately to its left

PRE_MERGE All except OUTPUT

Specify the number of blank
characters to leave between the
current column and the column
immediately to its left

PRE_SPACE= LISTING

Specify the number of blank
characters to leave between the
current column and the column
immediately to its right

SPACE= LISTING

Influence the presentation of data
panels

Influence the place at which ODS
splits a table when it creates
multiple data panels

GLUE= LISTING, printer family,
and RTF

Specify whether to delete the
current column from the output
object if doing so enables all the
remaining columns to fit in the space
that is provided without splitting
the table into multiple data panels

OPTIONAL LISTING

Other column attributes

604 DEFINE COLUMN Statement � Chapter 12

Task Attribute Destinations

Specify which format to use if both a
column template and a data
component specify a format

DATA_FORMAT_OVERRIDE All

Specify the name of the column in
the data component to associate
with the current column

DATANAME= All

Specify which special characters in
headers for generic columns are to
be used as split characters

DEF_SPLIT All

Specify whether to include the
column in an output data set

DROP OUTPUT

Specify a label for the column LABEL= OUTPUT

Specify the column template that
the current template inherits from

PARENT= All

Specify the name to use for the
corresponding variable in an output
data set

VARNAME= OUTPUT

BLANK_DUPS<=ON | OFF | variable>
specifies whether to suppress the value of a variable from one row to the next if the
value does not change according to the formatted value of the variable.
Default: OFF
Interaction: If the CLASSLEVELS= table attribute on page 646 is in effect, ODS

ignores BLANK_DUPS=ON when any value changes in a preceding column that is
also marked with BLANK_DUPS=ON.

Tip: The BLANK_DUPS attribute is valid in all destinations except the OUTPUT
destination.

Note: When the PRINTER destination suppresses the value of a variable, it
also suppresses the horizontal rule above the blank cell. �

Featured in: Example 4 on page 777

BLANK_INTERNAL_DUPS<=ON | OFF | variable>
specifies whether to suppress the value of a variable from one row to the next if the
value does not change according to the raw value of the variable.
Default: OFF
Interaction: If the CLASSLEVELS= table attribute on page 646 is in effect, ODS

ignores BLANK_INTERNAL_DUPS=ON when any value changes in a preceding
column that is also marked with BLANK_INTERNAL_DUPS=ON.

Tip: The BLANK_INTERNAL_DUPS attribute is valid in all destinations except
the OUTPUT destination.

Note: When the PRINTER destination suppresses the value of a variable, it
also suppresses the horizontal rule above the blank cell. �

CHOOSE_FORMAT= COMPROMISE | MAX | MAX_ABS | MIN_MAX
selects a format based on the actual values in the column of the table.
Default: If you omit the CHOOSE_FORMAT column attribute, then the default

format is determined by either the data component or other attributes.
Restriction: CHOOSE_FORMAT is not supported for computed columns because

those columns’ values are computed outside of the data object.

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 605

Tip: If you specify a small value for the FORMAT_WIDTH= option, then
CHOOSE_FORMAT might create a dw.3 format.

Tip: The CHOOSE_FORMAT= attribute is valid in all destinations.
See: “Formatting Values in Table Columns” on page 755 for more information about

column formats

COMPROMISE
looks at all of the values in the column and selects a good compromise format that
works well for most values, but extreme values might shift to BEST format.
Tip: FORMAT_NDEC=d specifies the precision in digits.
Tip: The FORMAT_WIDTH= option suggests a maximum width. The actual

format width might be smaller or it might be larger.

MAX
selects a format based on the maximum value in the column. Values are all
expected to be positive so no space is reserved for a minus sign.
Default: By default, FORMAT_WIDTH=10 and FORMAT_NDEC= is ignored.

MAX_ABS
selects a format based on the maximum absolute value in the column. The format
reserves space for a minus sign whether it is needed or not.

MIN_MAX
selects a format based on the minimum and maximum value in the column. The
format reserves space for a minus sign only where it is actually needed.
Interaction: If FORMAT_NDEC=d is specified, a maximum of d decimal places is

used.

DATA_FORMAT_OVERRIDE<=ON | OFF | variable>
specifies which format to use if both a column template and a data component specify
a format.
Default: OFF
Tip: The DATA_FORMAT_OVERRIDE attribute is valid in all destinations.

ON
uses the format in the data component.

OFF
uses the format in the column template.

variable
uses the format of the specified variable.

DATANAME=column-name
specifies the name of the column in the data component to associate with the current
column.
Default: By default, ODS associates the current column with a column of the same

name in the data component.
Tip: The DATANAME= attribute is valid in all destinations.

DEF_SPLIT
specifies which special characters in headers for generic columns are to be used as
split characters.
Tip: The DEF_SPLIT destination is valid in all destinations.

DROP<=ON | OFF | variable>
specifies whether to include the column in an output data set.
Default: OFF

606 DEFINE COLUMN Statement � Chapter 12

Tip: The DROP attribute is valid only in the OUTPUT destination.

FLOW<=ON | OFF | variable>
specifies whether to wrap the text in the current column if it is too long to fit in the
space that is provided.
Default: ON if the format width of the column is greater than the column width.

OFF if the format width of the column is not greater than the column width.
See also: MAXIMIZE= on page 609
Tip: The FLOW attribute is valid only in the LISTING destination.

Note: The HTML and PRINTER destinations always wrap the text if it is too
long to fit in the space that is provided. �

FORMAT=format-name <format-width <decimal-width>> | variable
specifies the format for the column.
Default: If you omit the FORMAT= option, then the format that the data

component provides is used. If the data component does not provide a format, ODS
uses one of the following:

� BEST8. for integers
� D12.3 for doubles
� the length of the variable for character variables

Restriction: If you specify a format width for a numeric column, then its value
cannot exceed 32.

Tip: The FORMAT= attribute is valid in all destinations.

FORMAT_NDEC= number | variable
specifies the number of decimals for the column.
Default: The decimal width that is specified with the FORMAT= column attribute
Range: Number is a whole number from 0 to 32
Interaction: If you specify a decimal width using both the FORMAT= and the

FORMAT_NDEC= attributes, then ODS uses the width that you specify with the
FORMAT= attribute.

Tip: The FORMAT_NDEC= attribute is valid in all attributes.

FORMAT_WIDTH=positive-integer | variable
specifies the format width for the column.
Default: If you omit the column attribute FORMAT_WIDTH=, then ODS uses the

format specified in the FORMAT= attribute.
Range: 1 to 32 for numeric variables; operating system limit for character variables
Interaction: If you specify a format width using both the FORMAT= and the

FORMAT_WIDTH= attributes, then the width that you specify with the
FORMAT= attribute is used.

Tip: The FORMAT_WIDTH= attribute is valid in all destinations.

FUZZ=number | variable
supplies a numeric value against which to compare values in the column to eliminate
trivial values from printing. A number whose absolute value is less than or equal to
the FUZZ= value is printed as 0. However, the real value of the number is used in
any computations based on that number.
Default: This is the smallest representable floating-point number on the computer

that you are using.
Tip: The FUZZ= attribute is valid in all destinations except the OUTPUT

destination.

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 607

GENERIC<=ON | OFF | variable>
specifies whether the column template can be used by more than one column.
Generic columns are useful in tables with many similar columns. For example, the
table templates for both PROC SQL and the DATA step define only two columns: one
for character variables and one for numeric variables. When a program runs, it
determines which column template the data component should use for each column.
Default: OFF
Tip: The GENERIC attribute is valid in all destinations except the OUTPUT

destination.
Featured in: Example 3 on page 769 and Example 4 on page 777

GLUE=integer | variable
Influences the places at which ODS splits a table when it creates multiple data
panels. ODS creates multiple data panels from a table that is too wide to fit in the
allotted space. The higher the value of GLUE= is, the less likely it is that ODS will
split the table between the current column and the column to its right.

Default: 1
Range: -1 to 327
Tip: A value of -1 forces the table to split between the current column and the

column to its right.
Tip: The GLUE= attribute is valid only in the LISTING, printer family, and RTF

destinations.

HEADER=header-specification
specifies the text for the column header or the name of the header template.
header-specification is one of the following:

"text"
specifies the actual text of the header.
Requirement: text must be enclosed by quotation marks.

header-name
specifies the name of a header template to use. Create a header template with the
DEFINE HEADER statement (see “DEFINE HEADER Statement” on page 626).
If header-name is a single-level name, the header template must occur within the
current column template.

variable
specifies the name of a variable declared with the DYNAMIC, MVAR, or NMVAR
statement. The value of the variable becomes the column header.

LABEL
Uses the label that is specified in the data component for the column header.

Default: _LABEL_
Interaction: If you are using the OUTPUT destination, then the HEADER=

attribute does not change the label of the variable in the data set. To change the
label in the data set, use the LABEL= attribute.

Tip: The HEADER= option provides a simple way to specify the text of a column
header. To customize the header further, use the DEFINE HEADER statement
with the appropriate header attributes. (See “DEFINE HEADER Statement” on
page 626.)

Tip: Use the split character in the text of the header to force the text to a new line.
See also: LABEL= on page 609 and TEXT_SPLIT= on page 613
Tip: The HEADER= attribute is valid in all destinations.

608 DEFINE COLUMN Statement � Chapter 12

Featured in: Example 3 on page 769 and Example 1 on page 551

ID<=ON | OFF | variable>
specifies whether the column is an ID column. An ID column is repeated on each
data panel. (ODS creates multiple data panels when a table is too wide to fit in the
allotted space.)

Default: OFF

Tip: ODS treats all columns up to and including a column that is marked with
ID=ON as ID columns.

Tip: The ID attribute is valid only in LISTING and printer family destinations.

Featured in: Example 3 on page 769

JUST=justification | variable
specifies the horizontal justification of the format field within the column (and of the
header if the template for the header does not include JUST=).

justification is one of the following:

CENTER
specifies center justification.

Alias: C

Interaction: To use center justification in printer family and RTF destinations,
also specify JUSTIFY=ON.

DEC
specifies aligning the values by the decimal point.

Alias: D

Restriction: Decimal alignment is supported for printer family and RTF
destinations only.

LEFT
specifies left justification.

Alias: L

RIGHT
specifies right justification.

Alias: R

Default: LEFT for columns that contain character values; RIGHT for columns that
contain numeric values.

Interaction: The TEXTALIGN= style attribute overrides the value of JUST=.

Interaction: For the LISTING destination, ODS justifies the format field within the
column width. At times, you can specify the JUSTIFY= attribute to get the results
that you want. See the discussion of the JUSTIFY attribute on page 608.

Tip: The JUST= attribute is valid in all destinations except the OUTPUT
destination.

Main discussion: “Values in Table Columns and How They Are Justified” on page
754

See also: FORMAT= on page 606 and WIDTH= on page 613

Featured in: Example 1 on page 756

JUSTIFY<=ON | OFF | variable>
specifies whether to justify the format field within the column or to justify the value
within the column without regard to the format field.

Default: OFF

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 609

Interaction: JUSTIFY=ON can interfere with decimal alignment in the LISTING
destination.

Tip: If you translate numeric data to character data, you might need to use
JUSTIFY= to align the data.

Tip: All destinations except the LISTING destinations justify values as if
JUSTIFY=ON.

Main discussion: “Values in Table Columns and How They Are Justified” on page
754

Featured in: Example 4 on page 777

LABEL="text" | variable
specifies a label for the column in the output data set.

Default: If you omit a label, ODS uses the label that is specified in the data
component. If no label is specified in the data component, ODS uses the header for
the column as the label.

Tip: The LABEL= attribute is valid only in the OUTPUT destination.

Tip: If the OUTPUT destination is open, then the LABEL= attribute provides a
label for the corresponding variable in the output data set. This label overrides
any label that is specified in the data component.

MAXIMIZE<=ON | OFF | variable>
specifies whether to try to divide the text equally among all lines or to maximize the
amount of text in each line when the text in the column uses more than one line. For
example, if the text spans three lines, MAXIMIZE=ON can result in 45% of the text
on the first line, 45% of the text on the second line, and 10% of the text on the third
line. MAXIMIZE=OFF can result in 33% of the text on each line. MAXIMIZE=ON
can write lines of text that vary greatly in length. MAXIMIZE=OFF can result in
using less than the full column width.

Default: OFF

Interaction: This attribute is effective only if the column is defined with
FLOW=ON (see the discussion of the FLOW= attribute on page 606).

Tip: The MAXIMIZE= attribute is valid only in the LISTING destination.

MERGE<=ON | OFF | variable>
specifies whether to merge the current column with the column immediately to its
right. When you set MERGE=ON for the current column, the data in each row of the
column is merged with the data in the same row of the next column. ODS applies the
format, justification, spacing, and prespacing attributes to each column
independently. Then, it concatenates the columns. Finally, it applies to the
concatenated data all the remaining attributes that are specified on the column that
does not have MERGE= set.

Default: OFF

Restriction: You cannot use both MERGE=ON and PRE_MERGE=ON in the same
column template. You cannot merge or premerge a column with another column
that has either MERGE=ON or PRE_MERGE=ON. Note that you can merge three
columns by setting MERGE=ON for the first column, no merge or premerge
attributes for the second column, and PRE_MERGE=ON for the third column.

Tip: The MERGE= attribute is valid in all destinations except the OUTPUT
destination.

See also: The PRE_MERGE= attribute on page 610

610 DEFINE COLUMN Statement � Chapter 12

OPTIONAL<=ON | OFF | variable>
specifies whether to delete the current column from the output object if doing so
enables all the remaining columns to fit in the space that is provided without
splitting the table into multiple data panels.

Default: OFF

Interaction: If multiple column templates contain OPTIONAL=ON, either all or
none of these columns are included in the output object.

Tip: The OPTIONAL attribute is valid only in the LISTING destination.

OVERLINE<=ON | OFF | variable>
specifies whether to draw a continuous line in the current column above the first
table footer (or, if there is no table footer, below the last row of the column). The
second formatting character is used to draw the line.

Default: OFF

Tip: The OVERLINE= attribute is valid only in the LISTING destination.

See also: For information on formatting characters see the discussion of the
FORMCHAR= attribute on page 647.

PARENT=variable
specifies the column template from which the current template inherits attributes
and statements. A column-path consists of one or more names that are separated by
periods. Each name represents a directory in a template store, which is a type of
SAS file. The current template inherits from the specified column in the first
readable template store in the current path.

When you specify a parent, all of the attributes and statements that are specified
in the parent’s template are used in the current template unless the current
template specifically overrides them.

Tip: The PARENT= attribute is valid in all destinations.

PREFORMATTED<=ON | OFF | variable>
specifies whether to treat the text as preformatted text. When text is preformatted,
ODS honors line breaks as well as leading, trailing, and internal spaces. It also
displays the text in a monospace font.

Default: OFF

Interaction: When PREFORMATTED=ON, ODS uses the DataFixed style element
unless you specify another style element with the STYLE= column attribute.

Tip: The PREFORMATTED attribute is valid in the markup family, printer family,
and RTF destinations.

PRE_MERGE<=ON | OFF | variable>
specifies whether to merge the current column with the column immediately to its
left. When you set PRE_MERGE=ON for the current column, the data in each row of
the column is merged with the data in the same row of the previous column. ODS
applies the format, justification, spacing, and prespacing attributes to each column
independently. Then, it concatenates the columns. Finally, it applies to the
concatenated data all the remaining attributes that are specified on the column that
does not have PRE_MERGE= set.

Default: OFF

Restriction: You cannot use both MERGE=ON and PRE_MERGE=ON in the same
column template. You cannot merge or premerge a column with another column
that has either MERGE=ON or PRE_MERGE=ON. Note that you can merge three
columns by setting MERGE=ON for the first column, no merge or premerge
attributes for the second column, and PRE_MERGE=ON for the third column.

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 611

Tip: The PRE_IMAGE attribute is valid in all destinations except the OUTPUT
destination.

See also: MERGE= on page 609

PRE_SPACE=non-negative-integer
specifies the number of blank characters to leave between the current column and
the column immediately to its left.

Default: A value in the range that is bounded by the COL_SPACE_MIN and
COL_SPACE_MAX table attributes.

Interaction: If PRE_SPACE= and SPACE= are specified for the same intercolumn
space, ODS honors PRE_SPACE=.

See also: The SPACE= column attribute on page 611, the COL_SPACE_MIN= table
attribute on page 646, and the COL_SPACE_MAX= table attribute on page 646

Tip: The PRE_SPACE= attribute is valid only in the LISTING destination.

PRINT<=ON | OFF | variable>
specifies whether to print the column.

Default: ON

Interaction: If you specify the column attribute PRINT=OFF, then you turn off the
value of a column if it is part of a stacked column. If all columns in a stacked
column have PRINT=OFF set, then the entire column is removed from the table.

Tip: If all columns in a stacked column have PRINT=OFF specified, then the entire
column is removed from the table.

Tip: The PRINT attribute is valid in all destination except the OUTPUT destination.

See also: The OPTIONAL= column attribute on page 610 and DROP= column
attribute on page 605

PRINT_HEADERS<=ON | OFF | variable>
specifies whether to print the column header and any underlining and overlining.

Default: ON

See also: UNDERLINE= on page 613 and OVERLINE= on page 610

Tip: The PRINT_HEADERS attribute is valid in all destination except the
OUTPUT destination.

SEPARATOR="character" | variable
specifies a separator character to append to each value in the column.

Default: None

Restriction: The SEPARATOR= column attribute is valid only for character
variables.

Tip: To specify a hexadecimal character as the separator character, put an x after
the closing quote. For example, this option assigns the hexadecimal character 2D
as the separator character:

separator="2D"x

Tip: The SEPARATOR= attribute is valid only in the LISTING destination.

SPACE=positive-integer | variable
specifies the number of blank characters to leave between the current column and
the column immediately to its right.

Default: A value in the range that is bounded by the COL_SPACE_MIN and
COL_SPACE_MAX table attributes.

612 DEFINE COLUMN Statement � Chapter 12

Interaction: If PRE_SPACE= and SPACE= are specified for the same intercolumn
space, ODS honors PRE_SPACE=.

See also: The PRE_SPACE= column attribute on page 611, the
COL_SPACE_MIN= table attribute on page 646, and the COL_SPACE_MAX=
table attribute on page 646

Tip: The SPACE= attribute is valid only in the LISTING destination.

STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the current
column. Neither style-attribute-specification nor style-element-name is required.
However, you must use at least one of them.

Note: You can use braces ({ and }) instead of square brackets ([and]). �

style-element-name
is the name of the style element to use to display the data in the column. The
style element must be part of a style that is registered with the Output Delivery
System. SAS provides some styles. You can create customized styles with PROC
TEMPLATE (see Chapter 11, “TEMPLATE Procedure: Creating a Style Template
(Definition),” on page 487). By default, ODS displays different parts of ODS output
with different style elements. For example, by default, the data cells in a column
are displayed with the style element Data. You would be most likely to use the
following style elements with the STYLE= column attribute:

� Data

� DataFixed

� DataEmpty

� DataEmphasis

� DataeEphasisFixed

� DataStrong

� DataStrongFixed

The style element provides the basis for displaying the column. Additional style
attributes that you provide can modify the display.

For information on viewing a style so that you can see the style elements that
are available, see “Viewing the Contents of a Style” on page 538. For information
about the default style that ODS uses, see “Working with Styles” on page 538.

style-element-name is either the name of a style element or a variable whose
value is a style element.

Default: Data

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can specify, see “Style
Attributes and Their Values” on page 498.

Tip: The STYLE= attribute is valid only in the markup family, printer family, and
RTF destinations.

Tip: If you use the STYLE= attribute inside a quoted string, then add a space
before or after the carriage return to prevent errors. SAS does not interpret a
carriage return as a space. You must explicitly specify spaces in quoted strings.

Featured in: Example 3 on page 769

TEMPLATE Procedure: Creating Tabular Output � DEFINE COLUMN Statement 613

TEXT_GRAPHIC= ON | OFF
specifies that the text graphic columns be turned off or on when a procedure is going
to output a graph.
Default: OFF

TEXT_SPLIT="character" | variable
specifies the split character for the data in the column. The value in the column is
broken when it reaches that character and continues the value on the next line. The
split character itself is not part of the data and does not appear in the column.
Default: None
Tip: The TEXT_SPLIT= attribute is valid in all destinations except the OUTPUT

destination.

UNDERLINE<=ON | OFF | variable>
specifies whether to draw a continuous line in the current column below the column
header (or, if there is no column header, above the first row of the column). The
second formatting character is used to draw the line.
Default: OFF
Main discussion: See the discussion of the FORMCHAR= attribute on page 647
Tip: The UNDERLINE= attribute is valid only in the LISTING destination.

VARNAME=variable-name | variable
specifies the name to use for the corresponding variable in an output data set.
Default: If you omit VARNAME=, then the value of the DATANAME= attribute is

used. If you omit DATANAME=, then the name of the column is used.
Tip: If you use VARNAME= to specify the same name for different columns, a

number is appended to the name each time that the name is used.
Tip: The VARNAME= attribute is valid only in the OUTPUT destination.

VJUST=justification | variable
Specifies the vertical justification for the column. justification is one of the following:

TOP
places the first line of text as high as possible.
Alias: T

CENTER
centers the text vertically.
Alias: C

BOTTOM
places the last line of text as low as possible.
Alias: B

Default: TOP
Tip: The VJUST= attribute is valid only in the markup family, printer family, and

RTF destinations.
Featured in: Example 3 on page 769

WIDTH=positive-integer | variable
specifies the width of the column in characters.
Default: If you omit a width, the format width is used. If the column has no format

associated with it, ODS uses one of the following widths:
� 8 for integers
� 12 for doubles

614 CELLSTYLE AS Statement � Chapter 12

� data length for character variables

Interaction: The length of the column header can influence the width of the column.
See also: WIDTH_MAX= header attribute on page 614 and WIDTH= header

attribute on page 637
Tip: The WIDTH= attribute is valid only in the LISTING destination.

WIDTH_MAX=positive-integer | variable
specifies the maximum width allowed for this column. By default, PROC TEMPLATE
extends the width of the column if the header is wider than the data. The width of
the column can be anywhere between the values of WIDTH= and WIDTH_MAX=.
Default: The width of the format for the column
Tip: The WIDTH_MAX= attribute is valid only in the LISTING destination.

CELLSTYLE AS Statement

Sets the style element of the cells in the column according to the values of the variables. Use this
statement to set the presentation characteristics, such as foreground color and font face, of
individual cells.

Featured in: Example 4 on page 777

CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]
><…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

expression
is an expression that is evaluated for each cell in the column. If expression resolves
to TRUE (a non-zero value), the style element that is specified is used for the current
cell. If expression is FALSE (zero), the next expression in the statement is evaluated.
Thus, you can string multiple expressions together to format cells conditionally.

expression has this form:

expression-1 <comparison-operator expression-n>

expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

constant
is a fixed value such as the name of a column or symbols that are declared in a
DYNAMIC, MVAR, or NMVAR statement in the current template.

SAS function
specifies a SAS function. For information on SAS functions, see SAS Language
Reference: Dictionary.

built-in variable
is a special kind of WHERE expression operand that helps you find common
values in column templates. Built-in variables are one or more of the following:

TEMPLATE Procedure: Creating Tabular Output � CELLSTYLE AS Statement 615

COLUMN
is a column number. Column numbering begins with 1.

Alias: _COL_
Featured in: Example 5 on page 782

DATANAME
is a data column name.

DATATYPE
is the data type of the column variable. The data type is either numeric
("num") or character ("char").

Example: The following CELLSTYLE AS statement specifies that column
variables that are numeric have a red font color and column variables that
are character have a blue font color:

cellstyle _datatype_ = "num" as {color=red},
datatype = "char" as {color=blue};

LABEL
is a column label.
Featured in: Example 5 on page 782

ROW
is a row number. Row numbering begins with 1.
Featured in: Example 5 on page 782

STYLE
is a style element name that is used for the column.
Featured in: Example 6 on page 788

VAL
is the data value of a cell.
Tip: Use _VAL_ to represent the value of the current column.

Featured in: Example 6 on page 788

comparison-operator
compares a variable with a value or with another variable. The following table
lists the comparison operators:

Table 12.6 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Tip: Using an expression of 1 as the last expression in the CELLSTYLE AS
statement sets the style element for any cells that did not meet an earlier
condition.

616 COMPUTE AS Statement � Chapter 12

Featured in: Example 5 on page 782
See also: You can use any expression that can be used in the WHERE= data set

option. For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

Options

Note: Neither style-attribute-specification nor style-element-name is required.
However, you must use at least one of them. �

style-attribute-specification
describes a style attribute to set. Each style-attribute-specification has this general
form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can set in a column template, see
“Style Attributes and Their Values” on page 498.
Default: If you do not specify any style attributes to modify, ODS uses the

unmodified style-element-name.

style-element-name
is the name of the style element that displays the data in the column. The style
element must be part of a style that is registered with the Output Delivery System.
SAS provides some styles. Create customized styles by using PROC TEMPLATE (see
“DEFINE STYLE Statement” on page 490). By default, ODS displays different parts
of ODS output with different style elements. For example, by default, the data cells
in a column are displayed with the style element Data. The style elements that you
would be most likely to use with the CELLSTYLE AS statement in a column
template are the following.

� Data
� DataFixed
� DataEmpty
� DataEmphasis
� DataEmphasisFixed
� DataStrong
� DataStrongFixed

The style element provides the basis for displaying the column. Additional style
attributes that you provide can modify the display.

Default: Data
See also: “Viewing the Contents of a Style” on page 538
See also: “Working with Styles” on page 538

COMPUTE AS Statement

Computes values for a column that is not in the data component, or modifies the values of a
column that is in the data component.

COMPUTE AS expression;

TEMPLATE Procedure: Creating Tabular Output � COMPUTE AS Statement 617

Required Arguments

expression
is an expression that assigns a value to each table cell in the column.

expression has this form:

expression-1 <comparison-operator expression-n>

expression
is an arithmetic or logical sequence of operators and operands. An operator is a
symbol that requests a comparison, a logical operation, or an arithmetic
calculation. An operand is one of the following:

constant
is a fixed value, such as the name of a column, or symbols that are declared in a
DYNAMIC, MVAR, or NMVAR statement in the current template.

To reference another column in a COMPUTE AS statement, use the name of
the column. In addition, if the column has values in the data component, you
can reference the column itself in the expression.

For example, this DEFINE COLUMN block defines a column that contains
the square root of the value in the column called Source:

define column sqroot;
compute as sqrt(source);
header="Square Root";
format=6.4;

end;

function
specifies a SAS function. For information on SAS functions, see SAS Language
Reference: Dictionary.

built-in variable
is a special kind of WHERE expression operand that helps you find common
values in column templates. Built-in variables are one or more of the following:

COLUMN
is a column number. Column numbering begins with 1.

Alias: _COL_
Featured in: Example 5 on page 782

DATANAME
is a data-column name.

LABEL
is a column label.
Featured in: Example 5 on page 782

ROW
is a row number. Row numbering begins with 1.

Featured in: Example 5 on page 782

STYLE
is a style-element name.

618 DEFINE HEADER Statement � Chapter 12

Featured in: Example 6 on page 788

VAL
is the data value of a cell.

Tip: Use _VAL_ to represent the value of the current column.

Featured in: Example 6 on page 788

comparison-operator
compares a variable with a value or another variable.

Table 12.7 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Tip: The COMPUTE AS statement can alter values in an output object. None of the
templates that SAS provides modifies any values. To determine if a template was
provided by SAS, use the “ODS VERIFY Statement” on page 325. If the template
is not from SAS, the ODS VERIFY statement returns a warning when it runs the
SAS program that uses the template. If you receive such a warning, use the
SOURCE statement to look at the template and determine if the COMPUTE AS
statement alters values. (See “SOURCE Statement” on page 417.)

Featured in: Example 5 on page 782

See also: You can use any expression that can be used in the WHERE= data set
option. For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

DEFINE HEADER Statement

Creates a template for a header inside a column template.

Main discussion: “DEFINE HEADER Statement” on page 626

DEFINE HEADERBase.Template.Header | template-name

</ STORE=libref.template-store>;

statements-and-attributes

END;

TEMPLATE Procedure: Creating Tabular Output � DYNAMIC Statement 619

Required Arguments

template-name
specifies the name of a new header.

Restriction: template-name must be a single-level name.

Note: To reference the header template that you are creating from another
template, create it outside of the column template. �

Base.Template.Header
creates a master header template that is globally applied to all of your tabular
output. Once this template is created, you do not need to explicitly specify it in your
SAS programs. The template is applied automatically to all tabular output until you
specifically remove the template from the item store.

Interaction: The Base.Template.Header master template attributes are overridden
by other table templates.

Featured in: Example 6 on page 788

statements-and-attributes
specifies the statements and header attributes that define a header inside a column.

See: “DEFINE HEADER Statement” on page 626

Options

STORE=libref.template-store
specifies the template store in which to store the template. If the template store does
not exist, it is created.

Restriction: If the template is nested inside another template, do not use the
STORE= option for the nested template because it is stored where the original
template is stored.

Restriction: The STORE= option does not become part of the template.

DYNAMIC Statement

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Scope: You can use the DYNAMIC statement in the template of a table, column,
header, or footer. A dynamic variable that is defined in a template is available to that
template and to all the templates that it contains.

Featured in: Example 1 on page 551 and Example 2 on page 557

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

620 MVAR Statement � Chapter 12

Required Arguments

variable
names a variable that the data component supplies. ODS resolves the value of the
variable when it binds the template and the data component.
Tip: Dynamic variables are most useful to the authors of SAS procedures and to

DATA step programmers.

Options

text
is text that is placed in the template to explain the dynamic variable’s use. Text of
this type becomes part of the compiled template, which you can view with the
SOURCE statement, whereas SAS comments do not.

MVAR Statement

Defines a symbol that references a macro variable. ODS will use the value of the variable as a
string. References to the macro variable are resolved when ODS binds the template and the data
component to produce an output object.

Scope: You can use the MVAR statement in the template of a table, column, header, or
footer. A macro variable that is defined in a template is available to that template and
to all the templates that it contains.
Featured in: Example 3 on page 769 and Example 1 on page 551

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a macro variable to reference in the template. ODS will use the value of the
macro variable as a string. ODS does not resolve the value of the macro variable
until it binds the template and the data component.
Tip: Declare macro variables this way in a template. For example, to use the

automatic macro variable SYSDATE9 in a template, declare it in an MVAR
statement and reference it as SYSDATE9, without an ampersand, in the PROC
TEMPLATE step. If you use the ampersand, the macro variable resolves when the
template is compiled instead of when ODS binds the template to the data
component.

Options

text

TEMPLATE Procedure: Creating Tabular Output � NOTES Statement 621

is text that is placed in the template to explain the macro variable’s use. Text of this
type becomes part of the compiled template, which you can view with the SOURCE
statement, whereas SAS comments do not.

NMVAR Statement

Defines a symbol that references a macro variable. ODS will convert the variable’s value to a
number (stored as a double) before using it. References to the macro variable are resolved when
ODS binds the template and the data component to produce an output object.

Scope: You can use the NMVAR statement in the template of a table, column, header, or
footer. A macro variable that is defined in a template is available to that template and
to all the templates that it contains.
Featured in: Example 4 on page 777

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a macro variable to reference in the template. ODS will convert the variable’s
value to a number (stored as a double) before using it. ODS does not resolve the
macro variable until it binds the template and the data component.
Tip: Declare macro variables this way in a template. For example, to use a macro

variable as a number, declare it in an NMVAR statement and reference it without
an ampersand. If you use the ampersand, the macro variable resolves when the
template is compiled instead of when ODS binds the template to the data
component.

Options

text
is text that is placed in the template to explain the macro variable’s use. Text of this
type becomes part of the compiled template, which you can view with the SOURCE
statement, whereas SAS comments do not.

NOTES Statement

Provides information about the table, header, column, or footer.

Tip: The NOTES statement becomes part of the compiled template, which you can view
with the SOURCE statement, whereas SAS comments do not.

Featured in: Example 4 on page 777

NOTES ’text’;

622 TRANSLATE INTO Statement � Chapter 12

Required Arguments

text
provides information about the table.

TRANSLATE INTO Statement

Translates the specified values to other values.

TRANSLATE expression-1 INTO expression-2 <…,expression-n INTO expression-m>;

Required Arguments

expression-1
is an expression that is evaluated for each table cell in the column. If expression-1
resolves to TRUE (a non-zero value), the translation that is specified is used for the
current cell. If expression-1 is FALSE (zero), the next expression in the statement is
evaluated. Thus, you can string multiple expressions together to format cells
conditionally.

expression has this form:

expression-1 <comparison-operator expression-n>

expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

constant
is a fixed value such as the name of a column or symbols that are declared in a
DYNAMIC, MVAR, or NMVAR statement in the current template.

SAS function
specifies a SAS function. For information on SAS functions, see SAS Language
Reference: Dictionary.

built-in variable
is a special kind of WHERE expression operand that helps you find common
values in column templates. Built-in variables are one or more of the following:

COLUMN
is a column number. Column numbering begins with 1.
Alias: _COL_
Featured in: Example 5 on page 782

DATANAME
is a data column name.

TEMPLATE Procedure: Creating Tabular Output � TRANSLATE INTO Statement 623

DATATYPE
is the data type of the column variable. The data type is either numeric
("num") or character ("char").

LABEL
is a column label.
Featured in: Example 5 on page 782

ROW
is a row number. Row numbering begins with 1.
Featured in: Example 5 on page 782

STYLE
is a style element name.
Featured in: Example 6 on page 788

VAL
is the data value of a cell.
Tip: Use _VAL_ to represent the value of the current column.
Featured in: Example 6 on page 788

comparison-operator
compares a variable with a value or another variable.

Table 12.8 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Tip: Using an expression of 1 as the last expression in the TRANSLATE–INTO
statement specifies a translation for any cells that did not meet an earlier
condition.

Featured in: Example 5 on page 782
See also: You can use any expression that can be used in the WHERE= data set

option. For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

expression-2
is an expression that specifies the value to use in the cell in place of the variable’s
actual value.

expression has this form:

expression-1 <comparison-operator expression-n>

expression

624 TRANSLATE INTO Statement � Chapter 12

is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

constant
is a fixed value such as the name of a column or symbols that are declared in a
DYNAMIC, MVAR, or NMVAR statement in the current template.

SAS function
specifies a SAS function. For information on SAS functions, see SAS Language
Reference: Dictionary.

Built-in variable
a special kind of WHERE expression operand that helps you find common values
in table templates. Built-in variables are one or more of the following variables:

COLUMN
is a column number. Column numbering begins with 1.
Alias: _COL_
Featured in: Example 5 on page 782

DATANAME
is a data column name.

DATATYPE
is the data type of the column variable. The data type is either numeric
("num") or character ("char").

LABEL
is a column label.
Featured in: Example 5 on page 782

ROW
is a row number. Row numbering begins with 1.
Featured in: Example 5 on page 782

STYLE
is a style element name.
Featured in: Example 6 on page 788

VAL
is the data value of a cell.

Tip: Use _VAL_ to represent the value of the current column.
Featured in: Example 6 on page 788

comparison-operator
compares a variable with a value or with another variable. The following table
lists the comparison operators:

Table 12.9 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

TEMPLATE Procedure: Creating Tabular Output � DEFINE FOOTER Statement 625

Symbol Mnemonic Equivalent Definition

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Restriction: expression-2 must resolve to a character value, not a numeric value.
Tip: When you translate a numeric value to a character value, the column template

does not try to apply the numeric format that is associated with the column.
Instead, it simply writes the character value into the format field, starting at the
left. To right-justify the value, use the JUSTIFY=ON attribute.

Featured in: Example 5 on page 782
See also: JUSTIFY= on page 608
See also: You can use any expression that can be used in the WHERE= data set

option. For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

END Statement

Ends the table template, header template, column template, or footer template.

END;

DEFINE FOOTER Statement

Creates a template for a table footer.

Requirement: An END statement must be the last statement in the template.
Featured in: Example 3 on page 769 and Example 1 on page 551
See: “DEFINE HEADER Statement” on page 626

DEFINE FOOTER footer-path | Base.Template.Footer
< / STORE=libref.template-store>;
<footer-attribute-1; <…footer-attribute-n; >>
DYNAMIC variable-1 <"text-1"> <… variable-n <"text-n">>;
MVAR variable-1 <"text-1"> <… variable-n <"text-n">>;
NMVAR variable-1 <"text-1"> <… variable-n <"text-n">>;
NOTES "text";
TEXT footer-specification;
TEXT2 footer-specification;
TEXT3 footer-specification;

626 DEFINE HEADER Statement � Chapter 12

END;

The substatements in the DEFINE FOOTER statements and the footer attributes
are the same as the substatements in the DEFINE HEADER statement and the header
attributes. For details about substatements and footer attributes, see “DEFINE
HEADER Statement” on page 626.

DEFINE HEADER Statement

Creates a template for a table header.

Requirement: An END statement must be the last statement in the template.

Featured in: Example 3 on page 769

DEFINE HEADER header-path | Base.Template.Header

</ STORE=libref.template-store>;

<header-attribute-1; <… header-attribute-n; >>

DYNAMIC variable-1 <"text-1"> <… variable-n <"text-n">>;

MVAR variable-1 <"text-1"> <… variable-n <"text-n">>;

NMVAR variable-1 <"text-1"> <… variable-n <"text-n">>;

NOTES "text";

TEXT header-specification;

TEXT2 header-specification;

TEXT3 header-specification;

END;

Table 12.10 DEFINE HEADER Statements

Task Statement

Set one or more header attributes header-attribute(s)

Define a symbol that references a value that the data
component supplies from the procedure or DATA step

DYNAMIC

Define a symbol that references a macro variable.
ODS will use the variable as a string. References to
the macro variable are resolved when ODS binds the
template and the data component to produce an
output object.

MVAR

TEMPLATE Procedure: Creating Tabular Output � DEFINE HEADER Statement 627

Task Statement

Define a symbol that references a macro variable.
ODS will convert the variable’s value to a number
(stored as a double) before using it. References to the
macro variable are resolved when ODS binds the
template and the data component to produce an
output object.

NMVAR

Provide information about the column NOTES

Specify the text of the header TEXT

Specify an alternative header to use in the listing
output if the header that is provided by the TEXT
statement is too long

TEXT2

Specify an alternative header to use in the listing
output if the header that is provided by the TEXT2
statement is too long

TEXT3

End the header template END

Required Arguments

header-path
specifies where to store the header template. A header-path consists of one or more
names, separated by periods. Each name represents a directory in a template store.
(A template store is a type of SAS file.) PROC TEMPLATE writes the template to the
first writable template store in the current path.

Restriction: If the template is nested inside of another template, header-path must
be a single-level name.

Restriction: To reference the template that you are creating from another
template, do not nest the template inside another template. For example, to
reference a header template from multiple columns, do not define the header
inside a column template.

Base.Template.Header | Base.Template.Footer
creates a master header template that is globally applied to all of your tabular
output. Once this template is created, you do not need to explicitly specify it in your
SAS programs. It is automatically applied to all tabular output until you specifically
remove it from the item store.

Interaction: The Base.Template.Header or Base.Template.Footer master template
attributes are overridden by other table templates.

Featured in: Example 6 on page 788

Options

STORE=libref.template-store
specifies the template store in which to store the template. If the template store does
not exist, it is created.

628 DEFINE HEADER Statement � Chapter 12

Restriction: If the template is nested inside another template, do not use the
STORE= option for the nested template because it is stored where the original
template is stored.

Restriction: The STORE= option does not become part of the template.

Header Attributes
This section lists all the attributes that you can use in a header template. A column

header spans a single column. A spanning header spans multiple columns. These two
kinds of headers are defined in the same way except that a spanning header uses the
START= or the END= attribute, or both.

For all attributes that support a value of ON, these forms are equivalent:

ATTRIBUTE-NAME
ATTRIBUTE-NAME=ON

For all of the attributes that support a value of variable, variable is any variable that
you declare in the table template with the DYNAMIC, MVAR, or NMVAR statement. If
the attribute is a boolean, then the value of variable should resolve to either true or
false as shown in this table:

Table 12.11 Boolean Values

True False

ON OFF

ON _OFF_

TRUE FALSE

YES NO

YES _NO_

Table 12.12 Header Attributes

Task Attribute Destinations

Influence the appearance of the
contents of the header

Specify that special characters in
headers for generic columns are to
be used as split characters

DEF_SPLIT All

Specify whether to try to expand the
column width to accommodate the
longest word in the column header

FORCE LISTING

Specify the horizontal justification
for the column header

JUST= All except OUTPUT

Specify whether to try to divide the
text equally among all lines or to
maximize the amount of text in each
line when the text in the header
uses more than one line

MAXIMIZE LISTING

TEMPLATE Procedure: Creating Tabular Output � DEFINE HEADER Statement 629

Task Attribute Destinations

Specify whether to draw a
continuous line above the header

OVERLINE LISTING

Specify whether to treat the text as
preformatted text

PREFORMATTED Markup family, printer
family, and RTF

Specify whether to print the header PRINT All

Specify the number of blank lines to
place between the current header
and the next header or between the
current footer and the previous
footer

SPACE= LISTING

Specify the split character for the
header

SPLIT= All except OUTPUT

Specify the style element and any
changes to its attributes to use for
the header

STYLE= Markup family, printer
family, and RTF

Specify whether to start a new
header line in the middle of a word

TRUNCATE LISTING

Specify whether to draw a
continuous line underneath the
header

UNDERLINE LISTING

Specify vertical justification for the
header

VJUST= Markup family, PRINTER,
family, and RTF

Specify the width of the header in
characters

WIDTH= LISTING

Influence the content of the header

Specify a character to use to expand
the header to fill the space over the
column or columns that the header
spans

EXPAND= LISTING

Specify whether to repeat the text of
the header until the space that is
allotted for the header is filled

REPEAT LISTING

Influence the placement of the header

Specify the last column that a
spanning header covers

END= All except OUTPUT

Specify the first column that a
spanning header covers

START= All except OUTPUT

Specify whether to expand the
header to reach the sides of the page

EXPAND_PAGE LISTING

Specify whether a spanning header
appears only on the first data panel
if the table is too wide to fit in the
space that is provided

FIRST_PANEL LISTING, printer family,
and RTF

630 DEFINE HEADER Statement � Chapter 12

Task Attribute Destinations

Specify whether a table footer
appears only on the last data panel
if the table is too wide to fit in the
space that is provided

LAST_PANEL LISTING, printer family,
and RTF

Specify whether to extend the text of
the header into the header space of
adjacent columns

SPILL_ADJ LISTING

Specify whether to extend the text of
the header into the adjacent margin

SPILL_MARGIN LISTING

Other header attributes

Specify an abbreviation for the
header *

ABBR= MARKUP

Specify an acronym for the header * ACRONYM= MARKUP

Specify an alternate description for
the header *

ALT= MARKUP

Specify whether multiple columns
can use the header

GENERIC All except OUTPUT

Specify a long description for the
header *

LONGDESC= MARKUP

Specify the header template that the
current template inherits from

PARENT= All

* SAS includes these accessibility and compatibility features that improve the usability of
SAS for users with disabilities. These features are related to accessibility standards for
electronic information technology adopted by the U.S. Government under Section 508 of the
U.S. Rehabilitation Act of 1973, as amended.

ABBR= "text" | variable
specifies an abbreviation for the header.
Requirement: The text must be enclosed with quotation marks.
Tip: The ABBR attribute is valid only in the MARKUP destination.

Note: SAS includes this accessibility and compatibility feature that improves the
usability of SAS for users with disabilities. This feature is related to accessibility
standards for electronic information technology adopted by the U.S. Government
under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. �

ACRONYM= "text" | variable
specifies an acronym for the header.
Requirement: The text must be enclosed with quotation marks.
Tip: The ACRONYM= attribute is valid only in the MARKUP destination.

Note: SAS includes this accessibility and compatibility feature that improves the
usability of SAS for users with disabilities. This feature is related to accessibility
standards for electronic information technology adopted by the U.S. Government
under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. �

ALT= "text" | variable
specifies an alternate description of the header.
Requirement: The text must be enclosed with quotation marks.

TEMPLATE Procedure: Creating Tabular Output � DEFINE HEADER Statement 631

Tip: The ALT= attribute is valid only in the MARKUP destination.
Note: SAS includes this accessibility and compatibility feature that improves the

usability of SAS for users with disabilities. This feature is related to accessibility
standards for electronic information technology adopted by the U.S. Government
under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. �

DEF_SPLIT
specifies which special characters in headers for generic columns are to be used as
split characters.

Tip: The DEF_SPLIT attribute is valid in all destinations.

END=column-name | variable
specifies the last column that a spanning header covers.

Default: The last column
See also: START= on page 634

Tip: The END= attribute is valid in all destinations except the OUTPUT
destination.

EXPAND="string" | variable
specifies a character to use to expand the header to fill the space over the column or
columns that the header spans.

Default: None
Interaction: If you specify both the REPEAT=ON and EXPAND=ON attributes,

then the EXPAND= attribute is used.

See also: REPEAT= on page 633
Tip: If the string or the variable that you specify contains more than one character,

then only the first character is used.
Tip: The EXPAND= attribute is valid only in the LISTING destination.

See also: EXPAND_PAGE=

EXPAND_PAGE<= ON | OFF | variable>
specifies whether to expand the header to reach the sides of the page.
Default: OFF

See also: EXPAND=
Tip: The EXPAND_PAGE attribute is valid only in the LISTING destination.

FIRST_PANEL<= ON | OFF | variable>
specifies whether a spanning header appears only on the first data panel if the table
is too wide to fit in the space that is provided.
Default: OFF

Restriction: Applies only to headers, not to footers
See also: LAST_PANEL= on page 632

Tip: The FIRST_PANEL attribute is valid in the LISTING, printer family, and
RTF destinations.

FORCE<= ON | OFF | variable>
specifies whether to try to expand the column width to accommodate the longest
word in the column header. The column width can be anything between the values
for the WIDTH= and WIDTH_MAX= column attributes.
Default: ON

See also: WIDTH on page 613 and WIDTH_MAX on page 614
Tip: The FORCE= attribute is valid only in the LISTING destination.

632 DEFINE HEADER Statement � Chapter 12

GENERIC<= ON | OFF | variable>
specifies whether multiple columns can use the header.

Default: OFF
Restriction: This attribute is primarily for writers of SAS procedures and for DATA

step programmers.
Tip: The GENERIC= attribute is valid in all destinations except the OUTPUT

destination.

JUST=justification | variable
specifies the horizontal justification for the column header, where justification is one
of the following:

LEFT
specifies left justification.
Alias: L

RIGHT
specifies right justification.
Alias: R

CENTER
specifies center justification.

Alias: C
Default: The justification for the column
Tip: The JUST= attribute is valid in all destinations except the OUTPUT

destination.
Featured in: Example 1 on page 756

LAST_PANEL<= ON | OFF | variable>
specifies whether a table footer appears only on the last data panel if the table is too
wide to fit in the space that is provided.
Default: OFF
Restriction: Applies only to footers, not to headers

See also: FIRST_PANEL on page 631
Tip: The LAST_PANEL= attribute is valid only in the LISTING, printer family,

and RTF destinations.

LONGDESC= "string" | variable
specifies the long description of the header.
Requirement: The text must be enclosed within quotation marks.
Tip: The LONGDESC= attribute is valid only in markup family destinations.

Note: SAS includes this accessibility and compatibility feature that improves the
usability of SAS for users with disabilities. This feature is related to accessibility
standards for electronic information technology adopted by the U.S. Government
under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. �

MAXIMIZE<=ON | OFF | variable>
specifies whether to try to divide the text equally among all lines or to maximize the
amount of text in each line when the text in the header uses more than one line. For
example, if the text spans three lines, MAXIMIZE=ON can result in 45% of the text
on the first line, 45% of the text on the second line, and 10% of the text on the third
line. MAXIMIZE=OFF can result in 33% of the text on each line. MAXIMIZE=ON
can write lines of text that vary greatly in length. MAXIMIZE=OFF can result in
using less than the full column width.

TEMPLATE Procedure: Creating Tabular Output � DEFINE HEADER Statement 633

Default: OFF
Tip: The MAXIMIZE= attribute is valid only in the LISTING destination.

OVERLINE<=ON | OFF | variable>
specifies whether to draw a continuous line above the header. The second formatting
character is used to draw the line. (See the discussion of the FORMCHAR= attribute
on page 647.)
Default: OFF
Tip: The OVERLINE= attribute is valid only in the LISTING destination.

PARENT=header-path
specifies the header template that the current template inherits from. A header-path
consists of one or more names, separated by periods. Each name represents a
directory in a template store. (A template store is a type of SAS file.) The current
template inherits from the specified header template in the first readable template
store in the current path.

When you specify a parent, all of the attributes and statements that are specified
in the parent’s template are used in the current template unless the current
template specifically overrides them.
Tip: The PARENT= attribute is valid in all destinations.

PREFORMATTED<=ON | OFF | variable>
specifies whether to treat the text as preformatted text. When text is preformatted,
ODS honors line breaks as well as leading, trailing, and internal spaces. It also
displays the text in a monospace font.
Default: OFF
Interaction: When PREFORMATTED=ON, and you are defining a table header or

a footer, ODS uses the HeaderFixed or the FooterFixed style element unless you
specify another style element with the STYLE= column attribute.

When PREFORMATTED=ON, and you are defining a column header, ODS uses
the RowHeaderFixed style element unless you specify another style element with
the STYLE= column attribute.

Tip: The PREFORMATTED attribute is valid in the markup family, printer family,
and RTF destinations.

PRINT<=ON | OFF | variable>
specifies whether to print the header.
Default: ON
Tip: When PRINT=ON, the column header becomes the label of the corresponding

variable in any output data sets that the OUTPUT destination creates if neither
the column template nor the data component provides a label.

Tip: The PRINT= attribute is valid in all destinations.

REPEAT<=ON | OFF | variable>
specifies whether to repeat the text of the header until the space that is allotted for
the header is filled.
Default: OFF
Interaction: If you specify both the REPEAT=ON and EXPAND=ON attributes,

then the EXPAND= attribute is used.
See also: EXPAND= on page 631
Tip: The REPEAT attribute is valid only in the LISTING destination.

SPACE=positive-integer | variable
specifies the number of blank lines to place between the current header and the next
header or between the current footer and the previous footer.

634 DEFINE HEADER Statement � Chapter 12

Default: 0
Tip: A row of underlining or overlining is considered a header or a footer.
Tip: The SPACE= attribute is valid only in the LISTING destination.
Featured in: Example 3 on page 769

SPILL_ADJ<=ON | OFF | variable>
specifies whether to extend the text of the header into the header space of adjacent
columns.
Default: OFF
Interaction: FORCE=, SPILL_MARGIN=, SPILL_ADJ=, and TRUNCATE= are

mutually exclusive. If you specify more than one of these attributes, then only one
of these attributes are used. FORCE= takes precedence over the other three
attributes, followed by SPILL_MARGIN=, SPILL_ADJ=, and TRUNCATE=.

See also: The FORCE= header attribute on page 631, the SPILL_MARGIN=
header attribute on page 634, and the TRUNCATE= header attribute on page 636

Tip: The SPILL_ADJ attribute is valid only in the LISTING destination.

SPILL_MARGIN<=ON | OFF | variable>
specifies whether to extend the text of the header into the adjacent margin.
Default: ON
Restriction: SPILL_MARGIN= applies only to a spanning header that spans all

the columns in a data panel.
Interaction: The FORCE=, SPILL_MARGIN=, SPILL_ADJ=, and TRUNCATE=

attributes are mutually exclusive. If you specify more than one of these attributes,
then only one of these attributes are used. The FORCE= attribute takes
precedence over the other three attributes, followed by SPILL_MARGIN=,
SPILL_ADJ=, and TRUNCATE=.

See also: The FORCE= header attribute on page 631, the SPILL_ADJ header
attribute on page 634, and the TRUNCATE= header attribute on page 636

Tip: The SPILL_MARGIN attribute is valid only in the LISTING destination.

SPLIT= "character" | variable
specifies the split character for the header. PROC TEMPLATE starts a new line
when it reaches that character and continues the header on the next line. The split
character itself is not part of the header although each occurrence of the split
character counts toward the maximum length for a label.

Tip: The first character in a header is automatically treated as a split character if
it is not one of the following:

� an alphanumeric character
� a blank
� an underscore (_)
� a hyphen (-).

Tip: The SPLIT= attribute is valid in all destinations except the OUTPUT
destination.

START=column-name | variable
specifies the first column that a spanning header covers.
Default: The first column
See also: END on page 631

TEMPLATE Procedure: Creating Tabular Output � DEFINE HEADER Statement 635

Tip: The START= attribute is valid in all destinations except the OUTPUT
destination.

STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the header.

style-element-name
is the name of the style element to use to produce the header. The style element
must be part of a style that is registered with the Output Delivery System. SAS
provides some styles. You can create customized styles by using PROC
TEMPLATE (see “DEFINE STYLE Statement” on page 490). By default, ODS
produces different parts of ODS output with different elements. For example, by
default, a table header is displayed with the style element Header. The style
elements that you would be most likely to use with the STYLE= attribute for a
table header are as follows:

� Header
� HeaderFixed
� HeaderEmpty
� HeaderEmphasis
� HeaderEmphasisFixed
� HeaderStrong
� HeaderStrongFixed

The style elements that you would be most likely to use with the STYLE=
attribute for a table footer are as follows:

� Footer
� FooterFixed
� FooterEmpty
� FooterEmphasis
� FooterEmphasisFixed
� FooterStrong
� FooterStrongFixed

The style elements that you would be most likely to use with the STYLE=
attribute for a column header are as follows:

� Rowheader
� RowheaderFixed
� RowheaderEmpty
� RowheaderEmphasis
� RowheaderEmphasisFixed
� RowheaderStrong
� RowheaderStrongFixed

The style element provides the basis for displaying the header. Additional style
attributes that you provide can modify the display.

style-element-name is either the name of a style element or a variable whose
value is a style element.
Default: Header
See also: “Viewing the Contents of a Style” on page 538
See also: “Working with Styles” on page 538

style-attribute-specification

636 DEFINE HEADER Statement � Chapter 12

describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

Requirement: The STYLE= option requires either a style-attribute-specification or a
style-element-name.

Tip: You can use braces ({ and }) instead of square brackets ([and]).
Tip: If you use the STYLE= attribute inside a quoted string, then add a space

before or after the carriage return to prevent errors. SAS does not interpret a
carriage return as a space. You must explicitly specify spaces in quoted strings.

Tip: The STYLE= attribute is valid only in the markup family, printer family, and
RTF destinations.

Featured in: Example 1 on page 756 and Example 3 on page 769
See also: “Style Attributes and Their Values” on page 498

TRUNCATE<=ON | OFF | variable>
specifies whether to start a new header line in the middle of a word.

ON
starts a new line of the header when the text fills the specified column width.

OFF
extends the width of the column to accommodate the longest word in the column
header, if possible.

Note: TRUNCATE=OFF is the same as FORCE=ON. �
Default: OFF
Interaction: If you specify FORCE=, SPILL_MARGIN=, or SPILL_ADJ=, then the

TRUNCATE= attribute is ignored.
See also: The FORCE= header attribute on page 631, the SPILL_MARGIN=

header attribute on page 634, and the SPILL_ADJ header attribute on page 634
Tip: The TRUNCATE= attribute is valid only in the LISTING destination.

UNDERLINE<=ON | OFF | variable>
specifies whether to draw a continuous line below the header. The second formatting
character is used to draw the line.
Default: OFF
Main discussion: See the discussion of the FORMCHAR= attribute on page 647.
Tip: The UNDERLINE attribute is valid only in the LISTING destination.

VJUST=justification | variable
Specifies vertical justification for the header. justification is one of the following:

TOP
places the header as high as possible.
Alias: T

CENTER
centers the header vertically.
Alias: C

BOTTOM
places the header as low as possible.
Alias: B

Default: BOTTOM

TEMPLATE Procedure: Creating Tabular Output � MVAR Statement 637

Tip: The VJUST= attribute is valid only in the MARKUP and PRINTER families of
destinations.

WIDTH=positive-integer | variable
specifies the width of the header in characters.
Default: If you omit a width, the column width is used.
Tip: To create a vertical header, specify a width of 1.
Tip: The WIDTH= attribute is valid only in the LISTING destination.

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Scope: You can use the DYNAMIC statement in the template of a table, column,
header, or footer. A dynamic variable that is defined in a template is available to that
template and to all the templates that it contains.
Featured in: Example 1 on page 551 and Example 2 on page 557

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a variable that the data component supplies. ODS resolves the value of the
variable when it binds the template and the data component.
Tip: Dynamic variables are most useful to the authors of SAS procedures and to

DATA step programmers.

Options

text
is text that is placed in the template to explain the dynamic variable’s use. Text of
this type becomes part of the compiled template, which you can view with the
SOURCE statement, whereas SAS comments do not.

MVAR Statement

Defines a symbol that references a macro variable. ODS will use the value of the variable as a
string. References to the macro variable are resolved when ODS binds the template and the data
component to produce an output object.

Scope: You can use the MVAR statement in the template of a table, column, header, or
footer. A macro variable that is defined in a template is available to that template and
to all the templates that it contains.
Featured in: Example 3 on page 769 and Example 1 on page 551

638 NMVAR Statement � Chapter 12

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a macro variable to reference in the template. ODS will use the value of the
macro variable as a string. ODS does not resolve the value of the macro variable
until it binds the template and the data component.

Tip: Declare macro variables this way in a template. For example, to use the
automatic macro variable SYSDATE9 in a template, declare it in an MVAR
statement and reference it as SYSDATE9, without an ampersand, in the PROC
TEMPLATE step. If you use the ampersand, the macro variable resolves when the
template is compiled instead of when ODS binds the template to the data
component.

Options

text
is text that is placed in the template to explain the macro variable’s use. Text of this
type becomes part of the compiled template, which you can view with the SOURCE
statement, whereas SAS comments do not.

NMVAR Statement

Defines a symbol that references a macro variable. ODS will convert the variable’s value to a
number (stored as a double) before using it. References to the macro variable are resolved when
ODS binds the template and the data component to produce an output object.

Scope: You can use the NMVAR statement in the template of a table, column, header, or
footer. A macro variable that is defined in a template is available to that template and
to all the templates that it contains.

Featured in: Example 4 on page 777

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a macro variable to reference in the template. ODS will convert the variable’s
value to a number (stored as a double) before using it. ODS does not resolve the
macro variable until it binds the template and the data component.

Tip: Declare macro variables this way in a template. For example, to use a macro
variable as a number, declare it in an NMVAR statement and reference it without
an ampersand. If you use the ampersand, the macro variable resolves when the

TEMPLATE Procedure: Creating Tabular Output � TEXT Statement 639

template is compiled instead of when ODS binds the template to the data
component.

Options

text
is text that is placed in the template to explain the macro variable’s use. Text of this
type becomes part of the compiled template, which you can view with the SOURCE
statement, whereas SAS comments do not.

NOTES Statement

Provides information about the table, header, column, or footer.

Tip: The NOTES statement becomes part of the compiled template, which you can view
with the SOURCE statement, whereas SAS comments do not.
Featured in: Example 4 on page 777

NOTES ’text’;

Required Arguments

text
provides information about the table.

TEXT Statement

Specifies the text of the header or the label of a variable in an output data set.

Featured in: Example 3 on page 769

TEXT header-specification(s);

Required Arguments

header-specification(s)
specifies the text of the header. Each header-specification is one of the following:

LABEL
uses the label of the object that the header applies to as the text of the header. For
example, if the header is for a column, _LABEL_ specifies the label for the
variable that is associated with the column. If the header is for a table, _LABEL_
specifies the label for the data set that is associated with the table.

text-specification(s)
specifies the text to use in the header. Each text-specification is one of the following:

640 TEXT2 Statement � Chapter 12

� a quoted string
� a variable, followed by an optional format. The variable is any variable that

is declared in a DYNAMIC, MVAR, or NMVAR statement.

Note: If the first character in a quoted string is neither a blank character nor
an alphanumeric character, and SPLIT is not in effect, the TEXT statement treats
that character as the split character. (See the discussion of SPLIT on page 634.) �
Default: If you omit a TEXT statement, the text of the header is the label of the

object that the header applies to.
Tip: If the quoted string is a blank and it is the only item in the header

specification, the header is a blank line.
Featured in: Example 3 on page 769

TEXT2 Statement

Provides an alternative header to use in the listing output if the header that is provided by the
TEXT statement is too long.

See: “TEXT Statement” on page 639

TEXT3 Statement

Provides an alternative header to use in the listing output if the header that is provided by the
TEXT2 statement is too long.

See: “TEXT Statement” on page 639

END Statement

Ends the table template, header template, column template, or footer template.

END;

DEFINE TABLE Statement
Creates a table template.

Requirement: An END statement must be the last statement in the template.
Interaction: A table template can contain one or more column, header, or footer templates.
Featured in: Example 3 on page 769 and Example 4 on page 777

TEMPLATE Procedure: Creating Tabular Output � DEFINE TABLE Statement 641

DEFINE TABLE table-path | Base.Template.Table
</ STORE=libref.template-store>;
<table-attribute-1; <… table-attribute-n; >>
CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]

><…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;
COLUMN column(s);
DEFINE template-type template-name </ option(s)>;

statements-and-attributes
END;

DYNAMIC variable-1 <"text-1"> <… variable-n <"text-n">>;
FOOTER footer-name(s);
HEADER header-name(s);
MVAR variable-1 <"text-1"> <… variable-n <"text-n">>;
NMVAR variable-1 <"text-1"> <… variable-n <"text-n">>;
NOTES "text";
TRANSLATE expression-1 INTO expression-2 <… , expression-n INTO

expression-m;>
END;

Table 12.13 DEFINE TABLE Statements

Task Statement

Set one or more table attributes table-attribute(s)

Set the style element of the cells in the table that
contain numeric variables according to the values of
the variables

CELLSTYLE AS

Declare a symbol as a column in the table and specify
the order of the columns

COLUMN

Create a template for a column, header, or footer DEFINE

Define a symbol that references a value that the data
component supplies from the procedure or DATA step

DYNAMIC

Declare a symbol as a footer in the table and specify
the order of the footers

FOOTER

Declare a symbol as a header in the table and specify
the order of the headers

HEADER

Define a symbol that references a macro variable.
ODS will use the value of the variable as a string.
References to the macro variable are resolved when
ODS binds the template and the data component to
produce an output object.

MVAR

642 DEFINE TABLE Statement � Chapter 12

Task Statement

Define a symbol that references a macro variable.
ODS will convert the value of the variable to a
number (stored as a double) before use. References to
the macro variable are resolved when ODS binds the
template and the data component to produce an
output object.

NMVAR

Provide information about the table NOTES

Translate the specified numeric values to other values TRANSLATE INTO

End a template, or end the editing of a template END

Required Arguments

table-path
specifies where to store the table template. A table-path consists of one or more
names that are separated by periods. Each name represents a directory in a
template store, which is a type of SAS file. PROC TEMPLATE writes the template to
the first writable template store in the current path.

Base.Template.Table
creates a master table template that is globally applied to all of your tabular output.
Once this template is created, you do not need to explicitly specify it in your SAS
programs. It is automatically applied to all tabular output until you specifically
remove it from the item store.
Interaction: The Base.Template.Table master template attributes are overridden by

other table templates.
Tip: The Base.Template.Table master template is most useful when used with the

CELLSTYLE AS statements to create alternating colors in your tabular output.
Featured in: Example 6 on page 788

Options

STORE=libref.template-store
specifies the template store in which to store the template. If the template store does
not exist, it is created.
Restriction: The STORE= option does not become part of the template.

Table Attributes
This section lists all the attributes that you can use in a table template. For all

attributes that support a value of ON, these forms are equivalent:

ATTRIBUTE-NAME
ATTRIBUTE-NAME=ON

For all of the attributes that support a value of variable, variable is any variable that
you declare in the table template with the DYNAMIC, MVAR, or NMVAR statement. If
the attribute is a boolean, then the value of variable should resolve to either true or
false as shown in this table:

TEMPLATE Procedure: Creating Tabular Output � DEFINE TABLE Statement 643

Table 12.14 Boolean Values

True False

ON OFF

ON _OFF_

1 0

TRUE FALSE

YES NO

YES _NO_

Table 12.15 Table Attributes

Task Attribute Destinations

Influence the layout of the table

Specify whether to try to place the same
number of columns in each data panel if
the entire table does not fit in one data
panel

BALANCE LISTING, printer
family, and RTF

Specify whether to center each data panel
independently if the entire table does not
fit in one data panel

CENTER LISTING, printer
family, RTF

Specify whether to force a new page
before printing the table

NEWPAGE All except OUTPUT

Specify the number of sets of columns to
place on a page

PANELS= LISTING and
printer family

Specify the number of blank characters to
place between sets of columns when
PANELS= is in effect

PANEL_SPACE= LISTING

Specify the number of lines that must be
available on the page in order to print the
body of the table

REQUIRED_SPACE= LISTING and
printer family

Specify the number of lines to place
between the previous output object and
the current one

TOP_SPACE= LISTING and
printer family

Specify whether to split a table that is too
wide to fit in the space that is provided or
to wrap each row of the table

WRAP LISTING and
printer family

Specify whether to add a double space
after the last line of a single row when the
row is wrapped

WRAP_SPACE LISTING and
printer family

Influence the layout of rows and columns

Specify the maximum number of blank
characters to place between columns

COL_SPACE_MAX= LISTING

644 DEFINE TABLE Statement � Chapter 12

Task Attribute Destinations

Specify the minimum number of blank
characters to place between columns

COL_SPACE_MIN= LISTING

Specify the name of the column whose
value provides formatting information
about the space before each row of the
template

CONTROL= All except OUTPUT

Specify whether to double space between
the rows of the table

DOUBLE_SPACE LISTING

Specify whether extra space is evenly
divided among all columns of the table

EVEN LISTING

Specify whether to split a long stacked
column across page boundaries

SPLIT_STACK LISTING

Influence the display of the values in
header cells and data cells

Specify whether to suppress blanking the
value in a column that is marked with the
BLANK_DUPS column attribute if the
value changes in a previous column that
is also marked with the BLANK_DUPS
attribute

CLASSLEVELS= LISTING and
printer family

Specify which format to use if both a
column template and a data component
specify a format

DATA_FORMAT_OVERRIDE All

Specify whether to justify the format
fields within the columns or to justify the
values within the columns without regard
to the format fields

JUSTIFY LISTING

Specify whether to order the columns by
their order in the data component

ORDER_DATA All except OUTPUT

Specify the source of the values for the
format width and the decimal width if
they are not specified

USE_FORMAT_DEFAULTS All

Use the column name as the column
header if neither the column template nor
the data component specifies a header

USE_NAME All

Influence the layout of headers and footers

Specify the number of blank lines to place
between the last row of data and the first
row of output

FOOTER_SPACE= LISTING

Specify the number of blank lines to place
between the last row of headers and the
first row of data

HEADER_SPACE= LISTING

Specify whether to draw a continuous line
above the first table footer or, if there is
no table footer, below the last row of data
on a page

OVERLINE LISTING

TEMPLATE Procedure: Creating Tabular Output � DEFINE TABLE Statement 645

Task Attribute Destinations

Specify whether to print table footers and
any overlining of the table footers

PRINT_FOOTERS All except OUTPUT

Specify whether to print table headers
and any underlining of the table headers

PRINT_HEADERS All except OUTPUT

Specify whether to draw a continuous line
under the last table header or, if there is
no table header, then above the last row of
data on a page

UNDERLINE LISTING

Influence the HTML output

Specify whether to place the output object
in a table of contents, if you create a table
of contents

CONTENTS HTML

Specify the label to use for the output
object in the contents file, the Results
window, and the trace record

CONTENTS_LABEL= HTML, PDF,
PRINTER, PS
PDFMARK

Other table attributes

Specify an alternate description for the
table *

ALT= MARKUP

Control whether BY lines are printed
above each BY group

BYLINE= All except OUTPUT

Define the characters to use as the
line-drawing characters in the table

FORMCHAR= LISTING

Specify a label for the table LABEL= All

Specify a long description for the table * LONGDESC= MARKUP

Specify the table that the current
template inherits from

PARENT= All

Specify the style element to use for the
table and any changes to the attributes

STYLE= Markup family,
printer family, and
RTF

Specify the special data set type of a SAS
data set

TYPE= OUTPUT

* SAS includes these accessibility and compatibility features that improve the usability of
SAS for users with disabilities. These features are related to accessibility standards for
electronic information technology adopted by the U.S. Government under Section 508 of the
U.S. Rehabilitation Act of 1973, as amended.

ALT= "text"
specifies an alternate description of the table.
Requirement: The text must be enclosed with quotation marks.
Tip: The ALT= attribute is valid only in markup family destinations.

Note: SAS includes this accessibility and compatibility feature that improves the
usability of SAS for users with disabilities. This feature is related to accessibility
standards for electronic information technology adopted by the U.S. Government
under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. �

BALANCE <=ON | OFF | variable>

646 DEFINE TABLE Statement � Chapter 12

specifies whether to try to place the same number of columns in each data panel if
the entire table does not fit in one data panel.
Default: OFF
Tip: The BALANCE attribute is valid only in the LISTING, printer family, and RTF

BYLINE <=ON | OFF | variable>
controls whether BY lines are printed above each BY group in a configuration file,
SAS invocation, OPTIONS statement, or Systems Options window.
Category: PROC OPTIONS GROUP= LISTCONTROL
Default: OFF
Restriction: This attribute applies only if the table is not the first one on the page.

If BY-group processing is in effect, a byline automatically precedes the first table
on the page.

Tip: The BYLINE attribute is valid in all destinations except the OUTPUT
destination.

CENTER <=ON | OFF | variable>
specifies whether to center each data panel independently if the entire table does not
fit in the space that is provided.
Default: ON
Tip: The CENTER attribute is valid only in the LISTING, printer family, and RTF

destinations.

CLASSLEVELS <=ON | OFF | variable>
specifies whether to suppress blanking the value in a column that is marked with the
BLANK_DUPS column attribute if the value changes in a previous column that is
also marked with the BLANK_DUPS attribute.
Default: OFF
Tip: The CLASSLEVELS attribute is valid for all destinations except the OUTPUT

destination.
Featured in: Example 1 on page 551

COL_SPACE_MAX= positive-integer | variable
specifies the maximum number of blank characters to place between the columns.
Default: 4
Tip: The COL_SPACE_MAX= table attribute is valid only in the LISTING

destination.

COL_SPACE_MIN= positive-integer | variable
specifies the minimum number of blank characters to place between the columns.
Default: 2
Tip: The COL_SPACE_MIN= attribute is valid only in the LISTING destination.

CONTENTS <=ON | OFF | variable>
specifies whether to place the output object in a table of contents, if you create a
table of contents.
Default: ON
Tip: The CONTENTS attribute is valid in markup family and printer family

destinations.

CONTENTS_LABEL= "string" | variable
specifies the label to use for the output object in the contents file, the Results
window, and the trace record.
Default: If the SAS system option LABEL is in effect, the default label is the

object’s label. If LABEL is not in effect, the default label is the object’s name.

TEMPLATE Procedure: Creating Tabular Output � DEFINE TABLE Statement 647

Tip: The CONTENTS_LABEL= attribute is valid only in markup family and printer
family destinations.

CONTROL=column-name | variable
specifies the name of the column whose values provide formatting information about
the space before each row of the template. The value of CONTROL= should be the
name of a column of type character with a length equal to 1.

Table 12.16 Values in the Control Column

Column Control Value Result

A digit from 1-9 The specified number of blank lines precedes
the current row.

A hyphen (-) A row of underlining precedes the current row.

"b" or "B" ODS tries to insert a panel break if the entire
table does not fit in the space that is provided.

Default: None
Tip: The CONTROL= attribute is valid in all destinations except the OUTPUT

destination.

DATA_FORMAT_OVERRIDE<=ON | OFF | variable>
specifies which format to use if both a column template and a data component specify
a format.

ON
uses the format that the data component specifies.

OFF
use the format that the column template specifies.

Default: OFF
Tip: The DATA_FORMAT_OVERRIDE attribute is valid in all destinations.

DOUBLE_SPACE<=ON | OFF | variable>
specifies whether to double space between the rows of the table.
Default: OFF
Tip: The DOUBLE_SPACE attribute is valid only in the LISTING destination.
Featured in: Example 1 on page 756 and Example 3 on page 769

EVEN<=ON | OFF | variable>
specifies whether extra space is evenly divided among all columns of the table.
Default: OFF
Tip: The EVEN attribute is valid only in the LISTING destination.LISTING

FOOTER_SPACE=0 | 1 | 2 | variable
specifies the number of blank lines to place between the last row of data and the first
row of the table footer.
Default: 1
Tip: The FOOTER_SPACE= attribute is valid only in the LISTING destination.

FORMCHAR= "string" | variable
defines the characters to use as the line-drawing characters in the table. Currently,
ODS uses only the second of the 20 possible formatting characters. This formatting
character is used for underlining and overlining. To change the second formatting

648 DEFINE TABLE Statement � Chapter 12

character, specify both the first and second formatting characters. For example, this
option assigns the asterisk (*) to the first formatting character, the plus sign (+) to
the second character, and does not alter the remaining characters:

formchar="*+"

Default: The SAS system option FORMCHAR= specifies the default formatting
characters.

Tip: Use any character in formatting-characters, including hexadecimal characters.
If you use hexadecimal characters, then put an x after the closing quote. For
example, this option assigns the hexadecimal character 2D to the first formatting
character, the hexadecimal character 7C to the second character, and does not
alter the remaining characters:

formchar="2D7C"x

Tip: The FORMCHAR= attribute is valid only in the LISTING destination.

HEADER_SPACE=0 | 1 | 2 | variable
specifies the number of blank lines to place between the last row of headers and the
first row of data. A row of underscores is a header.
Default: 1
Tip: The HEADER_SPACE= attribute is valid only in the LISTING destination.

JUSTIFY<=ON | OFF | variable>
specifies whether to justify the format fields within the columns or to justify the
values within the columns without regard to the format fields.
Default: OFF
Interaction: JUSTIFY=ON can interfere with decimal alignment.
Interaction: If the column is numeric, then values are aligned to the right if you

specify JUSTIFY=OFF and JUST=C.
Interaction: All of the destinations except for the LISTING destination justify the

values in columns as if JUSTIFY=ON for JUST=R and JUST=L.
Tip: If you translate numeric data to character data, you might need to use

JUSTIFY= to align the data.
Main discussion: “Values in Table Columns and How They Are Justified” on page

754
Tip: The JUSTIFY attribute is valid only in the LISTING destination.

LABEL= "text" | variable
specifies a label for the table.
Default: ODS uses the first of the following that it finds:

� a label that the table template provides
� a label that the data component provides
� the first spanning header in the table.

Tip: The LABEL= attribute is valid in all destinations.

LONGDESC= "string"
specifies the long description of the table.
Requirement: The text must be enclosed with quotation marks.
Tip: The LONGDESC= attribute is valid only in markup family destinations.

Note: SAS includes this accessibility and compatibility feature that improves the
usability of SAS for users with disabilities. This feature is related to accessibility

TEMPLATE Procedure: Creating Tabular Output � DEFINE TABLE Statement 649

standards for electronic information technology adopted by the U.S. Government
under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. �

NEWPAGE<=ON | OFF | variable>
specifies whether to force a new page before printing the table.
Default: OFF
Restriction: If the table is the first item on the page, ODS ignores this attribute.
Tip: The NEWPAGE attribute is valid in all destinations except the OUTPUT

destination.

ORDER_DATA<=ON | OFF | variable>
specifies whether to order the columns by their order in the data component.
Default: OFF

When ORDER_DATA=OFF, the default order for columns is the order that they
are specified in the COLUMN statement. If you omit a COLUMN statement, the
default order for columns is the order in which you define them in the template.

Interaction: ORDER_DATA is most useful for ordering generic columns.
Tip: The ORDER_DATA attribute is valid in all destinations except the OUTPUT

destination. The OUTPUT destination always uses the order of the columns in the
data component when it creates an output data set.

OVERLINE<=ON | OFF | variable>
specifies whether to draw a continuous line above the first table footer or, if there is
no table footer, below the last row of data on a page. The second formatting character
is used to draw the line.
Default: OFF
Main discussion: See the discussion of the FORMCHAR= attribute on page 647.
See also: UNDERLINE= on page 651 (for tables), UNDERLINE= on page 613 (for

columns), and OVERLINE= on page 610 (for columns)
Tip: The OVERLINE attribute is valid only in the LISTING destination.
Featured in: Example 1 on page 756

PANELS=positive-integer | variable
specifies the number of sets of columns to place on a page. If the width of all the
columns is less than half of the linesize, display the data in multiple sets of columns
so that rows that would otherwise appear on multiple pages appear on the same page.
Tip: If the number of panels that is specified is larger than the number of panels

that can fit on the page, the template creates as many panels as it can. Let the
table template put data in the maximum number of panels that can fit on the page
by specifying a large number of panels (for example, 99).

Tip: The PANELS= attribute is valid only in LISTING and printer family
destinations.

PANEL_SPACE=positive-integer | variable
specifies the number of blank characters to place between sets of columns when
PANELS= is in effect.
Default: 2
Tip: The PANEL_SPACE= attribute is valid only in the LISTING destination.

PARENT=table-path
specifies the table that the current template inherits from. A table-path consists of
one or more names, separated by periods. Each name represents a directory in a
template store. (A template store is a type of SAS file.) The current template inherits
from the specified table in the first template store in the current path that you can
read from.

650 DEFINE TABLE Statement � Chapter 12

When you specify a parent, all of the attributes and statements that are specified
in the parent’s template are used in the current template unless the current
template overrides them.

Tip: The PARENT= attribute is valid in all destinations.

PRINT_FOOTERS<=ON | OFF | variable>
specifies whether to print table footers and any overlining of the table footers.
Default: ON

See also: OVERLINE=
Tip: The PRINT_FOOTERS attribute is valid in all destinations except the

OUTPUT destination.

PRINT_HEADERS<=ON | OFF | variable>
specifies whether to print the table headers and any underlining of the table headers.

Default: ON
Interaction: When used in a table template, PRINT_HEADERS affects only

headers for the table, not the headers for individual columns. (See the discussion
of the PRINT_HEADERS column attribute on page 611.)

Tip: The PRINT_HEADERS attribute is valid in all destinations except the
OUTPUT destination.

See also: UNDERLINE=

REQUIRED_SPACE=positive-integer | variable
specifies the number of lines that must be available on the page in order to print the
body of the table (The body of the table is the part of the table that contains the data.
It does not include headers and footers.)

Default: 3
Tip: The REQUIRED_SPACE= attribute is valid in LISTING and printer family

destinations.

SPLIT_STACK<=ON | OFF | variable>
specifies whether to split a long stacked column across page boundaries.

Default: OFF
Tip: The SPLIT_STACK attribute is valid only in the LISTING destinations.

STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the table.

style-element-name
is the name of the style element to use to display the table. The style element
must be part of a style that is registered with the Output Delivery System. SAS
provides some styles. You can create customized styles with PROC TEMPLATE
(see “DEFINE STYLE Statement” on page 490). By default, ODS produces
different parts of ODS output with different elements. For example, by default, a
table is produced with the style element Table. The styles that SAS provides do
not provide another style element that you would be likely to want to use instead
of Table. However, you might have a user-defined style element at your site that
would be appropriate to specify.

The style element provides the basis for displaying the table. Additional style
attributes that you provide can modify the display.

style-element-name is either the name of a style element or a variable whose
value is a style element.
See also: “Viewing the Contents of a Style” on page 538
See also: “Working with Styles” on page 538

TEMPLATE Procedure: Creating Tabular Output � DEFINE TABLE Statement 651

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

See also: “Style Attributes and Their Values” on page 498
Default: Table
Requirement: Specify either a style-attribute-specification or a style-element-name

with the STYLE= option.
Tip: You can use braces ({ and }) instead of square brackets ([and]).
Tip: If you use the STYLE= attribute inside a quoted string, then add a space

before or after the carriage return to prevent errors. SAS does not interpret a
carriage return as a space. You must explicitly specify spaces in quoted strings.

Tip: The STYLE= attribute is valid only in the markup family, printer family, and
RTF destinations.

TOP_SPACE=positive-integer | variable
specifies the number of lines to place between the previous output object and the
current one.
Default: 1
Tip: The TOP_SPACE= attribute is valid only in LISTING and printer family

destinations.

TYPE=string | variable
specifies special type of SAS data set.
Restriction: PROC TEMPLATE does not verify the following:

� a SAS data set type that you specify is a valid data set type
� the structure of the data set that you create is appropriate for the type that

you have assigned

Tip: Most SAS data sets have no special type. However, certain SAS procedures,
like the CORR procedure, can create a number of special SAS data sets. In
addition, SAS/STAT software and SAS/EIS software support special data set types.

Tip: The TYPE= attribute is valid only in the OUTPUT destination.

UNDERLINE<=ON | OFF | variable>
specifies whether to draw a continuous line under the last table header (or, if there is
no table header, then above the first row of data on a page). The second formatting
character is used to draw the line.
Default: OFF
Main discussion: See the discussion of the FORMCHAR= attribute on page 647
See also: OVERLINE= (for tables) on page 649 , UNDERLINE (for columns) on

page 613, and OVERLINE (for columns) on page 610
Tip: The UNDERLINE attribute is valid only in the LISTING destination.
Featured in: Example 1 on page 756 and Example 3 on page 769

USE_FORMAT_DEFAULTS<=ON | OFF | variable>
specifies the source of the values for the format width and the decimal width if they
are not specified.

ON
uses the default values, if any, that are associated with the format name.

652 CELLSTYLE–AS Statement � Chapter 12

OFF
uses the PROC TEMPLATE defaults.

Default: OFF
Tip: The USE_FORMAT_DEFAULTS attribute is valid in all destinations except

the OUTPUT destination.

USE_NAME<=ON | OFF | variable>
uses the column name as the column header if neither the column template nor the
data component specifies a header.
Default: OFF
Tip: Use this attribute when column names are derived from a data set and the

columns are generic.
Tip: The USE_NAME attribute is valid in all destinations except the OUTPUT

destination.

WRAP<=ON | OFF | variable>
specifies whether to split a wide table into multiple data panels, or to wrap each row
of the table so that an entire row is printed before the next row starts.
Default: OFF
Interaction: When ODS wraps the rows of a table, it does not place multiple

values in any column that contains an ID column.
See also: WRAP_SPACE= and ID= on page 608
Tip: The WRAP attribute is valid only in LISTING and printer family destinations.

WRAP_SPACE<=ON | OFF | variable>
specifies whether to double space after the last line of a single row of the table when
the row is wrapped onto more than one line.
Default: OFF
See also: WRAP=
Tip: The WRAP_SPACE attribute is valid only in the LISTING, printer family, and

RTF destinations.

CELLSTYLE–AS Statement

Sets the style element of the cells in the table according to the values of the variables. Use this
statement to set the presentation characteristics (such as foreground color and font face) of
individual cells.

Featured in: Example 4 on page 777

CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]>
<…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

expression
is an expression that is evaluated for each table cell that contains a variable.

TEMPLATE Procedure: Creating Tabular Output � CELLSTYLE–AS Statement 653

If expression resolves to TRUE (a non-zero value), the style element that is
specified is used for the current cell. If expression is FALSE (zero), the next
expression in the statement is evaluated. Thus, you can string multiple expressions
together to format cells conditionally.

expression has this form:

expression-1 <comparison-operator expression-n>

expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

constant
is a fixed value such as the name of a column or symbols that are declared in a
DYNAMIC, MVAR, or NMVAR statement in the current template.

SAS function
specifies a SAS function. For information on SAS functions, see SAS Language
Reference: Dictionary.

Built-in variable
is a special kind of WHERE expression operand that helps you find common
values in table templates. Built-in variables are one or more of the following:

COLUMN
is a column number. Column numbering begins with 1.
Alias: _COL_
Featured in: Example 5 on page 782

DATANAME
is a data column name.

DATATYPE
is the data type of the column variable. The data type is either numeric
("num") or character ("char").
Example: The following CELLSTYLE AS statement specifies that numeric

column variables have a red font color and character column variables
have a blue font color:

cellstyle _datatype_ = "num" as {color=red},
datatype = "char" as {color=blue};

LABEL
is a column label.
Featured in: Example 5 on page 782

ROW
is a row number. Row numbering begins with 1.
Featured in: Example 5 on page 782

STYLE
is a style element name.
Featured in: Example 6 on page 788

VAL
is the data value of a cell.
Tip: Use _VAL_ to represent the value of the current column.

654 CELLSTYLE–AS Statement � Chapter 12

Featured in: Example 6 on page 788

comparison-operator
compares a variable with a value or with another variable. The following table
lists the comparison operators:

Table 12.17 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Featured in: Example 5 on page 782
Tip: Using an expression of 1 as the last expression in the CELLSTYLE AS

statement sets the style element for any cells that did not meet an earlier
condition.

See also: You can use any expression that can be used in the WHERE= data set
option. For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

style-attribute-specification
describes a style attribute to set. Each style-attribute-specification has this general
form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can set in a table template, see
“Style Attributes and Their Values” on page 498.

Options

style-element-name
is the name of a style element that is part of a style that is registered with the
Output Delivery System. SAS provides some styles. You can create customized styles
and style elements with PROC TEMPLATE. (See “DEFINE STYLE Statement” on
page 490.)

The style elements that you would be most likely to use with the CELLSTYLE AS
statement are

� Data
� DataFixed
� DataEmpty
� DataEmphasis
� DataEmphasisFixed
� DataStrong

TEMPLATE Procedure: Creating Tabular Output � COLUMN Statement 655

� DataStrongFixed

The style element provides the basis for displaying the cell. Additional style
attributes modify the display.

COLUMN Statement

Declares a symbol as a column in the table and specifies the order of the columns.

Featured in: Example 3 on page 769

COLUMN column(s);

Required Arguments

column
is one or more columns. If the column is defined outside the current table template,
reference it by its path in the template store. Columns in the template are laid out
from left to right in the same order that they are specified in the COLUMN
statement.

Default: If you omit a COLUMN statement, ODS makes a column for each column
template (DEFINE COLUMN statement), and places the columns in the same
order that the column templates have in the table template.

If you use a COLUMN statement but omit a DEFINE COLUMN statement for
any of the columns, ODS uses a default column template that is based on the type
of data in the column.

Interaction: If you specify the column attribute PRINT=OFF, then the value of a
column is turned off if the column is part of a stacked column. If all columns in a
stacked column have PRINT=OFF set, then the entire column is removed from the
table.

Tip: Use a list of variable names, such as DAY1–DAY10, to specify multiple
variables.

Main discussion: Stacking Values for Two or More Variables
To stack values for two or more variables in the same column, put parentheses

around the stacked variables. In such a case, the column header for the first
column inside the parentheses becomes the header for the column that contains all
the variables inside parentheses. For example, this COLUMN statement produces
a template with the following characteristics:

� The value of NAME is in the first column by itself.

� The values of CITY and STATE appear in the second column with CITY
above STATE. The header for this column is the header that is associated
with CITY.

� The values HOMEPHONE and WORKPHONE appear in the third column
with HOMEPHONE above WORKPHONE. The header for this column is the
header that is associated with HOMEPHONE.

column name (city state) (homephone workphone);

656 DEFINE Statement � Chapter 12

Use the asterisk (*) in the COLUMN statement to change the layout of stacking
variables. An asterisk between groups of variables in parentheses stacks the first
item in the first set of parentheses above the first item in the next set of
parentheses, and so on until the last group of parentheses is reached. Then, the
second item in the first group is stacked above the second item in the second
group, and so on. For example, this COLUMN statement produces a report with
the following characteristics:

� The value of NAME is in the first column by itself.
� The values of CITY and HOMEPHONE appear in the second column with

CITY above HOMEPHONE. The header for this column is the header that is
associated with CITY.

� The values STATE and WORKPHONE appear in the third column with
STATE above WORKPHONE. The header for this column is the header that
is associated with STATE.

column name (city state) * (homephone workphone);

DEFINE Statement

Creates a template inside a table template.

Main discussion: “DEFINE COLUMN Statement” on page 599, “DEFINE FOOTER
Statement” on page 625, and “DEFINE HEADER Statement” on page 626

DEFINE template-type template-name</ option(s)>;
statements-and-attributes;
END;

Required Arguments

template-type
specifies the type of template to create, where template-type is one of the following:

COLUMN

FOOTER

HEADER
The template-type determines what other statements and what attributes can go in

the template. For details, see the documentation for the corresponding DEFINE
statement.

template-name
specifies the name of the new object.
Restriction: template-name must be a single-level name.

Note: To reference the template that you are creating from another template,
create it outside the table template. �

Options

TEMPLATE Procedure: Creating Tabular Output � HEADER Statement 657

NOLIST
preserves the template-type when inheriting it from another table template.
Tip: If you specify an existing template-name without using the NOLIST option,

then the template is overwritten.

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Scope: You can use the DYNAMIC statement in the template of a table, column,
header, or footer. A dynamic variable that is defined in a template is available to that
template and to all the templates that it contains.
Featured in: Example 1 on page 551 and Example 2 on page 557

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a variable that the data component supplies. ODS resolves the value of the
variable when it binds the template and the data component.
Tip: Dynamic variables are most useful to the authors of SAS procedures and to

DATA step programmers.

Options

text
is text that is placed in the template to explain the dynamic variable’s use. Text of
this type becomes part of the compiled template, which you can view with the
SOURCE statement, whereas SAS comments do not.

HEADER Statement

Declares a symbol as a header in the table and specifies the order of the headers.

HEADER header-specification(s);

Required Arguments

header-specification
is one or more headers. If the header is defined outside the current table template,
reference it by its path in the template store. Headers in the template are laid out

658 FOOTER Statement � Chapter 12

from top to bottom in the same order that they are specified in the HEADER
statement. Each header-specification is one of the following:

"string"
specifies the text to use for the header. If you specify a string, you do not need to
use a DEFINE HEADER statement. However, you cannot specify any header
attributes except for a split character. If the SPLIT= header attribute is not in
effect and if the first character of the header that you specify is neither a blank
character nor an alphanumeric character, PROC TEMPLATE treats it as the split
character.

See also: SPLIT= on page 634

header-path
is the path of the header template to use. A header-path consists of one or more
names, separated by periods. Each name represents a directory in a template
store. (A template store is a type of SAS file.)

LABEL
uses the label of the output object as the header. Each SAS procedure specifies a
label for each output object that it creates. The DATA step uses the value of the
OBJECTLABEL= option as the label of the output object. If OBJECTLABEL= is
not specified, it uses the text of the first TITLE statement as the label.

Default: If you omit a HEADER statement, then ODS makes a header for each
header template (DEFINE HEADER statement), and places the headers in the
same order that the header templates have in the table template.

Featured in: Example 3 on page 769

FOOTER Statement

Declares a symbol as a footer in the table and specifies the order of the footers.

FOOTER footer-specification(s);

Required Arguments

footer-specification
is one or more footers. If the footer is defined outside the current table template,
reference it by its path in the template store. Footers in the template are laid out
from top to bottom in the same order that they are specified in the FOOTER
statement. Each footer-specification is one of the following:

"string"
specifies the text to use for the footer. If you specify a string, you do not need to
specify a DEFINE FOOTER statement. However, you cannot specify any footer
attributes except for a split character. If the SPLIT= attribute is not in effect and
if the first character of the footer that you specify is neither a blank character nor
an alphanumeric character, PROC TEMPLATE treats it as the split character.

See also: SPLIT= on page 634

footer-path

TEMPLATE Procedure: Creating Tabular Output � MVAR Statement 659

is the path of the footer template to use. A footer-path consists of one or more
names, separated by periods. Each name represents a directory in a template
store, which is s a type of SAS file.

LABEL
uses the label of the output object as the footer. Each SAS procedure specifies a
label for each output object that it creates. The DATA step uses the value of the
OBJECTLABEL= option as the label of the output object. If OBJECTLABEL= is
not specified, it uses the text of the first TITLE statement as the label.

Default: If you omit a FOOTER statement, ODS makes a footer for each footer
template (DEFINE FOOTER statement), and places the footers in the same order
that the footer templates have in the table template.

MVAR Statement

Defines a symbol that references a macro variable. ODS will use the value of the variable as a
string. References to the macro variable are resolved when ODS binds the template and the data
component to produce an output object.

Scope: You can use the MVAR statement in the template of a table, column, header, or
footer. A macro variable that is defined in a template is available to that template and
to all the templates that it contains.

Featured in: Example 3 on page 769 and Example 1 on page 551

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a macro variable to reference in the template. ODS will use the value of the
macro variable as a string. ODS does not resolve the value of the macro variable
until it binds the template and the data component.

Tip: Declare macro variables this way in a template. For example, to use the
automatic macro variable SYSDATE9 in a template, declare it in an MVAR
statement and reference it as SYSDATE9, without an ampersand, in the PROC
TEMPLATE step. If you use the ampersand, the macro variable resolves when the
template is compiled instead of when ODS binds the template to the data
component.

Options

text
is text that is placed in the template to explain the macro variable’s use. Text of this
type becomes part of the compiled template, which you can view with the SOURCE
statement, whereas SAS comments do not.

660 NMVAR Statement � Chapter 12

NMVAR Statement

Defines a symbol that references a macro variable. ODS will convert the variable’s value to a
number (stored as a double) before using it. References to the macro variable are resolved when
ODS binds the template and the data component to produce an output object.

Scope: You can use the NMVAR statement in the template of a table, column, header, or
footer. A macro variable that is defined in a template is available to that template and
to all the templates that it contains.

Featured in: Example 4 on page 777

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
names a macro variable to reference in the template. ODS will convert the variable’s
value to a number (stored as a double) before using it. ODS does not resolve the
macro variable until it binds the template and the data component.

Tip: Declare macro variables this way in a template. For example, to use a macro
variable as a number, declare it in an NMVAR statement and reference it without
an ampersand. If you use the ampersand, the macro variable resolves when the
template is compiled instead of when ODS binds the template to the data
component.

Options

text
is text that is placed in the template to explain the macro variable’s use. Text of this
type becomes part of the compiled template, which you can view with the SOURCE
statement, whereas SAS comments do not.

NOTES Statement

Provides information about the table, header, column, or footer.

Tip: The NOTES statement becomes part of the compiled template, which you can view
with the SOURCE statement, whereas SAS comments do not.

Featured in: Example 4 on page 777

NOTES ’text’;

Required Arguments

TEMPLATE Procedure: Creating Tabular Output � TRANSLATE INTO Statement 661

text
provides information about the table.

TRANSLATE INTO Statement

Translates the specified numeric values to other values.

Restriction: The TRANSLATE INTO statement in a table template applies only to
numeric variables. To translate the values of a character variable, use TRANSLATE
INTO in the template of that column. (See “DEFINE COLUMN Statement” on page
599).
Featured in: Example 4 on page 777

TRANSLATE expression-1 INTO expression-2 <…, expression-n INTO expression-m>;

Required Arguments

expression-1
is an expression that is evaluated for each table cell that contains a numeric variable.

If expression-1 resolves to TRUE (a non-zero value), the translation that is
specified is used for the current cell. If expression-1 is FALSE (zero), the next
expression in the statement is evaluated. Thus, you can string multiple expressions
together to format cells conditionally.

expression has this form:

expression-1 <comparison-operator expression-n>

expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

constant
is a fixed value such as the name of a column or symbols that are declared in a
DYNAMIC, MVAR, or NMVAR statement in the current template.

SAS function
specifies a SAS function. For information on SAS functions, see SAS Language
Reference: Dictionary.

Built-in variable
is a special kind of WHERE expression operand that helps you find common
values in table templates. Built-in variables are one or more of the following:

COLUMN
is a column number. Column numbering begins with 1.
Alias: _COL_
Featured in: Example 5 on page 782

DATANAME
is a data column name.

DATATYPE

662 TRANSLATE INTO Statement � Chapter 12

is the data type of the column variable. The data type is either numeric
("num") or character ("char").

LABEL
is a column label.
Featured in: Example 5 on page 782

ROW
is a row number. Row numbering begins with 1.
Featured in: Example 5 on page 782

STYLE
is a style element name.
Featured in: Example 6 on page 788

VAL
is the data value of a cell.
Tip: Use _VAL_ to represent the value of the current column.
Featured in: Example 6 on page 788

comparison-operator
compares a variable with a value or with another variable. The following table
lists the comparison operators:

Table 12.18 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Restriction: You cannot reference the values of other columns in expression-1.
Tip: Using an expression of 1 as the last expression in the TRANSLATE–INTO

statement specifies a translation for any cells that did not meet an earlier
condition.

Featured in: Example 5 on page 782
See also: You can use any expression that can be used in the WHERE= data set

option. For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

expression-2
is an expression that specifies the value to use in the cell in place of the variable’s
actual value.

expression has this form:

expression-1 <comparison-operator expression-n>

TEMPLATE Procedure: Creating Tabular Output � TRANSLATE INTO Statement 663

expression
is an arithmetic or logical expression that consists of a sequence of operators and
operands. An operator is a symbol that requests a comparison, logical operation,
or arithmetic calculation. An operand is one of the following:

constant
is a fixed value such as the name of a column or symbols that are declared in a
DYNAMIC, MVAR, or NMVAR statement in the current template.

SAS function
specifies a SAS function. For information on SAS functions, see SAS Language
Reference: Dictionary.

Built-in variable
a special kind of WHERE expression operand that helps you find common
values in table templates. Built-in variables are one or more of the following:

COLUMN
is a column number. Column numbering begins with 1.

Alias: _COL_

Featured in: Example 5 on page 782

DATANAME
is a data column name.

DATATYPE
is the data type of the column variable. The data type is either numeric
("num") or character ("char").

LABEL
is a column label

Featured in: Example 5 on page 782

ROW
is a row number. Row numbering begins with 1.

Featured in: Example 5 on page 782

STYLE
is a style element name.

Featured in: Example 6 on page 788

VAL
is the data value of a cell.

Tip: Use _VAL_ to represent the value of the current column.

Featured in: Example 6 on page 788

comparison-operator
compares a variable with a value or with another variable. The following table
lists the comparison operators:

Table 12.19 Comparison Operators

Symbol Mnemonic Equivalent Definition

= EQ Equal to

^= or ~= or = or <> NE Not equal to

> GT Greater than

664 END Statement � Chapter 12

Symbol Mnemonic Equivalent Definition

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to

IN Equal to one from a list of values

Restriction: expression-2 must resolve to a character value, not a numeric value.
Tip: When you translate a numeric value to a character value, the table template

does not try to apply the numeric format that is associated with the column.
Instead, it simply writes the character value into the formatted field, starting at
the left. To right-justify the value, use the JUSTIFY=ON attribute.

Featured in: Example 5 on page 782
See also: JUSTIFY= on page 648
See also: You can use any expression that can be used in the WHERE= data set

option. For information on expressions that you can use in the WHERE data set
option, see the WHERE data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

END Statement

Ends the table template, header template, column template, or footer template.

END;

ODS Output Object Table Names

Some SAS procedures assign names to the tables that they create. When using ODS,
you can select tables and create output data sets by referencing these names. The
following tables list the output object table names that Base SAS, SAS/STAT, and SAS/
ETS procedures produce:

� “ODS Table Names and the Base SAS Procedures That Produce Them” on page 664
� “ODS Table Names and the SAS/STAT Procedures That Produce Them” on page

673
� “ODS Table Names and the SAS/ETS Procedures That Produce Them” on page 731

ODS Table Names and the Base SAS Procedures That Produce Them
This table lists the output object table names which Base SAS procedures produce.

The table provides the name of each table, a description of what the table contains, and
the option, if any, that creates the output object table. For more information about Base
SAS procedures, see Base SAS Procedures Guide.

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 665

Table 12.20 ODS Table Names Produced by the CALENDAR Procedure

Table Name Description

Calendar Calendar

Table 12.21 ODS Table Names Produced by the CATALOG Procedure

Table Name Description

Catalog_Random Table generated when the catalog is in a
random-access data library

Catalog_Sequential Table generated when the catalog is in a
sequential-access data library

Table 12.22 ODS Table Names Produced by the CHART Procedure

Table Name Description

Block Block chart

Hbar Horizontal bar chart

Pie Pie chart

Star Star chart

Vbar Vertical bar chart

Table 12.23 ODS Table Names Produced by the COMPARE Procedure

Table Name Description Option

CompareDatasets Information about the data set
or data sets

Omit NOSUMMARY or
NOVALUE options

CompareDetails (Comparison
results for observations)

List of observations that the
base data set and the compare
data set do not have in common

PRINTALL

666 ODS Output Object Table Names � Chapter 12

Table Name Description Option

CompareDifferences Report of variable value
differences

Omit NOVALUES option

CompareSummary Summary report of
observations, values, and
variables of unequal values

CompareVariables List of differences in variable
types or attributes between the
base data set and the compare
data set

Omit NOSUMMARY option or
unless the variables are
identical

ODS Tables Created by the ID Statement

CompareDetails List of notes and warnings
concerning duplicate ID
variable values, if duplicate ID
variable values exist in either
the data set

Table 12.24 ODS Table Names Produced by the CORR Procedure

Table Name Description Option

Cov Covariance table

row/column variance

DF (missing values)

COV

CronbachAlpha Coefficient alpha ALPHA

CronbachAlphaDel Coefficient alpha with deleted
variables

ALPHA

Csscp Corrected sums of squares and
crossproducts

Row/column variable corrected
sums of squares (missing
values)

CSSCP

HoeffdingCorr Hoeffding’s D statistics

p-value (NOPROB is not
specified)

Number of observations
(missing values)

HOEFFDING

KendallCorr Kendall tau-b coefficients

p-value (NOPROB is not
specified)

Number of observations
(missing values)

Pearson or omit NOCORR
option

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 667

Table Name Description Option

SimpleStats Simple descriptive statistics Omit NOSIMPLE option

SpearmanCorr Spearman descriptive statistics SPEARMAN

Sscp Sums of squares and
crossproducts

Row/column variable sums of
squares (missing values)

SSCP

VarInformation Variable information

ODS Tables Created by the PARTIAL Statement

PartialCsscp Partial corrected sums of
squares and crossproducts

CSSCP

PartialCov Partial covariances COV

PartialKendallCorr Partial Kendall tau-b
coefficients

KENDALL

PartialPearsonCorr Partial Kendall tau-b
coefficients

p-values (NOPROB option is
not specified)

PartialSpearmanCorr Partial Spearman correlations

p-values (NOPROB option is
not specified)

SPEARMAN

Table 12.25 ODS Table Names Produced by the DATASETS and CONTENTS
Procedures

Table Name Description Option

Directory General library information Omit NOLIST option

Members Library member information Omit NOLIST option

Table 12.26 ODS Table Names Produced by the CONTENTS Procedure or the
DATASETS Procedure with the CONTENTS Statement

Table Name Description Option

Attributes Data set attributes Omit SHORT option

Directory General library information DATA=<libref.>_ALL_ or the
DIRECTORY option*

668 ODS Output Object Table Names � Chapter 12

Table Name Description Option

EngineHost Engine and operating
environment information

Omit SHORT option

IntegrityConstraints List of integrity constraints Omit SHORT option and data
has integrity constraints

IntegrityConstraintsShort Concise listing of integrity
constraints

SHORT option specified and
data has integrity constraints

Indexes List of indexes Omit SHORT option and data
set is indexed

IndexesShort Concise list of indexes SHORT option specified and
data set is indexed

Members Library member information DATA=<libref.>_ALL_ or the
DIRECTORY option*

Position List of variables by logical
position in the data set

Omit SHORT option and
specify the VARNUM option

PositionShort Concise list of variables by
logical position in the data set

SHORT and VARNUM options

Sortedby Sort information Omit SHORT option and data
set is sorted

SortedbyShort Concise sort information SHORT option and data set is
sorted

Variables List of variables in
alphabetical order

Omit SHORT option

VariablesShort Concise listing of variables in
alphabetical order

SHORT

* For PROC DATASETS, if both the NOLIST option and either the DIRECTORY option or
DATA=<libref.>_ALL_ are specified, then the NOLIST option is ignored.

Table 12.27 ODS Table Names Produced by the FREQ Procedure

Table Name Description Option

BinomialCLs Binomial confidence limits BINOMIAL(AC | J | W)

BinomialEquiv Binomial equivalence analysis BINOMIAL(EQUIV)

BinomialEquivLimits Binomial equivalence limits BINOMIAL(EQUIV)

BinomialEquivTest Binomial equivalence test BINOMIAL(EQUIV)

BinomialNoninf Binomial noninferiority test BINOMIAL(NONINF)

BinomialPropTest Binomial proportion test BINOMIAL (one-way tables)

BinomialProp Binomial proportion BINOMIAL (one-way tables)

BinomialSup Binomial superiority test BINOMIAL(SUP)

BreslowDayTest Breslow-day test CMH (hx2x2 tables)

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 669

Table Name Description Option

CMH Cochran-Mantel-Haenszel
statistics

CMH

ChiSq Chi-Square tests and measures CHISQ

CochransQ Cochran’s Q AGREE (hx2x2 tables)

ColScores Column scores SCOROUT

CommonOddsRatioCL Exact confidence limits for the
common odds ratio

COMOR (hx2x2 tables)

CommonOddsRatioTest Common odds ratio exact test (hx2x2 tables)

CommonRelRisks Common relative risks CMH (hx2x2 tables)

Crosslist Cross lists CROSSLIST (n-way table
request, n>1)

CrossTabFreqs Crosstabulation table (n-way table request, n>1)

EqualKappaTest Test for equal simple kappas AGREE (hx2x2 tables)

EqualKappaTests Test for equal kappas AGREE (hxrxr tables, r>2)

EqualOddsRatios Tests for equal odds ratios EQOR (hx2x2 tables)

FishersExact Fisher’s exact test FISHER or EXACT or

CHISQ (2x2 tables)

FishersExactMC Monte Carlo estimates for
Fisher’s exact test

FISHER / MC

Gamma Gamma GAMMA

GammaTest Gamma Test GAMMA

JTTest Jonckheere-Terpstra test JT

JTTestMC Monte Carlo estimates for
Jonckheere-Terpstra exact test

JT / MC

KappaStatistics Kappa statistics AGREE (rxr tables, r>2, and
no TEST or EXACT requests
for kappas)

KappaWeight Kappa weights AGREE and PRINTKWT

List List frequencies LIST

LRChiSq Likelihood-ratio chi-square
exact test

LRCHI

LRChiSqMC Monte Carlo exact test for
likelihood-ratio chi-square

LRCHI / MC

McNemarsTest McNemar’s test AGREE (2x2 tables)

Measures Measures of association MEASURES

MHChiSq Mantel-Haenszel chi-square
exact test

MHCHI

MHChiSqMC Monte Carlo exact test for
Mantel-Haenszel chi-square

MHCHI / MC

670 ODS Output Object Table Names � Chapter 12

Table Name Description Option

NLevels Number of variable levels NLEVELS

OddsRatioCL Exact confidence limits for the
odds ratio

OR (2x2 tables)

OneWayChiSq One-way chi-square test CHISQ (one-way tables)

OneWayChiSqMC Monte Carlo exact test for
one-way chi-square

CHISQ / MC (one-way tables)

OneWayFreqs One-way frequencies (One-way table request)

OverallKappa Overall simple kappa
coefficient

AGREE (hx2x2 tables)

Overallkappas Overall kappa coefficients AGREE (hxrxr tables, r>2)

PdiffEquiv Equivalence analysis for the
proportion difference

RISKDIFF(EQUIV) (2x2
tables)

PdiffEquivLimits Equivalence limits for the
proportion difference

RISKDIFF(EQUIV) (2x2
tables)

PdiffEquivTest Equivalence test for the
proportion difference

RISKDIFF(EQUIV) (2x2
tables)

PdiffNoninf Noninferiority test for the
proportion difference

RISKDIFF(NONINF) (2x2
tables)

PdiffSup Superiority test for the
proportion difference

RISKDIFF(SUP) (2x2 tables)

PdiffTest Proportion difference test RISKDIFF(EQUAL) (2x2
tables)

PearsonChiSq Pearson chi-square exact test PCHI

PearsonChiSqMC Monte Carlo exact test for
Pearson chi-square exact test

PCHI / MC

PearsonCorr Pearson correlation PCORR

PearsonCorrMC Monte Carlo exact test for
Pearson correlation

PCORR / MC

PearsonCorrTest Pearson correlation test PCORR

RelativeRisks Relative risk estimates RELRISK or MEASURES (2x2
tables)

RiskDiffCol1 Column 1 risk estimates RISKDIFF (2x2 tables)

RiskDiffCol2 Column 2 risk estimates RISKDIFF (2x2 tables)

RowScores Row scores SCOROUT

SimpleKappa Simple kappa coefficient KAPPA

SimpleKappaMC Monte Carlo exact test Simple
kappa coefficient

KAPPA / MC

SimpleKappaTest Simple kappa tests KAPPA ,

SomersDCR Somers’ D(C|R) SMDCR

SomersDCRTest Somers’ D(C|R) test SMDCR

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 671

Table Name Description Option

SomersDRC Somers’ D(R|C) SMDRC

SomersDRCTest Somers’ D(R|C) test SMDRC

SpearmanCorr Spearman correlation SCORR

SpearmanCorrMC Monte Carlo exact test
Spearman correlation

SCORR / MC

SpearmanCorrTest Spearman correlation test SCORR

SymmetryTest Test of symmetry AGREE

TauB Kendall’s tau-b KENTB

TauBTest Kendall’s tau-b test KENTB

TauC Stuart’s tau-c STUTC

TauCTest Stuart’s tau-c test STUTC

TrendTest Cochran-Armitage test for
trend

TREND

TrendTestMC Monte Carlo exact test for
trend

TREND / MC

WeightKappa Weighted kappa coefficient AGREE (rxr tables, r>2)

WeightedKappaMC Monte Carlo exact test for
weighted kappa

WTKAP / MC

WeightedKappaTest Weighted kappa test WTKAP

Table 12.28 ODS Table Names Produced by the MEANS and SUMMARY
Procedures

Table Name Description

Summary Summary of descriptive statistics for variables
across all observations and within groups of
observations

Table 12.29 ODS Table Names Produced by the PLOT Procedure

Table Name Description Option

Plot Single plot graph

Overlaid two or more plots on a single
set of axes

OVERLAY

672 ODS Output Object Table Names � Chapter 12

Table 12.30 ODS Table Names Produced by the REPORT Procedure

Table Name Description

Report Detail report, summary report, or combination
of both detail and summary information report

Table 12.31 ODS Table Names Produced by the SQL Procedure

Table Name Description

SQL_Results SAS data file or a SAS data view

Table 12.32 ODS Table Names Produced by the TABULATE Procedure

Table Name Description

Table Descriptive statistics in tabular format that use
some or all of the variables in a data set

Table 12.33 ODS Table Names Produced by the TIMEPLOT Procedure

Table Name Description Option

Plot Single plot graph Omit the OVERLAY option

OverlaidPlot Two or more plots on a single
set of axes

OVERLAY

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 673

Table 12.34 ODS Table Names Produced by the UNIVARIATE Procedure

Table Name Description Option

ODS Tables Created by the PROC UNIVARIATE Statement

BasicIntervals Confidence intervals for mean,
standard deviation, variance

CIBASIC

BasicMeasures Measures of location and
variability

default

ExtremeObs Extreme observations default

ExtremeValues Extreme values NEXTRAVAL=

Frequencies Frequencies FREQ

LocationCounts Counts used for sign test and
signed rank test

LOCCOUNT

Missing Values Missing values default, if missing values exist

Modes Modes MODES

Moments Sample moments default

Plots Line printer plots PLOTS

Quantiles Quantiles default

RobustScale Robust measures of scale ROBUSTSCALE

SSPlots Line printer side-by-side box
plot

PLOTS with BY statement

TestsForLocation Tests for location default

TestsForNormality Tests for normality NORMALTEST

TrimmedMeans Trimmed means TRIMMED=

WinsorizedMeans Winsorized means WINSORIZED=

ODS Tables Created by the HISTOGRAM Statement

Bins histogram bins MIDPERCENTS secondary
option

FitQuantiles quantiles of fitted distribution any distribution option

GoodnessOfFit goodness-of-fit tests for fitted
distribution

any distribution option

HistogramBins histogram bins MIDPERCENTS option

ParameterEstimates parameter estimates for fitted
distribution

any distribution option

ODS Table Names and the SAS/STAT Procedures That Produce Them
This table lists the output object table names which SAS/STAT procedures produce.

You must license SAS/STAT software in order to produce these output objects. The table
provides the name of each table, a description of what the table contains, and the

674 ODS Output Object Table Names � Chapter 12

option, if any, that creates the output object table. For information about SAS/STAT
procedures, see SAS/STAT User’s Guide.

Table 12.35 ODS Table Names Produced by the ACECLUS Procedure

Table Name Description Option

ODS Tables Created by the PROC Statement

ConvergenceStatus Convergence status

DataOptionInfo Data and option information

Eigenvalues Eigenvalues of
Inv(ACE)*(COV-ACE)

Eigenvectors Eigenvectors (raw canonical
coefficients)

InitWithin Initial within-cluster
covariances estimate

INITIAL=INPUT

IterHistory Iteration history

SimpleStatistics Simple statistics

StdCanCoef Standardized canonical
coefficients

Threshold Threshold value PROPORTION=

TotSampleCov Total sample covariances

Within Approximate covariance
estimate within clusters

Table 12.36 ODS Table Names Produced by the ANOVA Procedure

Table Name Description Option

DependentInfo Simultaneously analyzed
dependent variables

Default when there are
multiple dependent variables
with different patterns of
missing values

FitStatistics R-Square, C.V., root MSE, and
dependent mean

ModelANOVA ANOVA for model terms

NObs Number of observations

OverallANOVA Overall ANOVA

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 675

Table Name Description Option

ODS Tables Created by the CLASS Statement

ClassLevels Classification variable levels

ODS Tables Created by the MANOVA Statement

MANOVATransform Multivariate transformation
matrix

M=

MultStat Multivariate tests

Tests Summary ANOVA for specified
MANOVA H= effects

H=SUMMARY

ODS Tables Created by the MANOVA or REPEATED Statements

CanAnalysis Canonical analysis CANONICAL

CanCoef Canonical coefficients CANONICAL

CanStructure Canonical structure CANONICAL

CharStruct Characteristic roots and vectors MANOVA (not CANONICAL);
REPEATED PRINTRV

ErrorSSCP Error SSCP matrix PRINTE

HypothesisSSCP Hypothesis SSCP matrix PRINTE; MANOVA M=

PartialCorr Partial correlation matrix PRINTE; REPEATED
(CONTRAST, HELMERT,
MEAN, POLYNOMIAL, or
PROFILE)

ODS Tables Created by the MEANS Statement

Bartlett Bartlett’s homogeneity of
variance test

HOVTEST=BARTLETT

CLDiffs Multiple comparisons of
pairwise differences

CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLDiffsInfo Information for multiple
comparisons of pairwise
differences

CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLMeans Multiple comparisons of means
with confidence/comparison

CLM with (BON, GABRIEL,
SCHEFFE, SIDAL. SMM, T, or
LSD)

CLMeansInfo Information for multiple
comparisons of means with
confidence/comparison interval

CLM

HOVFTest Homogeneity of variance
ANOVA

HOVTEST

676 ODS Output Object Table Names � Chapter 12

Table Name Description Option

MCLines Multiple comparisons LINES
output

LINES, ((DUNCAN or
WALLER or SNK or REGWQ)
and not (CLDIFF or CLM)), or
(equal cells and not CLDIFF)

MCLinesInfo Information for multiple
comparison LINES output

LINES, ((DUNCAN, WALLER,
SNK, or REGWQ) and not
(CLDIFF or CLM)), or (equal
cells and not CLDIFF

MCLinesRange Ranges for multiple range MC
tests

LINES, ((DUNCAN, WALLER,
SNK, or REGWQ) and not
(CLDIFF or CLM)), or (equal
cells and not CLDIFF)

Means Group means

Welch Welch’s ANOVA WELCH

ODS Tables Created by the REPEATED Statement

Epsilons Greenhouse-Geisser and
Huynh-Feldt epsilons

RepTransform Repeated transformation
matrix

CONTRAST, HELMERT,
MEAN, POLYNOMIAL, or
PROFILE

RepeatedLevelInfo Correspondence between
dependents and repeated
measures levels

Sphericity Sphericity tests PRINTE

ODS Tables Created by the TEST Statement

AltErrTests ANOVA tests with error other
than MSE

E=

Table 12.37 ODS Table Names Produced by the CALIS Procedure

Table Name Description Option

ODS Tables Created by the COSAN, FACTOR, LINEQS, and RAM Models

AddParms Additional parameters in the
PARAMETERS statement

PINITIAL or default

AsymStdRes Asymptotically standardized
residual matrix

RESIDUAL= or PRINT

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 677

Table Name Description Option

AveAsymStdRes Average absolute
asymptotically standardized
residuals

RESIDUAL= or PRINT

AveNormRes Average absolute normalized
residuals

RESIDUAL= or PRINT

AveRawRes Average absolute raw residuals RESIDUAL= or PRINT

AveVarStdRes Average absolute variance
standardized residuals

RESIDUAL= or PRINT

ContKurtosis Contributions to kurtosis KURTOSIS or PRINT

ConvergenceStatus Convergence status PSHORT

CorrParm Correlations among parameter
estimates

PCOVES and default

CovMat Assorted cov matrices PCOVES and default

DependParms Dependent parameters (if
specified by program
statements)

PRIVEC and default

DistAsymStdRes Distribution of asymptotically
standardized residuals

RESIDUAL= or PRINT

DistNormRes Distribution of normalized
residuals

RESIDUAL= or PRINT

DistVarStdRes Distribution of variance
standardized residuals

RESIDUAL= or PRINT

Estimates Vector of estimates PRIVEC

Fit Fit statistics PSUMMARY

GenModInfo General modeling information PSIMPLE or default

Gradient First partial derivatives
(Gradient)

PRIVEC and default

InCorr Input correlation matrix PCORR or PALL

InCorrDet Determinant of the input
correlation matrix

PCORR or PALL

InCov Input covariance matrix PCORR or PALL

InCovDet Determinant of the input
covariance matrix

PCORR or PALL

Information Information matrix PCOVES and default

InitEstimates Initial vector of parameter
estimates

PINITIAL or default

InSymmetric Input symmetric matrix
(SYMATRIX data type)

PCORR or PALL

IterHist Iteration history PSHORT

IterStart Iteration start PSHORT

678 ODS Output Object Table Names � Chapter 12

Table Name Description Option

IterStop Iteration stop PSHORT

Jacobian Jacobi column pattern PJACPAT

Kurtosis Kurtosis, with raw data input KURTOSIS or PRINT

LagrangeBoundary Lagrange, releasing active
boundary constraints

MODIFICATION or PALL

LagrangeEquality Lagrange, releasing equality
constraints

MODIFICATION or PALL

ModelStatement Model summary PSHORT

ModIndices Lagrange multiplier and Wald
test statistics

MODIFICATION or PALL

NormRes Normalized residual matrix RESIDUAL= or PRINT

PredetElements Predetermined elements PREDET or PALL

PredModel Predicted model matrix PCORR or PALL

PredModelDet Predicted model determinant PCORR or PALL

ProblemDescription Problem Description PSHORT

RankAsymStdRes Ranking of the largest
asymptotically standardized
residuals

RESIDUAL= or PRINT

RankLagrange Ranking of the largest
Lagrange indices

RESIDUAL= or PRINT

RankNormRes Ranking of the largest
normalized residuals

RESIDUAL= or PRINT

RankRawRes Ranking of the largest raw
residuals

RESIDUAL= or PRINT

RankVarStdRes Ranking of the largest variance
standardized residuals

RESIDUAL= or PRINT

RawRes Raw residual matrix RESIDUAL= or PRINT

SimpleStatistics Simple statistics, with raw
data input

SIMPLE or default

StdErrs Vector of standard errors PRIVEC and default

SumSqDif Sum of squared differences of
predetermined elements

PREDET or PALL

tValues Vector of t values PRIVEC and default

VarStdRes Variance of standardized
residual matrix

RESIDUAL= or PRINT

WaldTest Wald test MODIFICATION or PALL

Weights Weight matrix PWEIGHT or PALL

WeightsDet Determinant of the weight
matrix

PWEIGHT or PALL

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 679

Table Name Description Option

ODS Tables Created by the FACTOR, LINEQS, and RAM Models

Determination Coefficients of determination PDETERM and default

SqMultCorr Squared multiple correlations PESTIM or PSHORT

ODS Tables Created by the COSAN and FACTOR Models

EstParms Estimated parameter matrix PESTIM or PSHORT

InitParms Initial matrix of parameter
estimates

PINITIAL or default

ODS Tables Created by the LINEQS and RAM Models

Indirect Effects Indirect effects TOTEFF or PRINT

InitParms Initial matrix of parameter
estimates

PRIMAT and default

LatentScoreCoef Latent variable regression
score coefficients

PLATCOV or PRINT

PredMomentLatent Predicted latent variable
moments

PLATCOV or PRINT

PredMomentManLat Predicted manifest and latent
variable moments

PLATCOV or PRINT

SetCovExog Set covariance parameters for
manifest exogenous variables

PINITIAL or default

Stability Stability of reciprocal causation PDETERM and default

StructEq Variables in the structural
equations

PDETERM and default

TotalEffects Total effects TOTEFF or PRINT

VarSelection Manifest variables, if not all
are used, selected for modeling

ODS Tables Created by the FACTOR Model

FactCorrExog Correlations among factors PESTIM or PSHORT

FactScoreCoef Factor score regression
coefficients

PESTIM or PSHORT

RotatedLoadings Rotated loadings, with
ROTATE= option in FACTOR
statement

PESTIM or PSHORT

Rotation Rotation matrix, with
ROTATE= option in FACTOR
statement

PESTIM or PSHORT

StdLoadings Standardized factor loadings PESTIM or PSHORT

680 ODS Output Object Table Names � Chapter 12

Table Name Description Option

ODS Tables Created by the LINEQS Model

CorrExog Correlations among exogenous
variables

PESTIM or PSHORT

EndogenousVar Endogenous variables PESTIM or PSHORT

EstCovExog Estimated covariances among
exogenous variables

PESTIM or PSHORT

EstLatentEq Estimated latent variable
equations

PESTIM or PSHORT

EstManifestEq Estimated manifest variable
equations

PESTIM or PSHORT

EstVarExog Estimated variances of
exogenous variables

PESTIM or PSHORT

ExogenousVar List of exogenous variables PESTIM or PSHORT

InCovExog Input covariances among
exogenous variables

PESTIM or PSHORT

InLatentEq Input latent variable equations PESTIM or PSHORT

InManifestEq Input manifest variable
equations

PESTIM or PSHORT

InVarExog Input variances of exogenous
variables

PESTIM or PSHORT

StdLatentEq Standardized latent variable
equations

PESTIM or PSHORT

StdManifestEq Standardized manifest variable
equations

PESTIM or PSHORT

ODS Tables Created by the RAM Model

InitRAMEstimates Initial RAM estimates PESTIM or PSHORT

RAMCorrExog Correlations among exogenous
variables

PESTIM or PSHORT

RAMEstimates RAM final estimates PESTIM or PSHORT

RAMStdEstimates Standardized estimates PESTIM or PSHORT

Table 12.38 ODS Table Names Produced by the CANCORR Procedure

Table Name Description Option

MultStat Multivariate statistics

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 681

Table Name Description Option

ODS Tables Created by PROC CANCORR

AvgRSquare Average R-Squares (weighted
and unweighted)

VDEP (or WDEP) or SMC (or
ALL)

CanCorr Canonical correlations

CanStructureVCan Correlations between the VAR
canonical variables and the
VAR and WITH variables

Default (unless SHORT)

CanStructureWCan Correlations between the
WITH canonical variables and
the WITH and VAR variables

Default (unless SHORT)

ConfidenceLimits 95% confidence limits for the
regression coefficients

VDEP (or WDEP) or CLB (or
ALL)

Corr Correlations among the
original variables

CORR (or ALL)

CorrRegCoefEst Correlations among the
regression coefficient estimates

VDEP (or WDEP) or CORRB
(or ALL)

NObsNVar Number of observations and
variables

SIMPLE (or ALL)

ParCorr Partial correlations VDEP (or WDEP) or PCORR
(or ALL)

ProbtRegCoef Prob > |t| for the regression
coefficients

VDEP (or WDEP) or PROBT
(or ALL)

RawCanCoefV Raw canonical coefficients for
the VAR variables

Default (unless SHORT)

RawCanCoefW Raw canonical coefficients for
the WITH variables

Default (unless SHORT)

RawRegCoef Raw regression coefficients VDEP (or WDEP) or B (or ALL)

Redundancy Canonical redundancy analysis REDUNDANCY (or ALL)

Regression Squared multiple correlations
and F tests

VDEP (or WDEP) or SMC (or
ALL)

SemiParCorr Semi-partial correlations VDEP (or WDEP) or SPCORR
(or ALL)

SimpleStatistics Simple statistics SIMPLE (or ALL)

SqMultCorr Canonical redundancy analysis:
squared multiple correlations

REDUNDANCY (or ALL)

SqParCorr Squared partial correlations VDEP (or WDEP) or
SQPCORR (or ALL)

SqSemiParCorr Squared semi-partial
correlations

VDEP (or WDEP) or
SQSPCORR (or ALL)

StdCanCoefV Standardized canonical
coefficients for the VAR
variables

Default (unless SHORT)

682 ODS Output Object Table Names � Chapter 12

Table Name Description Option

StdCanCoefW Standardized canonical
coefficients for the WITH
variables

Default (unless SHORT)

StdErrRawRegCoef Standard errors of the raw
regression coefficients

VDEP (or WDEP) or SEB (or
ALL)

StdRegCoef Standardized regression
coefficients

VDEP (or WDEP) or STB (or
ALL)

tValueRegCoef t values for the regression
coefficients

VDEP (or WDEP) or T (or ALL)

ODS Tables Created by the PARTIAL Statement

CorrOnPartial Partial correlations CORR (or ALL)

RSquareRMSEOnPartial R-Squares and RMSEs on
PARTIAL

CORR (or ALL)

StdRegCoefOnPartial Standardized regression
coefficients on PARTIAL

CORR (or ALL)

Table 12.39 ODS Table Names Produced by the CANDISC Procedure

Table Name Description Option

ANOVA Univariate statistics ANOVA

AveRSquare Average R-Square ANOVA

BCorr Between-class correlations BCORR

BCov Between-class covariances BCOV

BSSCP Between-class SSCP matrix BSSCP

BStruc Between canonical structure

CanCorr Canonical correlations

CanonicalMeans Class means on canonical
variables

Counts Number of observations,
variables, classes, DF

CovDF DF for covariance matrices, not
printed

Any *COV option

Dist Squared distances MAHALANOBIS

DistFValues F statistics based on squared
distances

MAHALANOBIS

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 683

Table Name Description Option

DistProb Probabilities for F statistics
from squared distances

MAHALANOBIS

Levels Class level information

MultStat MANOVA

PCoef Pooled standard canonical
coefficients

PCorr Pooled within-class correlations PCORR

PCov Pooled within-class covariances PCOV

PSSCP Pooled within-class SSCP
matrix

PSSCP

PStdMeans Pooled standardized class
means

STDMEAN

PStruc Pooled within canonical
structure

RCoef Raw canonical coefficients

SimpleStatistics Simple statistics SIMPLE

TCoef Total-sample standard
canonical coefficients

TCorr Total-sample correlations TCORR

TCov Total-sample covariances TCOV

TSSCP Total-sample SSCP matrix TSSCP

TSTDMeans Total standardized class means STDMEAN

TStruc Total canonical structure

WCorr Within-class correlations WCORR

WCov Within-class covariances WCOV

WSSCP Within-class SSCP matrices WSSCP

Table 12.40 ODS Table Names Produced by the CATMOD Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

ANOVA Analysis of variance

ConvergenceStatus Convergence status ML

CorrB Correlation matrix of the
estimates

CORRB

684 ODS Output Object Table Names � Chapter 12

Table Name Description Option

CovB Covariance matrix of the
estimates

COVB

Estimates Analysis of estimates Default, unless NOPARM

MaxLikelihood Maximum likelihood analysis ML

OneWayFreqs One-way frequencies ONEWAY

PopProfiles Population profiles Default, unless NOPROFILE

PredictedFreqs Predicted frequencies PRED=FREQ

PredictedProbs Predicted probabilities PREDICT or PRED=PROB

PredictedValues Predicted values PREDICT or PRED=

ResponseCov Response functions, covariance
matrix

COV

ResponseDesign Response functions, design
matrix

WLS, unless NODESIGN

ResponseFreqs Response frequencies FREQ

ResponseProbs Response probabilities PROB

ResponseProfiles Response profiles Default, unless NOPROFILE

XPX X"*Inv(S)*X matrix XPX, for WLS

ODS Tables Created by the CONTRAST Statement

Contrasts Contrasts

ContrastEstimates Analysis of contrasts ESTIMATE=

ODS Tables Created by the PROC Statement

DataSummary Data summary

ODS Tables Created by the MODEL and LOGLIN Statements

ResponseMatrix _RESPONSE_ matrix Unless NORESPONSE

Table 12.41 ODS Table Names Produced by the CLUSTER Procedure

Table Name Description Option

ODS Tables Created by the PROC Statement

ClusterHistory Observations or clusters joined,
frequencies and other cluster
statistics

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 685

Table Name Description Option

SimpleStatistics Simple statistics, before or
after trimming

SIMPLE

EigenvalueTable Eigenvalues of the CORR or
COV matrix

Table 12.42 ODS Table Names Produced by the CORRESP Procedure

Table Name Description Option

AdjInGreenacre Greenacre inertia adjustment GREENACRE

AdjInBenzecri Benzecri inertia adjustment BENZECRI

Binary Binary table OBSERVED or BINARY

BinaryPct Binary table percents OBSERVED or BINARY

Burt Burt table OBSERVED or MCA

BurtPct Burt table percents OBSERVED or MCA

CellChiSq Contributions to Chi Square CELLCHI2

CellChiSqPct Contributions, percents CELLCHI2

ColBest Col best indicators

ColContr Col contributions to inertia

ColCoors Col coordinates

ColProfiles Col profiles CP

ColProfilesPct Col profiles, percents CP

ColQualMassIn Col quality, mass, inertia

ColSqCos Col squared cosines

DF DF, Chi Square (not displayed)

Deviations Observed — expected
frequencies

DEVIATIONS

DeviationsPct Observed — expected
percentages

DEVIATIONS

Expected Expected frequencies EXPECTED

ExpectedPct Expected percents EXPECTED

Intertias Inertia decomposition table

Observed Observed frequencies OBSERVED

ObservedPct Observed percents OBSERVED

RowBest Row best indicators

RowContr Row contributions to inertia

686 ODS Output Object Table Names � Chapter 12

Table Name Description Option

RowCoors Row coordinates

RowProfiles Row profiles RP

RowProfilesPct Row profiles, percents RP

RowQualMassIn Row quality, mass, inertia

RowSqCos Row squared cosines

SupColCoors Supp col coordinates

SupColProfiles Sup col profiles CP

SupColProfilesPct Sup col profiles, percents CP

SupColQuality Supp col quality

SupCols Supplementary col frequency OBSERVED

SupColsPct Supplementary col percents OBSERVED

SupColSqCos Supplementary col squared
cosines

SupRows Supplementary row frequencies OBSERVED

SupRowCoors Supplementary row coordinates

SupRowProfiles Supplementary row profiles RP

SupRowProfilesPct Supplementary row profiles,
percents

RP

SupRowQuality Supplementary row quality

SupRowsPct Supplementary row percents OBSERVED

SupRowSqCos Supplementary row square
cosines

Table 12.43 ODS Table Names Produced by the DISCRIM Procedure

Table Name Description Option

ANOVA Univariate statistics ANOVA

AvePostCrossVal Average posterior probabilities,
cross validation

POSTERR and
CROSSVALIDATE

AvePostResub Average posterior probabilities,
resubstitution

POSTERR

AvePostTestClass Average posterior probabilities,
test classification

POSTERR and TEST=

AveRSquare Average R-Square ANOVA

BCorr Between-class correlations BCORR

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 687

Table Name Description Option

BCov Between-class covariances BCOV

BSSCP Between-class SSCP matrix BSSCP

BStruc Between canonical structure CANONICAL

CanCorr Canonical correlations CANONICAL

CanonicalMeans Class means on canonical
variables

CANONICAL

ChiSq Chi-Square information POOL=TEST

ClassifiedCrossVal Number of observations and
percent classified, cross
validation

CROSSVALIDATE

ClassifiedResub Number of observations and
percent classified,
resubstitution

ClassifiedTestClass Number of observations and
percent classified, test
classification

TEST=

Counts Number of observations,
variables, classes, DF

CovDF DF for covariance matrices, not
displayed

Any *COV option

Dist Squared distances MAHALONOBIS

DistFValues F values based on squared
distances

MAHALONOBIS

DistGeneralized Generalized squared distances

DistProb Probabilities for F values from
squared distances

MAHALONOBIS

ErrorCrossVal Error count estimates, cross
validation

CROSSVALIDATE

ErrorResub Error count estimates,
resubstitution

ErrorTestClass Error count estimates, test
classification

TEST=

Levels Class level information

LinearDiscFunc Linear discriminant function POOL=YES

LogDet Log determinant of the
covariance matrix

MultStat MANOVA MANOVA

PCoef Pooled standard canonical
coefficients

CANONICAL

PCorr Pooled within-class correlations PCORR

PCov Pooled within-class covariances PCOV

688 ODS Output Object Table Names � Chapter 12

Table Name Description Option

PSSCP Pooled within-class SSCP
matrix

PSSCP

PStdMeans Pooled standardized class
means

STDMEAN

PStruc Pooled within canonical
structure

CANONICAL

PostCrossVal Posterior probabilities, cross
validation

CROSSLIST or
CROSSLISTERR

PostErrCrossVal Posterior error estimates, cross
validation

POSTERR and
CROSSVALIDATE

PostErrResub Posterior error estimates,
resubstitution

POSTERR

PostErrTestClass Posterior error estimates, test
classification

POSTERR and TEST=

PostResub Posterior probabilities,
resubstitution

LIST or LISTERR

PostTestClass Posterior probabilities, test
classification

TESTLIST or TESTLISTERR

RCoef Raw canonical coefficients CANONICAL

SimpleStatistics Simple statistics SIMPLE

TCoef Total-sample standard
canonical coefficients

CANONICAL

TCorr Total-sample correlations TCORR

TCov Total-sample covariances TCOV

TSSCP Total-sample SSCP matrix TSSCP

TStdMeans Total standardized class means STDMEAN

TStruc Total canonical structure CANONICAL

WCorr Within-class correlations WCORR

WCov Within-class covariances WCOV

WSSCP Within-class SSCP matrices WSSCP

Table 12.44 ODS Table Names Produced by the FACTOR Procedure

Table Name Description Option

AlphaCoef Coefficient alpha for each factor METHOD=ALPHA

CanCorr Squared canonical correlations METHOD=ML

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 689

Table Name Description Option

CondStdDev Conditional standard
deviations

SIMPLE w/PARTIAL

ConvergenceStatus Convergence status METHOD=PRINIT, =ALPHA,
=ML, or =ULS

Corr Correlations CORR

Eigenvalues Eigenvalues Default or SCREE

Eigenvectors Eigenvectors EIGENVECTORS

FactorWeightRotate Factor weights for rotation HKPOWER=

FactorPattern Factor pattern

FactorStructure Factor structure ROTATE= any oblique rotation

FinalCommun Final communalities Default

FinalCommunWgt Final communalities with
weights

METHOD=ML or
METHOD=ALPHA

FitMeasures Measures of fit METHOD=ML

ImageCoef Image coefficients METHOD=IMAGE

ImageCov Image covariance matrix METHOD=IMAGE

ImageFactors Image factor matrix METHOD=IMAGE

InputFactorPattern Input factor pattern METHOD=PATTERN with
PRINT or ALL

InputScoreCoef Standardized input scoring
coefficients

METHOD=SCORE with
PRINT or ALL

InterFactorCorr Inter-factor correlations ROTATE=any oblique rotation

InvCorr Inverse correlation matrix ALL

IterHistory Iteration history METHOD=PRINIT, =ALPHA,
=ML, or =ULS

MultipleCorr Squared multiple correlations METHOD=IMAGE or
METHOD=HARRIS

NormObliqueTrans Normalized oblique
transformation matrix

ROTATE=any oblique rotation

ObliqueRotFactPat Rotated factor pattern ROTATE=any oblique rotation

ObliqueTrans Oblique transformation matrix HKPOWER=

OrthRotFactPat Rotated factor pattern ROTATE=any orthogonal
rotation

OrthTrans Orthogonal transformational
matrix

ROTATE=any orthogonal
rotation

ParCorrControlFactor Partial correlations controlling
factors

RESIDUAL

ParCorrControlVar Partial correlations controlling
other variables

MSA

PartialCorr Partial correlations MSA or CORR w/PARTIAL

690 ODS Output Object Table Names � Chapter 12

Table Name Description Option

PriorCommunalEst Prior communality estimates PRIORS=, METHOD=ML, or
METHOD=ALPHA

ProcrustesTarget Target matrix for Procrustean
transformation

ROTATE=PROCRUSTES or
ROTATE=PROMAX

ProcrustesTrans Procrustean transformation
matrix

ROTATE=PROCRUSTES or
ROTATE=PROMAX

RMSOffDiagPartials Root mean square off-diagonal
partials

RESIDUAL

RMSOffDiagResids Root mean square off-diagonal
residuals

RESIDUAL

ReferenceAxisCorr Reference axis correlations ROTATE=any oblique rotation

ReferenceStructure Reference structure ROTATE=any oblique rotation

ResCorrUniqueDiag Residual correlations with
uniqueness on the diagonal

RESIDUAL

SamplingAdequacy Kaiser’s measure of sampling
adequacy

MSA

SignifTests Significance tests METHOD=ML

SimpleStatistics Simple statistics SIMPLE

StdScoreCoef Standardized scoring
coefficients

SCORE

VarExplain Variance explained

VarExplainWgt Variance explained with
weights

METHOD=ML or
METHOD=ALPHA

VarFactorCorr Squared multiple correlations
of the variables with each
factor

SCORE

VarWeightRotate Variable weights for rotation NORM=WEIGHT or ROTATE=

Table 12.45 ODS Table Names Produced by the FASTCLUS Procedure

Table Name Description Option

ODS Tables Created by the PROC Statement

ApproxExpOverAllRSq Approximate expected overall
R-Squared, single number

CCC Cubic clustering criterion,
single number

ClusterList Cluster listing, obs, ID, and
distances

LIST

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 691

Table Name Description Option

ClusterSum Cluster summary, cluster
number, distances

PRINTALL

ClusterCenters Cluster centers

ClusterDispersion Cluster dispersion

ConvergenceStatus Convergence status PRINTALL

Criterion Criterion based on final seeds,
single number

DistBetweenClust Distance between clusters

InitialSeeds Initial seeds

IterHistory Iteration history, various
statistics for each iteration

PRINTALL

MinDist Minimum distance between
initial seeds, single number

PRINTALL

NumberOfBins Number of bins

ObsOverAllRSquare Observed overall R-Squared.
single number

SUMMARY

PrelScaleEst Preliminary L(1) scale
estimate, single number

PRINTALL

PseudoFStat Pseudo F statistic, single
number

SimpleStatistics Simple statistics for input
variables

VariableStat Statistics for variables within
clusters

Table 12.46 ODS Table Names Produced by the GAM Procedure

Table Name Description Option

ODS Tables Created by the PROC Statement

ANODEV Analysis of deviance table for
smoothing variables

ClassSummary Summary of class variables

InputSummary Data summary

IterSummary Iteration summary

FitSummary Fit parameters and fit
summary

692 ODS Output Object Table Names � Chapter 12

Table Name Description Option

ParameterEstimates Parameter estimation for
regression variables

ODS Tables Created by the MODEL Statement

Iteration Iteration history table ITPRINT

Table 12.47 ODS Table Names Produced by the GENMOD Procedure

Table Name Description Option

ODS Tables Created by the CLASS Statement

ClassLevels Class variable levels

ODS Tables Created by the CONTRAST Statement

Contrasts Tests of contrasts

ContrastCoef Contrast coefficients E

LinDep Linearly dependent rows of
contrasts

NonEst Nonestimable rows of contrasts

ODS Tables Created by the MODEL Statement

ConvergenceStatus Convergence status

CorrB Parameter estimate correlation
matrix

CORRB

CovB Parameter estimate covariance
matrix

COVB

IterLRCI Iteration history for likelihood
ratio confidence intervals

LRCI ITPRINT

IterParms Iteration history for parameter
estimates

ITPRINT

IterType3 Iteration history for Type 3
statistics

TYPE3 ITPRINT

LRCI Likelihood ratio confidence
intervals

LRCI ITPRINT

LagrangeStatistics Lagrange statistics NOINT or NOSCALE

LastGradHess Last evaluation of the gradient
and Hessian

ITPRINT

ModelInfo Model information

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 693

Table Name Description Option

Modelfit Goodness-of-fit statistics

ObStats Observation-wise statistics OBSTATS, CL, PREDICTED,
RESIDUALS, or XVARS

ParameterEstimates Parameter estimates

ParmInfo Parameter indices

ResponseProfiles Frequency counts for
multinomial models

DIST=MULTINOMIAL

Type1 Type 1 tests TYPE1

Type3 Type 3 tests TYPE3

ODS Tables Created by the ESTIMATE Statement

Estimates Estimates of contrasts

EstimateCoef Contrast coefficients E

ODS Tables Created by the REPEATED Statement

GEEEmpPEst GEE parameter estimates with
empirical standard errors

GEELogORInfo GEE log odds ratio model
information

LOGOR=

GEEModInfo GEE model information

GEEModPEst GEE parameter estimates with
model-based standard errors

MODELSE

GEENCorr GEE model-based correlation
matrix

MCORRB

GEENCov GEE model-based covariance
matrix

MCOVB

GEERCorr GEE empirical correlation
matrix

ECORRB

GEERCov Gee empirical covariance
matrix

ECOVB

GEEWCorr GEE working correlation
matrix

CORRW

ODS Tables Created by the MODEL CONTRAST Statement

IterContrasts Iteration history for contrasts ITPRINT

ODS Tables Created by the MODEL REPEATED Statement

IterParmsGEE Iteration history for GEE
parameter estimates

ITPRINT

694 ODS Output Object Table Names � Chapter 12

Table Name Description Option

LastGEEGrad Last evaluation of the
generalized gradient and
Hessian

ITPRINT

ODS Tables Created by the LSMEANS Statement

LSMeanCoef Coefficients for least squares
means

E

LSMeanDiffs Least squares means
differences

DIFF

LSMeans Least squares means

Table 12.48 ODS Table Names Produced by the GLM Procedure

Table Name Description Option

DependentInfo Simultaneously analyzed
dependent variables

Default when there are
multiple dependent variables
with different patterns of
missing values

FitStatistics R-Square, C.V., root MSE, and
dependent mean

MatrixRepresentation X matrix element
representation

As needed for other options

ModelANOVA ANOVA for model terms

NObs Number of observations

OverallANOVA Overall ANOVA

ODS Tables Created by the CLASS Statement

ClassLevels Classification variable levels

ODS Tables Created by the CONTRAST Statement

AltErrContrasts ANOVA table for contrasts
with alternative error

E=

ContrastCoef L matrix for contrast EST

Contrasts ANOVA table for contrasts

ODS Tables Created by the ESTIMATE Statement

Estimates Estimate statement result

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 695

Table Name Description Option

ODS Tables Created by the LSMEANS Statement

Diff PDiff matrix of least-squares
means

PDIFF

LSMeanCL Confidence interval for
LS-means

CL

LSMeanCoef Coefficients of least-squares
means

E

LSMeanDiffCL Confidence interval for
LS-mean differences

PDIFF and CL

LSMeans Least-squares means

SimDetails Details of difference quantile
simulation

ADJUST=SIMULATE(REPORT)

SimResults Evaluation of difference
quantile simulation

ADJUST=SIMULATE(REPORT)

SlicedANOVA Sliced effect ANOVA table SLICE

ODS Tables Created by the MEANS Statement

Bartlett Bartlett’s homogeneity of
variance test

HOVTEST=BARTLETT

CLDiffs Multiple comparisons of
pairwise differences

CLDIFF, DUNNETT, or
(Unequal cells and not LINES)

CLDiffsInfo Information for multiple
comparisons of pairwise
differences

CLDIFF, DUNNETT, or
(Unequal cells and not LINES)

CLMeans Multiple comparisons of means
with confidence/comparison
interval

CLM

CLMeansInfo Information for multiple
comparison of means with
confidence/comparison interval

CLM

HOVFTest Homogeneity of variance
ANOVA

HOVTEST

MCLines Multiple comparisons LINES
output

LINES, ((DUNCAN, WALLER,
SNK, or REGWQ) and not
(CLDIFF or CLM)), or (Equal
cells and not CLDIFF)

MCLinesInfo Information for multiple
comparison LINES output

LINES, ((DUNCAN, WALLER,
SNK, or REGWQ) and not
(CLDIFF or CLM)), or (Equal
cells and not CLDIFF)

696 ODS Output Object Table Names � Chapter 12

Table Name Description Option

MCLinesRange Ranges for multiple range MC
tests

LINES, ((DUNCAN, WALLER,
SNK, or REGWQ) and not
(CLDIFF or CLM)), or (Equal
cells and not CLDIFF)

Means Group means

Welch Welch’s ANOVA WELCH

ODS Tables Created by the MODEL Statement

Aliasing Type 1, 2, 3, 4 aliasing
structure

(E1, E2, E3, or E4) and
ALIASING

EstFunc Type 1, 2, 3, 4 estimable
functions

E1, E2, E3, or E4

GAliasing General form of aliasing
structure

E and ALIASING

GEstFunc General form of estimable
functions

E

InvXPX Inv(X"X) matrix INVERSE

ParameterEstimates Estimated linear model
coefficients

SOLUTION

PredictedInfo Predicted values info PREDICTED, CLM, or CLI

PredictedValues Predicted values PREDICTED, CLM, or CLI

Tolerances X"X tolerances TOLERANCE

XPX X"X matrix XPX

ODS Tables Created by the MANOVA or REPEATED Statements

CanAnalysis Canonical analysis CANONICAL

CanCoef Canonical coefficients CANONICAL

CanStructure Canonical structure CANONICAL

ErrorSSCP Error SSCP matrix PRINTE

HypothesisSSCP Hypothesis SSCP matrix PRINTH

PartialCorr Partial correlation matrix PRINTE

ODS Tables Created by the MANOVA Statement

CharStruct Characteristic roots and vectors Not CANONICAL

MANOVATransform Multivariate transformation
matrix

M=

MultStat Multivariate tests

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 697

Table Name Description Option

Tests Summary ANOVA for specified
MANOVA H= effects

H=SUMMARY

ODS Tables Created by the RANDOM Statement

ExpectedMeanSquares Expected mean squares

QForm Quadratic form for expected
mean squares

Q

RandomModelANOVA Random effect tests TEST

ODS Tables Created by the REPEATED Statement

CharStruct Characteristic roots and vectors PRINTRV

Epsilons Greenhouse-Geisser and
Huynh-Feldt epsilons

RepeatedLevelInfo Correspondence between
dependents and repeated
measures levels

RepeatedTransform Repeated measures
transformation matrix

PRINTM

Sphericity Sphericity tests PRINTE

ODS Tables Created by the TEST Statement

AltErrTests ANOVA table for tests with
alternative error

E=

Table 12.49 ODS Table Names Produced by the GLMMOD Procedure

Table Name Description Option

DependentInfo Simultaneously analyzed
dependent variables

Default when there are
multiple dependent variables

DesignPoints Design matrix

NObs Number of observations

Parameters Parameters and associated
column numbers

ODS Tables Created by the CLASS Statement

ClassLevels Table of class levels

698 ODS Output Object Table Names � Chapter 12

Table 12.50 ODS Table Names Produced by the GLMPOWER Procedure

Table Name Description Option

FixedElements Factoid with single-valued
analysis parameters

Default

Output All input and computed
analysis parameters, error
messages, and information
messages for each scenario

Default

PlotContent Data contained in plots,
including analysis parameters
and indices identifying plot
features. (Note: This table is
saved as a dataset and not
displayed in PROC
GLMPOWER output.)

PLOT

Table 12.51 ODS Table Names Produced by the INBREED Procedure

Table Name Description Option

ODS Tables Created by the GENDER Statement

AvgCovCoef Averages of covariance
coefficient matrix

COVAR and AVERAGE

AvgInbreedingCoef Averages of inbreeding
coefficient matrix

AVERAGE

ODS Tables Created by the MATINGS Statement

MatingCovCoef Covariance coefficients of
matings

COVAR

MatingInbreedingCoef Inbreeding coefficients of
matings

ODS Tables Created by the PROC Statement

CovarianceCoefficient Covariance coefficient table COVAR

InbreedingCoefficient Inbreeding coefficient table

IndividualCovCoef Inbreeding coefficients of
individuals

IND and COVAR

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 699

Table Name Description Option

IndividualInbreedingCoef Inbreeding coefficients of
individuals

IND

NumberOfObservations Number of observations

Table 12.52 ODS Table Names Produced by the KDE Procedure

Table Name Description

BivariateStatistics Bivariate statistics

Controls Control variables

Inputs Input information

Levels Levels of density estimate

Percentiles Percentiles of data

Statistics Basic statistics

Table 12.53 ODS Table Names Produced by the LATTICE Procedure

Table Name Description

ANOVA Analysis of variance

AdjTreatmentMeans Adjusted treatment means

Statistics Additional statistics

Table 12.54 ODS Table Names Produced by the LIFEREG Procedure

Table Name Description Option

ODS Tables Created by the CLASS Statement

ClassLevels Class variable levels

ODS Tables Created by the MODEL Statement

ConvergenceStatus Convergence status

700 ODS Output Object Table Names � Chapter 12

Table Name Description Option

CorrB Parameter estimate correlation
matrix

CORRB

CovB Parameter estimate covariance
matrix

COVB

IterHistory Iteration history ITPRINT

LagrangeStatistics Lagrange statistics NOINT or NOSCALE

LastGrad Last evaluation of the gradient ITPRINT

LastHess Last evaluation of the Hessian ITPRINT

ModelInfo Model information

ParameterEstimates Parameter estimates

ParmInfo Parameter indices

Type3Analysis Type 3 tests

ODS Tables Created by the PROBPLOT Statement

EMIterHistory Iteration history for Turnbull
algorithm

ITPRINTEM

ProbEstimates Nonparametric CDF estimates PPOUT

Turnbull Probability estimates from
Turnbull algorithm

ITPRINTEM

Table 12.55 ODS Table Names Produced by the LIFETEST Procedure

Table Name Description Option

ODS Tables Created by the PROC Statement

CensorPlot Line-printer plot of censored
observations

PLOT=(C, S, LS or LLS),
METHOD=PL, and
LINEPRINTER

CensoredSummary Number of event and censored
observations

METHOD=PL

DensityPlot Plot of the density PLOT=(D) and METHOD=LT

HazardPlot Plot of the hazards function PLOT=(H) and METHOD=LT

LifetableEstimates Lifetable survival estimates METHOD=LT

LogLogSurvivalPlot Plot of the log of the negative
log survivor function

PLOT=(LLS)

LogSurvivalPlot Plot of the log survivor function PLOT=(LS)

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 701

Table Name Description Option

Means Mean and standard error of
survival times

METHOD=PL

ProductLimitEstimates Product-limit survival
estimates

METHOD=PL

Quartiles Quartiles of the survival
distribution

METHOD=PL

SurvivalPlot Plot of the survivor function PLOT=(S)

ODS Tables Created by the STRATA Statement

HomStats Rank statistics for testing
strata homogeneity

HomTests Tests for strata homogeneity

LogHomCov Covariance matrix for the
log-rank statistics for strata
homogeneity

WilHomCov Covariance matrix for the
Wilcoxon statistics for strata
homogeneity

ODS Tables Created by the TEST Statement

LogForStepSeq Forward stepwise sequence for
the log-rank statistics for
association

LogTestCov Covariance matrix for log-rank
statistics for association

LogUniChisq Univariate Chi-Squares for
log-rank statistic for
association

WilForStepSeq Forward stepwise sequence for
the log-rank statistics for
association

WilTestCov Covariance matrix for log-rank
statistics for association

WilUniChiSq Univariate Chi-Squares for
Wilcoxon statistic for
association

702 ODS Output Object Table Names � Chapter 12

Table 12.56 ODS Table Names Produced by the LOESS Procedure

Table Name Description Option

FitSummary Specified fit parameters and fit
summary

ScaleDetails Extent and scaling of the
independent variables

ODS Tables Created by the MODEL Statement

kdTree Structure of kd tree used DETAILS(kdTree)

ModelSummary Summary of all models
evaluated

DETAILS(ModelSummary)

OutputStatistics Coordinates and fit results at
input data points

DETAILS(OutputStatistics)

PredAtVertices Coordinates and fitted values
at kd tree vertices

DETAILS(PredAtVertices)

SmoothingCriterion Criterion value and selected
smoothing parameter

SELECT

ODS Tables Created by the SCORE Statement

ScoreResults Coordinates and fit results at
scoring points

PRINT

Table 12.57 ODS Table Names Produced by the LOGISTIC Procedure

Table Name Description Option

ODS Tables Created by the CONTRAST Statement

ContrastCoeff L matrix from CONTRAST E

ContrastEstimate Estimates from CONTRAST ESTIMATE=

ContrastTest Wald test for CONTRAST

ODS Tables Created by the EXACT Statement

ExactOddsRatio Exact odds ratio ESTIMATE=ODDS or
ESTIMATE=BOTH

ExactParmEst Parameter estimates ESTIMATE,
ESTIMATE=PARM, or
ESTIMATE=BOTH

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 703

Table Name Description Option

ExactTests Conditional exact tests

SuffStats Sufficient statistics OUTDIST=

ODS Tables Created by the MODEL Statement

Association Association of predicted
probabilities and observed
responses

Default

BestSubsets Best subset selection SELECTION=SCORE

ClassLevelInfo CLASS variable levels and
design variables

Default (with CLASS variables)

Classification Classification table CTABLE

CLOddsPL Profile likelihood confidence
limits for odds ratios

CLODDS=PL

CLOddsWald Wald’s confidence limits for
odds ratios

CLODDS=WALD

CLParmPL Profile likelihood confidence
limits for parameters

CLPARM=PL

CLParmWald Wald’s confidence limits for
parameters

CLPARM=WALD

ConvergenceStatus Convergence status Default

CorrB Estimated correlation matrix of
parameter estimators

CORRB

CovB Estimated covariance matrix of
parameter estimators

COVB

CumulativeModelTest Test of the cumulative model
assumption

(Ordinal response)

EffectNotInModel Test for effects not in model SELECTION=S or F

FastElimination Fast backward elimination SELECTION=B, FAST

FitStatistics Model fit statistics Default

GlobalScore Global score test NOFIT

GlobalTests Test for global null hypothesis Default

GoodnessOfFit Pearson and deviance
goodness-of-fit tests

SCALE

IndexPlots Batch capture of the index plots IPLOTS

Influence Regression diagnostics INFLUENCE

IterHistory Iteration history ITPRINT

LackFitChiSq Hosmer-Lemeshow Chi-Square
test results

LACKFIT

LackFItPartition Partition for the
Hosmer-Lemeshow test

LACKFIT

704 ODS Output Object Table Names � Chapter 12

Table Name Description Option

LastGradient Last evaluation of gradient ITPRINT

LogLikeChange Final change in the log
likelihood

ITPRINT

ModelBuildingSummary Summary of model building SELECTION=B, F, or S

OddsRatios Odds ratios Default

ParameterEstimates Maximum likelihood estimates
of model parameters

Default

RSquare R-Square RSQUARE

ResidualChiSq Residual Chi-Square SELECTION=F or B

Type3 Type 3 tests of effects Default (with CLASS variables)

ODS Tables Created by the ODSRATIOS Statement

OddsRatiosWald Odds ratios with Wald
confidence limits

CL=WALD

OddsRatiosPL Odds ratios with PL confidence
limits

CL=PL

ODS Tables Created by the PROC Statement

ClassFreq Frequency breakdown of
CLASS variables

SIMPLE

ClassWgt Weight breakdown of CLASS
variables

SIMPLE

ModelInfo Model information Default

ResponseProfile Response profile Default

SimpleStatistics Summary statistics for
explanatory variables

SIMPLE

ODS Tables Created by the STRATA Statement

StrataSummary Number of strata with specific
response frequencies

Default

StrataInfo Event and non-event
frequencies for each stratum

INFO

ODS Tables Created by the TEST Statement

TestPrint1 L[cov(b)]L" and Lb-c PRINT

TestPrint2 Ginv(L[cov(b)]L") and
Ginv(L[cov(b)]L")(Lb-c)

PRINT

TestStmts Linear hypothesis testing
results

Default

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 705

Table Name Description Option

ODS Tables Created by the WEIGHT Statement

ClassWgt Weight breakdown of CLASS
variables

SIMPLE

Table 12.58 ODS Table Names Produced by the MDS Procedure

Table Name Description Option

ConvergenceStatus Convergence status

DimensionCoef Dimension coefficients PCOEF w/COEF= not
IDENTITY

FitMeasures Measures of fit PFIT

IterHistory Iteration history

PConfig Estimated coordinates of the
objects in the configuration

PCONFIG

PData Data matrices PDATA

PInAvData Initial sum of weights and
weighted average of data
matrices with INAV=DATA

PINAVDATA

PInEigval Initial eigenvalues PINEIGVAL

PInEigvec Initial eigenvectors PINEIGVEC

PInWeight Initialization weights PINWEIGHT

Transformations Transformation parameters PTRANS w/LEVEL=RATIO,
INTERVAL, or LOGINTERVAL

Table 12.59 ODS Table Names Produced by the MI Procedure

Table Name Description Option

Corr Pairwise correlations SIMPLE

MissPattern Missing data patterns

ModelInfo Model information

ParameterEstimates Parameter estimates

Univariate Univariate statistics SIMPLE

706 ODS Output Object Table Names � Chapter 12

Table Name Description Option

VarianceInfo Between, within, and total
variances

ODS Tables Created by the EM Statement

EMEstimates EM (MLE) estimates

EMInitEstimates EM initial estimates

EMIterHistory EM (MLE) iteration history ITPRINT

ODS Tables Created by the MCMC Statement

EMPostEstimates EM (posterior mode) estimates INITIAL=EM

EMPostIterHistory EM (posterior mode) iteration
history

INITIAL=EM (ITPRINT)

EMWLF Worst linear function WLF

MCMCInitEstimates MCMC initial estimates DISPLAYINIT

ODS Tables Created by the MONOTONE Statement

MonoDiscrim Discriminant model group
means

DISCRIM (/DETAILS)

MonoLogistic Logistic model LOGISTIC (/DETAILS)

MonoModel Multiple monotone models

MonoPropensity Propensity score model logistic
function

PROPENSITY (/DETAILS)

MonoReg Regression model REG (/DETAILS)

MonoRegPPM Predicted mean matching
model

REGPMM (/DETAILS)

ODS Tables Created by the TRANSFORM Statement

Transform Variable transformations

Table 12.60 ODS Table Names Produced by the MIANALYZE Procedure

Table Name Description Option

BCov Between-imputation covariance
matrix

BCOV

ModelInfo Model information

MultStat Multivariate inference MULT

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 707

Table Name Description Option

ParameterEstimates Parameter estimates

TCov Total covariance matrix TCOV

VarianceInfo Variance information

WCov Within-imputation covariance
matrix

WCOV

ODS Tables Created by the TEST Statement

TestBCov Between-imputation covariance
matrix for L�

BCOV

TestMultStat Multivariate inference for L� MULT

TestParameterEstimates Parameter estimates for L�

TestSpec Test specification, L and c

TestTCov Total covariance matrix for L� TCOV

TestVarianceInfo Variance information for L�

TestWCov Within—imputation covariance
matrix for L�

WCOV

Table 12.61 ODS Table Names Produced by the MIXED Procedure

Table Name Description Option

AccRates Acceptance rates for posterior
sampling

PRIOR

AsyCorr Asymptotic correlation matrix
of covariance parameters

PROC MIXED ASYCORR

AsyCov Asymptotic covariance matrix
of covariance parameters

PROC MIXED ASYCOV

Base Base densities used for
posterior sampling

PRIOR

Bound Computed bound for posterior
rejection sampling

PRIOR

CholG Cholesky root of the estimated
G matrix

RANDOM / GC

CholR Cholesky root of blocks of the
estimated R matrix

REPEATED / RC

CholV Cholesky root of blocks of the
estimated V matrix

RANDOM / VC

708 ODS Output Object Table Names � Chapter 12

Table Name Description Option

ClassLevels Level information from the
CLASS statement

Default output

Coef L matrix coefficients E option on MODEL,
CONTRAST, ESTIMATE, or
LSMEANS

Contrasts Results from the CONTRAST
statements

CONTRAST

ConvergenceStatus Convergence status Default

CorrB Approximate correlation
matrix of fixed-effects
parameter estimates

MODEL / CORRB

CovB Approximate covariance matrix
of fixed-effects parameter
estimates

MODEL / COVB

CovParms Estimated covariance
parameters

Default output

Diffs Differences of LS-means LSMEANS / DIFF (or PDIFF)

Dimensions Dimensions of the model Default output

Estimates Results from ESTIMATE
statements

ESTIMATE

FitStatistics Fit statistics Default

G Estimated G matrix RANDOM / G

GCorr Correlation matrix from the
estimated G matrix

RANDOM / GCORR

HLM1 Type 1
Hotelling-Lawley-McKeon tests
of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLM TYPE=UN

HLM2 Type 2
Hotelling-Lawley-McKeon tests
of fixed effects

MODEL / HTYPE=2 and
REPEATED / HLM TYPE=UN

HLM3 Type 3
Hotelling-Lawley-McKeon tests
of fixed effects

REPEATED / HLM TYPE=UN

HLPS1 Type 1 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS2 Type 2 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS3 Type 3 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

REPEATED / HLPS TYPE=UN

Influence Influence diagnostics MODEL / INFLUENCE

InfoCrit Information criteria PROC MIXED IC

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 709

Table Name Description Option

InvCholG Inverse Cholesky root of the
estimated G matrix

RANDOM / GCI

InvCholR Inverse Cholesky root of blocks
of the estimated R matrix

REPEATED / RCI

InvCholV Inverse Cholesky root of blocks
of the estimated V matrix

RANDOM / VCI

InvCovB Inverse of approximate
covariance matrix of
fixed-effects parameter
estimates

MODEL / COVBI

InvG Inverse of the estimated G
matrix

RANDOM / GI

InvR Inverse of blocks of the
estimated R matrix

REPEATED / RI

InvV Inverse of blocks of the
estimated V matrix

RANDOM / VI

IterHistory Iteration history Default output

LComponents single degree of freedom
estimates corresponding to
rows of the L matrix for fixed
effects

MODEL / LCOMPONENTS

LRT Likelihood ratio test Default output

LSMeans LS-means LSMEANS

MMEq Mixed model equations PROC MIXED MMEQ

MMEqSol Mixed model equations solution PROC MIXED MMEQSOL

ModelInfo Model information Default output

NObs Number of observations read
and used

Default output

ParmSearch Parameter search values PARMS

Posterior Posterior sampling information PRIOR

R Blocks of the estimated R
matrix

REPEATED / R

RCorr Correlation matrix from blocks
of the estimated R matrix

REPEATED / RCORR

Search Posterior density search table PRIOR / PSEARCH

Slices Tests of LS-means slices LSMEANS / SLICE=

SolutionF Fixed effects solution vector MODEL / S

SolutionR Random effects solution vector RANDOM / S

Tests1 Type 1 tests of fixed effects MODEL / HTYPE=1

Tests2 Type 1 tests of fixed effects MODEL / HTYPE=2

Tests3 Type 1 tests of fixed effects Default output

710 ODS Output Object Table Names � Chapter 12

Table Name Description Option

Type1 Type 1 analysis of variance PROC MIXED
METHOD=TYPE1

Type2 Type 2 analysis of variance PROC MIXED
METHOD=TYPE2

Type3 Type 3 analysis of variance PROC MIXED
METHOD=TYPE3

Trans Transformation of covariance
parameters

PRIOR / PTRANS

V Blocks of the estimated V
matrix

RANDOM / V

VCorr Correlation matrix from blocks
of the estimated V matrix

RANDOM / VCORR

Table 12.62 ODS Table Names Produced by the MODECLUS Procedure

Table Name Description Option

ODS Tables Created by the PROC Statement

BoundaryFreq Boundary objects information BOUNDARY (or ALL)

ClusterList Cluster listing, cluster ID,
frequency, density, etc.

LIST (or ALL)

ClusterStats Cluster statistics

ClusterStats Cluster statistics, significance
test statistics

TEST or JOIN (or ALL)

ClusterSummary Cluster summary

ClusterSummary Cluster summary,
crossvalidation criterion

CROSS or CROSSLIST (or
ALL)

ClusterSummary Cluster summary, clusters
joined information

JOIN (or ALL)

CrossList Cross-validated log density CROSSLIST

ListLocal Local dimensionality estimates LOCAL

Neighbor Nearest neighbor list NEIGHBOR (or ALL)

SimpleStatistics Simple statistics SIMPLE (or ALL)

Trace Trace of clustering algorithm
(METHOD=6 only)

TRACE (or ALL) with
METHOD=6

UnassignObjects Information on unassigned
objects

LIST (or ALL)

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 711

Table 12.63 ODS Table Names Produced by the MULTTEST Procedure

Table Name Description Option

Continuous Continuous variable
tabulations

TEST with MEAN

Contrasts Contrast coefficients

Discrete Discrete variable tabulations TEST with CA, FT, PETO, or
FISHER

ModelInfo Model information

pValues p-values from the tests

Table 12.64 ODS Table Names Produced by the NESTED Procedure

Table Name Description

ANCOVA Analysis of covariance

ANOVA Analysis of variance

EMSCoef Coefficients of expected mean squares

Statistics Overall statistics for fit

Table 12.65 ODS Table Names Produced by the NLIN Procedure

Table Name Description

ANOVA Analysis of variance

ConvergenceStatus Convergence status

CorrB Correlation of the parameters

EstSummary Summary of the estimation

IterHistory Iteration output

MissingValues Missing values generated by the program

ParameterEstimates Parameter estimates

ODS Tables Created by the LIST Statement

ProgList List of the compiled program

712 ODS Output Object Table Names � Chapter 12

Table Name Description

ODS Tables Created by the LISTCODE Statement

CodeList List of program statements

ODS Tables Created by the LISTDEP Statement

CodeDependency Variable cross reference

ODS Tables Created by the LISTDER Statement

FirstDerivatives First derivative table

Table 12.66 ODS Table Names Produced by the NLMIXED Procedure

Table Name Description Option

AdditionalEstimates Results from ESTIMATE
statements

ESTIMATE

ConvergenceStatus Convergence status

CorrMatAddEst Correlation matrix of
additional estimates

ECORR

CorrMatParmEst Correlation matrix of
parameter estimates

CORR

CovMatAddEst Covariance matrix of
additional estimates

ECOV

CovMatParmEst Covariance matrix of
parameter estimates

COV

DerAddEst Derivatives of additional
estimates

EDER

Dimensions Dimensions of the problem

FitStatistics Fit statistics

Hessian Second derivative matrix HESS

IterHistory Iteration history

Parameters Parameters

ParameterEstimates Parameter estimates

Specifications Model specifications

StartingHessian Starting hessian matrix START HESS

StartingValues Starting values and gradient START

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 713

Table 12.67 ODS Table Names Produced by the NPAR1WAY Procedure

Table Name Description Option

ODS Tables Created by the EXACT Statement

ABMC Monte Carlo estimates for the
Ansari-Bradley exact test

AB or MC

DataScoresMC Monte Carlo estimates for the
exact test based on data scores

SCORES=DATA or MC

KlotzMC Monte Carlo estimates for the
Klotz exact test

KLOTZ or MC

KolSmirExactTest Kolmogorov-Smirnov exact test KS

KruskalWallisMC Monte Carlo estimates for the
Kruskal-Wallis exact test

WILCOXON or MC

KSMC Monte Carlo estimates for the
Kolmogorov-Smirnov exact test

KS or MC

MedianMC Monte Carlo estimates for the
median exact test

MEDIAN or MC

MoodMC Monte Carlo estimates for the
Mood exact test

MOOD or MC

SavageMC Monte Carlo estimates for the
Savage exact test

SAVAGE or MC

STMC Monte Carlo estimates for the
Siegel-Tukey one-way analysis

ST or MC

VWMC Monte Carlo estimates for the
Van der Waerden exact test

VW or MC

WilcoxonMC Monte Carlo estimates for the
Wilcoxon two-sample exact test

WILCOXON or MC

ODS Tables Created by the PROC Statement

ANOVA Analysis of variance ANOVA

ABAnalysis Ansari-Bradley one-way
analysis

AB

ABScores Ansari-Bradley scores AB

ABTest Ansari-Bradley two-sample test AB

ClassMeans Class means ANOVA

CVMStats Cramer-von Mises statistics EDF

CVMTest Cramer-von Mises test EDF

DataScores Data scores SCORES=DATA

DataScoresAnalysis Data scores one-way analysis SCORES=DATA

DataScoresTest Data scores two-sample test SCORES=DATA

714 ODS Output Object Table Names � Chapter 12

Table Name Description Option

KlotzAnalysis Klotz one-way analysis KLOTZ

KlotzScores Klotz scores KLOTZ

KlotzTest Klotz two-sample test KLOTZ

KolSmir2Stats Kolmogorov-Smirnov
two-sample statistics

EDF

KolSmirStats Kolmogorov-Smirnov statistics EDF

KolSmirTest Kolmogorov-Smirnov test EDF

KruskalWallisTest Kruskal-Wallis test WILCOXON

KuiperStats Kuiper two-sample statistics EDF

KuiperTest Kuiper test EDF

MedianAnalysis Median one-way analysis MEDIAN

MedianScores Median scores MEDIAN

MedianTest Median two-sample test MEDIAN

MoodAnalysis Mood one-way analysis MOOD

MoodScores Mood scores MOOD

MoodTest Mood two-sample test MOOD

SavageAnalysis Savage one-way analysis SAVAGE

SavageScores Savage scores SAVAGE

SavageTest Savage two-sample test SAVAGE

STAnalysis Siegel-Tukey one-way analysis ST

STScores Siegel-Tukey scores ST

STTest Siegel-Tukey two-sample test ST

VWAnalysis Van der Waerden one-way
analysis

VW

VWScores Van der Waerden scores VW

VWTest Van der Waerden two-sample
test

VW

WilcoxonScores Wilcoxon scores WILCOXON

WilcoxonTest Wilcoxon two-sample test WILCOXON

Table 12.68 ODS Table Names Produced by the ORTHOREG Procedure

Table Name Description

ANOVA Analysis of variance

FitStatistics Overall statistics for fit

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 715

Table Name Description

ParameterEstimates Parameter estimates

ODS Tables Created by the CLASS Statement

Levels Table of class levels

Table 12.69 ODS Table Names Produced by the PPHREG Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

BestSubsets Best subset selection SELECTION=SCORE

CensoredSummary Summary of event and
censored observations

ConvergenceStatus Convergence status

CorrB Estimated correlation matrix of
parameter estimators

CORRB

CovB Estimated covariance matrix of
parameter estimators

COVB

FitStatistics Model fit statistics

GlobalScore Global Chi-Square test NOFIT

GlobalTests Tests of the global null
hypothesis

IterHistory Iteration history ITPRINT

LastGradient Last evaluation of gradient ITPRINT

ModelBuildingSummary Summary of model building SELECTION=B, F, or S

ParameterEstimates Maximum likelihood estimates
of model parameters

ResidualChiSq Residual Chi-Square SELECTION=F or B

VariablesNotInModel Analysis of variables not in the
model

SELECTION=F or S

ODS Tables Created by the PROC Statement

ModelInfo Model information

SimpleStatistics Summary statistics for
explanatory variables

SIMPLE

ODS Tables Created by the TEST Statement

716 ODS Output Object Table Names � Chapter 12

Table Name Description Option

TestAverage Average effect for test AVERAGE

TestCoeff Coefficients for linear
hypothesis

E

TestPrint1 L[cov(b)]L" and Lb-c PRINT

TestPrint2 Ginv(L[cov(b)]L") and
Ginv(L[cov(b)]L")(Lb-c)

PRINT

TestStmts Linear hypotheses testing
results

Table 12.70 ODS Table Names Produced by the PLAN Procedure

Table Name Description

Plan Computed plan

ODS Tables Created by the FACTOR and TREATMENT Statements

PFInfo Plot factor information

TFInfo Treatment factor information

ODS Tables Created by the FACTOR and no TREATMENT Statements

FInfo General factor information

Table 12.71 ODS Table Names Produced by the PLS Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

CenScaleParms Parameter estimates for
centered and scaled data

SOLUTION

ParameterEstimates Parameter estimates for raw
data

SOLUTION

ODS Tables Created by the PROC Statement

CVResults Results of cross validation CV

CodedCoef Coded coefficients DETAILS

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 717

Table Name Description Option

PercentVariation Variation accounted for by each
factor

ResidualSummary Residual summary from cross
validation

CV

XEffectCenScale Centering and scaling
information for predictor effects

CENSCALE

XLoadings Loadings for independents DETAILS

XVariableCenScale Centering and scaling
information for predictor effects

CENSCALE and VARSCALE

XWeights Weights for independents DETAILS

YVariableCenScale Centering and scaling
information for responses

CENSCALE

YWeights Weights for dependents DETAILS

Table 12.72 ODS Table Names Produced by the POWER Procedure

Table Name Description Option

FixedElements Factoid with single-valued
analysis parameters

Default

Output All input and computed
analysis parameters, error
messages, and information
messages for each scenario

Default

PlotContent Data contained in plots,
including analysis parameters
and indices identifying plot
features. (Note: This table is
saved as a dataset and not
displayed in PROC POWER
output.)

PLOT

Table 12.73 ODS Table Names Produced by the PRINCOMP Procedure

Table Name Description Option

Corr Correlation matrix Default unless COV is specified

Cov Covariance matrix Default if COV is specified

718 ODS Output Object Table Names � Chapter 12

Table Name Description Option

Eigenvalues Eigenvalues

Eigenvectors Eigenvectors

NObsNVar Number of observations,
variables, and (partial)
variables

SimpleStatistics Simple statistics

TotalVariance Total variance COV

ODS Tables Created by the PARTIAL Statement

ParCorr Partial correlation matrix

ParCov Uncorrected partial covariance
matrix

COV

RegCoef Regression coefficients COV

RSquareRMSE Regression statistics:
R-Squares and RMSEs

StdRegCoef Standardized regression
coefficients

Table 12.74 ODS Table Names Produced by the PRINQUAL Procedure

Table Name Description Option

ConvergenceStatus Convergence status

Footnotes Iteration history footnotes

ODS Tables Created by the PROC Statement

MAC MAC iteration history METHOD=MAC

MGV MGV iteration history METHOD=MGV

MTV MTV iteration history METHOD=MTV

Table 12.75 ODS Table Names Produced by the PROBIT Procedure

Table Name Description Option

ODS Tables Created by the CLASS Statement

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 719

Table Name Description Option

ClassLevels Class variable levels

ODS Tables Created by the MODEL Statement

ConvergenceStatus Convergence status

CorrB Parameter estimate correlation
matrix

CORRB

CovB Parameter estimate covariance
matrix

COVB

CovTolerance Covariance matrix for location
and scale

GoodnessOfFit Goodness of fit tests LACKFIT

IterHistory Iteration history ITPRINT

LagrangeStatistics Lagrange statistics NOINT

LastGrad Last evaluation of the gradient ITPRINT

LastHess Last evaluation of the Hessian ITPRINT

LogProbitAnalysis Probit analysis for log dose INVERSECL

ModelInfo Model information

MuSigma Location and scale

ParameterEstimates Parameter estimates

ParmInfo Parameter indices

ProbitAnalysis Probit analysis for linear dose INVERSECL

ResponseLevels Response-covariate profile LACKFIT

ResponseProfiles Counts for ordinal data

Type3Analysis Type 3 tests

Table 12.76 ODS Table Names Produced by the REG Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

ACovEst Consistent covariance of
estimates matrix

ALL or ACOV

ANOVA Model ANOVA table

CollinDiag Collinearity diagnostics table COLLIN

CollinDiagNoInt Collinearity diagnostics for no
intercept model

COLLINOINT

720 ODS Output Object Table Names � Chapter 12

Table Name Description Option

ConditionBounds Bounds on condition number (SELECTION=BACKWARD,
FORWARD, STEPWISE,
MAXR, or MINR) and
DETAILS

CorrB Correlation of estimates CORRB

CovB Covariance of estimates COVB

CrossProducts Bordered model X"X matrix ALL or XPX

DWStatistic Durbin-Watson statistic ALL or DW

DependenceEquations Linear dependence equations

EntryStatistics Entry statistics for selection
methods

(SELECTION=BACKWARD,
FORWARD, STEPWISE,
MAXR, or MINR) and
DETAILS

FitStatistics Model fit statistics

InvXPX Bordered X"X inverse matrix I

OutputStatistics Output statistics table ALL, CLI, CLM, INFLUENCE,
P, or R

ParameterEstimates Model parameter estimates

RemovalStatistics Removal statistics for selection
methods

(SELECTION=BACKWARD,
STEPWISE, MAXR, or MINR)
and DETAILS

ResidualStatistics Residual statistics and PRESS
statistic

ALL, CLI, CLM, INFLUENCE,
P, or R

SelParmEst Parameter estimates for
selection methods

SELECTION=BACKWARD,
FORWARD, STEPWISE,
MAXR, or MINR

SelectionSummary Selection summary for forward,
backward, and stepwise
methods

SELECTION=BACKWARD,
FORWARD, or STEPWISE

SeqParmEst Sequential parameter
estimates

SEQB

SpecTest White’s heteroscedasticity test ALL or SPEC

SubsetSelSummary Selection summary for
R-Square, adj-RSq, and Cp
methods

SELECTION=RSQUARE,
ADJRSQ, or CP

ODS Tables Created by the MTEST Statement

CanCorr Canonical correlations for
hypothesis combinations

CANPRINT

Eigenvalues MTest eigenvalues CANPRINT

Eigenvectors MTest eigenvectors CANPRINT

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 721

Table Name Description Option

ErrorPlusHypothesis MTest error plus hypothesis
matrix H+E

PRINT

ErrorSSCP MTest error matrix E PRINT

HypothesisSSCP MTest hypothesis matrix PRINT

InvMTestCov Inv(L Ginv(X"X)L") and
Inv(Lb-c)

DETAILS

MTestCov L Ginv(X"X) L" and Lb-c DETAILS

MTransform MTest matrix M, across
dependents

DETAILS

MultStat Multivariate test statistics

ODS Tables Created by the PROC Statement

Corr Correlation matrix for analysis
variables

ALL or CORR

SimpleStatistics Simple statistics for analysis
variables

ALL or SIMPLE

USSCP Uncorrected SSCP matrix for
analysis variables

ALL or USSCP

ODS Tables Created by the TEST Statement

ACovTestANOVA Test ANOVA using ACOV
estimates

ACOV (MODEL statement)

InvTestCov Inv(L Ginv(X"X)L") and
Inv(Lb-c)

PRINT

TestANOVA Test ANOVA table

TestCov L Ginv(X"X) L" and Lb-c PRINT

Table 12.77 ODS Table Names Produced by the ROBUSTREG Procedure

Table Name Description Option

ODS Tables Created by the CLASS Statement

ClassLevels Class variable levels

ODS Tables Created by the MODEL Statement

CorrB Parameter estimate correlation
matrix

CORRB

722 ODS Output Object Table Names � Chapter 12

Table Name Description Option

CovB Parameter estimate covariance
matrix

COVB

Diagnostics Outlier diagnostics DIAGNOSTICS

DiagSummary Summary of the outlier
diagnostics

GoodFit R2, deviance, AIC, and BIC

ModelInfo Model information

ParameterEstimates Parameter estimates

ParmInfo Parameter indices

SummaryStatistics Summary statistics for model
variables

ODS Tables Created by the PROC Statement

BestEstimates Best final estimates for LTS SUBANALYSIS

BestSubEstimates Best estimates for each
subgroup

SUBANALYSIS

BiasTest Bias test for MM estimation BIASTEST

CStep C-Step for LTS fitting SUBANALYSIS

Groups Groups for LTS fitting SUBANALYSIS

InitLTSProfile Profile for initial LTS estimate METHOD

InitSProfile Profile for initial S estimate METHOD

LTSEstimates LTS parameter estimates METHOD

LTSLocationScale Location and scale for LTS METHOD

LTSProfile Profile for LTS estimate METHOD

LTSRsquare R2 for LTS estimate METHOD

MMProfile Profile for MM estimate METHOD

ParameterEstimatesF Final weighted LS estimates FWLS

SProfile Profile for S estimate METHOD

ODS Tables Created by the TEST Statement

ParameterEstimatesR Reduced parameter estimates

TestsProfile Results for tests

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 723

Table 12.78 ODS Table Names Produced by the RSREG Procedure

Table Name Description

Coding Coding coefficients for the independent variables

ErrorANOVA Error analysis of variance

FactorANOVA Factor analysis of variance

FitStatistics Overall statistics for fit

ModelANOVA Model analysis of variance

ParameterEstimates Estimated linear parameters

Spectral Spectral analysis

StationaryPoint Stationary point of response surface

ODS Tables Created by the RIDGE Statement

Ridge Ridge analysis for optimum response

Table 12.79 ODS Table Names Produced by the STDIZE Procedure

Table Name Description Option

Statistics Location and scale measures PSTAT

Table 12.80 ODS Table Names Produced by the STEPDISC Procedure

Table Name Description Option

BCorr Between-class correlations BCORR

BCov Between-class covariances BCOV

BSSCP Between-class SSCP matrix BSSCP

Counts Number of observations,
variables, classes, and DF

CovDF DF for covariance matrices, not
printed

Any *COV option

Levels Class level information

Messages Entry/removal messages

724 ODS Output Object Table Names � Chapter 12

Table Name Description Option

Multivariate Multivariate statistics

PCorr Pooled within-class correlations PCORR

PCov Pooled within-class covariances PCOV

PSSCP Pooled within-class SSCP
matrix

PSSCP

PStdMeans Pooled standardized class
means

STDMEAN

SimpleStatistics Simple statistics SIMPLE

Steps Stepwise selection entry/
removal

Summary Stepwise selection summary

TCorr Total-sample correlations TCORR

TCov Total-sample covariances TCOV

TSSCP Total-sample SSCP matrix TSSCP

TStdMeans Total standardized class means STDMEAN

Variables Variable lists

WCorr Within-class correlations WCORR

WCov Within-class covariances WCOV

WSSCP Within-class SSCP matrices WSSCP

Table 12.81 ODS Table Names Produced by the SURVEYFREQ Procedure

Table Name Description Statement Option

ChiSq Chi-square test TABLES CHISQ

ChiSq1 Modified chi-square
test

TABLES CHISQ1

CrossTabs Crosstabulation table TABLES (n-way table request,
n > 1)

LRChiSq Likelihood ratio test TABLES LRCHISQ

LRChiSq1 Modified likelihood
ratio test

TABLES LRCHISQ1

OneWay One-way frequency
table

PROC

or TABLES

(With no TABLES
statement)

(One-way table
request)

StrataInfo Stratum information STRATA LIST

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 725

Table Name Description Statement Option

Summary Data summary PROC Default

TableSummary Table summary (not
displayed)

TABLES Default

WChiSq Wald chi-square test TABLES WCHISQ

WLLChiSq Wald log-linear
chi-square test

TABLES WLLCHISQ

Table 12.82 ODS Table Names Produced by the SURVEYLOGISTIC Procedure

Table Name Description Statement Option

ClassLevelInfo CLASS variable levels
and design variables

MODEL Default (with CLASS
vars)

CLOdds Wald’s confidence
limits for odds ratios

MODEL CLODDS

CLparmWald Wald’s confidence
limits for parameters

MODEL CLPARM

ContrastCoeff L matrix from
CONTRAST

CONTRAST E

ContrastEstimate Estimates from
CONTRAST

CONTRAST ESTIMATE=

ContrastTest Wald test for
CONTRAST

CONTRAST Default

ConvergenceStatus Convergence status MODEL Default

CorrB Estimated correlation
matrix of parameter
estimators

MODEL CORRB

CovB Estimated covariance
matrix of parameter
estimators

MODEL CovB

CumulativeModelTest Test of the cumulative
model assumption

MODEL (Ordinal response)

DesignSummary Design summary STRATA | CLUSTER Default

FitStatistics Model fit statistics MODEL Default

GlobalTests Test for global null
hypothesis

MODEL Default

IterHistory Iteration history MODEL ITPRINT

LastGradient Last evaluation of
gradient

MODEL ITPRINT

726 ODS Output Object Table Names � Chapter 12

Table Name Description Statement Option

LogLikeChange Final change in the
log likelihood

MODEL ITPRINT

ModelInfo Model information PROC Default

NObs Number of
observations

PROC Default

OddsRatios Odds ratios MODEL Default

ParameterEstimates Maximum likelihood
estimates of model
parameters

MODEL Default

RSquare R-square MODEL RSQUARE

ResponseProfile Response profile PROC Default

SimpleStatistics Summary statistics for
explanatory variables

PROC SIMPLE

StrataInfo Stratum information STRATA LIST

TestPrint1 L[cov(b)] L" and Lb-c TEST PRINT

TestPrint2 Ginv(L[cov(b)]L") and
Ginv(
L[cov(b)]L")(Lb-c)

TEST PRINT

TestStmts Linear hypotheses
testing results

TEST Default

TypeIII Type III tests of effects MODEL Default (with CLASS
variables)

Table 12.83 ODS Table Names Produced by the SURVEYMEANS Procedure

Table Name Description Option

ODS Tables Created by the CLASS Statement

ClassVarInfo Class level information

ODS Tables Created by the DOMAIN Statement

Domain Statistics in domains

ODS Tables Created by the PROC Statement

Statistics Statistics

Summary Data summary

ODS Tables Created by the RATIO Statement

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 727

Table Name Description Option

Ratio Statistics for ratios

ODS Tables Created by the STRATA Statement

StrataInfo Stratum information LIST

Table 12.84 ODS Table Names Produced by the SURVEYREG Procedure

Table Name Description Option

ODS Tables Created by the CLASS Statement

ClassVarInfo Class level information

ODS Tables Created by the CLUSTER Statement

DesignSummary Design summary

ODS Tables Created by the CONTRAST Statement

ContrastCoef Coefficients of contrast E

Contrasts Analysis of contrasts

ODS Tables Created by the ESTIMATE Statement

EstimateCoef Coefficients of estimate E

Estimates Analysis of estimable functions

ODS Tables Created by the MODEL Statement

ANOVA ANOVA for dependent variable ANOVA

CovB Covariance of estimated
regression coefficients

COVB

DataSummary Data summary

Effects Tests of model effects

FitStatistics Fit statistics

InvXPX Inverse matrix of X"X INV

ParameterEstimates Estimated regression
coefficients

XPX X"X matrix XPX

728 ODS Output Object Table Names � Chapter 12

Table Name Description Option

ODS Tables Created by the STRATA Statement

DesignSummary Data summary

StrataInfo Stratum information LIST

Table 12.85 ODS Table Names Produced by the SURVEYSELECT Procedure

Table Name Description

ODS Tables Created by the PROC Statement

Method Sample selection method

Summary Sample selection summary

Table 12.86 ODS Table Names Produced by the TPSPLINE Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

GCVFunction GCV table LOGNLAMBDA or LAMBDA

ODS Tables Created by the PROC Statement

DataSummary Data summary

FitStatistics Model fit statistics

FitSummary Fit parameters and fit
summary

Table 12.87 ODS Table Names Produced by the TRANSREG Procedure

Table Name Description Option

ConvergenceStatus Convergence status

Equation Linear dependency equation Less-than-full-rank model

Footnotes Iteration history footnotes

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 729

Table Name Description Option

ODS Tables Created by the MODEL Statement

BoxCox Box-Cox transformation results BOXCOX

SplineCoef Spline coefficients SPLINE or MSPLINE

ODS Tables Created by the MODEL and PROC Statements

NObs ANOVA TEST or SS2

ClassLevels ANOVA TEST or SS2

ANOVA ANOVA TEST or SS2

LiberalANOVA ANOVA TEST or SS2

ConservANOVA ANOVA TEST or SS2

FitStatistics Fit statistics like R-Square TEST or SS2

LiberalFitStatistics Fit statistics TEST or SS2

ConservFitStatistics Fit statistics TEST or SS2

MVANOVA Multivariate ANOVA TEST or SS2

LiberalMVANOVA Multivariate ANOVA TEST or SS2

ConservANOVA Multivariate ANOVA TEST or SS2

Coef Regression results SS2

LiberalCoef Regression results SS2

ConservCoef Regression results SS2

MVCoef Multivariate regression results SS2

LiberalMVCoef Multivariate regression results SS2

ConservMVCoef Multivariate regression results SS2

Utilities Conjoint analysis utilities UTILITY

LiberalUtilities Conjoint analysis utilities UTILITY

ConservUtilities Conjoint analysis utilities UTILITY

Details Model details DETAIL

Univariate Univariate iteration history METHOD=UNIVARIATE

MORALS MORALS iteration history METHOD=MORALS

CANALS CANALS iteration history METHOD=CANALS

Redundancy Redundancy iteration history METHOD=REDUNDANCY

TestIterations Hypothesis test iterations
iteration history

SS2

730 ODS Output Object Table Names � Chapter 12

Table 12.88 ODS Table Names Produced by the TREE Procedure

Table Name Description Option

ODS Tables Created by the PROC Statement

Tree Line-printer plot of the tree LINEPRINTER

TreeListing Line-printer listing of all nodes
in the tree

LIST

Table 12.89 ODS Table Names Produced by the TTEST Procedure

Table Name Description

Statistics Univariate summary statistics

TTests t-tests

ODS Tables Created by the CLASS Statement

Equality Tests for equality of variance

Table 12.90 ODS Table Names Produced by the VARCLUS Procedure

Table Name Description Option

ClusterQuality Cluster quality

ClusterStructure Cluster structure

ClusterSummary Cluster summary

ConvergenceStatus Convergence status

Corr Correlations CORR

DataOptSummary Data and options summary
table

InterClusterCorr Inter-cluster correlations

IterHistory Iteration history TRACE

RSquare Cluster R-Square

SimpleStatistics Simple statistics SIMPLE

StdScoreCoef Standardized scoring
coefficients

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 731

Table 12.91 ODS Table Names Produced by the VARCOMP Procedure

Table Name Description Option

ClassLevels Class level information

ConvergenceStatus Convergence status

Estimates Variance component estimates
(one variable)

Estimatesn Variance component estimates
(multiple variables)

NObs Number of observations

ODS Tables Created by the METHOD Statement

ANOVA Type 1 analysis of variance TYPE1

AsyCov Asymptotic covariance matrix
of estimates

ML or REML

DepVar Dependent variable (one
variable)

TYPE1, REML, or ML

DepVarn Dependent variable n (multiple
variables)

TYPE1, REML, or ML

DependentInfo Dependent variable
information (multiple
variables)

MIVQUE0

IterHistory Iteration history ML or REML

SCCP Sum of squares matrix (one
variable)

MIVQUE0

SCCPn Sum of squares matrix
(multiple variable)

MIVQUE0

ODS Table Names and the SAS/ETS Procedures That Produce Them
This table lists the output object table names which SAS/ETS procedures produce.

You must license SAS/ETS software in order to produce these output objects. The table
provides the name of each table, a description of what the table contains, and the
option, if any, that creates the output object table. For more information about SAS/
ETS procedures, see SAS/ETS User’s Guide.

732 ODS Output Object Table Names � Chapter 12

Table 12.92 ODS Table Names Produced by the ARIMA Procedure

Table Name Description Option

ODS Tables Created by the IDENTIFY Statement

DescStats Descriptive statistics

InputDescStats Input descriptive statistics

CorrGraph Correlations graph

StationarityTest Stationarity tests STATIONARITY

TentativeOrders Tentative order selections MINIC, ESACF, or SCAN

PACFGraph Partial autocorrelations graph

IACFGraph Inverse autocorrelations graph

ChiSqAuto Chi-Square statistics table for
autocorrelation

ChiSqCross Chi-Square statistics table for
cross-correlations

CROSSCORR=

MINIC Minimum information criterion MINIC

ESACF Extended sample
autocorrelation function

ESACF

ESACFPValues ESACF probability values ESACF

SCAN Squared canonical correlation
estimates

SCAN

SCANValues SCAN Chi-Square[1]
probability values

ODS Tables Created by the ESTIMATE Statement

FitStatistics Fit statistics

ARPolynomial Filter equations

MAPolynomial Filter equations

NumPolynomial Filter equations

DenPolynomial Filter equations

ParameterEstimates Parameter estimates

ChiSqAuto Chi-Square statistics table for
autocorrelation

ChiSqCross Chi-Square statistics table for
cross-correlations

InitialAREstimates Initial autoregressive
parameter estimates

InitialMAEstimates Initial moving average
parameter estimates

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 733

Table Name Description Option

PrelimEstimates Preliminary estimation

IterHistory Conditional least squares
estimation

METHOD=CLS

OptSummary ARIMA estimation
optimization

PRINTALL

ModelDescription Model description

InputDescription Input description

ObjectiveGrid Objective function grid matrix GRID

CorrB Correlations of the estimates

ODS Tables Created by the OUTLIER Statement

OutlierDetails Detected outliers

ODS Tables Created by the FORECAST Statement

Forecasts Fit statistics

Table 12.93 ODS Table Names Produced by the AUTOREG Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

FitSummary Summary of regression

SummaryDepVarCen Summary of regression
(centered dependent variable)

CENTER

SummaryNoIntercept Summary of regression (no
intercept)

NOINT

YWIterSSE Yule-Walker iteration sum of
squared error

METHOD=ITYW

PreMSE Preliminary MSEs NLAG=

Dependent Dependent variable

DependenceEquations Linear dependence equation

ARCHTest Q and LM tests for ARCH
disturbances

ARCHTEST

ChowTest Chow test and predictive chow
test

CHOW= or PCHOW=

Godfrey Godfrey’s serial correlation test GODFREY or GODFREY=

734 ODS Output Object Table Names � Chapter 12

Table Name Description Option

PhilPerron Phillips-Perron unit root test STATIONARITY=,
(PHILLIPS<=()>), (no
regressor)

PhilOul Phillips-Ouliaris cointegration
test

STATIONARITY=,
(PHILLIPS<=()>), (has
regressor)

ResetTest Ramsey’s RESET test RESET

ARParameterEstimates Estimates of autoregressive
parameters

NLAG=

CorrGraph Estimates of autocorrelations NLAG=

BackStep Backward elimination of
autoregressive terms

BACKSTEP

ExpAutocorr Expected autocorrelations NLAG=

IterHistory Iteration history ITPRINT

ParameterEstimates Parameter estimates

ParameterEstimatesGivenAR Parameter estimates assuming
AR parameters are given

NLAG=

PartialAutoCorr Partial autocorrelation PARTIAL

CovB Covariance of parameter
estimates

COVB

CorrB Correlation of parameter
estimates

CORRB

CholeskyFactor Cholesky root of gamma ALL

Coefficients Coefficients for first NLAG
observations

COEF

GammaInverse Gamma inverse GINV

ConvergenceStatus Convergence status table

DWTest Durbin-Watson statistics DW=

ODS Tables Created by the RESTRICT Statement

Restrict Restriction table

ODS Tables Created by the TEST Statement

FTest F test

WaldTest Wald test TYPE=WALD

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 735

Table 12.94 ODS Table Names Produced by the ENTROPY Procedure

Table Name Description

ConvCrit Convergence criteria for estimation

ConvergenceStatus Convergence status

DatasetOptions Data sets used

MinSummary Number of parameters, estimation kind

ObsUsed Observations read, used, and missing

ParameterEstimates Parameter estimates

ResidSummary Summary of the SSE, MSE for the equations

TestResults Test statement table

Table 12.95 ODS Table Names Produced by the LOAN Procedure

Table Name Description Option

ODS Tables Created by the PROC LOAN, FIXED, ARM, BALLOON, and BUYDOWN
Statements

Repayment Loan repayment schedule SCHEDULE

ODS Tables Created by the FIXED, ARM, BALLOON, and BUYDOWN Statements

LoanSummary Loan summary

RateList Rates and payments

PrepayList Prepayments and periods PREPAYMENTS=

ODS Tables Created by the BALLOON Statement

BalloonList Balloon payments and periods

ODS Tables Created by the COMPARE Statement

Comparison Loan comparison report

736 ODS Output Object Table Names � Chapter 12

Table 12.96 ODS Table Names Produced by the MDC Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

FitSummary Summary of nonlinear
estimation

ResponseProfile Response profile

GoodnessOfFit Pseudo-R2 measures

ParameterEstimates Parameter estimates

LinConSol Linearly independent active
linear constraints

CovB Covariance of parameter
estimates

COVB

CorrB Correlation of parameter
estimates

CORRB

Table 12.97 ODS Table Names Produced by the MODEL Procedure

Table Name Description Option

ODS Tables Created by the FIT Statement

AugGMMCovariance Cross products matrix GMM

ChowTest Structural change test CHOW=

CollinDiagnostics Collinearity diagnostics

ConfInterval Profile likelihood confidence
intervals

PRL=

ConvCrit Convergence criteria for
estimation

ConvergenceStatus Convergence status

CorrB Correlations of parameters COVB or CORRB

CorrResiduals Correlations of residuals CORRS or COVS

CovB Covariance of parameters COVB or CORRB

CovResiduals Covariance of residuals CORRS or COVS

Crossproducts Cross products matrix ITALL or ITPRINT

DatasetOptions Data sets used

DetResidCov Determinant of the residuals DETAILS

DWTest Durbin-Watson test DW=

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 737

Table Name Description Option

Equations List of equations to estimate

EstSummaryMiss Model summary statistics for
PAIRWISE

MISSING=

EstSummaryStats Objective, objective * N

GMMCovariance Cross products matrix GMM

Godfrey Godfrey’s serial correlation test GF=

HausmanTest Hausman’s test table HAUSMAN

HeteroTest Heteroscedasticity test tables BREUSCH or PAGEN

InvXPXMat X"X inverse for system I

IterInfo Iteration printing ITALL or ITPRINT

LagLength Model lag length

MinSummary Number of parameters,
estimation kind

MissingValues Missing values generated by
the program

ModSummary List of all categorized values

ModVars List of model variables and
parameters

NormalityTest Normality test table NORMAL

ObsSummary Identifies observations with
errors

ObsUsed Observations read, used, and
missing

Default

ParameterEstimates Parameter estimates

ParmChange Parameter change vector

ResidSummary Summary of the SSE, MSE for
the equations

SizeInfo Storage requirement for
estimation

DETAILS

TermEstimates Nonlinear OLS and ITOLS
estimates

OLS or ITOLS

TestResults Test statement table

WgtVar The name of the weight
variable

XPXMat X"X for system XPX

ODS Tables Created by the SOLVE Statement

DatasetOptions Data sets used

DescriptiveStatistics Descriptive statistics STATS

738 ODS Output Object Table Names � Chapter 12

Table Name Description Option

FitStatistics Fit statistics for simulation STATS

LagLength Model lag length

ModSummary List of all categorized variables

ObsSummary Simulation trace output SOLVEPRINT

ObsUsed Observations resa, used, and
missing

SimulationSummary Number of variables solved for

SolutionVarList Solution variable lists

TheilRelStats Theil relative change error
statistics

THEIL

TheilStats Theil forecast error statistics THEIL

ODS Tables Created by the FIT and SOLVE Statements

AdjacencyMatrix Adjacency graph GRAPH

BlockAnalysis Block analysis BLOCK

CodeDependency Variable cross reference LISTDEP

CodeList List of programs statements LISTCODE

CrossReference Cross reference listing for
program

DepStructure Dependency structure for the
system

BLOCK

DerList Derivative variables LISTDER

InterIntg Integration iteration output INTGPRINT

MemUsage Memory usage statistics MEMORYUSE

ParmReadIn Parameter estimates read in ESTDATA=

ProgList List of compiled program data

RangeInfo RANGE statement specification

SortAdjacencyMatrix Sorted adjacency graph GRAPH

TransitiveClosure Transitive closure graph GRAPH

Table 12.98 ODS Table Names Produced by the PDLREG Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 739

Table Name Description Option

ARParameterEstimates Estimates of autoregressive
parameters

NLAG=

CholeskyFactor Cholesky root of gamma

Coefficients Coefficients for first NLAG
observations

NLAG=

ConvergenceStatus Convergence status table

CorrB Correlation of parameter
estimates

CORRB

CorrGraph Estimates of autocorrelations NLAG=

CovB Covariance of parameter
estimates

COVB

DependenceEquations Linear dependence equation

Dependent Dependent variable

DWTest Durbin-Watson statistics DW=

ExpAutocorr Expected autocorrelations NLAG=

FitSummary Summary of regression

GammaInverse Gamma inverse

IterHistory Iteration history ITPRINT

LagDist Lag distribution ALL

ParameterEstimates Parameter estimates

ParameterEstimatesGivenAR Parameter estimates assuming
AR parameters are given

NLAG=

PartialAutoCorr Partial autocorrelation PARTIAL

PreMSE Preliminary MSE NLAG=

XPXIMatrix Inverse X"X matrix XPX

XPXMatrix X"X matrix XPX

YWIterSSE Yule-Walker iteration sum of
squared error

METHOD=ITYW

ODS Tables Created by the RESTRICT Statement

Restrict Restriction table

740 ODS Output Object Table Names � Chapter 12

Table 12.99 ODS Table Names Produced by the SIMLIN Procedure

Table Name Description Option

Endogenous Structural coefficients for
endogenous variables

LaggedEndogenous Structural coefficients for
lagged endogenous variables

Exogenous Structural Coefficients for exogenous
variables

InverseCoeff Inverse coefficient matrix for
endogenous variables

RedFormLagEndo Reduced form for lagged
endogenous variables

RedFormExog Reduced form for exogenous
variables

InterimMult Interim multipliers INTERIM=option

TotalMult Total multipliers TOTAL=option

FitStatistics Fit statistics

Table 12.100 ODS Table Names Produced by the SPECTRA Procedure

Table Name Description Option

WhiteNoiseTest White noise test WHITETEST

Kappa Fishers kappa WHITETEST

Bartlett Bartletts Kolmogorov-Smirnov
statistic

WHITETEST

Table 12.101 ODS Table Names Produced by the STATESPACE Procedure

Table Name Description Option

NObs Number of observations

Summary Simple summary statistics
table

InfoCriterion Information criterion table

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 741

Table Name Description Option

CovLags Covariance matrices of input
series

PRINTOUT=LONG

CorrLags Correlation matrices of input
series

PRINTOUT=LONG

PartialAR Partial autoregressive matrices PRINTOUT=LONG

YWEstimates Yule-Walker estimates for
minimum AIC

CovResiduals Covariance of residuals PRINTOUT=LONG

CorrResiduals Residual correlations from AR
models

PRINTOUT=LONG

StateVector State vector table

CorrGraph Schematic representation of
correlations

TransitionMatrix Transition matrix

InputMatrix Input matrix

VarInnov Variance matrix for the
innovation

CovB Covariance of parameter
estimates

COVB

CorrB Correlation of parameter
estimates

COVB

CanCorr Canonical correlation analysis CANCORR

IterHistory Iterative fitting table ITPRINT

ParameterEstimates Parameter estimates table

Forecasts Forecasts table PRINT

ConvergenceStatus Convergence status table

Table 12.102 ODS Table Names Produced by the SYSLIN Procedure

Table Name Description Option

ANOVA Summary of the SSE, MSE for
the equations

AugXPXMat Model crossproducts XPX

AutoCorrStat Autocorrelation statistics

ConvCrit Convergence criteria for
estimation

ConvergenceStatus Convergence status

742 ODS Output Object Table Names � Chapter 12

Table Name Description Option

CorrB Correlations of parameters CORRB

CorrResiduals Correlations of residuals CORRS

CovB Covariance of parameters COVB

CovResiduals Covariance of residuals COVS

Endomat Endogenous variables

Equations List of equations to estimates

ExogMat Exogenous variables

FitStatistics Statistics of fit

InvCorrResiduals Inverse correlations of
residuals

CORRS

InvCovResiduals Inverse covariance of residuals COVS

InvEndoMat Inverse endogenous variables

InvXPX X"X inverse for system I

IterHistory Iteration printing ITALL or ITPRINT

MissingValues Missing values generated by
the program

ModelVars Name and label for the model

ParameterEstimates Parameter estimates

RedMat Reduced form REDUCED

SimpleStatistics Descriptive statistics SIMPLE

SSCP Model crossproducts

TestResults Test for overidentifying
restrictions

Weight Weighted model statistics

YPY Y"Y matrices USSCP2

Table 12.103 ODS Table Names Produced by the TSCSREG Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

ModelDescription Model description

FitStatistics Fit statistics

FixedEffectsTest F test for no fixed tests

ParameterEstimates Parameter estimates

CovB Covariance of parameter
estimates

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 743

Table Name Description Option

CorrB Correlations of parameter
estimates

VarianceComponents Variance component estimates

RandomEffectsTest Hausman test for random
effects

AR1Estimates First order autoregressive
parameter estimates

EstimatedPhiMatrix Estimated phi matrix PARKS

EstimatedAutocovariances Estimates of autocovariances PARKS

ODS Tables Created by the TEST Statement

TestResults Test results

Table 12.104 ODS Table Names Produced by the TIMESERIES Procedure

Table Name Description

ODS Tables Created by the PRINT=DECOMP Option

SeasonalDecomposition Seasonal decomposition

ODS Tables Created by the PRINT=DESCSTATS Option

DescStats Descriptive statistics

ODS Tables Created by the PRINT=SEASONS Option

SeasonStatistics Season statistics

ODS Tables Created by the PRINT=TRENDS Option

TrendStatistics Trend statistics

Table 12.105 ODS Table Names Produced by the VARMAX Procedure

Table Name Description Option

ODS Tables Created by the MODEL Statement

744 ODS Output Object Table Names � Chapter 12

Table Name Description Option

AccumImpulse Accumulated impulse response
matrices

IMPULSE=(ACCUM) or
IMPULSE=(ALL)

AccumImpulsX Accumulated transfer function
matrices

IMPULSX=(ACCUM) or
IMPULSX=(ALL)

Alpha � coefficients JOHANSEN=

AlphaInECM � coefficients ECM=

AlphaOnDrift � coefficients on restriction of a
deterministic term

JOHANSEN=

AlphaBetaInECM �=��" coefficients ECM=

ArchCoef ARCH coefficients GARCH=

ARCoef AR coefficients P= or DYNAMIC with P=

ARRoots Roots of AR characteristic
polynomial

ROOTS

Beta � coefficients JOHANSEN=

BetaInECM � coefficients ECM=

BetaOnDrift � coefficients on restriction of a
deterministic term

JOHANSEN=

Constant Constant estimates Without NOINT

CorrB Correlations of parameter
estimates

CORRB

CorrResiduals Cross-correlations of residuals

CorrResidualsGraph Schematic representation of
residual cross-correlations

CorrGraph Schematic representation of
sample cross-correlations

CORRX or CORRY

CorrXLags Cross-correlation matrices of
independent series

CORRX

CorrYLags Cross-correlation matrices of
dependent series

CORRY

CovB Covariance of parameter
estimates

COVB

CovInnov Covariance matrix for the
innovation

CovPredError Covariance matrices of the
prediction error

COVPE

CovResiduals Cross-covariance matrices of
residuals

CovXLags Cross-covariance matrices of
independent series

COVX

CovYLags Cross-correlations matrices of
dependent series

COVY

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 745

Table Name Description Option

DecompCovPredError Decomposition of the prediction
error covariance

DECOMPOSE

DFTest Dickey-Fuller tests DFTEST

DriftHypo Hypothesis of different
deterministic terms in
cointegration rank test

JOHANSEN=

DrifyHypoTest Test hypothesis of different
deterministic terms in
cointegration rank test

JOHANSEN=

EigenvalueI2 Eigenvalues in integrated
order 2

JOHANSEN= (IORDER=2)

Eta � coefficients JOHANSEN= (IORDER=2)

GARCHParameterEstimates GARCH parameter estimates
table

GARCH=

GARCHParameterGraph Schematic representation of
the garch parameters

GARCHRoots Roots of GARCH characteristic
polynomial

GARCH=

GARCHCoef GARCH coefficients GARCH=

GARCHConstant GARCH constant estimates GARCH=

InfiniteARRepresent Infinite order AR
representation

IARR

InfoCriterion Information criterion

LinearTrend Linear trend estimates TREND=

MACoef MA coefficients Q=

MARoots Roots of MA characteristic
polynomial

Q=

MaxTest Cointegration rank test using
the maximum eigenvalue

JOHANSEN= (TYPE=MAX)

MaxTestOnDrift Cointegration rank test using
the maximum eigenvalue on
restriction of a deterministic
term

JOHANSEN= (TYPE=MAX)

ModelType Type of model

NObs Number of observations

OrthoImpulse Orthogonalized impulse
response matrices

IMPULSE=(ORTH) or
IMPULSE=(ALL)

ParameterEstimates Parameter estimates table

ParameterGraph Schematic representation of
the parameters

PartialAR Partial autoregression matrices PARCOEF

746 ODS Output Object Table Names � Chapter 12

Table Name Description Option

PartialARGraph Schematic representation of
partial autoregression

PARCOEF

PartialCanCorr Partial canonical correlation
analysis

PCANCORR

PartialCorr Partial cross-correlation
matrices

PCORR

PartialCorrGraph Schematic representation of
partial cross correlations

PCORR

PortmanteauTest Chi-Square test table for
residual cross-correlations

ProportionDecomp Proportions of prediction error
covariance decomposition

DECOMPOSE

RankTestI2 Cointegration rank test in
integrated order 2

JOHANSEN= (IORDER=2)

QuadTrend Quadratic trend estimates TREND=QUAD

SConstant Seasonal constant estimates NSEASON=

SimpleImpulse Impulse response matrices IMPULSE,
IMPULSE=SIMPLE, or
IMPULSE=(ALL)

SimpleImpulsX Impulse response matrices in
transfer function

IMPULSX,
IMPULSX=(SIMPLE), or
IMPULSX=(ALL)

Summary Simple summary statistics

SWTest Common trends test SW or SW=

TentativeOrders Tentative order selection MINIC or MINIC=

TraceTest Cointegration rank test using
the trace

JOHANSEN= (TYPE=TRACE)

TraceTestOnDrift Cointegration rank test using
the trace on restriction of a
deterministic term

JOHANSEN= (TYPE=TRACE)

UnivarDiagnostAR Check the AR disturbance for
the residuals

UnivarDiagnostCheck Univariate model diagnostic
checks

UnivarDiagnostTest Check the ARCH disturbance
and normality for the residuals

Xi
coefficient matrix

JOHANSEN= (IORDER=2)

XLagCoef Dependent coefficients XLAG=

YWEstimates Yule-Walker estimates YW

ByVariable Prints by variable PRINTFORM=

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 747

Table Name Description Option

ODS Tables Created by the COINTEG Statement

AlphaInECM � coefficients

AlphaBetaInECM � = ��" coefficients

BetaInECM � coefficients

AlphaOnTest � coefficients under restriction H= or J=

BetaOnTest � coefficients under restriction H= or J=

RestrictMatrix Restriction matrix for � or � H= or J=

RestrictTest Hypothesis testing of � or � H= or J=

WeakExogeneity Testing weak exogeneity of
each dependent variable with
respect to beta

EXOGENEITY

ODS Tables Created by the CASUAL Statement

Causality Granger-Causality test

ODS Tables Created by the RESTRICT Statement

Restrict Restriction table

ODS Tables Created by the TEST Statement

Test Wald test

ODS Tables Created by the OUTPUT Statement

Forecasts Forecasts table Without NOPRINT

Table 12.106 ODS Table Names Produced by the X11 Procedure

Table Name Description Option

ODS Tables Created by the MONTHLY and QUARTERLY Statements

Preface X11 seasonal adjustment
program information giving
credits, dates, etc.

Always printed unless
NOPRINT

A1 OriginalSeries

A2 Prior monthly

748 ODS Output Object Table Names � Chapter 12

Table Name Description Option

A3 Original series adjusted for
prior monthly factors

A4 Prior trading day adjustment
factors with and without
length of month adjustments

A5 Original series adjusted for
priors

B1 Original series or original
series adjusted for priors

B2 Trend cycle — centered
nn-term moving average

B3 Unmodified SI ratios

B4 Replacement values for
extreme SI ratios

B5 Seasonal factors

B6 Seasonally adjusted series

B7 Trend cycle — Henderson curve

B8 Unmodified SI ratios

B9 Replacement values for
extreme SI ratios

B10 Seasonal factors

B11 Seasonally adjusted series

B13 Irregular series

B15 Preliminary trading day
regression

B16 Trading day adjustment factors
derived from regression

B17 Preliminary weights for
irregular components

B18 Trading day adjustment factors
from combined weights

B19 Original series adjusted for
preliminary combined TD
weights

C1 Original series adjusted for
preliminary weights

C2 Trend cycle — centered
nn-term moving average

C4 Modified SI ratios

C5 Seasonal factors

C6 Seasonally adjusted factors

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 749

Table Name Description Option

C7 Trend cycle — Henderson curve

C9 Modified CI ratios

C10 Seasonal factors

C11 Seasonally adjusted series

C13 Irregular series

C15 Final trading day regression

C16 Trading day adjustment factors
derived from regression

C17 Final weights for irregular
component

C18 Trading day adjustment factors
from combined weights

C19 Original series adjusted for
final combined TD weights

D1 Original series adjusted for
final weights on nn-term
moving average

D4 Modified SI ratios

D5 Seasonal factors

D6 Seasonally adjusted series

D7 Trend cycle — Henderson curve

D8 Final unmodified SI ratios

D10 Final season factors

D11 Final seasonally adjusted
series

D12 Final trend cycle — Henderson
curve

D13 Final irregular series

E1 Original series modified for
extremes

E2 Modified seasonally adjusted
series

E3 Modified irregular series

E5 Month-to-month changes in
original series

E6 Month-to-month changes in
final seasonally adjusted series

F1 MCD moving average

A13 ARIMA forecasts ARIMA statement

A14 ARIMA backcasts ARIMA statement

750 ODS Output Object Table Names � Chapter 12

Table Name Description Option

A15 ARIMA extrapolation ARIMA statement

B14 Irregular values excluded from
trading day regression

C14 Irregular values excluded from
trading day regression

D9 Final replacement values

PriorDailyWgts Adjusted prior daily weights

TDR_0 Final/preliminary trading day
regression, part 1

MONTHLY only,
TDREGR=ADJUST, TEST

TDR_1 Final/preliminary trading day
regression, part 2

MONTHLY only,
TDREGR=ADJUST, TEST

StandErrors Standard errors of trading day
adjustment factors

MONTHLY only,
TDREGR=ADJUST, TEST

D9A Year-to-year change in
irregular and seasonal
components and moving
seasonality ratio

StableSeasTest Stable seasonality test MONTHLY only

StableSeasFTest Stable seasonality test MONTHLY only

f2a F2 summary measures, part 1

f2b F2 summary measures, part 2

f2c F2 summary measures, part 3

f2d I/C ratio for monthly/quarterly
span

f2f Average percent change with
regard to sign and standard
over span

E4 Differences or ratios of annual
totals, original and adjusted
series

ChartG1 Chart G1

ChartG2 Chart G2

ODS Tables Created by the ARIMA Statement

CriteriaSummary Criteria summary ARIMA statement

ConvergeSummary Convergence summary

ArimaEst ARIMA estimation results,
part 1

ArimaEst2 ARIMA estimation results,
part 2

Model_Summary Model summary

TEMPLATE Procedure: Creating Tabular Output � ODS Output Object Table Names 751

Table Name Description Option

Ljung_BoxQ Table of Ljung-Box Q statistics

A13 ARIMA forecasts

A14 ARIMA backcasts

A15 ARIMA extrapolation

ODS Tables Created by the SSPAN Statement

SPR0A_1 S 0.A sliding spans analysis,
number, and length of spans

SpanDates S 0.A sliding spans analysis:
dates of spans

SPR0B S 0.B summary of F-tests for
stable and moving seasonality

SPR1_1 S 1.A range analysis of
seasonal factors

SPR1_b S 1.B summary of range
measures

SPRXA 2XA.1 breakdown of differences
by month or quarter

SPRXB_2 S X.B histogram of flagged
observation

SPRXA_2 S X.A.2 breakdowns of
differences by year

MpdStats S X.C: Statistics for maximum
percentage differences

S_X_A_3 S 2.X.3 breakdown summary of
flagged observation

SPR7_X S 7.X sliding spans analysis PRINTALL

Table 12.107 ODS Table Names Produced by the X12 Procedure

Table Name Description

A1 Original series

A2 Prior-adjustment factors

RegParameterEstimates Regression model parameter estimates

ACF Autocorrelation factors

PACF Partial autorrelation factors

752 ODS Output Object Table Names � Chapter 12

Table Name Description

ARMAIterationTolerances Exact ARMA likelihood estimation iteration
tolerances

IterHistory ARMA iteration history

ARMAIterationSummary Exact ARMA likelihood estimation iteration
summary

RegressorGroupChiSq Chi-Squared tests for groups of regressors

ARMAParameterEstimates Exact ARMA maximum likelihood estimation

AvgFcstErr Average absolute percentage error in within(out)
sample fore(back)casts

Roots (Non)seasonal (AR)MA roots

MLESummary Estimation summary

ForecastCL Forecasts, standard errors, and confidence limits

MV1 Original series adjusted for missing value
regressors

A6 RegARIMA trading day component

A8 RegARIMA combined outlier component

A8AO RegARIMA AO outlier component

A8LS RegARIMA level change outlier component

A8TC RegARIMA temporary change outlier component

B1 Prior adjusted or original series

C17 Final weight for irregular components

C20 Final extreme value adjusted factors

D1 Modified original data, D iteration

D7 Preliminary trend cycle, D iteration

D8 Final unmodified S-I ratios

D8A Seasonality tests

D9 Final replacement values for extreme S-I ratios

D9A Moving seasonality ratio

D10 Final seasonal factors

D10D Final seasonal difference

D11 Final seasonally adjusted series

D12 Final trend cycle

D13 Final irregular series

D16 Combined adjustment factors

D16B Final adjustment differences

D18 Combined calendar adjustment factors

E4 Ratios of annual totals

TEMPLATE Procedure: Creating Tabular Output � Viewing the Contents of a Table Template 753

Table Name Description

E5 Percent changes in original series

E6 Percent changes in final seasonally adjusted
series

E7 Differences in final trend cycle

F2A-I Summary measures

F3 Quality assessment statistics

F4 Day of the week trading day component factors

G Spectral analysis

Concepts: Tabular Output and the TEMPLATE Procedure

Viewing the Contents of a Table Template
To view the contents of a table template, use the SAS windowing environment, the

command line, or the TEMPLATE procedure.

� Using the SAS Windowing Environment

1 From the menu, select View � Results.

2 In the Results window, select the Results folder. Right-click and select
Templates to open the Templates window.

3 Double-click Sashelp.Tmplmst to view the contents of that item store or
directory.

4 Double-click a directory to view the list of subdirectories and table templates
that you wish to view. For example, the Base SAS table template Summary
is the default template store for the summary tables created in the MEANS
and SUMMARY procedures. Double-click the Base directory, and then
double-click the Summary table.

� Using the Command Line

1 To view the Templates window, submit this command:

odstemplates

The Templates window contains the item stores Sasuser.Templat and
Sashelp.Tmplmst.

2 When you double-click an item store, such as Sashelp.Tmplmst, that item store
expands to list the directories where ODS templates are stored. The templates
that SAS provides are in the item store Sashelp.Tmplmst.

3 To view the table templates that SAS provides, double-click the item store that
contains a table template, such as Base.

4 Right-click the table template, such as Summary, and select Open. The table
template is displayed in the Template Browser window.

� Using the TEMPLATE Procedure

754 Values in Table Columns and How They Are Justified � Chapter 12

1 The SOURCE statement writes the source code for the specified template to the
SAS log. For example, if to view the source code for all the objects in Base SAS,
submit this code.

proc template;
source base;
run;

Values in Table Columns and How They Are Justified
The process of justifying the values in columns in a listing output is determined by

the format of the variable and the values of two attributes: JUST= and JUSTIFY=. It
is a three-step process:

1 ODS puts the value into the format for the column. Character variables are
left-justified within their format fields; numeric variables are right-justified.

2 ODS justifies the entire format field within the column width according to the
value of the JUST= attribute for the column, or, if that attribute is not set, JUST=
for the table. For example, if you right-justify the column, the format field is
placed as far to the right as possible. However, the placement of the individual
numbers and characters within the field does not change. Thus, decimal points
remain aligned. If the column and the format field have the same width, then
JUST= has no apparent effect because the format field occupies the entire column.

3 If you specify JUSTIFY=ON for the column or the table, ODS justifies the values
within the column without regard to the format field. By default, JUSTIFY=OFF.

For example, consider this set of values:

123.45
234.5
.
987.654

If the values are formatted with a 6.2 format and displayed in a column with a width
of 6, they appear this way, regardless of the value of JUST= (asterisks indicate the
width of the column):

123.45
234.50

.
987.65

If the width of the column increases to 8, then the value of JUST= does affect the
placement of the values, because the format field has room to move within the column.
Notice that the decimal points remain aligned but that the numbers shift in relation to
the column width.

just=left just=center just=right

******** ******** ********
123.45 123.45 123.45
234.50 234.50 234.50

. . .
987.65 987.65 987.65

TEMPLATE Procedure: Creating Tabular Output � Formatting Values in Table Columns 755

Now, if you add JUSTIFY=ON, then the values are formatted within the column
without regard to the format width. The results are as follows:

justify=on justify=on justify=on
just=left just=center just=right

******** ******** ********
123.45 123.45 123.45
234.50 234.50 234.50
. . .
987.65 987.65 987.65

All destinations except LISTING justify the values in columns as if JUSTIFY=ON.

Formatting Values in Table Columns
The process of formatting the values in columns in a listing output is determined by

the format of the variable and the values of three options: FORMAT=,
FORMAT_WIDTH=, and FORMAT_NDEC=. It is a four-step process:

1 If you omit a FORMAT= option, then the format that the data component provides
is used. If the data component does not provide a format, then ODS uses one of
the following:

� best8. for integers

� D12.3 for doubles

� the length of the variable for character variables

2 If a format width is specified in the FORMAT= option, then it will take precedence
over the FORMAT_WIDTH= and FORMAT_NDEC= options.

3 If you specify a decimal width with the FORMAT= and FORMAT_NDEC= options,
then the format that is specified with the FORMAT= option is used.

4 If you specify a format width with the FORMAT= and FORMAT_WIDTH= options,
then the format that is specified with FORMAT= option is used.

The formatting attributes of a column is determined by the data component or the
column template. This table summarizes the behavior of the column formatting
attributes based on which attributes the column template provides.

Table 12.108 Summary of Column Formatting Attributes

Specifications Provided by the
Column Template

Result

Nothing Format name, width, and number of decimal places are
determined by the data component.

Format name Format name and width are determined by the column
template; number of decimal places is determined by the
data component.

Format name and width Format name and width are determined by the column
template.

Format name, width, and number of
decimal places

All three are determined by the column template.

756 Examples: Modifying Tabular Output by Using the TEMPLATE Procedure � Chapter 12

Specifications Provided by the
Column Template

Result

Width No name is specified; width is determined by the column
template; number of decimal places is determined by the
data component.

Number of decimal places No name is specified; width is determined by the data
component; number of decimal places is determined by the
column template.

Examples: Modifying Tabular Output by Using the TEMPLATE Procedure

Example 1: Editing a Table Template That a SAS Procedure Uses

PROC TEMPLATE features:
EDIT statement
Header attributes:

JUST=
STYLE=

Table attributes:

DOUBLE_SPACE=
OVERLINE=
UNDERLINE=

Other ODS features:
ODS HTML statement
ODS SELECT statement

Data set: See “Creating the Exprev Data Set” on page 875.

Program Description
Note: This example uses filenames that might not be valid in all operating

environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

This example customizes the table template for the Moments output object from
PROC UNIVARIATE. The first program uses the table template that SAS supplies to
generate both listing output and HTML output of the Moments object.

The second program does the following:

� creates and edits a copy of the default table template

� edits a header within the table template

� sets column attributes to enhance the appearance of both the HTML and the
listing output

TEMPLATE Procedure: Creating Tabular Output � Program 1: Using the Default Table Template That SAS Provides 757

Program 1: Using the Default Table Template That SAS Provides

Set the SAS system options. The OPTIONS statement controls several aspects of the listing
output. None of these options affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

Create the HTML output and specify the name of the HTML file. The ODS HTML
statement opens the HTML destination and creates HTML output. It sends all output objects to
the external file DefaultMoments-Body.htm in the current directory. Some browsers require an
extension of .htm or .html on the filename.

ods html body="DefaultMoments-Body.htm ";

Select the output objects for the report. The ODS SELECT statement sends one output
object, Moments, to the open ODS destinations. Both the LISTING and the HTML destinations
are open. To learn the names of the output objects, run the procedure with the ODS TRACE ON
statement in effect. For more information see
Example 1 on page 319.

ods select moments;

Compute the descriptive statistics for one variable. PROC UNIVARIATE computes the
univariate statistics for one variable, Quantity. It uses the default table template,
Base.Univariate.Moments from the template store Sashelp.Tmplmst.

proc univariate data=exprev mu0=3.5;
var Quantity;

title "Default Moments Table";
run;

Stop the creation of the HTML output. The ODS HTML CLOSE statement closes the
HTML destination and all the files that are associated with it. You must close the destination
before you can view the output with a browser.

ods html close;

758 Default Listing Output � Chapter 12

Default Listing Output

Display 12.5 Listing Output from PROC UNIVARIATE (Default Moments Table)

HTML Output from PROC UNIVARIATE (Default Moments Table)

Display 12.6 Default HTML Output

Program 2: Using a Customized Table Template

Specify the search path in order to locate the table template. The ODS PATH statement
specifies which locations to search for definitions or templates that were created by PROC
TEMPLATE, as well as the order in which to search for them. The statement is included to
ensure that the example works correctly. However, if you have not changed the path, you do not
need to include this statement because it specifies the default path.

ods path sasuser.templat(update) sashelp.tmplmst(read);

TEMPLATE Procedure: Creating Tabular Output � Program 2: Using a Customized Table Template 759

Create a modified table template Base.Univariate.Moments. The EDIT statement looks in
the available template stores for a table template called Base.Univariate.Moments. By default,
it first looks in SASUSER.TEMPLAT, but it finds nothing. Next, it looks in Sashelp.Tmplmst,
which contains the table templates that SAS provides. Because the EDIT statement can read
this template, this is the one that it uses. The program does not specify a destination for the
edited template, so PROC TEMPLATE writes to the first template store in the path that it can
write to, which is SASUSER.TEMPLAT. Therefore, it creates a table template of the same name
as the original one in SASUSER.TEMPLAT. See the
“ODS PATH Statement” on page 206.

(To learn the name of the table template that a procedure uses, run the procedure with the ODS
TRACE ON statement in effect. See
“Example” on page 319.

proc template;
edit base.univariate.moments;

Specify changes to the Moments output object. These three table attributes affect the
presentation of the Moments output object in the listing output. They have no effect on its
presentation in the HTML output. DOUBLE_SPACE= double spaces between the rows of the
output object. OVERLINE= and UNDERLINE= draw a continuous line before the first row of
the table and after the last row of the table.

double_space=on;
underline=on;
overline=on;

Modify a table element. This EDIT statement edits the table element Head within the table
template.

edit head;

Modify the appearance of the header. The STYLE= attribute alters the style element that
produces the Head table element. The style element Header is defined in the default style,
Styles.Default. Many procedures, including PROC UNIVARIATE, use this style element to
produce headers for tables and columns. (For information on viewing a style, see
“Styles That Are Shipped with SAS Software” on page 30.) In this case, the STYLE= attribute
specifies green for the foreground color and italic for the font style. All other attributes that are
included in Header remain in effect. The STYLE= attribute affects only the HTML output.

style=header{color=green fontstyle=italic};

Left-justify the header text. The JUST= attribute left-justifies the text of the header in both
the listing and the HTML output.

just=left;

760 Program 2: Using a Customized Table Template � Chapter 12

Stop the editing of the table element and the table template. The first END statement
ends the editing of the table element Head. The second END statement ends the editing of the
table Base.Univariate.Moments.

end;
end;

run;

Create the HTML output and specify the name of the HTML file. The ODS HTML
statement opens the HTML destination and creates HTML output. It sends all output objects to
the external file Custommoments-Body.htm in the current directory. Some browsers require an
extension of .htm or .html on the filename.

ods html body="Custommoments-Body.htm";

Select the output objects for the report. The ODS SELECT statement sends one output
object, Moments, to the open ODS destinations. Both the LISTING and the HTML destinations
are open. To learn the names of the output objects, run the procedure with the ODS TRACE ON
statement in effect. See
“Example” on page 319.

ods select moments;

Compute the descriptive statistics for one variable. PROC UNIVARIATE computes the
univariate statistics for one variable, Quantity. This is the same PROC UNIVARIATE step that
was used in “Program 1: Using the Default Table Template That SAS Provides” on page 757.
The actual results of the procedure step are the same in this case, but they are presented
differently because the procedure uses the edited table template. It does so because when it
looks for Base.Univariate.Moments, it looks in the first template store in the path,
SASUSER.TEMPLAT. If you wanted to use the table template that is supplied by SAS, you
would have to change the path with the ODS PATH statement. For more information see the
“ODS PATH Statement” on page 206.

proc univariate data=exprev mu0=3.5;
var Quantity;

title "Custom Moments Table";
run;

Stop the creation of the HTML output. The ODS HTML CLOSE statement closes the
HTML destination and all the files that are associated with it. You must close the destination
before you can view the output with a browser.

ods html close;

TEMPLATE Procedure: Creating Tabular Output � Customized HTML Output 761

Customized Listing Output

Display 12.7 Listing Output (Customized Moments Table) from PROC UNIVARIATE

Customized HTML Output

Display 12.8 Customized HTML Output (Customized Moments Table) from PROC UNIVARIATE (Viewed with Microsoft
Internet Explorer)

762 Example 2: Comparing the EDIT Statement with the DEFINE TABLE Statement � Chapter 12

Example 2: Comparing the EDIT Statement with the DEFINE TABLE Statement

PROC TEMPLATE features:
EDIT statement
COLUMN statement
DEFINE statement:

STYLE= attribute
NOTES statement
DYNAMIC statement

Other ODS features:
ODS PATH statement
ODS HTML statement
ODS HTML CLOSE statement

Data set: See “Creating the Exprev Data Set” on page 875.

Program Description
This example compares the use of an EDIT statement with a DEFINE TABLE

statement for the same table template. The first program uses the EDIT statement to
change the Base.Summary table template. The foreground color of the NOBS column is
changed to green. The other templates and attributes of the Base.Summary table
template remain the same. The second program uses the DEFINE TABLE statement to
define a new table using the same name, Base.Summary. The NOBS column is the only
column defined in the new table template. When the PROC SUMMARY step executes,
only the NOBS column is printed. The only style attribute that formats the column is
the color=green attribute.

Program 1

Edit the existing table template Base.Summary. The ODS PATH statement specifies which
item store to search first for the table template. The EDIT statement edits the table template
Base.Summary. The modified table template Base.Summary is written to the WORK.TEMPLAT
item store.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

ods path work.templat (update) sashelp.tmplmst (read);
proc template;

edit Base.Summary;
edit nobs;
style={color=magenta background=white};

end;

end;
run;

TEMPLATE Procedure: Creating Tabular Output � Program 1 763

ods html file="temp.html";

proc summary data=exprev print;
class Sale_Type;

run;

ods html close;

Display 12.9 HTML Output Using an Edited Table Template for Base.Summary

The column labeled Age remains in the output because Age is defined as a dynamic variable
which is passed to the original Base.Summary table template and Age is specified as the CLASS
variable. The attributes of the NOBS column are modified in the EDIT statement where the
NOBS column is defined.

764 Program 1 � Chapter 12

Output 12.1 Base.Summary Table Template Modified by the EDIT Statement

The modified Base.Summary table template changes the foreground color of the NOBS column
to green. The vertical alignment and heading of the NOBS column, and the other table
attributes, are retained from the default table template and stay the same. To view the
Base.Summary table template created by Program 1, follow these steps.
1 Submit this command in the command bar:

odstemplates

2 Double-click the item store WORK.TEMPLAT.
3 Double-click the item store Base.
4 Right-click the table template Summary and select Open. The table template Base.Summary

is displayed in the Template Browser window.

proc template;
define table Base.Summary / store = SASUSER.TEMPLAT;

notes "Summary table for MEANS and SUMMARY";
dynamic one_var one_var_label one_var_name clmpct;
column class nobs id type ways (varname) (label) (min) (max) (range) (n)

(nmiss) (sumwgt) (sum) (mean) (uss) (css) (var) (stddev) (cv) (stderr
) (t) (probt) (lclm) (uclm) (skew) (kurt) (median) (mode) (q1) (q3) (
qrange) (p1) (p5) (p10) (p25) (p50) (p75) (p90) (p95) (p99);

header h;
define p99;

header = "99th Pctl";
generic;

end;
define p95;

header = "95th Pctl";
generic;

end;
define p90;

header = "90th Pctl";
generic;

end;
define p75;

header = "75th Pctl";
generic;

end;
define p50;

header = "50th Pctl";
generic;

end;
define p25;

header = "25th Pctl";
generic;

end;
define p10;

header = "10th Pctl";
generic;

end;
define p5;

header = "5th Ptcl";
generic;

end;
define p1;

header = "1st Pctl";
generic;

end;
define qrange;

header = "Quartile Range";
generic;

end;
define q3;

header = "Upper Quartile";
generic;

end;
define q1;

header = "Lower Quartile";
generic;

end;

TEMPLATE Procedure: Creating Tabular Output � Program 1 765

define mode;
header = "Mode";
generic;

end;
define median;

header = "Median";
generic;

end;
define kurt;

header = "Kurtosis";
generic;

end;
define skew;

header = "Skewness";
generic;

end;
define uclm;

define header huclm;
text "Upper " clmpct BEST8. %nrstr("%%/CL for Mean");
split = "/";

end;
header = huclm;
generic;

end;
define lclm;

define header hlclm;
text "Lower " clmpct BEST8. %nrstr("%%/CL for Mean");
split = "/";

end;
header = hlclm;
generic;

end;
define probt;

parent = Common.ParameterEstimates.Probt;
generic;

end;
define t;

parent = Common.ParameterEstimates.tValue;
generic;

end;
define stderr;

header = "Std Error";
parent = Common.ParameterEstimates.StdErr;
generic;

end;
define cv;

header = "Coeff of Variation";
generic;

end;
define stddev;

header = "Std Dev";
generic;

end;
define var;

header = "Variance";
generic;

end;
define css;

define header hcss;
text2 "CSS";
text "Corrected SS";

end;
header = hcss;
generic;

end;
define uss;

define header huss;
text2 "USS";
text "Uncorrected SS";

end;
header = huss;
generic;

end;

766 Program 1 � Chapter 12

define mean;
header = "Mean";
generic;

end;
define sum;

header = "Sum";
generic;

end;
define sumwgt;

header = "Sum Wgts";
generic;

end;
define nmiss;

header = "N Miss";
generic;

end;
define n;

header = "N";
generic;

end;
define range;

header = "Range";
generic;

end;
define max;

define header hmax;
text2 "Max";
text "Maximum";

end;
header = hmax;
generic;

end;
define min;

define header hmin;
text2 "Min";
text "Minimum";

end;
header = hmin;
generic;

end;
define label;

header = "Label";
id;
generic;

end;
define varname;

header = "Variable";
id;
generic;

end;
define ways;

header = "Ways";
vjust = T;
id;

end;
define type;

header = "Type";
vjust = T;
id;

end;
define id;

vjust = T;
id;
generic;

end;

TEMPLATE Procedure: Creating Tabular Output � Program 2 767

define nobs;
header = "N Obs";
vjust = T;
style = {

color = green
};
id;

end;
define class;

vjust = T;
id;
generic;
blank_internal_dups;

end;
define h;

text "Analysis Variable : " one_var_name " " one_var_label;
space = 1;
just = C;
print = one_var;
spill_margin;

end;
required_space = 5;
underline;
overline;
byline;
use_format_defaults;
double_space;
split_stack;
use_name;
order_data;
classlevels;

end;
run;

Program 2

Define the table Base.Summary. The ODS PATH statement specifies which item store to
search first for the table template. The DEFINE TABLE statement creates a new table
template Base.Summary. The new table template Base.Summary is written to the
WORK.TEMPLAT item store.

ods path work.templat (update) sashelp.tmplmst (read);
proc template;

define table Base.Summary;
notes "Summary table for MEANS and SUMMARY";
dynamic clmpct one_var_name one_var_label one_var;
column class nobs id type ways (varname) (label) (min) (max) (range) (n

) (nmiss) (sumwgt) (sum) (mean) (uss) (css) (var) (stddev) (cv) (
stderr) (t) (probt) (lclm) (uclm) (skew) (kurt) (median) (mode) (q1)
(q3) (qrange) (p1) (p5) (p10) (p25) (p50) (p75) (p90) (p95) (p99);

define nobs;
style={color=magenta backgroundcolor=white};

end;

end;
run;

ods html file="temp.html";

768 Program 2 � Chapter 12

proc summary data=exprev print;
class Sale_Type;
run;

ods html close;

Display 12.10 HTML Output That Uses the Table Template Base.Summary.

The column labeled Age is missing because it was not defined in the new table template
Base.Summary. The new table template only defined the NOBS column with a green foreground
and no column headings.

TEMPLATE Procedure: Creating Tabular Output � Example 3: Creating a New Table Template 769

Output 12.2 Base.Summary Table Template Created by the DEFINE TABLE Statement

The Base.Summary table template defines the foreground color of the NOBS column to green. Because the
vertical alignment and heading of the NOBS column, and the other table attributes, are not defined, they are no
longer part of the Base.Summary table template. To view the table template Base.Summary created by Program
2, follow these steps.

1 Submit this command:

odstemplates

2 Double-click the item store WORK.TEMPLAT.

3 Double-click the item store Base.

4 Right-click the table template Summary and select Open. The table template Base.Summary is displayed in
the Template Browser window.

proc template;

define table Base.Summary / store = WORK.TEMPLAT;

notes "Summary table for MEANS and SUMMARY";

dynamic clmpct one_var_name one_var_label one_var;

column class nobs id type ways (varname) (label) (min)

(max) (range) (n)(nmiss) (sumwgt) (sum) (mean) (uss) (css)

(var) (stddev) (cv) (stderr) (t) (probt) (lclm) (uclm) (skew)

(kurt) (median) (mode) (q1) (q3) (qrange) (p1) (p5) (p10)

(p25) (p50) (p75) (p90) (p95) (p99);

define nobs;

style = {

color = green

};

end;

end;

run;

Example 3: Creating a New Table Template
PROC TEMPLATE features:

Table attributes:
DOUBLE_SPACE=
OVERLINE=
UNDERLINE=

DEFINE TABLE statement:
COLUMN statement
DEFINE statement (for columns):

GENERIC= attribute
HEADER= attribute
ID= attribute
STYLE= attribute
VJUST= attribute

DEFINE statement (for headers):
TEXT statement
STYLE= attribute
SPACE= attribute

DEFINE FOOTER statement

770 Program Description � Chapter 12

HEADER statement
MVAR statement

Other ODS features:
ODS HTML statement

FILE statement with ODS= option

PUT statement with _ODS_ argument

Data set: See “Creating the Charity Data Set” on page 869.

Program Description

This example creates a custom table template for an output data set that PROC
MEANS produces.

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program 1: Producing an Output Data Set with PROC MEANS

Set the SAS system options. The OPTIONS statement controls several aspects of the listing
output. None of these options affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

Create formats for the variables Year and School. PROC FORMAT creates formats for
Year and School.

proc format;
value yrFmt . = " All";
value $schFmt " " = "All ";
run;

Compute the descriptive statistics, and specify the options and subgroups for
analysis. This PROC MEANS step analyzes the data for the one-way combination of the class
variables and across all observations. It creates an output data set that includes variables for
the total and average amount of money raised. The data set also includes new variables for the
top three amounts of money raised, the names of the three students who raised the money, the
years when the students raised the money, and the schools that the students attended.

proc means data=Charity descendTypes charType noprint;
class School Year;
var moneyRaised;
types () School year;
output out=top3list sum= mean=

idgroup (max(moneyRaised) out[3](moneyRaised name school year)=)
/ autoname;

run;

TEMPLATE Procedure: Creating Tabular Output � Program 2: Building a Custom Table Template for the TopN Report 771

Print the report. This PROC PRINT step generates traditional listing output of the output
data set that PROC MEANS created.

proc print data=top3list noobs;
title "Simple PROC PRINT of the Output Data Set";

run;

Listing Output from PROC PRINT

Output 12.3 PROC PRINT Listing Output from PROC MEANS

Simple PROC PRINT of the Output Data Set 1

money money
Raised_ Raised_ money money money

School Year _TYPE_ _FREQ_ Sum Mean Raised_1 Raised_2 Raised_3

Kennedy All 10 53 $1575.95 $29.73 $72.22 $52.63 $43.89
Monroe All 10 56 $1616.80 $28.87 $78.65 $65.44 $56.87
All 1992 01 31 $892.92 $28.80 $55.16 $53.76 $52.63
All 1993 01 32 $907.92 $28.37 $65.44 $47.33 $42.23
All 1994 01 46 $1391.91 $30.26 $78.65 $72.22 $56.87
All All 00 109 $3192.75 $29.29 $78.65 $72.22 $65.44

Name_1 Name_2 Name_3 School_1 School_2 School_3 Year_1 Year_2 Year_3

Luther Thelma Jenny Kennedy Kennedy Kennedy 1994 1992 1992
Willard Cameron L.T. Monroe Monroe Monroe 1994 1993 1994
Tonya Edward Thelma Monroe Monroe Kennedy 1992 1992 1992
Cameron Myrtle Bill Monroe Monroe Kennedy 1993 1993 1993
Willard Luther L.T. Monroe Kennedy Monroe 1994 1994 1994
Willard Luther Cameron Monroe Kennedy Monroe 1994 1994 1993

Program 2: Building a Custom Table Template for the TopN Report

Set the SAS system options. The OPTIONS statement controls several aspects of the listing
output. None of these options affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

Create the HTML output and specify the name of the HTML file. The ODS HTML
statement opens the HTML destination and creates HTML output. It sends all output objects to
the external file Topn-Body.htm in the current directory. Some browsers require an extension of
.htm or .html on the filename.

ods html body="Topn-Body.htm";

Create the table template Means.Topn The DEFINE statement creates the table template
Means.Topn in the first template store in the path for which you have write access. By default,
this template store is SASUSER.TEMPLAT.

proc template;
define table means.topn;

772 Program 2: Building a Custom Table Template for the TopN Report � Chapter 12

Specify the symbols that reference three macro variables. The MVAR statement defines
three symbols that reference macro variables. ODS will use the values of these variables as
strings. References to the macro variables are resolved when ODS binds the template and the
data component to produce an output object. First_Year and Last_Year will contain the values of
the first and last years for which there are data. Their values are assigned by the SYMPUT
statements in the DATA step. SYSDATE9 is an automatic macro variable whose value is always
available.

mvar first_year last_year sysdate9;

Specify the column names and the order in which they appear in the report. The
COLUMN statement declares these variables as columns in the table and specifies their order
in the table. If a column name appears in parentheses, then PROC TEMPLATE stacks the
values of all variables that use that column template one below the other in the output object.
Variables are assigned a column template in the DATA step that appears later in the program.

column class sum mean (raised) (name) (school) (year);

Specify three customized changes to the table template. These three table attributes
affect the presentation of the output object in the listing output. They have no effect on its
presentation in the HTML output. DOUBLE_SPACE= double spaces the rows of the output
object. OVERLINE= and UNDERLINE= draw a continuous line before the first row of the table
and after the last row of the table.

double_space=on;
overline=on;
underline=on;

Specify the two table headers and the order in which they appear in the report. The
HEADER statement declares Table_Header_1 and Table_Header_2 as headers in the table and
specifies the order in which the headers appear in the output object.

header table_header_1 table_header_2;

Create the table element Table_Header_1. The DEFINE statement and its substatement
and attribute define Table_Header_1. The TEXT statement specifies the text of the header. The
STYLE= attribute alters the style element that displays the table header. The style element
Header is defined in the default style, Styles.Default. (For information on viewing a style, see
“Styles That Are Shipped with SAS Software” on page 30.) In this case, the STYLE= attribute
specifies a large font size. All other attributes that are included in Header remain in effect. This
attribute affects only the HTML output.

The END statement ends the header template.

define table_header_1;
text "Top Three Fund Raisers";
style=header{fontsize=6};

end;

TEMPLATE Procedure: Creating Tabular Output � Program 2: Building a Custom Table Template for the TopN Report 773

Create the table element Table_Header_2. The DEFINE statement and its substatement
and attribute define Table_Header_2. The TEXT statement uses text and the macro variables
First_Year and Last_Year to specify the contents of the header. When ODS binds the data
component to the table template (in the DATA step that follows), it will resolve the values of the
macro variables First_Year and Last_Year. The table template itself contains references to the
macro variables.

The SPACE= attribute inserts a blank line after the header (in the listing output only).

The END statement ends the header template.

define table_header_2;
text "from " first_year " to " last_year;
space=1;

end;

Create the table element Table_Footer. The DEFINE statement and its substatement and
attribute define Table_Footer. The FOOTER argument declares Table_Footer as a footer.
(Compare this approach with the creation of the headers. You could use a FOOTER statement
instead of the FOOTER argument in the DEFINE statement.)

The TEXT statement specifies the text of the footer. When ODS binds the data component to the
table template (in the DATA step that follows), it will resolve the value of the macro variable
SYSDATE9. The table template itself contains a reference to the macro variable. The SPLIT=
attribute specifies the asterisk as the split character. This prevents the header from splitting at
the open parenthesis. If no split character is specified, then ODS interprets the nonalphabetic,
leading character as the split character (see the discussion of text-specification(s) in “TEXT
Statement” on page 639.) Alternatively, place a space character before the open parenthesis.

The STYLE= attribute alters the style element that displays the table footer. The style element
Header is defined in the default style, Syles.Default. (For information on viewing a style, see
“Viewing the Contents of a Style” on page 538.) In this case, the STYLE= attribute specifies a
small font size. All other attributes that are included in Footer remain in effect. This attribute
affects only the HTML output.

The END statement ends the footer template.

define footer table_footer;
text "(report generated on " sysdate9 ")";
split="*";
style=header{fontsize=2};

end;

774 Program 2: Building a Custom Table Template for the TopN Report � Chapter 12

Create the column template Class. The DEFINE statement and its attributes create the
column template Class. (The COLUMN statement earlier in the program declared Class as a
column.)

GENERIC= specifies that multiple variables can use the same column template. GENERIC= is
not specific to a destination.

ID= specifies that this column should be repeated on every data panel if the report uses
multiple data panels. ID= affects only the listing output.

VJUST= specifies that the text appear at the top of the HTML table cell that it is in. VJUST=
affects only the HTML output.

STYLE= specifies that the column uses the DATA table element. This table element is defined in
the default style, which is the style that is being used. STYLE= affects only the HTML output.

The END statement ends the template.

Notice that, unlike subsequent column templates, this column template does not include a
header. This is because the same header is not appropriate for all the variables that use this
column template. Because there is no header specified here or in the FILE statement, the
header comes from the label that was assigned to the variable in the DATA step.

define class;
generic=on;
id=on;
vjust=top;
style=data;

end;

Create six additional columns. Each of these DEFINE statements and its attributes creates
a column template. GENERIC= specifies that multiple variables can use a column template
(although in the case of Sum and Mean, only one variable uses the template). HEADER=
specifies the text for the column header. VJUST= specifies that the text appear at the top of the
HTML table cell that it is in. The END statement ends the template.

define sum;
generic=on;
header="Total Dollars Raised";
vjust=top;

end;

define mean;
generic=on;
header="Average Dollars per Student";
vjust=top;

end;

define raised;
generic=on;
header="Individual Dollars";

end;

define name;
generic=on;
header="Student";

end;

define school;
generic=on;

TEMPLATE Procedure: Creating Tabular Output � Program 2: Building a Custom Table Template for the TopN Report 775

header="School";
end;

define year;
generic=on;
header="Year";

end;

End the table template. This END statement ends the table template. The RUN statement
ends the PROC TEMPLATE step.

end;
run;

Create the data component. This DATA step does not create a data set. Instead, it creates a
data component and, eventually, an output object. The SET statement reads the data set
TOP3LIST that was created with PROC MEANS.

data _null_;
set top3list;

Route the DATA step results to ODS and use the Means.Topn table template. The
combination of the fileref PRINT and the ODS option in the FILE statement routes the results
of the DATA step to ODS. (For more information on using the DATA step with ODS, see
Chapter 3, “Output Delivery System and the DATA Step,” on page 39.) The TEMPLATE=
suboption tells ODS to use the table template named Means.Topn, which was previously created
with PROC TEMPLATE.

file print ods = (
template="means.topn"

Specify the column template to use for each variable. The COLUMNS= suboption places
DATA step variables into columns that are defined in the table template. For example, the first
column-specification specifies that the first column of the output object contains the values of
the variable SCHOOL and that it uses the column template named Class. GENERIC= must be
set to ON in both the table template and each column assignment in order for multiple
variables to use the same column template.

columns=(
class=school(generic=on)
class=year(generic=on)
sum=moneyRaised_sum(generic=on)
mean=moneyRaised_mean(generic=on)
raised=moneyRaised_1(generic=on)
raised=moneyRaised_2(generic=on)
raised=moneyRaised_3(generic=on)
name=name_1(generic=on)
name=name_2(generic=on)
name=name_3(generic=on)
school=school_1(generic=on)
school=school_2(generic=on)
school=school_3(generic=on)
year=year_1(generic=on)
year=year_2(generic=on)
year=year_3(generic=on)
)

776 listing output for the TopN Report � Chapter 12

);

Write the data values to the data component. The _ODS_ option and the PUT statement
write the data values for all columns to the data component.

put _ods_;
run;

Stop the creation of HTML output. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are associated with it. You must close the destination before
you can view the output with a browser.

ods html close;

listing output for the TopN Report
Compare this customized output to the PROC PRINT listing output in Output 12.3.

Output 12.4 Using a Customized Table to Produce Listing Output

Simple PROC PRINT of the Output Data Set 1
Top Three Fund Raisers

from to

Average
Total Dollars

Dollars per Individual
Schools Years Raised Student Dollars Student School Year
__
Kennedy All $1575.95 $29.73 $72.22 Luther Kennedy 1994

$52.63 Thelma Kennedy 1992
$43.89 Jenny Kennedy 1992

Monroe All $1606.80 $28.69 $78.65 Willard Monroe 1994
$65.44 Cameron Monroe 1993
$56.87 L.T. Monroe 1994

All 1992 $882.92 $28.48 $55.16 Tonya Monroe 1992
$53.76 Edward Monroe 1992
$52.63 Thelma Kennedy 1992

All 1993 $907.92 $28.37 $65.44 Cameron Monroe 1993
$47.33 Myrtle Monroe 1993
$42.23 Bill Kennedy 1993

All 1994 $1391.91 $30.26 $78.65 Willard Monroe 1994
$72.22 Luther Kennedy 1994
$56.87 L.T. Monroe 1994

All All $3182.75 $29.20 $78.65 Willard Monroe 1994
$72.22 Luther Kennedy 1994
$65.44 Cameron Monroe 1993

__
(report generated on 30JUN2003)

TEMPLATE Procedure: Creating Tabular Output � Program Description 777

HTML Output: Using a Customized Table for the TopN Report

Display 12.11 HTML Output for the TopN Report (Viewed with Microsoft Internet Explorer)

Example 4: Setting the Style Element for Cells Based on Their Values

PROC TEMPLATE features:
DEFINE TABLE statement:

NMVAR statement
NOTES statement
TRANSLATE INTO statement

DEFINE COLUMN statement:
BLANK_DUPS= attribute
CELLSTYLE AS statement
GENERIC= attribute

Other ODS features:
ODS HTML statement
FILE statement with ODS= option
PUT statement with _ODS_ argument

Data set: See “Creating the Grain_Production Data Set” on page 878.
Format: See “Creating the $CNTRY Format” on page 869.

Program Description
This example creates a template that uses different colors and font attributes for the

text inside cells, depending on their values.

778 Program � Chapter 12

Note: This example uses filenames that might not be valid in all operating
environments. To successfully run the example in your operating environment, you
might need to change the file specifications. See Appendix 3, “ODS HTML Statements
for Running Examples in Different Operating Environments,” on page 903. �

Program

Set the SAS system options. The OPTIONS statement controls several aspects of the listing
output. None of these options affects the HTML output. The TITLE statement specifies a title.

options nodate pageno=1 pagesize=60 linesize=72;
title "Leading Grain Producers";

Create the table template Shared.Cellstyle. The DEFINE statement creates the table
template Shared.Cellstyle in the first template store in the path that is available to write to. By
default, this template store is SASUSER.TEMPLAT.

proc template;
define table shared.cellstyle;

Specify that missing values show the text "No data" in the report. The TRANSLATE
INTO statement translates missing values (.) into the string No data.

translate _val_=. into "No data";

Store the information about the table in the table template. The NOTES statement
provides information about the table. NOTES statements remain a part of the compiled table
template whereas SAS comments do not.

notes "NMVAR defines symbols that will be used to determine the colors
of the cells.";

Specify the symbols that reference three macro variables. The NMVAR statement defines
three symbols that reference macro variables. ODS will convert the variable’s values to numbers
(stored as doubles) before using them. References to the macro variables are resolved when ODS
binds the template and the data component to produce an output object. The text inside
quotation marks provides information about the symbols. This information becomes a part of
the compiled table template whereas SAS comments do not.

LOW, MEDIUM, and HIGH will contain the values to use as the determinants of the style
element that displays the cell. The values are provided just before the DATA step that produces
the report.

nmvar low "Use default style."
medium "Use yellow foreground color and bold font weight"
high "Use red foreground color and a bold, italic font.";

Control the repetition of values that do not change from one row to the next row. The
CLASSLEVELS= attribute suppresses the display of the value in a column that is marked with
BLANK_DUPS=ON if the value changes in a previous column that is also marked with
BLANK_DUPS=ON. Because BLANK_DUPS= is set in a generic column, set this attribute as
well.

classlevels=on;

TEMPLATE Procedure: Creating Tabular Output � Program 779

Create the column template Char_Var. The DEFINE statement and its attributes create
the column template Char_Var. GENERIC= specifies that multiple variables can use the same
column template. BLANK_DUPS= suppresses the display of the value in the column if it does
not change from one row to the next (and, because CLASSLEVELS=ON for the table, if no value
changes in a preceding column that is marked with BLANK_DUPS=ON changes).

The END statement ends the template.

define column char_var;
generic=on;
blank_dups=on;

end;

Create the column template Num_Var. The DEFINE statement and its attributes create the
column template Num_Var. GENERIC= specifies that multiple variables can use the same
column template.

define column num_var;
generic=on;

Align the values in the column without regard to the format field. JUSTIFY= justifies
the values in the column without regard to the format field. For numeric variables, the default
justification is RIGHT, so even the translated character value No data that is used for missing
values is right-justified. Without JUSTIFY=ON in this column template, the value No data is
formatted as a character variable (left-justified) within a format field that has the same width
as the column.

justify=on;

Specify which style element and style attributes to use for different values in the
column. The CELLSTYLE AS statement specifies the style element and style attributes to use
for different values in this column. If a value is less than or equal to the value of the variable
LOW, the cell uses the unaltered Data style element. If a value is greater than LOW but less
than or equal to the value of MEDIUM, the cell uses the style element Data with a foreground
color of green and an italic font. Similarly, other values use a foreground color of yellow or red
and combinations of a bold font weight and an italic font style. The CELLSTYLE AS statement
affects only the HTML destination.

The END statement ends the column template.

cellstyle _val_ <= low as data,
val <= medium as data

{color=green fontstyle=italic},
val <= high as data

{color=yellow fontweight=bold},
1 as data

{color=red fontstyle=italic
fontweight=bold};

end;

End the table template. This END statement ends the table template. The RUN statement
ends the PROC TEMPLATE step.

end;
run;

780 Program � Chapter 12

Create the HTML output and specify the name of the HTML file. The ODS HTML
statement opens the HTML destination and creates HTML output. It sends all output objects to
the external file CellStyle-Body.htm in the current directory. Some browsers require an
extension of .htm or .html on the filename.

ods html body="CellStyle-Body.htm";

Assign values to three macro variables. The %LET statements assign values to the macro
variables LOW, MEDIUM, and HIGH.

%let low=10000;
%let medium=50000;
%let high=100000;

Create the data component. This DATA step does not create a data set. Instead, it creates a
data component, and, eventually, an output object. The SET statement reads the data set
Grain_Production.

data _null_;
set grain_production;

Route the DATA step results to ODS and use the Shared.CellStyle table template. The
combination of the fileref PRINT and the ODS option in the FILE statement routes the results
of the DATA step to ODS. (For more information on using the DATA step with ODS, see
Chapter 3, “Output Delivery System and the DATA Step,” on page 39.) The TEMPLATE=
suboption tells ODS to use the table template named Shared.CellStyle, which was previously
created with PROC TEMPLATE.

file print ods=(
template="shared.cellstyle"

Specify the column template to use for each variable. The COLUMNS= suboption places
DATA step variables into columns that are defined in the table template. For example, the first
column-specification specifies that the first column of the output object contains the values of
the variable YEAR and that it uses the column template named Char_Var. GENERIC= must be
set to ON, both in the table template and in each column assignment, in order for multiple
variables to use the same column template.

columns=(
char_var=year(generic=on)
char_var=country(generic=on format=$cntry.)
char_var=type(generic=on)
num_var=kilotons(generic=on format=comma12.)
)

);

Write the data values to the data component. The _ODS_ option and the PUT statement
write the data values for all columns to the data component.

put _ods_;
run;

Stop the creation of HTML output. The ODS HTML CLOSE statement closes the HTML
destination and all the files that are associated with it. Close the destination so that you can
view the output with a browser.

ods html close;

TEMPLATE Procedure: Creating Tabular Output � Listing Output of a Customized Table 781

Listing Output of a Customized Table

Output 12.5 Listing Output

Only the table customizations appear in the listing output. Table customizations include the
suppression of values that do not change from one row to the next and the translation of
missing values to No data. The style customizations that are specified in the CELLSTYLE AS
statement do not appear in the listing output.

Leading Grain Producers 1
Year Country Type Kilotons

1995 Brazil Corn 36,276
Rice 11,236
Wheat 1,516

China Corn 112,331
Rice 185,226
Wheat 102,207

India Corn 9,800
Rice 122,372
Wheat 63,007

Indonesia Corn 8,223
Rice 49,860
Wheat No data

United States Corn 187,300
Rice 7,888
Wheat 59,494

1996 Brazil Corn 31,975
Rice 10,035
Wheat 3,302

China Corn 119,350
Rice 190,100
Wheat 109,000

India Corn 8,660
Rice 120,012
Wheat 62,620

Indonesia Corn 8,925
Rice 51,165
Wheat No data

United States Corn 236,064
Rice 7,771
Wheat 62,099

782 HTML Output of a Customized Table � Chapter 12

HTML Output of a Customized Table

Display 12.12 HTML Output (Viewed with Microsoft Internet Explorer)

Both the table customizations and the style customizations appear in the HTML output. Table
customizations include the suppression of values that do not change from one row to the next,
and the translation of missing values to No data. The style customizations include the colors
and font styles that are specified in the CELLSTYLE AS statement.

Example 5: Setting the Style Element for a Specific Column, Row, and Cell
PROC TEMPLATE features:

DEFINE STYLE statement:
REPLACE statement

DEFINE TABLE statement:

TEMPLATE Procedure: Creating Tabular Output � Program 783

CELLSYTLE–AS statement
DEFINE COLUMN statement:

DEFINE HEADER statement:
TEXT statement

DEFINE HEADER statement:
TEXT statement

Other ODS features:
FILE statement with ODS= option
ODS HTML statement:

STYLE= option
ODS PDF statement:

STYLE= option
PUT statement with _ODS_ argument
ODS TRACE statement

Data set: See “Creating the Exprev Data Set” on page 875.

Program Description
This example combines a customized style with a customized table template to

produce output with a checkerboard pattern of table cells.

Program

options obs=20;
title;

Create the new style Greenbar. The PROC TEMPLATE statement starts the TEMPLATE
procedure. The DEFINE STYLE statement creates a new style Greenbar.

proc template;
define style greenbar;

Specify the parent style from which the Greenbar style inherits its attributes. The
PARENT= attribute specifies the style from which the Greenbar definition inherits its style
elements and attributes. All the style elements and their attributes that are specified in the
parent’s definition are used in the current definition unless the current definition overrides them.

parent=styles.printer;

Change the colors used in the headers and footers. The REPLACE statement adds a style
element to the Greenbar style from the parent style, but the background is light green, the
foreground is black, and the font is bold and has a size of 3.

replace headersandfooters from cell /
backgroundcolor=light green

784 Program � Chapter 12

color=black
fontsize=3
fontweight=bold

;

End the style. The END statement ends the style. The RUN statement executes the PROC
TEMPLATE step.

end;
run;

Create the HTML and PDF output and specify the style that you want to use for the
output. The ODS HTML statement opens the HTML destination and creates HTML output. It
sends all output objects to the file greenbar.html in the current directory. The STYLE= option
tells ODS to use Greenbar as the style when it formats the output.

The ODS PDF statement opens the PDF destination and creates PDF output. It sends all
output objects to the file greenbar.pdf in the current directory. The STYLE= option tells ODS to
use Greenbar as the style when it formats the output.

ods html body="greenbar.html" style=greenbar;
ods pdf file="greenbar.pdf" style=greenbar;

Create the table template Checkerboard. The DEFINE statement creates the table
template Checkerboard in the first template store in the path that is available to write to. By
default, this template store is SASUSER.TEMPLAT.

proc template;
define table Checkerboard;

Specify which style element and style attributes to use for different cells.

The CELLSTYLE-AS statement specifies the style element and style attributes to use for cells
in each of the rows and columns. The CELLSTYLE-AS statement creates the checkerboard
effect in the output. If both the row and column are odd numbered, then the cell is yellow in
color. Similarly, if both the row and column are even numbered, then the cell is yellow in color.
The CELLSTYLE-AS statement has no effect on the LISTING destination because it is
changing style elements and style attributes which have no effect in listing output.

cellstyle mod(_row_,2) && mod(_col_,2) as data{backgroundcolor=yellow fontweight=bold },
not(mod(_row_,2)) && not(mod(_col_,2)) as data{backgroundcolor=yellow fontwei
1 as data;

Create the header template Top. The DEFINE HEADER statement defines the table header
Top.

The TEXT statement specifies the text of the header “Checkerboard Table Template”.

The END statement ends the header template.

define header top;
text "Checkerboard Table Template";

TEMPLATE Procedure: Creating Tabular Output � Program 785

end;

Create the column template Country. The DEFINE COLUMN statement creates the column
template Country.
The DEFINE HEADER statement creates the header template Bar.
The DATANAME= column attribute specifies the name of the column Country in the data
component to associate with the column template Country.
The TEXT statement specifies the text to use in the header.
The first END statement ends the header template.
The HEADER statement declares Bar as the header in the table.
The second END statement ends the column template.

define column country;
dataname=country;
define header bar;

text "Country";
end;
header=bar;

end;

Create the column template OrderDate. The DEFINE COLUMN statement creates the
column template OrderDate.
The DATANAME= column attribute specifies the name of the column OrderDate in the data
component to associate with the column template OrderDate.
The DEFINE HEADER statement creates the header template Bar.
The TEXT statement specifies the text “Order Date” to use in the header.
The first END statement ends the header template.
The HEADER statement declares Bar as the header in the table.
The second END statement ends the column template.

define column OrderDate;
dataname=Order_Date;
define header bar;

text "Order Date";
end;
header=bar;

end;

Create the column template ShipDate. The DEFINE COLUMN statement creates the
column template ShipDate.
The DATANAME= column attribute specifies the name of the column template ShipDate in the
data component to associate with the column template ShipDate.
The DEFINE HEADER statement creates the header template Bar.
The TEXT statement specifies the text “Ship Date” to use in the header.
The first END statement ends the header template.
The HEADER statement declares Bar as the header in the table.
The second END statement ends the column template.

define column ShipDate;
dataname=Ship_Date;

786 Program � Chapter 12

define header bar;
text "Ship Date";

end;
header=bar;

end;

Create the column template SaleType. The DEFINE COLUMN statement creates the
column template SaleType.

The DATANAME= column attribute specifies the name of the column template SaleType in the
data component to associate with the column template SaleType.

The DEFINE HEADER statement creates the header template Bar.

The TEXT statement specifies the text “Sale Type” to use in the header.

The first END statement ends the header template.

The HEADER statement declares Bar as the header in the table.

The second END statement ends the column template.

define column SaleType;
dataname=Sale_Type;
define header bar;

text "Sale Type";
end;
header=bar;

end;

End the table template. The END statement ends the table template. The RUN statement
executes the TEMPLATE procedure.

end;
run;

Create the data component. This DATA step does not create a data set. Instead, it creates a
data component that is used to produce an output object.

The SET statement reads the data set Work.Exprev.

data _null_;
set work.exprev;

Route the DATA step results to ODS and use the Checkerboard table template. The
combination of the fileref PRINT and the ODS option in the FILE statement routes the results
of the DATA step to ODS. (For more information about using the DATA step with ODS, see
Chapter 3, “Output Delivery System and the DATA Step,” on page 39.) The TEMPLATE=
suboption tells ODS to use the table template named Checkerboard.

file print ods=(template="Checkerboard");
put _ods_;

run;

TEMPLATE Procedure: Creating Tabular Output � Program 787

Stop the creation of HTML and PDF output. The ODS HTMLCLOSE statement closes the
HTML destination and all the files that are associated with it. The ODS PDf CLOSE statement
closes the PDF destination and all the files that are associated with it. You must close the
destinations before you can view the output.

ods html close;
ods pdf close;

Display 12.13 HTML Output (Viewed with Internet Explorer 6.0)

788 Example 6: Creating Master Templates � Chapter 12

Display 12.14 PDF Output (Viewed with Acrobat Reader 5.0)

Example 6: Creating Master Templates

PROC TEMPLATE features:
DEFINE TABLE statement:

CELLSTYLE AS statement:
STYLE variable
ROW variable

DEFINE COLUMN statement:
CELLSTYLE AS statement:

VAL variable

STYLE= column attribute statement
DEFINE HEADER statement:

STYLE= column attribute statement
LINK statement

Other ODS features: ODS HTML statement

TEMPLATE Procedure: Creating Tabular Output � Program 789

Program Description
The following program creates four master templates for tables: Base.Template.Table,

Base.Template.Column, Base.Template.Header, and Base.Template.Footer. These
templates contain style information that creates alternating blue and green row colors
and specific styles for headers and footers. Once they are created, master templates are
applied to every table created by SAS until you specifically remove the master template
or it is overridden by another table template created by PROC TEMPLATE.

Program

title;
options nodate nostimer LS=78 PS=60;
ods listing close;

Create the master parent Base.Template.Table and specify which style element and
style attributes to use for different cells in a row. The DEFINE TABLE statement creates
the master parent Base.Template.Table. Base.Template.Table will be applied to every table
created by SAS, unless it is overridden by another template created by PROC TEMPLATE,
removed with the DELETE statement, or manually removed from the item store.

The CELLSTYLE-AS statement specifies the style element and style attributes to use for cells
in each of the rows in a table, which creates the alternating row colors in the output. If the row
is even numbered and does not contain a style element named RowHeader, then the cell has a
green background color and white font color. Similarly, if the row is even numbered and does
contain a style element named RowHeader, then the cell has a blue background color and white
font color.

proc template;
define table base.template.table;

cellstyle mod(_row_, 2) and _style_ ^= "RowHeader" as {background=blue color=white},
mod(_row_, 2) and _style_ = "RowHeader" as {background=green color=white};

end;

Create the master parent Base.Template.Column and specify which style element and
style attributes to use for different cells in a column. The DEFINE TABLE statement
creates the master parent Base.Template.Column. Base.Template.Column will be applied to
every table created by SAS, unless it is overridden by another template created by PROC
TEMPLATE, removed with the DELETE statement, or manually removed from the item store.
The STYLE= column attribute statement specifies that column fonts are italicized. The first
CELLSTYLE-AS statement specifies that if the value of the cell is greater than five, the font
size is 15pt and if the value of the cell is equal to "Num" then the font size is 20pt.

define column base.template.column;
style={fontstyle=italic};
cellstyle _val_ > 5 as {fontsize=15pt},

val = "Num" as {fontsize=20pt};
end;

790 Output � Chapter 12

Create the master parent Base.Template.Header and specify the font size and font
color for the headers and footers. The DEFINE TABLE statement creates the master parent
Base.Template.Header. The STYLE= header attribute statement specifies that the header font is
20pt and purple. The LINK statement creates the Base.Template.Footer master template and
links it to the Base.Template.Header template, which it inherits its characteristics from.
Base.Template.Header and Base.Template.Footer will be applied to every table created by SAS,
unless they are overridden by another template created by PROC TEMPLATE, removed with
the DELETE statement, or manually removed from the item store.

define header base.template.header;
style={fontsize=20pt color=purple};

end;
link base.template.footer to base.template.header;
run;

Create HTML output and view the contents of the SAS data set. The ODS HTML
statement specifies the destination to write to and the file name of the output. The CONTENTS
procedure shows the contents of the SAS data set SasHelp.Class. The ODS HTML CLOSE
statement closes the HTML destination and the files that are associated with it. If you do not
close the destination, then you will not be able to view the files.

ods html file="MyFile.html" ;
ods select variables;
proc contents data=sashelp.class; run;

ods html close;

Delete the master templates. The DELETE statement deletes each master template. If you
do not delete them, they will be applied to all of your tabular output until you do delete them.

proc template;
delete base.template.table;
delete base.template.column;
delete base.template.header;
delete base.template.footer;

run;

Output

TEMPLATE Procedure: Creating Tabular Output � Example 7: Table Header and Footer Border Formatting 791

Display 12.15 Using Master Templates For HTML Output

Example 7: Table Header and Footer Border Formatting

PROC TEMPLATE features:
Border control style attributes:

BORDERBOTTOMCOLOR=
BORDERBOTTOMSTYLE=
BORDERBOTTOMWIDTH=
BORDERTOPCOLOR=
BORDERTOPSTYLE=
BORDERTOPWIDTH=

DEFINE statement

DEFINE STYLE statement

EDIT statement

FOOTER statement

HEADER statement

PARENT= statement

PREFORMATTED= header attribute

STYLE statement

WIDTH= header attribute

Other ODS features:
ODS RTF

ODS SELECT

Data set: See “Creating the Nlits Data Set” on page 889.

792 Program Description � Chapter 12

Program Description
You can use the TableHeaderContainer and TableFooterContainer style elements

along with the border control style attributes to change the borders of the regions
surrounding the table header and footer.

Note: The TableHeaderContainer and TableFooterContainer style elements are only
valid in the RTF destination. �

Program

Set the SAS system options and specify titles. The OPTIONS statement sets the SAS
system options and the TITLE statements specify titles for the output.

options nodate nonumber;

ods listing close;

title "TableHeaderContainer, TableFooterContainer, and Border Control Style
Attributes";

title2 "Allows Control of Borders Between the Header, Body, and Footer of a
Table";

Create the new style HeadersFootersBorders. The PROC TEMPLATE statement starts the
TEMPLATE procedure. The DEFINE STYLE statement creates a new style
HeadersFootersBorders. The PARENT= statement specifies that the new style inherits all of its
style elements and style attributes from the Styles.RTF style.

proc template;
define style HeadersFootersBorders;
parent=styles.rtf;

Modify the TableHeaderContainer style element. The STYLE statement with the FROM
option specified creates the style element TableHeaderContainer which inherits all of its style
elements and style attributes from the instance of TableHeaderContainer in the Styles.RTF
style. The BORDERBOTTOMWIDTH=, BORDERBOTTOMCOLOR=, and
BORDERBOTTOMSTYLE= style attributes specify the width, color, and line style of the bottom
border of the table header.

style TableHeaderContainer from TableHeaderContainer /
borderbottomwidth=12
borderbottomcolor=blue
borderbottomstyle=dotted;

Modify the TableFooterContainer style element. The STYLE statement with the FROM
option specified creates the style element TableFooterContainer which inherits all of its style
elements and style attributes from the instance of TableFooterContainer in the Styles.RTF
style. The BORDERTOPWIDTH=, BORDERTOPCOLOR=, and BORDERTOPSTYLE= style
attributes specify the width, color, and line style of the top border of the table footer.

style TableFooterContainer from TableFooterContainer /
bordertopwidth=6
bordertopcolor=red
bordertopstyle=double;

TEMPLATE Procedure: Creating Tabular Output � Program 793

Modify the Table style element. The STYLE statement with the FROM option specified
creates the style element Table which inherits all of its style elements and style attributes from
the instance of Table in the Styles.RTF style. The CELLSPACING=, RULES=, and FRAME=
attributes modify the cellspacing, rules, and frame of the table.

style table from table /
cellspacing=0 rules=groups frame=void;

end;
run;

Edit the Base.Datasets.Members table template. The EDIT statement, along with the
table template DEFINE statements and attributes, modifies the Base.Datasets.Members table
template. For more information about creating and modifying table templates, see Chapter 12,
“TEMPLATE Procedure: Creating Tabular Output,” on page 593.

proc template;
edit Base.Datasets.Members;

header hd1;
footer ft1;
define hd1;

preformatted=on;
just=l;
text" Table Header with Leading and Trailing Blanks ";

end;
define ft1;

preformatted=on;
just=l;
text" Table Footer with Leading and Trailing Blanks ";

end;
edit name;
define header myheader;
just=l;
preformatted=on;
text " My new header";

end;
header=myheader;
width=memname_width width_max=memname_width_max;
preformatted=on;

end;
end;

run;

Create the RTF file, select the output object and run PROC DATASETS. The ODS RTF
statement specifies the file that will contain the RTF output. The STYLE= option specifies the
style to apply to the output. The ODS SELECT statement selects the output object Members to
be sent to the open destinations.

ods rtf file="headerfooters.rtf" style=HeadersFootersBorders;
ods select members;
proc datasets lib=nlits;
run;
quit;

794 RTF Output � Chapter 12

Close the open destinations and open the LISTING destination. The ODS _ALL_ CLOSE
statement closes all open destinations and the files that are associated with them. If you do not
close the destinations, then you will not be able to view the files. The ODS LISTING statement
opens the LISTING destination.

ods _all_ close;
ods listing;

RTF Output

Display 12.16 RTF Output with Custom Headers and Footers

795

C H A P T E R

13
TEMPLATE Procedure: Creating
Markup Language Tagsets

Overview: ODS Tagsets and the TEMPLATE PROCEDURE 795
Markup Language Syntax: TEMPLATE Procedure 796

DEFINE TAGSET Statement 796

Event Variables 833

Concepts: Markup Languages and the TEMPLATE Procedure 838

Getting Familiar with Tagsets 838
Listing Tagset Names 838

Specifying Tagset Names 839

Viewing the Contents of a Tagset 839

Understanding Events 839

Understanding Variables 840

Displaying Event Variables and Their Values 842
Creating Custom Tagsets 842

Methods for Creating Custom Tagsets 843

Inheriting Events in a Tagset 843

Defining a Tagset Using the EVENT_MAP Tagset 843

Alternatives to EVENT_MAP 846
Defining a Tagset Using SAS DATA Step Functions 846

Examples: Creating and Modifying Markup Languages Using the TEMPLATE Procedure 846

Example 1: Creating a Tagset through Inheritance 846

Example 2: Creating a Tagset by Copying a Tagset’s Source 850

Example 3: Creating a New Tagset 855
Example 4: Executing Events Using the TRIGGER= Statement 857

Example 5: Indenting Output 859

Example 6: Using Different Styles for Events 861

Example 7: Modifying an Event to Include Other Stylesheets 863

Example 8: Using the STACKED_COLUMNS Attribute in a Tagset 863

Overview: ODS Tagsets and the TEMPLATE PROCEDURE
The TEMPLATE procedure enables you to create a tagset, which is a type of template

that defines how to generate a markup language output type from SAS output. You can
specify a tagset to create markup language output from ODS. SAS provides tagsets for
a variety of markup language output. For example, SAS provides several tagsets for
XML output, HTML output, XSL, and more. The TEMPLATE procedure enables you to
modify any of the SAS tagsets or create custom markup language tagsets.

The Output Delivery System uses the specified tagsets to mark the SAS output,
which you can view with an online browser or viewer.

For information about terms used in the TEMPLATE procedure, see “Terminology:
TEMPLATE Procedure” on page 402.

796 Markup Language Syntax: TEMPLATE Procedure � Chapter 13

Markup Language Syntax: TEMPLATE Procedure

PROC TEMPLATE;

DEFINE TAGSET tagset-path </ STORE=libref.template-store >;
<tagset-attribute-1; <... tagset-attribute-n;>>

DEFINE EVENT event-name;
<event-attribute-1; <…event-attribute-n>;>
statements;
END;

NOTES;
END;

DEFINE TAGSET Statement

Creates a tagset.

Requirement: An END statement must be the last statement in the template.

DEFINE TAGSET tagset-path | Base.Template.Tagset </
STORE=libref.template-store <(READ | WRITE | UPDATE)>>;

<tagset-attribute-1; <… tagset-attribute-n;>>
DEFINE EVENT event-name;

statements and attributes
NOTES ’text’;
END;

Table 13.1 DEFINE TAGSET Statements

Task Statement

Define what is written to the output file DEFINE EVENT

Provide information about the tagset NOTES

End a tagset, or end the editing of a tagset END

Required Arguments

tagset-path
specifies where to store the tagset.

TEMPLATE Procedure: Creating Markup Language Tagsets � DEFINE TAGSET Statement 797

Requirement: A tagset-path consists of one or more names, which are separated by
periods. Each name represents a directory, or level, in a template store.

Default: PROC TEMPLATE writes the template to the first template store in the
current path where you have Write access.

Tip: Use the ODS PATH statement to control the item store where the tagset is
stored.

Tip: Names are not case sensitive. However, PROC TEMPLATE puts the first letter
in uppercase for easier reading.

Base.Template.Tagset
creates a tagset that is the parent of all tagsets that do not explicitly specify a
parent. Once this template is created, you do not need to explicitly specify it in your
SAS programs. It is automatically applied to all output until you specifically remove
it from the item store.

CAUTION:
The Base.Template.Tagset supplied by SAS contains information used by many tagsets.
If this information is not retained, unexpected behavior may occur. To safely create your
own Base.Template.Tagset, you can start with the existing Base.Template.Tagset
template by writing it to an external file and editing the existing template contents. �

Interaction: The Base.Template.Tagset master template attributes are overridden
by other tagsets.

Tip: To view an existing tagset to base your own Base.Template.Tagset on, see
“Viewing the Contents of a Tagset” on page 839.

Options

STORE=libref.template-store
specifies the template store where the template is stored in the following form:

libref.template-store <access-option(s)>

libref.template-store
specifies the current template store.

Default: If you omit an access-option, then the template-store is accessed with
UPDATE permissions unless you have read-only access.

Tip: If the specified template store does not exist, then it is created.

Interaction: The STORE= option overrides the search list specified in the PATH
statement.

Restriction: The STORE= option syntax does not become part of the compiled
template.

access-option(s)
specifies the access mode for the specified template store.

READ
provides read-only access.

WRITE
provides Write access as well as Read access. If the tagset does not exist, then
WRITE access creates a new tagset. If the tagset does exist, then WRITE access
does not replace an existing tagset.

798 DEFINE TAGSET Statement � Chapter 13

UPDATE
provides Update access as well as Read access. If the tagset does not exist, then
UPDATE does not create a new tagset. If the tagset does exist, then UPDATE will
replace it.

Tagset Attributes

Table 13.2 Tagset Attributes by Task

Task Attribute

Specify the maximum number of characters that will
be considered for forced line breaks by ODS

BREAKTEXT_LENGTH=

Specify the maximum ratio of the width of space
available for text entry to the length of the text that
is supposed to fit in that space

BREAKTEXT_RATIO=

Specify the maximum width of space available for text
entry that ODS will consider for placement of
automatic line breaks

BREAKTEXT_WIDTH=

Specify the text to use as a copyright COPYRIGHT=

Specify the name of the event to use by default DEFAULT_EVENT=

Specify whether the tagset supports embedded
stylesheets

EMBEDDED_STYLESHEET=

Specify a comma-delimited list of image types or file
extensions that are valid for an output destination

IMAGE_FORMATS=

Specify the number of spaces the NDENT and
XDENT event statements will indent the output

INDENT=

Specify a string, which is printed to the SAS log when
the tagset is used

LOG_NOTE=

Specify special characters and their translations MAP=

Specify strings to substitute for special characters MAPSUB=

Set a category for the output OUTPUT_TYPE=

Specify whether a byte-order mark is written to the
output files when using a UTF character set

NO_BYTE_ORDER_MARK=

Define a nonbreaking space for the markup output NOBREAKSPACE=

Specify the tagset from which the current template
inherits

PARENT=

Specify whether all style attributes are available at
all times

PURE_STYLE=

Specify the text to use as a registered trademark REGISTERED_TM=

Define a string to use for line breaks in the markup
output

SPLIT=

Specify whether the tagset lets procedures place
columns on top of each other, or side by side

STACKED_COLUMNS=

Specify the text to use as a trademark TRADEMARK=

TEMPLATE Procedure: Creating Markup Language Tagsets � DEFINE TAGSET Statement 799

BREAKTEXT_LENGTH=number
specifies the maximum number of characters that will be considered for forced line
breaks by ODS. When the number of characters in the text exceeds the number
specified by the BREAKTEXT_LENGTH= option, then line breaks are inserted by
the application that displays the output. If the number of characters in the text is
less than or equal to the number specified by the BREAKTEXT_LENGTH= option,
then any necessary line breaks are inserted by ODS. The placement of the line
breaks is based upon the total available text width.
Example: To instruct ODS to not insert line breaks in text that is longer than 80

characters, specify the following:

BreakText_Length=80;

BREAKTEXT_RATIO=number
specifies the maximum ratio of the width of space available for text entry to the
length of the text that is supposed to fit in that space. If the ratio of width space to
text length is greater than the ratio specified by the BREAKTEXT_RATIO= option,
then any necessary line breaks are inserted by the application that displays the
output. If the ratio of width space to text length is equal to or less then the ratio
specified by the BREAKTEXT_RATIO= option, then any necessary line breaks are
inserted by ODS.
Example: To not insert line breaks into text that is more than 1.5 times longer than

the width of space it is to fit in, specify the following:

BreakText_Ratio=1.5;

BREAKTEXT_WIDTH=number
specifies the maximum width of space available for text entry that ODS will consider
for placement of automatic line breaks. If the width of space is greater than the
number specified by the BREAKTEXT_WIDTH= option, then any necessary line
breaks are inserted by the application that displays the output. If the width of space
is less than or equal to the number specified by the BREAKTEXT_WIDTH= option,
then ODS inserts necessary line breaks.
Example: To instruct ODS to not insert line breaks in text that is going into a

space greater than or equal to 40 characters wide, specify the following:

BreakText_Width=40;

COPYRIGHT= ’(text)’
specifies the text to use as the copyright.
Requirement: When specifying text, enclose the text in parentheses and then

quotation marks.

DEFAULT_EVENT= ’event-name’
specifies the name of an event to execute by default when the requested event cannot
be found in the tagset.
Requirement: When specifying an event-name, enclose the name of the event in

quotation marks.
Featured in: Example 3 on page 855

EMBEDDED_STYLESHEET= YES | ON | NO | OFF
specifies whether or not the tagset supports embedded stylesheets.
Default: The default value is YES or ON, which means that embedded stylesheets

are supported.
Tip: If embedded stylesheets are supported and you do not specify a stylesheet in

the ODS statement, then the stylesheet is written to the top of the output file.

800 DEFINE TAGSET Statement � Chapter 13

YES
supports embedded stylesheets.
Alias: ON

ON
supports embedded stylesheets.
Alias: YES

NO
does not support embedded stylesheets.
Alias: OFF

OFF
does not support embedded stylesheets.
Alias: NO

IMAGE_FORMATS= ’image-type(s)’
specifies a comma-delimited list of image types or file extensions that are valid for an
output destination. The image types can be any that are supported by SAS/GRAPH.
List them in order of preference.
Example: The following IMAGE_FORMATS= statement lists valid image types for

the HTML destination:

image_formats=’gif,jpeg,png’;

INDENT=n
specifies how many spaces the NDENT and XDENT event statements will indent the
output.

n
specifies a numeric value for the number of spaces that you want the output to
indent.

Default: 0
Tip: The INDENT= attribute is valid only in markup family destinations.
Featured in: Example 3 on page 855 and Example 5 on page 859

LOG_NOTE= ’string’
defines a string that is printed to the SAS log when the tagset is used.

string
specifies the text that is printed to the SAS log.
Requirement: Specify only one string at a time.

MAP= ’characters’
specifies the special characters that require translation.

characters
specifies one or more special characters.
Requirement: When listing special characters in the MAP= statement, omit blank

spaces between them.
Requirement: When you specify special characters, enclose the list of special

characters in quotation marks.
Requirement: Use the MAP= statement with the MAPSUB statement.
Featured in: Example 3 on page 855

MAPSUB= ’strings’
specifies the text to substitute for the characters that are specified in the MAP=
statement.

TEMPLATE Procedure: Creating Markup Language Tagsets � DEFINE TAGSET Statement 801

strings
Specifies the text strings to substitute for the characters that are specified in the
MAP= statement.
Requirement: When specifying multiple strings, use a forward slash (/) to

separate the text strings.
Requirement: When specifying strings, enclose the entire string list in quotation

marks.
Requirement: Use the MAPSUB= statement with the MAP= statement.

Featured in: Example 3 on page 855

NOBREAKSPACE= ’string’
defines a nonbreaking space for the markup output.

string
specifies the character that defines a nonbreaking space.
Requirement: When specifying a string, enclose the string in quotation marks.
Restriction: Specify only one string at a time.

Featured in: Example 3 on page 855

NO_BYTE_ORDER_MARK=YES | ON | NO | OFF
specifies whether or not a byte-order mark is written to the output files when using a
UTF character set.

OUTPUT_TYPE= CSV | HTML | LATEX | WML | XML
sets a category for the output.

CSV
produces output with comma-separated values.

HTML
produces Hypertext Markup Language output.

LATEX
produces output in LaTeX, which is a document preparation system for
high-quality typesetting.

WML
uses the Wireless Application Protocol (WAP) to produce a wireless markup
language.

XML
produces output in Extensible Markup Language.

Featured in: Example 3 on page 855

PARENT= tagset-path
specifies the tagset from which the current template inherits.

tagset-path
specifies the name of a directory in a template store.
Default: The current template inherits from the specified template in the first

template store where you have Read access. The PATH statement specifies
which locations to search for templates that were created by PROC
TEMPLATE, as well as the order in which to search for them.

Interaction: When you specify a parent, all of the template options, attributes,
and statements that are specified in the parent’s template are used in the
current template, unless the current template overrides them.

Requirement: When you specify a parent, all of the template options, attributes,
and statements that are specified in the parent’s template are used in the
current template, unless the current template overrides them.

802 DEFINE EVENT Statement � Chapter 13

Tip: Specify a tagset that SAS supplies or a customized tagset.
Tip: Control the item store from which the tagset is read by using the ODS PATH

statement.
Featured in: Example 1 on page 846 and Example 8 on page 863

PURE_STYLE=YES | ON | NO | OFF
specifies whether all of the style attributes are available at all times.

REGISTERED_TM= ’(text)’
specifies the text to use as the registered trademark.
Requirement: When specifying text, enclose the text in parentheses and then

quotation marks.

SPLIT= ’string’
defines a text string to use for line breaks in the markup output.
Requirement: When specifying a string, enclose the string in quotation marks.
Restriction: Specify one string at a time.
Featured in: Example 3 on page 855

STACKED_COLUMNS= YES | ON | NO | OFF
specifies whether or not the tagset lets procedures stack columns on top of each
other, or place them side by side.
Default: The default value is YES or ON, which means that columns are stacked.
Tip: To place columns side by side, specify the NO or OFF value.
Featured in: Example 3 on page 855 and Example 8 on page 863

YES
stacks columns on top of each other.
Alias: ON

ON
stacks columns on top of each other.
Alias: YES

NO
stacks columns side by side.
Alias: OFF

OFF
stacks columns side by side.
Alias: NO

TRADEMARK= ’(text)’
specifies the text to use as the trademark.
Requirement: When specifying text, enclose the text in parentheses and then

quotation marks.

DEFINE EVENT Statement

Defines what is written to the output file.

Interaction: You can add event statement conditions to any DEFINE EVENT statement.
For more information about event statement conditions, see “Event Statement
Conditions” on page 811.
Featured in: Example 6 on page 861 and Example 7 on page 863

TEMPLATE Procedure: Creating Markup Language Tagsets � DEFINE EVENT Statement 803

DEFINE EVENT event-name;

<event-attribute-1;<…event-attribute-n;>>

BLOCK event-name < / event-statement-condition(s)>;

BREAK </ event-statement-condition(s)>;

CLOSE </ event-statement-condition(s)>;

CONTINUE </ event-statement-condition(s)>;

DELSTREAM $$stream-variable-name </ event-statement-condition(s)>;

DO </ event-statement-condition(s)>;

DONE;

ELSE </ event-statement-condition(s)>;

EVAL $<$>user-defined-variable-name user-defined-variable-value where-expression
</event-statement-condition(s)>;

FLUSH </event-statement-condition(s)>;

ITERATE $dictionary-variable | $list-variable</ event-statement-condition(s)>;

NDENT </ event-statement-condition(s)>;

NEXT $dictionary-variable | $list-variable </ event-statement-condition(s)>;

OPEN $$stream-variable-name </ event-statement-condition(s)>;

PUT <function> <NL> <variable> <’text’ > < / event-statement-condition(s)>;

PUTL (<variable> | <’text’ >| <function> | <NL>) < / event-statement-condition(s)>;

PUTLOG (<variable> <’text’ > < function>)</ event-statement-condition(s)>;

PUTQ(<variable> | <’text’ >| <function> | <NL>)</ event-statement-condition(s)>;

PUTSTREAM $$stream-variable-name </ event-statement-condition(s)>;

PUTVARS variable-group variable-group-value< / event-statement-condition(s)>;

SET $<$>user-defined-variable-name user-defined-variable-value</
event-statement-condition(s)>;

STOP </ event-statement-condition(s)>;

TRIGGER event-name <START | FINISH> </ event-statement-condition(s)>;

UNBLOCK event-name </ event-statement-condition(s)>;

UNSETALL | $memory-variable | $$stream-variable</
event-statement-condition(s)>;

XDENT </ event-statement-condition(s)>;

END;

Table 13.3 DEFINE EVENT Statements

Task Statement

Add a condition to any DEFINE EVENT statement Event statement condition(s)

Set one or more event attributes event-attributes

Disable the specified event BLOCK

Prevent an event from executing BREAK

Close the current stream variable to which all PUT
statement variables are directed

CLOSE

804 DEFINE EVENT Statement � Chapter 13

Task Statement

Specify that the execution of the DO loop returns to
the corresponding DO statement

CONTINUE

Delete the specified stream variable DELSTREAM

Begin a statement block that executes if the required
condition is true

DO

End a statement block DONE

Begin a statement block that executes if the
corresponding DO statement is false

ELSE

Create or update a user-defined variable and its value EVAL

Write buffered output to the current output file or
stream variable

FLUSH

Specify a dictionary variable or list variable to loop
through, and for each iteration, assign the variable’s
values to the _NAME_ and _VALUE_ event variables

ITERATE

Indent output one more indentation level NDENT

Increment a dictionary or list variable to the next
value

NEXT

Open or create a stream variable OPEN

Write text or variable data to an output file PUT

Write text or variable values to an output file and add
a new line to the end of the output

PUTL

Write the text or the value of a variable to the log PUTLOG

Write text or variable values to an output file and
place quotes around the value of a variable

PUTQ

Write the contents of a stream variable to the output
file

PUTSTREAM

Write the name or the value of a variable to an output
file

PUTVARS

Create or update a user-defined variable and its value SET

Move execution to the end of the current statement
block

STOP

Execute an event TRIGGER

Enable a disabled event UNBLOCK

Delete user-defined variables UNSET

Indent output one less indentation level XDENT

End the template END

TEMPLATE Procedure: Creating Markup Language Tagsets � DEFINE EVENT Statement 805

Required Arguments

event-name
specifies the name of the event.

event-attribute
specifies an event attribute statement. Event attribute statements are one of the
following:

Table 13.4 Event Attributes

Task Attribute Valid Destinations

Redirect event output to any of the
known types of output that are open

FILE= HTML, MARKUP

Enable the event to use any style
element that has been defined

PURE_STYLE= MARKUP

Specify a style element STYLE= HTML, MARKUP

FILE= BODY | CODE | CONTENTS | DATA | FRAME | PAGES | STYLESHEET;
redirects event output to any of the known types of output files that are open.
Restriction: The FILE= attribute is valid only in markup family destinations.
Interaction: The names of the output files correspond to the output file names on

the ODS MARKUP statement that are specified with the BODY=, CODE=,
CONTENTS=, FRAME=, PAGES=, and STYLESHEET= options. For more
information about these options, see the “ODS MARKUP Statement” on page
147.

See: The BODY= option in the “ODS MARKUP Statement” on page 147 for a
complete description of the FILE= attribute

PURE_STYLE= YES | NO;
specifies whether to enable the event to use any of the style elements that have
been defined.
Default: NO
Restriction: The PURE_STYLE= attribute is valid only in markup family

destinations.
See also: “DEFINE STYLE Statement” on page 490

YES
enables the event to use any of the style elements that have been defined.
Alias: ON

NO
does not enable the event to use any of the style elements that have been
defined.
Alias: OFF

STYLE= style-element;
specifies a style attribute that applies to a particular part of the output.
Restriction: The STYLE= attribute is valid only in markup family destinations.
Tip: When a carriage return separates style attributes, add a space before or after

the carriage return to prevent syntax errors. SAS does not interpret a carriage
return as a space.

806 BLOCK Statement � Chapter 13

See also: “DEFINE STYLE Statement” on page 490
Featured in: Example 6 on page 861

BLOCK Statement

Disables the specified event.

Tip: To enable the blocked event, use the UNBLOCK statement.
Tip: You can block the same event multiple times, but to enable the event, use the same
number of UNBLOCK statements.

BLOCK event </ event-statement-condition(s)>;

Required Arguments

event
specifies the event.

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

BREAK Statement

Stops the current event from executing. Statements below the BREAK statement are not executed.

Tip: The BREAK statement is most useful when combined with event statement
conditions.

BREAK < / event-statement-condition(s)>;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).

TEMPLATE Procedure: Creating Markup Language Tagsets � DELSTREAM Statement 807

See: “Event Statement Conditions” on page 811 for information about these
conditions

CLOSE Statement

Closes the current stream variable and directs all future output to the output file.

CLOSE < / event-statement-condition(s)>;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

CONTINUE Statement

Specifies that the execution of the DO loop returns to the corresponding DO statement for
re-evaluation of the IF event statement condition.

See also: “DO Statement” on page 808

CONTINUE </ event-statement-condition(s)>;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

DELSTREAM Statement

Deletes the specified stream variable.

DELSTREAM stream-variable < / event-statement-condition(s)>;

808 DO Statement � Chapter 13

Required Arguments

stream-variable
specifies the stream variable to be deleted.
See also: “OPEN Statement” on page 816

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

DO Statement

Begins a statement block that executes if the required condition is true.

DO / event-statement-condition(s);

Required Arguments

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

DONE Statement

Ends a DO or ELSE statement block.

See also: “DO Statement” on page 808 and “ELSE Statement” on page 809

DONE;

TEMPLATE Procedure: Creating Markup Language Tagsets � EVAL Statement 809

ELSE Statement

Begins a statement block that executes if the corresponding DO statement is false.

Tip: If you specify the ELSE statement with the DO statement and the WHILE
condition, then the ELSE statement executes only if the WHILE condition is false on
the first evaluation.
See also: “DO Statement” on page 808

ELSE </ event-statement-condition(s)>;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

END Statement

Ends the event.

END;

EVAL Statement

Creates or updates a user-defined variable by setting the value of the variable to the return value
of a WHERE expression.

EVAL $<$>user-defined-variable where-expression< / event-statement-condition(s)>;

Required Arguments

user-defined-variable
specifies the user-defined variable that you want to create or update. A
user-defined-variable has one of the following forms:

� $dictionary-variable[’key’]

810 EVAL Statement � Chapter 13

� $list-variable[<index>]
� $scalar-variable

� $$stream-variable

dictionary-variable
specifies a dictionary variable to assign a where-expression return value. A
dictionary variable is an array that contains a list of numbers or text strings that
are identified by a key.

[’key’]
specifies a subscript that contains the text that identifies where in the
dictionary variable you want to add the return value of the WHERE expression.

Requirement: Enclose key in quotation marks and brackets.

Tip: key is case preserving and case sensitive.

Requirement: dictionary-variable must be preceded by the “$” symbol.
Tip: After you create dictionary variables, they are globally available in all events

until you use the UNSET statement to delete them.

See also: Dictionary variable on page 841 for more information

list-variable
specifies a list variable to which to assign a where-expression return value. A list
variable is an array that contains a list of numbers or text strings that are indexed.

[<index>]
specifies a subscript that contains a number or numeric variable.

The index identifies the location in the list to add the return value of the
WHERE expression. If you omit the index and specify only empty brackets, or if
the value of index is greater than the highest index number, then the EVAL
statement appends the return value to the end of the list.
Requirement: Specify brackets [], even if you omit an index.

Requirement: Enclose index in brackets.

See also: List variable on page 841 for more information
Requirement: list-variable must be preceded by a ’$’ symbol.

Tip: List variables are accessed sequentially by using the ITERATE and NEXT
statements.

Tip: After you create list variables, they are globally available in all events until
you use the UNSET statement to delete them.

scalar variable
specifies a scalar variable to which to assign a where-expression return value.

Requirement: Scalar variables must be preceded by the ’$’ symbol.

Requirement: After you create scalar variables, they are globally available in all
events and persist until you use the UNSET statement to unset them.

stream-variable
specifies a stream variable to which you want to assign a where-expression return
value. A stream variable is a temporary item store that contains output.

While the stream variable is open, all output from PUT statements is directed
to the stream variable until it is closed.

Requirement: stream-variable must be preceded by the “$$” symbol.

See also: “Understanding Variables” on page 840 for information about stream
variables

TEMPLATE Procedure: Creating Markup Language Tagsets � Event Statement Conditions 811

where-expression
any expression that can be used in the WHERE= data set option.

See: For information on expressions that you can use in the WHERE data set
option, see the WHERE= data set option in SAS Language Reference: Dictionary
and “WHERE Expression Processing” in SAS Language Reference: Concepts.

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

Event Statement Conditions

Specify one or more conditions that must be true for a DEFINE EVENT statement to execute.

Requirement: An event statement condition must be preceded with a slash (/).

define-event-statement </ event-statement-condition(s)>;

Event Statement Conditions

define-event-statement
specifies a DEFINE EVENT statement.

event-statement-condition
specifies a condition to evaluate.

event-statement-condition is one of the following:

ANY (variable-1,< …, variable-n>)
checks a list of comma-delimited variables for values. If any of the variables has a
value, then the condition is true.

Example:

put ’One of our variables has a value!’
nl/if any(background, foreground, cellpadding, cellspacing);

BREAKIF event
stops an event that is executing. The current statement is executed and the event
ends.
Tip: Using the BREAKIF condition is more efficient than using a PUT event

statement and a BREAK event statement with an IF condition together. For
example, the following statements are equivalent:

put ’Foreground has a value!’ /breakif exists(foreground);

812 Event Statement Conditions � Chapter 13

put ’Foreground has a value!’ /if exists(foreground);
break /if exists(foreground);

CMP (“string”, variable | variable-list)
compares, for equality, a string to a variable or list of variables.

Example:

put ’The foreground is blue!’ nl/if cmp(’blue’,foreground);

CONTAINS (argument-1, argument-2)
searches the first argument for the second argument.

Example:

set $myvariable ’some random text’;
put ’myvariable contains ’ran’ nl/if contains($myvariable, ’ran’);

EXIST | EXISTS (variable | variable-list)
determines whether a variable or a list of variables has values. If all of the
variables have values, then the condition is true. If a variable has an empty string
of length 0, then the variable has no value and the condition is false.

Tip: Use the MISSING event variable with the EXIST condition to determine
whether a value is missing.

Example:

put ’All of our variables have a value!’
nl/if exists(background, foreground, cellpadding, cellspacing);

IF | WHEN | WHERE(<value><’string’><variable>)
tests for existence or equality. IF, WHEN, and WHERE are optional and
interchangeable. An IF, a WHEN, or a WHERE condition compares values and
strings, or checks variables for values.

Example: All of the following are equivalent:

put ’Foreground has a value!’ nl/if (foreground);
put ’Foreground has a value!’ nl/if exists(foreground);
put ’Foreground has a value!’ nl/when exists(foreground);
put ’Foreground has a value!’ nl/exists(foreground);
put ’Foreground has a value!’ nl/where existsforeground);

Restriction: When you specify an IF condition with a single, user-defined
variable, then the variable is evaluated to determine if it has a value, according
to the variable’s type.

Table 13.5 Variable Type and Criteria

Variable Type Criteria to Determine Existence

String Length

Numeric Value

Dictionary array Key (if there is a key specified, then the test is true)

NOT | ! | ^ <’string’><variable>
negates a condition. You can use the keyword NOT or the characters ’!’ or ’^’.

Restriction: The character ’!’ works only as the first character in a condition. The
standard WHERE processing syntax is required for subsequent characters.

TEMPLATE Procedure: Creating Markup Language Tagsets � FLUSH Statement 813

Example:

put ’The foreground is not red!’ nl/if not cmp(’red’, foreground);
put ’The foreground is not red or blue’ /if !cmp(’red’, foreground)

and ^cmp(’blue’, foreground);
put ’The foreground is not red or blue’ /if ^cmp(’red’, foreground)

and ^cmp(’blue’, foreground);

WHILE condition-expression
indicates that the corresponding statement block should loop until the WHILE
value becomes false.
Restriction: The WHILE condition can be used only with the DO statement.

Example:

eval $count 0;

do /while $count < 10;
eval $i $count+1;
continue /if $count eq 5;
stop /if $count eq 8;
put ’Count is ’ $i nl;

else;
put ’Count was never less than 10’ nl;

done;

FLUSH Statement

Writes buffered output to the current output file or the current stream variable.

FLUSH </ event-statement-condition(s)>;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

814 ITERATE Statement � Chapter 13

ITERATE Statement

Specifies a dictionary variable or list variable to loop through, and assigns the variable’s value to
the _NAME_ and _VALUE_ event variables for each iteration.

Requirement: You must use the ITERATE statement with the _VALUE_ or _NAME_
event variables. The first value of the dictionary variable or list variable is placed in
the _VALUE_ event variable. For dictionary variables, the key is placed in the _NAME_
event variable.
See also: _VALUE_ on page 834 and _NAME_ on page 834

ITERATE dictionary-variable | list-variable </ event-statement-condition(s)>;

Required Arguments

dictionary-variable
specifies a dictionary variable.
Requirement: dictionary-variable must be preceded by the “$” symbol.
Tip: User-defined variables are not case sensitive.
See also: The “EVAL Statement” on page 809 or the “SET Statement” on page 825

for information about dictionary variables

list-variable
specifies a list variable.
Requirement: list-variable must be preceded by the “$” symbol.
Tip: User-defined variables are not case sensitive.
See also: The “EVAL Statement” on page 809 or the “SET Statement” on page 825

for information about list variables

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

NDENT Statement

Indents output one more level than the number of spaces specified by the INDENT= attribute.

Interaction: The start position of the indention level is set by the INDENT= attribute.
Featured in: Example 3 on page 855 and Example 5 on page 859

TEMPLATE Procedure: Creating Markup Language Tagsets � NEXT Statement 815

NDENT < / event-statement-condition(s)>;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.

Requirement: event-statement-condition(s) must be preceded by a slash (/).

See: “Event Statement Conditions” on page 811 for information about these
conditions

NEXT Statement

Specifies to increase a dictionary or list variable incrementally to the next value and to repopulate
the event variables _VALUE_ and _NAME_ as appropriate.

Requirement: Use the NEXT statement with the ITERATE statement.

See also: _VALUE_ on page 834 and _NAME_ on page 834

NEXT $dictionary-variable | $list-variable </ event-statement-condition(s)>;

Required Arguments

dictionary-variable
specifies a dictionary variable that is designated as an iterator by the ITERATE
statement.

Requirement: dictionary-variable must be preceded by the “$” symbol.

Tip: User-defined variables are not case sensitive.

See also: “ITERATE Statement” on page 814

See also: The “EVAL Statement” on page 809 or the “SET Statement” on page 825
for information about dictionary variables

list-variable
specifies a list variable that is designated as an iterator by the ITERATE statement.

Requirement: list-variable must be preceded by the “$” symbol.

Tip: User-defined variables are not case sensitive.

See also: “ITERATE Statement” on page 814

See also: The “EVAL Statement” on page 809 or the “SET Statement” on page 825
for information about list variables

816 OPEN Statement � Chapter 13

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

OPEN Statement

Opens or creates a stream variable. When the PUT statements occur after the OPEN statement, all
text or variable data that is specified by PUT statements is appended to the stream variable
instead of the output file.

Interaction: An open stream variable is closed when a new stream variable is opened.

OPEN stream-variable </ event-statement-condition(s)>;

Required Arguments

stream–variable
specifies a stream variable, which is a temporary item store that contains output.
Tip: User-defined variables are not case sensitive.
Tip: If you assign the name of a memory variable to stream-variable, then the

stream variable resolves as the value of the memory variable. For example, the
following program uses the memory variable $MyStream as a stream variable:

set $mystream ’test’;
open $mystream;
put ’The memory variable $mystream is being used as a stream variable’;
close;

Therefore, the following statements are equivalent:

put $$test;
putstream $mystream;
putstream test;

The following statements are also equivalent:

unset $$test;
delstream $mystream;
delstream test;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.

TEMPLATE Procedure: Creating Markup Language Tagsets � PUT Statement 817

Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

PUT Statement

Writes text, new lines, variable values, or DATA step function return values to an output file.

Featured in: Example 1 on page 846, Example 3 on page 855, Example 4 on page 857,
Example 5 on page 859, and Example 6 on page 861

PUT <’text’> <NL(s)> <value(s)> </ event-statement-condition(s)>;

Required Arguments

NL
specifies a new line.

Alias: CR

Alias: LF

text
specifies a string of text.

Requirement: text must be enclosed in quotation marks.

Interaction: The PUT statement pairs text strings with variables. A string of text
that precedes a variable creates a string-value pair if the variable has a value. For
example, for the following PUT statement, if the event variable ForeGround has a
value of blue, then the output is color=blue:

put ’color=’ foreground;

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUT
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output is <table> followed by a new line:

put ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’ nl;

value
specifies any event variable, style variable, dynamic variable, user-defined variable,
or DATA step function whose value you want to output.

Restriction: DATA step functions cannot be nested.

Requirement: User-defined variables must be preceded by a ’$’ or ’$$’ character.

Interaction: The PUT statement pairs text strings with variables. A string of text
that precedes a variable creates a string-value pair, if the variable has a value.
For example, for the following PUT statement, if the event variable ForeGround
has a value of blue, then the output is color=blue:

put ’color=’ foreground;

818 PUTL Statement � Chapter 13

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUT
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output is <table> followed by a new line:

put ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’ nl;

Tip: User-defined variables are not case sensitive.
See also: SAS Language Reference: Dictionary for information about DATA step

functions
See also: “Understanding Variables” on page 840 for information about variables
See also: “Event Variables” on page 833 for a list of event variables

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

PUTL Statement

Writes text, new lines, variable values, or DATA step function return values to an output file and
automatically adds a new line to the end of the output.

Tip: When the output is large, it is useful to use the PUTL statement because it adds a
new line to the end of the output.

PUTL <’text’> <NL(s)> <value(s)> </ event-statement-condition(s)>;

Required Arguments

NL
specifies a new line.
Alias: CR
Alias: LF

text
specifies a string of text.
Requirement: text must be enclosed in quotation marks.
Interaction: The PUTL statement pairs text strings with variables. A string of text

that precedes a variable creates a string-value pair if the variable has a value. For
example, for the following PUTL statement, if the event variable ForeGround has
a value of blue, then the output is color=blue followed by a new line:

TEMPLATE Procedure: Creating Markup Language Tagsets � PUTLOG Statement 819

putl ’color=’ foreground;

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUTL
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output is <table> followed by two new lines:

putl ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’ nl;

value
specifies any event variable, style variable, dynamic variable, user-defined variable,
or DATA step function whose value you want to output.
Restriction: DATA step functions cannot be nested.
Requirement: User-defined variables must be preceded by a ’$’ or ’$$’ character.
Interaction: The PUTL statement pairs strings with variables. A string of text that

precedes a variable creates a string-value pair if the variable has a value. For
example, for the following PUTL statement, if the event variable ForeGround has
a value of blue, then the output is color=blue, followed by a new line:

putl ’color=’ foreground;

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUTL
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output is <table> followed by two new lines: one that is specified
and the other that is generated automatically:

putl ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’ nl;

Tip: User-defined variables are not case sensitive.
See also: SAS Language Reference: Dictionary for information about DATA step

functions
See also: “Understanding Variables” on page 840 for information about variables
See also: “Event Variables” on page 833 for a list of event variables

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

PUTLOG Statement

Writes text, new lines, variable values, or DATA step function return values to the log.

Restriction: Unlike the other PUT statements, the PUTLOG statement does not specify
new lines.

820 PUTLOG Statement � Chapter 13

PUTLOG <’text’> <value(s)> </ event-statement-condition(s)>;

Required Arguments

text
specifies a string of text.
Requirement: text must be enclosed in quotation marks.
Interaction: The PUTLOG statement pairs text strings with variables. A string of

text that precedes a variable creates a string-value pair if the variable has a value.
For example, for the following PUTLOG statement, if the event variable
ForeGround has a value of blue, then the output that is written to the log is
color=blue:

putlog ’color=’ foreground;

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUT
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output that is written to the log is <table>:

putlog ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’;

value
specifies any event variable, style variable, dynamic variable, user-defined variable,
or DATA step function whose value you want to output.
Restriction: DATA step functions cannot be nested.
Requirement: User-defined variables must be preceded by a ’$’ or ’$$’ character.
Interaction: The PUTLOG statement pairs text strings with variables. A string of

text that precedes a variable creates a string-value pair, if the variable has a
value. For example, for the following PUTLOG statement, if the event variable
ForeGround has a value of blue, then the output that is written to the log is
color=blue:

putlog ’color=’ foreground;

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUTLOG
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output that is written to the log is <table>:

putlog ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’;

Tip: User-defined variables are not case sensitive.
See also: SAS Language Reference: Dictionary for information about DATA step

functions
See also: “Understanding Variables” on page 840 for information about variables
See also: “Event Variables” on page 833 for a list of event variables

TEMPLATE Procedure: Creating Markup Language Tagsets � PUTQ Statement 821

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.

Requirement: event-statement-condition(s) must be preceded by a slash (/).

See: “Event Statement Conditions” on page 811 for information about these
conditions

PUTQ Statement

Writes text, new lines, variable values, or DATA step function return values to an output file and
places quotes around the value of the variable.

Featured in: Example 7 on page 863

PUTQ <’text’> <NL(s)> <value(s)> </ event-statement-condition(s)>;

Required Arguments

NL
specifies a new line.

Alias: CR

Alias: LF

text
specifies a string of text.

Requirement: text must be enclosed in quotation marks.

Interaction: The PUTQ statement pairs strings with variables. A string of text
that precedes a variable creates a string-value pair if the variable has a value. For
example, for the following PUTQ statement, if the event variable ForeGround has
a value of blue, then the output is color=’blue’:

putq ’color=’ foreground;

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUTQ
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output is <table>, followed by a new line:

putq ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’ nl;

value
specifies any event variable, style variable, dynamic variable, user-defined variable,
or DATA step function whose value you want to output.

Restriction: DATA step functions cannot be nested.

Requirement: User-defined variables must be preceded by a ’$’ or ’$$’ character.

822 PUTSTREAM Statement � Chapter 13

Interaction: The PUTQ statement pairs text strings with variables. A string of text
that precedes a variable creates a string-value pair, if the variable has a value.
For example, for the following PUTQ statement, if the event variable ForeGround
has a value of blue, then the output is color=blue:

putq ’color=’ foreground;

If the variable does not have a value, then the text is not written, and there is
no output for the text or the variable. For example, for the following PUTQ
statement, if the variables BackGround, ForeGround, and CellPadding do not have
values, then the output is <table>, followed by a new line:

putq ’<table’ ’background=’ background ’foreground=’ foreground
’cellpadding=’ cellpadding ’>’ nl;

Tip: User-defined variables are not case sensitive.
See also: SAS Language Reference: Dictionary for information about DATA step

functions
See also: “Understanding Variables” on page 840 for information about variables
See also: “Event Variables” on page 833 for a list of event variables

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

PUTSTREAM Statement

Writes the contents of the specified stream variable to an output file.

PUTSTREAM stream-variable < / event-statement-condition(s)>;

Required Arguments

stream-variable
specifies a stream variable, which is a temporary item store that contains output.

TEMPLATE Procedure: Creating Markup Language Tagsets � PUTVARS Statement 823

Tip: If you assign the name of a memory variable to stream-variable-name, then the
stream variable resolves as the value of the memory variable. For example, the
following partial program uses the memory variable $MyStream as a stream
variable:

set $mystream ’test’;
open $mystream;
put ’The memory variable $mystream is being used as a stream variable’;
close;

Therefore, the following statements are equivalent:

put $$test;
putstream $mystream;
putstream test;

The following statements are also equivalent:

unset $$test;
delstream $mystream;
delstream test;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

PUTVARS Statement

Iterates over each value in a variable group, list, or dictionary and writes text, new lines, variable
values, or DATA step function return values to an output file. Each iteration populates the special
variables _VALUE_ and __NAME_ . Putvars prints once for each variable or value that it finds.

Tip: The variable _NAME_ contains the name of the variable. The variable _VALUE_
contains the value of the variable.
See also: _VALUE_ and _NAME_ in the “Tables of Event Variables” on page 833

PUTVARS (variable-group | dictionary-variable | list-variable) <NL(s)> < ’text’>
<value(s) >
< / event-statement-condition(s)>;

Required Argument

variable-group
specifies the type of variable to use in each iteration when you specify the name or
value in the variable. For example, if you specify the EVENT option, then the

824 PUTVARS Statement � Chapter 13

PUTVARS statement loops through all of the event variables in the program.
variable-group is one of the following:

EVENT
specifies to loop through all event variables.
See also: “Event Variables” on page 833

STYLE
specifies to loop through all style variables.

DYNAMIC
specifies to loop through all dynamic variables.

MEMORY
specifies to loop through all memory variables. A memory variable is classified as a
dictionary variable if it is created with a subscript that contains a key. A memory
variable is classified as a list variable if it is created with a subscript that is empty
or contains an index. If you omit a key or an index, then the memory variable is a
numeric or character scalar variable, depending on the variable’s value.
Restriction: The PUTVARS statement ignores list or dictionary memory variables.

STREAM
specifies to loop through all stream variables.

Interaction: The PUTVAR statement pairs text strings with variables. If a string is
followed by a variable, then they become a pair. If the variable has a value, then
the pair becomes output. If the variable does not have a value, then neither
becomes output.

dictionary-variable
specifies a dictionary variable.
Requirement: dictionary-variable must be preceded by the ’$’ symbol.
Tip: User-defined variables are not case sensitive.
See also: For information about list variables, see the following sections:

� “EVAL Statement” on page 809
� “SET Statement” on page 825
� “Understanding Variables” on page 840

list-variable
specifies a list variable.
Requirement: list-variable must be preceded by the “$” symbol.
Tip: User-defined variables are not case sensitive.
See also: For information about list variables, see the following sections:

� “EVAL Statement” on page 809
� “SET Statement” on page 825
� “Understanding Variables” on page 840

NL
specifies a new line.
Alias: CR
Alias: LF

text
specifies a string of text.
Requirement: text must be enclosed in quotation marks.

value

TEMPLATE Procedure: Creating Markup Language Tagsets � SET Statement 825

specifies any event variable, style variable, dynamic variable, user-defined variable,
or DATA step function whose value you want to output.
Restriction: DATA step functions cannot be nested.
Requirement: User-defined variables must be preceded by a ’$’ or ’$$’ character.
Tip: User-defined variables are not case sensitive.
See also: SAS Language Reference: Dictionary for information about DATA step

functions
See also: “Understanding Variables” on page 840 for information about variables
See also: “Event Variables” on page 833 for a list of event variables

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

SET Statement

Creates or updates a user-defined variable and its value.

u SET $dictionary-variable entry </ event-statement-condition(s)>;

v SET $list-variable entry </ event-statement-condition(s)>;

w SET $scalar-variable | $$stream-variable entry </ event-statement-condition(s)>;

Required Arguments

dictionary-variable
specifies an array that contains a list of numbers or text strings that is identified by
a key. dictionary-variable has the following form:

$dictionary-variable[’key’]

[’key’]
specifies a subscript that contains text or a variable that has a character value.
Requirement: Enclose key in quotation marks and brackets.
Tip: key is case preserving and case sensitive.
Example: The following example puts two key value pairs into the dictionary

variable MyDictionary:

set $mydictionary[’URL1’] ’links internally’;
set $mydictionary[’URL2’] ’links externally’;

Requirement: dictionary-variable must be preceded by the ’$’ symbol.

826 SET Statement � Chapter 13

Tip: Dictionary variables are accessed sequentially by using the ITERATE and
NEXT statements.

Tip: After they are created, dictionary variables are globally available in all events
until you delete them by using the UNSET statement.

entry
specifies the value of a dictionary variable, list variable, scalar variable, or
stream-variable. An entry is one of the following:

function
specifies a DATA step function.
Restriction: Functions cannot be nested.
See also: SAS Language Reference: Dictionary for information on SAS functions

text
specifies a string of text.
Requirement: text must be enclosed in quotation marks.

variable
specifies any event variable, style variable, dynamic variable, user-defined
variable, or DATA step function whose value you want to output.
Restriction: variable cannot be a stream variable.
Requirement: User-defined variables must be preceded by a ’$’ character.
Tip: If you assign a variable entry that is the name of a memory variable to

stream-variable, then the stream variable resolves as the value of the memory
variable. For example, the following program uses the memory variable
$MyStream as a stream variable:

set $mystream ’test’;
open $mystream;
put ’The memory variable $mystream is being used as a stream variable’;
close;

Therefore, the following statements are equivalent:

put $$test;
putstream $mystream;
putstream test;

The following statements are also equivalent:

unset $$test;
delstream $mystream;
delstream test;

Tip: User-defined variables are not case sensitive.
See also: “Understanding Variables” on page 840 for information about variables
See also: “Event Variables” on page 833 for a list of event variables

list-variable
an array that contains a list of numbers or strings of text that are indexed.
list-variable has the following form:

$list-variable[<index>]

[<index>]
specifies a subscript that contains a number or numeric variable. The index
identifies the location in the list to add an entry. If you omit the index and only

TEMPLATE Procedure: Creating Markup Language Tagsets � SET Statement 827

specify empty brackets, or if the value of the index is greater than the highest
index number, then the SET statement appends the entry to the end of the list.
Requirement: Specify brackets [], even if you omit an index.
Requirement: Enclose index in brackets.
Tip: List entries are accessed by positive or negative indexes. Positive indexes

start at the beginning of a list. Negative indexes start at the end of a list. For
example, the following list variable, $Mylist[2], identifies the second entry in
the list variable $Mylist. In this case, the index is 2. The list variable
$Mylist[-2] identifies the second entry from the end of the list variable $Mylist.
In this case, the index is [-2].

Example: The following example adds three values onto the end of the list
variable MyList and modifies the value of the second entry.

set $mylist[] ’one’;
set $mylist[] ’two’;
set $mylist[] ’hello’;
set $mylist[2] ’This is Really two’;

Requirement: list-variable must be preceded by a ’$’ symbol.
Tip: List variables are accessed sequentially by using the ITERATE and NEXT

statements.
Tip: After they are created, list variables are globally available in all events until

you delete them using the UNSET statement.

scalar-variable
an area of memory that contains numeric or character data.
Requirement: Scalar variables must be preceded by the ’$’ symbol.
Tip: After they are created, list variables are globally available in all events until

you delete them using the UNSET statement.

stream-variable
specifies a stream variable, which is a temporary item store that contains output.

While the stream variable is open, all output from PUT statements is directed to
the stream variable until it is closed.
Requirement: user-defined-variable-name must be preceded by the ’$$’ symbol.
Tip: If you assign a variable entry that is the name of a memory variable to

stream-variable, then the stream variable resolves as the value of the memory
variable. For example, the following program uses the memory variable
$MyStream as a stream variable:

set $mystream ’test’;
open $mystream;
put ’The memory variable $mystream is being used as a stream variable’;
close;

Therefore, these statements are equivalent:

put $$test;
putstream $mystream;
putstream test;

These statements are also equivalent:

unset $$test;
delstream $mystream;
delstream test;

828 STOP Statement � Chapter 13

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.

Requirement: event-statement-condition(s) must be preceded by a slash (/).

See: “Event Statement Conditions” on page 811 for information about these
conditions

u Adding Entries to Dictionary Variables
Use this form of the SET statement to add an entry to a dictionary variable.

SET $dictionary-variable entry </ event-statement-condition(s)>;

A dictionary variable is an array that contains a list of numbers or text strings that
is identified by a key. A dictionary variable has, as part of its name, a preceding ’$’
symbol and a subscript that contains a text string or a variable that has a character
value. The text or variable within the subscript is called a key. Keys are case
preserving and case sensitive. After they are created, dictionary variables are globally
available in all events and persist until you unset them with the UNSET statement.

An entry is a variable, string of text, or function. If a string of text follows the
dictionary variable, then the entry becomes a key-value pair. For example, the following
program adds two key-value pairs to a dictionary:

set $mydictionary[’URL1’] ’links internally’;
set $mydictionary[’URL2’] ’links externally’;

v Adding Entries to List Variables
Use this form of the SET statement to add an entry to a list variable.

SET $list-variable entry </ event-statement-condition(s)>;

A list variable is an array that contains a list of numbers or text strings that are
indexed. As part of their name, list variables have a preceding ’$’ symbol and a
subscript that is empty or contains a number or numeric variable. The number within
the subscript is called an index. After they are created, list variables are globally
available in all events and persist until you unset them with the UNSET statement.
List entries are accessed by positive or negative indexes. Positive indexes start at the
beginning of a list. Negative indexes start at the end of a list.

For example, the following list variable, $Mylist[2], identifies the second entry in the
list variable $Mylist. In this case, the index is 2. The list variable $Mylist[-2] identifies
the second entry from the end of the list variable $Mylist. In this case, the index is [-2].

STOP Statement

Specifies that execution moves to the end of the current statement block.

STOP </ event-statement-condition(s)>;

TEMPLATE Procedure: Creating Markup Language Tagsets � TRIGGER Statement 829

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition(s) must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

TRIGGER Statement

Executes an event.

Tip: The TRIGGER statement explicitly requests a specific action of an event.
Featured in: Example 3 on page 855, Example 4 on page 857, Example 5 on page 859,
and Example 6 on page 861

TRIGGER event-name <START | FINISH> </ event-statement-condition(s)>;

Required Arguments

event-name
specifies the name of the event.

Without Options
If a triggered event does not have start or finish sections, then it runs the current

event statements.

Options

START
specifies the start section of an event.
Interaction: If the program is in the start section of an event, then any event that

is triggered runs its start section.

FINISH
specifies the finish section of an event.
Interaction: If the program is in the finish section of an event, then any event that

is triggered runs its finish section.

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: an event-statement-condition must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

830 UNBLOCK Statement � Chapter 13

UNBLOCK Statement

Enables a disabled event.

Interaction: To disable an event, use the BLOCK statement.
Requirement: Because you can block the same event multiple times, to enable the event
use the same number of UNBLOCK statements as BLOCK statements.

UNBLOCK event-name </ event-statement-condition(s)>;

Required Arguments

event-name
specifies the name of the event.

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.

Requirement: an event-statement-condition must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

UNSET Statement

Deletes a user-defined variable and its value.

UNSET ALL | dictionary-variable | list-variable | scalar-variable | stream-variable

</ event-statement-condition(s)>;

Required Arguments

ALL
deletes all dictionary variables, list variables, and scalar variables.

Tip: You must delete stream variables individually.

dictionary-variable
specifies an array that contains a list of numbers or text strings that are identified by
a key. A dictionary-variable has the following form:

$dictionary-variable[’key’]

TEMPLATE Procedure: Creating Markup Language Tagsets � UNSET Statement 831

[’key’]
specifies the location in the dictionary variable of the value that you want to delete.
Requirement: Enclose key in quotation marks and brackets.
Requirement: key must be a string of text or a character variable.
Tip: key is case preserving and case sensitive.

Requirement: A dictionary-variable must be preceded by the ’$’ symbol.

list-variable
specifies an array that contains a list of numbers or strings of text that are indexed.
A list-variable has the following form:

$list-variable[<index>]

[<index>]
specifies the location in the list variable of the value to be deleted. If you omit the
index and specify empty brackets, then the entire list variable is deleted.
Requirement: Specify brackets [], even if you omit an index.
Requirement: index must be number or numeric variable.
Requirement: Enclose index in brackets.
Tip: List entries are accessed by positive or negative indexes. Positive indexes

start at the beginning of a list. Negative indexes start at the end of a list. For
example, in the following code, the first UNSET statement deletes the first
entry from the top of the list variable MyList. The second UNSET statement
deletes the first entry from the bottom of the MyList list variable:

unset $mylist[-1];
unset $mylist[1];

Requirement: A list-variable must be preceded by a ’$’ symbol.

scalar-variable
specifies a scalar variable to delete.
Requirement: Scalar variables must be preceded by the ’$’ symbol.
See also: “SET Statement” on page 825 or “Understanding Variables” on page 840

for information on scalar variables

stream-variable
specifies a stream variable to delete.
Requirement: A user-defined-variable-name must be preceded by the ’$$’ symbol.
Tip: If you assign a variable entry that is the name of a memory variable to

stream-variable, then the stream variable resolves as the value of the memory
variable. For example, the following program uses the memory variable
$MyStream as a stream variable:

set $mystream ’test’;
open $mystream;
put ’The memory variable $mystream is being used as a stream variable’;
close;

Therefore, the following statements are equivalent:

put $$test;
putstream $mystream;
putstream test;

The following statements are also equivalent:

832 XDENT Statement � Chapter 13

unset $$test;
delstream $mystream;
delstream test;

See also: “SET Statement” on page 825 or “Understanding Variables” on page 840
for information on memory variables

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: An event-statement-condition must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

XDENT Statement

Indents output one less indention level, using the number of spaces specified by the INDENT=
attribute.

Interaction: The starting level of indention is set by the NDENT= statement.
Featured in: Example 3 on page 855 and Example 5 on page 859

XDENT </ event-statement-condition(s)>;

Options

event-statement-condition(s)
specifies one or more conditions that must be true for the event statement to execute.
Requirement: event-statement-condition must be preceded by a slash (/).
See: “Event Statement Conditions” on page 811 for information about these

conditions

NOTES Statement

Provides information about the tagset.

Tip: The NOTES statement becomes part of the compiled tagset, which you can view
with the SOURCE statement.
Featured in: Example 3 on page 855 and Example 8 on page 863

NOTES ’text’;

TEMPLATE Procedure: Creating Markup Language Tagsets � Event Variables 833

Required Arguments

text
provides information about the tagset.

Requirement: When specifying text, enclose the text in quotation marks.

END Statement

Ends the tagset.

END;

Event Variables

Event variables include text, formatting, and data values that are associated with events. These
variables originate in many places, such as table templates, the procedures, titles, bylines, and
processing. Event variables also include any style attributes that are used in the program. The
following table lists the internally generated event variables that are used in the DEFINE EVENT
statement of PROC TEMPLATE.

Tables of Event Variables

Table 13.6 508 Accessibility* Variables

Event Variable Description

ABBR Specifies an abbreviation for the event variable.

ACRONYM Specifies an acronym for an event variable.

ALT Specifies an alternate description of an event variable.

CAPTION Specifies the caption for a table.

LONGDESC Specifies the long description of an event variable.

SUMMARY Specifies a summary of a table.

* SAS includes these accessibility and compatibility features to improve the usability of SAS
for users with disabilities. These features are related to accessibility standards for electronic
information technology that are adopted by the U.S. Government under Section 508 of the U.S.
Rehabilitation Act of 1973, as amended.

834 Event Variables � Chapter 13

Table 13.7 Data Variables

Event Variable Description

NAME Contains the name of the current variable.

VALUE Contains the value of the current variable.

DNAME Specifies the name of the column in the data component
to associate with the current column. DNAME is
specified with the DATANAME= attribute in a column
template. For information, see the DATANAME=
attribute on page 605.

LABEL Specifies a label for the variable. The LABEL event
variable is set with the LABEL= attribute in the column
template. For information, see the LABEL= attribute on
page 609.

NAME Specifies the name of the variable. NAME is set with the
VARNAME= attribute in the column template. For
information, see the VARNAME= attribute on page 613.

VALUE Specifies the current value.

VALUECOUNT Specifies the count of the variable.

Table 13.8 Event Meta Variables

Event Meta Variables Description

EMPTY Sets a flag to determine whether an event is called as an
empty tag.

EVENT_NAME Specifies the requested event name.

STATE Specifies the current state of the event, which is either
START or FINISH.

TRIGGER_NAME Specifies the name of the event that is triggered.

Table 13.9 Formatting Data

Event Variable Description

CLOSURE Specifies whether the endpoints of a format range are
included or excluded, for example (<-, -, -<, <-<, and so
on).

COL_ID Specifies the column ID to identify columns. Used for the
OIMDBM format type by the XML LIBNAME engine.

DATAENCODING Specifies the encoding type for Raw value. It is always
Base64.

TEMPLATE Procedure: Creating Markup Language Tagsets � Event Variables 835

Event Variable Description

MISSING Specifies the value that indicates that no data value is
stored. By default, SAS uses a single period (.) for a
missing numeric value and a blank space for a missing
character value. In addition, for a numeric missing
value, a special missing value indicator represents
different categories of missing data by assigning one of
the letters A through Z, or an underscore.

NO_WRAP Specifies that the current cell should not wrap text or
insert hyphens.

PRECISION Specifies the number of places to the right of the decimal.
The PRECISION variable is used by the XML LIBNAME
engine.

RANGEEND Specifies the end value of a range in a format.

RANGESTART Specifies the start value of a range in a format

RAWVALUE Specifies the base64 encoding of the stored machine
representation of the original value.

SASFORMAT Specifies the SAS format used to format a value.

SCALE Specifies the total number of places in the floating point
number. The SCALE event variable is used by the XML
LIBNAME engine.

TYPE Specifies the STRING, DOUBLE, CHAR, BOOL, or INT
data type.

UNFORMATTEDTYPE Specifies the data type before formatting.

UNFORMATTEDVALUE Specifies the value before formatting.

UNFORMATTEDWIDTH Specifies the width before formatting.

Table 13.10 General Use Variables

Variable Description

ANCHOR Specifies the current anchor, which is the last value of
the anchor tag (for example, IDX).

DATA_VIEWER Specifies the name of the Data Viewer, such as Table,
Batch, Tree, Graph, Report, or Print.

DATE Specifies the date.

DEST_FILE Specifies the current destination file, which is one of the
following: body, contents, pages, frame, code, or
stylesheet.

FIRSTPAGE Specifies the first page of the output file.

LANGUAGE Specifies the language of the current output. The
LANGUAGE event variable is set only when it is an
Asian language.

OUTPUT_LABEL Specifies the label of the current output object.

836 Event Variables � Chapter 13

Variable Description

OUTPUT_NAME Specifies the name of the current output object.

OUTPUT_TYPE Specifies the output type as specified in the tagset.

PAGE_COUNT Specifies the page count since the files were opened.

PROC_COUNT Specifies how many procedures have run since the files
were opened.

PROC_NAME Specifies the name of the current procedure.

SASLONGVERSION Specifies the long format of the SAS version.

SASVERSION Specifies the short format of the SAS version.

SPACE Specifies the string that the tagset uses for a
nonbreaking space.

SPLIT Specifies the string that the tagset uses for line breaks.

STYLE Specifies the current style that is in use.

STYLE_ELEMENT Specifies the name of the current style element.

SUPPRESS_CHARSET Specifies the Suppress Charset Registry setting.

TIME Specifies the time.

TOCLEVEL Specifies the table of contents level.

TOTAL_PAGE_COUNT Specifies the total page count since ODS was opened.

TOTAL_PROC_COUNT Specifies the number of procedures that have run since
ODS was opened.

Table 13.11 ODS Statement Variables: Variables That Originate with the ODS
Statement That Invoked the Tagset

Event Variable Description

AUTHOR Specifies the author of the output. The value of the
AUTHOR event variable is set from an ODS statement,
or, by default, is the user that is running SAS.

BASENAME Specifies the name of the BASE= option as set in an ODS
statement.

BODY_NAME Specifies the name of the body file.

BODY_TITLE Specifies the title of the body file.

BODY_URL Specifies the URL of the body file.

CODE_NAME Specifies the name of the code file.

CODE_TITLE Specifies the title of the code file.

CODE_URL Specifies the URL of the code file.

CONTENTS_NAME Specifies the name of the contents file.

CONTENTS_TITLE Specifies the title of the contents file.

CONTENTS_URL Specifies the URL of the contents file.

DATA_NAME Specifies the name of the data file.

DATA_TITLE Specifies the title of the data file.

TEMPLATE Procedure: Creating Markup Language Tagsets � Event Variables 837

Event Variable Description

DATA_URL Specifies the URL of the data file.

ENCODING Specifies the encoding of the output for converting text
data into a numbering system that computers recognize.

FRAME_NAME Specifies the name of the frame file.

FRAME_TITLE Specifies the title of the frame file.

FRAME_URL Specifies the URL of the frame file.

GRAPH_PATH_NAME Specifies the path of the graph as specified by the ODS
PATH statement.

GRAPH_PATH_URL Specifies the URL of the graph.

NO_BOTTOM is non-zero if you specified the NO_BOTTOM_MATTER
option on the ODS MARKUP statement.

NO_TOP is non-zero if you specified the NO_TOP_MATTER option
on the ODS MARKUP statement.

OPERATOR Specifies the operator. The value of the OPERATOR
event variable is set from an ODS statement or, by
default, is the user that is running SAS.

PAGES_NAME Specifies the name of the pages file.

PAGES_TITLE Specifies the title of the pages file.

PAGES_URL Specifies the URL of the pages file.

PATH Specifies the path as set by an ODS statement.

PATH_NAME Specifies the path name.

PATH_URL Specifies the path location.

STYLESHEET_NAME Specifies the name of the stylesheet file.

STYLESHEET_TITLE Specifies the title of the stylesheet file.

STYLESHEET_URL Specifies the URL of the stylesheet file.

TAGSET Specifies the name of the current tagset.

TAGSET_ALIAS Specifies the alias of the current tagset as given in the
ODS MARKUP statement.

TITLE Specifies the title from the ODS statement.

TRANTAB Specifies the translation table name for character
conversions.

Table 13.12 Table Variables

Event Variable Description

CLABEL Specifies the label for the output object in the contents
file, the Results window, and the trace record. Set with
the CONTENTS_LABEL= attribute in the table
template. For information, see the CONTENTS_LABEL
on page 646 attribute.

COLCOUNT Specifies the number of columns in the current table.

COLEND_EA Specifies the ending column number.

838 Concepts: Markup Languages and the TEMPLATE Procedure � Chapter 13

Event Variable Description

COLSPAN Specifies the number of columns that the cell spans.

COLSTART Specifies the column number where the cell starts.

DATA_ROW Specifies that the current row is a data row.

IS_STACKED Specifies that the columns are stacked.

ROW Specifies the current table row, which includes headers.

ROWSPAN Specifies the number of rows that the current cell spans.

SECTION Specifies the header, body, or footer of the table.

WIDTH Specifies the width. WIDTH is most commonly used for
COLSPECS.

Table 13.13 URL Variables

Event Variable Description

NOBASE Sets a flag to determine whether to use the value for
BASE= option as part of the URL. 0 uses the BASE=
option, and 1 does not use BASE= option.

TARGET Specifies the target that is associated with the URL.

URL Specifies a fully formed URL.

Concepts: Markup Languages and the TEMPLATE Procedure

Getting Familiar with Tagsets

Listing Tagset Names

SAS provides a set of tagsets. To get a list of the tagsets that SAS supplies and any
tagsets that you have created and stored in the SASHELP.TMPLMST template store,
submit the following SAS statements:

proc template;
list tagsets;

run;

By default, PROC TEMPLATE lists the tagsets in SASHELP.TMPLMST and
SASUSER.TEMPLAT. Typically, you have read-only permissions to the
SASHELP.TMPLMST item store where the SAS tagset directory is located. The
SASUSER.TEMPLAT is the item store where the tagsets that you create or customize
are stored by default.

TEMPLATE Procedure: Creating Markup Language Tagsets � Getting Familiar with Tagsets 839

Specifying Tagset Names
To specify a SAS tagset stored in SASHELP.TMPLMST or a tagset that you have

created and stored in SASUSER.TEMPLAT or any other item store, use a two-level
name: TAGSETS.tagset-name. For example, tagsets.chtml or tagsets.mytagset are valid
two-level tagset names. By default, SAS knows that the specified tagset is stored in
either SASHELP.TMPLMST or SASUSER.TEMPLAT.

To specify a tagset that you have created and stored in an item store other than
SASUSER.TEMPLAT, assign the item store to the ODS search path with the ODS
PATH statement. For information about the ODS PATH statement, see “ODS PATH
Statement” on page 206.

Viewing the Contents of a Tagset
To view the contents of a tagset, use the SAS windowing environment or the

TEMPLATE procedure.
� SAS Windowing Environment

1 From the menu, select View � Results.
2 In the Results window, select the Results folder. Right-click and select

Templates to open the Templates window.
3 Double-click Tagsets to view the contents of that item store or directory.
4 Double-click the tagset that you wish to view. For example, the CHTML

tagset is the template store for CHTML output.
� SAS Windowing Command

1 To view the Templates window, submit the following command in the command
bar:

odstemplates

The Templates window contains the item stores Sasuser.Templat and
Sashelp.Tmplmst.

2 When you double-click an item store, such as Sashelp.Tmplmst, that item store
expands to list the directories where ODS templates are stored. The templates
that SAS provides are in the item store Sashelp.Tmplmst.

3 To view the tagsets that SAS provides, double-click the Tagset item store.
4 Right-click the tagset, such as Rtf, and select Open. The tagset is displayed in

the Template Browser window.
� TEMPLATE Procedure

1 To see the source for a tagset, use PROC TEMPLATE and specify the two-level
name of the tagset. For example, to see the source of a SAS tagset that
generates CHTML output, submit these SAS statements:

proc template;
source tagsets.chtml;

The source for TAGSETS.CHTML consists of the following:
� a DEFINE TAGSET statement that names the tagset
� events that define what is written to the output file
� tagset attributes, such as output type and the character to use for line

breaks

Understanding Events
A tagset controls output generation through a series of events and variables. An

event defines what is written to the output file. Here are some key points about events:

840 Getting Familiar with Tagsets � Chapter 13

� Events have unique names. SAS procedures that generate ODS output use a
standard set of events, which you can customize by redefining them in the
customized tagset. In addition, you can define custom events.

� The DEFINE EVENT statement assigns a name to an event.
� An event can include start sections, finish sections, or both. These sections specify

different actions. If the event does not include either a start or finish section, then
the event is stateless: no matter how the event is called, all of the actions in the
event are executed. If an event has a finish section, then a start section is
assumed if there are statements above the finish section.

� An event can execute another event using the TRIGGER statement. From the
start section of an event, any event triggered also runs its start section. From the
finish section, the triggered event runs its finish section. If a triggered event does
not have start or finish sections, then the event runs the statements that it does
have. A trigger can also explicitly ask for an event’s specific section. See Example
4 on page 857.

� Events can perform actions based on conditions.
� For the most part, an event consists of PUT statements, text, and event variables.

For example, here is a simple event for an HTML table output:

define event table;u

start:v

put ’<table>’ nl;
finish:

put ’</table>’ nl;
end;

In the event:
u The DEFINE EVENT statement begins the event and assigns it the name TABLE.
v The START section defines the beginning portion of the event, and the FINISH

section defines the ending portion of the event. An event for a table needs START
and FINISH sections because ODS needs to know how to define the beginning and
the ending. ODS also expects other events to define how to format the table’s rows
and columns. The PUT statements specify to write the tags <table> and
</table> to the output file, and to add a new line after each tag.

The following event does not include a start and finish section. The PUT statements
specify to write the tags <TD> and </TD> to the output file. In addition, the event
variable VALUE is used so that the data value from the SAS procedure or data set is
written to the output file. The data value is enclosed with the <TD> and </TD> tags.

define event data;
put ’<TD>’;
put VALUE;
put ’</TD>’;

end;

Understanding Variables
A variable is a programming structure that is used to hold data. A variable holds the

data that is assigned to it until you assign a new value or end the program. Each
variable has a unique name and holds information that is either internal information to
handle the requested output (metadata that is used by ODS or the XML LIBNAME
engine) or is information that is directly related to the output itself. For example, the
variable COLCOUNT holds the value for the number of columns in the output, and the
variable DATE holds the date.

TEMPLATE Procedure: Creating Markup Language Tagsets � Getting Familiar with Tagsets 841

Variables that are used by tagsets are divided into two groups: internally generated
and user-created.

There are three logical divisions of internally generated variables:

event variable a variable that includes text, formatting, and data values. These
variables can originate in many places, such as the table template,
the procedure, the title, or byline processing.

style variable a variable that specifies a value for one aspect of the presentation.
Style variables are specified by the ODS style attributes that are
currently in use. The style variables are only differentiated from
other event variables in that you know exactly where they originate.
For more information on style attributes, see Chapter 11,
“TEMPLATE Procedure: Creating a Style Template (Definition),” on
page 487.

dynamic
variable

a variable that is dynamically created within SAS. Because these
variables are dynamically created, their names, or how they are
used, is unknown. These variables are dynamic because they are not
defined by ODS, but by applications such as SAS/GRAPH and the
XML LIBNAME engine. Dynamic variables are designated by a
preceding @ symbol. Dynamic variables are listed with the
DYNAMIC statement. For more information about SAS/GRAPH, see
SAS/GRAPH: Reference.

There are five types of user-created variables:

dictionary
variable

an array that contains a list of numbers or text strings that are
identified by a key. A dictionary variable has, as part of its name, a
preceding ’$’ symbol and a subscript that contains a text string or a
variable that has a character value. The text string or variable
within the subscript is called a key. Keys are case preserving and
case sensitive. After dictionary variables are created, they are
globally available in all events and persist until you unset them
with the UNSET statement.

For example, the following dictionary variable is identifying the
entry in the $MyDictionary variable that contains the text ’dog’:
$MyDictionary[’dog’]. In this example, the key is ’dog’. Dictionary
variables are accessed sequentially by using the ITERATE and
NEXT statements.

list variable an array that contains a list of numbers or text strings that are
indexed. A list variable has, as part of its name, a preceding ’$’
symbol and a subscript that is empty or contains a number or
numeric variable. The number within the subscript is called an
index. After they are created, list variables are globally available in
all events and persist until you unset them with the UNSET
statement.

List entries are accessed by positive or negative indexes. Positive
indexes start at the beginning of a list. Negative indexes start at the
end of a list. For example, the list variable $Mylist[2] identifies the
second entry in the list variable $Mylist. In this case, the index is 2.
The list variable $Mylist[-2] identifies the second entry from the end
of the list variable $Mylist. In this case, the index is [-2]. List
variables are accessed sequentially by using the ITERATE and
NEXT statements.

842 Creating Custom Tagsets � Chapter 13

macro variable a variable that is part of the SAS macro programming language.
Macro variables must be specified with the MVAR or NMVAR
statements. After they are declared, macro variables can be used
anywhere within an event. See the “MVAR Statement” on page 620
and “NMVAR Statement” on page 621 for more information.

memory
variables

areas of memory that contain numeric data, character data, or lists
of numeric or character data. A memory variable is classified as a
dictionary variable if it is created with a subscript that contains a
key. A memory variable is classified as a list variable if it is created
with a subscript that is empty or contains an index. If you omit a
key or an index, then the memory variable is a numeric or character
scalar variable, depending on the variable’s value.

scalar variable an area of memory that contains numeric or character data. Scalar
variables must be preceded by the ’$’ symbol. After scalar variables
are created, they are globally available in all events and persist
until you unset them with the UNSET statement.

stream variable a temporary item store that contains output. All output from PUT
statements is directed to the open stream variable until it is closed.
Stream variables must be preceded by the ’$$’ symbol except when
used with the OPEN or PUTSTREAM statements. Stream variables
are created with the SET, EVAL, or OPEN statements, within the
DEFINE EVENT statement. Stream variables are different from
other variables in that they can hold very large amounts of data.
They can hold very large amounts of data because as they increase
in size they are written to disk as needed.

Displaying Event Variables and Their Values

Because variables represent data, their values might or might not be present,
depending on the SAS procedure and the job. For example, some variables have values
only if they are specified with procedure options or style options. Other variables have
values because the internal information, such as how many columns are in the output,
is needed. For example, TAGSETS.CHTML contains the event COLSPECS, which uses
the event variable COLCOUNT so that ODS knows how many columns are in the
output:

define event colspecs;
put ’<p>’ nl ’<table’;
putq ’ columns=’ COLCOUNT;
put ’ cellpadding=2 border=1>’ nl;

end;

To determine which variables have values and what the values are, use the
EVENT_MAP statement to submit the SAS program. For more information, see “
Defining a Tagset Using the EVENT_MAP Tagset” on page 843. For a list of event
variables and their descriptions, see “Event Variables” on page 833.

Creating Custom Tagsets

TEMPLATE Procedure: Creating Markup Language Tagsets � Creating Custom Tagsets 843

Methods for Creating Custom Tagsets
To create a tagset, use the TEMPLATE procedure to define the tagset. In general,

three methods are available to create a custom tagset:
� Define a tagset through inheritance.
� Copy an existing tagset, and then modify it.
� Define a custom tagset.

Inheriting Events in a Tagset
Tagsets can inherit events from each other. For example, the SAS tagset

TAGSETS.WMLOLIST inherits most of its events from TAGSETS.WML, and
TAGSETS.IMODE gets most of its events from TAGSETS.CHTML. Inheriting events
from an existing tagset is the easiest way to define a new tagset.

To inherit events, a tagset uses the PARENT= attribute in the DEFINE TAGSET
statement to specify the name of a tagset from which to inherit. When a parent is
specified for a tagset, all of the tagset options, attributes, and statements that are
specified in the parent’s template are used in the new template, unless the new
template overrides them. That is, in the new tagset, an event can override the
operation of the same-named event that is defined in the parent tagset. For example, if
the parent tagset defines an event named TABLE, then you can change the operation in
the new tagset by redefining the event named TABLE.

For an example of inheriting events in a tagset, see Example 1 on page 846.

Defining a Tagset Using the EVENT_MAP Tagset
SAS procedures that generate ODS output use a standard set of events and

variables. To generate customized output, create a customized tagset with customized
events. However, in order to customize the events, you need to know the names of the
events that ODS uses.

A good way to start defining the customized tagset is to use the EVENT_MAP tagset
that SAS supplies. This enables you to determine which events are triggered and which
variables are used by an event to send output from a SAS process to an output file.
When you run a SAS process with TAGSETS.EVENT_MAP, ODS writes XML markup
to an output file that shows all event names and variable names as tags. In the output,
tag names are the event names. Tag attributes are the variables that have values for
those events.

For example, the following statements run ODS MARKUP with TYPE=EVENT_MAP
to see which events and variables ODS uses for various parts of the PROC PRINT
output:

ods markup type=event_map file=’custom-tagset-filename.xml’;

proc print data=sashelp.class;
where Height gt 60;

run;

ods markup close;

Here is the listing output and resulting XML file:

844 Creating Custom Tagsets � Chapter 13

Output 13.1 Listing Output

The SAS System 1

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5
3 Barbara F 13 65.3 98.0
4 Carol F 14 62.8 102.5
5 Henry M 14 63.5 102.5
8 Janet F 15 62.5 112.5
9 Jeffrey M 13 62.5 84.0
12 Judy F 14 64.3 90.0
14 Mary F 15 66.5 112.0
15 Philip M 16 72.0 150.0
16 Robert M 12 64.8 128.0
17 Ronald M 15 67.0 133.0
19 William M 15 66.5 112.0

TEMPLATE Procedure: Creating Markup Language Tagsets � Creating Custom Tagsets 845

Output 13.2 XML File

<?xml version=’1.0’ encoding=’windows-1252’?>

<doc operator=’user’ sasversion=’9.1’ saslongversion=’9.01.01B0D06102003’

date=’2003-06-11’ time=’15:55:02’ encoding=’windows-1252’ event_name=’doc’

trigger_name=’attr_out’ class=’Body’ index=’IDX’ just=’c’>

<doc_head event_name=’doc_head’ trigger_name=’attr_out’ class=’Body’

index=’IDX’ just=’c’>

<doc_meta event_name=’doc_meta’ trigger_name=’attr_out’ class=’Body’

index=’IDX’ just=’c’/>

<auth_oper event_name=’auth_oper’ trigger_name=’attr_out’ class=’Body’

index=’IDX’ just=’c’/>

<doc_title event_name=’doc_title’ trigger_name=’attr_out’ class=’Body’

index=’IDX’ just=’c’/>

<stylesheet_link event_name=’stylesheet_link’ trigger_name=’attr_out’

index=’IDX’ just=’c’/>

<javascript event_name=’javascript’ trigger_name=’attr_out’ class=’Body’

index=’IDX’ just=’c’>

<startup_function event_name=’startup_function’ trigger_name=’attr_out’

class=’StartUpFunction’ index=’IDX’ just=’c’>

</startup_function>

<shutdown_function event_name=’shutdown_function’ trigger_name=’attr_out’

class=’ShutDownFunction’ index=’IDX’ just=’c’>

</shutdown_function>

</javascript>

</doc_head>

<doc_body event_name=’doc_body’ trigger_name=’attr_out’ class=’Body’

index=’IDX’ just=’c’>

<proc event_name=’proc’ trigger_name=’attr_out’ name=’Print’

index=’IDX’ just=’c’>

<anchor event_name=’anchor’ trigger_name=’attr_out’ class=’Body’ name=’IDX’

index=’IDX’ just=’c’/>

<page_setup event_name=’page_setup’ trigger_name=’attr_out’ class=’Body’

index=’IDX’ just=’c’>

<system_title_setup_group event_name=’system_title_setup_group’ trigger_name=’attr_out’

class=’Body’ colcount=’1’ index=’IDX’ just=’c’>

<title_setup_container event_name=’title_setup_container’ trigger_name=’attr_out’

class=’SysTitleAndFooterContainer’ colcount=’1’ index=’IDX’ just=’c’>

<title_setup_container_specs event_name=’title_setup_container_specs’ trigger_name=’attr_out’

class=’SysTitleAndFooterContainer’ colcount=’1’ index=’IDX’ just=’c’>

<title_setup_container_spec event_name=’title_setup_container_spec’ trigger_name=’attr_out’

colcount=’1’ type=’string’ index=’IDX’ just=’c’ width=’100%’/>

</title_setup_container_specs>

<title_setup_container_row event_name=’title_setup_container_row’ trigger_name=’attr_out’

colcount=’1’ index=’IDX’ just=’c’>

<system_title_setup event_name=’system_title_setup’ trigger_name=’attr_out’

class=’SystemTitle’ value=’The SAS System’ colcount=’1’ index=’IDX’ just=’c’>

</system_title_setup>

</title_setup_container_row>

</title_setup_container>

</system_title_setup_group>

</page_setup>

...more xml tagged output...

</table_body>

</table>

</output>

</leaf>

</proc_branch>

</proc>

</doc_body>

</doc>

In the XML output that is generated by EVENT_MAP, PROC PRINT uses events
named DOC_HEAD, PROC, TABLE, and so on. The TABLE event uses data from event
variables such as STATE, CLASS, and TYPE. After you know the events and variables

846 Examples: Creating and Modifying Markup Languages Using the TEMPLATE Procedure � Chapter 13

that generate the output, define the tagset and customize your events. For example,
you could redefine the TABLE event to produce customized output.

To define a tagset with which to customize your output, start by specifying
TAGSETS.EVENT_MAP as the parent tagset. As you redefine events to customize
output, these events replace the default events that are defined in the EVENT_MAP
tagset. In addition, you can remove the operation of a default event by redefining it as
an empty event in the tagset. When you are satisfied with the customized output,
remove the EVENT_MAP inheritance and the empty events. Then the output will
reflect only the events you defined.

Note: When you first run a SAS process and specify TYPE=EVENT_MAP, you can
also generate a stylesheet along with the body file. The stylesheet shows which style
attributes you are using. �

Alternatives to EVENT_MAP
To create other types of output, you can use one of the following tagsets as

alternatives:
� TEXT_MAP generates output that is similiar to a listing output.
� TPL_STYLE_LIST generates HTML and TPL_STYLE_MAP generates XML.

However, these tagsets list only a subset of the possible attributes.
� STYLE_POPUP generates HTML like HTMLCSS. However Internet Explorer,

STYLE_POPUP displays a window that shows the resolved ODS style definition
for any item that you click.

� STYLE_DISPLAY is like STYLE_POPUP, but it generates a simple page of output
for you to click.

� NAMEDHTML generates HTML output like STYLE_POPUP, but all of the objects
are labeled the same as with ODS TRACE.

Defining a Tagset Using SAS DATA Step Functions
A SAS DATA step function performs a computation or system manipulation on

arguments and returns a value. In Base SAS software, you can use SAS functions in
DATA step programming statements, WHERE expressions, macro language statements,
the REPORT procedure, Structured Query Language (SQL), and in statements that are
used when creating custom tagsets. Functions can be used on any statement within the
tagset language. For information on DATA step functions and statements, see SAS
Language Reference: Dictionary and SAS Language Reference: Concepts.

Examples: Creating and Modifying Markup Languages Using the
TEMPLATE Procedure

Example 1: Creating a Tagset through Inheritance
PROC TEMPLATE features:

DEFINE TAGSET statement:
DEFINE EVENT statement:

PUT statement

TEMPLATE Procedure: Creating Markup Language Tagsets � Program 847

PARENT= attribute
Other ODS features:

ODS PATH statement
ODS MARKUP statement

Program Description
This example defines a new tagset called TAGSETS.MYTAGS that creates

customized HTML output. The new tagset is created through inheritance. Most of the
required formatting is available in the tagset TAGSETS.CHTML, which SAS supplies.

Program

Define a new tagset. The DEFINE TAGSET statement creates a new tagset called
tagsets.mytags. The PARENT= attribute is used so that the new tagset tagsets.mytags
inherits events from TAGSETS.CHTML. Note that the ODS PATH statement is specified at the
beginning to establish the search path.

ods path sasuser.templat (update)
sashelp.tmplmst (read);

proc template;
define tagset tagsets.mytags /store=sasuser.templat;

parent=tagsets.chtml;

Define three events. The DEFINE EVENT statements create three events called colspecs,
table, and system_title. The colspecs event specifies text. The table event specifies tags
to include in the template. The system_title event deletes titles.

define event colspecs;
put ’These are my new colspecs’ nl;

end;

define event table;
put ’<p>’ nl ’<table>’;

finish:
put ’</table>’;

end;

define event system_title;
end;

End the tagset. This END statement ends the tagset. The RUN statement executes the PROC
TEMPLATE step.

end;
run;

848 Program � Chapter 13

Specify the user-defined tagset. The following code specifies the user-defined tagset
TAGSETS.MYTAGS as the tagset for the output.

ods tagsets.mytags body=’custom-tagset-filename.html’;

Print the data set. PROC PRINT creates the report. ODS writes the report to the body file.

proc print data=sashelp.class;
run;

Stop the creation of the tagset. The ODS TAGSET. MYTAGS CLOSE statement closes the
MARKUP destination and all the files that are associated with it. Close the destination so that
you can view the output with a browser.

ods tagsets.mytags close;

Display 13.1 Generated Output: MYTAGS.CHTML (Viewed with Microsoft Internet Explorer)

To see the customized CHTML tags, view the source from the Web browser:

From the browser’s tool bar, select View � Source.

TEMPLATE Procedure: Creating Markup Language Tagsets � Program 849

Use the tagset TAGSETS.CHTML, which SAS provides. Compare the output from
TAGSETS.MYTAGS to that from TAGSETS.CHTML, which SAS supplies. Use the following
ODS code to specify the SAS tagset. You can specify any tagset by using TYPE= in an ODS
MARKUP statement.

ods markup type=tagsets.chtml body=’default-tagset-filename.html’;

proc print data=sashelp.class;
run;

ods markup close;

850 Example 2: Creating a Tagset by Copying a Tagset’s Source � Chapter 13

Display 13.2 A Display That Uses the Default CHTML Tagset (Viewed with Microsoft Internet Explorer)

To see the default CHTML tags, view the source from the Web browser:

Ffrom the browser’s tool bar, select View � Source.

Example 2: Creating a Tagset by Copying a Tagset’s Source

PROC TEMPLATE features:
SOURCE statement
DEFINE TAGSET statement

TEMPLATE Procedure: Creating Markup Language Tagsets � Program 851

DEFINE EVENT statement

Program Description
This example copies the source for a tagset that SAS supplies, modifies the template,

and then builds a new tagset for custom output. To create a new tagset, use the
SOURCE statement in PROC TEMPLATE to copy a tagset’s source. Then you can
customize the template as necessary.

Program

Copy the SAS tagset to an external file. The following statements copy the tagset source
from the SAS tagset TAGSETS.CSV to the SAS log.

proc template;
source tagsets.csv;

run;

852 Program � Chapter 13

Output 13.3 CSV Tagset Source

This is the default CSV tagset that SAS supplies.

define tagset Tagsets.Csv;
notes ’This is the CSV template’;
define event put_value;

put VALUE;
end;
define event put_value_cr;

put VALUE NL;
end;
define event table;

finish:
put NL;

end;
define event row;

finish:
put NL;

end;
define event header;

start:
put ’,’ /if ^cmp(COLSTART, ’1’);
put ’’’’;
put VALUE;

finish:
put ’’’’;

end;
define event data;

start:
put ’,’ /if ^cmp(COLSTART, ’1’);
put ’’’’;
put VALUE;

finish:
put ’’’’;

end;
define event colspanfill;

put ’,’;
end;
define event rowspanfill;

put ’,’ /if ^exists(VALUE);
end;
define event breakline;

put NL;
end;
define event splitline;

put NL;
end;
registered_tm = ’(r)’;
trademark = ’(tm)’;
copyright = ’(c)’;
output_type = ’csv’;
stacked_columns = OFF;

end;

Create the customized tagset. Submit the following PROC TEMPLATE code to create the
customized tagset Tagsets.mycsv. The DEFINE EVENT TABLE statement uses the PUT NL
statements to add two blank lines to the output file. One blank line is placed before the table
and the other is placed after the table.

define tagset Tagsets.mycsv;
notes ’This is the My CSV template’;
define event table;

TEMPLATE Procedure: Creating Markup Language Tagsets � Program 853

start:
put nl;

finish:
put nl;

end;
define event put_value;

put VALUE;
end;
define event put_value_cr;

put VALUE NL;
end;
define event row;

finish:
put NL;

end;
define event header;

start:
put ’,’ /if ^cmp(COLSTART, ’1’);
put ’’’’;
put VALUE;

finish:
put ’’’’;

end;
define event data;

start:
put ’,’ /if ^cmp(COLSTART, ’1’);
put ’’’’;
put VALUE;

finish:
put ’’’’;

end;
define event colspanfill;

put ’,’;
end;
define event rowspanfill;

put ’,’ /if ^exists(VALUE);
end;
define event breakline;

put NL;
end;
define event splitline;

put NL;
end;
registered_tm = ’(r)’;
trademark = ’(tm)’;
copyright = ’(c)’;
output_type = ’csv’;
stacked_columns = OFF;

end;

854 Program � Chapter 13

Output 13.4 Customized CSV Tagsets.mycsv Template Source

To view the customized CSV Tagsets.mycsv, submit the following
code:

proc template;
source tagsets.mycsv;

run;

proc template;
define tagset Tagsets.Mycsv / store = SASUSER.TEMPLAT;

notes ’This is the My CSV template’;
define event table;

start:
put NL;

finish:
put NL;

end;
define event put_value;

put VALUE;
end;
define event put_value_cr;

put VALUE NL;
end;
define event row;

finish:
put NL;

end;
define event header;

start:
put ’,’ /if ^cmp(COLSTART, ’1’);
put ’’’’;
put VALUE;

finish:
put ’’’’;

end;
define event data;

start:
put ’,’ /if ^cmp(COLSTART, ’1’);
put ’’’’;
put VALUE;

finish:
put ’’’’;

end;
define event colspanfill;

put ’,’;
end;
define event rowspanfill;

put ’,’ /if ^exists(VALUE);
end;
define event breakline;

put NL;
end;
define event splitline;

put NL;
end;
output_type = ’csv’;
copyright = ’(c)’;
trademark = ’(tm)’;
registered_tm = ’(r)’;
stacked_columns = OFF;

end;
run;

TEMPLATE Procedure: Creating Markup Language Tagsets � Program 855

Example 3: Creating a New Tagset

PROC TEMPLATE features:
DEFINE TAGSET statement:

NOTES statement
DEFINE EVENT statement:

NDENT statement
PUT statement
TRIGGER statement
XDENT statement

Tagset Attributes:
DEFAULT_EVENT attribute
INDENT= attribute
OUTPUT_TYPE attribute
MAP= attribute
MAPSUB= attribute
NOBREAKSPACE= attribute
SPLIT= attribute
STACKED_COLUMNS= attribute

Program Description
This example shows a new tagset that does not inherit events from another tagset.

This is a customized tagset for specific PROC FREQ output.

Program

Create the new tagset Tagsets.newloc. The DEFINE TAGSET statement creates a new
tagset Tagsets.newloc and specifies where you want to store the tagset.

proc template;
define tagset Tagsets.newloc / store = SASUSER.TEMPLAT;

notes ’This is the Location Report Template’;

Define seven events. The seven DEFINE statements create the events named basic, doc,
system_title, header, data, country,and frequency.

define event basic;
end;

define event doc;
start:

put ’’ nl nl;
put ’’ nl;
put ’’ nl;
put ’’ nl;
ndent;

finish:
xdent;

856 Program � Chapter 13

put nl;
put ’’;

end;

define event system_title;
put ’’;
put VALUE;
put ’’;
put nl nl;

end;
define event header;

start:
trigger country /if cmp(LABEL, ’EmpCountry’);
end;

define event data;
start:
trigger frequency /if cmp(name, ’Frequency’);
end;

define event country;
put ’’ nl ;
ndent ;
put ’’ ;
put VALUE ;
put ’’ nl ;

end;

define event frequency;
put ’’ ;
put VALUE ;
put ’’ nl ;
xdent ;
put ’’ nl ;

end;

output_type = ’xml’;
default_event = ’basic’;
indent = 2;
split = ’’;
nobreakspace = ’ ’;
mapsub = ’/</>/&/’;
map = ’<>&’;
stacked_columns=off;
end;

run;

TEMPLATE Procedure: Creating Markup Language Tagsets � Example 4: Executing Events Using the TRIGGER= Statement 857

Output 13.5 New Tagsets.newloc Template Source

proc template;
define tagset Tagsets.newloc / store = SASUSER.TEMPLAT;

notes ’This is the Location Report Template’;
define event basic;
end;
define event doc;

start:
put ’’ NL NL;
put ’’ NL;
put ’’ NL;
put ’’ NL;
ndent;

finish:
xdent;
put NL;
put ’’;

end;
define event system_title;

put ’’;
put VALUE;
put ’’;
put NL NL;

end;
define event header;

start:
trigger country /if cmp(LABEL, ’EmpCountry’);

end;
define event data;

start:
trigger frequency /if cmp(name, ’Frequency’);

end;
define event country;

put ’’ NL;
ndent;
put ’’;
put VALUE;
put ’’ NL;

end;
define event frequency;

put ’’;
put VALUE;
put ’’ NL;
xdent;
put ’’ NL;

end;
map = %nrstr(’<>&’);
mapsub = %nrstr(’//&/’);
nobreakspace = ’ ’;
split = ’’;
indent = 2;
default_event = ’basic’;
output_type = ’xml’;
stacked_columns = OFF;

end;
run;

Example 4: Executing Events Using the TRIGGER= Statement
PROC TEMPLATE features:

DEFINE TAGSET statement:
DEFINE EVENT statement:

PUT statement

858 Program Description � Chapter 13

TRIGGER statement
Other ODS features:

ODS directory.tagset-name statement

Program Description
This example illustrates how to execute events.

Program

Execute different events. The TRIGGER statement executes another event. For example, the
start section of DOC triggers the start section of MYTEST and OTHEREVENT. MYTEST has a
start section, so output is generated. OTHEREVENT is stateless (no start or finish sections),
but output is generated.

proc template;
define tagset tagsets.mytagset;

define event doc;
start:

put ’start of doc’ nl;
trigger mytest;
trigger otherevent;

finish:
trigger mytest;
put ’finish of doc’ nl;
trigger mytest start;
trigger otherevent;
trigger mytest finish;

end;

define event mytest;
start:

put ’start of mytest’ nl;
finish:

put ’finish of mytest’ nl;
end;

define event otherevent;
put ’This is my other event’ nl;

end;
end;

run;

ods tagsets.mytagset file=’custom-tagset-filename.txt’;
ods tagsets.mytagset close;

TEMPLATE Procedure: Creating Markup Language Tagsets � Program 859

Display 13.3 Output Created from Events and Tagsets.mytagset Template

To view the output tagsets.mytagset, open the file in a text editor.

Example 5: Indenting Output

PROC TEMPLATE features:
DEFINE TAGSET statement:

DEFINE EVENT statement:

PUT statement
NDENT statement
TRIGGER statement
XDENT statement

TAGSET attributes:
INDENT= attribute

Other ODS features:
ODS directory.tagset-name statement

Program Description

This example illustrates how to indent the output using a tagset.

Note: When you view a file with an extension of .xml in an XML-compliant browser,
the browser ignores any indention in the file in favor of its own indention algorithm. �

Program

860 Program � Chapter 13

Set the beginning indention level and then proceed to increment the indention levels.
The INDENT= tagset attribute determines how much the NDENT and XDENT event
statements indent output.

proc template;
define tagset tagsets.mytagset2;
indent = 4;

define event doc;
start:

put ’start of doc’ nl;
ndent;
trigger mytest;
trigger otherevent;

finish:
trigger mytest;
xdent;
put ’finish of doc’ nl;
trigger mytest start;
trigger otherevent;
trigger mytest finish;

end;

define event mytest;
start:

put ’start of mytest’ nl;
ndent;

finish:
xdent;
put ’finish of mytest’ nl;

end;

define event otherevent;
put ’This is my other event’ nl;

end;
end;

run;
ods tagsets.mytagset2 file=’custom-tagset-filename2.txt’;
ods tagsets.mytagset2 close;

TEMPLATE Procedure: Creating Markup Language Tagsets � Program 861

Display 13.4 Output Created from Events and Using Tagsets.mytagset2 Template Source

Example 6: Using Different Styles for Events

PROC TEMPLATE features:
DEFINE EVENT statement:

PUT statement
TRIGGER statement

Event attribute:
STYLE= attribute

Program Description
This example uses different styles for events.

Program

Specify the events. The following events are from the SAS tagset TAGSETS.HTMLCSS, and
they show how ODS creates notes. By defining the Gnote event and setting the proper style in
the right place, ODS creates a two-cell table that has a banner using the appropriate banner
style and a content cell that has the appropriate content style.

define event Gnote;
start:

put ’<div>’;
trigger align;
put ’>’;
put ’<table>’;
put ’<tr>’ nl;

finish:
put ’</tr>’ nl;
put ’</table>’ nl;
put ’</div>’;

end;

862 Program � Chapter 13

define event GBanner;
put ’’ nl;
trigger pre_post;
put ’’ nl;

end;

define event GNContent;
put ’’;
trigger pre_post start;
put VALUE;
trigger pre_post finish;
put ’’;

end;

define event noteBanner;
style=NoteBanner;
trigger GBanner;

end;

define event NoteContent;
style=NoteContent;
trigger GNContent;

end;

define event note;
trigger Gnote start;
trigger noteBanner;
trigger noteContent;
trigger Gnote finish;

end;

define event WarnBanner;
style=WarnBanner;
trigger GBanner;

end;

define event WarnContent;
style=WarnContent;
trigger GNContent;

end;

define event Warning;
trigger Gnote start;
trigger WarnBanner;
trigger WarnContent;
trigger Gnote finish;

end;

TEMPLATE Procedure: Creating Markup Language Tagsets � Program Description 863

Example 7: Modifying an Event to Include Other Stylesheets

PROC TEMPLATE features:
DEFINE EVENT statement:

PUTQ statement

Program Description
The following program provides some example code that you can use to link a

previously created stylesheet to an event that you define.

Program

Define an event that links to a stylesheet. This code defines an event that creates a link to
a previously created stylesheet instead of the stylesheet that SAS generated.

define event stylesheet_link;
putq ’<link rel= ’STYLESHEET’ type=’text/css’
href=’ URL ’>’ nl / if exists(url);
putq ’<link rel= ’STYLESHEET’ type=’text/css’
href=’http://your/stylesheet/url/goes/here’>’ nl;
putq ’<link rel= ’STYLESHEET’ type=’text/css’
href=’http://your/stylesheet/url/goes/here’>’ nl;
end;

Example 8: Using the STACKED_COLUMNS Attribute in a Tagset

PROC TEMPLATE features:
DEFINE TABLE statement:

NOTES statement
COLUMN statement
DEFINE statement (for columns)

DEFINE TAGSET statement:
Tagset attribute:

PARENT= attribute
STACKED_COLUMNS= attribute

Other ODS features:
ODS directory.tagset-name statement
ODS PHTML statement
ODS _ALL_ CLOSE statement

Program Description
This example shows the difference between stacking data one column on top of

another and placing data side by side. (For more information on stacked columns, see
the “DEFINE TABLE Statement” on page 640.)

864 Program � Chapter 13

Program

Create a table template. The DEFINE TABLE statement creates the table template
Base.Standard.

proc template;
define table Base.Standard;

notes ’Table template for PROC Standard.’;
column name (mean std) n label;
define name; header=’Name’ varname=’Name’ style=RowHeader; end;
define mean; header=’Mean/Std Dev’ varname=’Mean’ format=D12.;

end;
define std; header=’/Standard/Deviation’

varname=’stdDev’ format=D12.; end;
define n; header=’N’ format=best.; end;
define label; header=’Label’ varname=’Label’; end;
byline wrap required_space=3;

end;
run;
proc template;

define tagset tagsets.myhtml;
parent=tagsets.phtml;
stacked_columns=no;

end;
run;

Customize the tagset by stacking the values side by side. This customized tagset has
STACKED_COLUMNS= NO. Note that the SAS tagset, TAGSETS.PHTML, has
STACKED_COLUMNS=YES.

proc template;
define tagset tagsets.myhtml;

parent=tagsets.phtml;
stacked_columns=no;

end;
run;

Create HTML output and specify the location for storing the HTML output. The ODS
TAGSETS.MYHTML statement opens the markup language destination and creates the HTML
output. The output objects are sent to the external file not_stacked.html in the current
directory. The PROC STANDARD statement generates the statistics for the sashelp.class
data set. The PRINT option prints the report.

ods tagsets.myhtml file=’not_stacked.html’;
proc standard print data=sashelp.class;
run;

Stop the creation of the HTML output. The ODS _ALL_ CLOSE statement closes all open
destinations and all files associated with them. For HTML output, close the HTML destination
so that you can view the output with a browser.

ods _all_ close;

TEMPLATE Procedure: Creating Markup Language Tagsets � Program Output 865

Display 13.5 Output with Values Side by Side

Create the same file but with stacked values. The STACKED_COLUMNS=YES statement
shows the same values stacked in the SAS tagset PHTML.

ods phtml file=’stacked.html’;
proc standard print data=sashelp.class;
run;
ods _all_ close;

Program

Program Output

Display 13.6 Output with Values Stacked One on Top of Another

866

867

P A R T6

Appendices

Appendix 1.Example Programs 869

Appendix 2.ODS and the HTML Destination 891

Appendix 3.ODS HTML Statements for Running Examples in Different
Operating Environments 903

Appendix 4.ODS Style Elements 905

Appendix 5.Recommended Reading 929

868

869

A P P E N D I X

1
Example Programs

Creating the $CNTRY Format 869
Creating the Charity Data Set 869

Creating the DIVFMT. and USETYPE. Formats 872

Creating the Univ ODS Document 872

Creating the Employee_Data Data Set 873

Creating the Energy Data Set 875
Creating the Exprev Data Set 875

Creating the Gov Data Set 877

Creating the Grain_Production Data Set 878

Creating the Iron Data Set 879

Creating the Model Data Set 879

Creating the Plants Data Set 880
Creating the Plant_Stat Data Set 880

Creating the StatePop Data Set 881

Creating the Table1 Table Definition 882

Programs That Illustrate Inheritance 883

Using the FROM option 883
Inheritance Compatibility Across SAS Versions 886

Creating the Nlits Data Set 889

Creating the $CNTRY Format

proc format;
value $cntry ’BRZ’=’Brazil’

’CHN’=’China’
’IND’=’India’
’INS’=’Indonesia’
’USA’=’United States’;

run;

Creating the Charity Data Set

data Charity;
input School $ 1-7 Year 9-12 Name $ 14-20 moneyRaised 22-26

hoursVolunteered 28-29;
format moneyRaised dollar8.2;

870 Creating the Charity Data Set � Appendix 1

format hoursVolunteered f3.0;
format Year yrFmt.;
format School schFmt.;
label School = "Schools";
label Year = "Years";
retain yearmin yearmax;
yearmin=min(yearmin,year);
yearmax=max(yearmax,year);
call symput(’first_year’,put(yearmin,4.));
call symput(’last_year’, put(yearmax,4.));

datalines;
Monroe 1992 Allison 31.65 19
Monroe 1992 Barry 23.76 16
Monroe 1992 Candace 21.11 5
Monroe 1992 Danny 6.89 23
Monroe 1992 Edward 53.76 31
Monroe 1992 Fiona 48.55 13
Monroe 1992 Gert 24.00 16
Monroe 1992 Harold 27.55 17
Monroe 1992 Ima 5.98 9
Monroe 1992 Jack 20.00 23
Monroe 1992 Katie 22.11 2
Monroe 1992 Lisa 18.34 17
Monroe 1992 Tonya 55.16 40
Monroe 1992 Max 26.77 34
Monroe 1992 Ned 28.43 22
Monroe 1992 Opal 32.66 14
Monroe 1993 Patsy 18.33 18
Monroe 1993 Quentin 16.89 15
Monroe 1993 Randall 12.98 17
Monroe 1993 Sam 15.88 5
Monroe 1993 Tyra 21.88 23
Monroe 1993 Myrtle 47.33 26
Monroe 1993 Frank 41.11 22
Monroe 1993 Cameron 65.44 14
Monroe 1993 Vern 17.89 11
Monroe 1993 Wendell 23.00 10
Monroe 1993 Bob 26.88 6
Monroe 1993 Leah 28.99 23
Monroe 1994 Becky 30.33 26
Monroe 1994 Sally 35.75 27
Monroe 1994 Edgar 27.11 12
Monroe 1994 Dawson 17.24 16
Monroe 1994 Lou 5.12 16
Monroe 1994 Damien 18.74 17
Monroe 1994 Mona 27.43 7
Monroe 1994 Della 56.78 15
Monroe 1994 Monique 29.88 19
Monroe 1994 Carl 31.12 25
Monroe 1994 Reba 35.16 22
Monroe 1994 Dax 27.65 23
Monroe 1994 Gary 23.11 15
Monroe 1994 Suzie 26.65 11
Monroe 1994 Benito 47.44 18

Example Programs � Creating the Charity Data Set 871

Monroe 1994 Thomas 21.99 23
Monroe 1994 Annie 24.99 27
Monroe 1994 Paul 27.98 22
Monroe 1994 Alex 24.00 16
Monroe 1994 Lauren 15.00 17
Monroe 1994 Julia 12.98 15
Monroe 1994 Keith 11.89 19
Monroe 1994 Jackie 26.88 22
Monroe 1994 Pablo 13.98 28
Monroe 1994 L.T. 56.87 33
Monroe 1994 Willard 78.65 24
Monroe 1994 Kathy 32.88 11
Monroe 1994 Abby 35.88 10
Kennedy 1992 Arturo 34.98 14
Kennedy 1992 Grace 27.55 25
Kennedy 1992 Winston 23.88 22
Kennedy 1992 Vince 12.88 21
Kennedy 1992 Claude 15.62 5
Kennedy 1992 Mary 28.99 34
Kennedy 1992 Abner 25.89 22
Kennedy 1992 Jay 35.89 35
Kennedy 1992 Alicia 28.77 26
Kennedy 1992 Freddy 29.00 27
Kennedy 1992 Eloise 31.67 25
Kennedy 1992 Jenny 43.89 22
Kennedy 1992 Thelma 52.63 21
Kennedy 1992 Tina 19.67 21
Kennedy 1992 Eric 24.89 12
Kennedy 1993 Bubba 37.88 12
Kennedy 1993 G.L. 25.89 21
Kennedy 1993 Bert 28.89 21
Kennedy 1993 Clay 26.44 21
Kennedy 1993 Leeann 27.17 17
Kennedy 1993 Georgia 38.90 11
Kennedy 1993 Bill 42.23 25
Kennedy 1993 Holly 18.67 27
Kennedy 1993 Benny 19.09 25
Kennedy 1993 Cammie 28.77 28
Kennedy 1993 Amy 27.08 31
Kennedy 1993 Doris 22.22 24
Kennedy 1993 Robbie 19.80 24
Kennedy 1993 Ted 27.07 25
Kennedy 1993 Sarah 24.44 12
Kennedy 1993 Megan 28.89 11
Kennedy 1993 Jeff 31.11 12
Kennedy 1993 Taz 30.55 11
Kennedy 1993 George 27.56 11
Kennedy 1993 Heather 38.67 15
Kennedy 1994 Nancy 29.90 26
Kennedy 1994 Rusty 30.55 28
Kennedy 1994 Mimi 37.67 22
Kennedy 1994 J.C. 23.33 27
Kennedy 1994 Clark 27.90 25
Kennedy 1994 Rudy 27.78 23

872 Creating the DIVFMT. and USETYPE. Formats � Appendix 1

Kennedy 1994 Samuel 34.44 18
Kennedy 1994 Forrest 28.89 26
Kennedy 1994 Luther 72.22 24
Kennedy 1994 Trey 6.78 18
Kennedy 1994 Albert 23.33 19
Kennedy 1994 Che-Min 26.66 33
Kennedy 1994 Preston 32.22 23
Kennedy 1994 Larry 40.00 26
Kennedy 1994 Anton 35.99 28
Kennedy 1994 Sid 27.45 25
Kennedy 1994 Will 28.88 21
Kennedy 1994 Morty 34.44 25
;

Creating the DIVFMT. and USETYPE. Formats
proc format;

value divfmt 1=’New England’
2=’Middle Atlantic’
3=’Mountain’
4=’Pacific’;

value usetype 1=’Residential Customers’
2=’Business Customers’;

run;

Creating the Univ ODS Document
ods document name=univ;

title ’100 Obs Sampled from a Normal Distribution’;
proc univariate data=distrdata noprint;

var Normal_x;

histogram Normal_x /normal(noprint) cbarline=grey name=’normal’;
run;

title ’100 Obs Sampled from an Exponential Distribution’;

proc univariate data=distrdata noprint;
var Exponential_x;

histogram /exp(fill l=3) cfill=yellow midpoints=.05 to 5.55 by .25
name=’exp’;

run;

ods document close;
title;

proc document;
doc;
doc name=univ;

Example Programs � Creating the Employee_Data Data Set 873

list/levels=all;

dir univariate#2\exponential_x\fitteddistributions\exponential;
list;
list fitquantiles/details;

run;

quit;

Creating the Employee_Data Data Set

options source pagesize=60 linesize=80 nodate;

data employee_data;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;

datalines;
1919 Adams Gerald Stamford CT
M TA2 34376 15SEP48 07JUN75 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT52 12AUG78 203/675-7715
1400 Apple Troy New York NY
M ME1 29769 08NOV55 19OCT78 212/586-0808
1350 Arthur Barbara New York NY
F FA3 32886 03SEP53 01AUG78 718/383-1549
1401 Avery Jerry Paterson NJ
M TA3 38822 16DEC38 20NOV73 201/732-8787
1499 Barefoot Joseph Princeton NJ
M ME3 43025 29APR42 10JUN68 201/812-5665
1101 Baucom Walter New York NY
M SCP 18723 09JUN50 04OCT78 212/586-8060
1333 Blair Justin Stamford CT
M PT2 88606 02APR49 13FEB69 203/781-1777
1402 Blalock Ralph New York NY
M TA2 32615 20JAN51 05DEC78 718/384-2849
1479 Bostic Marie New York NY
F TA3 38785 25DEC56 08OCT77 718/384-8816
1403 Bowden Earl Bridgeport CT
M ME1 28072 31JAN57 24DEC79 203/675-3434
1739 Boyce Jonathan New York NY
M PT1 66517 28DEC52 30JAN79 212/587-1247
1658 Bradley Jeremy New York NY
M SCP 17943 11APR55 03MAR80 212/587-3622
1428 Brady Christine Stamford CT
F PT1 68767 07APR58 19NOV79 203/781-1212

874 Creating the Employee_Data Data Set � Appendix 1

1782 Brown Jason Stamford CT
M ME2 35345 07DEC58 25FEB80 203/781-0019
1244 Bryant Leonard New York NY
M ME2 36925 03SEP51 20JAN76 718/383-3334
1383 Burnette Thomas New York NY
M BCK 25823 28JAN56 23OCT80 718/384-3569
1574 Cahill Marshall New York NY
M FA2 28572 30APR48 23DEC80 718/383-2338
1789 Caraway Davis New York NY
M SCP 18326 28JAN45 14APR66 212/587-9000
1404 Carter Donald New York NY
M PT2 91376 27FEB41 04JAN68 718/384-2946
1437 Carter Dorothy Bridgeport CT
F A3 33104 23SEP48 03SEP72 203/675-4117
1639 Carter Karen Stamford CT
F A3 40260 29JUN45 31JAN72 203/781-8839
1269 Caston Franklin Stamford CT
M NA1 41690 06MAY60 01DEC80 203/781-3335
1065 Chapman Neil New York NY
M ME2 35090 29JAN32 10JAN75 718/384-5618
1876 Chin Jack New York NY
M TA3 39675 23MAY46 30APR73 212/588-5634
1037 Chow Jane Stamford CT
F TA1 28558 13APR52 16SEP80 203/781-8868
1129 Cook Brenda New York NY
F ME2 34929 11DEC49 20AUG79 718/383-2313
1988 Cooper Anthony New York NY
M FA3 32217 03DEC47 21SEP72 212/587-1228
1405 Davidson Jason Paterson NJ
M SCP 18056 08MAR54 29JAN80 201/732-2323
1430 Dean Sandra Bridgeport CT
F TA2 32925 03MAR50 30APR75 203/675-1647
1983 Dean Sharon New York NY
F FA3 33419 03MAR50 30APR75 718/384-1647
1134 Delgado Maria Stamford CT
F TA2 33462 08MAR57 24DEC76 203/781-1528
1118 Dennis Roger New York NY
M PT3 111379 19JAN32 21DEC68 718/383-1122
1438 Donaldson Karen Stamford CT
F TA3 39223 18MAR53 21NOV75 203/781-2229
1125 Dunlap Donna New York NY
F FA2 28888 11NOV56 14DEC75 718/383-2094
1475 Eaton Alicia New York NY
F FA2 27787 18DEC49 16JUL78 718/383-2828
1117 Edgerton Joshua New York NY
M TA3 39771 08JUN51 16AUG80 212/588-1239
1935 Fernandez Katrina Bridgeport CT
F NA2 51081 31MAR42 19OCT69 203/675-2962
1124 Fields Diana White Plains NY
F FA1 23177 13JUL46 04OCT78 914/455-2998
1422 Fletcher Marie Princeton NJ
F FA1 22454 07JUN52 09APR79 201/812-0902
1616 Flowers Annette New York NY
F TA2 34137 04MAR58 07JUN81 718/384-3329

Example Programs � Creating the Exprev Data Set 875

1406 Foster Gerald Bridgeport CT
M ME2 35185 11MAR49 20FEB75 203/675-6363
1120 Garcia Jack New York NY
M ME1 28619 14SEP60 10OCT81 718/384-4930
1094 Gomez Alan Bridgeport CT
M FA1 22268 05APR58 20APR79 203/675-7181
1389 Gordon Levi New York NY
M BCK 25028 18JUL47 21AUG78 718/384-9326
1905 Graham Alvin New York NY
M PT1 65111 19APR60 01JUN80 212/586-8815
1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR57 21MAR78 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP57 30JUN75 212/588-1092
;

Creating the Energy Data Set

data energy;
length State $2;
input Region Division state $ Type Expenditures @@;
datalines;

1 1 ME 1 708 1 1 ME 2 379 1 1 NH 1 597 1 1 NH 2 301
1 1 VT 1 353 1 1 VT 2 188 1 1 MA 1 3264 1 1 MA 2 2498
1 1 RI 1 531 1 1 RI 2 358 1 1 CT 1 2024 1 1 CT 2 1405
1 2 NY 1 8786 1 2 NY 2 7825 1 2 NJ 1 4115 1 2 NJ 2 3558
1 2 PA 1 6478 1 2 PA 2 3695 4 3 MT 1 322 4 3 MT 2 232
4 3 ID 1 392 4 3 ID 2 298 4 3 WY 1 194 4 3 WY 2 184
4 3 CO 1 1215 4 3 CO 2 1173 4 3 NM 1 545 4 3 NM 2 578
4 3 AZ 1 1694 4 3 AZ 2 1448 4 3 UT 1 621 4 3 UT 2 438
4 3 NV 1 493 4 3 NV 2 378 4 4 WA 1 1680 4 4 WA 2 1122
4 4 OR 1 1014 4 4 OR 2 756 4 4 CA 1 10643 4 4 CA 2 10114
4 4 AK 1 349 4 4 AK 2 329 4 4 HI 1 273 4 4 HI 2 298
;

Creating the Exprev Data Set

data exprev;

input Country $ 1-24 Emp_ID $ 25-32 Order_Date $ Ship_Date $ Sale_Type $ & Quantity Price Cost;

datalines;

Antarctica 99999999 1/1/05 1/7/05 Internet 2 92.60 20.70

Puerto Rico 99999999 1/1/05 1/5/05 Catalog 14 51.20 12.10

Virgin Islands (U.S.) 99999999 1/1/05 1/4/05 In Store 25 31.10 15.65

Aruba 99999999 1/1/05 1/4/05 Catalog 30 123.70 59.00

Bahamas 99999999 1/1/05 1/4/05 Catalog 8 113.40 28.45

Bermuda 99999999 1/1/05 1/4/05 Catalog 7 41.00 9.25

Belize 120458 1/2/05 1/2/05 In Store 2 146.40 36.70

British Virgin Islands 99999999 1/2/05 1/5/05 Catalog 11 40.20 20.20

876 Creating the Exprev Data Set � Appendix 1

Canada 99999999 1/2/05 1/5/05 Catalog 100 11.80 5.00

Cayman Islands 120454 1/2/05 1/2/05 In Store 20 71.00 32.30

Costa Rica 99999999 1/2/05 1/6/05 Internet 31 53.00 26.60

Cuba 121044 1/2/05 1/2/05 Internet 12 42.40 19.35

Dominican Republic 121040 1/2/05 1/2/05 Internet 13 48.00 23.95

El Salvador 99999999 1/2/05 1/6/05 Catalog 21 266.40 66.70

Guatemala 120931 1/2/05 1/2/05 In Store 13 144.40 65.70

Haiti 121059 1/2/05 1/2/05 Internet 5 47.90 23.45

Honduras 120455 1/2/05 1/2/05 Internet 20 66.40 30.25

Jamaica 99999999 1/2/05 1/4/05 In Store 23 169.80 38.70

Mexico 120127 1/2/05 1/2/05 In Store 30 211.80 33.65

Montserrat 120127 1/2/05 1/2/05 In Store 19 184.20 36.90

Nicaragua 120932 1/2/05 1/2/05 Internet 16 122.00 28.75

Panama 99999999 1/2/05 1/6/05 Internet 20 88.20 38.40

Saint Kitts/Nevis 99999999 1/2/05 1/6/05 Internet 20 41.40 18.00

St. Helena 120360 1/2/05 1/2/05 Internet 19 94.70 47.45

St. Pierre/Miquelon 120842 1/2/05 1/16/05 Internet 16 103.80 47.25

Turks/Caicos Islands 120372 1/2/05 1/2/05 Internet 10 57.70 28.95

United States 120372 1/2/05 1/2/05 Internet 20 88.20 38.40

Anguilla 99999999 1/2/05 1/6/05 In Store 15 233.50 22.25

Antigua/Barbuda 120458 1/2/05 1/2/05 In Store 31 99.60 45.35

Argentina 99999999 1/2/05 1/6/05 In Store 42 408.80 87.15

Barbados 99999999 1/2/05 1/6/05 In Store 26 94.80 42.60

Bolivia 120127 1/2/05 1/2/05 In Store 26 66.00 16.60

Brazil 120127 1/2/05 1/2/05 Catalog 12 73.40 18.45

Chile 120447 1/2/05 1/2/05 In Store 20 19.10 8.75

Colombia 121059 1/2/05 1/2/05 Internet 28 361.40 90.45

Dominica 121043 1/2/05 1/2/05 Internet 35 121.30 57.80

Ecuador 121042 1/2/05 1/2/05 In Store 11 100.90 50.55

Falkland Islands 120932 1/2/05 1/2/05 In Store 15 61.40 30.80

French Guiana 120935 1/2/05 1/2/05 Catalog 15 96.40 43.85

Grenada 120931 1/2/05 1/2/05 Catalog 19 56.30 25.05

Guadeloupe 120445 1/2/05 1/2/05 Internet 21 231.60 48.70

Guyana 120455 1/2/05 1/2/05 In Store 25 132.80 30.25

Martinique 120841 1/2/05 1/3/05 In Store 16 56.30 31.05

Netherlands Antilles 99999999 1/2/05 1/6/05 In Store 31 41.80 19.45

Paraguay 120603 1/2/05 1/2/05 Catalog 17 117.60 58.90

Peru 120845 1/2/05 1/2/05 Catalog 12 93.80 41.75

St. Lucia 120845 1/2/05 1/2/05 Internet 19 64.30 28.65

Suriname 120538 1/3/05 1/3/05 Internet 22 110.80 29.35

;

run;

Example Programs � Creating the Gov Data Set 877

Creating the Gov Data Set

data gov;
Label Citygovt=’City Government Form’

Robgrp=’Number of Citizens Robbed’;
Input Citygovt Robgrp Weight; Missing N;
Format Citygovt Govtfmt. Robgrp Robfmt.;
LOOP: OUTPUT; WEIGHT=WEIGHT-1; IF WEIGHT>0 THEN GOTO LOOP;
DROP WEIGHT;

datalines;
0 1 6
0 3 3
0 2 7
0 4 5
N N 10
-3 1 47
-3 3 49
-3 2 63
-3 4 52
. 2 1
3 1 31
3 2 37
3 3 27
3 4 55
3 . 1
;

878 Creating the Grain_Production Data Set � Appendix 1

Creating the Grain_Production Data Set
data grain_production;

length Country $ 3 Type $ 5;
input Year country $ type $ Kilotons;
datalines;

1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;

Example Programs � Creating the Model Data Set 879

Creating the Iron Data Set

The data set Iron contains data from Draper and Smith (p. 98).*

data iron;
input Fe Loss @@;
datalines;

0.01 127.6 0.48 124.0 0.71 110.8 0.95 103.9
1.19 101.5 0.01 130.1 0.48 122.0 1.44 92.3
0.71 113.1 1.96 83.7 0.01 128.0 1.44 91.4
1.96 86.2
;

Creating the Model Data Set

data one;
input year import doprod stock consum;
datalines;

49 15.9 149.3 4.2 108.1
50 16.4 161.2 4.1 114.8
51 19.0 171.5 3.1 123.2
52 19.1 175.5 3.1 126.9
53 18.8 180.8 1.1 132.1
54 20.4 190.7 2.2 137.7
55 22.7 202.1 2.1 146.0
56 26.5 212.4 5.6 154.1
57 28.1 226.1 5.0 162.3
58 27.6 231.9 5.1 164.3
59 26.3 239.0 0.7 167.6
60 31.1 258.0 5.6 176.8
61 33.3 269.8 3.9 186.6
62 37.0 288.4 3.1 199.7
63 43.3 304.5 4.6 213.9
64 49.0 323.4 7.0 223.8
65 50.3 336.8 1.2 232.0
66 56.6 353.9 4.5 242.9
;

data model;
input year 1-2 a 3-9 .3 b 10-17 .3 r4 18-24 .3 r8 25-31 .3

c 32-38 .3 d 39-45 .3 e 46-51 .3 r23 52-58 .3
r24 59-64 .3 r29 65-70 .3 r33 71-77 .3 ;

datalines;
60 994534 53552371656049 9362944261250 8921423631971140299106045 8780 335066
611253576 5580643177015110671424650930 9933453874651217360151507 36871 49192
621318885 621448018932921075688469573610686654502881317293178014 66671 566079

* Draper, N. and Smith, H. (1998), Applied Regression Analysis, Second Edition, New York: John Wiley & Sons.

880 Creating the Plants Data Set � Appendix 1

631507969 666125121046261533088511701311673695162821579148179797106485 -4568
641811051 731945021737841454106554095914677245822921945534206255145948 -10940
652532026 816707123363201962785640926221155676314091906268218759195733-145568
661845213 889039326806342223395649307215331186055041732948288322275400 132143
671745867 982910727559092191906712443321301786392551689676279632372882 206952
6814081131090291230880343031234790954515318236634751664396339031560931-197937
69 80333110648748347703228895587637176 7799776552461672718368625546377 521929
70123456789012345678901234567890123456789012345678901234567890123456789012345
71987654321098765432109876543210987654321098765432109876543210976543210987654
72543210987654321543210987654321098765432109876543210987654321098765432109876
run;

data model;
set model;

r4=r4/10;
r8=r8/10;
d=d/10;
e=e/10;
r23=r23/10;
r33=r33/10;
a=a/10;
b=b/10;
c=c/10;
r24=r24/10;
r29=r29/10;

run;

Creating the Plants Data Set
data plants;

input type $ @;
do block=1 to 3;

input stemleng @;
output;

end;
datalines;
clarion 32.7 32.3 31.5
clinton 32.1 29.7 29.1
knox 35.7 35.9 33.1
o’neill 36.0 34.2 31.2
compost 31.8 28.0 29.2
wabash 38.2 37.8 31.9
webster 32.5 31.1 29.7
;

run;

Creating the Plant_Stat Data Set
data plant_stats;

do month = 1 to 12;

Example Programs � Creating the StatePop Data Set 881

age = 2 + 0.3*rannor(345467);
age2 = 3 + 0.3*rannor(345467);
age3 = 4 + 0.4*rannor(345467);
output;

end;
run;

Creating the StatePop Data Set

data statepop;
input State $ CityPop_80 CityPop_90

NonCityPop_80 NonCityPop_90 Region;
format region 1.;
label citypop_80= ’1980 metropolitan pop in millions’

noncitypop_80=’1980 nonmetropolitan pop in millions’
citypop_90= ’1990 metropolitan pop in millions’
noncitypop_90=’1990 nonmetropolitan pop in million’
region=’Geographic region’;

datalines;
ME .405 .443 .721 .785 1
NH .535 .659 .386 .450 1
VT .133 .152 .378 .411 1
MA 5.530 5.788 .207 .229 1
RI .886 .938 .061 .065 1
CT 2.982 3.148 .126 .140 1
NY 16.144 16.515 1.414 1.475 1
NJ 7.365 7.730 .A .A 1
PA 10.067 10.083 1.798 1.799 1
DE .496 .553 .098 .113 2
MD 3.920 4.439 .297 .343 2
DC .638 .607 . . 2
VA 3.966 4.773 1.381 1.414 2
WV .796 .748 1.155 1.045 2
NC 3.749 4.376 2.131 2.253 2
SC 2.114 2.423 1.006 1.064 2
GA 3.507 4.352 1.956 2.127 2
FL 9.039 12.023 .708 .915 2
KY 1.735 1.780 1.925 1.906 2
TN 3.045 3.298 1.546 1.579 2
AL 2.560 2.710 1.334 1.331 2
MS .716 .776 1.805 1.798 2
AR .963 1.040 1.323 1.311 2
LA 3.125 3.160 1.082 1.060 2
OK 1.724 1.870 1.301 1.276 2
TX 11.539 14.166 2.686 2.821 2
OH 8.791 8.826 2.007 2.021 3
IN 3.885 3.962 1.605 1.582 3
IL 9.461 9.574 1.967 1.857 3
MI 7.719 7.698 1.543 1.598 3
WI 3.176 3.331 1.530 1.561 3
MN 2.674 3.011 1.402 1.364 3

882 Creating the Table1 Table Definition � Appendix 1

IA 1.198 1.200 1.716 1.577 3
MO 3.314 3.491 1.603 1.626 3
ND .234 .257 .418 .381 3
SD .194 .221 .497 .475 3
NE .728 .787 .842 .791 3
KS 1.184 1.333 1.180 1.145 3
MT .189 .191 .598 .608 4
ID .257 .296 .687 .711 4
WY .141 .134 .329 .319 4
CO 2.326 2.686 .563 .608 4
NM .675 .842 .628 .673 4
AZ 2.264 3.106 .453 .559 4
UT 1.128 1.336 .333 .387 4
NV .666 1.014 .135 .183 4
WA 3.366 4.036 .776 .830 4
OR 1.799 1.985 .834 .858 4
CA 22.907 28.799 .760 .961 4
AK .174 .226 .227 .324 4
HI .763 .836 .202 .272 4
;

Creating the Table1 Table Definition
proc template;

define table table1;
mvar sysdate9;
dynamic colhd;
classlevels=on;

define column char_var;
generic=on;
blank_dups=on;
header=colhd;
style=cellcontents;

end;

define column num_var;
generic=on;
header=colhd;
style=cellcontents;

end;

define footer table_footer;
text ’Prepared on ’ sysdate9;

end;

end;
run;

Example Programs � Using the FROM option 883

Programs That Illustrate Inheritance
The programs in this section show the PROC TEMPLATE steps that were used in

“Understanding Styles, Style Elements, and Style Attributes” on page 540 to illustrate
inheritance in style definitions. These programs also show the SAS code that uses the
style definitions.

Using the FROM option
This program generates the HTML output in the section “Using the FROM Option”

on page 546.
� This version of the code uses the FROM option in the STYLE statement to create

the Colors style element in the Concepts.Style2 style definition.

ods path sashelp.tmplmst(read) sasuser.templat(update);
title;
options nodate pageno=1 linesize=72 pagesize=60;
data test;

input country $ 1-13 grain $ 15-18 kilotons;
datalines;

Brazil Rice 10035
China Rice 190100
India Rice 120012
Indonesia Rice 51165
United States Rice 7771
;

proc template;
define table mytable;

column x y z w;
define x;

style=celldatasimple;
dataname=country;
header=’Country’;

end;
define y;

style=celldataemphasis;
dataname=grain;
header=’Grain’;

end;
define z;

style=celldatalarge;
dataname=kilotons;
header=’Kilotons’;

end;
define w;

style=celldatasmall;
dataname=kilotons;
header=’Kilotons’;

end;
end;

run;

884 Using the FROM option � Appendix 1

proc template;
/* to ensure a fresh start with the styles */
delete concepts.style1;
delete concepts.style2;

run;

proc template;
define style concepts.style1;

style colors /
’default’=white
’fancy’=very light vivid blue
’medium’=red ;

style celldatasimple /
fontfamily=arial
backgroundcolor=colors(’fancy’)
color=colors(’default’);

style celldataemphasis from celldatasimple /
color=colors(’medium’)
fontstyle=italic;

style celldatalarge from celldataemphasis /
fontweight=bold
fontsize=3;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style colors from colors/

’dark’=dark blue;
style celldataemphasis from celldataemphasis /

backgroundcolor=white;
style celldatasmall from celldatalarge /

fontsize=5
color=colors(’dark’)
backgroundcolor=colors(’medium’);

end;
run;
ods html body=’display1-body.htm’

style=concepts.style2;
data _null_;

set test;
file print ods=(template=’mytable’);
put _ods_;

run;
ods html close;

� This version of the code does not use the FROM option in the STYLE statement to
create the Colors style element in the Concepts.Style2 style definition.

ods path sashelp.tmplmst(read) sasuser.templat(update);
title;
options nodate pageno=1 linesize=72 pagesize=60;
data test;

input country $ 1-13 grain $ 15-18 kilotons;

Example Programs � Using the FROM option 885

datalines;
Brazil Rice 10035
China Rice 190100
India Rice 120012
Indonesia Rice 51165
United States Rice 7771
;

proc template;
define table mytable;

column x y z w;
define x;

style=celldatasimple;
dataname=country;
header=’Country’;

end;
define y;

style=celldataemphasis;
dataname=grain;
header=’Grain’;

end;
define z;

style=celldatalarge;
dataname=kilotons;
header=’Kilotons’;

end;
define w;

style=celldatasmall;
dataname=kilotons;
header=’Kilotons’;

end;
end;

run;

proc template;
/* to ensure a fresh start with the styles */
delete concepts.style1;
delete concepts.style2;

run;

proc template;
define style concepts.style1;

style colors /
’default’=white
’fancy’=very light vivid blue
’medium’=red ;

style celldatasimple /
fontfamily=arial
backgroundcolor=colors(’fancy’)
color=colors(’default’);

style celldataemphasis from celldatasimple /
color=colors(’medium’)
fontstyle=italic;

style celldatalarge from celldataemphasis /

886 Inheritance Compatibility Across SAS Versions � Appendix 1

fontweight=bold
fontsize=3;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style colors /

’dark’=dark blue;
style celldataemphasis from celldataemphasis /

backgroundcolor=white;
style celldatasmall from celldatalarge /

fontsize=5
color=colors(’dark’)
backgroundcolor=colors(’medium’);

end;
run;
ods html body=’display1-body.htm’

style=concepts.style2;
data _null_;

set test;
file print ods=(template=’mytable’);
put _ods_;

run;
ods html close;

Inheritance Compatibility Across SAS Versions
This program generates the HTML output in the section “Inheritance Compatibility

across Versions” on page 548.

� This version of the code uses SAS 9.2 names for tyle attributes supplied by SAS.

ods path sashelp.tmplmst(read) sasuser.templat(update);
title;
options nodate pageno=1 linesize=72 pagesize=60;
data test;

input country $ 1-13 grain $ 15-18 kilotons;
datalines;

Brazil Rice 10035
China Rice 190100
India Rice 120012
Indonesia Rice 51165
United States Rice 7771
;

proc template;
define table mytable;

column x y z w;
define x;

style=celldatasimple;
dataname=country;
header=’Country’;

end;

Example Programs � Inheritance Compatibility Across SAS Versions 887

define y;
style=celldataemphasis;
dataname=grain;
header=’Grain’;

end;
define z;

style=celldatalarge;
dataname=kilotons;
header=’Kilotons’;

end;
define w;

style=celldatasmall;
dataname=kilotons;
header=’Kilotons’;

end;
end;

run;

proc template;
/* to ensure a fresh start with the styles */
delete concepts.style1;
delete concepts.style2;

run;

proc template;
define style concepts.style1;

style celldatasimple /
fontfamily=arial
backgroundcolor=very light vivid blue
color=white;

style celldataemphasis from celldatasimple /
color=red
fontstyle=italic;

style celldatalarge from celldataemphasis /
fontweight=bold
fontsize=5;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style celldataemphasis from celldataemphasis /

backgroundcolor=yellow;
style celldatasmall from celldatalarge /

fontsize=2;
end;

ods html body=’display1-body.htm’
style=concepts.style2;

data _null_;
set test;
file print ods=(template=’mytable’);
put _ods_;

888 Inheritance Compatibility Across SAS Versions � Appendix 1

run;
ods html close;

� This version of the code uses SAS 9.1 names for style attributes that are supplied
by SAS.

ods path sashelp.tmplmst(read) sasuser.templat(update);
title;
options nodate pageno=1 linesize=72 pagesize=60;
data test;

input country $ 1-13 grain $ 15-18 kilotons;
datalines;

Brazil Rice 10035
China Rice 190100
India Rice 120012
Indonesia Rice 51165
United States Rice 7771
;

proc template;
define table mytable;

column x y z w;
define x;

style=celldatasimple;
dataname=country;
header=’Country’;

end;
define y;

style=celldataemphasis;
dataname=grain;
header=’Grain’;

end;
define z;

style=celldatalarge;
dataname=kilotons;
header=’Kilotons’;

end;
define w;

style=celldatasmall;
dataname=kilotons;
header=’Kilotons’;

end;
end;

run;

proc template;
/* to ensure a fresh start with the styles */
delete concepts.style1;
delete concepts.style2;

run;

proc template;
define style concepts.style1;

style celldatasimple /
fontface=arial

Example Programs � Creating the Nlits Data Set 889

background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=red
fontstyle=italic;

style celldatalarge from celldataemphasis /
fontweight=bold
fontsize=5;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style celldataemphasis from celldataemphasis /

background=yellow;
style celldatasmall from celldatalarge /

fontsize=2;
end;

ods html body=’display1-body.htm’
style=concepts.style2;

data _null_;
set test;
file print ods=(template=’mytable’);
put _ods_;

run;
ods html close;

Creating the Nlits Data Set

/* The mixed_case lets you use an nlit in the data set name. */
%libcat(nlits, pathname=nlits, opt=mixed_case=yes);

data nlits.’ Stats’n;
input Price Quantity City $;
datalines;

3750 150 Brazil
5000 200 Canada
10250 410 France
;

data nlits.’ Stats2’n;
input Price Quantity City $;
datalines;

3750 150 Brazil
5000 200 Canada
10250 410 France
;

890

891

A P P E N D I X

2
ODS and the HTML Destination

HTML Links and References Produced by the HTML Destination 891
What Are Links and References? 891

Implementing HTML Links and References 891

How ODS Constructs Links and References 894

Files Produced by the HTML Destination 896

The Body File 896
The Contents File 899

The Page File 899

The Frame File 899

HTML Links and References Produced by the HTML Destination

What Are Links and References?
An HTML link is a place in a document that enables you to jump to another specific

place in the same document or in another document. A browser typically highlights the
text that is between the tags that begin and end the link. When you click on the
highlighted text, the browser displays the text at the link target. The browser might
then display the contents of the target in the active window, or it might open another
browser window that displays the contents of the target.

An HTML reference names a file for the browser to display. When a browser reads a
reference, it displays the referenced file as if it were part of the file that it is displaying.
You can’t tell by looking at the browser’s display that some of the material is in the file
that you are actually viewing and that some is referenced.

When you use ODS, the software automatically creates the links and references that
you need. You can, however, customize these links to some extent. If you want to do so,
then you will need to understand how HTML implements links and references.

Implementing HTML Links and References
Note: This simplified discussion of HTML links and references is designed to

provide information that will help you understand what ODS does when it builds links
and references for you. For a complete discussion of HTML tagging, consult one of the
many reference books that are available on the subject. �

Each link in HTML is implemented with a combination of two sets of <A> (anchor)
tags. One anchor tag, which is the starting point of the link, has an HREF attribute that

892 Implementing HTML Links and References � Appendix 2

identifies the anchor tag to link to. The other anchor tag, which is the target of the
link, has a NAME attribute. This NAME attribute is what the HREF attribute in the first
anchor tag points to. The value of each NAME attribute in a file must be unique so that
each value of HREF points to a single, unambiguous location. The following figure
illustrates linking within a file:

Figure A2.1 Linking within a File

The browser highlights the word link. When you click on link, the browser positions the
target right here in the active window.

The target is elsewhere in the file. In fact, it is located
right here in this paragraph.

This link points to the anchor
tag in this file with NAME="target1".

more text . . .

more text . . .

The important features at the starting point of this link are
� The <A> and tags surround the text that the browser will highlight.
� The HREF attribute points to the link’s target. The target is an anchor tag whose

NAME attribute matches the text that follows the pound sign in the HREF attribute.
Because no text precedes the pound sign (#), the browser knows that the target is
in the same file as the anchor.

When a link points to a target outside the file that is being displayed, the HREF
attribute must include the path to that file. The path can be the path within the file
system or the uniform resource locator (URL) of the file. The following figure illustrates
a link from one file to another file that is specified with a URL:

ODS and the HTML Destination � Implementing HTML Links and References 893

Figure A2.2 Linking to Another File

The browser highlights the word link. When you click on link, the browser positions the target right here
in the active window or opens another window that displays the target.

File: /users/brown/documents/file1

URL: http://www.company-url/
 local-url/file1

This
link
points to an anchor tag in the file with the specified URL. The
NAME attribute on the target anchor tag is "target1".

File: /users/brown/documents/file2

URL: http://www.company-url/
 local-url/file2

The target is in this file. In fact, it is located
right here
in this sentence.

The important features at the starting point (the anchor) of the link are
� The <A> and tags surround the text that the browser will highlight.
� The HREF attribute points to the link’s target. The text that precedes the pound

sign (#) identifies the file that contains the target.

ODS provides features that enable you to customize the text that precedes the pound
sign and the text that follows the pound sign. For information on how to do this, see
the discussions of file-specification, ANCHOR=, BASE=, PATH=, and GPATH= in the
“ODS HTML Statement” on page 124 as well as “How ODS Constructs Links and
References” on page 894.

HTML implements references in much the same way as it implements links. The
main difference is that a link points to a particular location within a file and that a
reference points to the file itself. HTML uses the SRC attribute to identify a file to
reference. The value of the SRC attribute is constructed the same way that the value of
the HREF attribute is constructed except that there is no pound sign and no text
following it.

894 How ODS Constructs Links and References � Appendix 2

How ODS Constructs Links and References
Several options in the ODS HTML statement affect how ODS constructs the links

and references that point from the frame to the table of contents, table of pages, and
body file and from the table of contents or table of pages to the body file. Links are
made as HREF attributes on <A> (anchor) tags inside the HTML files. Each HREF
attribute points to the NAME attribute on another <A> tag. The HREF must identify both
the file that contains the target and the name of the anchor within that file. The value
of HREF must be a valid target in a valid URL. It uses the following form:

ODS constructs the value of an HREF attribute based on information that you provide in
the ODS HTML statement.

Note: HTML references to files use other tags, but the logic for creating the string
that identifies the file is the same as the logic for creating an HREF attribute (see “How
ODS Constructs Links and References” on page 894). �

The URL in an HREF attribute includes information from three options in the ODS
HTML statement: the BASE option; the GPATH= or the PATH= option; and the
BODY=, the CONTENTS=, or the PAGE= option.

1 If you specify BASE=, then the value of that option is the first part of the URL for
every HREF attribute that ODS writes.

2 If you specify GPATH= or PATH=, then the next part of the URL in an HREF
attribute comes from that option.

If the file that you are linking to is a high-resolution graphic, then ODS uses
information from the GPATH= option as the next part of the HREF. For information
on these options, see the discussion of GPATH= and the discussion of PATH= in
the “ODS HTML Statement” on page 124. The following table shows how ODS
uses information from the GPATH= option in the URL in HREF attributes:

Table A2.1 Building an HREF Attribute from the GPATH= Option

file-specification in
GPATH=

URL= Suboption Information ODS Uses in
the Second Part of the
URL in the HREF
attribute*

An external-file or
libref.catalog

Not specified The name of the file

An external-file or
libref.catalog

Specified, but not NONE The value of the URL=
suboption

An external-file or
libref.catalog

NONE No information from
GPATH=

A fileref Specified or not specified No information from
GPATH=

* If you do not specify GPATH=, then ODS uses the value of PATH= to create this part of
the HREF.

If the file that you are linking to is not a high-resolution graphic, then ODS
uses information from the PATH= option as the next part of the HREF. The
following table shows how ODS uses information from the PATH= option in the
URL in HREF attributes:

ODS and the HTML Destination � How ODS Constructs Links and References 895

Table A2.2 Building an HREF Attribute from the PATH= Option

file-specification URL= Suboption Information Used in the
Second Part of the URL in
the HREF Attribute

external-file or libref.catalog Not specified The name of the file

external-file or libref.catalog Specified, but not NONE The value of the URL=
suboption

external-file or libref.catalog NONE No information from PATH=

fileref Specified or not specified No information from PATH=

Note: If you use a fileref as the file specification in the BODY=, CONTENTS=,
or PAGE= option in the ODS HTML statement, and you do not use the URL=
suboption in that option, then ODS does not use information from GPATH= or
PATH= when it creates the complete URL for any corresponding HREF attributes.
�

3 The last part of the URL that is used in an HREF attribute is, by default, the name
of the file that contains the target. ODS determines the name of the file from the
file-specification that you use in the BODY=, CONTENTS=, or PAGE= option.
(ODS does not create links or references to frame files.) For more information on
these options, see the discussion of file-specification on page 158.

If you specify the URL= suboption in one of these options, then ODS uses the
string that you specify instead of the filename.

Note: If you use a fileref as the file specification and do not use the URL=
suboption, then ODS does not use information from GPATH= or PATH= when it
creates the complete URL for the HREF attribute. �

The anchor-name comes from the value of the ANCHOR= option.
The following figure illustrates the creation of the HREF:

Figure A2.3 Creating the Value of an HREF Attribute

href='URL #anchorname'

part 1
from BASE=

part 3
from file name

or URL

part 2
from GPATH=

or
PATH=

part 4
from ANCHOR=

896 Files Produced by the HTML Destination � Appendix 2

Files Produced by the HTML Destination
The HTML destination can produce four kinds of files: body, contents, frame, and

page files. You create these files with options in the ODS HTML statement (see “ODS
HTML Statement” on page 124 for details).

The Body File
The body file contains HTML output that is generated from the output objects that

your SAS job creates. The style and the table template that the job uses determine the
appearance and content of the tables and the cells within them.

Typically, when you route an output object that does not contain graphics to the
HTML destination, ODS places the results within <TABLE> tags, generating them as
one or more HTML tables.

Graphics output is produced according to the SAS code that generates it. Instead of
using <TABLE> tags, the body file contains an (image) tag that references the
graphic. When you view the body file in a browser, you cannot tell that the graphic is
not part of the body file because the tag displays it in the browser.

Note: Very few procedures produce output objects that are neither tabular nor
graphics. In these cases, the output is not tagged as an HTML table. �

Titles and footnotes in the body file are generated as HTML tables of their own near
the top and bottom of each page of HTML output.

Note: For graphics output, titles and footnotes are, by default, part of the graphics
file. You can use the NOGTITLE and NOGFOOTNOTE options to place them in the
body file instead. See the discussion of GTITLE and GFOOTNOTE in “ODS HTML
Statement” on page 124 for more information. �

All <TABLE> tags and all tags are potential targets for links or references (see
“How ODS Constructs Links and References” on page 894). Therefore, ODS must
provide an <A> tag with a NAME attribute close to each <TABLE> and tag for links
and references to point to. The NAME attribute on the anchor tag becomes the final part
of any reference or link to the table. ODS inserts anchor tags in its HTML output as
follows:

� ODS places an anchor tag near the top of each page, before all tables on the page
(including the table that holds the titles) and before all images. This anchor is the
target for links to the first table (excluding any titles) or to the first image on the
page.

Note: Each procedure or DATA step starts a new page. In addition, ODS
produces a new page of output whenever the SAS program explicitly asks for a
new page. For example, if you use the page dimension in PROC TABULATE, then
you create a page for each value of the variable that defines the pages. In this
context, the word “page” has nothing to do with the PAGESIZE= setting in your
SAS session. �

� ODS places an anchor tag slightly before each <TABLE> tag, provided that the
table contains results (not titles or footnotes) and that it is not the first table or
image on the page.

� ODS places an anchor tag slightly before each tag, provided that it is not
the first table or image on a page.

The following figure illustrates the placement of anchor tags from a SAS job that
executes two procedures. The first procedure creates two HTML tables of results on a

ODS and the HTML Destination � The Body File 897

single page. The page also includes an HTML table for the title and one for the
footnote. Solid arrows indicate which <A> tag ODS uses as a target for each table. The
second procedure creates a GIF file. The titles for this procedure are part of the GIF file
(the default behavior). Again, the solid arrow indicates which anchor tag ODS uses as a
target when it creates a link to the image. The dashed arrow points to the file that the
 tag references.

898 The Body File � Appendix 2

Figure A2.4 Placement of <A> (anchor) Tags in HTML Output

First Page of Body File

table for titles

<TABLE...>
first table of results

</TABLE>

<TABLE...>
second table of results

</TABLE>

table for footnotes

Second Page of Body File

ODS and the HTML Destination � The Frame File 899

For a view of this same file through a browser, see Display A2.1 on page 901.

The Contents File
The contents file contains a link to the body file for each HTML table that ODS

creates from procedure or DATA step results. The targets for these links are the values
of the NAME attributes on the anchor tags that are in the body file (see “The Body File”
on page 896). For example, an anchor tag that links to the second HTML table of
results in Figure A2.4 on page 898 looks like this:

In this anchor tag,
� pop-body.htm identifies the file that contains the target.
� #IDX1 provides the name of the target.

You can view the contents file directly in the browser, or, if you make a frame file, you
can see the contents file as part of the frame file (see “The Frame File” on page 899).

The Page File
The page file contains a link to the body file for each page of HTML output that ODS

creates from procedure or DATA step results. The targets for these links are the values
of the NAME attributes on the anchor tags that are in the body file (see “The Body File”
on page 896). For example, an anchor tag that links to the second page of results in
Figure A2.4 on page 898 looks like this:

In this anchor tag,
� pop-body.htm identifies the file that contains the target.
� #IDX2 provides the name of the target.

You can view the page file directly in the browser, or, if you make a frame file, you
can see the page file as part of the frame file (see “The Frame File” on page 899).

The Frame File
The frame file provides a simultaneous view of the body file and the contents file, the

page file, or both. The following figure illustrates how a frame that references both the
contents and page files looks (in part) to an ASCII editor. The SRC attribute identifies a
file to display in the browser. ODS constructs the value for the SRC attribute the same
way that it constructs the value for an HREF attribute in a page or contents file (see
Schematic of an HTML Frame File on page 900).

900 The Frame File � Appendix 2

Figure A2.5 Schematic of an HTML Frame File

src=
"pop-contents.htm"

src="pop-body.htm"

src=
"pop-page.htm"

HTML Frame File: pop-frame.htm

Display A2.1 on page 901 shows the same frame file viewed from a browser.

ODS and the HTML Destination � The Frame File 901

Display A2.1 Browser View of HTML Frame File

902

903

A P P E N D I X

3 ODS HTML Statements for
Running Examples in Different
Operating Environments

Using a z/OS UNIX System Services HFS Directory for HTML Output 903
Using a z/OS PDSE for EBCDIC HTML Output 903

Using a z/OS PDSE for ASCII HTML Output 904

Using a z/OS UNIX System Services HFS Directory for HTML Output

/* Specify the files to create for the HTML output. */
/* The PATH= option specifies the location for all */
/* the HTML files. The URL= suboption prevents */
/* information from PATH= from appearing in the */
/* links and references that ODS creates. The URLs */
/* will be the same as the file specifications. */
ods html body=’odsexample-body.htm’

contents=’odsexample-contents.htm’
page=’odsexample-page.htm’
frame=’odsexample-frame.htm’
path=’~’(url=none);

Using a z/OS PDSE for EBCDIC HTML Output

/* Allocate a PDSE for the HTML Output. */
filename pdsehtml ’.example.htm’

dsntype=library dsorg=po
disp=(new, catlg, delete);

/* Specify the files to create for the HTML output. */
/* These files are PDSE members. */
/* The PATH= option specifies the location for all */
/* the HTML files. The URL= suboption prevents */
/* information from PATH= from appearing in the */
/* links and references that ODS creates. The URLs */
/* will be the same as the file specifications. */
/* The RS= option creates HTML that you can work */
/* with in an editor and use on a z/OS Web server. */

904 Using a z/OS PDSE for ASCII HTML Output � Appendix 3

ods html body=’odsexb’
contents=’odsexc’
page=’odsexp’
frame=’odsexf’
path=’.example.htm’(url=none)
rs=none;

Using a z/OS PDSE for ASCII HTML Output

/* Allocate a PDSE for the HTML Output. */
filename pdsehtml ’.example.htm’

dsntype=library dsorg=po
disp=(new, catlg, delete);

/* Specify the files to create for the HTML output. */
/* These files are PDSE members. */
/* The URL= suboption in the HTML-file */
/* specifications provides a URL that will be valid */
/* after the PDSE members have been moved to an */
/* ASCII file system. When the files are */
/* transferred, they must retain their member names */
/* and have the ".htm" extension added in order for */
/* these URLs to be correct. */
/* The PATH= option specifies the location for all */
/* the HTML files. The URL= suboption in the PATH= */
/* option prevents information from PATH= from */
/* appearing in the links and references that ODS */
/* creates because it will not be a valid URL for */
/* the ASCII file system. */
/* The TRANTAB= option creates ASCII HTML that */
/* you can send to an ASCII-based Web server. */

ods html body=’odsexb’ (url=’odsexb.htm’)
contents=’odsexc’ (url=’odsexc.htm’)
page=’odsexp’ (url=’odsexp.htm’)
frame=’odsexf’
path=’.example.htm’(url=none)
trantab=ascii;

Note: Use a binary transfer to move the files to the Web server. �

905

A P P E N D I X

4
ODS Style Elements

General ODS Style Elements 905
Style Elements Affecting Template-Based Graphics 914

Style Elements Affecting Device-Based Graphics 920

General ODS Style Elements
The following table lists all the style elements available for ODS style definitions.

The table provides a brief description of each style element and indicates the style
elements from which it inherits its attributes. An abstract style element is one that is
not used to generate any style element but provides a parent for one or more style
elements to inherit.

Table A4.1 Miscellaneous Style Elements

Style Element Description Inherits from

Miscellaneous

Container * Controls all container-oriented
elements

Continued Controls continued flag when a
table breaks across a page
(paginated destinations only)

TitlesAndFooters

ExtendedPage Message when page won’t fit
(Printer only)

TitlesAndFooters

PageNo Controls page numbers for
paginated destinations

TitlesAndFooters

Parskip Controls space between tables TitlesAndFooters

PrePage Controls the ODS RTF/
MEASURED PREPAGE= style

StartUpFunction This is a Javascript function that
is added to the HTML output. Any
Javascript code in the TAGATTR=
attribute is executed when the
page is loaded.

906 General ODS Style Elements � Appendix 4

Style Element Description Inherits from

Miscellaneous

ShutDownFunction Controls the Shut-Down function.
This is a Javascript function that
is added to the HTML output. Any
Javascript code in the TAGATTR=
attribute is executed when the
page is exited.

UserText Controls the ODS TEXT= style Note

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

Table A4.2 Style Elements Affecting Documents

Style Element Description Inherits from

Documents

Document Controls the various document
bodies. This generally includes
things like the page background
color and page margins.

Container *

Body Controls the Body file Document

Frame Controls the Frame file for HTML Document

Contents Controls the Contents file Document

Pages Controls the Page file Document

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

Table A4.3 Style Elements Affecting Dates

Style Element Description Inherits from

Dates

BodyDate Controls the date field in the
Contents file

ContentsDate

Date Controls how date fields look Container *

PagesDate Controls the date field in the
Pages file

Date

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

ODS Style Elements � General ODS Style Elements 907

Table A4.4 Style Elements Affecting Table of Contents and Table of Pages

Style Element Description Inherits from

Table of Contents and Table of Pages

IndexItem Controls list items and folders for
Contents and Pages

Container *

ContentFolder Controls the folders in the
Contents file

IndexItem

ByContentFolder Controls the byline folders in the
Contents file

ContentFolder

ContentItem Controls the items in the Contents
file

IndexItem

PagesItem Controls the items in the Pages file IndexItem

Index Controls miscellaneous Contents
and Pages components

Container *

IndexProcName Controls the PROC name in the
Contents and Pages files

Index *

ContentProcName Controls the PROC name in the
Contents file

IndexProcName

ContentProcLabel Controls the PROC label in the
Contents file

ContentProcName

PagesProcName Controls the PROC name in the
Pages file

IndexProcName

PagesProcLabel Controls the PROC label in the
Pages file

PagesProcName

IndexAction Determines what happens on
mouse-over events for folders and
items (HTML only)

IndexItem

FolderAction Determines what happens on
mouse-over events for folders
(HTML only)

IndexAction

IndexTitle Controls the title of Contents and
Pages files

Index *

ContentTitle Controls the title of the Contents
file. In styles.default this element
contains a PRETEXT= element
that print the text “Table of
Contents”.

IndexTitle

908 General ODS Style Elements � Appendix 4

Table A4.5 Style Elements Affecting Titles and Footers

Style Element Description Inherits from

System Titles and Footers

SysTitleAndFooterContainer Controls container for system page
title and system page footer. This
element is usually used to add
borders around a title.

Container

TitlesAndFooters Controls system page title text and
system page footer text

Container *

SystemTitle Controls system title text TitlesAndFooters

SystemTitle2 Controls system title2 text SystemTitle

SystemTitle3 Controls system title3 text SystemTitle2

SystemTitle4 Controls system title4 text SystemTitle3

SystemTitle5 Controls system title5 text SystemTitle4

SystemTitle6 Controls system title6 text SystemTitle5

SystemTitle7 Controls system title7 text SystemTitle6

SystemTitle8 Controls system title8 text SystemTitle7

SystemTitle9 Controls system title9 text SystemTitle8

SystemTitle10 Controls system title10 text SystemTitle9

SystemFooter Controls system footer text TitlesAndFooters

SystemFooter2 Controls system title2 text SystemFooter

SystemFooter3 Controls system title3 text SystemFooter2

SystemFooter4 Controls system title4 text SystemFooter3

SystemFooter5 Controls system title5 text SystemFooter4

SystemFooter6 Controls system title6 text SystemFooter5

SystemFooter7 Controls system title7 text SystemFooter6

SystemFooter8 Controls system title8 text SystemFooter7

SystemFooter8 Controls system title8 text SystemFooter7

SystemFooter9 Controls system title9 text SystemFooter8

SystemFooter10 Controls system title10 text SystemFooter9

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

ODS Style Elements � General ODS Style Elements 909

Table A4.6 Style Elements Affecting Procedure Titles

Style Element Description Inherits from

PROC Titles

TitleAndNoteContainer Controls container for
procedure-defined titles and notes

Container

ProcTitle Controls procedure title text TitlesAndFooters

ProcTitleFixed Controls procedure title text that
requests a fixed font

ProcTitle

Table A4.7 Style Elements Affecting Bylines

Style Element Description Inherits from

Bylines

BylineContainer Controls container for the byline.
This is generally used to add
borders to a byline.

Container

Byline Controls byline text TitlesAndFooters

Table A4.8 Style Elements Affecting Notes, Warnings, and Errors

Style Element Description Inherits from

Notes, Warnings, and Errors

Notes, warnings, and errors consist of two pieces: a banner area and a content area as shown in the
diagram below. The *Banner elements generally print the content of the banner (that is, “NOTE:”,
“WARNING:”, and so on) using the PRETEXT= attribute.

Banner Content

Note Controls the container for note
banners and note contents

Container *

NoteBanner Controls the banner for NOTE:s Note

NoteContent Controls the contents for NOTE:s Note

NoteContentFixed Controls the contents for NOTE:s.
Fixed font.

NoteContent

WarnBanner Controls the banner for
WARNING:s

Note

WarnContent Controls the contents of
WARNING:s

Note

WarnContentFixed Controls the contents for
WARNING:s. Fixed font.

WarnContent

ErrorBanner Controls the banner for ERROR:s Note

910 General ODS Style Elements � Appendix 4

Style Element Description Inherits from

Notes, Warnings, and Errors

ErrorContent Controls the contents of ERROR:s Note

ErrorContentFixed Controls the contents for
ERROR:s. Fixed font.

ErrorContent

FatalBanner Controls the banner for FATAL:s Note

FatalContent Controls the contents of FATAL:s Note

FatalContentFixed Controls the contents for FATAL:s.
Fixed font.

FatalContent

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

Table A4.9 Style Elements Affecting Tables and Batch Output

Style Element Description Inherits from

Tables and Batch Output

Output Controls basic output forms. This
is generally used to control the
borders (using the FRAME=,
RULES=, and individual border
control attributes), cell spacing,
cell padding, and background color.

Container *

Table Controls overall table style Output

Batch Controls batch mode output Output

TableHeaderContainer Places and controls the box around
all column headings (RTF only)

Container *

TableFooterContainer Places and controls the box around
all column footers (RTF only)

Container *

ODS Style Elements � General ODS Style Elements 911

Style Element Description Inherits from

Tables and Batch Output

ColumnGroup Places and controls the box around
groups of columns (RTF only)

Container *

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

Table A4.10 Style Elements Affecting Data Cells in Tables

Style Element Description Inherits from

Table Data Cells

Cell Controls data, header, and footer
cells

Container *

Data Default style for data cells Cell

DataFixed Default style for data cells that
request a fixed font

Data

DataEmpty Controls emphasized data cells Data

DataEmphasis Controls emphasized data cells Data

DataEmphasisFixed Controls emphasized data cells
that request a fixed font

DataEmphasis

912 General ODS Style Elements � Appendix 4

Style Element Description Inherits from

Table Data Cells

DataStrong Controls strong (more emphasized)
data cells

Data

DataStrongFixed Controls strong (more emphasized)
data cells that request a fixed font

DataStrong

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

Table A4.11 Style Elements Affecting Header and Footer Cells

Style Element Description Inherits from

Table Header and Footer Cells

HeadersAndFooters Controls table headers and footers Cell *

Header Controls the headers of a table HeadersAndFooters

HeaderFixed Controls the header of a table that
request a fixed font

Header

HeaderEmpty Controls empty table header cells Header

HeaderEmphasis Controls emphasized table header
cells that request a fixed font

Header

HeaderEmphasisFixed Controls emphasized table header
cells that request a fixed font

HeaderEmphasis

HeaderStrong Controls strong (more emphasized)
table header cells

Header

HeaderStrongFixed Controls strong (more emphasized)
table header cells

HeaderStrong

RowHeader Controls row headers Header

RowHeaderFixed Controls row headers that request
a fixed font

RowHeader

RowHeaderEmpty Controls empty row headers RowHeader

RowHeaderEmphasis Controls emphasized row headers RowHeader

RowHeaderEmphasisFixed Controls emphasized row headers
that request a fixed font

RowHeaderEmphasis

RowHeaderStrong Controls strong (more emphasized)
row headers

RowHeader

RowHeaderStrongFixed Controls strong (more emphasized)
row headers that request a fixed
font

RowHeaderStrong

Footer Controls table footers HeadersAndFooters

FooterFixed Controls table footers that request
a fixed font

Footer

ODS Style Elements � General ODS Style Elements 913

Style Element Description Inherits from

Table Header and Footer Cells

FooterEmpty Controls empty table footers Footer

FooterEmphasis Controls emphasized table footers Footer

FooterEmphasisFixed Controls emphasized table footers
that request a fixed font

FooterEmphasis

FooterStrong Controls strong (more emphasized)
table footers

Footer

FooterStrongFixed Controls strong (more emphasized)
table footers that request a fixed
font

FooterStrong

RowFooter Controls a row footer (label) Footer

RowFooterFixed Controls a row footer (label) that
request a fixed font

RowFooter

RowFooterEmpty Controls an empty row footer
(label)

RowFooter

RowFooterEmphasis Controls an emphasized row footer
(label)

RowFooter

RowFooterEmphasisFixed Controls an emphasized row footer
(label) that request a fixed font

RowFooterEmphasis

RowFooterStrong Controls a strong (more
emphasized) row footer (label)

RowFooter

RowFooterStrongFixed Controls a strong (more
emphasized) row footer (label) that
requests a fixed font

RowFooterStrong

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

Table A4.12 Style Elements Affecting PROC TABULATE Captions

Style Element Description Inherits from

PROC TABULATE Captions

Caption Controls captions in PROC
TABULATE

HeadersAndFooters *

BeforeCaption Caption that comes before a table Caption

AfterCaption Caption that comes after a table Caption

* An abstract style element. Abstract elements are not explicitly used in the ODS output. They
are used for inheritance purposes only. Because of this, abstract styles will not appear in the
output of destinations that generate a style sheet.

914 Style Elements Affecting Template-Based Graphics � Appendix 4

Style Elements Affecting Template-Based Graphics

The following style elements affect template-based graphics and can be specified by
Graph Template Language appearance options or used in styles. Template-based
graphics include all SAS/GRAPH output where a compiled ODS template of type
STATGRAPH is used to produce graphical output. Supplied templates are stored in
SASHELP.TMPLMST. Device drivers and some global statements such as SYMBOL,
PATTERN, AXIS, and LEGEND have no affect on this form of graphics. Common
SAS/GRAPH procedures that produce template-based graphics are SGPLOT,
SGPANEL, and SGRENDER in addition to many SAS/STAT, SAS/ETS, and SAS/QC
procedures. ODS graphics always produce output as image files and use the ODS
GRAPHICS statement to control the graphical environment.

Certain style elements were created to be used with specific plots or graphs. For
example, the style element GraphFit2 is best used to modify secondary fit lines. The
style element GraphConfidence2 was created to modify secondary confidence bands.
The table below lists each style element, the portion of the graph it affects or was
created to use with, and the default attribute values. Attribute values can be changed
with PROC TEMPLATE, as stated above.

For complete documentation on the style attributes that can be specified in each style
element, see “Style Attributes Overview” on page 498.

Table A4.13 Graph Style Elements: General Graph Appearance

Style Element Portion of Graph
Affected

Recognized Attributes Attribute Values in
DEFAULT Style

Graph Graph size and outer border
appearance

OutputWidth

OutputHeight

BorderColor

BorderWidth

CellPadding

CellSpacing

Not set

Not set

Inherited

Inherited

0

Inherited

GraphAnnoLine Annotation lines ContrastColor

LineStyle

LineThickness

GraphColors("gcdata")

1

1px

GraphAnnoShape Annotation closed shapes
such as circles, and squares

Color

ContrastColor

LineThickness

LineStyle

Transparency

GraphColors("gcdata"

GraphColors("gcdata")

2px

1

Not set

GraphAnnoText Annotation text Font

or font-attributes*

Color

GraphFonts("annofont")

Not set

GraphColors("gtext")

GraphAxisLines X, Y and Z axis lines ContrastColor

LineStyle

LineThickness

TickDisplay

GraphColors("gaxis")

1

1px

“Outside”

ODS Style Elements � Style Elements Affecting Template-Based Graphics 915

Style Element Portion of Graph
Affected

Recognized Attributes Attribute Values in
DEFAULT Style

GraphBackground Background of the graph Color

Transparency

Colors("docbg")

Not set

GraphBorderLines Border around graph wall,
legend border, borders to
complete axis frame

ContrastColor

LineThickness

LineStyle

GraphColors("gborderlines")

1px

1

GraphDataText Text font and color for point
and line labels

Font

or font-attributes*

Color

GraphFonts("GraphDataFont")

Not set

GraphColors("gtext")

GraphFootnoteText Text font and color for
footnote(s)

Font

or font-attributes*

Color

GraphFonts("GraphFootnoteFont")

Not set

GraphColors("gtext")

GraphGridLines Horizontal and vertical grid
lines drawn at major tick
marks

ContrastColor

LineStyle

LineThickness

Transparency

DisplayOpts

GraphColors("ggrid")

1

1px

Not set

"Auto"

GraphHeaderBackground Background color of the
legend title

Color

Transparency

Colors("gheader")

Not set

GraphLabelText Text font and color for axis
labels and legend titles

Font

or font-attributes*

Color

GraphFonts("GraphLabelFont")

Not set

GraphColors("glabel")

GraphLegendBackground Background color of the
legend

Color

Transparency

Colors("glegend")

Not set

GraphOutlines Outline properties for fill
areas such as bars, pie
slices, box plots, ellipses,
and histograms

Color

ContrastColor

LineStyle

LineThickness

GraphColors("goutlines")

GraphColors("goutlines")

1

1px

GraphReference Horizontal and vertical
reference lines and drop
lines

ContrastColor

LineStyle

LineThickness

GraphColors("greferencelines")

5

1px

GraphTitleText Text font and color for
title(s)

Font

or font-attributes*

Color

GraphFonts("GraphTitleFont")

Not set

GraphColors("gtext")

GraphUnicodeText Text font for unicode values Font

orfont-attributes*

Color

GraphFont("GraphUnicodeFont")

Not set

GraphColors("gtext")

916 Style Elements Affecting Template-Based Graphics � Appendix 4

Style Element Portion of Graph
Affected

Recognized Attributes Attribute Values in
DEFAULT Style

GraphValueText Text font and color for axis
tick values and legend
values

Font

or font-attributes*

Color

GraphFonts("GraphValueFont")

Not set

GraphColors("gtext")

GraphWalls Vertical wall(s) bounded by
axes

Color

Transparency

FrameBorder

LineThickness

LineStyle

ContrastColor

GraphColors("gwalls")

Not set

On

1px

1

GraphColors("gaxis")

* Font-attributes can be one of the following: FONTFAMILY=, FONTSIZE=, FONTSTYLE=, FONTWEIGHT=.

Table A4.14 Style Elements Affecting Graphical Data Representation

Style Element Portion of Graph Affected Recognized
Attributes

Attribute Values in
DEFAULT Style

GraphBoxMean Marker for mean ContrastColor

MarkerSize

MarkerSymbol

GraphColors("gcdata")

9px

“Diamond”

GraphBoxMedian Line for median ContrastColor

LineStyle

LineThickness

GraphColors("gcdata")

1

1px

GraphBoxWhisker Box whiskers and serifs ConstrastColor

LineStyle

LineThickness

GraphColors("gcdata")

1

1px

GraphConfidence Primary confidence lines and
bands, colors for bands and
lines

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors("gcconfidence")

GraphColors("gconfidence")

7px

“Diamond”

2

1px

GraphConfidence2 Secondary confidence lines
and bands, color for bands,
amd contrast color for lines

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors("gcconfidence2")

GraphColors("gconfidence2")

7px

“Triangle”

41

1px

GraphConnectLine Line for connecting boxes or
bars

ContrastColor

LineStyle

LineThickness

GraphColors("connectLine")

1

1px

ODS Style Elements � Style Elements Affecting Template-Based Graphics 917

Style Element Portion of Graph Affected Recognized
Attributes

Attribute Values in
DEFAULT Style

GraphDataDefault Primitives related to
non-grouped data items,
colors for filled areas,
markers, and lines

Color

ContrastColor

MarkerSymbol

MarkerSize

LineStyle

LineThickness

StartColor

NeutralColor

EndColor

GraphColors("gdata")

GraphColors("gcdata")

”circle”

7px

1

1px

GraphColors("gramp3cstart")

GraphColors("gramp3cneutral")

GraphColors("gramp3cend")

GraphError Error line or error bar fill,
ContrastColor for lines,
Color for bar fill

ContrastColor

Color

LineStyle

Transparency

GraphColors("gcerror")

GraphColors("gerror")

5

Not set

GraphFit Primary fit lines such as a
normal density curve

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors("gcfit")

GraphColors("gfit")

7px

”Circle”

1

2px

GraphFit2 Secondary fit lines such as a
kernel density curve

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors("gcfit")

GraphColors("gfit")

7px

“X”

5

2px

GraphMissing Properties for graph items
representing missing values

ContrastColor

Color

MarkerSymbol

MarkerSize

LineStyle

LineThickness

Transparency

GraphColors("gcmissing")

GraphColors("gmissing")

“square”

7px

1

1px

Not set

GraphOutlier Outlier data for the graph ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors("goutlier")

GraphColors("gcoutlier")

7px

”Circle”

42

2px

918 Style Elements Affecting Template-Based Graphics � Appendix 4

Style Element Portion of Graph Affected Recognized
Attributes

Attribute Values in
DEFAULT Style

GraphPrediction Prediction lines ContrastColor

Color

LineStyle

LineThickness

MarkerSize

MarkerSymbol

GraphColors("gcpredict")

GraphColors("gpredict")

4

2px

7px

"Plus"

GraphPredictionLimits Fills for prediction limits ContrastColor

Color

MarkerSize

MarkerSymbol

GraphColors("gcpredictlim")

GraphColors("gpredictlim")

7px

"Chain"

GraphSelection For interactive graphs,
visual properties of selected
item. Color for selected fill
area, ContrastColor for
selected marker or line

ContrastColor

Color

MarkerSymbol

MarkerSize

LineStyle

LineThickness

GraphColors("gcdata")

GraphColors("gdata")

“Square”

11px

1

5px

ThreeColorAltRamp Line contours, markers, and
data labels with segmented
range color response

StartColor

NeutralColor

EndColor

GraphColors("gconramp3start")

GraphColors("gconramp3cneutral")

GraphColors("gconramp3end")

ThreeColorRamp Gradient contours, surfaces,
markers, and data labels
with continuous color
response

StartColor

NeutralColor

EndColor

GraphColors("gramp3cstart")

GraphColors("gramp3cneutral")

GraphColors("gramp3cend")

TwoColorAltRamp Line contours, markers, and
data labels with segmented
range color response

StartColor

EndColor

GraphColors("gconramp2cstart")

GraphColors("gconramp2cend")

TwoColorRamp Gradient contours, surfaces,
markers, and data labels
with continuous color
response

StartColor

EndColor

GraphColors("gramp2cstart")

GraphColors("gramp2cend")

Table A4.15 Graphical Style Elements: Data Related (Grouped)

ODS Style Elements � Style Elements Affecting Template-Based Graphics 919

Style Element Portion of Graph
Affected

Recognized Attributes Attribute Values in
DEFAULT Style

GraphData1 Primitives related to 1st
grouped data items. Color
applies to filled areas.
ContrastColor applies to
markers and lines.

Color

ContrastColor

MarkerSymbol

LineStyle

GraphColors("gdata1")

GraphColors("gcdata1")

"Circle"

1

GraphData2 Primitives related to 2nd
grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

GraphColors("gdata2")

GraphColors("gcdata2")

"Plus"

4

GraphData3 Primitives related to 3rd
grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

GraphColors("gdata3")

GraphColors("gcdata3")

"x"

8

GraphData4 Primitives related to 4th
grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

GraphColors("gdata4")

GraphColors("gcdata4")

"Triangle"

5

GraphData5 Primitives related to 5th
grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

GraphColors("gdata5")

GraphColors("gcdata5")

"Square"

14

GraphData6 Primitives related to 6th
grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

GraphColors("gdata6")

GraphColors("gcdata6")

"Asterisk"

26

GraphData7 Primitives related to 7th
grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

GraphColors("gdata7")

GraphColors("gcdata7")

"Diamond"

15

GraphData8 Primitives related to 8th
grouped data items

Color

ContrastColor

LineStyle

GraphColors("gdata8")

GraphColors("gcdata8")

20

GraphData9 Primitives related to 9th
grouped data items

Color

ContrastColor

LineStyle

GraphColors("gdata9")

GraphColors("gcdata9")

41

GraphData10 Primitives related to 10th
grouped data items

Color

ContrastColor

LineStyle

GraphColors("gdata10")

GraphColors("gcdata10")

42

920 Style Elements Affecting Device-Based Graphics � Appendix 4

Style Element Portion of Graph
Affected

Recognized Attributes Attribute Values in
DEFAULT Style

GraphData11 Primitives related to 11th
grouped data items

Color

ContrastColor

LineStyle

GraphColors("gdata11")

GraphColors("gcdata11")

2

GraphData12 Primitives related to 12th
grouped data items

Color

ContrastColor

GraphColors("gdata12")

GraphColors("gcdata12")

Table A4.16 Display Style Elements

Style Element
Portion of Graph
Affected

Recognized Attributes Possible Values

GraphAltBlock Alternate fill color for block
plots

Color GraphColors("gablock")

GraphBand Display options for
confidence bands

DisplayOpts “Fill ”

GraphBox Display options for box plots DisplayOpts

CapStyle

Connect

“Fill caps mean

Median outliers ”

"Serif"

"Mean"

GraphBlock Fill color for block plots Color GraphColors("gblock")

GraphEllipse Display options for
confidence ellipses

DisplayOpts “Outline”

GraphHistogram Display options for
histograms

DisplayOpts “Fill outline”

Style Elements Affecting Device-Based Graphics

Device-based graphics are all SAS/GRAPH output where there is a user-specified or
default device (DEVICE= option) that controls certain aspects of the graphical output.
Supplied device drivers are stored in the SASHELP.DEVICES catalog. Examples of
devices drivers are SASPRTC, GIF, WIN, ACTIVEX, PDF, and SVG. Common
SAS/GRAPH procedures that produce device-based graphics are GPLOT, GCHART, and
GMAP. Most device-based graphics produce produce a GRSEG catalog entry as output
and use the GOPTIONS statement to control the graphical environment.

For complete documentation on the style attributes that can be specified in each style
element, see “Style Attributes Overview” on page 498.

Note: These style elements affect device-based graphics only when the GSTYLE
system option is in effect (this is is the default for SAS 9.2). If the NOGSTYLE system
option is specified, graphs do not use any style information. For more information about
the GSTYLE system option, see SAS Language Reference: Dictionary. �

ODS Style Elements � Style Elements Affecting Device-Based Graphics 921

Table A4.17 Device-Based Graph Style Elements: General Graph Appearance

Style Element
Portion of Graph
Affected Recognized Attributes

Attribute Values in
DEFAULT Style

DropShadowStyle Used with text types Color GraphColors("gshadow")

Graph Graph size and outer
border appearance

OutputWidth

OutputHeight

BorderColor

BorderWidth

CellPadding

CellSpacing

Not set

Not set

Inherited

Inherited

0

Inherited

GraphAxisLines X, Y, and Z axis lines Color

LineStyle

LineThickness

GraphColors("gaxis")

1

1px

GraphBackground Background of the graph Transparency

BackgroundColor

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

VerticalAlign

TextAlign

Not set

Colors("docbg")

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphBorderLines Border around graph wall,
legend border, borders to
complete axis frame

Color

LineThickness

LineStyle

GraphColors("gborderlines")

1px

1

GraphCharts All charts within the graph Transparency

BackgroundColor

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

VerticalAlign

TextAlign

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphDataText Text font and color for
point and line labels

Font or font-attributes*

Color

GraphFonts("GraphDataFont")

Not set

GraphColors("gtext")

922 Style Elements Affecting Device-Based Graphics � Appendix 4

Style Element
Portion of Graph
Affected Recognized Attributes

Attribute Values in
DEFAULT Style

GraphFloor 3D floor BackgroundColor

Transparency

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

VerticalAlign

TextAlign

GraphColors("gfloor")

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphFootnoteText Text font and color for
footnotes

Font or font-attributes*

Color

GraphFonts("GraphFootnoteFont")

Not set

GraphColors("gtext")

GraphGridLines Horizontal and vertical
grid lines drawn at major
tick marks

Color

LineStyle

LineThickness

Transparency

displayopts

GraphColors("ggrid")

1

1px

.5

"Auto"

GraphGridLines Horizontal and vertical
grid lines drawn at major
tick marks

Color

LineStyle

LineThickness

Transparency

displayopts

GraphColors("ggrid")

1

1px

.5

"Auto"

GraphLegendBackground Background color of the
legend

Color

Transparency

Colors("glegend")

Not set

GraphOutlines Outline properties for fill
areas such as bars, pie
slices, and box plots.

Color

LineStyle

LineThickness

GraphColors("goutlines")

1

1px

GraphTitleText Text font and color for
titles

Font or font-attributes*

Color

GraphFonts("GraphTitleFont")

Not set

GraphColors("gtext")

ODS Style Elements � Style Elements Affecting Device-Based Graphics 923

Style Element
Portion of Graph
Affected Recognized Attributes

Attribute Values in
DEFAULT Style

GraphValueText Text font and color for axis
tick values and legend
values

Font or font-attributes*

Color

GraphFonts("GraphValueFont")

Not set

GraphColors("gtext")

GraphWalls Vertical walls bounded by
axes

Transparency

BackgroundColor

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

Not set

GraphColors("gwalls")

Not set

Not set

Not set

Not set

Not set

* Font-attributes can be one of the following: FONTFAMILY=, FONTSIZE=, FONTSTYLE=, FONTWEIGHT=.

Table A4.18 Style Elements Affecting Device-Based Non-Grouped Graphical Data Representation

Style Element Portion of Graph Affected Default Attributes Attribute Values in
DEFAULT Style

ThreeColorAltRamp Line contours, markers, and
data labels with segmented
range color response

StartColor

NeutralColor

EndColor

GraphColors("gconramp3start")

GraphColors("gconramp3cneutral")

GraphColors("gconramp3end")

ThreeColorRamp Gradient contours, surfaces,
markers, nad data labels
with continuous color
response

StartColor

NeutralColor

EndColor

GraphColors("gramp3cstart")

GraphColors("gramp3cneutral")

GraphColors("gramp3cend")

TwoColorAltRamp Line contours, markers, and
data labels with segmented
range color response

StartColor

EndColor

GraphColors("gconramp2cstart")

GraphColors("gconramp2cend")

TwoColorRamp Gradient contours, surfaces,
markers, and data labels
with continuous color
response

StartColor

EndColor

GraphColors("gramp2cstart")

GraphColors("gramp2cend")

924 Style Elements Affecting Device-Based Graphics � Appendix 4

Table A4.19 Style Elements Affecting Device-Based Grouped Graphical Data Representation

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData1 Primitives related to
1st grouped data
items. Color applies to
filled areas.
ContrastColor applies
to markers and lines.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata1")

GraphColors("gcdata1")

"Circle"

1

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData2 Primitives related to
2nd grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata2")

GraphColors("gcdata2")

"Plus"

4

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData3 Primitives related to
3rd grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata3")

GraphColors("gcdata3")

"X"

8

Not set

Not set

Not set

Not set

Not set

Not set

Not set

ODS Style Elements � Style Elements Affecting Device-Based Graphics 925

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData4 Primitives related to
4th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata4")

GraphColors("gcdata4")

"triangle"

5

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData5 Primitives related to
5th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata5")

GraphColors("gcdata5")

"square"

14

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData6 Primitives related to
6th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata6")

GraphColors("gcdata6")

"Asterisk"

26

Not set

Not set

Not set

Not set

Not set

Not set

Not set

926 Style Elements Affecting Device-Based Graphics � Appendix 4

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData7 Primitives related to
7th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata7")

GraphColors("gcdata7")

"Diamond"

15

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData8 Primitives related to
8th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata8")

GraphColors("gcdata8")

Not set

20

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData9 Primitives related to
9th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata9")

GraphColors("gcdata9")

Not set

41

Not set

Not set

Not set

Not set

Not set

Not set

Not set

ODS Style Elements � Style Elements Affecting Device-Based Graphics 927

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData10 Primitives related to
10th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata10")

GraphColors("gcdata10")

Not set

42

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData11 Primitives related to
11th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata11")

GraphColors("gcdata11")

Not set

2

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData12 Primitives related to
12th grouped data
items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata12")

GraphColors("gcdata12")

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

928

929

A P P E N D I X

5
Recommended Reading

Recommended Reading 929

Recommended Reading

Here is the recommended reading list for this title:
� Base SAS Procedures Guide
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Step-by-Step Programming with Base SAS Software

The recommended reading list from SAS Press includes:
� The Little SAS Book: A Primer, Revised Second Edition
� Output Delivery System: The Basics

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=56649
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=58087

930

931

Glossary

access mode
the level of access that a user has to an item store. The possible access modes are
read, write, and update. See also item store.

ActiveX
an image format that stores interactive graphical output that was generated using
an ActiveX control. The output is stored in a single file. You can right-click on any
graphical output that is generated in this format and change multiple options. Any
options that you change are reflected only in the output, not in the task window
selections that you made to set up the chart. In order to use the ActiveX format, you
will need to install the ActiveX control.

ActiveX control
a type of Web application that is developed specifically for the Windows operating
environment. ActiveX controls can provide Web users with interactive capabilities.

after-note
in ODS, a note that is displayed after an output object each time the output object is
displayed. The text is assigned to an output object by the procedure that produced
the object. See also output object, ODS document, and before-note.

aggregate storage location
a location on an operating system that can contain a group of distinct files. On
different operating systems, different terms (such as directory, folder, or partitioned
data set) are used to refer to an aggregate storage location.

aliasing
a visual effect in computer-generated images that produces several types of rendering
problems, such as jagged edges along straight lines or polygon boundaries. Aliasing
can occur when you try to render an object smaller than pixel size or a very narrow
object. In a complex scene, fine details are sometimes lost or distorted beyond
recognition due to aliasing. See also anti-aliasing.

annotation
a label, marker, or note that is not obtained from the data but is placed on a graph
independently. Such annotations might or might not be linked to data values in the
plot.

932 Glossary

anti-aliasing
a technique that tries to overcome the problems of aliasing, especially when
rendering three-dimensional graphics. Aliasing problems include jagged edges,
incorrect rendering of thin or small objects, and confused rendering of complex
objects. See also aliasing.

before-note
in ODS, a note that is displayed before an output object each time the output object
is displayed. The text is assigned to the output object by the procedure that produced
the object. See also after-note, output object, and ODS document.

cell
in general, the intersection of a row and a column in a table. In some SAS
procedures such as PROC TABULATE and PROC FREQ, the value of each cell is a
summary statistic for the input data set. The contents of the cell are described by the
page, row, and column that contain the cell.

cellvalue
one of the possible values that PROC FREQ can produce for a crosstabulation table.
Cellvalues are defined by the DEFINE CELLVALUE statement in a crosstabulation
table template.

column attribute
a formatting property that controls aspects of a column, such as the appearance of
the cells contents, presentation of data panels, and customization of column headers.
Column attributes have a reserved name and value defined in ODS.

crosstabulation table
a frequency table that shows combined frequency distributions or other descriptive
statistics for two or more variables. See also frequency table.

data component
a form, similar to a SAS data set, that contains the results (numbers and characters)
of a DATA step or PROC step that supports ODS.

device-based graphic
a graph created with SAS/GRAPH software for which a user-specified or default
device (DEVICE= option) controls certain aspects of the graphical output.

dictionary variable
a type of memory variable that consists of an array that contains a list of numbers or
text strings that can be identified by a key. A dictionary variable has, as part of it’s
name, a preceding ’$’ symbol and a subscript that contains a text string. The text
string within the subscript is called a key. For example, the following dictionary
variable identifies the entry in the $MyDictionary variable that contains the
text-string ’dog’: $MyDictionary[’dog’]. See also ODS event, list variable, memory
variable, and scalar variable.

DOCUMENT destination
an ODS destination that produces a hierarchy of output objects. The DOCUMENT
destination enables you to render multiple ODS output formats without rerunning a
PROC step or DATA step, and it gives you more control over the structure of the
output. See also ODS destination.

exclusion list
a list that tells ODS which output objects to exclude from a specified ODS
destination. See also selection list.

Glossary 933

footer attribute
a formatting property that controls aspects of a footer, such as the appearance of the
footer contents and the placement of the footer. The footer attribute has a reserved
name and value definted in ODS. See also header attribute.

frequency table
a table that lists each of the distinct values that a variable has within all of the
observations in a SAS data set. For each value, the table also lists the number of
observations in which the variable has that value.

graph
a visualization created by SAS software. A graph that is created by the ODS
Graphics system can contain titles, footnotes, legends, and one or more cells, and is
typically saved as an image or an SGE file.

graph segment
in ODS, a file type or output object that contains a graph. Graphs are created in
some SAS procedures, including those in SAS/GRAPH. The graph output object is
referenced as a GRSEG. See also output object.

Graph Template Language
an extension to the Output Delivery System (ODS) that enables users to create
sophisticated analytical graphics. Short form: GTL.

GTL
See Graph Template Language.

header attribute
a formatting property that controls aspects of a header, such as the appearance of the
header contents and the placement of the header. The header attribute has a
reserved name and value defined in ODS. See also footer attribute.

HTML
See HyperText Markup Language.

HyperText Markup Language
a coding system in which the codes indicate the layout and style of the text in a text
file. Other HTML codes enable you to embed electronic objects such as images,
sounds, video streams, and applets (small software applications) into HTML
documents. All Web browsers can process HTML documents. Short form: HTML.

inline formatting
a feature of the Output Delivery System (ODS) that allows you to insert simple
formatting text into ODS output by using the ODS ESCAPECHAR statement.

item store
a SAS data set that consists of pieces of information that can be accessed
independently. The contents of an item store are organized in a directory tree
structure, which is similar to the directory structures that are used by UNIX System
Services or by Windows. For example, a particular value might be stored and located
using a directory path (root_dir/sub_dir/value). The SAS Registry is an example of an
item store. See also template store.

legend
a visual key to graphic elements in a graph. The legend consists of the legend value,
the legend value description, the legend label, and the legend frame.

list variable
a type of memory variable that consists of an array that contains a list of numbers or
text strings that are indexed. A list variable has, as part of its name, a preceding ’$’
symbol and a subscript that is empty or contains a number or numeric variable. The

934 Glossary

number within the subscript is called an index. For example, the list variable
$Mylist[2] identifies the second entry in the list variable $Mylist. In this case, the
index is 2. See also dictionary variable, ODS event, memory variable, and scalar
variable.

LISTING destination
an ODS destination that produces traditional SAS output (monospace format). See
also listing output and ODS destination.

marker
(1) a symbol such as a circle, triangle, or diamond that is used to indicate the
location of a data point in a plot. (2) a type of annotation that is used in SAS/GRAPH
ODS Graphics Editor to highlight particular data in a plot or graph.

markup family
See ODS markup family.

markup language
a set of codes that are embedded in text in order to define layout and certain content.

measured RTF
a tagset that enables users to specify how and where page breaks occur in RTF
documents and when to place titles and footnotes into the body of a page.

memory variable
within an ODS event, an area of memory that contains numeric data, character data,
or lists of numeric or character data. A memory variable can be classified as a
dictionary variable if it is created with a subscript that contains a key, or a list
variable if it is created with a subscript that is empty or contains an index. If you do
not specify a key or an index, then the memory variable is a numeric or character
scalar variable, depending on the variable’s value. See also dictionary variable, list
variable, scalar variable, and ODS event.

ODS
See Output Delivery System.

ODS destination
a designation that the Output Delivery System uses to generate a specific type of
output. Types of ODS destinations include but are not limited to HTML, XML,
listing, Postscript, RTF, and SAS data sets.

ODS document
a hierarchy of output objects created by the DOCUMENT procedure. These objects
are in an unformatted form and are placed in a SAS item store. See also item store
and output object.

ODS document path
the location of an entry within an ODS document. See also ODS document and ODS
entry.

ODS entry
an item in an ODS document. An ODS entry can be either a link, an output object, a
file, or a partitioned data set.

ODS event
within a tagset definition, an action that causes output to be generated. Events are
usually triggered by SAS but can also be triggered by other events.

ODS Graphics system
an extension to ODS that is used to create analytical graphs using the Graph
Template Language.

Glossary 935

ODS Graphics template
a template for graphics that is created by the TEMPLATE procedure and that
contains the definition of a graph.

ODS markup family
a group of ODS statements that produce SAS output that is formatted using a
markup language such as HTML (HyperText Markup Language), XML (Extensible
Markup Language), and LaTeX. SAS supplies many markup languages for you to
use, ranging from DOCBOOK to TROFF. You can specify a markup language that
SAS supplies, or you can create one of your own and store it as a user-defined
markup language. See also ODS destination and ODS printer family.

ODS output
formatted output that is generated by any of the ODS destinations. For example, the
OUTPUT destination produces SAS data sets, the LISTING destination produces
listing output, and the HTML destination produces output that is formatted in
Hypertext Markup Language.

ODS package
a container for information or digital content that is generated or collected for
delivery to a consumer. ODS packages allow ODS destinations to use the SAS
Publishing Framework.

ODS printer family
a group of ODS statements that produce output in a format such as PostScript (PS),
PDF, or PCL that is suitable for printing on a high-resolution printer.

ODS style
See style definition.

Output Delivery System
a component of SAS software that can produce output in a variety of formats such as
markup languages (HTML, XML), PDF, listing, RTF, Postscript, and SAS data sets.
Short form: ODS.

output object
a programming object that contains the data that is generated by a DATA step or a
PROC step and which can also contain a table definition that provides information
about how to format that data.

printer family
See ODS printer family.

Publishing Framework
a component of SAS Integration Technologies that enables both users and
applications to publish SAS files (including data sets, catalogs, and database views),
other digital content, and system- generated events to a variety of destinations. The
Publishing Framework also provides tools that enable both users and applications to
receive and process published information.

replay
in ODS, the regeneration of output by the DOCUMENT procedure, in the same or
different format, without rerunning analyses or data queries.

root file location
the top level of a file location in an ODS document. A root file location is not
contained within another file location and does not have a name assigned to it. A root
file location is similar to the root directory of a Windows operating environment.

936 Glossary

SASEDOC engine
a SAS engine that associates a SAS libref (library reference) with one or more ODS
output objects that are stored in an ODS document.

scalar variable
a type of memory variable that contains one-dimensional numeric or character data.
Once created, scalar variables are globally available in all events. See also dictionary
variable, list variable, and memory variable.

selection list
a list that tells ODS which output objects to send to a specified ODS destination. See
also exclusion list.

stream variable
within an ODS event, a temporary item store that contains output. While the stream
variable is open, all output is directed to it until it is closed. See also item store, ODS
event, and tagset.

style
See style definition.

style attribute
a visual property, such as color, font properties, and line characteristics, that has a
reserved name and value defined in ODS. Style attributes are collectively referenced
by a style element within a style definition. See also style definition, style element,
and ODS event.

style definition
a template that specifies instructions for the presentation aspects (color, font face,
font size, and so on) of your SAS output. This template determines the overall
appearance of the documents that use it. Each style definition is composed of style
elements. Style definitions have no effect on the LISTING destination, which
produces plain text output. See also style element and table definition.

style definition inheritance
the concept that a child style definition receives all the style elements, attributes,
and statements that are specified in its parent style definition unless the child style
definition overrides them.

style element
a collection of style attributes that each pertain to a particular part of some ODS
output. For example, a style element might contain instructions for the presentation
of individual table cells. Within the style element, each style attribute specifies a
value for one aspect of the presentation. For example, the FLYOVER= attribute
specifies the text to display in a tool tip for a cell, and the PRETEXT= attribute
specifies the text to place before a cell. See also style definition and table element.

style element inheritance
the concept that a child style element receives all of the style attributes that are
specified in its parent style element, unless the child style element overrides those
attributes.

table attribute
a formatting property such as layout of headers, line spacing, and layout of rows and
columns, that has a reserved name and value defined in ODS. See also table
definition and table element.

table definition
a set of instructions that describe how to format output in the Output Delivery
System (ODS).

Glossary 937

table element
a collection of table attributes that each pertain to a particular column, header, or
footer in a table in ODS output.

table template
a template that describes how to display the output for a tabular output object. A
table template determines the order of table headers and footers, the order of
columns, and the overall appearance of the output object that uses it. Each table
template contains or references table elements.

tagset
a template that defines how to create a type of markup language output from a SAS
format. Tagsets produce markup output such as Hypertext Markup Language
(HTML), Extensible Markup Language (XML), and LaTeX. See also markup
language.

tagset definition
a template that specifies instructions for creating a markup language for your SAS
output. The resulting output contains embedded instructions in order to define
layout and some content. Each tagset definition contains event definitions and event
attributes that control the generation of the output. SAS provides tagset definitions
for a variety of markup languages. You can use the TEMPLATE procedure to modify
any of these SAS tagsets or to create your own tagsets. See also ODS markup family.

template
a description of how output should appear when it is formatted.

template store
an item store that contains definitions that were created by the TEMPLATE
procedure. Definitions that SAS provides are in the item store Sashelp.Tmplmst. You
can store definitions that you create in any template store to which you have write
access. See also item store.

938

937

Index

| style attribute 495

A
ABBR= header attribute 628
ABSTRACT= option

ODS PACKAGE statement 201
ABSTRACT= style attribute 507
ACECLUS procedure

ODS table names 672
Acrobat Distiller 227
ACRONYM= header attribute 628
actions

ODS CHTML statement 86
ODS CSVALL statement 88
ODS DOCBOOK statement 92
ODS DOCUMENT statement 94
ODS HTML statement 125, 278
ODS HTML3 statement 138
ODS HTMLCSS statement 135
ODS IMODE statement 141
ODS MARKUP statement 147
ODS OUTPUT statement 184
ODS PCL statement 208
ODS PDF statement 210
ODS PHTML statement 216
ODS PRINTER statement 219
ODS PS statement 240
ODS RTF statement 243
ODS WML statement 327

ACTIVEFOOTN option
REPLAY statement (DOCUMENT) 357

ACTIVELINKCOLOR= style attribute 507
ACTIVETITLE option

REPLAY statement (DOCUMENT) 357
ActiveX devices

CODEBASE file path 153
AFTER= option 350

COPY TO statement (DOCUMENT) 339
IMPORT TO statement (DOCUMENT) 344
LINK statement (DOCUMENT) 345
MAKE statement (DOCUMENT) 348
MOVE TO statement (DOCUMENT) 349
NOTE statement (DOCUMENT) 350
OBPAGE statement (DOCUMENT) 354

aggregate storage location
definition 402

ALT= header attribute 628

ANCHOR= option
ODS MARKUP statement 149
ODS PRINTER statement 220
ODS RTF statement 245

anchor tags
base name for 149, 245
root name for 220

ANOVA procedure
ODS table names 672

ANTIALIAS option
ODS GRAPHICS statement 118
ODS GRAPHICS statement 118

ANTIALIASMAX= option
ODS GRAPHICS statement 118

APPEND option
ODS PATH statement 207
PATH statement (TEMPLATE) 417

appending HTML files 131
applets

viewing HTML output 150
ARCHIVE= option

ODS MARKUP statement 150
ARIMA procedure

ODS table names 730
AS option

EDIT statement (TEMPLATE) 596
ASIS= style attribute 507
attribute suboptions

FILE PRINT ODS statement 75
ATTRIBUTES= option

ODS MARKUP statement 150
AUTHOR= option

ODS PRINTER statement 221
ODS RTF statement 245

AUTOREG procedure
ODS table names 731

B
BACKGROUNDCOLOR= style attribute 507
BACKGROUNDIMAGE= style attribute 508
BACKGROUNDREPEAT= Style Attribute 508
BALANCE table attribute 643
BASE= option

ODS MARKUP statement 151
ODS PRINTER statement 221
ODS RTF statement 245

base text 221, 245
HTML output 151

938 Index

batch jobs
ODS GRAPHICS statement for 123

BEFORE= option
COPY TO statement (DOCUMENT) 339
IMPORT TO statement (DOCUMENT) 344
LINK statement (DOCUMENT) 345
MAKE statement (DOCUMENT) 348
MOVE TO statement (DOCUMENT) 349
NOTE statement (DOCUMENT) 350

BLANK_DUPS column attribute 602
BLANK_INTERNAL_DUPS column attribute 602
BLOCK statement

TEMPLATE procedure 804
body files 894

creating 159, 226
separate file per page of output 127

BODYSCROLLBAR= style attribute 508
BODYSIZE= style attribute 508
BODYTITLE option

ODS RTF statement 246
BODYTITLE_AUX option

ODS RTF statement 246
BOOKMARKGEN= option

ODS PRINTER statement 222
BOOKMARKLIST= option

ODS PRINTER statement 221
bookmarks

for PDF files 221, 222
BORDER option

ODS GRAPHICS statement 118
ODS GRAPHICS statement 118

BORDERBOTTOMCOLOR= Style Attribute 509
BORDERBOTTOMSTYLE= style attribute 509
BORDERBOTTOMWIDTH= style attribute 509
BORDERCOLOR= style attribute 509
BORDERCOLORDARK= style attribute 509
BORDERCOLORLIGHT= style attribute 510
BORDERLEFTCOLOR= style attribute 510
BORDERLEFTSTYLE= style attribute 510
BORDERRIGHTCOLOR= style attribute 510
BORDERRIGHTSTYLE= style attribute 511
BORDERRIGHTWIDTH= style attribute 511
BORDERTOPCOLOR= style attribute 511
BORDERTOPSTYLE= style attribute 511
BORDERTOPWIDTH= style attribute 512
BORDERWIDTH= style attribute 512
BREAK statement

TEMPLATE procedure 804
buffers

number of columns in 84
BY-group entries

listing 387
BY-groups

DOCUMENT procedure and 359
BY lines 361
BY variable names 360
BY variable values 360
BYGROUPS option

LIST statement (DOCUMENT) 346
BYLINE= table attribute 644

C
CALENDAR procedure

ODS table names 663

CALIS procedure
ODS table names 674

CANCORR procedure
ODS table names 678

CANDISC procedure
ODS table names 680

cascading style sheets 135
applying to ODS output 178
importing information into style definitions 491
multiple, in one HTML document 176

CATALOG option
ODS DOCUMENT statement 95

CATALOG procedure
ODS table names 663

catalogs
copying GSREGs to 95

CATMOD procedure
ODS table names 681

CELLHEIGHT= style attribute 519
CELLPADDING= style attribute 512
CELLSPACING= style attribute 512
CELLSTYLE-AS statement, TEMPLATE procedure

column definitions 445, 612
table definitions 650

CENTER table attribute 644
character sets

META declaration for HTML output 152
CHARSET= option

ODS MARKUP statement 152
CHART procedure

ODS table names 663
CHOOSE_FORMAT= column attribute 602
CHTML destination 85
CHTML tagset 281
CLASS statement

TEMPLATE procedure 490
CLASS= style attribute 512
CLASSLEVELS= table attribute 644
CLEAR action

ODS OUTPUT statement 184
CLOSE action

ODS DOCUMENT statement 94
ODS LISTING statement 143
ODS MARKUP statement 147
ODS OUTPUT statement 184
ODS PRINTER statement 219
ODS RTF statement 243

CLOSE statement
TEMPLATE procedure 805

CLUSTER procedure
ODS table names 682

CODE= option
ODS MARKUP statement 152

CODEBASE file path 153
CODEBASE= option

ODS MARKUP statement 153
COLOR= option

ODS PRINTER statement 222
colors

ODS PRINTER statement 222
COL_SPACE_MAX= table attribute 644
COL_SPACE_MIN= table attribute 644
column attributes 443, 450, 599

values from data component 75
column definitions

attributes 443, 450, 599

Index 939

creating 597
editing 595
for multiple variables 71, 75
header definitions in 617

column pointer controls
ODS 83

COLUMN statement
TEMPLATE procedure 653

columns
assigning attributes to 48
cell styles 445, 612
for data components 70
formats for 75
formatting 753
justification 91, 752
labels for 72, 75
notes about 454
number in buffers 84
number in data components 84
ODS PRINTER statement 223
ODS RTF statement 247
specifying 73
symbol declared as 653

COLUMNS= option
ODS PRINTER statement 223
ODS RTF statement 247

COLUMNS= suboption
FILE PRINT ODS statement 70

comma-delimited output 88
COMPARE procedure

ODS table names 663
compatibility

ODS documents 367
COMPRESS= option

ODS PRINTER statement 223
compression

PDF files 223
COMPUTE AS statement

TEMPLATE procedure 615
computed columns 615
CONTENTPOSITION= style attribute 513
contents file 897
CONTENTS option

ODS RTF statement 247
ODS MARKUP statement 153
ODS PRINTER statement 223

CONTENTS procedure
ODS table names 665

CONTENTS table attribute 644
CONTENTSCROLLBAR= style attribute 513
CONTENTSIZE= style attribute 514
CONTENTS_LABEL= table attribute 644
CONTENTTYPE= style attribute 514
CONTINUE statement

TEMPLATE procedure 805
CONTRASTCOLOR= style attribute 514
CONTROL= table attribute 645
COPY TO statement

DOCUMENT procedure 339
COPYRIGHT= tagset attribute 797
CORR procedure

ODS table names 664
CORRESP procedure

ODS table names 683
COSAN model 674

crosstab templates
creating 434

CSSSTYLE= option
ODS MARKUP statement 154
ODS PRINTER statement 224
ODS RTF statement 247

CSV tagset 281
CSVALL destination 88
CSVALL tagset 281
CSVBYLINE tagset 281
current document

closing 343
definition 335

current file location 341
creating text strings in 350
importing data sets to 343
importing GRSEGs to 343

current path
definition 335

customized output 34
for output objects 35

D
DAGGER function 102
DATA= argument

IMPORT TO statement (DOCUMENT) 344
TEST statement (TEMPLATE) 422

data components
binding to table definitions 68
column attribute values from 75
columns for 70
number of columns in 84

DATA option
ODS LISTING statement 144

data panels 144
data sets

combined output data sets 187
creating with/without MATCH_ALL option 194
from output objects 184
from similar output objects 191
importing to current file location 343
merging dissimilar output objects into 187

DATA step
column definitions for multiple variables 71, 75
ODS and 39
ODS enhanced features in 41
ODS examples 41
ODS reports with 40

DATA step statements
ODS 61

DATA_FORMAT_OVERRIDE column attribute 603
DATA_FORMAT_OVERRIDE table attribute 645
DATANAME= column attribute 603
DATAPANEL= option

ODS LISTING statement 144
DATASETS procedure

ODS table names 665
DATE function 102
decimal point

in numeric columns 91
default devices 144, 155, 248
DEFAULT_EVENT= tagset attribute 797
DEFINE CELLVALUE statement

TEMPLATE procedure 442

940 Index

DEFINE COLUMN statement
TEMPLATE procedure 597

DEFINE CROSSTABS statements
TEMPLATE procedure 434

DEFINE EVENT statement, TEMPLATE procedure
event attributes 803
event statement conditions 809
event variables 831

DEFINE FOOTER statement
TEMPLATE procedure 624

DEFINE HEADER statement
TEMPLATE procedure 617, 624

DEFINE statement
TEMPLATE procedure 654

DEFINE STYLE statements
TEMPLATE procedure 488

DEFINE TABLE statement
TEMPLATE procedure 639
vs. EDIT statement 760

DEFINE TAGSET statement
TEMPLATE procedure 794

DEFINE_EVENT statement
TEMPLATE procedure 801

DEF_SPLIT column attribute 603
DEF_SPLIT header attribute 629
DELETE option

OBPAGE statement (DOCUMENT) 354
DELETE statement

DOCUMENT procedure 340
TEMPLATE procedure 409

DELSTREAM statement
TEMPLATE procedure 806

DESCRIPTION= option
ODS PACKAGE statement 201

DEST function 103
DEST= option

REPLAY statement (DOCUMENT) 357
destination-independent input 25
DETAILS option

LIST statement (DOCUMENT) 347
DEVICE=

ODS MARKUP statement 155
ODS RTF statement 144, 248

DIR= option
ODS DOCUMENT statement 95

DIR statement
DOCUMENT procedure 341

DISCRETEMAX= option
ODS GRAPHICS statement 119

DISCRIM procedure
ODS table names 684

DO statement
TEMPLATE procedure 806

DOC CLOSE statement
DOCUMENT procedure 343

DOC statement
DOCUMENT procedure 342

DOCBOOK destination 91
DOCBOOK tagset 282
DOC_SEQNO= option

LIBNAME statement, SASEDOC 78
DOCTYPE= style attribute 515
DOCUMENT destination 25, 94

closing 94
excluding output objects 94
selecting output objects 95

writing selection/exclusion lists to log 95
DOCUMENT procedure 334, 336

BY-groups and 359
concepts 364
Document window vs. 373
examples 374
results 367
syntax 336
task tables 336, 369
terminology 335
WHERE expressions with 361

Documents window 367
creating shortcuts 372
DOCUMENT procedure vs. 373
pop-up menu 369
Results window vs. 371

DONE statement
TEMPLATE procedure 806

double trailing @
PUT _ODS_ statement 82

DOUBLE_SPACE table attribute 645
DPI= option

ODS PRINTER statement 225
DROP column attribute 603
DTDs

creating, with XML files 172
Wireless Markup Language (WML) 327

DYNAMIC= attribute suboption
FILE PRINT ODS statement 75

dynamic attributes
default values for 71

dynamic graphics output
attributes between tags 150
parameters between tags 162

DYNAMIC statement, TEMPLATE procedure
table definitions 438, 447, 452, 618,,

DYNAMIC= suboption
FILE PRINT ODS statement 71

dynamic variables 438, 447, 452, 618,,
definition 839
writing to output file 821

E
EDIT statement

TEMPLATE procedure 595
vs. DEFINE TABLE statement 760

ELSE statement
TEMPLATE procedure 807

EMBEDDED_STYLESHEET tagset attribute 797
ENCODING= option

ODS MARKUP statement 155
ODS RTF statement 249

END= header attribute 629
END statement, TEMPLATE procedure 496

definitions 441, 449, 457, 623,,
event definitions 807
tagset definitions 831

entries
copying into specified path 339
definition 335
deleting 340
displaying output of hidden entries 359
displaying to ODS destinations 357
listing 346, 374
listing BY-group entries 387

Index 941

managing 381
moving 348
name of 365
sequence numbers 366
viewing in Results window 370
viewing properties 372

ENTROPY procedure
ODS table names 733

EPSI format 123
escape characters

for inline formatting 97
EVAL statement

TEMPLATE procedure 807
EVEN table attribute 645
event attributes 803
event definitions 838

ending 807
EVENT= option

ODS MARKUP statement 155
event statement conditions 809
event variables 831

definition 839
displaying 840
list of 831
quotes in 819
writing to log 818
writing to output file 815, 821

EVENT_MAP tagset 283, 841
events 837

breaking execution 804
DEFINE EVENT statement 801
definition 403
different styles for 859
disabling 804
enabling disabled events 828
executing 827, 855
including stylesheets 861
inheriting in tagset definitions 841

examples
operating environments for 901
programs for 871

EXCLUDE action
ODS DOCUMENT statement 94
ODS LISTING statement 143
ODS MARKUP statement 147
ODS PRINTER statement 219
ODS RTF statement 243

EXCLUDED option
ODS TRACE statement 318

exclusion lists 34
destinations for output objects 35
OUTPUT destination 184
writing to log 277

EXPAND= header attribute 629
EXPAND_PAGE header attribute 629

F
FACTOR model 674
FACTOR procedure

ODS table names 686
FASTCLUS procedure

ODS table names 688
FILE= event attribute 803
file locations

creating 347

navigating 374
renaming 357

FILE= option
ODS LISTING statement 145
ODS PRINTER statement 225
ODS RTF statement 249
SOURCE statement (TEMPLATE) 418

FILE PRINT ODS statement 41
arguments 68
attribute suboptions 75
ODS suboptions 69
options 68
restrictions 76
syntax 68
without ODS suboptions 69

FILLRULEWIDTH= style attribute 515
FINISH option

TRIGGER statement (TEMPLATE) 827
FIRST option

COPY TO statement (DOCUMENT) 339
IMPORT TO statement (DOCUMENT) 344
LINK statement (DOCUMENT) 345
MAKE statement (DOCUMENT) 348
MOVE TO statement (DOCUMENT) 349
NOTE statement (DOCUMENT) 350

FIRST_PANEL header attribute 629
FLOW column attribute 604
FLUSH statement

TEMPLATE procedure 811
FLYOVER= style attribute 516
FOLLOW option

LIST statement (DOCUMENT) 347
FONT= style attribute 516
FONTFAMILY= style attribute 516
FONTSIZE= style attribute 516
FONTSTYLE= style attribute 517
FONTWEIGHT= style attribute 517
FONTWIDTH= style attribute 517
footer definitions

creating 624
editing 595

FOOTER statement
TEMPLATE procedure 439, 656

footers
symbol declared as 439, 656

FOOTER_SPACE= table attribute 645
footnotes

customizing 359
in graphics output 157
output objects 353
RTF output 249

FORCE header attribute 629
FOREGROUNDCOLOR= style attribute 513
FORMAT= attribute suboption

FILE PRINT ODS statement 75
FORMAT= column attribute 604
FORMAT_NDEC= column attribute 604
formats

for columns 75
FORMAT_WIDTH= column attribute 604
FORMCHAR= table attribute 645
frame files 897
FRAME= option

ODS MARKUP statement 156
FRAME= style attribute 518
FRAMEBORDER= style attribute 518

942 Index

FRAMEBORDERWIDTH= style attribute 518
FRAMESPACING= style attribute 519
FREQ procedure

ODS table names 666
FROM option

STYLE statement (TEMPLATE) 494
functions

defining tagsets with 844
FUZZ= column attribute 604

G
GAM procedure

ODS table names 689
GENERIC= attribute suboption

FILE PRINT ODS statement 75
GENERIC column attribute 605
GENERIC header attribute 630
GENERIC= suboption

FILE PRINT ODS statement 71
GENMOD procedure

ODS table names 690
GFOOTNOTE option

ODS MARKUP statement 157
ODS RTF statement 249

GIF format 123
GLM procedure

ODS table names 692
GLMMOD procedure

ODS table names 695
GLMPOWER procedure

ODS table names 696
global statements

category descriptions 62
ODS 61

GLUE= column attribute 605
GPATH= option

ODS LISTING statement 145
ODS MARKUP statement 157

graph definition
definition 402

graph segments (GRSEGs)
copying to catalogs 95
definition 335
importing to current file location 343

graph styles 538, 568
graphics

ODS RTF statement and 255
ODS TAGSET.RTF statement and 294
replaying 358
smoothing 118
template-based 117

graphics environment options 117
graphics options

enabling for ODS 323
ODS settings 323

graphics output
footnotes in 157
location for 145, 157
titles in 158

graphics processing 117
GROUPMAX= option

ODS GRAPHICS statement 119
GRSEG= argument

IMPORT TO statement (DOCUMENT) 344

GRSEGs
copying to catalogs 95
definition 335
importing to current file location 343

GTITLE option
ODS MARKUP statement 158
ODS RTF statement 249

H
HARD option

LINK statement (DOCUMENT) 345
HEAD tags 158
header attributes 626
HEADER= column attribute 605
header definitions

attributes 626
creating 624
editing 595
inside column definitions 617

HEADER statement
TEMPLATE procedure 440, 655

header text 454, 637
headers

alternative 638
symbol as 440, 655

HEADER_SPACE= table attribute 646
HEADTEXT= option

ODS MARKUP statement 158
HEIGHT= option

ODS GRAPHICS statement 119
HIDE statement

DOCUMENT procedure 343
HOST option

ODS PRINTER statement 225
HREFTARGET= style attribute 519
HTML destination 26, 124

body files 894
contents file 897
files produced by 894
frame files 897
links produced by 889
output for 234
page files 897
references produced by 889

HTML files
appending to 131

HTML links 889
definition 889
implementing 889
ODS construction of 892

HTML output
3.2 124, 138
4.0 124
applet for viewing 150
base text 151
cascading style sheets 135
character set for META declaration 152
creating 7
IMODE destination 140
record separator 163
sample 18
separate body file per page of output 127
simple form 215

HTML references 889
definition 889

Index 943

implementing 889
ODS construction of 892

HTML style definition 486, 536
customized 487
modifying 562

HTML tagset 125
HTML version setting 32
HTML3 destination 138
HTML4 tagset 282
HTMLCONTENTTYPE= style attribute 514
HTMLCSS destination 135
HTMLCSS tagset 282
HTMLID= style attribute 520
HTMLSTYLE= style attribute 520

I
ID column attribute 606
ID= option

ODS MARKUP statement 159
ODS PRINTER statement 225
ODS RTF statement 250

image file types 123
supported types 123

image filenames 120
image files

resetting index counter 121
image format 119
IMAGE= style attribute 520
IMAGE_DPI= option

ODS LISTING statement 146
ODS MARKUP statement 159
ODS RTF statement 250

IMAGEFMT= option
ODS GRAPHICS statement 119

IMAGEMAP option
ODS GRAPHICS statement 120
ODS GRAPHICS statement 120

IMAGENAME= option
ODS GRAPHICS statement 120

IMODE destination 140
IMODE tagset 282
IMPORT statement

TEMPLATE procedure 491
IMPORT TO statement

DOCUMENT procedure 343
INBREED procedure

ODS table names 696
INDENT= tagset attribute 798
indention 813, 830, 857
index counter

resetting 121
inheritance 541

creating tagsets through 844
example programs 881
style elements and 903

inheriting events 841
inline formatting 98, 100

escape characters for 97
nested 98
Unicode symbols 99

inline formatting functions 101
inline style attributes

nesting and 98
item store

definition 402

ITERATE statement
TEMPLATE procedure 812

J
Java devices

CODEBASE file path 153
JFIF format 123
JUST= column attribute 606
JUST= header attribute 630
JUST= option

NOTE statement (DOCUMENT) 350
OBANOTE statement (DOCUMENT) 351
OBBNOTE statement (DOCUMENT) 352
OBSTITLE statement (DOCUMENT) 354

justification
numeric columns 91
table columns 752

JUSTIFY column attribute 606
JUSTIFY table attribute 646

K
KDE procedure

ODS table names 697
KEEPN option

ODS RTF statement 250
KEYWORDS= option

ODS PRINTER statement 226

L
LABEL= attribute suboption

FILE PRINT ODS statement 75
LABEL= column attribute 607
LABEL option

LINK statement (DOCUMENT) 345
DOC statement (DOCUMENT) 342
ODS TRACE statement 185, 318
PROC DOCUMENT statement 338

LABEL= suboption
FILE PRINT ODS statement 72

LABEL= table attribute 646
label text 454, 637
LABELMAX= option

ODS GRAPHICS statement 120
labels

assigning to specified path 359
customizing 359
for columns 72, 75
for output objects 72
ODS documents 338, 342

LAST option
COPY TO statement (DOCUMENT) 339
IMPORT TO statement (DOCUMENT) 344
LINK statement (DOCUMENT) 345
MAKE statement (DOCUMENT) 348
MOVE TO statement (DOCUMENT) 349
NOTE statement (DOCUMENT) 350

LASTPAGE function 103
LAST_PANEL header attribute 630
LATTICE procedure

ODS table names 697
LEADERS function 103
LEVELS= option

COPY TO statement (DOCUMENT) 339

944 Index

DELETE statement (DOCUMENT) 340
LIST statement (DOCUMENT) 347
MOVE TO statement (DOCUMENT) 349
REPLAY statement (DOCUMENT) 358

LIBNAME statement, SASEDOC 78
LIBRARY= option

DOC statement (DOCUMENT) 342
librefs

assigning to ODS documents 79
associating with output objects 78

LIFEREG procedure
ODS table names 697

LIFETEST procedure
ODS table names 698

line pointer controls
ODS 84

LINEQS model 674
LINK statement

DOCUMENT procedure 345
TEMPLATE procedure 410

LINKCOLOR= style attribute 521
links

See also HTML links
to template store definitions 410

LIST statement
DOCUMENT procedure 346
TEMPLATE procedure 411

LISTENTRYANCHOR= style attribute 521
LISTENTRYDBLSPACE= style attribute 522
LISTING destination 26

closing 143
excluding output objects 143
managing 143
opening 143
selecting output objects 144
writing selection/exclusion lists to log 144
writing trace records to 318

LISTING option
ODS TRACE statement 318

Listing output 592
creating 5
sample 16

LISTSTYLETYPE= style attribute 522
LOAN procedure

ODS table names 733
LOESS procedure

ODS table names 700
log

output object records 317
writing event variables to 818
writing selection/exclusion lists to 277
writing source code to 418

LOGISTIC procedure
ODS table names 700

LOG_NOTE tagset attribute 798
LONGDESC= header attribute 630
LONGDESC= table attribute 646

M
macro variables

referencing with symbol (MVAR) 618, 636, 657
referencing with symbol (NMVAR) 619, 636, 658

MAKE statement
DOCUMENT procedure 347

MAP= tagset attribute 798

MAPSUB= tagset attribute 798
MARGINBOTTOM= style attribute 523
MARGINLEFT= style attribute 523
MARGINRIGHT= style attribute 524
MARGINTOP= style attribute 524
MARKUP destination 27, 147

closing 147, 167
excluding output objects 147
opening 167
selecting output objects 147

markup files
location of 162, 251

markup languages 147, 836
default style definition 536
modifying default style definition 562

MATCH_ALL option
ODS OUTPUT statement 186, 194

MAXIMIZE column attribute 607
MAXIMIZE header attribute 630
MAXLEGENDAREA= option

ODS GRAPHICS statement 120
MDC procedure

ODS table names 734
MDS procedure

ODS table names 703
MEANS procedure

ODS table names 669
memory variables

writing to output file 821
MERGE column attribute 607
META declaration

character set for 152
META tags 159
metadata 251

author 221, 245
string of keywords 226
subject 230
title 231, 254

METATEXT= option
ODS MARKUP statement 159

MI procedure
ODS table names 703

MIANALYZE procedure
ODS table names 704

MIXED procedure
ODS table names 705

Mobil Media Japan 282
MODECLUS procedure

ODS table names 708
MODEL procedure

ODS table names 734
MOVE TO statement

DOCUMENT procedure 348
MULTTEST procedure

ODS table names 709
MVAR statement, TEMPLATE procedure

column definitions 618, 636, 657
MVSHTML tagset 282

N
N= option

FILE PRINT ODS statement 68
NAME= option

DOC statement (DOCUMENT) 342
ODS DOCUMENT statement 96

Index 945

PROC DOCUMENT statement 337
NAMEDHTML tagset 283
NAMEVALUE== option

ODS PACKAGE statement 201
NBSPACE function 103
NDENT statement

TEMPLATE procedure 813
nested inline formatting 98
NESTED procedure

ODS table names 709
nesting

inline style attributes and 98
NEWFILE= option

ODS MARKUP statement 159
ODS PRINTER statement 226
ODS RTF statement 250

NEWLINE function 103
NEWPAGE table attribute 647
NEXT statement

TEMPLATE procedure 813
NLIN procedure

ODS table names 709
NLMIXED procedure

ODS table names 710
NMVAR statement, TEMPLATE procedure

column definitions 619, 636, 658
NOANTIALIAS option

ODS GRAPHICS statement 118
NOBORDER option

ODS GRAPHICS statement 118
NOBREAKSPACE= style attribute 524
NOBREAKSPACE= tagset attribute 799
NOFLOW option

SOURCE statement (TEMPLATE) 418
NOIMAGEMAP option

ODS GRAPHICS statement 120
NOLIST option

DEFINE statement (TEMPLATE) 655
NOSCALE option

ODS GRAPHICS statement 122
NOTE statement

DOCUMENT procedure 350
NOTES= option

LINK statement (TEMPLATE) 410
NOTES statement, TEMPLATE procedure 492

column definitions 454
table definitions 441, 448, 620, 637,
tagset definitions 831

NOTOC option
ODS PRINTER statement 227

NPART1WAY procedure
ODS table names 711

NTT 282
numeric columns

justification of 91
numeric values

translating 659

O
OBANOTE statement

DOCUMENT procedure 351
OBBNOTE statement

DOCUMENT procedure 352
OBFOOTN statement

DOCUMENT procedure 353

object footers 351
object headers 352
OBJECT= suboption

FILE PRINT ODS statement 72
OBJECTLABEL= suboption

FILE PRINT ODS statement 72
OBPAGE statement

DOCUMENT procedure 353
OBSTITLE statement

DOCUMENT procedure 354
OBTEMPL statement

DOCUMENT procedure 355
OBTITLE statement

DOCUMENT procedure 356
ODS _ALL_ CLOSE statement 85
ODS argument

FILE PRINT ODS statement 68
ODS CHTML statement 85
ODS column pointer controls 83
ODS CSVALL statement 88
ODS DECIMAL_ALIGN statement 91
ODS destinations

categories of 24
changing default settings 33
closing 85
default devices 144, 155, 248
destination-independent input 25
displaying entries to 357
excluding output objects 110
exclusion lists 34
image file types for 123
running multiple instances 159
SAS formatted destinations 25
selecting output objects for 264
selection lists 34
specifying multiple 167
system resources and 29
tagset keywords as 168
tagset names as 176
third-party formatted destinations 26
two-level tagset names as 168

ODS DOCBOOK statement 91
ODS document icon 368
ODS document path 365
ODS DOCUMENT statement 94
ODS documents 364

Base procedures and 366
closing 343
compatibility 367
definition 335
Documents window 367
hiding output from display 343
labels 338
librefs for 79
listing 378
name of 337, 342
name of access mode 337, 342
opening 342, 378
persistence 365
Results window 370
titles 356

ODS ESCAPECHAR= statement 97
inline formatting functions for 101

ODS EXCLUDE statement 110
ODS GRAPHICS statement 117

for batch jobs 123

946 Index

image file types 123
options 117

ODS HTML statement 124
options 125, 279

ODS HTML3 statement 138
ODS HTMLCSS statement 135
ODS IMODE statement 140
ODS line pointer controls 84
ODS LISTING statement 143

actions 143
default devices 144
options 144

ODS MARKUP statement 147
actions 147
creating XML files 169
creating XML files and DTD 172
default devices 155
details 167
examples 169
multiple markup output 173
options 148
suboptions 166
tagset names as ODS destinations 176

ODS option
PUT statement 82

ODS output
adding new line 816
assigning attributes to columns 48
DATA step enhanced features 41
formatting variables 68
inserting text into 313
listing variables to include 68
multiple formats 94
selected variables in 44
tracking in Results window 242

ODS (Output Delivery System) 3, 16
customized output 34
DATA step and 39
DATA step examples 41
how it works 22
multiple output formats 8
processing 22
quick start 5
registry and 32
reports with DATA step 40
samples 16
summary of 37

ODS OUTPUT statement 184
actions 184
arguments 184
creating data sets 187, 191, 194
examples 187
merging output objects into data set 187

ODS PACKAGE statement 199
actions 199
details 202
options 201

ODS PATH statement 206
ODS PCL statement 208
ODS PDF statement 210

actions 210
opening/closing PDF destination 212
opening multiple instances of same destination 212
options 210

ODS PHTML statement 215

ODS PRINTER statement 218
actions 219
details 231
host information 233
multiple instances of same destination 225
opening/closing PRINTER destination 231
options 219
output for HTML destination 234
output for PRINTER destination 234
printing output directly to printers 232
Windows and 233
without actions or options 218

ODS PROCLABEL statement 238
ODS PROCTITLE statement 238
ODS PS statement 240
ODS RESULTS statement 242
ODS RTF statement 243

actions 243
default devices 248
details 255
graphics and 255
opening/closing RTF destination 255
options 243
RTF output 255

ODS SELECT statement 264
ODS SHOW statement 277
ODS statements

by category 63
category descriptions 62
DATA step statements 61
definition of 61
global statements 61
Output Control statements 62
procedure statements 62
SAS formatted statements 62
third-party formatted statements 62

ODS styles
graphical style information 538

ODS suboptions
FILE PRINT ODS statement 69

ODS table names
ACECLUS procedure 672
ANOVA procedure 672
ARIMA procedure 730
AUTOREG procedure 731
Base SAS procedures 662
CALENDAR procedure 663
CALIS procedure 674
CANCORR procedure 678
CANDISC procedure 680
CATALOG procedure 663
CATMOD procedure 681
CHART procedure 663
CLUSTER procedure 682
COMPARE procedure 663
CONTENTS procedure 665
CORR procedure 664
CORRESP procedure 683
DATASETS procedure 665
DISCRIM procedure 684
ENTROPY procedure 733
FACTOR procedure 686
FASTCLUS procedure 688
FREQ procedure 666
GAM procedure 689
GENMOD procedure 690

Index 947

GLM procedure 692
GLMMOD procedure 695
GLMPOWER procedure 696
INBREED procedure 696
KDE procedure 697
LATTICE procedure 697
LIFEREG procedure 697
LIFETEST procedure 698
LOAN procedure 733
LOESS procedure 700
LOGISTIC procedure 700
MDC procedure 734
MDS procedure 703
MEANS procedure 669
MI procedure 703
MIANALYZE procedure 704
MIXED procedure 705
MODECLUS procedure 708
MODEL procedure 734
MULTTEST procedure 709
NESTED procedure 709
NLIN procedure 709
NLMIXED procedure 710
NPART1WAY procedure 711
ORTHOREG procedure 712
PDLREG procedure 736
PLAN procedure 714
PLOT procedure 669
PLS procedure 714
POWER procedure 715
PPHREG procedure 713
PRINCOMP procedure 715
PRINQUAL procedure 716
PROBIT procedure 716
REG procedure 717
REPORT procedure 670
ROBUSTREG procedure 719
RSREG procedure 721
SAS/ETS procedures 729
SAS/STAT procedures 671
SIMLIN procedure 738
SPECTRA procedure 738
SQL procedure 670
STATESPACE procedure 738
STDIZE procedure 721
STEPDISC procedure 721
SUMMARY procedure 669
SURVEYFREQ procedure 722
SURVEYLOGISTIC procedure 723
SURVEYMEANS procedure 724
SURVEYREG procedure 725
SURVEYSELECT procedure 726
SYSLIN procedure 739
TABULATE procedure 670
TIMEPLOT procedure 670
TIMESERIES procedure 741
TPSPLINE procedure 726
TRANSREG procedure 726
TREE procedure 728
TTEST procedure 728
UNIVARIATE procedure 671
VARCLUS procedure 728
VARCOMP procedure 729
VARMAX procedure 741
X11 procedure 745
X12 procedure 749

ODS TAGSET.RTF statement
graphics and 294

ODS TAGSETS.RTF statement 287
ODS TEXT= statement 313
ODS TRACE statement 317

contents of trace record 318
example 319
LABEL= option 185
purpose 185
specifying output objects 319

ODS USEGOPT statement 323
ODS VERIFY statement 326
ODS WML statement 327
OPEN statement

TEMPLATE procedure 814
OPERATOR= option

ODS RTF statement 251
OPTIONAL column attribute 608
options

ODS CHTML statement 86
ODS CSVALL statement 89
ODS HTML3 statement 138
ODS HTMLCSS statement 135
ODS IMODE statement 141
ODS PHTML statement 216
ODS WML statement 327

ORDER= option
LIST statement (DOCUMENT) 347

ORDER_DATA table attribute 647
ORTHOREG procedure

ODS table names 712
Output Control statements 62
OUTPUT destination 26

closing 184
exclusion lists 184
selection lists 184

output objects 366
attributes 366
creating 68
customized output for 35
data sets from 184, 191
determining destinations for 35, 185
excluding from LISTING destination 143
excluding from ODS destinations 110
footnotes 353
hierarchy of 94
labels for 72
librefs 78
listing output 592
merging dissimilar objects into data set 187
names for 72
page breaks 353
records in log 317
renaming 357
RTF output 592
selecting for LISTING destination 144
selecting for ODS destinations 264
sequence number of 78
specifying 319
symbolic links to/from 345
tracing 317

output pointer
number of lines for 68

output strings 97
interpreting 101

OUTPUT_TYPE= tagset attribute 799

948 Index

overflow-control option
FILE PRINT ODS statement 68

OVERHANGFACTOR= style attribute 524
OVERLINE column attribute 608
OVERLINE header attribute 631
OVERLINE table attribute 647

P
package objects

adding to 199
closing 199
opening 199
publishing 199

page breaks 229
output objects 353
RTF output 253
splitting tables at 250

page files 897
PAGE option

ODS LISTING statement 144
PAGEBREAKHTML= style attribute 524
PAGEOF function 104
PANELCELLMAX= option

ODS GRAPHICS statement 120
PANELS= table attribute 647
PANEL_SPACE= table attribute 647
PARAMETERS= option

ODS MARKUP statement 162
PARENT= column attribute 608
PARENT= header attribute 631
PARENT= option

DEFINE STYLE statements (TEMPLATE) 492
PARENT= statement

TEMPLATE procedure 492
PARENT= table attribute 647
PARENT= tagset attribute 799
PATH= option

ODS MARKUP statement 162
ODS PACKAGE statement 201
ODS RTF statement 251

PATH statement
TEMPLATE procedure 416

paths
definition 335

PCL destination 208
closing 209
opening 209

PCL files 208
PCL option

ODS PRINTER statement 227
PCL output 227
PDF destination 210

closing 212
opening 212
opening multiple instances 212

PDF files
adding notes 228
compressing 223
list of bookmarks 221, 222

PDF option
ODS PRINTER statement 227

PDF output 210, 227
sample 20

PDFMARK option
ODS PRINTER statement 227

PDFNOTE option
ODS PRINTER statement 228

PDFTOC= option
ODS PRINTER statement 228

PDLREG procedure
ODS table names 736

persistence
ODS documents 365

PHTML destination 215
PHTML output 215
PHTML tagset 282
PLAN procedure

ODS table names 714
PLOT procedure

ODS table names 669
PLS procedure

OSD table names 714
PNG format 123
pointers

past end of line 84
POSTHTML= style attribute 525
POSTIMAGE= style attribute 525
PostScript files

tags for Acrobat Distiller 227
PostScript output 229, 240

sample 18
POSTTEXT= style attribute 525
POWER procedure

ODS table names 715
PPHREG procedure

ODS table names 713
PREFORMATTED column attribute 608
PREFORMATTED header attribute 631
PREHTML= style attribute 525
PREIMAGE= style attribute 525
PRE_MERGE column attribute 608
PREPEND option

ODS PATH statement 207
PATH statement (TEMPLATE) 417

PRE_SPACE= column attribute 609
PRETEXT= style attribute 526
PRINCOMP procedure

ODS table names 715
PRINQUAL procedure

ODS table names 716
PRINT argument

FILE PRINT ODS statement 68
PRINT column attribute 609
PRINT header attribute 631
PRINT procedure

style definitions with 31
PRINTER destination 27, 218

closing 219, 231
excluding output objects 219
opening 231
output for 234
selecting output objects 219
writing selection/exclusion lists to log 219

printer drivers
ODS PRINTER statement 225

PRINTER= option
ODS PRINTER statement 228

PRINT_FOOTERS table attribute 648
PRINT_HEADERS column attribute 609
PRINT_HEADERS table attribute 648

Index 949

PROBIT procedure
ODS table names 716

PROC DOCUMENT statement 337
PROC TEMPLATE statement

style definitions 488
template stores 409

procedure labels 238
procedure statements 62
procedures

creating data sets from output objects 191
editing table definitions 754
ODS documents and Base procedures 366
ODS table names, Base SAS 662
ODS table names, SAS/ETS 729
ODS table names, SAS/STAT 671
style definitions with 30
title in output 238

Properties window 372
PROTECTSPECIALCHARACTERS= style attribute 526
PS destination 240

closing 241
opening 241

PS format 123
PS option

ODS PRINTER statement 229
PURE_STYLE= event attribute 803
PUT statement

ODS 41, 82
TEMPLATE procedure 815

PUTL statement
TEMPLATE procedure 816

PUTLOG statement
TEMPLATE procedure 818

PUTQ statement
TEMPLATE procedure 819

PUTSTREAM statement
TEMPLATE procedure 820

PUTVARS statement
TEMPLATE procedure 821

PYX tagset 282

Q
quotation marks

in event variables 819
in style variables 819

R
RAM model 674
RAW function 104
RECORD_SEPARATOR= option

ODS MARKUP statement 163
ODS RTF statement 252

references
See HTML references

REG procedure
ODS table names 717

REGISTERED_TM= tagset attribute 800
registry

changing default HTML version setting 32
changing ODS destination default settings 33
ODS and 32

REMOVE option
ODS PATH statement 207
PATH statement (TEMPLATE) 417

RENAME TO statement
DOCUMENT procedure 357

REPEAT header attribute 631
replay

definition 335
REPLAY statement

DOCUMENT procedure 357
replaying graphics 358
REPORT procedure

ODS table names 670
style definitions with 31

REQUIRED_SPACE= table attribute 648
RESET option

ODS GRAPHICS statement 121
ODS GRAPHICS statement 121

Results window 370
tracking ODS output 242
viewing entries 370
vs. Documents window 371

ROBUSTREG procedure
ODS table names 719

root file location
definition 335

RSREG procedure
ODS table names 721

RTF destination 28, 243
closing 243, 255, 287
excluding output objects 243
managing 287
opening 255, 287
selecting output objects 243
writing selection/exclusion lists to log 243

RTF files
creating 250
record separator 252
style definitions 254
time and date of SAS program 253

RTF output 243, 255, 293, 592
footnotes 249, 250
graphics 255
inserting text 254
page breaks 253
sample 19
splitting tables at page breaks 250
titles 249
translation tables 255

RULES= style attribute 526

S
SAS/ETS procedures

ODS table names 729
SAS Explorer window

list of available styles 30, 284
SAS formatted destinations 24, 25
SAS formatted statements 62
SAS/STAT procedures

ODS table names 671
SASDATE option

ODS RTF statement 253
SASEDOC argument

LIBNAME statement 78
SASEDOC engine

LIBNAME statement with 78
SCALE option

ODS GRAPHICS statement 122

950 Index

ODS GRAPHICS statement 122
SELECT action

ODS DOCUMENT statement 95
ODS LISTING statement 144
ODS MARKUP statement 147
ODS PRINTER statement 219
ODS RTF statement 243

selection lists 34
destinations for output objects 35
multiple procedure steps with 267
OUTPUT destination 184
writing to log 277

SELF option
STYLE statement (TEMPLATE) 494

SEPARATOR= column attribute 609
sequence numbers 366
SET statement

TEMPLATE procedure 823
SETLABEL statement

DOCUMENT procedure 359
SGE= option

ODS LISTING statement 146
SHORT_MAP tagset 283
SHOW action

ODS DOCUMENT statement 95
ODS LISTING statement 144
ODS MARKUP statement 147
ODS OUTPUT statement 184
ODS PRINTER statement 219
ODS RTF statement 243

SHOW argument
ODS OUTPUT statement 187

SIGMA function 104
SIMLIN procedure

ODS table names 738
smoothing graphics 118
SORT= option

LIST statement (TEMPLATE) 411
source code

template store definitions 418
writing to log 418

SOURCE statement
TEMPLATE procedure 418

SPACE= column attribute 609
SPACE= header attribute 631
SPECTRA procedure

ODS table names 738
SPILL_ADJ header attribute 632
SPILL_MARGIN header attribute 632
SPLIT= header attribute 632
SPLIT= tagset attribute 800
SPLIT_STACK table attribute 648
SQL procedure

list of available styles 30
ODS table names 670

STACKED_COLUMNS= tagset attribute 800, 861
START= header attribute 632
START option

TRIGGER statement (TEMPLATE) 827
STARTCOLOR= style attribute 527
STARTPAGE= option

ODS PRINTER statement 229
ODS RTF statement 253

STATESPACE procedure
ODS table names 738

STATIC option
ODS GRAPHICS statement 119

STATS= option
LIST statement (TEMPLATE) 412

STDIZE procedure
ODS table names 721

STEPDISC procedure
ODS table names 721

STOP statement
TEMPLATE procedure 827

STORE= option
DEFINE COLUMN statement (TEMPLATE) 598
DEFINE CROSSTABS statement (TEMPLATE) 435
DEFINE HEADER statement (TEMPLATE) 617, 625
DEFINE STYLE statements (TEMPLATE) 489
DEFINE TABLE statement (TEMPLATE) 640
DEFINE TAGSET statement (TEMPLATE) 795
EDIT statement (TEMPLATE) 596
LINK statement (TEMPLATE) 410
LIST statement (TEMPLATE) 412
SOURCE statement (TEMPLATE) 418
TEST statement (TEMPLATE) 422

stream variables
definition 840
writing to output file 821

streams
closing 805
creating 814
deleting 806
opening 814
writing buffered output to 811
writing contents to output file 820

style attributes 28
color 532
data values 532
definition 29
dimension 533
font definition 534
format 535
reference 535
table of 497
values of 496

STYLE= column attribute 610
style definition attributes 492
style definitions 536

creating 488
creating stand-alone 549, 574
creating with TEMPLATE procedure 485
creating with user-defined attributes 555
definition of 29, 402
ending 496
HTML 486, 487, 536
importing CSS information into 491
information about 492
markup languages default 536
modifying 397
ODS MARKUP statement 164
ODS PRINTER statement 230
procedures with 30
RTF files 254
SAS-supplied 30
verifying values 326
viewing contents of 536

style elements
column cells 445, 612
creating 493

Index 951

creating from like-named style element 490
definition 29, 402
inheritances of 903
modifying 537
setting 775, 780
table cells 650

STYLE= event attribute 803
STYLE function 104
STYLE= header attribute 633
STYLE= option

ODS MARKUP statement 164
ODS PRINTER statement 230
ODS RTF statement 254

style sheets
cascading 135
including in events 861

STYLE statement
TEMPLATE procedure 493

STYLE= table attribute 648
style variables

definition 839
quotes in 819

STYLE_DISPLAY tagset 283
STYLE_POPUP tagset 284
STYLESHEET= option

ODS MARKUP statement 164
SUB function 105
SUBJECT= option

ODS PRINTER statement 230
subtitles 354
SUMMARY procedure

ODS table names 669
SUPER function 105
SURVEYFREQ procedure

ODS table names 722
SURVEYLOGISTIC procedure

ODS table names 723
SURVEYMEANS procedure

ODS table names 724
SURVEYREG procedure

ODS table names 725
SURVEYSELECT procedure

ODS table names 726
symbolic links

to/from output objects 345
SYSLIN procedure

ODS table names 739

T
table attributes 640

definition 29
table columns

formatting 753
justification 752

table definitions 592
attributes 640
binding data components to 68
creating 594, 639, 767
creating definitions inside of 654
definition of 29, 402
editing 594, 595, 754
editing vs. creating 594
ending 441, 449, 457, 623,,
modifying 396
reports with default definition 41

specifying 73
user-defined templates 53
verifying values 326
viewing contents 751

table elements
definition 29, 402

table footers 624
table headers 624
table of contents

ODS PRINTER statement 223, 227
tables

cell styles 650
column justification 752
notes about 441, 448, 620, 637,
splitting at page breaks 250
uniformity across pages 231

tabular output 88, 591
examples 754
modifying 754
TEMPLATE procedure 751

TABULATE procedure
ODS table names 670
style definitions with 31

tag attributes
for dynamic graphics 150

TAGATTR= style attribute 527
tagset attributes 796
tagset definitions

creating 794
definition of 403
ending 831
events and 837
inheriting events in 841
notes about 831
STACKED_COLUMNS attribute in 861
viewing contents 837

TAGSET= option
ODS MARKUP statement 165

tagset statement 278
TAGSET.RTF output

graphics 294
tagsets 27, 793

CHTML 281
creating 398, 841, 853
creating by copying source 848
creating through inheritance 844
creating with TEMPLATE procedure 793
CSV 281
CSVALL 281
CSVBYLINE 281
defining 844
defining with EVENT_MAP tagset 841
defining with functions 844
DOCBOOK 282
EVENT_MAP 283, 841
HTML 125
HTML4 282
HTMLCSS 282
IMODE 282
keyword values for 165
keywords as ODS destinations 168
list of 22
listing names 836
MVSHTML 282
NAMEDHTML 283
names as ODS destinations 176

952 Index

PHTML 282
PYX 282
SHORT_MAP 283
specifying names 837
statement 278
STYLE_DISPLAY 283
STYLE_POPUP 284
TEXT_MAP 284
TPL_STYLE_LIST 284
TPL_STYLE_MAP 284
two-level names as ODS destinations 168
user-defined 283
variables and 838
WML 283
WMLOLIST 283
XML 281

template-based graphics 117
TEMPLATE= option

ODS PACKAGE statement 201
TEMPLATE procedure 405

creating style definitions 485
creating tagsets 398, 793
definition statements 591
examples 549
introduction 395
list of available styles 30, 285
locations for definitions 206
managing template stores 408
markup languages and 836
modifying style definitions 397
modifying table definitions 396
search order for definitions 206
statements by category 403
style definitions 536
syntax 405
syntax for crosstab output 433
syntax for style definitions 488
syntax for tabular output 595
syntax for template stores 408
tabular output 591, 751
task tables 403, 405, 408
template stores 422
terminology 402
user-defined table definition template 53

template store definitions
contents of 422
deleting 409
linking to 410
listing 424, 425
testing 422
viewing contents of 422
viewing source of 426
writing source code to log 418

template stores 407, 422
definition 402
listing definitions in 424, 425
listing items in 411
managing 408

TEMPLATE= suboption
FILE PRINT ODS statement 73

TEST statement
TEMPLATE procedure 422

text
inserting into ODS output 313

TEXT= option
ODS MARKUP statement 155

ODS PRINTER statement 230
ODS RTF statement 254

TEXT statement
TEMPLATE procedure 454, 637

text strings
creating in current file location 350

TEXT2 statement
TEMPLATE procedure 638

TEXT3 statement
TEMPLATE procedure 638

TEXTALIGN= style attribute 527
TEXTDECORATION= style attribute 529
TEXTINDENT= style attribute 529
TEXTJUSTIFY= style attribute 530
TEXT_MAP tagset 284
TEXT_SPLIT= column attribute 611
third-party formatted destinations 26

definition 24
formatting control and 28

third-party formatted statements 62
THISPAGE function 106
TIMEPLOT procedure

ODS table names 670
TIMESERIES procedure

ODS table names 741
TIPMAX= option

ODS GRAPHICS statement 122
TITLE= option

ODS PRINTER statement 231
ODS RTF statement 254

titles
customizing 359
in file metadata 231, 254
in graphics output 158
ODS documents 356
procedure titles in output 238
RTF output 249

TOC_DATA= option
ODS RTF statement 254

TOCENTRYINDENT function 106
TOCENTRYPAGE function 106
TOP_SPACE= table attribute 649
TPL_STYLE_LIST tagset 284
TPL_STYLE_MAP tagset 284
TPSPLINE procedure

ODS table names 726
trace records 317, 318
TRADEMARK= tagset attribute 800
trailing @

PUT _ODS_ statement 82
TRANSLATE-INTO statement, TEMPLATE procedure

column definitions 620
table definitions 659

translating numeric values 659
translating values 620
translation tables

ODS MARKUP statement 165
RTF output 255

TRANSPARENCY= style attribute 530
TRANSREG procedure

ODS table names 726
TRANTAB= option

ODS MARKUP statement 165
ODS RTF statement 255

TREE procedure
ODS table names 728

Index 953

TRIGGER statement
TEMPLATE procedure 827
TEMPLATE procedure 855

TRUNCATE header attribute 634
TTEST procedure

ODS table names 728
TYPE= table attribute 649

U
UNBLOCK statement

TEMPLATE procedure 828
UNDERLINE column attribute 611
UNDERLINE header attribute 634
UNDERLINE table attribute 649
UNHIDE statement

DOCUMENT procedure 359
UNICODE function 106
Unicode symbols 99
UNIFORM option

ODS PRINTER statement 231
UNIVARIATE procedure

ODS table names 671
UNIX

printing output directly to printer 232
UNSET statement

TEMPLATE procedure 828
URL= option

ODS LISTING statement 146
URL= style attribute 530
USE_FORMAT_DEFAULTS table attribute 649
USE_NAME table attribute 650
user-defined tagsets 283
user-defined variables 839

deleting 828
specifying 823

V
VARCLUS procedure

ODS table names 728
VARCOMP procedure

ODS table names 729
variables

event variables 831
tagsets and 838

VARIABLES= suboption
FILE PRINT ODS statement 73

VARMAX procedure
ODS table names 741

VARNAME= column attribute 611

VERTICALALIGN= style attribute 530

VISITEDLINKCOLOR= style attribute 531

VJUST= column attribute 611

VJUST= header attribute 634

VMS

printing output directly to printer 232

W
WAP (Wireless Application Protocol) 327

WATERMARK= style attribute 531

WHERE expressions

DOCUMENT procedure with 361

WIDTH= column attribute 611

WIDTH= header attribute 635

WIDTH= option

ODS GRAPHICS statement 122

WIDTH= style attribute 531

WIDTH_MAX= column attribute 612

Windows

ODS PRINTER statement with 233

printing output directly to printer 232

Wireless Application Protocol (WAP) 327

Wireless Markup Language DTD 327

WML destination 327

WML tagset 283

WMLOLIST tagset 283

WRAP table attribute 650

WRAP_SPACE table attribute 650

X
X11 procedure

ODS table names 745

X12 procedure

ODS table names 749

XDENT statement

TEMPLATE procedure 830

XML files

creating 169

creating, with DTD 172

XML output

DocBook DTD 91

sample 20

XML tagset 281

Z
z/OS

printing output directly to printer 232

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	What’s New
	Overview
	New Features and Enhancements for ODS Statements
	New Features and Enhancements for the DOCUMENT Procedure
	New Features and Enhancements for the TEMPLATE Procedure
	Improved ODS Statistical Graphics
	New ODS Support for SAS/GRAPH
	New PDF Security
	New Scalable Vector Graphics and Fonts
	Query Open ODS Destinations

	Introduction
	Getting Started with the Output Delivery System
	Welcome to the Output Delivery System
	Accessibility Features in ODS
	A Quick Start to Using ODS
	The Purpose of These Examples
	Creating Listing Output
	Creating Output in HTML Format
	Producing Output in Multiple Formats at the Same Time

	Where to Go from Here

	Concepts
	Output Delivery System: Basic Concepts
	Introduction to the Output Delivery System
	Gallery of ODS Samples
	Introduction to the ODS Samples
	Listing Output
	PostScript Output
	HTML Output
	RTF Output
	PDF Output
	XML Output
	Excel Output

	Overview of How ODS Works
	Components of SAS Output
	Features of ODS

	Understanding ODS Destinations
	Overview of ODS Destination Categories
	Definition of Destination-Independent Input
	The SAS Formatted Destinations
	The Third-Party Formatted Destinations
	Controlling the Formatting Features of Third-Party Formats
	ODS Destinations and System Resources

	Understanding Table Templates, Table Elements, and Table Attributes
	Understanding Styles, Style Elements, and Style Attributes
	Styles That Are Shipped with SAS Software
	Using Styles with Base SAS Procedures

	Understanding Item Stores, Template Stores, and Directories
	Changing SAS Registry Settings for ODS
	Overview of ODS and the SAS Registry
	Changing Your Default HTML Version Setting
	Changing ODS Destination Default Settings

	Customized ODS Output
	SAS Output
	Selection and Exclusion Lists
	How ODS Determines the Destinations for an Output Object
	Customized Output for an Output Object
	Customizing Titles and Footnotes
	Securing ODS Generated PDF Files

	Summary of ODS

	Output Delivery System and the DATA Step
	Using ODS with the DATA Step
	How ODS Works with the DATA Step
	Syntax for ODS Enhanced Features in a DATA Step
	Examples
	Example 1: Creating a Report with the DATA Step and the Default Table Definition
	Example 2: Producing ODS Output That Contains Selected Variables
	Example 3: Assigning Attributes to Columns in ODS Output
	Example 4: Creating and Using a User-Defined Table Definition Template

	ODS Language Statements
	Introduction to ODS Language Statements
	Definition of ODS Statements
	Types of ODS Statements
	DATA Step Statements
	Global Statements
	Procedure Statements

	ODS Statement Category Descriptions
	ODS Statements by Category

	Dictionary of ODS Language Statements
	The DOCUMENT Procedure
	Overview: DOCUMENT Procedure
	Using the DOCUMENT Procedure
	DOCUMENT Procedure Terminology

	Syntax: DOCUMENT Procedure
	Concepts: DOCUMENT Procedure
	About ODS Documents
	Understanding an ODS Document Path
	Understanding Sequence Numbers
	ODS Documents and Base SAS Procedures
	Getting Familiar with Output Objects
	Understanding How ODS Documents Interact across Operating Environments

	Results: DOCUMENT Procedure
	ODS Documents in the Documents Window
	ODS Documents in the Results Window
	Comparisons between the Documents Window and the Results Window
	Viewing the Properties of an Entry
	Creating Shortcuts in the Documents Window
	Comparisons between the Documents Window and the Document Procedure

	Examples: DOCUMENT Procedure

	The TEMPLATE Procedure
	TEMPLATE Procedure: Overview
	Introduction to the TEMPLATE Procedure
	Using the TEMPLATE Procedure
	What Can You Do with the TEMPLATE Procedure?
	The Backward Compatibility of ODS Templates

	Terminology: TEMPLATE Procedure
	PROC TEMPLATE Statements by Category
	Syntax: TEMPLATE Procedure
	Where to Go from Here

	TEMPLATE Procedure: Managing Template Stores
	Overview: Template Stores
	What Is a Template Store?
	Why Use the TEMPLATE Procedure to Manage Template Stores?
	Terminology

	Template Store Syntax: TEMPLATE Procedure
	Concepts: Template Stores and the TEMPLATE Procedure
	The Contents of Templates That SAS Supplies

	Examples: Managing Template Stores Using the TEMPLATE Procedure

	TEMPLATE Procedure: Creating Crosstabulation Table Templates
	Overview: ODS Crosstabulation Table Template Output
	Using the TEMPLATE Procedure to Create a Customized Crosstabulation Table
	What Can You Do with a Crosstabulation Template?

	Crosstabulation Table Syntax: TEMPLATE Procedure
	DYNAMIC Statement
	FOOTER Statement
	HEADER Statement
	NOTES Statement
	END Statement
	CELLSTYLE AS Statement
	DYNAMIC Statement
	NOTES Statement
	END Statement
	DYNAMIC Statement
	NOTES Statement
	TEXT Statement
	END Statement

	Concepts: Crosstabulation Output and the TEMPLATE Procedure
	Working with the CrossTabFreqs Crosstabulation Table Template
	What Makes the Crosstabulation Table Unique?
	Comparison Between Table Templates and Crosstabulation Table Templates
	Crosstabulation Table Regions and Corresponding Attributes

	Examples: Modifying Crosstabulation Output Using the TEMPLATE Procedure

	TEMPLATE Procedure: Creating ODS Graphics
	Introduction to the Graph Template Language
	STATGRAPH Syntax: TEMPLATE Procedure
	Where to Go from Here

	TEMPLATE Procedure: Creating a Style Template (Definition)
	Overview: ODS Style Templates (Definitions)
	Using the TEMPLATE Procedure to Create a Style
	Terminology
	What You Can Do with a Style

	Style Syntax: TEMPLATE Procedure
	CLASS Statement
	IMPORT Statement
	NOTES Statement
	PARENT= Statement
	REPLACE Statement
	STYLE Statement
	END Statement

	Concepts: Styles and the TEMPLATE Procedure
	Viewing the Contents of a Style
	Working with Styles
	ODS Styles with Graphical Style Information
	Understanding Styles, Style Elements, and Style Attributes
	Understanding Inheritance
	Understanding Style References
	Using the FROM Option
	Inheritance Compatibility across Versions

	Examples: Creating and Modifying Styles Using the TEMPLATE Procedure

	TEMPLATE Procedure: Creating Tabular Output
	Overview: ODS Tabular Output
	Using the TEMPLATE Procedure to Create or Customize Tabular Output
	Terminology
	What You Can Do With a Table Template
	Comparing the Edit of an Existing Table Template with Creating a New Table Template

	Tabular Syntax: TEMPLATE Procedure
	CELLSTYLE AS Statement
	COMPUTE AS Statement
	DEFINE HEADER Statement
	DYNAMIC Statement
	MVAR Statement
	NMVAR Statement
	NOTES Statement
	TRANSLATE INTO Statement
	END Statement
	DYNAMIC Statement
	MVAR Statement
	NMVAR Statement
	NOTES Statement
	TEXT Statement
	TEXT2 Statement
	TEXT3 Statement
	END Statement
	CELLSTYLE–AS Statement
	COLUMN Statement
	DEFINE Statement
	DYNAMIC Statement
	HEADER Statement
	FOOTER Statement
	MVAR Statement
	NMVAR Statement
	NOTES Statement
	TRANSLATE INTO Statement
	END Statement

	Concepts: Tabular Output and the TEMPLATE Procedure
	Viewing the Contents of a Table Template
	Values in Table Columns and How They Are Justified
	Formatting Values in Table Columns

	Examples: Modifying Tabular Output by Using the TEMPLATE Procedure

	TEMPLATE Procedure: Creating Markup Language Tagsets
	Overview: ODS Tagsets and the TEMPLATE PROCEDURE
	Markup Language Syntax: TEMPLATE Procedure
	DEFINE EVENT Statement
	BLOCK Statement
	BREAK Statement
	CLOSE Statement
	CONTINUE Statement
	DELSTREAM Statement
	DO Statement
	DONE Statement
	ELSE Statement
	END Statement
	EVAL Statement
	Event Statement Conditions
	FLUSH Statement
	ITERATE Statement
	NDENT Statement
	NEXT Statement
	OPEN Statement
	PUT Statement
	PUTL Statement
	PUTLOG Statement
	PUTQ Statement
	PUTSTREAM Statement
	PUTVARS Statement
	SET Statement
	STOP Statement
	TRIGGER Statement
	UNBLOCK Statement
	UNSET Statement
	XDENT Statement
	NOTES Statement
	END Statement

	Concepts: Markup Languages and the TEMPLATE Procedure
	Getting Familiar with Tagsets
	Creating Custom Tagsets

	Examples: Creating and Modifying Markup Languages Using the TEMPLATE Procedure

	Appendices
	Example Programs
	Creating the $CNTRY Format
	Creating the Charity Data Set
	Creating the DIVFMT. and USETYPE. Formats
	Creating the Univ ODS Document
	Creating the Employee_Data Data Set
	Creating the Energy Data Set
	Creating the Exprev Data Set
	Creating the Gov Data Set
	Creating the Grain_Production Data Set
	Creating the Iron Data Set
	Creating the Model Data Set
	Creating the Plants Data Set
	Creating the Plant_Stat Data Set
	Creating the StatePop Data Set
	Creating the Table1 Table Definition
	Programs That Illustrate Inheritance
	Using the FROM option
	Inheritance Compatibility Across SAS Versions

	Creating the Nlits Data Set

	ODS and the HTML Destination
	HTML Links and References Produced by the HTML Destination
	What Are Links and References?
	Implementing HTML Links and References
	How ODS Constructs Links and References

	Files Produced by the HTML Destination
	The Body File
	The Contents File
	The Page File
	The Frame File

	ODS HTML Statements for Running Examples in Different Operating Environments
	Using a z/OS UNIX System Services HFS Directory for HTML Output
	Using a z/OS PDSE for EBCDIC HTML Output
	Using a z/OS PDSE for ASCII HTML Output

	ODS Style Elements
	General ODS Style Elements
	Style Elements Affecting Template-Based Graphics
	Style Elements Affecting Device-Based Graphics

	Recommended Reading
	Recommended Reading

	Glossary
	Index

