
SAS® 9.2
National Language Support
(NLS)
Reference Guide

TW11847ColorTitlePage.indd 1 5/14/10 1:44:34 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 National Language Support (NLS): Reference. Cary, NC: SAS Institute Inc.

SAS® 9.2 National Language Support (NLS): Reference Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-712-9
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication can be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
1st printing, March 2009
2nd electronic book, May 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

Documentation Enhancements vii

Internationalization Compatibility for SAS String Functions viii

National Collating Sequences of Alphanumeric Characters viii

Language Switching viii

Locales viii

Encodings ix

Autocall Macros x

Macro Functions x

Formats x

Informats xii

Functions xiv

System Options xiv

P A R T 1 NLS Concepts 1

Chapter 1 � National Language Support (NLS) 3
Overview to National Language Support 3

Definition of Localization and Internationalization 4

Chapter 2 � Locale for NLS 5
Overview of Locale Concepts for NLS 5

Specifying a Locale 6

Chapter 3 � Encoding for NLS 9
Overview: Encoding for NLS 9

Difference between Encoding and Transcoding 12

Character Sets for Encoding in NLS 12

Common Encoding Methods 12

Standards Organizations for NLS Encodings 15

Code Point Discrepancies among EBCDIC Encodings 15

Collating Sequence 16

Determining the Encoding of a SAS Session and a Data Set 20

Default SAS Session Encoding 21

Setting the Encoding of a SAS Session 22

Encoding Behavior in a SAS Session 23

Chapter 4 � Transcoding for NLS 27
Overview to Transcoding 27

Common Reasons for Transcoding 27

Transcoding and Translation Tables 28

iv

SAS Options That Transcode SAS Data 29

Transcoding between Operating Environments 29

Transcoding Considerations 30

Compatible and Incompatible Encodings 31

Preventing Transcoding 32

Chapter 5 � Double-Byte Character Sets (DBCS) 35
Overview to Double-Byte Character Sets (DBCS) 35

East Asian Languages 35

Specifying DBCS 36

Requirements for Displaying DBCS Character Sets 36

When You Can Use DBCS Features 36

DBCS and SAS on a Mainframe 37

SAS Data Conversion between DBCS Encodings 37

Avoiding Problems with Split DBCS Character Strings 38

Avoiding Character Data Truncation by Using the CVP Engine 38

P A R T 2 SAS Language Elements for NLS Data 41

Chapter 6 � Data Set Options for NLS 43
Data Set Options for NLS by Category 43

Chapter 7 � Formats for NLS 47
International Date and Datetime Formats 50

Currency Representation 55

European Currency Conversion 61

Formats for NLS by Category 64

Chapter 8 � Functions for NLS 235
Internationalization Compatibility for SAS String Functions 236

Functions for NLS by Category 252

Chapter 9 � Informats for NLS 301
Informats for NLS by Category 303

Chapter 10 � Autocall Macros for NLS 435
Autocall Macros for NLS by Category 435

Chapter 11 � Macro Functions for NLS 439
Macro Functions for NLS by Category 439

Chapter 12 � System Options for NLS 451
System Options for NLS by Category 451

Chapter 13 � Options for Commands, Statements, and Procedures for NLS 473
Commands, Statements, and Procedures for NLS by Category 473

P A R T 3 Procedures for NLS 503

v

Chapter 14 � The DBCSTAB Procedure 505
Overview: DBCSTAB Procedure 505

Syntax: DBCSTAB Procedure 505

Examples: DBCSTAB Procedure 507

Chapter 15 � The TRANTAB Procedure 511
Overview: TRANTAB Procedure 511

Concepts: TRANTAB Procedure 512

Syntax: TRANTAB Procedure 515

Examples: TRANTAB Procedure 521

P A R T 4 Values for Locale, Encoding, and Transcoding 537

Chapter 16 � Values for the LOCALE= System Option 539
LOCALE= Values and Default Settings for ENCODING, PAPERSIZE, DFLANG, and
DATESTYLE options 539

Chapter 17 � SAS System Options for Processing DBCS Data 547
Overview to System Options Used in a SAS Session for DBCS 547

DBCS Values for a SAS Session 547

Chapter 18 � Encoding Values in SAS Language Elements 549
Overview to SAS Language Elements That Use Encoding Values 549

SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 549

Chapter 19 � Encoding Values for a SAS Session 555
OpenVMS Encoding Values 555

UNIX Encoding Values 555

Windows Encoding Values 556

z/OS Encoding Values 558

P A R T 5 Appendixes 561

Appendix 1 � Additional NLS Language Elements 563
Additional NLS Language Elements 564

Appendix 2 � Recommended Reading 649
Recommended Reading 649

Glossary 651

Index 655

vi

vii

What’s New

Overview
In this release, SAS has expanded the scope and capabilities of National Language

Support (NLS). NLS is a set of features that enable a software product to function
properly in every global market for which the product is targeted. SAS contains NLS
features to ensure that you can write SAS applications that conform to local language
conventions. Typically, software that is written in the English language works well for
users who use the English language and data that is formatted using the conventions
that are observed in the United States. However, without NLS, these products might
not work as well for users in other regions of the world. NLS in SAS enables users in
regions such as Asia and Europe to process data successfully in their native languages
and environments.

This topic describes the changes and enhancements that have been made to the NLS
documentation and features.

� additional autocall macros
� macro functions
� additional encodings
� additional functions and a new directive for selected functions
� additional locales
� additional system options
� formats that now support Arabic and new formats
� documentation enhancements such as revising the collating sequence topic and

moving the EUR language elements to another section
� informats that now support Arabic and new informats
� internationalization compatibility for SAS string functions
� language switching

Documentation Enhancements
� The title of this document was changed for SAS 9.2 NLS. The new title is SAS

National Language Support (NLS): Reference Guide.

viii What’s New

� The Collating Sequences section, which describes the orders in which characters
are sorted, has been revised.

� SAS recommends that users use the NL language elements instead of the EUR
language elements. The EUR language elements are in an appendix titled
Additional Elements.

Internationalization Compatibility for SAS String Functions
The Internationalization Compatibility for SAS String Functions section specifies the

level of internationalization compatibility for SAS string functions.

National Collating Sequences of Alphanumeric Characters
The National Collating Sequences of Alphanumeric Characters table has been

updated to reflect current collating sequences.

Language Switching
The Language Switching section describes how you can view SAS messages in

another language using a Unicode server.

Locales
The following locales have been added in SAS 9.2 NLS. Information on how locales

work in SAS programming is provided in Overview of Locale Concepts for NLS:
� Afrikaans_SouthAfrica
� Albanian_Albania
� Arabic_India
� Arabic_Iraq
� Arabic_Libya
� Arabic_Sudan
� Arabic_Syria
� Arabic_Yemen
� Bengali_India
� Bosnian_BosniaHerzegovina
� Catalan_Spain
� Cornish_UnitedKingdom
� Croatian_BosniaHerzegovina
� English_Belgium
� English_Botswana
� English_Caribbean
� English_Philippines
� English_Zimbabwe

What’s New ix

� Faroese_FaroeIslands
� Greenlandic_Greenland
� Hindi_India
� Indonesian_Indonesia
� Macedonian_Macedonia
� Malay_Malaysia
� Maltese_Malta
� ManxGaelic_UnitedKingdom
� Marathi_India
� NorwegianBokmal_Norway
� NorwegianNynorsk_Norway
� Persian_India
� Persian_Iran
� Russian_Ukraine
� Serbian_BosniaHerzegovina
� Serbian_Montenegro
� Serbian_Serbia
� SerboCroatian_Montenegro
� SerboCroatian_Serbia
� Tamil_India
� Telugu_India

Encodings
In the third maintenance release for SAS 9.2, the SBCS, DBCS, and Unicode

Encoding Values Used to Transcode Data table was updated to reflect current values.
In the third maintenance release for SAS 9.2, the following encodings were removed

from the Double-Byte Encodings for UNIX table:
� Traditional Chinese HP15
� Simplified Chinese PCMS
� Korean PCMS

The following encodings have been added in SAS 9.2 NLS. Information on how
encodings work in SAS programming is provided in Overview of Encoding for NLS:

� e097 - Farsi Bilingual - EBCDIC
� eofa - Farsi Bilingual - EBCDIC
� e137 - Devanagari - EBCDIC
� eoin - Devanagari - EBCDIC
� e153 - EBCDIC Latin 2 Multilingual with euro
� e053 - EBCDIC Latin 2 Multilingual with euro
� e154 - EBCDIC Cyrillic Multilingual with euro
� e054 - EBCDIC Cyrillic Multilingual with euro
� e155 - EBCDIC Turkey with euro
� e055 - EBCDIC Turkey with euro
� e156 - EBCDIC Baltic Multi with euro
� e056 - EBCDIC Baltic Multi with euro

x What’s New

� e157 - EBCDIC Estonia with euro
� e057 - EBCDIC Estonia with euro
� e158 - EBCDIC Cyrillic Ukraine with euro
� e058 - EBCDIC Cyrillic Ukraine with euro
� e905 - Latin 3 - EBCDIC
� e013 - Latin 3 - EBCDIC
� lat8 - ISO 8859/14–latin8
� p806 - PC Indian Script Code (ISCII–91)
� p098 - Farsi - Personal Computer

Autocall Macros
The following SAS 9.2 NLS autocall macros are new:
� %KLOWCASE and %QKLOWCAS
� %KTRIM and %QKTRIM
� %KVERIFY

Macro Functions
The following SAS 9.2 NLS macro functions are new:
� %KINDEX
� %KLEFT and %QKLEFT
� %KLENGTH
� %KSCAN and %QKSCAN
� %KSUBSTR and %QKSUBSTR
� %KUPCASE and %QKUPCASE

Formats

� The following SAS 9.2 NLS formats have been enhanced and now support Arabic:
� $BIDI
� $LOGVS
� $LOGVSR
� $VSLOG
� $VSLOGR

� In the third maintenance release for SAS 9.2, the following formats have been
enhanced to support date-time values:
� NLTIMAP
� NLTIME

� The following numeric formats are new for SAS 9.2 NLS.

NLBEST writes the best numerical notation, based on the locale.

NLSTRMON writes a numeric value as a day-of-the-month in the specified
locale.

What’s New xi

NLSTRQTR writes a numeric value as the quarter-of-the-year in the specified
locale

NLSTRWK writes a numeric value as the day-of-the-week in the specified
locale

NLPVALUE writes p-values of the local expression in the specified locale
� The following date and time formats are new for SAS 9.2 NLS. These formats

write locale-specific dates and times.

NLDATEYQ converts the SAS date value to the date value of the specified
locale, and then writes the date value as the year and the
quarter.

NLDATEYR converts the SAS date value to the date value of the specified
locale, and then writes the date value as the year.

NLDATEYW converts the SAS date value to the date value of the specified
locale, and then writes the date value as the year and the week.

NLDATMDT converts the SAS datetime value to the datetime value of the
specified locale. This format writes the value as the name of
the month, day of the month, and year.

NLDATMMN converts the SAS datetime value to the datetime value of the
specified locale, and then writes the value as the name of the
month.

NLDATMWN converts a SAS datetime value to the datetime value of the
specified locale, and then writes the value as the day of the
week.

NLDATMYQ converts the SAS datetime value to the datetime value of the
specified locale, and then writes the value as the year and the
quarter of the year.

NLDATMYR converts the SAS datetime value to the datetime value of the
specified locale, and then writes the value as the year.

NLDATMYW converts the SAS datetime value to the datetime value of the
specified locale, and then writes the value as the year and the
name of the week.

� The following currency formats are new for SAS 9.2 NLS. These formats write the
international monetary expression.

� NLMNIAUD - Australia
� NLMNICADw.d - Canada
� NLMNICHFw.d - Liechtenstein
� NLMNICNYw.d - China
� NLMNIDKKw.d - Denmark, Faroe Island, and Greenland
� NLMNIEURw.d - Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, Malta, the Netherlands, Portugal, Slovenia, and
Spain

� NLMNIGBPw.d -United Kingdom
� NLMNIILSw.d - Israel
� NLMNIJPYw.d - Japan
� NLMNIKRWw.d - South Korea
� NLMNIMYRw.d - Malaysia

xii What’s New

� NLMNINOKw.d - Norway
� NLMNINZDw.d - New Zealand
� NLMNIPLNw.d - Poland
� NLMNIRUBw.d - Russia
� NLMNISEKw.d - Sweden
� NLMNISGDw.d - Singapore
� NLMNITWDw.d - Thailand
� NLMNIUSDw.d - Puerto Rico, and United States
� NLMNIZARw.d - South Africa

� The following currency formats for SAS 9.2 NLS are new. These formats write the
local monetary expression.

� NLMNLAUDw.d - Australia
� NLMNLCADw.d - Canada
� NLMNLCHFw.d - Liechtenstein
� NLMNLCNYw.d - China
� NLMNLDKKw.d - Denmark, Faroe Island, Greenland
� NLMNLEURw.d - Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, Netherlands, Portugal, and Spain
� NLMNLGPBw.d - United Kingdom
� NLMNLHKDw.d - Hong Kong
� NLMNLILSw.d - Israel
� NLMNLJPYw.d - Japan
� NLMNLKRWw.d - South Korea
� NLMNLMYRw.d - Malaysia
� NLMNLNOKw.d - Norway
� NLMNLNZDw.d - New Zealand
� NLMNLPLNw.d - Poland
� NLMNLRUBw.d - Russia
� NLMNLSEKw.d - Sweden
� NLMNLSGDw.d - Singapore
� NLMNLTWDw.d - Taiwan
� NLMNLUSDw.d - Puerto Rico and the United States
� NLMNLZARw.d - South Africa

Informats

� The following SAS 9.2 NLS informats have been enhanced and now support Arabic:
� $LOGVS
� $LOGVSR
� $VSLOG
� $VSLOGR

� The following currency informats are new for SAS 9.2 NLS. These informats read
the international monetary expression.

What’s New xiii

� NLMNIAUDw.d - Australia
� NLMNICADw.d - Canada
� NLMNICHFw.d - Liechtenstein and Switzerland
� NLMNICNYw.d - China
� NLMNIDKKw.d - Denmark, Faroe Island, and Greenland
� NLMNIEURw.d - Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, Malta, the Netherlands, Portugal, Slovenia, and
Spain

� NLMNIGBPw.d - United Kingdom
� NLMNIHKDw.d - Hong Kong
� NLMNIILSw.d - Israel
� NLMNIJPYw.d - Japan
� NLMNIKRWw.d - South Korea
� NLMNIMYRw.d - Malaysia
� NLMNINOKw.d - Norway
� NLMNINZDw.d - New Zealand
� NLMNIPLNw.d - Poland
� NLMNIRUBw.d - Russia
� NLMNISEKw.d - Sweden
� NLMNISGDw.d - Singapore
� NLMNITWDw.d - Taiwan
� NLMNIUSDw.d - Puerto Rico, and the United States
� NLMNIZARw.d - South Africa

� The following currency informats are new for SAS 9.2 NLS. These informats read
the local monetary expression.

� NLMNLAUDw.d - Australia
� NLMNLCADw.d - Canada
� NLMNLCHFw.d - Liechtenstein and Switzerland
� NLMNLCNYw.d - China
� NLMNLDKKw.d - Denmark, the Faroe Island, and Greenland
� NLMNLEURw.d - Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, Malta, the Netherlands, Portugal, Slovenia, and
Spain

� NLMNLGBPw.d - United Kingdom
� NLMNLHKDw.d - Hong Kong
� NLMNLILSw.d - Israel
� NLMNLJPYw.d - Japan
� NLMNLKRWw.d - South Korea
� NLMNLMYRw.d - Malaysia
� NLMNLNOKw.d - Norway
� NLMNLNZDw.d - New Zealand
� NLMNLPLNw.d - Poland
� NLMNLRUBw.d - Russia
� NLMNLSEKw.d - Sweden
� NLMNLSGDw.d - Singapore

xiv What’s New

� NLMNLTWDw.d - Taiwan

� NLMNLUSDw.d - Puerto Rico and the United States

� NLMNLZARw.d - South Africa

Functions

� The following functions are new for SAS 9.2 NLS:

GETPXLANGUAGEdisplays a transcoding error when illegal data is read from a
remote application

GETPXLOCALE returns the POSIX locale value for a SAS locale

GETPXREGION returns the current, two-letter region code

KPROPCASE converts Chinese, Japanese, Korean, Taiwanese (CJKT)
characters

KPROPCHAR converts special characters to normal characters

KPROPDATA removes or converts unprintable characters

SORTKEY creates a linguistic sort key

UNICODE converts Unicode characters to the current SAS session
encoding

UNICODEC converts characters in the current SAS session encoding to
Unicode characters

UNICODELEN creates a linguistic sort key

UNICODEWIDTH specifies the length of a display unit for the Unicode data

� A new directive, “#”, was added to the following functions:

� NLDATE

� NLDATM

� NLTIME

System Options

In the third maintenance release for SAS 9.2, the NLSCOMPATMODE option has
been modified. A note has been added to the Details section notifying the user that a
warning will be generated when NLSCOMPATMODE is set.

The following system options are new for SAS 9.2 NLS:

BOMFILE
specifies whether to write the Byte Order Mark (BOM) prefix on Unicode-encoded
external files

LOCALELANGCHG
determines whether the language of the text of the ODS output can be changed

RSASIOTRANSERROR
displays a transcoding error when illegal data is read from a remote application

1

P A R T1

NLS Concepts

Chapter 1.National Language Support (NLS) 3

Chapter 2.Locale for NLS 5

Chapter 3.Encoding for NLS 9

Chapter 4.Transcoding for NLS 27

Chapter 5.Double-Byte Character Sets (DBCS) 35

2

3

C H A P T E R

1
National Language Support (NLS)

Overview to National Language Support 3
Definition of Localization and Internationalization 4

Overview to National Language Support
National Language Support (NLS) is a set of features that enable a software product

to function properly in every global market for which the product is targeted. The SAS
System contains NLS features to ensure that SAS applications can be written so that
they conform to local language conventions. Typically, software that is written in the
English language works well for users who use the English language and use data that
is formatted using the conventions that are observed in the United States. However,
without NLS, these products might not work well for users in other regions of the
world. NLS in SAS enables users in regions such as Asia and Europe to process data
successfully in their native languages and environments.

SAS provides NLS for data as well as for code under all operating environments and
hardware, from the mainframe to the personal computer. This support is especially
important to international users who are running applications in a client/server
environment. SAS provides NLS for mainframes while maintaining consistency with
applications that were developed with previous versions of SAS.

NLS is applied to data that is moved between machines; for example, NLS ensures
that the data is converted to the correct format for use on the target machine.

Text-string operations are sensitive to SAS settings for language and region. This
action enables correct results for such operations as uppercasing and lowercasing
characters, classifying characters, and scanning data. SAS provides features to ensure
that national characters, which are characters specific to a particular nation or group of
nations, display and print properly.

Software applications that incorporate NLS can avoid dependencies on
language-specific or cultural-specific conventions for software features such as:

� character classifications

� character comparison rules

� code sets

� date and time formatting

� interface

� message-text language

� numeric and monetary formatting

� sort order

4 Definition of Localization and Internationalization � Chapter 1

Definition of Localization and Internationalization

Localization is the process of adapting a product to meet the language, cultural, and
other requirements of a specific target environment or market so that users can use
their own languages and conventions when using the product. Translation of the user
interface, system messages, and documentation is part of localization.

Internationalization is the process of designing a software application without
making assumptions that are based on a single language or locale. One goal of
internationalization is to ensure that international conventions, including rules for
sorting strings and for formatting dates, times, numbers, and currencies, are supported.
Another goal is to design the product to have a consistent look, feel, and functionality
across different language editions.

Although the application logic might support cultural conventions (for example, the
monetary and numeric formats of a particular region), only a localized version of the
software presents user interfaces and system messages in the local language.

SAS NLS features are available for localizing and internationalizing your SAS
applications.

5

C H A P T E R

2
Locale for NLS

Overview of Locale Concepts for NLS 5
Specifying a Locale 6

How Locale Is Specified at SAS Invocation 6

How Locale Is Specified During a SAS Session 7

Language Switching 7

Overview of Locale Concepts for NLS

A locale reflects the language, local conventions such as data formatting, and culture
for a geographical region. Local conventions might include specific formatting rules for
dates, times, and numbers and a currency symbol for the country or region. Collating
sequence, paper size, postal addresses, and telephone numbers can also be included in
locale.

Dates have many representations, depending on the conventions that are accepted in
a culture. The month might be represented as a number or as a name. The name might
be fully spelled or abbreviated. The order of the month, day, and year might differ
according to locale.

For example, “the third day of October in the year 2002” would be displayed in a
different way for each of these locales:

Bulgaria 2002–X-3

Canada 02–10–03

Germany 03–10–02

Italy 3/10/02

United States 10/03/02

Time can be represented in one English-speaking country or region by using the
12-hour notation, while other English speakers expect time values to be formatted
using the 24-hour notation.

Language is part of a locale, but is not unique to any one locale. For example,
Portuguese is spoken in Brazil as well as in Portugal, but the cultures are different. In
Brazil and in Portugal, there are similarities in the formatting of data. Numbers are
formatted using a comma (,) to separate integers from fractional values and a dot (.) to
separate groups of digits to the left of the radix character. However, there are
important differences, such as the currency symbols that are used in the two different
locales. Portugal uses the Euro and requires the Euro symbol (), while Brazil uses the
Real which is represented by the two-character currency symbol R$.

6 Specifying a Locale � Chapter 2

Additionally, a country might have more than one official language. Canada has two
official languages: English and French; two values can be specified for the LOCALE=
system option: English_Canada and French_Canada.

Numbers, including currency, can have different representations. For example, the
decimal separator, or radix character, is a dot (.) in some regions and a comma (,) in
others, while the thousands separator can be a dot, comma, or even a space. Monetary
conventions likewise vary between locales; for example, a dollar sign or a yen sign
might be attached to a monetary value.

Paper size and measurement are also locale considerations. Standard paper sizes
include letter (8-1/2-by-11-inch paper) and A4 (210-by-297-millimeter paper). The letter
paper size is mainly used by some English-speaking countries; A4 is used by most other
locales. While most locales use centimeters, some locales use inches.

Specifying a Locale

How Locale Is Specified at SAS Invocation
You can use the LOCALE= system option to specify the locale of the SAS session at

SAS invocation. LOCALE= also implicitly sets the following SAS system options:

� DATESTYLE=
� DFLANG=
� ENCODING=
� PAPERSIZE=
� TRANTAB=

Windows example:

sas9 -locale English_UnitedStates

Note: Locale can also be specified using POSIX naming standards. For example,
en_US is the POSIX equivalent for the SAS value English_UnitedStates. �

Default values for the LOCALE= option are the same under each operating
environment. For details, see Chapter 16, “Values for the LOCALE= System Option,”
on page 539.

The English_UnitedStates value for LOCALE= causes the following options to be
implicitly set to the specified default values SAS invocation:

� DATESTYLE=MDY
� DFLANG=English
� ENCODING=wlatin1
� PAPERSIZE=Letter
� TRANTAB=(lat1lat1, lat1lat1,wlt1_ucs,wlt1_lcs,wlt1_ccl,,,)

At invocation, an explicitly set system option will override any implicitly set option.
Windows example:

sas9 - papersize=A4;

At invocation, the explicit setting PAPERSIZE=A4 will override an implicit setting of
the PAPERSIZE= option via the LOCALE= option. For details, see “DATESTYLE=
System Option” on page 453.

Locale for NLS � Language Switching 7

How Locale Is Specified During a SAS Session
You can use the LOCALE= system option to specify the locale of the SAS session

during the SAS session. However, only the values for these system options will change
implicitly to reflect the changed value of LOCALE=:

� DATESTYLE=
� DFLANG=
� PAPERSIZE=

The values for these system options will not change implicitly to reflect the changed
value of LOCALE=:

� ENCODING=
� TRANTAB=

Note: ENCODING= cannot be reset during a SAS session. It can be set only at
invocation. �

Note: For more details about the differences between the LOCALE= and
ENCODING= options, see “Setting the Encoding of a SAS Session” on page 22 �

Windows example:

options locale=Italian_Ialy;

The Italian_Italy value that is assigned to the LOCALE= option causes the following
options to be implicitly reset during the SAS session to reflect the changed value of the
LOCALE= system option:

� DATESTYLE=DMY
� DFLANG=Italian
� PAPERSIZE=A4

The values for the ENCODING= and TRANTAB= options will not be reset; their
former values will be retained.

For details about these system options, see “DATESTYLE= System Option” on page
453.

Language Switching
SAS messages are displayed in the language that is specified by the settings in the

SAS configuration file during startup. In the Unicode server, you can view SAS
messages in another language by using the Language Switching feature. You can access
the Language Switching feature with the LOCALELANGCHG system option. If
LOCALELANGCHG is enabled, then the value of the LOCALE system option
determines the language for procedure output, user interface elements and ODS fonts.
If LOCALELANGCHG is disabled, then messages will appear in the language that is
set during startup. This feature is supported in the Unicode server. For more
information, see the “LOCALELANGCHG System Option” on page 464.

8

9

C H A P T E R

3
Encoding for NLS

Overview: Encoding for NLS 9
Difference between Encoding and Transcoding 12

Character Sets for Encoding in NLS 12

Common Encoding Methods 12

Standards Organizations for NLS Encodings 15

Code Point Discrepancies among EBCDIC Encodings 15
Collating Sequence 16

Overview to Collating Sequence 16

Request Alternate Collating Sequence 17

Specifying a Translation Table 18

Specifying an Encoding Value 18

Specifying Linguistic Collation 19
Determining the Encoding of a SAS Session and a Data Set 20

Encoding of a SAS Session 20

Encoding of a SAS Data Set 21

Default SAS Session Encoding 21

Setting the Encoding of a SAS Session 22
Encoding Behavior in a SAS Session 23

Encoding Support for Data Sets by SAS Release 23

z/OS: Ensuring Compatibility with Previous SAS Releases 24

Output Processing 24

Input Processing 25
Reading and Writing External Files 25

Overview: Encoding for NLS
An encoding maps each character in a character set to a unique numeric

representation, which results in a table of all code points. This table is referred to as a
code page, which is an ordered set of characters in which a numeric index (code point
value) is associated with each character. The position of a character on the code page
determines its two-digit hexadecimal number.

For example, the following is the code page for the Windows Latin1 encoding. In the
following example, the row determines the first digit and the column determines the
second digit. The numeric representation for the uppercase A is the hexadecimal
number 41, and the numeric representation for the equal sign (=) is the hexadecimal
number 3D.

10 Overview: Encoding for NLS � Chapter 3

Figure 3.1 Windows Latin1 Code Page

A character set is the set of characters and symbols that are used by a language or
group of languages. A character set includes national characters (which are characters
specific to a particular nation or group of nations), special characters (such as
punctuation marks), the unaccented Latin characters A–Z, the digits 0–9, and control
characters that are needed by the computer.

An encoding method is a set of rules that assign the numeric representations to the
set of characters. These rules govern the size of the encoding (number of bits used to
store the numeric representation of the character) and the ranges in the code page
where characters appear. The encoding methods result from the adherence to standards
that have been developed in the computing industry. An encoding method is often
specific to the computer hardware vendor.

An encoding results from applying an encoding method to a character set.
An individual character can occupy a different position in a code page, depending on

the code page used. For example, the German uppercase letter Ä:

Encoding for NLS � Overview: Encoding for NLS 11

� is represented as the hexadecimal number C4 in the Windows Latin1 code page
(1252)

� is represented as the hexadecimal number 4A in the German EBCDIC code page
(1141)

In the following code page example, German is the character set and EBCDIC is the
encoding method.

In the following example, the column determines the first digit and the row
determines the second digit.

Figure 3.2 German EBCDIC Code Page

Each SAS session is set to a default encoding, which can be specified by using
various SAS language elements.

12 Difference between Encoding and Transcoding � Chapter 3

Difference between Encoding and Transcoding
Encoding establishes the default working environment for your SAS session. For

example, the Windows Latin1 encoding is the default encoding for a SAS session under
Windows in a Western European locale such as the de_DE locale for German in
Germany. As an example, the Windows Latin1 code point for the uppercase letter Ä is
C4 hexadecimal.

Note: The default encoding varies according to the operating environment and the
locale. �

However, if you are working in an international environment (for example, you
access SAS data that is encoded in German EBCDIC), the German EBCDIC code point
for the uppercase letter Ä is 4A hexadecimal. In order for a version of SAS that
normally uses Windows Latin1 to properly interpret a data set that is encoded in
German EBCDIC, the data must be transcoded. Transcoding is the process of
converting data from one encoding to another. When SAS transcodes the Windows
Latin1 uppercase letter Ä to the German EBCDIC uppercase letter Ä, the hexadecimal
representation for the character is converted from the value C4 to a 4A. For conceptual
information, see Chapter 4, “Transcoding for NLS,” on page 27.

Character Sets for Encoding in NLS
Encodings are available to address the requirements of the character set (few

languages use the same 26 characters, A through Z as English). All languages are
represented using either of the following classes of character sets:

SBCS (Single-Byte Character Set)
represents each character in a single (one) byte. A single-byte character set can be
either 7 bits (providing up to 128 characters) or 8 bits (providing up to 256
characters). An example of an 8-bit SBCS is the ISO 8859-5 (Cyrillic) character set
(represents the Russian characters).

For details about how SAS uses SBCS encodings, see Chapter 18, “Encoding
Values in SAS Language Elements,” on page 549.

DBCS (Double-Byte Character Set)
refers to the East Asian character sets (Japanese, Korean, Simplified Chinese, and
Traditional Chinese), which require a mixed-width encoding because most
characters consist of more than one byte. Although the term DBCS (Double-Byte
Character Set) is more commonly used than MBCS (Multi-Byte Character Set),
MBCS is more accurate. Some, but not all characters in an East Asian character
set do require more than one byte.

For details about how SAS uses DBCS encodings, see Chapter 17, “SAS System
Options for Processing DBCS Data,” on page 547.

MBCS (Multi-Byte Character Set)
is used as a synonym for DBCS.

Common Encoding Methods
The encoding methods result from standards developed by various computer

hardware manufacturers and standards organizations. For more information, see

Encoding for NLS � Common Encoding Methods 13

“Standards Organizations for NLS Encodings” on page 15. The common encoding
methods are listed here:

ASCII (American Standard Code for Information Interchange)
is a 7-bit encoding for the United States that provides 128 character combinations.
The encoding contains characters for uppercase and lowercase English, American
English punctuation, base 10 numbers, and a few control characters. This set of
128 characters is common to most other encodings. ASCII is used by personal
computers.

EBCDIC (Extended Binary Coded Decimal Interchange Code) family
is an 8-bit encoding that provides 256 character combinations. There are multiple
EBCDIC-based encodings. EBCDIC is used on IBM mainframes and most IBM
mid-range computers. EBCDIC follows ISO 646 conventions to facilitate
translations between EBCDIC encodings and 7-bit (and 8-bit) ASCII-based
encodings. The 95 EBCDIC graphical characters include 82 invariant characters
(including a blank space), which occupy the same code positions across most
EBCDIC single-byte code pages, and also includes 13 variant graphic characters,
which occupy varying code positions across most EBCDIC single-byte code pages.
For details about variant characters, see “Code Point Discrepancies among
EBCDIC Encodings” on page 15.

ISO (International Organization for Standardization) 646 family
is a 7-bit encoding that is an international standard and provides 128 character
combinations. The ISO 646 family of encodings is similar to ASCII except that it
has 12 code points for national variants. The 12 national variants represent
specific characters that are needed for a particular language.

ISO 8859 family and Windows family
is an 8-bit extension of ASCII that supports all of the ASCII code points and adds
12 more, providing 256 character combinations. Latin1, which is officially named
ISO-8859-1, is the most frequently used member of the ISO 8859 family of
encodings. In addition to the ASCII characters, Latin1 contains accented
characters, other letters needed for languages of Western Europe, and some
special characters. HTTP and HTML protocols are based on Unicode.

Unicode
provides up to 99,024 character combinations. Unicode can accommodate basically
all of the world’s languages.

There are three Unicode encoding forms:

UTF-8
is an MBCS encoding that contains the Latin-script languages, Greek,
Cyrillic, Arabic, and Hebrew, and East Asian languages such as Japanese,
Chinese and Korean. The characters in UTF-8 are of varying width, from one
to four bytes. UTF-8 maintains ASCII compatibility by preserving the ASCII
characters in code positions 1 through 128.

UTF-16
is a 16-bit form that contains all of the most common characters in all
modern writing systems. Most of the characters are uniformly represented
with two bytes, although there is extended space, called surrogate space, for
additional characters that require four bytes.

UTF-32
is a 32-bit form whose characters each occupy 4 bytes.

Other encodings
The ISO 8859 family has other members that are designed for other languages.
The following table describes the other encodings that are approved by ISO.

14 Common Encoding Methods � Chapter 3

Table 3.1 Other Encodings Approved by ISO

ISO Standard Name of Encoding Description

ISO 8859-1 Latin 1 US and West European

ISO 8859-2 Latin 2 Central and East European

ISO 8859-3 Latin 3 South European, Maltese
and Esperanto

ISO 8859-4 Baltic North European

ISO 8859-5 Cyrillic Slavic languages

ISO 8859-6 Arabic Arabic

ISO 8859-7 Greek Modern Greek

ISO 8859-8 Hebrew Hebrew and Yiddish

ISO 8859-9 Turkish Turkish

ISO 8859-10 Latin 6 Nordic (Inuit, Sámi,
Icelandic)

ISO 8859-11 Latin/Thai Thai

ISO 8859-13 Latin 7 Baltic Rim

ISO 8859-14 Latin 8 Celtic

ISO 8859-15 Latin 9 West European and Albanian

Additionally, a number of encoding standards have been developed for East
Asian languages, some of which are listed in the following table.

Table 3.2 Some East Asian Language Encodings Approved by ISO

Standard Name of Encoding Description

GB 2312-80 Simplified Chinese People’s Republic of China

CNS 11643 Traditional Chinese Taiwan

Big-5 Traditional Chinese Taiwan

KS C 5601 Korean National Standard Korea

JIS Japan Industry Standard Japan

Shift-JIS Japan Industry Standard
multibyte encoding

Japan

There are other encodings in the standards for EBCDIC and Windows that
support different languages and locales.

Encoding for NLS � Code Point Discrepancies among EBCDIC Encodings 15

Standards Organizations for NLS Encodings
Encodings that are supported by SAS are defined by the following standards

organizations:

International Organization for Standardization (ISO)
promotes the development of standardization and related activities to facilitate the
free flow of goods and services between nations and to advocate for the exchange of
intellectual, scientific, and technological information. ISO also establishes
standards for encodings.

American National Standards Institute (ANSI)
coordinates voluntary standards and conformity to those standards in the United
States. ANSI works with ISO to establish global standards.

Unicode Consortium
that develops and promotes the Unicode standard, which provides a unique
number for every character.

Code Point Discrepancies among EBCDIC Encodings
Selected characters do not occupy the same code point locations in code maps for all

EBCDIC encoding methods. For example, the following characters occupy different code
point locations in the respective EBCDIC code maps for U.S. English and German.

Table 3.3 EBCDIC Code Point Discrepancies for Selected Languages

EBCDIC Code
Points

U.S. English Finnish Spanish Austrian/
German

4A ¢ § [Ä

4F | ! | !

5A ! ¤] Ü

5B $ Å $ $

5F ^ ^

6A ¦ ö ñ ö

79 ‘ é ‘ ‘

7B # Ä Ñ #

7C @ Ö @ §

A1 ~ ü ß¨

C0 { ä { ä

D0 } å } ü

E0 \ É \ Ö

These characters are known as variant characters. For example, if a German
mainframe user entered an ä, which occupies code point C0, an American compiler
would interpret code point C0 as a {.

16 Collating Sequence � Chapter 3

Especially important are characters that are commonly used in programming
languages, for example, { and $.

Collating Sequence

Overview to Collating Sequence
The collating sequence is the order in which characters are sorted. For example,

when the SORT procedure is executed, the collating sequence determines the sort order
(higher, lower, or equal to) of a particular character in relation to other characters.

The default collating sequence is binary collation, which sorts characters according to
each character’s location in the code page of the session encoding. (The session encoding
is the default encoding for a SAS session. The default encoding can be specified by
using various SAS language elements.) The sort order corresponds directly to the
arrangement of the code points within the code page. The two single-byte character
encoding methods that data processing uses most widely are ASCII and EBCDIC. The
OpenVMS, UNIX, and Windows operating environments use ASCII encodings; IBM
mainframe computers use EBCDIC encodings.

Binary collation is the fastest type of collation because it is the most efficient for the
computer. However, locating characters within a binary-collated report might be
difficult if you are not familiar with this method. For example, a binary-collated report
lists words beginning with uppercase characters separately from words beginning with
lowercase characters, and words beginning with accented characters after words
beginning with unaccented characters. Therefore, for ASCII-based encodings, the
capital letter Z precedes the lowercase letter a. Similarly, for EBCDIC-based encodings,
the lowercase letter z precedes the capital letter A.

You can request an alternate collating sequence that overrides the binary collation.
To request an alternate collating sequence, specify one of the following sequences:

� a translation table name
� an encoding value
� linguistic collation

Table 3.4 on page 16 illustrates the results of using different collating sequences to
sort a short list of words:

Table 3.4 Results of Different Collating Sequences

Binary Translation Table Encoding Value Linguistic

Aaron aardvark Aaron aardvark

Aztec azimuth Aztec Aaron

Zeus Aaron Zeus azimuth

aardvark Aztec aardvark Aztec

azimuth cote azimuth cote

Encoding for NLS � Request Alternate Collating Sequence 17

Binary Translation Table Encoding Value Linguistic

cote coté cote côte

coté côte coté coté

côte côté côte côté

côté zebra côté zebra

zebra zèbre zebra zèbre

zèbre Zeus zèbre Zeus

The first column shows the results of binary collation on characters that are
represented in an ASCII-based encoding. The alphabetization is not consistent because
of the separate grouping of words that begin with uppercase and lowercase characters.
For example, the word Zeus appears before aardvark because of the code points that are
assigned to the characters within the ASCII-based encoding.

The second column shows the results of specifying a translation table that alternates
the ordering of lowercase and uppercase characters. If you use the translation table,
the word aardvark appears before Zeus. However, the word azimuth appears before
Aaron because the translation table assigns a weight value to the lowercase character a
that is less than the weight value of the uppercase character A. In addition, accents are
sorted from left to right. For example, coté comes before côte.

The third column shows the results of specifying the ASCII-based, double-byte latin1
encoding.

The last column shows the results of linguistic collation for the session locale fr_FR
(French_France), which uses a collation algorithm to alphabetize words. The algorithm
specifies that words beginning with lowercase characters appear before words beginning
with uppercase characters. In addition, this linguistic collation sorts accents from right
to left because of the French locale specification.

SAS has adopted the International Components for Unicode (ICU)to implement
linguistic collation. The ICU and its implementation of the Unicode Collation Algorithm
(UCA) have become a standard. The collating sequence is the default provided by the
ICU for the specified locale.

Request Alternate Collating Sequence
To request an alternate collating sequence, use the following SAS language elements:

� SORTSEQ= option in the PROC SORT statement. See “Collating Sequence
Option” on page 475.

� SORTSEQ= system option. See “SORTSEQ= System Option: UNIX, Windows, and
z/OS” on page 467.

Note that neither method supports all of the collating sequences. For example, only
the SORTSEQ= option in the PROC SORT statement supports linguistic collation.
However, both the SORTSEQ= option in the PROC SORT statement and the
SORTSEQ= system option support translation table collating sequences.

The BASE (V9) engine and the REMOTE engine for SAS/SHARE support all
alternate collating sequences. The V9TAPE sequential engine supports the use of a
translation table and an encoding value to sort data, but the V9TAPE engine does not
support linguistic collation.

18 Specifying a Translation Table � Chapter 3

Specifying a Translation Table
A translation table is a SAS catalog entry that transcodes data from one single-byte

encoding to another single-byte encoding. A translation table also reorders characters
when sorting them. A translation table can be one that SAS provides, such as a
standard collating sequence like ASCII, EBCDIC, or DANISH; or it can be a
user-defined translation table.

When you specify a translation table for an alternate collating sequence, the
characters are reordered by mapping the code point of each character to an integer
weight value in the range of 0 to 255. A binary collation is then performed.

For collating purposes, you can create translation tables that order characters so that
lowercase and uppercase characters alternate. For example, you can create a
translation table to correct the situation in which Z precedes a in an ASCII-based
encoding. (However, regardless of the weight assignments in the translation table, it is
difficult to achieve a true alphabetic ordering that takes the character case into
account.) You can also create a translation table that orders alphabetic characters of a
particular language in their expected order.

The TRANTAB procedure creates, edits, and displays translation tables. For example,
you can display a translation table to view the character-weight values. The translation
tables that are supplied by SAS are stored in the SASHELP.HOST catalog. Any
translation table that you create or customize is stored in your SASUSER.PROFILE
catalog. Translation tables have an entry type of TRANTAB. See Chapter 15, “The
TRANTAB Procedure,” on page 511 for more information about translation tables.

You can specify a translation table with the SORTSEQ= option in the PROC SORT
statement or with the SORTSEQ= system option. For example, if your operating
environment sorts with the ASCII-based Wlatin1 encoding by default, and you want to
sort with a translation table that alternates uppercase and lowercase characters, issue
the following statements to specify the SAS translation table FRSOLAT1:

proc sort data=myfiles.test sortseq=FRSOLAT1;
by name;

run;

A SAS data set that is sorted with a translation table contains a sort indicator that
displays the specified translation table name as the collating sequence in CONTENTS
procedure output.

Specifying an Encoding Value
An encoding is a set of characters (letters, logograms, digits, punctuation marks,

symbols, and control characters) that have been mapped to hexadecimal values, called
code points, that computers use. When you specify an encoding value for an alternate
collating sequence, the characters are transcoded from the SAS session encoding to the
specified encoding, and then a binary collation is performed. You can specify all
encoding values that are supported by the ENCODING= option, including multi-byte
encodings. Note that specifying a translation table can transcode data, but translation
tables are limited to single-byte encodings.

You can specify an encoding value with the SORTSEQ= option in the PROC SORT
statement, but you cannot specify an encoding value in the SORTSEQ= system option.
For example, you want to sort a SAS data set and then transport it to a Japanese
Windows environment. If your session encoding is ASCII-based and binary collation is
in effect, you can issue the following statements to specify the ASCII-based double-byte
encoding SHIFT-JIS:

Encoding for NLS � Specifying Linguistic Collation 19

proc sort data=myfiles.test sortseq=’shift-jis’;
by name;

run;

Note that SAS checks the encoding value for any translation tables with the same
name. If a translation table name exists, SAS uses the translation table.

A SAS data set that is sorted with an encoding value contains a sort indicator that
displays the specified encoding value as the collating sequence in CONTENTS
procedure output.

Specifying Linguistic Collation
Linguistic collation sorts characters according to rules of language and produces

results that are intuitive and culturally acceptable. The results are similar to the
collation used in printed materials such as dictionaries, phone books, and book indexes.
Linguistic collation is useful for generating reports or other data presentations and for
achieving compatibility between systems.

SAS incorporates the International Components for Unicode (ICU), which is an
open-source library that provides routines for linguistic collation that are compatible
with the Unicode Collation Algorithm (UCA). The UCA is a standard by which Unicode
strings can be compared and ordered.

To request linguistic collation, you must use the SORTSEQ= option in the PROC
SORT statement because the SORTSEQ= system option does not support linguistic
collation. For example, the following statements cause the SORT procedure to collate
linguistically, in accordance with the French_France locale:

options locale=fr_FR;

proc sort data=myfiles.test sortseq=linguistic;
by name;

run;

When linguistic collation is requested, SAS uses the default linguistic collation
algorithm that is provided by the ICU for the SAS session locale. This algorithm
reflects the language, local conventions such as data formatting, and culture for a
geographical region. You can modify the algorithm by specifying options in parentheses
following the LINGUISTIC keyword. For example, you can specify a different locale;
you can specify the CASE_FIRST= option to collate lowercase characters before
uppercase characters, or vice versa; and so on. Generally, it is not necessary to specify
options, because the ICU associates defaults with the various languages and locales.
For more information about the linguistic options, see the SORTSEQ= option in
“Collating Sequence Option” on page 475 or the SORTSEQ= option in the PROC SORT
statement in Base SAS Procedures Guide.

A SAS data set that is sorted linguistically contains a sort indicator that displays the
collating sequence LINGUISTIC in CONTENTS procedure output. Along with the sort
indicator, the data set also records a complete description of the linguistic collating
sequence in the file’s descriptor information, which is also displayed in CONTENTS
procedure output.

20 Determining the Encoding of a SAS Session and a Data Set � Chapter 3

Determining the Encoding of a SAS Session and a Data Set

Encoding of a SAS Session
To determine your current SAS session encoding, which is the value assigned to the

ENCODING= system option, you can use the OPTIONS procedure or the OPTIONS
window. For example, the following PROC OPTIONS statement displays the session
encoding value:

proc options option=encoding;
run;

The SAS log displays the following information:

ENCODING=WLATIN1 Specifies default encoding for processing external data.

You can display the encoding of any SAS 9 data set by using the CONTENTS
procedure or the Properties window in the SAS windowing environment.

An example follows of output that is reported from the CONTENT procedure in the
SAS log. The encoding is Western latin1.

Encoding for NLS � Default SAS Session Encoding 21

Output 3.1 Encoding Reported in the SAS Log

The SAS System 10:15 Friday, June 06, 2003 1

The CONTENTS Procedure

Data Set Name WORK.GRADES Observations 1
Member Type DATA Variables 4
Engine V9 Indexes 0
Created 11:03 Friday, June 06 2003 Observation Length 32
Last Modified 11:03 Friday, June 06, 2003 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA64
Encoding latin1 Western (ISO)

Engine/Host Dependent Information

Data Set Page Size 4096
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 126
Obs in First Data Page 1
Number of Data Set Repairs 0
File Name C:\TEMP\SAS Temporary Files_TD228\grades.sas7bdat
Release Created 9.0000M0
Host Created WIN_NT

Alphabetic List of Variables and Attributes

Variable Type Len

4 final Num 8
1 student Char 8
2 test1 Num 8
3 test2 Num 8

Encoding of a SAS Data Set
To determine the encoding of a specific SAS data set, follow these steps:

1 Locate the data set using SAS Explorer.

2 Right-click the data set.

3 Select Properties from the menu.

4 Click the Details tab.

The encoding of the data set is listed, along with other information.

Default SAS Session Encoding

The ENCODING= option is used to specify the SAS session encoding, which
establishes the environment to process SAS syntax and SAS data sets, and to read and
write external files. If neither the LOCALE= nor ENCODING= options is set, a default
value is set.

22 Setting the Encoding of a SAS Session � Chapter 3

Table 3.5 Default SAS Session Encoding Values

Operating Environment Default ENCODING= Value Description

OpenVMS for integrity servers Latin1 Western (ISO)

z/OS OPEN_ED-1047 OpenEdition EBCDIC
cp1047-Latin1

UNIX Latin1 Western (ISO)

Windows WLatin1 Western (Windows)

For a complete list of supported encoding values for a SAS session, see Chapter 19,
“Encoding Values for a SAS Session,” on page 555.

Setting the Encoding of a SAS Session
You can set the session encoding by using the ENCODING= system option, the DBCS

options, or the LOCALE= system option.

Note: Values for the ENCODING= system option depend on the operating
environment. �

The priority order for setting the encoding is as follows:

1 ENCODING= system option
The SAS session encoding is determined by the ENCODING= option regardless

of whether the DBCS or LOCALE= options are specified. If the ENCODING=
option is specified, a set of valid DBCS options are set regardless of whether the
user has specified those options. Also, if the ENCODING= option is specified, the
LOCALE= option is set to an appropriate value unless a value has been specified
by the user.

Note: If the ENCODING= option is specified, the TRANTAB= option is
implicitly set. �

2 DBCS options

If the ENCODING= option is not specified, the SAS session encoding is
determined by the DBCS options regardless of whether the LOCALE= option is
specified. The LOCALE= option is set to an appropriate value unless a value has
been specified by the user.

The encoding is determined by the values of the DBCSLANG and DBCSTYPE
options for DBCS languages, such as Japanese, Korean, Simplified Chinese, and
Traditional Chinese.

The DBCS options are valid only when the DBCS extension directory is included
in the path option list. The path of the DBCS extension dynamic link library
(DLLs) has to be located at the top of the pathname list of the path option for the
DBCS languages when you want to invoke a DBCS SAS session. The DBCS
extension DLLs are located in the directory!SASROOT/dbcs/sasexe by default.

Also you might have to specify the resourcesloc, msg, and sashelp options to use
localized resources even if the SAS session encoding is not a DBCS language (for
example, Polish, German, and French). The localized resources are located
under!SASROOT/nls/<language identifier>/<sasmsg, sashelp, sasmacro,
resource>. The values for language identifiers are: cs, de, en, es, fr, hu, it, ja, ko,
pl, ru, sv, zh, and zt.

Encoding for NLS � Encoding Support for Data Sets by SAS Release 23

You can specify a sasv9.cfg file located in the localized directories such as
!SASROOT/nls/<language identifier> so that you do not have to consider
using the path, resourcesloc, sasmsg, and sashelpoptions.

If DBCS (which specifies that SAS process DBCS encodings) is specified,
DBCSLANG= and DBCSTYPE= options are implicitly set. The default values for
DBCSTYPE= and DBCSLANG= match those values for the Japanese environment
on the host.

3 LOCALE= system option
The SAS session encoding is determined by the LOCALE= option and the

platform, if the ENCODING= or DBCS options are not specified.
The following example shows that encoding is explicitly set by default for the

Spanish_Spain locale:

sas9 -locale Spanish_Spain

The wlatin1 encoding is the default encoding for the Spanish_Spain locale.
The following example shows that the wlatin2 encoding is set explicitly when

SAS is invoked:

sas9 -encoding wlatin2

Note: Setting DBCS encodings, DBCS options, or a CJK locale on SAS if the
DBCS extensions are not available will fail to successfully invoke SAS. �

Note: Changing the encoding for a SAS session does not affect SAS keywords or
SAS log output, which remain in English. �

In Table 3.6 on page 23, the following values for the CJK locales are based on locale
and platform:

Table 3.6 Default Encoding Values Based on the LOCALE= Option

Locales WIN (sas4) MVS (sas4) UNX (sas4)

zh_TW

zh_HK

zh_MO

MS-950 (ywin) IBM-937 (yibm) sax, s64: EUC-TW
(yeuc)

others: MS-950 (ywin)

zh_CN

zh_SG

EUC-CN (zeuc) IBM-935 (zibm) EUC-CN (zeuc)

ja_JP SHIFT-JIS (sjis) IBM-939 (jibm) h64, h6i, r64:
SHIFT-JIS (sjis)

others: EUC-JP (jeuc)

ko_KR EUC-KR (keuc) IBM-933 (kibm) EUC-KR (keuc)

Encoding Behavior in a SAS Session

Encoding Support for Data Sets by SAS Release
For Base SAS files, there are three categories of encoding support, which is based on

the version of SAS that created the file:

24 z/OS: Ensuring Compatibility with Previous SAS Releases � Chapter 3

� Data sets that are created in SAS 9 automatically have an encoding attribute,
which is specified in the descriptor portion of the file. In SAS 9, DBCS recognizes
the DBCSTYPE value and converts it to the encoding value and specifies it in the
descriptor portion of the field, by default.

� Data sets that are created in SAS 7 and SAS 8 do not have an encoding value that
is specified in the file. It is assumed that SAS 7 and SAS 8 data sets were created
in the SAS session encoding of the operating environment. However, the descriptor
portion of the file does support an encoding value. When you replace or update a
SAS 7 or SAS 8 file in a SAS 9 session, SAS specifies the current session encoding
in the descriptor portion of the file, by default. In SAS 8, DBCS has the
DBCSTYPE field, instead of the encoding field.

� Data sets created in SAS 6 do not have an encoding value that is associated with
the file and cannot have an encoding value specified in the file.

z/OS: Ensuring Compatibility with Previous SAS Releases
Setting the NLSCOMPATMODE system option ensures compatibility with previous

releases of SAS.

Note: NLSCOMPATMODE is supported under the z/OS operating environment
only. �

Programs that were run in previous releases of SAS will continue to work when
NLSCOMPATMODE is specified.

The NONLSCOMPATMODE system option specifies that data is to be processed in
the encoding that is set by the ENCODING= option or the LOCALE= option, including
reading and writing external data and processing SAS syntax and user data.

Some existing programs that ran in previous releases of SAS will no longer run when
NONLSCOMPATMODE is in effect. If you have made character substitutions in SAS
syntax statements, you must modify your programs to use national characters. For
example, a Finnish customer who has substituted the Å character for the $ character in
existing SAS syntax will have to update the program to use the $ in the Finnish
environment.

For details, see “NLSCOMPATMODE System Option: z/OS” on page 466.

Output Processing
When you create a data set in SAS 9, encoding is determined as follows:

� If a new output file is created, the data is written to the file using the current
session encoding.

� If a new output file is created using the OUTREP= option, which specifies a data
representation that is different from the current session, the data is written to the
file using the default session encoding for the operating system that is specified by
the OUTREP= value.

� If a new output file replaces an existing file, the new file inherits the encoding of
the existing file. For output processing that replaces an existing file that is from
another operating environment or if the existing file has no encoding that is
specified in it, then the current session encoding is used.

Encoding for NLS � Reading and Writing External Files 25

Input Processing
For input (read) processing in SAS 9, encoding behavior is as follows:

� If the session encoding and the encoding that is specified in the file are
incompatible, the data is transcoded to the session encoding. For example, if the
current session encoding is ASCII and the encoding that is specified in the file is
EBCDIC, SAS transcodes the data from EBCDIC to ASCII.

� If a file does not have an encoding specified in it, SAS transcodes the data only if
the file’s data representation is different from the current session.

Reading and Writing External Files
SAS reads and writes external files using the current session encoding. SAS assumes

that the external file has the same encoding as the session encoding. For example, if
you are creating a new SAS data set by reading an external file, SAS assumes that the
encoding of the external file and the current session are the same. If the encodings are
not the same, the external data could be written incorrectly to the new SAS data set.
For details about the syntax for the SAS statements that perform input and output
processing, see “SAS Options That Transcode SAS Data” on page 29.

26

27

C H A P T E R

4
Transcoding for NLS

Overview to Transcoding 27
Common Reasons for Transcoding 27

Transcoding and Translation Tables 28

SAS Options That Transcode SAS Data 29

Transcoding between Operating Environments 29

Transcoding Considerations 30
Compatible and Incompatible Encodings 31

Overview to Compatible and Incompatible Encodings 31

Line-feed Characters and Transferring Data between EBCDIC and ASCII 31

EBCDIC and OpenEdition Encodings Are Compatible 32

Some East Asian MBCS Encodings Are Compatible 32

Preventing Transcoding 32

Overview to Transcoding
Transcoding is the process of converting a SAS file (its data) from one encoding to

another encoding. Transcoding is necessary when the session encoding and the file
encoding are different. Transcoding is often necessary when you move data between
operating environments that use different locales.

For example, consider a file that was created under a UNIX operating environment
that uses the Latin1 encoding, then moved to an IBM mainframe that uses the German
EBCDIC encoding. When the file is processed on the IBM mainframe, the data is
remapped from the Latin1 encoding to the German EBCDIC encoding. If the data
contains an uppercase letter Ä, the hexadecimal number is converted from C4 to 4A.

Transcoding does not translate between languages; transcoding remaps characters.
In order to dynamically transcode data between operating environments that use

different encodings, an explicit encoding value must be specified. For details, see
Chapter 18, “Encoding Values in SAS Language Elements,” on page 549.

Common Reasons for Transcoding
Some situations where data might commonly be transcoded are:
� when you share data between two different SAS sessions that are running in

different locales or in different operating environments
� when you perform text-string operations, such as converting to uppercase or

lowercase
� when you display or print characters from another language

28 Transcoding and Translation Tables � Chapter 4

� when you copy and paste data between SAS sessions running in different locales

Transcoding and Translation Tables

Specifying LOCALE= or ENCODING= indirectly sets the appropriate
translation-table values in the TRANTAB= option. Translation tables are used for
transcoding one SBCS encoding to another and back again. For example, there is a
specific translation table that maps Windows Latin2 to ISO Latin2.

The following figure shows a translation table. The area of a translation table for
mapping from Windows Latin 2 (wlt2) to ISO Latin 2 (lat2) is named "table 1," and the
area for mapping characters from ISO Latin 2 to Windows Latin 2 is named "table 2."

Figure 4.1 SAS Windows Latin 2 to ISO Latin 2 Translation Table

The LOCALE= or ENCODING= system option and other encoding options (to
statements, commands, or procedures) eliminates the need to directly create or manage
translation tables.

Transcoding for NLS � Transcoding between Operating Environments 29

CAUTION:
Do not change a translation table unless you are familiar with its purpose. Translation
tables are used internally by the SAS supervisor to implement NLS. If you are
unfamiliar with the purpose of translation tables, do not change the specifications
without proper technical advice. �

The TRANTAB= option specifies the translation table to be used in the SAS session.
For details, see “TRANTAB= System Option” on page 469. The TRANTAB procedure is
used to create, edit, and display customized translation tables. For details, see Chapter
15, “The TRANTAB Procedure,” on page 511.

SAS Options That Transcode SAS Data
The following SAS options for various language elements enable you to transcode, or

to override the default encoding behavior. These elements enable you to specify a
different encoding for a SAS file or a SAS application or to suppress transcoding.

Table 4.1 SAS Options That Transcode SAS Data

Option Where Used

CHARSET= ODS MARKUP statement

CORRECTENCODING= MODIFY statement of the DATASETS procedure

ENCODING= %INCLUDE, FILE, FILENAME, INFILE, ODS
statements; FILE and INCLUDE commands

ENCODING= in a DATA step

INENCODING= LIBNAME statement

ODSCHARSET= LIBNAME statement for XML

ODSTRANTAB= LIBNAME statement for XML

OUTENCODING= LIBNAME statement

XMLENCODING= LIBNAME statement for XML

For a list of supported encoding values to use for these options, see “SBCS, DBCS,
and Unicode Encoding Values for Transcoding Data” on page 549.

Transcoding between Operating Environments
Transcoding occurs automatically when SAS files are moved or accessed across

operating environments. Common SAS transcoding activities include:

CPORT and CIMPORT procedures
To create a transport file, SAS automatically uses translation tables to transcode
one encoding to another and back again. First, the data is converted from the
source encoding to transport format, then the data is converted from the transport
format to the target encoding. For details, see Base SAS Procedures Guide.

CEDA (cross environment data access) feature of SAS
when you process a SAS data set that has an encoding that is different from the
current session encoding, SAS automatically uses CEDA software to transcode

30 Transcoding Considerations � Chapter 4

data. (CEDA also converts a SAS file to the correct data representation when you
move a file between operating environments.) For details, see SAS Language
Reference: Concepts and SAS Language Reference: Dictionary.

SAS/CONNECT Data Transfer Services (UPLOAD and DOWNLOAD procedures)
For details, see SAS/CONNECT User’s Guide.

SAS/CONNECT Compute Services (RSUBMIT statement)
identifies a block of statements that a client session submits to server session for
processing. For details, see SAS/CONNECT User’s Guide.

SAS/CONNECT and SAS/SHARE Remote Library Services (LIBNAME)
References a library on a remote machine for client access. For details, see
SAS/CONNECT User’s Guide and SAS/SHARE User’s Guide.

Transcoding Considerations
Although transcoding usually occurs with no problems, there are situations that can

affect your data and produce unsatisfactory results. For example:

� Encodings can conflict with another. That is, two encodings can use different code
points for the same character, or use the same code points for two different
characters.

� Characters in one encoding might not be present in another encoding. For
example, a specific encoding might not have a character for the dollar sign ($).
Transcoding the data to an encoding that does not support the dollar sign would
result in the character not printing or displaying.

� The number of bytes for a character in one encoding can be different from the
number of bytes for the same character in another encoding; for example,
transcoding from a DBCS to an SBCS. Therefore, transcoding can result in
character value truncation.

� If an error occurs during transcoding such that the data cannot be transcoded back
to its original encoding, data can be lost. That is, if you open a data set for update
processing, the observation might not be updated. However, if you open the data
set for input (read) processing and no output data set is open, SAS issues a
warning that can be printed. Processing proceeds and allows a PRINT procedure
or other read operation to show the data that does not transcode.

� CEDA has some processing limitations. For example, CEDA does not support
update processing.

� Incorrect encoding can be stamped on a SAS 7 or SAS 8 data set if it is copied or
replaced in a SAS 9 session with a different session encoding from the data. The
incorrect encoding stamp can be corrected with the CORRECTENCODING= option
in the MODIFY statement in PROC DATASETS. If a character variable contains
binary data, transcoding might corrupt the data.

Transcoding for NLS � Line-feed Characters and Transferring Data between EBCDIC and ASCII 31

Compatible and Incompatible Encodings

Overview to Compatible and Incompatible Encodings
ASCII is the foundation for most encodings, and is used by most personal computers,

minicomputers, and workstations. However, the IBM mainframe uses an EBCDIC
encoding. Therefore, ASCII and EBCDIC machines and data are incompatible.
Transcoding is necessary if some or all characters in one encoding are different from the
characters in the other encoding.

However, to avoid transcoding, you can create a data set and specify an encoding
value that SAS will not transcode. For example, if you use the following values in
either the ENCODING= data set option, or the INENCODING=, or the
OUTENCODING= option in the LIBNAME statement, transcoding is not performed:

� ANY specifies that no transcoding is desired, even between EBCDIC and ASCII
encodings.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

� ASCIIANY enables you to create a data set that is compatible with all
ASCII-based encodings.

� EBCDICANY enables you to create a data set that is compatible with all
EBCDIC-based encodings.

You might want to create a SAS data set that contains mixed encodings; for example,
both Latin1 and Latin2. You do not want the data transcoded for either input or output
processing. By default, data is transcoded to the current session encoding.

Data must be transcoded when the SAS file and the SAS session use incompatible
encodings; for example, ASCII and EBCDIC.

In some cases, transcoding is not required because the SAS file and the SAS session
have compatible encodings.

For a list of the encodings, by operating environment, see Chapter 19, “Encoding
Values for a SAS Session,” on page 555.

Line-feed Characters and Transferring Data between EBCDIC and ASCII
Software that runs under ASCII operating environments requires the end of the line

be specified by the line-feed character. When data is transferred from z/OS to a
machine that supports ASCII encodings, formatting problems can occur, particularly in
HTML output, because the EBCDIC newline character is not recognized. SAS supports
two sets of EBCDIC-based encodings for z/OS:

� The encodings that have EBCDIC in their names use the traditional mapping of
EBCDIC line-feed to ASCII line-feed character, which can cause data to appear as
one stream.

� The encodings that have Open Edition in their names use the line-feed character
as the end-of-line character. When the data is transferred to an operating
environment that uses ASCII, the EBCDIC new-line character maps to an ASCII
line-feed character. This mapping enables ASCII applications to interpret the
end-of-line correctly, resulting in better formatting.

32 EBCDIC and OpenEdition Encodings Are Compatible � Chapter 4

For a list of the encodings, by operating environment, see Chapter 19, “Encoding
Values for a SAS Session,” on page 555.

EBCDIC and OpenEdition Encodings Are Compatible
EBCDIC and OpenEdition are compatible encodings.
Encodings that contain EBCDIC in their names use the traditional mapping of

EBCDIC line-feed (0x25) and new-line (0x15) characters.
Encodings that contain OPEN_ED in their names and OpenEdition in their

descriptions switch the mapping of the new-line and line-feed characters. That is, they
use the line-feed character as the end-of-line character.

If the two encodings use the same code page number but one is EBCDIC and the
other is Open Edition, no transcoding is necessary.

Example:
If the data is encoded in EBCDIC1143 and the SAS session is encoded in

OPEN_ED-1143, no transcoding is necessary because they use the same 1143 code page.
In order to transfer data between ASCII and EBCDIC, you can specify Open Edition

encodings from the list of compatible encodings.

Note: Open Edition encodings are used by default in NONLSCOMPATMODE. �

Some East Asian MBCS Encodings Are Compatible
Some East Asian double-byte (DBCS) are compatible encodings. Each line in the list

contains compatible encodings:
� SHIFT-JIS, MS-932, IBM-942, MACOS-1
� MS-949, MACOS-3, EUC-KR
� EUC-CN, MS-936, MACOS-25, DEC-CN
� EUC-TW, DEC-TW
� MS-950, MACOS-2, BIG5

If the SAS session is encoded in one of the encodings in the group and the data set is
encoded in another encoding, but in the same group, then no transcoding occurs.

Example:
If the session encoding is SHIFT-JIS and the data set encoding is IBM-942, then no

transcoding occurs.

Preventing Transcoding
Some encoding values enable you to create a data set that SAS does not transcode.

You might not want to transcode data for input or output processing but rather you
might want to create a SAS library that contains data in mixed encodings; for example,
both Latin1 and Latin2.

For example, you can avoid transcoding if you use the following values in either the
ENCODING= data set option or the INENCODING= or OUTENCODING= options in
the LIBNAME statement:

� ANY specifies that no transcoding is desired, even between EBCDIC and ASCII
encodings.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

Transcoding for NLS � Preventing Transcoding 33

� ASCIIANY specifies that no transcoding is required between any ASCII-based
encodings.

� EBCDICANY specifies that no transcoding is required between any
EBCDIC-based encodings.

For details, see “ENCODING= Data Set Option” on page 43 and “INENCODING=
and OUTENCODING= Options” on page 490.

34

35

C H A P T E R

5
Double-Byte Character Sets
(DBCS)

Overview to Double-Byte Character Sets (DBCS) 35
East Asian Languages 35

Specifying DBCS 36

Requirements for Displaying DBCS Character Sets 36

When You Can Use DBCS Features 36

DBCS and SAS on a Mainframe 37
SAS Data Conversion between DBCS Encodings 37

Avoiding Problems with Split DBCS Character Strings 38

Avoiding Character Data Truncation by Using the CVP Engine 38

Overview to Double-Byte Character Sets (DBCS)
Because East Asian languages have thousands of characters, double (two) bytes of

information are needed to represent each character.
Each East Asian language usually has more than one DBCS encoding system, due to

nonstandardization among computer manufacturers. SAS processes the DBCS encoding
information that is unique to each manufacturer for the major East Asian languages.

With the proper software extensions, you can use SAS for the following functions:
� display any of the major East Asian languages in the DBCS version of the SAS

System
� import data from East Asian language computers and move the data from one

application or operating environment to another (which might require SAS
ACCESS or other SAS products)

� convert standard East Asian date and time notation to SAS date values, SAS time
values, and SAS datetime values

� create data sets and various types of output (such as reports and graphs) that
contain East Asian language characters.

East Asian Languages
East Asian languages include:
� Chinese, which is written in Simplified Chinese script, and is used in the People’s

Republic of China and Singapore
� Chinese, which is written in Traditional Chinese script, and is used in Hong Kong

SAR, Macau SAR, and Taiwan
� Japanese
� Korean

36 Specifying DBCS � Chapter 5

Specifying DBCS
To specify DBCS, use the following SAS system options:

DBCS recognizes DBCS characters

DBCSLANG= specifies the language

DBCSTYPE= specifies the DBCS encoding method type

Example of a SAS configuration file for Windows:

/*basic DBCS options */

-dbms /*Recognizes DBCS*/
-dbcstype PCMS /*Specifies the PCMS encoding method*/

-dbcslang JAPANESE; /*specifies the Japanese language */

DBCSTYPE= and DBCSLANG= were introduced in Version 6.12. As an alternative,
setting ENCODING= implicitly sets the DBCSTYPE= and DBCSLANG= options. For
details, see “ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS” on
page 459.

Requirements for Displaying DBCS Character Sets
In order to display data sets that contain DBCS characters, you must have the

following resources:
� system support for multiple code pages
� DBCS fonts that correspond to the language that you intend to use

If you need to create a user-defined character for use with SAS software, your
computer must support DBCS. These computers have a limited availability in the U.S.
and Europe. These East Asian language computer systems use various methods of
creating the characters. In one popular method, the user types the phonetic
pronunciation of the character, often using Latin characters. The computer presents a
menu of characters whose sounds are similar to the phonetic pronunciation and
prompts the user to select one of them.

When You Can Use DBCS Features
After you have set up your SAS session to recognize a specific DBCS language and

operating environment, you can work with your specified language in these general
areas:

� the DATA step and batch-oriented procedures
� windowing and interactive capabilities
� cross-system connectivity and compatibility
� access to databases
� graphics

In a DATA step and in batch-oriented procedures, you can use DBCS wherever a text
string within quotation marks is allowed. Variable values, variable labels, and data set

Double-Byte Character Sets (DBCS) � SAS Data Conversion between DBCS Encodings 37

labels can all be in DBCS. DBCS can also be used as input data and with range and
label specifications in the FORMAT procedure. In WHERE expression processing, you
can search for embedded DBCS text.

DBCS and SAS on a Mainframe
Another type of DBCS encoding exists on mainframe systems, which combine DBCS

support with the 3270-style data stream. Each DBCS character string is surrounded by
escape codes called shift out/shift in, or SO/SI. These codes originated from the need for
the old-style printers to shift out from the EBCDIC character set, to the DBCS
character set. The major manufacturers have different encodings for SO/SI; some
manufacturers pad DBCS code with one byte of shift code information while others pad
the DBCS code with two bytes of shift code information. These differences can cause
problems in reading DBCS information about mainframes.

PCs, minicomputers, and workstations do not have SO/SI but have their own types of
DBCS encodings that differ from manufacturer to manufacturer. SAS has several
formats and informats that can read DBCS on SO/SI systems:

Table 5.1 SAS Formats and Informats That Support DBCS on SO/SI Systems

Keyword Language Element Description

$KANJI informat Removes SO/SI from Japanese kanji DBCS

$KANJIX informat Adds SO/SI to Japanese kanji DBCS

$KANJI format Adds SO/SI to Japanese kanji DBCS

$KANJIX format Removes SO/SI from Japanese kanji DBCS

SAS Data Conversion between DBCS Encodings
Normally, DBCS data that is generated on one computer system is incompatible with

data generated on another computer system. SAS has features that allow conversion
from one DBCS source to another, as shown in the following table.

Language
Element

Type Use See

KCVT function Converts DBCS data from
one operating environment to
another

“KCVT Function” on page 260

CPORT procedure Moves files from one
environment to another

Base SAS Procedures Guide

CIMPORT procedure Imports a transport file
created by CPORT

Base SAS Procedures Guide

38 Avoiding Problems with Split DBCS Character Strings � Chapter 5

Avoiding Problems with Split DBCS Character Strings

� When working with DBCS characters, review your data to make sure that SAS
recognizes the entire character string when data is imported or converted or used
in a DATA or a PROC step.

� On mainframe systems that use shift out/shift in escape codes, DBCS character
strings can become truncated during conversion across operating environments.

� There is a possibility that DBCS character strings can be split when working with
the PRINT, REPORT, TABULATE, and FREQ procedures. If undesirable splitting
occurs, you might have to add spaces on either side of your DBCS character string
to force the split to occur in a better place. The SPLIT= option can also be used
with PROC REPORT and PROC PRINT to force string splitting in a better
location.

Avoiding Character Data Truncation by Using the CVP Engine
When you specify the ENCODING= data set option, the encoding for the output data

set might require more space than the original data set. For example, when writing
DBCS data in a Windows environment using the UTF8 encoding, each DBCS character
might require three bytes. To avoid data truncation, each variable must have a width
that is 1.5 times greater than the width of the original data.

When you process a SAS data file that requires transcoding, you can request that the
CVP (character variable padding) engine expand character variable lengths so that
character data truncation does not occur. (A variable’s length is the number of bytes
used to store each of the variable’s values.)

Character data truncation can occur when the number of bytes for a character in one
encoding is different from the number of bytes for the same character in another
encoding, such as when a single-byte character set (SBCS) is transcoded to a
double-byte character set (DBCS) or to a multi-byte character set (MBCS). An SBCS
represents each character in one byte, and a DBCS represents each character in two
bytes. An MBCS represents characters in a varying length from one to four bytes. For
example, when transcoding from Wlatin2 to a Unicode encoding, such as UTF-8, the
variable lengths (in bytes) might not be sufficient to hold the values, and the result is
character data truncation.

Using the CVP engine, you specify an expansion amount so that variable lengths are
expanded before transcoding, then the data is processed. Think of the CVP engine as
an intermediate engine that is used to prepare the data for transcoding. After the
lengths are increased, the primary engine, such as the default base engine, is used to do
the actual file processing.

The CVP engine is a read-only engine for SAS data files only. You can request
character variable expansion (for example with the LIBNAME statement) in either of
the following ways:

� explicitly specify the CVP engine and using the default expansion of 1.5 times the
variable lengths.

� implicitly specifying the CVP engine with the LIBNAME options CVPBYTES= or
CVPMULTIPLIER=. The options specify the expansion amount. In addition, you
can use the CVPENGINE= option to specify the primary engine to use for
processing the SAS file; the default is the default SAS engine.

For example, the following LIBNAME statement explicitly assigns the CVP engine.
Character variable lengths are increased using the default expansion, which multiples

Double-Byte Character Sets (DBCS) � Avoiding Character Data Truncation by Using the CVP Engine 39

the lengths by 1.5. For example, a character variable with a length of 10 will have a
new length of 15, and a character variable with a length of 100 will have a new length
of 150:

libname expand cvp ’SAS data-library’;

Note: The expansion amount must be large enough to accommodate any expansion;
otherwise, truncation will still occur. �

Note: For processing that conditionally selects a subset of observations by using a
WHERE expression, using the CVP engine might affect performance. Processing the
file without using the CVP engine might be faster than processing the file using the
CVP engine. For example, if the data set has indexes, the indexes will not be used in
order to optimize the WHERE expression if you use the CVP engine. �

For more information and examples, see the CVP options in the LIBNAME
Statement in SAS Language Reference: Dictionary.

40

41

P A R T2

SAS Language Elements for NLS Data

Chapter 6.Data Set Options for NLS 43

Chapter 7.Formats for NLS 47

Chapter 8.Functions for NLS 235

Chapter 9. Informats for NLS 301

Chapter 10.Autocall Macros for NLS 435

Chapter 11.Macro Functions for NLS 439

Chapter 12.System Options for NLS 451

Chapter 13.Options for Commands, Statements, and Procedures for
NLS 473

42

43

C H A P T E R

6
Data Set Options for NLS

Data Set Options for NLS by Category 43
ENCODING= Data Set Option 43

OUTREP= Data Set Option 46

Data Set Options for NLS by Category
NLS affects the data set control category of options for selected data set options. The

following table provides brief descriptions of the data set options. For more detailed
descriptions, see the dictionary entry for each data set option:

Table 6.1 Summary of Data Set Options for NLS

Category Data Set Options for
NLS

Description

Data Set Control “ENCODING= Data Set
Option” on page 43

Overrides the encoding to use for reading or writing a
SAS data set.

“OUTREP= Data Set
Option” on page 46

Specifies the data representation for the output SAS data
set.

ENCODING= Data Set Option

Overrides the encoding to use for reading or writing a SAS data set.

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
ENCODING= ANY | ASCIIANY | EBCDICANY | encoding-value

44 ENCODING= Data Set Option � Chapter 6

Syntax Description

ANY
specifies that no transcoding occurs.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

ASCIIANY
specifies that no transcoding occurs when the mixed encodings are ASCII encodings.

EBCDICANY
specifies that no transcoding occurs when the mixed encodings are EBCDIC
encodings.

encoding-value
specifies an encoding value. For details, see Chapter 3, “Encoding for NLS,” on page
9.

Details
The value for ENCODING= indicates that the SAS data set has a different encoding
from the current session encoding. When you read data from a data set, SAS transcodes
the data from the specified encoding to the session encoding. When you write data to a
data set, SAS transcodes the data from the session encoding to the specified encoding.

Input Processing

By default, encoding for input processing is determined as follows:

� If the session encoding and the encoding that is specified in the file are different,
SAS transcodes the data to the session encoding.

� If a file has no encoding specified, but the file’s data representation is different
from the encoding of the current session, then SAS transcodes the data to the
current session.

Output Processing

By default, encoding for output processing is determined as follows:

� Data is written to a file using the encoding of the current session, except when a
different output representation is specified using the OUTREP= data set option,
the OUTENCODING= option in the LIBNAME statement, or the ENCODING=
data set option.

� If a new file replaces an existing file, then the new file inherits the encoding of the
existing file.

� If an existing file is replaced by a new file that was created under a different
operating environment or that has no encoding specified, the new file uses the
encoding of the current session.

Note: Character metadata and data output appears garbled if you specify a different
encoding from where the data set was created.

In this example, the data set to be printed is internally encoded as ASCII, however
the data set option specifies an EBCDIC encoding. SAS attempts to transcode the data
from EBCDIC to ASCII, but the data is already in ASCII. The result is garbled data.

Data Set Options for NLS � ENCODING= Data Set Option 45

data a;
x=1;
abc=’abc’;
run’
proc print data=a (encoding=’’ebcdic’’);
run;

�

Note: The following values for ENCODING= are invalid:
� UCS2

UCS4
UTF16
UTF32

�

Comparisons
� Session encoding is specified using the ENCODING= system option or the

LOCALE= system option, with each operating environment having a default
encoding.

� You can specify encoding for a SAS library by using the LIBNAME statement’s
INENCODING= option (for input files) and the OUTENCODING= option (for
output files). If both the LIBNAME statement option and the ENCODING= data
set option are specified, SAS uses the data set option.

Examples

Example 1: Creating a SAS Data Set with Mixed Encodings and with Transcoding
Suppressed By specifying the data set option ENCODING=ANY, you can create a
SAS data set that contains mixed encodings, and suppress transcoding for either input
or output processing.

In this example, the new data set MYFILES.MIXED contains some data that uses
the Latin1 encoding, and some data that uses the Latin2 encoding. When the data set
is processed, no transcoding occurs. For example, the correct Latin1 characters in a
Latin1 session encoding and correct Latin2 characters in a Latin2 session encoding are
displayed.

libname myfiles ’SAS data-library’;

data myfiles.mixed (encoding=any);
set work.latin1;
set work.latin2;

run;

Example 2: Creating a SAS Data Set with a Particular Encoding For output processing,
you can override the current session encoding. This action might be necessary, for
example, if the normal access to the file uses a different session encoding.

For example, if the current session encoding is Wlatin1, you can specify
ENCODING=WLATIN2 in order to create the data set that uses the encoding Wlatin2.
The following statements tell SAS to write the data to the new data set using the
Wlatin2 encoding instead of the session encoding. The encoding is also specified in the
descriptor portion of the file.

libname myfiles ’SAS data-library’;

46 OUTREP= Data Set Option � Chapter 6

data myfiles.difencoding (encoding=wlatin2);
.
.
.

run;

Example 3: Overriding Encoding for Input Processing For input processing, you can
override the encoding that is specified in the file, and specify a different encoding.

For this example, the current session encoding is EBCDIC-870, but the file has the
encoding value EBCDIC-1047 in the descriptor information. By specifying
ENCODING=EBCDIC-870, SAS does not transcode the data, but instead displays the
data using EBCDIC-870 encoding.

proc print data=myfiles.mixed (encoding=ebcdic870);
run;

See Also

Conceptual discussion in Chapter 3, “Encoding for NLS,” on page 9
Options in Statements and Commands:

“ENCODING= Option” on page 487
“INENCODING= and OUTENCODING= Options” on page 490

System Options:
“ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS” on page 459
“LOCALE System Option” on page 463

OUTREP= Data Set Option

Specifies the data representation for the output SAS data set.

Valid in: DATA step and PROC steps
Category: Data Set Control
See: OUTREP= Data Set Option in SAS Language Reference: Dictionary

47

C H A P T E R

7
Formats for NLS

International Date and Datetime Formats 50
Currency Representation 55

Overview to Currency 55

U.S. Dollars 55

Localized Euros 56

Customized Currency Representations 56
Localized National and International Currency Representations 57

Unique National and International Monetary Representations 59

Example: Representing Currency in National and International Formats 60

European Currency Conversion 61

Overview to European Currency Conversion 61

Fixed Rates for Euro Conversion 62
Variable Rates for Euro Conversion 62

Example: Converting between a European Currency and Euros 63

Direct Conversion between European Currencies 63

Formats for NLS by Category 64

$BIDIw. Format 73
$CPTDWw. Format 74

$CPTWDw. Format 75

EUROw.d Format 76

EUROXw.d Format 77

HDATEw. Format 79
HEBDATEw. Format 80

$KANJIw. Format 81

$KANJIXw. Format 82

$LOGVSw. Format 83

$LOGVSRw. Format 84

MINGUOw. Format 85
NENGOw. Format 86

NLBESTw. Format 88

NLDATEw. Format 89

NLDATEMDw. Format 90

NLDATEMNw. Format 91
NLDATEWw. Format 92

NLDATEWNw. Format 93

NLDATEYMw. Format 94

NLDATEYQw. Format 95

NLDATEYRw. Format 96
NLDATEYWw. Format 97

NLDATMw. Format 98

NLDATMAPw. Format 99

48 Contents � Chapter 7

NLDATMDTw. Format 100
NLDATMMDw. Format 101

NLDATMMNw. Format 101

NLDATMTMw. Format 102

NLDATMWNw. Format 103

NLDATMWw. Format 104
NLDATMYMw. Format 105

NLDATMYQw. Format 106

NLDATMYRw. Format 107

NLDATMYWw. Format 107

NLMNIAEDw.d Format 108

NLMNIAUDw.d Format 109
NLMNIBGNw.d Format 110

NLMNIBRLw.d Format 111

NLMNICADw.d Format 112

NLMNICHFw.d Format 113

NLMNICNYw.d Format 114
NLMNICZKw.d Format 115

NLMNIDKKw.d Format 116

NLMNIEEKw.d Format 117

NLMNIEGPw.d Format 118

NLMNIEURw.d Format 119
NLMNIGBPw.d Format 120

NLMNIHKDw.d Format 121

NLMNIHRKw.d Format 122

NLMNIHUFw.d Format 123

NLMNIIDRw.d Format 124

NLMNIILSw.d Format 125
NLMNIINRw.d Format 126

NLMNIJPYw.d Format 127

NLMNIKRWw.d Format 128

NLMNILTLw.d Format 129

NLMNILVLw.d Format 130
NLMNIMOPw.d Format 131

NLMNIMXNw.d Format 132

NLMNIMYRw.d Format 133

NLMNINOKw.d Format 134

NLMNINZDw.d Format 135
NLMNIPLNw.d Format 136

NLMNIRUBw.d Format 137

NLMNISEKw.d Format 138

NLMNISGDw.d Format 139

NLMNITHBw.d Format 140

NLMNITRYw.d Format 141
NLMNITWDw.d Format 142

NLMNIUSDw.d Format 143

NLMNIZARw.d Format 144

NLMNLAEDw.d Format 145

NLMNLAUDw.d Format 146
NLMNLBGNw.d Format 147

NLMNLBRLw.d Format 148

NLMNLCADw.d Format 149

NLMNLCHFw.d Format 150

NLMNLCNYw.d Format 151

Formats for NLS � Contents 49

NLMNLCZKw.d Format 152
NLMNLDKKw.d Format 153

NLMNLEEKw.d Format 154

NLMNLEGPw.d Format 155

NLMNLEURw.d Format 156

NLMNLGBPw.d Format 157
NLMNLHKDw.d Format 158

NLMNLHRKw.d Format 159

NLMNLHUFw.d Format 160

NLMNLIDRw.d Format 161

NLMNLILSw.d Format 162

NLMNLINRw.d Format 163
NLMNLJPYw.d Format 164

NLMNLKRWw.d Format 165

NLMNLLTLw.d Format 166

NLMNLLVLw.d Format 167

NLMNLMOPw.d Format 168
NLMNLMXNw.d Format 169

NLMNLMYRw.d Format 170

NLMNLNOKw.d Format 171

NLMNLNZDw.d Format 172

NLMNLPLNw.d Format 173
NLMNLRUBw.d Format 174

NLMNLSEKw.d Format 175

NLMNLSGDw.d Format 176

NLMNLTHBw.d Format 177

NLMNLTRYw.d Format 178

NLMNLTWDw.d Format 179
NLMNLUSDw.d Format 180

NLMNLZARw.d Format 181

NLMNYw.d Format 182

NLMNYIw.d Format 184

NLNUMw.d Format 185
NLNUMIw.d Format 186

NLPCTw.d Format 188

NLPCTIw.d Format 189

NLPCTNw.d Format 190

NLPCTPw.d Format 191
NLPVALUEw.d Format 192

NLSTRMONw.d Format 193

NLSTRQTRw.d Format 195

NLSTRWKw.d Format 196

NLTIMEw. Format 197

NLTIMAPw. Format 198
$UCS2Bw. Format 199

$UCS2BEw. Format 200

$UCS2Lw. Format 201

$UCS2LEw. Format 203

$UCS2Xw. Format 204
$UCS2XEw. Format 205

$UCS4Bw. Format 206

$UCS4BEw. Format 207

$UCS4Lw. Format 208

$UCS4LEw. Format 210

50 International Date and Datetime Formats � Chapter 7

$UCS4Xw. Format 211
$UCS4XEw. Format 212

$UESCw. Format 213

$UESCEw. Format 214

$UNCRw. Format 215

$UNCREw. Format 217
$UPARENw. Format 218

$UPARENEw. Format 219

$UTF8Xw. Format 220

$VSLOGw. Format 221

$VSLOGRw. Format 222

WEEKUw. Format 223
WEEKVw. Format 225

WEEKWw. Format 227

YYWEEKUw. Format 228

YYWEEKVw. Format 230

YYWEEKWw. Format 231
YENw.d Format 233

International Date and Datetime Formats
SAS supports international formats that are equivalent to some of the most

commonly used English-language date formats. In each case, the format works like the
corresponding English-language format. Only the maximum, minimum, and default
widths are different.

Table 7.1 International Date and Datetime Formats

Language English Format International
Format

Min Max Default

Afrikaans (AFR) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEW. 10 200 20

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Catalan (CAT) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEW. 10 200 20

WEEKDAY. NLDATEWN. 4 200 10

Formats for NLS � International Date and Datetime Formats 51

Language English Format International
Format

Min Max Default

WORDDATX. NLDATE. 10 200 20

Croatian (CRO) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 40 27

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Czech (CSY) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 2 40 25

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Danish (DAN) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 2 31 31

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Dutch (NLD) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 2 38 28

WORDDATX. NLDATE. 10 200 20

WEEKDAY. NLDATEWN. 4 200 10

Finnish (FIN) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

52 International Date and Datetime Formats � Chapter 7

Language English Format International
Format

Min Max Default

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 2 37 37

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

French (FRA) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 27 27

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

German (DEU) DATE. NLDATE. 105 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 30 30

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Hungarian (HUN) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 40 28

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Italian (ITA) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 28 28

WEEKDAY. NLDATEWN. 4 200 10

Formats for NLS � International Date and Datetime Formats 53

Language English Format International
Format

Min Max Default

WORDDATX. NLDATE. 10 200 20

Macedonian (MAC) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 40 29

WEEKDDATX. EURDFWDX. 1 32 1

WORDDATX. NLDATEWN. 4 200 10

Norwegian (NOR) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 26 26

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Polish (POL) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 20 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 2 40 34

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Portuguese (PTG) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 38 38

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Russian (RUS) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

54 International Date and Datetime Formats � Chapter 7

Language English Format International
Format

Min Max Default

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 2 40 29

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Spanish (ESP) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 1 35 35

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Slovenian (SLO) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 40 29

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Swedish (SVE) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 26 26

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Swiss_French (FRS) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 26 26

WEEKDAY. NLDATEWN. 4 200 10

Formats for NLS � U.S. Dollars 55

Language English Format International
Format

Min Max Default

WORDDATX. NLDATE. 10 200 20

Swiss_German (DES) DATE. NLDATE. 10 200 20

DATETIME. NLDATM. 10 200 30

DOWNAME. NLDATEWN. 4 200 10

MONNAME. NLDATEMN. 4 200 10

MONYY. NLDATEYM. 6 200 10

WEEKDATX. NLDATEWX. 3 30 30

WEEKDAY. NLDATEWN. 4 200 10

WORDDATX. NLDATE. 10 200 20

Currency Representation

Overview to Currency
Currency is the medium of exchange, which is specific to a country. SAS provides

formats and informats for reading and writing currency.

U.S. Dollars
The DOLLARw.d formats and informats were first introduced to read and write

American currency. DOLLARw.d
� uses the dollar sign ($) currency symbol to precede U.S. currency
� uses a comma (,) as the thousands separator and a dot (.) as the decimal separator

Example:

$12,345.00

DOLLARXw.d also writes currency with a leading dollar sign ($), but uses a dot (.) as
the thousands separator and a comma (,) as the decimal separator. The reversal of the
dot and comma for currency formatting is a convention used in many European
countries.

Example:

$12.345,00

Because the dollar sign and some currency symbols used by other countries occupy
the same code point location in a code page (’5B’x on EBCDIC systems and ’24’x on
ASCII systems), DOLLARXw.d will produce the correct currency symbol for the
specified encoding.

Limitations of the DOLLAR formats and informats are:

� the lack of support for all currency symbols
� the reversal of the dot and comma for currency formatting is not used by all

European countries

56 Localized Euros � Chapter 7

Localized Euros
The EUROw.d formats and informats were introduced to support the euro currency

that was established by the European Monetary Union (EMU), which was formed in
1999. EUROw.d

� uses the euro (e) currency symbol to precede Euro currency data
� uses a comma (,) as the thousands separator and a dot (.) s the decimal separator

Example:

options locale=English_UnitedKingdom;
x=12345;
put x euro10.2;
run;

Output:

e12.345,00

Limitations of the EURO formats and informats are:
� the reversal of the dot and comma for currency formatting is not used by all

European countries
� euros are limited only to members of the EMU
� the specific value of the locale is required

Customized Currency Representations
To create a customized currency representation, you can use the FORMAT procedure.

The following example shows the creation of unique formats for the Australian dollar,
the Swiss franc, and the British pound. For details about the FORMAT procedure, see
Base SAS Procedures Guide.

Example Code 7.1 SAS Code That Customizes Currency Representations

proc format;

picture aud low-<0=’0,000,000,009.00’
(prefix=’-AU$’ mult=100)
0--high=’0,000,00,009.00 ’
(prefix=’AU$’ mult=100);

picture sfr low-<0=’0,000,000,009.00’
(prefix=’-SFr.’ mult=100)
0--high=’0,000,00,009.00 ’
(prefix=’-SFr.’ mult=100);

picture bpd low-<0=’0,000,000,009.00’
(prefix=’-BPd.’ mult=100)
0--high=’0,000,00,009.00 ’
(prefix=’BPd.’ mult=100);

run;
data currency;
input aud sfr bpd 12.2;
datalines;

Formats for NLS � Localized National and International Currency Representations 57

12345 12345 12345
0 0 0
-12345 -12345 -12345
;

proc print data=curr noobs;
var aud sfr ukp;
format aud aud. sfr sfr. bpd bpd.;
title ’Unique Currency Formats’

run;

Customizing currency representations offers flexibility, but requires a programming
solution.

Localized National and International Currency Representations
The NLMNYw.d and NLMNYIw.d formats and informats were introduced to

represent localized currency in two forms:

Localized national currency representation
reflects the customs and conventions of the locale. National formats are specified
using the NLMNYw.d formats and informats. You must also use the LOCALE=
option to specify the locale when using the NLMNYw.d formats and informats.

Example:

options locale=english_UnitedStates;
data _null_;
x=12345;
put x nlmny15.2;
run;

Output:

$12,345.00

Selected national currency representations follow:

Table 7.2 Localized National Currency Representations

LOCALE= Currency National Representation

English_UnitedStates U.S. dollars $12,345.00

French_Canada Canadian dollars 12 345,00 $

French_France French euros 12 345,00 e

58 Localized National and International Currency Representations � Chapter 7

LOCALE= Currency National Representation

French_Switzerland Swiss francs SFr. 12’345.00

German_Germany German euros 12.345,00 e

German_Luxembourg Luxembourg euros 12.345 e

Spanish_Spain Spanish pesetas 12.345,00 e

Spanish_Venezuela Venezuelan bolivars Bs12.345,00

The localized renderings show the native customs for representing currency. For
example, although these selected EMU countries might use the same euro
currency, their depiction of the currency varies. Whereas French_France uses no
thousands separator but uses a comma as a decimal separator, German_Germany
and Spanish_Spain use a dot as a thousands separator and a comma as a decimal
separator.

Localized International currency representation
conforms to ISO standard 4217. International forms are specified using the
NLMNYIw.d formats and informats. International forms are commonly used to
show a comparison of world currencies; for example, for airline ticket, trade, and
stock market pricing. You must also use the LOCALE= option to specify the locale
when using the NLMNYIw.d formats and informats. The letter “I,” which signifies
“International,” is appended to the format and informat names.

Example:

options locale=english_UnitedStates;
data _null_;
x=12345;
put x nlmnyi15.2;
run;

Output:

USD12,345.00

Selected international currency representations follow:

Table 7.3 International Currency Representations by Locale (ISO standard 4217)

LOCALE= Currency International
Representation

English_UnitedStates U.S. dollars USD12,345.00

French_Canada Canadian dollars 12,345.00 CAD

French_France French euros 12,345.00 EUR

French_Luxembourg Luxembourg euros 12,345.00 EUR

German_Germany German euros 12,345.00 EUR

German_Switzerland Swiss francs CHF 12,345.00

Spanish_Spain Spanish pesetas 12,345.00 EUR

Spanish_Venezuela Venezuelan bolivars VEB12,345.00

The international renderings also reflect native customs for representing
currency. For example, although all locales use a comma as the thousands

Formats for NLS � Unique National and International Monetary Representations 59

separator and a dot as the decimal separator, they vary the placement of the ISO
currency code. Whereas the EMU countries put the currency code after the
currency, English_UnitedStates, German_Switzerland, and Spanish_Venezuela
precede the currency with the ISO code.

For a complete list of the ISO standard 4217 currency codes, see
www.bsi-global.com/Technical%2BInformation/Publications/_Publications/
tig90x.doc.

A primary limitation of using localized national and international currency
representations is their dependence on a value for the LOCALE= system option.

Unique National and International Monetary Representations
The NLMNLISOw.d and NLMNIISOw.d formats and informats were introduced to

uniquely represent each currency without having to also use the LOCALE= option to
specify the locale. Each currency is specified by a unique ISO standard 4217 currency
code.

Unique national monetary representation
is specified by the unique ISO currency code. National formats are specified using
the NLMNLISOw.d formats and informats. In the following example, USD is the
ISO currency code for American dollars.

Note: When using the NLMNLISOw.d formats and informats, you do not use
the LOCALE= option to specify the locale. �

Example:

data _null_;
x=12345;
put x nlmnlusd15.2;
run;

Output:

US$12,345.00

Selected unique national currency representations follow:

Table 7.4 Unique Currency Representations by ISO Currency Code

ISO Currency Code Currency National Representation

USD U.S. dollars USD$12,345.00

CAD Canadian dollars CA$12,345.00

EUR French euros e12,345.00

CHF Swiss francs SFr.12,345.00

EUR German euros e12,345.00

EUR Luxembourg euros e12,345.00

EUR Spanish euros e12,345.00

VEB Venezuelan bolivars Not found

A currency symbol or a currency code precedes most currencies. Also used are a
comma as the thousands separator and a dot as the decimal separator.

60 Example: Representing Currency in National and International Formats � Chapter 7

Unique international monetary representation
is specified by the unique ISO currency code. International formats are specified
using the NLMNIISOw.d formats and informats. International forms are
commonly used to show a comparison of world currencies; for example, for airline
ticket, trade, and stock market pricing. The letter “I”, which signifies
“International”, is appended to the format and informat names. In the following
example, USD is the ISO currency code for American dollars.

Note: When using the NLMNIISOw.d formats and informats, you do not use
the LOCALE= option to specify the locale. �

Example:

data _null_;
x=12345;
put x nlmni15.2;
run;

Output:

USD12,345.00

Selected international currency representations follow:

Table 7.5 International Currency Representations by ISO Currency Code

ISO Currency Code Currency International
Representation

USD U.S. dollars USD12,345.00

CAD Canadian dollars CAD12,345.00

EUR French euros EUR12,345.00

CHF Swiss francs CHF12,234.00

EUR German euros EUR12,345.00

EUR Luxembourg euros EUR12,345.00

EUR Spanish euros EUR12,345.00

VEB Venezuelan bolivars Not found

The international renderings precede the currency with the appropriate ISO code.
Also used are a comma as the thousands separator and a dot as the decimal
separator.

Example: Representing Currency in National and International Formats
This SAS program uses the exchange rates for selected Asia-Pacific countries against

the U.S. dollar. In the output, each country’s currency is represented using a national
and an international format.

Example Code 7.2 SAS Code That Formats National and International Currency Formats

data curr;
input ex_date mmddyy. usd aud hkd jpy sgd 12.2;
datalines;
061704 1.00000 1.45349 7.79930 110.110 1.71900 u

Formats for NLS � Overview to European Currency Conversion 61

;
proc print data=curr noobs label;

var ex_date usd aud hkd jpy sgd;
format ex_date mmddyy. usd nlmnlusd15.2 aud nlmnlaud15.2 hkd nlmnlhkd15.2

jpy nlmnljpy15.2 sgd nlmnlsgd15.2; v

label ex_date=’Date’ usd="US" aud=’Australia’ hkd=’Hong Kong’
jpy=’Japan’ sgd=’Singapore’;

title ’Exchange Rates for Selected Asian-Pacific Countries
(Localized Currency Codes)’;

proc print data=curr noobs label;
var ex_date usd aud hkd jpy sgd;
format ex_date mmddyy. usd nlmniusd15.2 aud nlmniaud15.2 hkd nlmnihkd15.2

jpy nlmnijpy15.2 sgd nlmnisgd15.2; w

label ex_date=’Date’ usd="US" aud=’Australia’ hkd=’Hong Kong’
jpy=’Japan’ sgd=’Singapore’;

title ’Exchange Rates for Selected Asian-Pacific Countries
(International Currency Codes)’;

run;

1 These exchange rates, which were effective June 17, 2004, are specified as data in
the SAS program.

2 These NLMNLISO formats are applied to each of the numeric data items that are
specified in the INPUT statement. These formats show currencies in the
appropriate national formats.

3 These NLMNIISO formats are applied to each of the numeric data items that are
specified in the INPUT statement. These formats show currencies in the
appropriate international formats.

Display 7.1 National and International Format Output

European Currency Conversion

Overview to European Currency Conversion
SAS enables you to convert European currency from one country’s currency to an

equivalent amount in another country’s currency. You can also convert a country’s
currency to euros, and you can convert euros to a specific country’s currency.

SAS provides a group of formats, informats, and a function to use for currency
conversion. The set of formats EURFRISO can be used to convert specific European
currencies to an amount in euros. ISO represents an ISO standard 4214 currency code.
For a complete list of the ISO standard 4217 currency codes, see www.bsi-global.com/
Technical%2BInformation/Publications/_Publications/tig90x.doc.

62 Fixed Rates for Euro Conversion � Chapter 7

Fixed Rates for Euro Conversion
Twenty-five European countries comprise the EMU (European Monetary Union). The

conversion rates for 12 countries are fixed, and are incorporated into the EURFRISO
and EURTOISO formats and into the EUROCURR function. The following table lists
the currency codes and conversion rates for the specific currencies whose rates are fixed.

Table 7.6 Fixed Rates for Euro Conversion

ISO Currency Code Conversion Rate Currency

ATS 13.7603 Austrian schilling

BEF 40.3399 Belgian franc

DEM 1.95583 Deutsche mark

ESP 166.386 Spanish peseta

EUR 1 Euro

FIM 5.94573 Finnish markka

FRF 6.55957 French franc

GRD 340.750 Greek drachma

IEP 0.787564 Irish pound

ITL 1936.27 Italian lira

LUF 40.3399 Luxembourg franc

NLG 2.20371 Dutch guilder

PTE 200.482 Portuguese escudo

Variable Rates for Euro Conversion
For 13 countries in the EMU, currency conversion rates can fluctuate. The

conversion rates for these countries are stored in an ASCII text file that you reference
with the EURFRTBL fileref.

The following table lists the currency codes and conversion rates for the currencies of
the EMU countries whose rates fluctuate.

Table 7.7 Variable Rates for Euro Conversion

ISO Currency Code Conversion Rate Currency

CHF 1.60430 Swiss franc

CZK 34.8563 Czech koruna

DKK 7.49009 Danish krone

GBP 0.700132 British pound

HUF 260.325 Hungarian forint

NOK 9.19770 Norwegian krone

PLZ 4.2 Polish zloty

ROL 13.71 Romanian leu

Formats for NLS � Direct Conversion between European Currencies 63

ISO Currency Code Conversion Rate Currency

RUR 19.7680 Russian ruble

SEK 9.36591 Swedish krona

SIT 191 Slovenian tolar

TRL 336.912 Turkish lira

YUD 13.0644 Yugoslavian dinar

Example: Converting between a European Currency and Euros
The following example shows the conversion from Belgian francs to euros. The

EURFRBEF format divides the country’s currency amount by the exchange rate:

CurrencyAmount / ExchangeRate
12345 / 40.3399

Example Code 7.3 Example Code: Conversion from Belgian Francs to Euros

data _null_
x=12345 /*convert from Belgian francs to euros*/
put x eurfrbef15.2;
run;

Output:

e306,02

The following example shows the conversion of euros to Belgian francs. The
EURTOBEF format multiplies euros by the target currency’s exchange rate:

EurosAmount * ExchangeRate
12345 * 40.3399

Example Code 7.4 Example Code: Conversion from Euros to Belgian Francs

data _null_
x=12345; /*convert from euros to Belgian francs*/
put x eurtobef15.2;
run;

Output:

497996.07

Direct Conversion between European Currencies
The EUROCURR function uses the conversion rate tables to convert between

currencies. For conversion between the currencies of two countries,
1 SAS converts the amount to euros.

Note: SAS stores the intermediate value as precisely as the operating
environment allows, and does not round the value. �

2 SAS converts the amount in euros to an amount in the target currency.

64 Formats for NLS by Category � Chapter 7

SourceCurrencyAmount � EurosAmount � TargetCurrencyAmount

BelgianFrancs � euros
12345 / 40.3399 = 306.02456 euros

Euros � FrenchFrancs
306.02456 * 6.55957 = 2007.3895 French francs

Example Code 7.5 Example Code: Conversion from Belgian Francs to French Francs

data _null_;
x=eurocurr(12345,’bef’,’frf’); /*convert from Belgian francs to French francs*/
put x=;
run;

Output:

x=2007.389499

SAS converts Belgian francs to euros, and then euros to French francs.

Formats for NLS by Category
The following categories relate to NLS issues:

Table 7.8 Categories of NLS Formats

Category Description

BIDI text handling Instructs SAS to write bidirectional data values from data variables.

Character Instructs SAS to write character data values from character variables.

Currency Conversion Instructs SAS to convert an amount from one currency to another
currency.

DBCS Instructs SAS to translate double–byte-character sets that are used in
Asian languages.

Hebrew text handling Instructs SAS to read Hebrew data from data variables.

International Date and
Time

Instructs SAS to write data values from variables that represent dates,
times, and datetimes.

Numeric Instructs SAS to write numeric data values from numeric variables.

The following table provides brief descriptions of the SAS formats that are related to
NLS. For more detailed descriptions, see the NLS entry for each format.

Formats for NLS � Formats for NLS by Category 65

Table 7.9 Summary of NLS Formats by Category

Category Formats for NLS Description

BIDI text handling “$BIDIw. Format” on page
73

Converts between a logically ordered string and a
visually ordered string, by reversing the order of Hebrew
and Arabic characters while preserving the order of
Latin words and numbers.

“$LOGVSw. Format” on
page 83

Processes a character string that is in left-to-right-logical
order, and then writes the character string in visual
order.

“$LOGVSRw. Format” on
page 84

Processes a character string that is in right-to-left-logical
order, and then writes the character string in visual
order.

“$VSLOGw. Format” on
page 221

Processes a character string that is in visual order, and
then writes the character string in left-to-right logical
order.

“$VSLOGRw. Format” on
page 222

Processes a character string that is in visual order, and
then writes the character string in right-to-left logical
order.

Character “$UCS2Bw. Format” on
page 199

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in big-endian, 16-bit, UCS2, Unicode encoding.

“$UCS2BEw. Format” on
page 200

Processes a character string that is in big-endian, 16-bit,
UCS2, Unicode encoding, and then writes the character
string in the encoding of the current SAS session.

“$UCS2Lw. Format” on
page 201

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in little-endian, 16-bit, UCS2, Unicode encoding.

“$UCS2LEw. Format” on
page 203

Processes a character string that is in little-endian,
16-bit, UCS2, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

“$UCS2Xw. Format” on
page 204

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in native-endian, 16-bit, UCS2, Unicode encoding.

“$UCS2XEw. Format” on
page 205

Processes a character string that is in native-endian,
16-bit, UCS2, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

“$UCS4Bw. Format” on
page 206

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in big-endian, 32-bit, UCS4, Unicode encoding.

“$UCS4BEw. Format” on
page 207

Processes a character string that is in big-endian, 32-bit,
UCS4, Unicode encoding, and then writes the character
string in the encoding of the current SAS session.

“$UCS4Lw. Format” on
page 208

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in little-endian, 32-bit, UCS4, Unicode encoding.

66 Formats for NLS by Category � Chapter 7

Category Formats for NLS Description

“$UCS4LEw. Format” on
page 210

Processes a character string that is in little-endian,
32-bit, UCS4, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

“$UCS4Xw. Format” on
page 211

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in native-endian, 32-bit, UCS4, Unicode encoding.

“$UCS4XEw. Format” on
page 212

Processes a character string that is in native-endian,
32-bit, UCS4, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

“$UESCw. Format” on
page 213

Processes a character string that is encoded in the
current SAS session, and then writes the character
string in Unicode escape (UESC) representation.

“$UESCEw. Format” on
page 214

Processes a character string that is in Unicode escape
(UESC) representation, and then writes the character
string in the encoding of the current SAS session.

“$UNCRw. Format” on
page 215

Processes a character string that is encoded in the
current SAS session, and then writes the character
string in numeric character representation (NCR).

“$UNCREw. Format” on
page 217

Processes a character string that is in numeric character
representation (NCR), and then writes the character
string in the encoding of the current SAS session.

“$UPARENw. Format” on
page 218

Processes a character string that is encoded in the
current SAS session, and then writes the character
string in Unicode parenthesis (UPAREN) representation.

“$UPARENEw. Format”
on page 219

Processes a character string that is in Unicode
parenthesis (UPAREN), and then writes the character
string in the encoding of the current SAS session.

“$UTF8Xw. Format” on
page 220

Processes a character string that is in the encoding of the
current SAS session, and then writes the character string
in universal transformation format (UTF-8) encoding.

DBCS “$KANJIw. Format” on
page 81

Adds shift-code data to DBCS data.

“$KANJIXw. Format” on
page 82

Removes shift-code data from DBCS data.

Date and Time “HDATEw. Format” on
page 79

Writes date values in the form yyyy mmmmm dd where
dd is the day-of-the-month, mmmmm represents the
month’s name in Hebrew, and yyyy is the year.

“HEBDATEw. Format” on
page 80

Writes date values according to the Jewish calendar.

“MINGUOw. Format” on
page 85

Writes date values as Taiwanese dates in the form
yyyymmdd .

“NENGOw. Format” on
page 86

Writes date values as Japanese dates in the form
e.yymmdd .

Formats for NLS � Formats for NLS by Category 67

Category Formats for NLS Description

“NLDATEw. Format” on
page 89

Converts a SAS date value to the date value of the
specified locale, and then writes the date value as a date.

“NLDATEMDw. Format”
on page 90

Converts the SAS date value to the date value of the
specified locale, and then writes the value as the name of
the month and the day of the month.

“NLDATEMNw. Format”
on page 91

Converts a SAS date value to the date value of the
specified locale, and then writes the value as the name of
the month.

“NLDATEWw. Format” on
page 92

Converts a SAS date value to the date value of the
specified locale, and then writes the value as the date
and the day of the week.

“NLDATEWNw. Format”
on page 93

Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
day of the week.

“NLDATEYMw. Format”
on page 94

Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year and the name of the month.

“NLDATEYQw. Format”
on page 95

Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year and the quarter.

“NLDATEYRw. Format”
on page 96

Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year.

“NLDATEYWw. Format”
on page 97

Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year and the week.

“NLDATMw. Format” on
page 98

Converts a SAS datetime value to the datetime value of
the specified locale, and then writes the value as a
datetime.

“NLDATMAPw. Format”
on page 99

Converts a SAS datetime value to the datetime value of
the specified locale, and then writes the value as a
datetime with a.m. or p.m.

“NLDATMDTw. Format”
on page 100

Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
name of the month, day of the month and year.

“NLDATMMDw. Format”
on page 101

Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
name of the month and the day of the month.

“NLDATMMNw. Format”
on page 101

Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
name of the month.

“NLDATMTMw. Format”
on page 102

Converts the time portion of a SAS datetime value to the
time-of-day value of the specified locale, and then writes
the value as a time of day.

68 Formats for NLS by Category � Chapter 7

Category Formats for NLS Description

“NLDATMWNw. Format”
on page 103

Converts a SAS datetime value to the datetime value of
the specified locale, and then writes the value as the day
of the week.

“NLDATMWw. Format” on
page 104

Converts SAS datetime values to the locale sensitive
datetime string as the day of the week and the datetime.

“NLDATMYMw. Format”
on page 105

Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
year and the name of the month.

“NLDATMYQw. Format”
on page 106

Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
year and the quarter of the year.

“NLDATMYRw. Format”
on page 107

Converts the SAS datetime value to the datetime value of
the specified locale, and then writes the value as the year.

“NLDATMYWw. Format”
on page 107

Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
year and the name of the week.

“NLTIMEw. Format” on
page 197

Converts a SAS time value to the time value of the
specified locale, and then writes the value as a time
value.

“NLTIMAPw. Format” on
page 198

Converts a SAS time value to the time value of a
specified locale, and then writes the value as a time
value with a.m. or p.m.

“WEEKUw. Format” on
page 223

Writes a week number in decimal format by using the U
algorithm.

“WEEKVw. Format” on
page 225

Writes a week number in decimal format by using the V
algorithm.

“WEEKWw. Format” on
page 227

Writes a week number in decimal format by using the W
algorithm.

“YYWEEKUw. Format” on
page 228

Writes a week number in decimal format by using the U
algorithm, excluding day-of-the-week information.

“YYWEEKVw. Format” on
page 230

Writes a week number in decimal format by using the V
algorithm, excluding day-of-the-week information.

“YYWEEKWw. Format”
on page 231

Writes a week number in decimal format by using the W
algorithm, excluding the day-of-week information.

Hebrew text handling “$CPTDWw. Format” on
page 74

Processes a character string that is in Hebrew text,
encoded in IBM-PC (cp862), and then writes the
character string in Windows Hebrew encoding (cp 1255).

“$CPTWDw. Format” on
page 75

Processes a character string that is encoded in Windows
(cp1255), and then writes the character string in Hebrew
DOS (cp862) encoding.

Numeric “EUROw.d Format” on
page 76

Writes numeric values with a leading euro symbol (E), a
comma that separates every three digits, and a period
that separates the decimal fraction.

Formats for NLS � Formats for NLS by Category 69

Category Formats for NLS Description

“EUROXw.d Format” on
page 77

Writes numeric values with a leading euro symbol (E), a
period that separates every three digits, and a comma
that separates the decimal fraction.

“NLBESTw. Format” on
page 88

Writes the best numerical notation based on the locale.

“NLMNIAEDw.d Format”
on page 108

Writes the monetary format of the international
expression for the United Arab Emirates.

“NLMNIAUDw.d Format”
on page 109

Writes the monetary format of the international
expression for Australia.

“NLMNIBGNw.d Format”
on page 110

Writes the monetary format of the international
expression for Bulgaria.

“NLMNIBRLw.d Format”
on page 111

Writes the monetary format of the international
expression for Brazil.

“NLMNICADw.d Format”
on page 112

Writes the monetary format of the international
expression for Canada.

“NLMNICHFw.d Format”
on page 113

Writes the monetary format of the international
expression for Liechtenstein and Switzerland.

“NLMNICNYw.d Format”
on page 114

Writes the monetary format of the international
expression for China.

“NLMNICZKw.d Format”
on page 115

Writes the monetary format of the international
expression for the Czech Republic.

“NLMNIDKKw.d Format”
on page 116

Writes the monetary format of the local expression for
Denmark, Faroe Island, and Greenland.

“NLMNIEEKw.d Format”
on page 117

Writes the monetary format of the international
expression for Estonia.

“NLMNIEGPw.d Format”
on page 118

Writes the monetary format of the international
expression for Egypt.

“NLMNIEURw.d Format”
on page 119

Writes the monetary format of the international
expression for Belgium, Finland, France, Germany,
Greece, Ireland, Italy, Luxembourg, Malta, the
Netherlands, Portugal, Slovenia, and Spain.

“NLMNIGBPw.d Format”
on page 120

Writes the monetary format of the international
expression for the United Kingdom.

“NLMNIHKDw.d Format”
on page 121

Writes the monetary format of the international
expression for Hong Kong.

“NLMNIHRKw.d Format”
on page 122

Writes the monetary format of the international
expression for Croatia.

“NLMNIHUFw.d Format”
on page 123

Writes the monetary format of the international
expression for Hungary.

“NLMNIIDRw.d Format”
on page 124

Writes the monetary format of the international
expression for Indonesia.

“NLMNIILSw.d Format”
on page 125

Writes the monetary format of the international
expression for Israel.

70 Formats for NLS by Category � Chapter 7

Category Formats for NLS Description

“NLMNIINRw.d Format”
on page 126

Writes the monetary format of the international
expression for India.

“NLMNIJPYw.d Format”
on page 127

Writes the monetary format of the international
expression for Japan.

“NLMNIKRWw.d Format”
on page 128

Writes the monetary format of the international
expression for South Korea.

“NLMNILTLw.d Format”
on page 129

Writes the monetary format of the international
expression for Lithuania.

“NLMNILVLw.d Format”
on page 130

Writes the monetary format of the international
expression for Latvia.

“NLMNIMOPw.d Format”
on page 131

Writes the monetary format of the international
expression for Macau.

“NLMNIMXNw.d Format”
on page 132

Writes the monetary format of the international
expression for Mexico.

“NLMNIMYRw.d Format”
on page 133

Writes the monetary format of the international
expression for Malaysia.

“NLMNINOKw.d Format”
on page 134

Writes the monetary format of the international
expression for Norway.

“NLMNINZDw.d Format”
on page 135

Writes the monetary format of the international
expression for New Zealand.

“NLMNIPLNw.d Format”
on page 136

Writes the monetary format of the international
expression for Poland.

“NLMNIRUBw.d Format”
on page 137

Writes the monetary format of the international
expression for Russia.

“NLMNISEKw.d Format”
on page 138

Writes the monetary format of the international
expression for Sweden.

“NLMNISGDw.d Format”
on page 139

Writes the monetary format of the international
expression for Singapore.

“NLMNITHBw.d Format”
on page 140

Writes the monetary format of the international
expression for Thailand.

“NLMNITRYw.d Format”
on page 141

Writes the monetary format of the international
expression for Turkey.

“NLMNITWDw.d Format”
on page 142

Writes the monetary format of the international
expression for Taiwan.

“NLMNIUSDw.d Format”
on page 143

Writes the monetary format of the international
expression for Puerto Rico and the United States.

“NLMNIZARw.d Format”
on page 144

Writes the monetary format of the international
expression for South Africa.

“NLMNLAEDw.d Format”
on page 145

Writes the monetary format of the local expression for
the United Arab Emirates.

“NLMNLAUDw.d Format”
on page 146

Writes the monetary format of the local expression for
Australia.

“NLMNLBGNw.d Format”
on page 147

Writes the monetary format of the local expression for
Bulgaria.

Formats for NLS � Formats for NLS by Category 71

Category Formats for NLS Description

“NLMNLBRLw.d Format”
on page 148

Writes the monetary format of the local expression for
Brazil.

“NLMNLCADw.d Format”
on page 149

Writes the monetary format of the local expression for
Canada.

“NLMNLCHFw.d Format”
on page 150

Writes the monetary format of the local expression for
Liechtenstein and Switzerland.

“NLMNLCNYw.d Format”
on page 151

Writes the monetary format of the local expression for
China.

“NLMNLCZKw.d Format”
on page 152

Writes the monetary format of the local expression for
the Czech Republic.

“NLMNLDKKw.d Format”
on page 153

Writes the monetary format of the local expression for
Denmark, Faroe Island, and Greenland.

“NLMNLEEKw.d Format”
on page 154

Writes the monetary format of the local expression for
Estonia.

“NLMNLEGPw.d Format”
on page 155

Writes the monetary format of the local expression for
Egypt.

“NLMNLEURw.d Format”
on page 156

Writes the monetary format of the local expression for
Austria, Belgium, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, Malta, the Netherlands,
Portugal, Slovenia, and Spain.

“NLMNLGBPw.d Format”
on page 157

Writes the monetary format of the local expression for
the United Kingdom.

“NLMNLHKDw.d Format”
on page 158

Writes the monetary format of the local expression for
Hong Kong.

“NLMNLHRKw.d Format”
on page 159

Writes the monetary format of the local expression for
Croatia.

“NLMNLHUFw.d Format”
on page 160

Writes the monetary format of the local expression for
Hungary.

“NLMNLIDRw.d Format”
on page 161

Writes the monetary format of the local expression for
Indonesia.

“NLMNLILSw.d Format”
on page 162

Writes the monetary format of the local expression for
Israel.

“NLMNLINRw.d Format”
on page 163

Writes the monetary format of the local expression for
India.

“NLMNLJPYw.d Format”
on page 164

Writes the monetary format of the local expression for
Japan.

“NLMNLKRWw.d Format”
on page 165

Writes the monetary format of the local expression for
South Korea.

“NLMNLLTLw.d Format”
on page 166

Writes the monetary format of the local expression for
Lithuania.

“NLMNLLVLw.d Format”
on page 167

Writes the monetary format of the local expression for
Latvia.

“NLMNLMOPw.d Format”
on page 168

Writes the monetary format of the local expression for
Macau.

72 Formats for NLS by Category � Chapter 7

Category Formats for NLS Description

“NLMNLMXNw.d Format”
on page 169

Writes the monetary format of the local expression for
Mexico.

“NLMNLMYRw.d Format”
on page 170

Writes the monetary format of the local expression for
Malaysia.

“NLMNLNOKw.d Format”
on page 171

Writes the monetary format of the local expression for
Norway.

“NLMNLNZDw.d Format”
on page 172

Writes the monetary format of the local expression for
New Zealand.

“NLMNLPLNw.d Format”
on page 173

Writes the monetary format of the local expression for
Poland.

“NLMNLRUBw.d Format”
on page 174

Writes the monetary format of the local expression for
Russia.

“NLMNLSEKw.d Format”
on page 175

Writes the monetary format of the local expression for
Sweden.

“NLMNLSGDw.d Format”
on page 176

Writes the monetary format of the local expression for
Singapore.

“NLMNLTHBw.d Format”
on page 177

Writes the monetary format of the local expression for
Thailand.

“NLMNLTRYw.d Format”
on page 178

Writes the monetary format of the local expression for
Turkey.

“NLMNLTWDw.d Format”
on page 179

Writes the monetary format of the local expression for
Taiwan.

“NLMNLUSDw.d Format”
on page 180

Writes the monetary format of the local expression for
Puerto Rico and the United States.

“NLMNLZARw.d Format”
on page 181

Writes the monetary format of the local expression for
South Africa.

“NLMNYw.d Format” on
page 182

Writes the monetary format of the local expression in the
specified locale using local currency.

“NLMNYIw.d Format” on
page 184

Writes the monetary format of the international
expression in the specified locale.

“NLNUMw.d Format” on
page 185

Writes the numeric format of the local expression in the
specified locale.

“NLNUMIw.d Format” on
page 186

Writes the numeric format of the international
expression in the specified locale.

“NLPCTw.d Format” on
page 188

Writes percentage data of the local expression in the
specified locale.

“NLPCTIw.d Format” on
page 189

Writes percentage data of the international expression in
the specified locale.

“NLPCTNw.d Format” on
page 190

Produces percentages, using a minus sign for negative
values.

“NLPCTPw.d Format” on
page 191

Writes locale-specific numeric values as percentages.

“NLPVALUEw.d Format”
on page 192

Writes p-values of the local expression in the specified
locale.

Formats for NLS � $BIDIw. Format 73

Category Formats for NLS Description

“NLSTRMONw.d Format”
on page 193

Writes a numeric value as a day-of-the-month in the
specified locale.

“NLSTRQTRw.d Format”
on page 195

Writes a numeric value as the quarter-of-the-year in the
specified locale.

“NLSTRWKw.d Format”
on page 196

Writes a numeric value as the day-of-the-week in the
specified locale.

“YENw.d Format” on page
233

Writes numeric values with yen signs, commas, and
decimal points.

$BIDIw. Format

Converts between a logically ordered string and a visually ordered string, by reversing the order
of Hebrew and Arabic characters while preserving the order of Latin words and numbers.

Category: BIDI text handling

Alignment: left

Syntax
$BIDIw.

Syntax Description

w
specifies the width of the output field.

Default: 1 if w is not specified

Range: 1–32767

Details
In the Windows operating environment, Hebrew and Arabic text is stored in logical
order. The text is stored in the order that it is written and not necessarily as it is
displayed. However, in other operating environments, Hebrew text is stored in the
same order it is displayed. SAS users can encounter Hebrew and Arabic text that is
reversed. Such situations can occur when you use SAS/CONNECT or other software to
transfer SAS data sets or reports with Hebrew and Arabic text from a visual operating
environment to a logical one. The $BIDI format is a format that reverses Hebrew and
Arabic text while maintaining the order of numbers and Latin-1 words.

Operating Environment Information: In mainframe operating environments, this
format is designed to work with NewCode Hebrew and Arabic. Some mainframe
operating environments might experience unsatisfactory results, because they use the
OldCode Hebrew or Arabic encoding. There is a hotfix for this encoding on SAS
Institute’s Web site: http://support.sas.com/. �

74 $CPTDWw. Format � Chapter 7

Comparisons
The $BIDIw. format performs a reversing function similar to the $REVERJw. format,
which writes character data in reverse order and preserves blanks. $BIDIw. behaves in
the following way:

� $BIDIw. reverses the order of words and numbers in a specified string, preserving
blanks. Latin-1 words and numbers themselves are not reversed, only their order
in the string.

� When $BIDI encounters a word consisting of Hebrew or Arabic characters in the
text string, the characters in the Hebrew or Arabic word are reversed and the
position of the Hebrew or Arabic word is reversed in the string.

Examples

This example demonstrates how $BIDIw. reverses Hebrew characters. The Hebrew
is reversed in the string. The Hebrew characters in the words are also reversed.

The following lines are written to the SAS log:

$CPTDWw. Format

Processes a character string that is in Hebrew text, encoded in IBM-PC (cp862), and then writes
the character string in Windows Hebrew encoding (cp 1255).

Category: Hebrew text handling
Alignment: left

Syntax
$CPTDWw.

Syntax Description

w
specifies the width of the output field.
Default: 200
Range: 1–32000

Formats for NLS � $CPTWDw. Format 75

Comparisons
The $CPTDWw. format performs processing that is the opposite of the $CPTWDw.
format.

Examples

The following example uses the input value of “808182x.”

Statement Result

----+----1----+

put text $cptdw3.;

See Also

Formats:
“$CPTWDw. Format” on page 75

Informats:
“$CPTDWw. Informat” on page 310
“$CPTWDw. Informat” on page 311

$CPTWDw. Format

Processes a character string that is encoded in Windows (cp1255), and then writes the character
string in Hebrew DOS (cp862) encoding.

Category: Hebrew text handling
Alignment: left

Syntax
$CPTWDw.

Syntax Description

w
specifies the width of the output field.
Default: 200
Range: 1–32000

Comparisons
The $CPTWDw. format performs processing that is the opposite of the $CPTDWw.
format.

76 EUROw.d Format � Chapter 7

Examples

The following example uses the input value of “ ”.

Statement Result

----+----1----+----2----+

put text $cptwd3.;

See Also

Formats:
“$CPTDWw. Format” on page 74

Informats:
“$CPTDWw. Informat” on page 310
“$CPTWDw. Informat” on page 311

EUROw.d Format

Writes numeric values with a leading euro symbol (E), a comma that separates every three digits,
and a period that separates the decimal fraction.

Category: Numeric
Alignment: right

Syntax
EUROw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 1-32
Tip: If you want the euro symbol to be part of the output, be sure to choose an

adequate width. See “Examples” on page 77.

Formats for NLS � EUROXw.d Format 77

d
specifies the number of digits to the right of the decimal point in the numeric value.

Default: 0

Range: 0-31

Requirement: must be less than w

Comparisons
� The EUROw.d format is similar to the EUROXw.d format, but EUROXw.d format

reverses the roles of the decimal point and the comma. This convention is common
in European countries.

� The EUROw.d format is similar to the DOLLARw.d format, except that
DOLLARw.d format writes a leading dollar sign instead of the euro symbol.

Examples

These examples use 1254.71 as the value of amount.

Statements Results

----+----1----+----2----+----3

put amount euro10.2; E1,254.71

put amount euro5.; 1,255

put amount euro9.2; E1,254.71

put amount euro15.3; E1,254.710

See Also

Formats:

“EUROXw.d Format” on page 77

Informats:

“EUROw.d Informat” on page 312

“EUROXw.d Informat” on page 313

EUROXw.d Format

Writes numeric values with a leading euro symbol (E), a period that separates every three digits,
and a comma that separates the decimal fraction.

Category: Numeric

Alignment: right

78 EUROXw.d Format � Chapter 7

Syntax
EUROXw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 1-32
Tip: If you want the euro symbol to be part of the output, be sure to choose an

adequate width. See “Examples” on page 78.

d
specifies the number of digits to the right of the decimal point in the numeric value.

Default: 0

Range: 0-31

Requirement: must be less than w

Comparisons
� The EUROXw.d format is similar to the EUROw.d format, but EUROw.d format

reverses the roles of the comma and the decimal point. This convention is common
in English–speaking countries.

� The EUROXw.d format is similar to the DOLLARXw.d format, except that
DOLLARXw.d format writes a leading dollar sign instead of the euro symbol.

Examples

These examples use 1254.71 as the value of amount.

Statements Results

----+----1----+----2----+----3

put amount eurox10.2; E1.254,71

put amount eurox5.; 1.255

put amount eurox9.2; E1.254,71

put amount eurox15.3; E1.254,710

See Also

Formats:

“EUROw.d Format” on page 76

Informats:
“EUROw.d Informat” on page 312

“EUROXw.d Informat” on page 313

Formats for NLS � HDATEw. Format 79

HDATEw. Format

Writes date values in the form yyyy mmmmm dd where dd is the day-of-the-month, mmmmm
represents the month’s name in Hebrew, and yyyy is the year.

Category: Date and Time

Alignment: right

Syntax
HDATEw.

Syntax Description

w
specifies the width of the output field.

Note: Use widths 9, 11, 15, or 17 for the best view. �

Default: 17

Range: 9–17

Details
The HDATEw. format writes the SAS date value in the form yyyy mmmmm dd:

yyyy
is the year

mmmmm
is the Hebrew name of the month

dd
is the day-of-the-month

Examples

The following example uses the input value of 15780, which is the SAS date of March
16, 2003.

Statements Results

----+----1----+----2----+

put day hdate9.; 03 16

put day hdate11.; 2003 16

put day hdate17.; 2003 16

80 HEBDATEw. Format � Chapter 7

See Also

Formats:
“HEBDATEw. Format” on page 80

HEBDATEw. Format

Writes date values according to the Jewish calendar.

Category: Date and Time
Alignment: right

Syntax
HEBDATEw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 7–24

Details
The Jewish calendar is a combined solar and lunar calendar. Years are counted from the
creation of the world, which according to Jewish history, occurred 3760 years and three
months before the commencement of the Christiar. You must add 3761, beginning in
the autumn of a specified year in the Gregorian calendar to calculate the Hebrew year.

The HEBDATEw. format writes the SAS date value according to the Jewish
calendar. The date is written in one of the following formats:

long

default

short

Examples

The following example uses the input value of 15780, which is the SAS date of March
16, 2003.

Formats for NLS � $KANJIw. Format 81

Statements Results

----+----1----+

put day hebdate13.;

put day hebdate16.;

put day hebdate24.;

See Also

Informats:

“HDATEw. Format” on page 79

$KANJIw. Format

Adds shift-code data to DBCS data.

Category: DBCS

Alignment: left

Syntax
$KANJIw.

Syntax Description

w
specifies the width of the output field.

Restriction: The width must be an even number. If it is an odd number, it is
truncated. The width must be equal to or greater than the length of the shift-code
data.

Range: The minimum width of the format is 2 + (length of shift code used
on the current DBCSTYPE= setting)*2.

Details
The $KANJI format adds shift-code data to DBCS data that does not have shift-code
data. If the input data is blank, shift-code data is not added.

The $KANJI format processes host-mainframe data, but $KANJI can be used on
other platforms. If you use the $KANJI format on non-EBCDIC (non-modal encoding)
hosts, the data does not change.

82 $KANJIXw. Format � Chapter 7

See Also

Formats:

“$KANJIXw. Format” on page 82

Informats:

“$KANJIw. Informat” on page 317

“$KANJIXw. Informat” on page 318

System Options:

“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 456

$KANJIXw. Format

Removes shift-code data from DBCS data.

Category: DBCS

Alignment: left

Syntax
$KANJIXw.

Syntax Description

w
specifies the width of the output field.

Restriction: The width must be an even number. If it is an odd number, it is
truncated. The width must be equal to or greater than the length of the shift-code
data.

Range: The minimum width of the format is 2.

Details
The $KANJIX format removes shift-code data from DBCS data. The input data length
must be 2 + (SO/SI length)*2. The data must start with SO and end with SI, unless
single-byte data is returned.

The $KANJIX format processes host mainframe data, but $KANJIX can be used on
other platforms. If you use the $KANJIX format on non-EBCDIC (non-modal encoding)
hosts, the data does not change.

See Also

Formats:

“$KANJIw. Format” on page 81

Formats for NLS � $LOGVSw. Format 83

Informats:
“$KANJIw. Informat” on page 317
“$KANJIXw. Informat” on page 318

System Options:
“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 456

$LOGVSw. Format

Processes a character string that is in left-to-right-logical order, and then writes the character
string in visual order.

Category: BIDI text handling
Alignment: left

Syntax
$LOGVSw.

Syntax Description

w
specifies the width of the output field.
Default: 200
Range: 1–32000

Details
The $LOGVSw. format is used when you store logical-ordered text on a visual server.

Note: If the $LOGVSw. format is not accessible, then the Hebrew or Arabic portion
of the data will be reversed. �

Comparisons
The $LOGVSw. format performs processing that is the opposite of the $LOGVSRw.
format.

Examples

The following example uses the Hebrew input value of “ flight”.

Statements Results

----+----1----+----2----+

put text $logvs12.; flight

84 $LOGVSRw. Format � Chapter 7

The following example uses the Arabic input value of “ ” computer.

Statements Results

----+----1----+----2----+

put text $logvs12.;

computer

See Also

Formats:
“$LOGVSRw. Format” on page 84

Informats:
“$LOGVSRw. Informat” on page 320
“$LOGVSw. Informat” on page 319

$LOGVSRw. Format

Processes a character string that is in right-to-left-logical order, and then writes the character
string in visual order.

Category: BIDI text handling
Alignment: left

Syntax
$LOGVSRw.

Syntax Description

w
specifies the width of the output field.
Default: 200
Range: 1–32000

Details
The $LOGVSRw. format is used when you store logical-ordered text on a visual server.
The Hebrew or Arabic portion of the text is reversed if the $LOGVSw. format is not on
the server.

Comparisons
The $LOGVSRw. format performs processing that is opposite of the $LOGVSw. format.

Formats for NLS � MINGUOw. Format 85

Examples

The following example uses the Hebrew input value of “ flight”.

Statements Results

----+----1----+

put text $logvsr12.; flight

The following example uses the Arabic input value of “ ” computer.

Statements Results

----+----1----+

put text $logvsr12.;

computer

See Also

Formats:
“$LOGVSw. Format” on page 83

Informats:
“$LOGVSw. Informat” on page 319
“$LOGVSRw. Informat” on page 320

MINGUOw. Format

Writes date values as Taiwanese dates in the form yyyymmdd.

Category: Date and Time
Alignment: left

Syntax
MINGUOw.

Syntax Description

w
specifies the width of the output field.

86 NENGOw. Format � Chapter 7

Default: 8
Range: 1–10

Details
The MINGUOw. format writes SAS date values in the form yyyymmdd, where

yyyy
is an integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

The Taiwanese calendar uses 1912 as the base year (01/01/01 is January 1, 1912).
Dates before 1912 appear as a series of asterisks. Year values do not roll around after
100 years; instead, they continue to increase.

Examples

The example table uses the following input values:
1 12054 is the SAS date value that corresponds to January 1, 1993.
2 18993 is the SAS date value that corresponds to January 1, 2012.
3 -20088 is the SAS date value that corresponds to January 1, 1905.

Statements Results

----+----1

put date minguo10.; 0082/01/01

0101/01/01

See Also

Informats:
“MINGUOw. Informat” on page 321

NENGOw. Format

Writes date values as Japanese dates in the form e.yymmdd.

Category: Date and Time
Alignment: left

Formats for NLS � NENGOw. Format 87

Syntax
NENGOw.

Syntax Description

w
specifies the width of the output field.

Default: 10

Range: 2–10

Details
The NENGOw. format writes SAS date values in the form e.yymmdd, where

e
is the first letter of the name of the emperor (Meiji, Taisho, Showa, or Heisei).

yy
is an integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

If the width is too small, SAS omits the period.

Examples

The example table uses the input value of 15342, which is the SAS date value that
corresponds to January 2, 2002.

Statements Results

----+----1

put date nengo3.; H14

put date nengo6.; H14/01

put date nengo8.; H.140102

put date nengo9.; H14/01/02

put date nengo10.; H.14/01/02

See Also

Informats:

“NENGOw. Informat” on page 323

88 NLBESTw. Format � Chapter 7

NLBESTw. Format
Writes the best numerical notation based on the locale.

Category: Numeric
Alignment: right

Syntax
NLBESTw.

Syntax Description

w
specifies the width of the output field.
Default: 12
Tip: If you print numbers between 0 and .01 exclusively, then use a field width of at

least 7 to avoid excessive rounding. If you print numbers between 0 and -.01
exclusively, then use a field width of at least 8.

Range: 1–32

Details
The NLBEST format writes the best numerical value based on the locale’s decimal
point and the sign mark’s location. NLBEST is similar to the BEST format. For more
information, see the BEST format in the SAS Language Reference: Dictionary.

Examples

The following code produces results based on the locale:

x=-1257000
put x nlbest6.;
put x nlbest3.;
put "=====";
x=-0.1
put x nlbest6.;
put x nlbest3.;
put "=====";
x=0.1
put x nlbest6.;
put x nlbest3.;
put "=====";
x=1257000
put x nlbest6.;
put x nlbest3.;

Formats for NLS � NLDATEw. Format 89

Locales Results

locale=English_UnitedStates -126E4

=====

-0.1

-.1

=====

0.1

0.1

=====

1.26E6

1E6

locale=German_Germany -126E4

=====

-0,1

-,1

=====

0,1

0,1

=====

1,26E6

1E6

locale=ar_BH 126E4-

=====

0.1-

.1-

=====

0.1

0.1

=====

1.26E6

1E6

NLDATEw. Format

Converts a SAS date value to the date value of the specified locale, and then writes the date value
as a date.

Category: Date and Time

90 NLDATEMDw. Format � Chapter 7

Alignment: left

Syntax
NLDATEw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the date to fit
the format width.
Default: 20
Range: 10–200

Comparisons
NLDATEw. is similar to DATEw. and WORDDATEw. except that NLDATEw. is
locale-specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1----+----2

options locale=English_UnitedStates;

put day nldate.; February 24, 2003

options locale=German_Germany;

put day nldate.; 24. Februar 2003

See Also

Formats:
“NLDATEMNw. Format” on page 91
“NLDATEWw. Format” on page 92
“NLDATEWNw. Format” on page 93

NLDATEMDw. Format
Converts the SAS date value to the date value of the specified locale, and then writes the value as
the name of the month and the day of the month.

Formats for NLS � NLDATEMNw. Format 91

Category: Date and Time

Alignment: left

Syntax
NLDATEMDw.

Syntax Description

w
specifies the width of the output field.

Default: 16

Range: 6-200

Examples

This example uses the en_US locale option.

Statement Result

put 1 nldatemd.; January 02

See Also

Formats:

“NLDATEYMw. Format” on page 94

NLDATEMNw. Format

Converts a SAS date value to the date value of the specified locale, and then writes the value as
the name of the month.

Category: Date and Time

Alignment: left

Syntax
NLDATEMNw.

92 NLDATEWw. Format � Chapter 7

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the name of the
month to fit the format width.

Default: 10

Range: 4–200

Comparisons
NLDATEMNw. is similar to MONNAMEw. except that NLDATEMNw. is
locale-specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1

options locale=English_UnitedStates;

put month nldatemn.; February

options locale=German_Germany;

put month nldatemn.; Februar

See Also

Formats:

“NLDATEw. Format” on page 89

“NLDATEWw. Format” on page 92

“NLDATEWNw. Format” on page 93

NLDATEWw. Format

Converts a SAS date value to the date value of the specified locale, and then writes the value as
the date and the day of the week.

Category: Date and Time

Alignment: left

Formats for NLS � NLDATEWNw. Format 93

Syntax
NLDATEWw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the date and the
day of the week to fit the format width.
Default: 20
Range: 10–200

Comparisons
NLDATEWw. is similar to WEEKDATEw. except that NLDATEWw. is locale specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1----+----2

options locale=English_UnitedStates;

put date nldatew.; Sun, Feb 24, 03

options locale=German_Germany;

put date nldatew.; So, 24. Feb 03

See Also

Formats:
“NLDATEw. Format” on page 89
“NLDATEMNw. Format” on page 91
“NLDATEWNw. Format” on page 93

NLDATEWNw. Format

Converts the SAS date value to the date value of the specified locale, and then writes the date
value as the day of the week.

Category: Date and Time
Alignment: left

94 NLDATEYMw. Format � Chapter 7

Syntax
NLDATEWNw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the day of the
week to fit the format width.
Default: 10
Range: 4–200

Comparisons
NLDATEWNw. is similar to DOWNAMEw. except that NLDATEWNw. is
locale-specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1

options locale=English_UnitedStates;

put date nldatewn.; Sunday

options locale=German_Germany;

put date nldatewn.; Sonntag

See Also

Formats:
“NLDATEw. Format” on page 89
“NLDATEMNw. Format” on page 91
“NLDATEWw. Format” on page 92

NLDATEYMw. Format
Converts the SAS date value to the date value of the specified locale, and then writes the date
value as the year and the name of the month.

Formats for NLS � NLDATEYQw. Format 95

Category: Date and Time

Alignment: left

Syntax

NLDATEYMw.

Syntax Description

w
specifies the width of the output field.

Default: 16

Range: 6–200

Examples

This example uses the en_US locale option.

Statement Result

put 1 nldateym.; January 1960

See Also

Formats:

“NLDATEMDw. Format” on page 90

NLDATEYQw. Format

Converts the SAS date value to the date value of the specified locale, and then writes the date
value as the year and the quarter.

Category: Date and Time

Alignment: left

Syntax
NLDATEYQw.

96 NLDATEYRw. Format � Chapter 7

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 4–200

Examples

This example uses the fr_FR locale option.

Statements Results

options locale=fr_FR;

data _null_;

dy=today();

dt=datetime();

put "+— NLDATEYQ min=4 default=16
max=200 —+";

put ’16’ +5 dy nldateyq.;

put ’4’ +5 dy nldateyq4.;

put ’14’ +5 dy nldateyq14.;

put ’32’ +5 dy nldateyq32.;

put ’200’ +5 dy nldateyq200.;

run;

+— NLDATEYQ min=4 default=16 max=200 —+

16 T3 08

4 ****

14 T3 08

32 3e trimestre 2008

200

3e trimestre 2008

NLDATEYRw. Format

Converts the SAS date value to the date value of the specified locale, and then writes the date
value as the year.

Category: Date and Time
Alignment: left

Syntax
NLDATEYRw.

Syntax Description

w
specifies the width of the output field.

Formats for NLS � NLDATEYWw. Format 97

Default: 16
Range: 2–200

Examples

This example uses the fr_FR locale option.

Statements Results

options locale=fr_FR;

data _null_;

dy=today();

dt=datetime();

put "+— NLDATEYR min=2 default=16
max=200 —+";

put dy nldateyr.;

put dy nldateyr2.;

put dy nldateyr8.;

put dy nldateyr200.;

run;

+— NLDATEYR min=2 default=16 max=200 —+

2008

08

2008

2008

NLDATEYWw. Format

Converts the SAS date value to the date value of the specified locale, and then writes the date
value as the year and the week.

Category: Date and Time
Alignment: left

Syntax
NLDATEYWw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 5–200

Examples

This example uses the fr_FR locale option.

98 NLDATMw. Format � Chapter 7

Statements Results

options locale=fr_FR;

data _null_;

dy=today();

dt=datetime();

put "+— NLDATEYW min=5 default=16
max=200 —+";

put ’16’ +5 dy nldateyw.;

put ’5’ +5 dy nldateyw5.;

put ’8’ +5 dy nldateyw8.;

put ’32’ +5 dy nldateyw32.;

put ’200’ +5 dy nldateyw200.;

run;

16 Week 33 2008

5 *****

8 W33 08

32 Week 33 2008

200

Week 33 2008

NLDATMw. Format

Converts a SAS datetime value to the datetime value of the specified locale, and then writes the
value as a datetime.

Category: Date and Time
Alignment: left

Syntax
NLDATMw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the datetime
value to fit the format width.
Default: 30
Range: 10–200

Comparisons
The NLDATMw. format is similar to the DATETIMEw. format except that the
NLDATMw. format is locale-specific.

Examples

These examples use the input value of 1361709583, which is the SAS datetime value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Formats for NLS � NLDATMAPw. Format 99

Statements Results

----+----1----+----2----+----3

options locale=English_UnitedStates;

put day nldatm.;
24Feb03:12:39:43

options locale=German_Germany;

put day nldatm.;
24. Februar 2003 12.39 Uhr

See Also

Formats:

“NLDATMAPw. Format” on page 99

“NLDATMTMw. Format” on page 102

“NLDATMWw. Format” on page 104

NLDATMAPw. Format

Converts a SAS datetime value to the datetime value of the specified locale, and then writes the
value as a datetime with a.m. or p.m.

Category: Date and Time

Alignment: left

Syntax
NLDATMAPw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the date-time
value to fit the format width.

Default: 32

Range: 16–200

Comparisons
The NLDATMAPw. format is similar to DATEAMPMw. except that the NLDATMAPw.
format is locale-specific.

100 NLDATMDTw. Format � Chapter 7

Examples

These examples use the input value of 1361709583, which is the SAS date-time value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Statements Results

----+----1----+----2----+----3

options locale=English_UnitedStates;

put event nldatmap.; February 24, 2003 12:39:43 PM

options locale=Spanish_Mexico;

put event nldatmap.; 24 de febrero de 2003 12:39:43 PM

See Also

Formats:
“NLDATMw. Format” on page 98
“NLDATMTMw. Format” on page 102
“NLDATMWw. Format” on page 104

NLDATMDTw. Format

Converts the SAS datetime value to the datetime value of the specified locale, and then writes the
value as the name of the month, day of the month and year.

Category: Date and Time
Alignment: left

Syntax
NLDATMDTw.

Syntax Description

w
specifies the width of the output field
Default: 20
Range: 10–200

Examples

This example uses the en_US locale option.

Formats for NLS � NLDATMMNw. Format 101

Statements Results

put $6400,nldatmdt.;
put$6400,dtdate.;

January 02, 1960
02JAN60

NLDATMMDw. Format
Converts the SAS datetime value to the datetime value of the specified locale, and then writes the
value as the name of the month and the day of the month.

Category: Date and Time
Alignment: left

Syntax
NLDATMMDw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 6–200

Examples

This example uses the en_US locale option.

Statement Result

put 86400 nldatmmd.; January 02

See Also

Formats:
“NLDATMYMw. Format” on page 105

NLDATMMNw. Format
Converts the SAS datetime value to the datetime value of the specified locale, and then writes the
value as the name of the month.

102 NLDATMTMw. Format � Chapter 7

Category: Date and Time
Alignment: left

Syntax
NLDATMMNw.

Syntax Description

w
specifies the width of the output field.
Default: 10

Range: 4–200

Examples

This example uses the en_US locale option.

Statements Results

data _null_;

dt = datetime();

dy = date();

put "+— NLDATEMN min=4 default=10
max=200 —+";

put dt nldatmmn.;

put dt nldatmmn4.;

put dt nldatmmn10.;

put dt nldatmmn200.;

run;

+— NLDATMMN min=4 default=10 max=200
—+

October

Oct

October

October

NLDATMTMw. Format

Converts the time portion of a SAS datetime value to the time-of-day value of the specified locale,
and then writes the value as a time of day.

Category: Date and Time

Alignment: left

Syntax
NLDATMTMw.

Formats for NLS � NLDATMWNw. Format 103

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 16–200

Comparisons
The NLDATMTMw. format is similar to the TODw. format except that the
NLDATMTMw. format is locale-specific.

Examples

These examples use the input value of 1361709583, which is the SAS datetime value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Statements Results

----+----1

options locale=English_UnitedStates;

put event nldatmtm.; 12:39:43

options locale=German_Germany;

put event nldatmtm.; 12.39 Uhr

See Also

Formats:
“NLDATMw. Format” on page 98
“NLDATMAPw. Format” on page 99
“NLDATMWw. Format” on page 104

NLDATMWNw. Format

Converts a SAS datetime value to the datetime value of the specified locale, and then writes the
value as the day of the week.

Category: Date and Time
Alignment: left

Syntax
NLDATMWNw.

104 NLDATMWw. Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 30

Range: 16–200

Examples

This example writes the SAS datetime value as a day of the week.

now = datetime() ;
put now nldatmwn. ;

NLDATMWw. Format

Converts SAS datetime values to the locale sensitive datetime string as the day of the week and
the datetime.

Category: Date and Time

Alignment: left

Syntax
NLDATMWw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the day of week
and datetime to fit the format width.

Default: 30

Range: 16–200

Comparisons
The NLDATMWw. format is similar to the TWMDYw. format except that the
NLDATMWw. format is locale-specific.

Examples

These examples use the input value of 1361709583, which is the SAS datetime value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Formats for NLS � NLDATMYMw. Format 105

Statements Results

----+----1----+----2----+----3

options locale=English_UnitedStates;

put event nldatmw.; Sun, Feb 24, 2003 12:39:43

options locale=German_Germany;

put event nldatmw.; So, 24. Feb 2003 12.39 Uhr

See Also

Formats:
“NLDATMw. Format” on page 98
“NLDATMAPw. Format” on page 99
“NLDATMTMw. Format” on page 102

NLDATMYMw. Format
Converts the SAS datetime value to the datetime value of the specified locale, and then writes the
value as the year and the name of the month.

Category: Date and Time
Alignment: left

Syntax
NLDATMYMw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 6–200

Examples

This example uses the en_US locale option.

Statement Result

put 86400 nldatmym.; January 1960

106 NLDATMYQw. Format � Chapter 7

See Also

Formats:
“NLDATMMDw. Format” on page 101

NLDATMYQw. Format

Converts the SAS datetime value to the datetime value of the specified locale, and then writes the
value as the year and the quarter of the year.

Category: Date and Time
Alignment: left

Syntax
NLDATMYQw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 4–200

Examples

This example uses the fr_FR locale option.

Statements Results

options locale=fr_FR;

data _null_;

dy=today();

dt=datetime();

put "+— NLDATMYQ min=4 default=16
max=200 —+";

put ’16’ +5 dt nldatmyq.;

put ’4’ +5 dt nldatmyq4.;

put ’14’ +5 dt nldatmyq14.;

put ’32’ +5 dt nldatmyq32.;

put ’200’ +5 dt nldatmyq200.;

run;

+— NLDATMYQ min=4 default=16 max=200
—+

16 T3 08

4 ****

14 T3 08

32 3e trimestre 2008

200 3e trimestre 2008

Formats for NLS � NLDATMYWw. Format 107

NLDATMYRw. Format

Converts the SAS datetime value to the datetime value of the specified locale, and then writes the
value as the year.

Category: Date and Time
Alignment: left

Syntax
NLDATMYRw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 2–200

Examples

This example uses the en_US locale option.

Statements Results

options locale=fr_FR;

data _null_;

dy=today();

dt=datetime();

put "+— NLDATMYR min=2 default=16
max=200 —+";

put dt nldatmyr.;

put dt nldatmyr2.;

put dt nldatmyr32.;

put dt nldatmyr200.;

run;

+— NLDATMYR min=2 default=16 max=200 —+

2008

08

2008

2008

NLDATMYWw. Format

Converts the SAS datetime value to the datetime value of the specified locale, and then writes the
value as the year and the name of the week.

Category: Date and Time

108 NLMNIAEDw.d Format � Chapter 7

Alignment: left

Syntax
NLDATMYWw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 5–200

Examples

This example uses the fr_FR locale option.

Statements Results

options locale=fr_FR;

data _null_;

dy=today();

dt=datetime();

put "+— NLDATMYW min=5 default=16
max=200 —+";

put ’16’ +5 dt nldatmyw.;

put ’5’ +5 dt nldatmyw5.;

put ’8’ +5 dt nldatmyw8.;

put ’32’ +5 dt nldatmyw32.;

put ’200’ +5 dt nldatmyw200.;

run;

+— NLDATMYW min=5 default=16 max=200
—+

16 Week 33 2008

5 *****

8 W33 08

32 Week 33 2008

200

Week 33 2008

NLMNIAEDw.d Format

Writes the monetary format of the international expression for the United Arab Emirates.

Category: Numeric
Alignment: left

Syntax
NLMNIAEDw.d

Formats for NLS � NLMNIAUDw.d Format 109

Syntax Description

w
specifies the width of the output field.

Default: 12

Range: 8–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 3

Range: 0–328

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniaed32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(AED1,234,57)

$-1,234.57

See Also

Formats:

“NLMNLAEDw.d Format” on page 145

NLMNIAUDw.d Format

Writes the monetary format of the international expression for Australia.

Category: Numeric

Alignment: left

Syntax
NLMNIAUDw.d

110 NLMNIBGNw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniaud32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(AUD1,234,57)

$-1,234.57

See Also

Formats:

“NLMNLAUDw.d Format” on page 146

NLMNIBGNw.d Format

Writes the monetary format of the international expression for Bulgaria.

Category: Numeric

Alignment: left

Syntax
NLMNIBGNw.d

Formats for NLS � NLMNIBRLw.d Format 111

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnibgn32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(BGN1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLBGNw.d Format” on page 147

NLMNIBRLw.d Format

Writes the monetary format of the international expression for Brazil.

Category: Numeric

Alignment: left

Syntax
NLMNIBRLw.d

112 NLMNICADw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnibrl32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(BRL1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLBRLw.d Format” on page 148

NLMNICADw.d Format

Writes the monetary format of the international expression for Canada.

Category: Numeric

Alignment: left

Syntax
NLMNICADw.d

Formats for NLS � NLMNICHFw.d Format 113

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnicad32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(CAD1,234,57)

$-1,234.57

See Also

Formats:

“NLMNLCADw.d Format” on page 149

NLMNICHFw.d Format

Writes the monetary format of the international expression for Liechtenstein and Switzerland.

Category: Numeric

Alignment: left

Syntax
NLMNICHFw.d

114 NLMNICNYw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnichf32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(CHF1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLCHFw.d Format” on page 150

NLMNICNYw.d Format

Writes the monetary format of the international expression for China.

Category: Numeric

Alignment: left

Syntax
NLMNICNYw.d

Formats for NLS � NLMNICZKw.d Format 115

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnicny32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(CNY1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLCNYw.d Format” on page 151

NLMNICZKw.d Format

Writes the monetary format of the international expression for the Czech Republic.

Category: Numeric

Alignment: left

Syntax
NLMNICZKw.d

116 NLMNIDKKw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniczk32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(CZK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLCZKw.d Format” on page 152

NLMNIDKKw.d Format

Writes the monetary format of the local expression for Denmark, Faroe Island, and Greenland.

Category: Numeric

Alignment: left

Syntax
NLMNIDKKw.d

Formats for NLS � NLMNIEEKw.d Format 117

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnidkk32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(DKK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLDKKw.d Format” on page 153

NLMNIEEKw.d Format

Writes the monetary format of the international expression for Estonia.

Category: Numeric

Alignment: left

Syntax
NLMNIEEKw.d

118 NLMNIEGPw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnieek32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(EEK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLEEKw.d Format” on page 154

NLMNIEGPw.d Format

Writes the monetary format of the international expression for Egypt.

Category: Numeric

Alignment: left

Syntax
NLMNIEGPw.d

Formats for NLS � NLMNIEURw.d Format 119

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.
Default: 0
Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniegp32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(EGP1,234.57)

$-1,234.57

See Also

Formats:
“NLMNLEGPw.d Format” on page 155

NLMNIEURw.d Format

Writes the monetary format of the international expression for Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, Malta, the Netherlands, Portugal, Slovakia,
Slovenia, and Spain.

Category: Numeric
Alignment: left

Syntax
NLMNIEURw.d

120 NLMNIGBPw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.
Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0
Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
Locale=German_Germany.

x=put(-1234.56789,nlmnieur32.2);
y=put(-1234.56789,nlmnleur32.2);

Statements Results

----+----1----+

put x=;

put y=;

-EUR1.234,57

- 1.234,57

See Also

Formats:

“NLMNLEURw.d Format” on page 156

NLMNIGBPw.d Format

Writes the monetary format of the international expression for the United Kingdom.

Category: Numeric
Alignment: left

Syntax
NLMNIGBPw.d

Formats for NLS � NLMNIHKDw.d Format 121

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnigbp32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(GBP1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLGBPw.d Format” on page 157

NLMNIHKDw.d Format

Writes the monetary format of the international expression for Hong Kong.

Category: Numeric

Alignment: left

Syntax
NLMNIHKDw.d

122 NLMNIHRKw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnihkd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(HKD1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLHKDw.d Format” on page 158

NLMNIHRKw.d Format

Writes the monetary format of the international expression for Croatia.

Category: Numeric

Alignment: left

Syntax
NLMNIHRKw.d

Formats for NLS � NLMNIHUFw.d Format 123

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnihrk32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(HRK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLHRKw.d Format” on page 159

NLMNIHUFw.d Format

Writes the monetary format of the international expression for Hungary.

Category: Numeric

Alignment: left

Syntax
NLMNIHUFw.d

124 NLMNIIDRw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnihuf32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(HUF1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLHUFw.d Format” on page 160

NLMNIIDRw.d Format

Writes the monetary format of the international expression for Indonesia.

Category: Numeric

Alignment: left

Syntax
NLMNIIDRw.d

Formats for NLS � NLMNIILSw.d Format 125

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniidr32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(IDR1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLIDRw.d Format” on page 161

NLMNIILSw.d Format

Writes the monetary format of the international expression for Israel.

Category: Numeric

Alignment: left

Syntax
NLMNIILSw.d

126 NLMNIINRw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniils32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(ILS1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLILSw.d Format” on page 162

NLMNIINRw.d Format

Writes the monetary format of the international expression for India.

Category: Numeric

Alignment: left

Syntax
NLMNIINRw.d

Formats for NLS � NLMNIJPYw.d Format 127

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniinr32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(INR1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLINRw.d Format” on page 163

NLMNIJPYw.d Format

Writes the monetary format of the international expression for Japan.

Category: Numeric

Alignment: left

Syntax
NLMNIJPYw.d

128 NLMNIKRWw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnijpy32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(JPY1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLJPYw.d Format” on page 164

NLMNIKRWw.d Format

Writes the monetary format of the international expression for South Korea.

Category: Numeric

Alignment: left

Syntax
NLMNIKRWw.d

Formats for NLS � NLMNILTLw.d Format 129

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnikrw32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(KRW1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLKRWw.d Format” on page 165

NLMNILTLw.d Format

Writes the monetary format of the international expression for Lithuania.

Category: Numeric

Alignment: left

Syntax
NLMNILTLw.d

130 NLMNILVLw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniltl32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(LTL1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLLTLw.d Format” on page 166

NLMNILVLw.d Format

Writes the monetary format of the international expression for Latvia.

Category: Numeric

Alignment: left

Syntax
NLMNILVLw.d

Formats for NLS � NLMNIMOPw.d Format 131

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnilvl32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(LVL1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLLVLw.d Format” on page 167

NLMNIMOPw.d Format

Writes the monetary format of the international expression for Macau.

Category: Numeric

Alignment: left

Syntax
NLMNIMOPw.d

132 NLMNIMXNw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnimop32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(MOP1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLMOPw.d Format” on page 168

NLMNIMXNw.d Format

Writes the monetary format of the international expression for Mexico.

Category: Numeric

Alignment: left

Syntax
NLMNIMXNw.d

Formats for NLS � NLMNIMYRw.d Format 133

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnimxn32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(MXN1,234,57)

$-1,234.57

See Also

Formats:

“NLMNLMXNw.d Format” on page 169

NLMNIMYRw.d Format

Writes the monetary format of the international expression for Malaysia.

Category: Numeric

Alignment: left

Syntax
NLMNIMYRw.d

134 NLMNINOKw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnimyr32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(MYR1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLMYRw.d Format” on page 170

NLMNINOKw.d Format

Writes the monetary format of the international expression for Norway.

Category: Numeric

Alignment: left

Syntax
NLMNINOKw.d

Formats for NLS � NLMNINZDw.d Format 135

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmninok32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(NOK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLNOKw.d Format” on page 171

NLMNINZDw.d Format

Writes the monetary format of the international expression for New Zealand.

Category: Numeric

Alignment: left

Syntax
NLMNINZDw.d

136 NLMNIPLNw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmninzd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(NZD1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLNZDw.d Format” on page 172

NLMNIPLNw.d Format

Writes the monetary format of the international expression for Poland.

Category: Numeric

Alignment: left

Syntax
NLMNIPLNw.d

Formats for NLS � NLMNIRUBw.d Format 137

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.
Default: 0
Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnipln32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(PLN1,234.57)

$-1,234.57

See Also

Formats:
“NLMNLPLNw.d Format” on page 173

NLMNIRUBw.d Format

Writes the monetary format of the international expression for Russia.

Category: Numeric
Alignment: left

Syntax
NLMNIRUBw.d

138 NLMNISEKw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnirub32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(RUB1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLRUBw.d Format” on page 174

NLMNISEKw.d Format

Writes the monetary format of the international expression for Sweden.

Category: Numeric

Alignment: left

Syntax
NLMNISEKw.d

Formats for NLS � NLMNISGDw.d Format 139

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnisek32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(SEK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLSEKw.d Format” on page 175

NLMNISGDw.d Format

Writes the monetary format of the international expression for Singapore.

Category: Numeric

Alignment: left

Syntax
NLMNISGDw.d

140 NLMNITHBw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnisgd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(SGD1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLSGDw.d Format” on page 176

NLMNITHBw.d Format

Writes the monetary format of the international expression for Thailand.

Category: Numeric

Alignment: left

Syntax
NLMNITHBw.d

Formats for NLS � NLMNITRYw.d Format 141

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnithb32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(THB1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLTHBw.d Format” on page 177

NLMNITRYw.d Format

Writes the monetary format of the international expression for Turkey.

Category: Numeric

Alignment: left

Syntax
NLMNITRYw.d

142 NLMNITWDw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlitry32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(TRY1,234,57)

$-1,234.57

See Also

Formats:

“NLMNLTRYw.d Format” on page 178

NLMNITWDw.d Format

Writes the monetary format of the international expression for Taiwan.

Category: Numeric

Alignment: left

Syntax
NLMNITWDw.d

Formats for NLS � NLMNIUSDw.d Format 143

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnitwd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(TWD1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLTWDw.d Format” on page 179

NLMNIUSDw.d Format

Writes the monetary format of the international expression for Puerto Rico and the United States.

Category: Numeric

Alignment: left

Syntax
NLMNIUSDw.d

144 NLMNIZARw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmniusd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(USD1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLUSDw.d Format” on page 180

NLMNIZARw.d Format

Writes the monetary format of the international expression for South Africa.

Category: Numeric

Alignment: left

Syntax
NLMNIZARw.d

Formats for NLS � NLMNLAEDw.d Format 145

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnizar32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(ZAR1,234.57)

$-1,234.57

See Also

Formats:

“NLMNLZARw.d Format” on page 181

NLMNLAEDw.d Format

Writes the monetary format of the local expression for the United Arab Emirates.

Category: Numeric

Alignment: left

Syntax
NLMNLAEDw.d

146 NLMNLAUDw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.
Default: 0
Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlaed32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(AED1,234.57)

$-1,234.57

See Also

Formats:
“NLMNIAEDw.d Format” on page 108

NLMNLAUDw.d Format

Writes the monetary format of the local expression for Australia.

Category: Numeric
Alignment: left

Syntax
NLMNLAUDw.d

Syntax Description

Formats for NLS � NLMNLBGNw.d Format 147

w
specifies the width of the output field.

Default: 9
Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.
Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlaud32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(AU$1,234.57)

$-1,234.57

See Also

Formats:
“NLMNIAUDw.d Format” on page 109

NLMNLBGNw.d Format

Writes the monetary format of the local expression for Bulgaria.

Category: Numeric
Alignment: left

Syntax
NLMNLBGNw.d

Syntax Description

148 NLMNLBRLw.d Format � Chapter 7

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlbgn32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(BGN1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIBGNw.d Format” on page 110

NLMNLBRLw.d Format

Writes the monetary format of the local expression for Brazil.

Category: Numeric

Alignment: left

Syntax

NLMNLBRLw.d

Formats for NLS � NLMNLCADw.d Format 149

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlbrl32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(BRL1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIBRLw.d Format” on page 111

NLMNLCADw.d Format

Writes the monetary format of the local expression for Canada.

Category: Numeric

Alignment: left

Syntax
NLMNLCADw.d

150 NLMNLCHFw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlcad32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(CA$1,234.57)

$-1,234.57

See Also

Formats:

“NLMNICADw.d Format” on page 112

NLMNLCHFw.d Format

Writes the monetary format of the local expression for Liechtenstein and Switzerland.

Category: Numeric

Alignment: left

Syntax
NLMNLCHFw.d

Formats for NLS � NLMNLCNYw.d Format 151

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlchf32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

SFr.1,234.57

$-1,234.57

See Also

Formats:

“NLMNICHFw.d Format” on page 113

NLMNLCNYw.d Format

Writes the monetary format of the local expression for China.

Category: Numeric

Alignment: left

Syntax
NLMNLCNYw.d

152 NLMNLCZKw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlcny32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(RMB1,234.57)

$-1,234.57

See Also

Formats:

“NLMNICNYw.d Format” on page 114

NLMNLCZKw.d Format

Writes the monetary format of the local expression for the Czech Republic.

Category: Numeric

Alignment: left

Syntax
NLMNLCZKw.d

Formats for NLS � NLMNLDKKw.d Format 153

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlczk32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(CZK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNICZKw.d Format” on page 115

NLMNLDKKw.d Format

Writes the monetary format of the local expression for Denmark, Faroe Island, and Greenland.

Category: Numeric

Alignment: left

Syntax
NLMNLDKKw.d

154 NLMNLEEKw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnldkk32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(kr1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIDKKw.d Format” on page 116

NLMNLEEKw.d Format

Writes the monetary format of the local expression for Estonia.

Category: Numeric

Alignment: left

Syntax
NLMNLEEKw.d

Formats for NLS � NLMNLEGPw.d Format 155

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnleek32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(EEK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIEEKw.d Format” on page 117

NLMNLEGPw.d Format

Writes the monetary format of the local expression for Egypt.

Category: Numeric

Alignment: left

Syntax
NLMNLEGPw.d

156 NLMNLEURw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.
Default: 0
Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlegp32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(EGP1,234.57)

$-1,234.57

See Also

Formats:
“NLMNIEGPw.d Format” on page 118

NLMNLEURw.d Format

Writes the monetary format of the local expression for Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, Malta, the Netherlands, Portugal, Slovakia,
Slovenia, and Spain.

Category: Numeric
Alignment: left

Syntax
NLMNLEURw.d

Formats for NLS � NLMNLGBPw.d Format 157

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to German_Germany.

x=put(-1234.56789,nlmnieur32.2);
y=put(-1234.56789,nlmnleur32.2);

Statements Results

—-+—-1—-+—-2—-+

put x=;

put y=;

-EUR1.234,57

- 1.234,57

See Also

Formats:

“NLMNIEURw.d Format” on page 119

NLMNLGBPw.d Format

Writes the monetary format of the local expression for the United Kingdom.

Category: Numeric

Alignment: left

Syntax
NLMNLGBPw.d

158 NLMNLHKDw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlgbp32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(£1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIGBPw.d Format” on page 120

NLMNLHKDw.d Format

Writes the monetary format of the local expression for Hong Kong.

Category: Numeric

Alignment: left

Syntax
NLMNLHKDw.d

Formats for NLS � NLMNLHRKw.d Format 159

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlhkd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(HK$1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIHKDw.d Format” on page 121

NLMNLHRKw.d Format

Writes the monetary format of the local expression for Croatia.

Category: Numeric

Alignment: left

Syntax
NLMNLHRKw.d

160 NLMNLHUFw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlhrk32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(HRK1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIHRKw.d Format” on page 122

NLMNLHUFw.d Format

Writes the monetary format of the local expression for Hungary.

Category: Numeric

Alignment: left

Syntax
NLMNLHUFw.d

Formats for NLS � NLMNLIDRw.d Format 161

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlhuf32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(HUF1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIHUFw.d Format” on page 123

NLMNLIDRw.d Format

Writes the monetary format of the local expression for Indonesia.

Category: Numeric

Alignment: left

Syntax
NLMNLIDRw.d

162 NLMNLILSw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlidr32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(IDR1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIIDRw.d Format” on page 124

NLMNLILSw.d Format

Writes the monetary format of the local expression for Israel.

Category: Numeric

Alignment: left

Syntax
NLMNLILSw.d

Formats for NLS � NLMNLINRw.d Format 163

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlils32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(ILS1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIILSw.d Format” on page 125

NLMNLINRw.d Format

Writes the monetary format of the local expression for India.

Category: Numeric

Alignment: left

Syntax
NLMNLINRw.d

164 NLMNLJPYw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlinr32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(INR1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIINRw.d Format” on page 126

NLMNLJPYw.d Format

Writes the monetary format of the local expression for Japan.

Category: Numeric

Alignment: left

Syntax
NLMNLJPYw.d

Formats for NLS � NLMNLKRWw.d Format 165

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnljpy32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(JPY1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIJPYw.d Format” on page 127

NLMNLKRWw.d Format

Writes the monetary format of the local expression for South Korea.

Category: Numeric

Alignment: left

Syntax
NLMNLKRWw.d

166 NLMNLLTLw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlkrw32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(KRW1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIKRWw.d Format” on page 128

NLMNLLTLw.d Format

Writes the monetary format of the local expression for Lithuania.

Category: Numeric

Alignment: left

Syntax
NLMNLLTLw.d

Formats for NLS � NLMNLLVLw.d Format 167

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlltl32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(LTL1,234.57)

$-1,234.57

See Also

Formats:

“NLMNILTLw.d Format” on page 129

NLMNLLVLw.d Format

Writes the monetary format of the local expression for Latvia.

Category: Numeric

Alignment: left

Syntax
NLMNLLVLw.d

168 NLMNLMOPw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnllvl32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(LVL1,234.57)

$-1,234.57

See Also

Formats:

“NLMNILVLw.d Format” on page 130

NLMNLMOPw.d Format

Writes the monetary format of the local expression for Macau.

Category: Numeric

Alignment: left

Syntax
NLMNLMOPw.d

Formats for NLS � NLMNLMXNw.d Format 169

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlmop32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(MOP1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIMOPw.d Format” on page 131

NLMNLMXNw.d Format

Writes the monetary format of the local expression for Mexico.

Category: Numeric

Alignment: left

Syntax
NLMNLMXNw.d

170 NLMNLMYRw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlmxn32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(MXN1,234,57)

$-1,234.57

See Also

Formats:

“NLMNIMXNw.d Format” on page 132

NLMNLMYRw.d Format

Writes the monetary format of the local expression for Malaysia.

Category: Numeric

Alignment: left

Syntax
NLMNLMYRw.d

Formats for NLS � NLMNLNOKw.d Format 171

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlmyr32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(R1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIMYRw.d Format” on page 133

NLMNLNOKw.d Format

Writes the monetary format of the local expression for Norway.

Category: Numeric

Alignment: left

Syntax
NLMNLNOKw.d

172 NLMNLNZDw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlnok32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(kr1,234.57)

$-1,234.57

See Also

Formats:

“NLMNINOKw.d Format” on page 134

NLMNLNZDw.d Format

Writes the monetary format of the local expression for New Zealand.

Category: Numeric

Alignment: left

Syntax
NLMNLNZDw.d

Formats for NLS � NLMNLPLNw.d Format 173

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlnzd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(NZ$1,234.57)

$-1,234.57

See Also

Formats:

“NLMNINZDw.d Format” on page 135

NLMNLPLNw.d Format

Writes the monetary format of the local expression for Poland.

Category: Numeric

Alignment: left

Syntax
NLMNLPLNw.d

174 NLMNLRUBw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlpln32.2);
y=put(-1234.56789,dollar32.2)

Statements Results

----+----1----+

put x=;

put y=;

(PLN1,234.57

$-1,234.57

See Also

Formats:

“NLMNIPLNw.d Format” on page 136

NLMNLRUBw.d Format

Writes the monetary format of the local expression for Russia.

Category: Numeric

Alignment: left

Syntax
NLMNLRUBw.d

Formats for NLS � NLMNLSEKw.d Format 175

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlrub32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(RUB1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIRUBw.d Format” on page 137

NLMNLSEKw.d Format

Writes the monetary format of the local expression for Sweden.

Category: Numeric

Alignment: left

Syntax
NLMNLSEKw.d

176 NLMNLSGDw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlsek32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(kr1,234.57)

$-1,234.57

See Also

Formats:

“NLMNISEKw.d Format” on page 138

NLMNLSGDw.d Format

Writes the monetary format of the local expression for Singapore.

Category: Numeric

Alignment: left

Syntax
NLMNLSGDw.d

Formats for NLS � NLMNLTHBw.d Format 177

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlsgd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(SG$1,234.57)

$-1,234.57

See Also

Formats:

“NLMNISGDw.d Format” on page 139

NLMNLTHBw.d Format

Writes the monetary format of the local expression for Thailand.

Category: Numeric

Alignment: left

Syntax
NLMNLTHBw.d

178 NLMNLTRYw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlthb32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(THB1,234.57)

$-1,234.57

See Also

Formats:

“NLMNITHBw.d Format” on page 140

NLMNLTRYw.d Format

Writes the monetary format of the local expression for Turkey.

Category: Numeric

Alignment: left

Syntax
NLMNLTRYw.d

Formats for NLS � NLMNLTWDw.d Format 179

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnltry32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(TRY1,234,57)

$-1,234.57

See Also

Formats:

“NLMNITRYw.d Format” on page 141

NLMNLTWDw.d Format

Writes the monetary format of the local expression for Taiwan.

Category: Numeric

Alignment: left

Syntax
NLMNLTWDw.d

180 NLMNLUSDw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnltwd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(NT$1,234.57)

$-1,234.57

See Also

Formats:

“NLMNITWDw.d Format” on page 142

NLMNLUSDw.d Format

Writes the monetary format of the local expression for Puerto Rico and the United States.

Category: Numeric

Alignment: left

Syntax
NLMNLUSDw.d

Formats for NLS � NLMNLZARw.d Format 181

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlusd32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(US$1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIUSDw.d Format” on page 143

NLMNLZARw.d Format

Writes the monetary format of the local expression for South Africa.

Category: Numeric

Alignment: left

Syntax
NLMNLZARw.d

182 NLMNYw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlzar32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

(R1,234.57)

$-1,234.57

See Also

Formats:

“NLMNIZARw.d Format” on page 144

NLMNYw.d Format

Writes the monetary format of the local expression in the specified locale using local currency.

Category: Numeric

Alignment: left

Syntax
NLMNYw.d

Formats for NLS � NLMNYw.d Format 183

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
Default: 0
Range: 0–31

Details
The NLMNYw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLMNYw.d format
writes numeric values by using the currency symbol, the thousands separator, and the
decimal separator that is used by the locale.

Note: The NLMNYw.d format does not convert currency format, therefore, the value
of the formatted number should equal the currency of the current locale value. �

Comparisons
The NLMNYw.d and NLMNYIw.d formats write the monetary format with
locale-dependent thousands and decimal separators. However, the NLMNYIw.d format
uses three-letter international currency codes, such as USD, while NLMNYw.d format
uses local currency symbols, such as $.

The NLMNYw.d format is similar to the DOLLARw.d format except that the
NLMNYw.d format is locale-specific.

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmny32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

($1,234.57)

$-1,234.57

184 NLMNYIw.d Format � Chapter 7

See Also

Formats:
“NLMNYIw.d Format” on page 184

Informats:
“NLMNYw.d Informat” on page 400
“NLMNYIw.d Informat” on page 401

NLMNYIw.d Format

Writes the monetary format of the international expression in the specified locale.

Category: Numeric
Alignment: left

Syntax
NLMNYIw.d

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
Default: 0
Range: 0–31

Details
The NLMNYIw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLMNYIw.d format
writes numeric values by using the international currency code, and locale-dependent
thousands and decimal separators. The position of international currency code is also
locale dependent.

Note: The NLMNYIw.d format does not convert currency format, therefore, the
value of the formatted number should equal the currency of the current locale value. �

Comparisons
The NLMNYw.d and NLMNYIw.d formats write the monetary format with
locale-dependent thousands and decimal separators. However, the NLMNYIw.d format
uses three-letter international currency codes, such as USD, while NLMNYw.d format
uses local currency symbols, such as $.

Formats for NLS � NLNUMw.d Format 185

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnyi32.2);
y=put(-1234.56789,nlmny32.2);
z=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

put z=;

(USD1,234.57)

($1,234.57)

$-1,234.57

See Also

Formats:
“NLMNYw.d Format” on page 182

Informats:
“NLMNYw.d Informat” on page 400
“NLMNYIw.d Informat” on page 401

NLNUMw.d Format

Writes the numeric format of the local expression in the specified locale.

Category: Numeric
Alignment: left

Syntax
NLNUMw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal separators, the d
value is ignored.

186 NLNUMIw.d Format � Chapter 7

Default: 0
Range: 0–31

Details
The NLMUMw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLNUMw.d format
writes numeric values by using the thousands separator and the decimal separator that
is used by the locale.

Comparisons
The NLNUMw.d format writes the numeric value with locale-dependent thousand and
decimal separators. The NLNUMIw.d format writes the numeric value with a comma
(,) as thousand separator and a period (.) as a decimal separator

If the w or d values are not large enough to generate a formatted number, the
NLNUMw.d format uses an algorithm that prints the thousands-separator characters
whenever possible, even if some decimal precision is lost.

Examples

x=put(-1234356.7891,nlnum32.2);

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

put x=; -1,234,356.79

options LOCALE=German_Germany;

put x=; -1.234.356,79

See Also

Formats:
“NLNUMIw.d Format” on page 186

Informats:
“NLNUMw.d Informat” on page 402
“NLNUMIw.d Informat” on page 403

NLNUMIw.d Format

Writes the numeric format of the international expression in the specified locale.

Category: Numeric
Alignment: left

Formats for NLS � NLNUMIw.d Format 187

Syntax
NLNUMIw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Details
The NLMUMIw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLNUMIw.d format
writes numeric values by using a comma (,) as thousands separator and a period (.) as a
decimal separator for all locales.

Comparisons
The NLNUMIw.d format writes the numeric data of the international expression in the
specified locale. The NLNUMIw.d format writes the numeric value with a comma (,) as
thousand separator and a period (.) as a decimal separator.

If the w or d values are not large enough to generate a formatted number, the
NLNUMw.d format uses an algorithm that prints the thousands-separator characters
whenever possible, even if some decimal precision is lost.

Examples

x=put(-1234356.7891,nlnumi32.2);

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

put x=; -1,234,356.79

options LOCALE=German_Germany;

put x=; -1,234,356.79

188 NLPCTw.d Format � Chapter 7

See Also

Formats:
“NLNUMw.d Format” on page 185

Informats:
“NLNUMw.d Informat” on page 402
“NLNUMIw.d Informat” on page 403

NLPCTw.d Format

Writes percentage data of the local expression in the specified locale.

Category: Numeric
Alignment: left

Syntax
NLPCTw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 4–32

d
specifies to divide the number by 10d. If the data contains decimal separators, the d
value is ignored.
Default: 0
Range: 0–31

Comparisons
The NLPCTw.d format writes percentage data of the local expression in the specified
locale. The NLPCTw.d format writes the percentage value with locale-dependent
thousand and decimal separators. The NLPCTIw.d format writes the percentage value
with a comma (,) as thousand separator and a period (.) as a decimal separator.

The NLPCTw.d format is similar to the PERCENTw.d format except the NLPCTw.d
format is locale-specific.

Examples

x=put(-12.3456789,nlpct32.2);
y=put(-12.3456789,nlpcti32.2);
z=put(-12.3456789,percent32.2);

Formats for NLS � NLPCTIw.d Format 189

Statements Results

----+-----------1

options LOCALE=English_UnitedStates;

put x=;

put y=;

put z=;

-1,234.57%

-1,234.57%

(1234.57%)

options LOCALE=German_Germany;

put x=;

put y=;

put z=;

-1.234,57%

-1,234.57%

(1234.57%)

See Also

Formats:
“NLPCTIw.d Format” on page 189

Informats:
“NLPCTw.d Informat” on page 405
“NLPCTIw.d Informat” on page 406

NLPCTIw.d Format

Writes percentage data of the international expression in the specified locale.

Category: Numeric
Alignment: left

Syntax
NLPCTIw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 4–32

d
specifies to divide the number by 10d. If the data contains decimal separators, the d
value is ignored.
Default: 0
Range: 0–31

190 NLPCTNw.d Format � Chapter 7

Comparisons

The NLPCTIw.d format writes percentage data of the international expression in the
specified locale. The NLPCTw.d format writes the percentage value with
locale-dependent thousand and decimal separators. The NLPCTIw.d format writes the
percentage value with a comma (,) as thousand separator and a period (.) as a decimal
separator.

The NLPCTw.d format is similar to the PERCENTw.d format except the NLPCTw.d
format is locale-specific.

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-12.3456789,nlpcti32.2);
y=put(-12.3456789,percent32.2);

Statements Results

----+--------1

put x=;

put y=;

-1,234.57%

(1234.57)

See Also

Formats:

“NLPCTw.d Format” on page 188

Informats:

“NLPCTw.d Informat” on page 405

“NLPCTIw.d Informat” on page 406

NLPCTNw.d Format

Produces percentages, using a minus sign for negative values.

Category: Numeric

Alignment: right

Syntax

NLPCTNw.d

Formats for NLS � NLPCTPw.d Format 191

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 4–32
Tip: The width of the output field must account for the minus sign (–), the percent

sign (%), and a trailing blank, whether the number is negative or positive.

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Range: 0–31
Requirement: must be less than w

Details
The NLPCTNw.d format multiplies negative values by 100, adds a minus sign to the
beginning of the value, and adds a percent sign (%) to the end of the formatted value.

Examples
x=-0.02;

Statements Results

put x nlpctn6.; x=-2%

put x percentn6.; x=-2%

NLPCTPw.d Format

Writes locale-specific numeric values as percentages.

Category: Numeric
Alignment: right

Syntax
NLPCTPw.d

Syntax Description

w
specifies the width of the output field.

192 NLPVALUEw.d Format � Chapter 7

Default 6

Range 4–32

Tip: The width of the output field must account for the percent sign (%).

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional. The thousand separator and decimal symbol for the
NLPCTP format is locale-specific.

Range: 0–31

Requirement: must be less than w

Details
The NLPCTPw.d format multiplies values by 100, formats them, and adds a percent
sign (%) to the end of the formatted value. The NLPCTPw.d format is similar to the
The PERCENTw.d format except that the thousand separator and decimal symbol for
the NLPCTPw.d format is locale-specific.

Examples
x=-0.02;

Statements Results

put x nlpctp6.; –2%

put x percent6.; (2%)

NLPVALUEw.d Format

Writes p-values of the local expression in the specified locale.

Category: Numeric

Alignment: left

Syntax
NLPVALUEw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 3–32

Formats for NLS � NLSTRMONw.d Format 193

d
specifies to divide the number by 10d. If the data contains decimal separators, the d
value is ignored.

Default: 4

Range: 1–30

Examples

This example uses the german_Germany locale option.

Statements:
options locale=german_germany;
data _null_;

put "+--- nlpvalue min=3 default=6 max=32 ---+";
x=0.1248;
put x= +5 x pvalue. +5 x nlpvalue.;
put x= +5 x pvalue3.1 +5 x nlpvalue3.1;
put x= +5 x pvalue20.2 +5 x nlpvalue20.2;
put x= +5 x pvalue32.3 +5 x nlpvalue32.3;

run;

Results:

+--- nlpvalue min=3 default=6 max=32 ---+
x=0.1248 0.1248 0,1248
x=0.1248 0.1 0,1
x=0.1248 0.12 0,12
x=0.1248 0.125 0,125

See Also

Format:

PVALUEw.d in SAS Language Reference: Dictionary

NLSTRMONw.d Format

Writes a numeric value as a day-of-the-month in the specified locale.

Category: Numeric

Alignment: left

Syntax

NLSTRMONw.d

194 NLSTRMONw.d Format � Chapter 7

Syntax Description

w
specifies the width of the output field
Default: 20

Range: 200-1

d
specifies the following:

00000001: write abbreviated form.

00000010: write capitalized form.
Default: 0
Range: 0-3

Details
The NLSTRMONw.d format writes a SAS value, 1–12 as the name-of-the-month in the
specified locale. The following examples use the English_UnitedStates locale.

1 = the first month (January)
2 = the second month (February)
3 = the third month (March)

4 = the fourth month (April)
5 = the fifth month (May)
6 = the sixth month (June)

7 = the seventh month (July)
8 = the eight month (August)
9 = the ninth month (September)
10 = the tenth month (October)

11 = the eleventh month (November)
12 = the twelfth month (December)

Examples

This example uses the English_UnitedStates session encoding.

Statements Results

Data _null_ ;

monnum = 1 ; /* January=1, December=12 */

put monnum NLSTRMON20. ;

put monnum NLSTRMON20.1; /* decimal .1
specified use abbreviation. */

put monnum NLSTRMON20.2;

put monnum NLSTRMON20.3;

run;

January

Jan

January

Jan

Formats for NLS � NLSTRQTRw.d Format 195

NLSTRQTRw.d Format
Writes a numeric value as the quarter-of-the-year in the specified locale.

Category: Numeric
Alignment: left

Syntax
NLSTRQTRw.d

Syntax Description

w
specifies the width of the output field
Default: 20
Range: 1–200

d
specifies the following:

00000001: write abbreviated form.
00000010: write capitalized form.

Default: 3
Range: 0–3

Details
The NLSTRQTRw.d format writes a SAS value, 1–4 as the name-of-the-quarter for the
year in the specified locale. The following examples use the English_UnitedStates locale.

1 = 1st quarter
2 = 2nd quarter
3 = 3rd quarter
4 = 4th quarter

Examples

This example uses the English_UnitedStates session encoding.

Statements Results

Data _null_ ;

qtrnum = 1 ; /* January=1, December=12 */

put qtrnum NLSTRQTR20. ;

put qtrnum NLSTRQTR20.1; /* decimal .1
specified use abbreviation. */

put qtrnum NLSTRQTR20.2;

put qtrnum NLSTRQTR20.3; run;

1st quarter

1st quarter

1ST QUARTER

1ST QUARTER

196 NLSTRWKw.d Format � Chapter 7

NLSTRWKw.d Format

Writes a numeric value as the day-of-the-week in the specified locale.

Category: Numeric
Alignment: left

Syntax
NLSTRWKw.d

Syntax Description

w
specifies the width of the output field
Default: 20
Range: 1–200

d
specifies the following:

00000001: write abbreviated form.
00000010: write capitalized form.

Default: 0
Range: 0–3

Details
The NLSTRQTRw.d format writes a SAS value, 1–7 as the name-of-the-week in the
specified locale. The following examples use the English_UnitedStates locale.

1 = First day-of-week (Monday)
2 = Second day-of-week (Tuesday)
3 = Third day-of-week (Wednesday)
4 = Fourth day-of-week (Thursday)
5 = Fifth day-of-week (Friday)
6 = Sixth day-of-week (Saturday)
7 = Seventh day-of-week (Sunday)

Examples

This example uses the English_UnitedStates session encoding.

Formats for NLS � NLTIMEw. Format 197

Statements Results

Data _null_ ;

wknum = 1 ; /* Sunday=1, Saturday=7 */

put wknum NLSTRWK20. ;

put wknum NLSTRWK20.1; /* decimal .1
specified use abbreviation. */

put wknum NLSTRWK20.2;

put wknum NLSTRWK20.3;

run;

Sunday

Sun

SUNDAY

SUN

NLTIMEw. Format

Converts a SAS time value to the time value of the specified locale and then writes the value as a
time value. NLTIME also converts SAS date-time values.

Category: Date and Time

Alignment: left

Syntax

NLTIMEw.

Syntax Description

w
specifies the width of the input field.

Default: 20

Range: 10–200

Comparisons

The NLTIMEw. format is similar to the TIMEw. format except that the NLTIMEw.
format is locale-specific.

Examples

These examples use the input value of 59083, which is the SAS date-time value that
corresponds to 4:24:43 p.m.

198 NLTIMAPw. Format � Chapter 7

Statements Results

----+----1----+

options locale=English_UnitedStates;

put time nltime.; 4:24:43

options locale=German_Germany;

put time nltime.; 16.24

See Also

Formats:
“NLTIMAPw. Format” on page 198

NLTIMAPw. Format

Converts a SAS time value to the time value of a specified locale and then writes the value as a
time value with am or pm. NLTIMAP also converts SAS date-time values.

Category: Date and Time

Alignment: left

Syntax
NLTIMAPw.

Syntax Description

w
specifies the width of the output field.
Default: 10

Range: 4–200

Comparisons
The NLTIMAPw. format is similar to the TIMEAMPMw. format except that the
NLTIMAPw. format is locale-specific.

Examples

These examples use the input value of 59083, which is the SAS date-time value that
corresponds to 4:24:43 p.m.

Formats for NLS � $UCS2Bw. Format 199

Statements Results

----+----1----+

options locale=English_UnitedStates;

put time nltimap.; 4:24:43 PM

options locale=German_Germany;

put time nltimap.; 16.24 Uhr

See Also

Formats:

“NLTIMEw. Format” on page 197

$UCS2Bw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in big-endian, 16-bit, UCS2, Unicode encoding.

Category: Character

Alignment: left

Syntax
$UCS2Bw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 2–32767

Details
The $UCS2Bw. format writes a character string in big-endian, 16-bit, UCS2 (universal
character set code in two octets), Unicode encoding. It processes character strings that
are in the encoding of the current SAS session.

Comparison
The $UCS2Bw. format performs processing that is the opposite of the $UCS2BEw.
format.

200 $UCS2BEw. Format � Chapter 7

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Results

----+----1

x = ’ ’;

put x $ucs2b2.; ’5927’x (binary)

See Also

Formats:
“$UCS2Lw. Format” on page 201
“$UCS2Xw. Format” on page 204
“$UTF8Xw. Format” on page 220
“$UCS2BEw. Format” on page 200

Informats:
“$UCS2Bw. Informat” on page 411
“$UCS2BEw. Informat” on page 412
“$UCS2Lw. Informat” on page 413
“$UCS2Xw. Informat” on page 415
“$UTF8Xw. Informat” on page 429

$UCS2BEw. Format

Processes a character string that is in big-endian, 16-bit, UCS2, Unicode encoding, and then
writes the character string in the encoding of the current SAS session.

Category: Character
Alignment: left

Syntax
$UCS2BEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8

Formats for NLS � $UCS2Lw. Format 201

Range: 1–32000

Details
The $UCS2BEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in big-endian, 16-bit, UCS2 (universal
character set code in two octets), Unicode encoding.

Comparison
The $UCS2BEw. format performs processing that is the opposite of the $UCS2Bw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Results

----+----1

x =’592700410042’x;

put x $ucs2be4.; AB

See Also

Formats:

“$UCS2Bw. Format” on page 199

Informats:

“$UCS2Bw. Informat” on page 411

“$UCS2BEw. Informat” on page 412

$UCS2Lw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in little-endian, 16-bit, UCS2, Unicode encoding.

Category: Character

Alignment: left

Syntax
$UCS2Lw.

202 $UCS2Lw. Format � Chapter 7

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 2–32767

Details
The $UCS2Lw. format writes a character string in little-endian, 16-bit, UCS2
(universal character set code in two octets), Unicode encoding. It processes character
strings that are in the encoding of the current SAS session.

Comparison
The $UCS2Lw. format performs processing that is the opposite of the $UCS2LEw.
format.

Example
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x = ’ ’;

put x $ucs2l2.; ’2759’x (binary)

See Also

Formats:

“$UCS2Bw. Format” on page 199

“$UCS2LEw. Format” on page 203

“$UCS2Xw. Format” on page 204

“$UTF8Xw. Format” on page 220

Informats:

“$UCS2Bw. Informat” on page 411

“$UCS2Lw. Informat” on page 413

“$UCS2LEw. Informat” on page 414

“$UCS2Xw. Informat” on page 415

“$UTF8Xw. Informat” on page 429

Formats for NLS � $UCS2LEw. Format 203

$UCS2LEw. Format

Processes a character string that is in little-endian, 16-bit, UCS2, Unicode encoding, and then
writes the character string in the encoding of the current SAS session.

Category: Character
Alignment: left

Syntax
$UCS2LEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 1–32000

Details
The $UCS2LEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in little-endian, 16-bit, UCS2 (universal
character set code in two octets), Unicode encoding.

Comparison
The $UCS2LEw. format performs processing that is the opposite of the $UCS2Lw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’275941004200’x;

put x $ucs2le4.; AB

See Also

Formats:
“$UCS2Lw. Format” on page 201

204 $UCS2Xw. Format � Chapter 7

Informats:
“$UCS2Lw. Informat” on page 413
“$UCS2LEw. Informat” on page 414

$UCS2Xw. Format
Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in native-endian, 16-bit, UCS2, Unicode encoding.

Category: Character
Alignment: left

Syntax
$UCS2Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32767

Details
The $UCS2Xw. format writes a character string in 16-bit, UCS2 (universal character
set code in two octets), Unicode encoding, by using byte order that is native to the
operating environment.

Comparison
The $UCS2Xw. format performs processing that is the opposite of the $UCS2XEw.
format. If you are exchanging data within the same operating environment, use the
$UCS2Xw. format. If you are exchanging data with a different operating environment,
use the $UCS2Bw. format or $UCS2Lw. format.

Example
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating environment.

Statements Result

----+----1

x = ’ ’;

put x $ucs2x2.; ’5927’x (binary) or ’2759’x (little endian)

Formats for NLS � $UCS2XEw. Format 205

See Also

Formats:

“$UCS2Bw. Format” on page 199

“$UCS2XEw. Format” on page 205

“$UCS2Lw. Format” on page 201

“$UTF8Xw. Format” on page 220

Informats:

“$UCS2Bw. Informat” on page 411

“$UCS2Lw. Informat” on page 413

“$UCS2Xw. Informat” on page 415

“$UCS2XEw. Informat” on page 416

“$UTF8Xw. Informat” on page 429

$UCS2XEw. Format

Processes a character string that is in native-endian, 16-bit, UCS2, Unicode encoding, and then
writes the character string in the encoding of the current SAS session.

Category: Character

Alignment: left

Syntax
$UCS2XEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 1–32000

Details
The $UCS2XEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in native-endian, 16-bit, UCS2
(universal character set code in two octets), Unicode encoding.

Comparison
The $UCS2XEw. format performs processing that is the opposite of the $UCS2Xw.
format.

206 $UCS4Bw. Format � Chapter 7

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’e5a4a7’x; /* Japanese ’ ’ in
UTF8 */;

put x $utf8xe10.;

See Also

Formats:
“$UCS2Xw. Format” on page 204

Informats:
“$UCS2Xw. Informat” on page 415
“$UCS2XEw. Informat” on page 416

$UCS4Bw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in big-endian, 32-bit, UCS4, Unicode encoding.

Category: Character
Alignment: left

Syntax
$UCS4Bw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 4
Range: 4–32767

Details
The $UCS4Bw. format writes a character string in big-endian, 32-bit, UCS4 (universal
character set code in four octets), Unicode encoding. It processes character strings that
are in the encoding of the current SAS session.

Formats for NLS � $UCS4BEw. Format 207

Comparison
The $UCS4Bw. format performs processing that is the opposite of the $UCS4BEw.
format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x = ’ ’;

put x $ucs4b4.; ’00005927’x (binary)

See Also

Formats:
“$UCS2Lw. Format” on page 201
“$UCS2Xw. Format” on page 204
“$UCS4BEw. Format” on page 207
“$UCS4Lw. Format” on page 208
“$UCS4Xw. Format” on page 211
“$UTF8Xw. Format” on page 220

Informats:
“$UCS2Bw. Informat” on page 411
“$UCS2Lw. Informat” on page 413
“$UCS2Xw. Informat” on page 415
“$UCS4Bw. Informat” on page 417
“$UCS4Lw. Informat” on page 418
“$UCS4Xw. Informat” on page 419
“$UTF8Xw. Informat” on page 429

$UCS4BEw. Format

Processes a character string that is in big-endian, 32-bit, UCS4, Unicode encoding, and then
writes the character string in the encoding of the current SAS session.

Category: Character
Alignment: left

Syntax
$UCS4BEw.

208 $UCS4Lw. Format � Chapter 7

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 8
Range: 1–32000

Details
The $UCS4BEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in big-endian, 32-bit, UCS4 (universal
character set code in four octets), Unicode encoding.

Comparison
The $UCS4BEw. format performs processing that is the opposite of the $UCS4Bw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’000059270000004100000042’x;

put x $ucs4be4.; AB

See Also

Formats:
“$UCS4Bw. Format” on page 206

Informats:
“$UCS4Bw. Informat” on page 417

$UCS4Lw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in little-endian, 32-bit, UCS4, Unicode encoding.

Category: Character
Alignment: left

Formats for NLS � $UCS4Lw. Format 209

Syntax
$UCS4Lw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 4
Range: 4–32767

Details
The $UCS4Lw. format writes a character string in little-endian, 32-bit, UCS4
(universal character set code in four octets), Unicode encoding. It processes character
strings that are in the encoding of the current SAS session.

Comparisons
The $UCS4Lw. format performs processing that is the opposite of the $UCS4LEw.
format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x = ’ ’;

put x $ucs4l4.; ’27590000’x (binary)

See Also

Formats:
“$UCS2Bw. Format” on page 199
“$UCS2Xw. Format” on page 204
“$UCS4Bw. Format” on page 206
“$UCS4LEw. Format” on page 210
“$UCS4Xw. Format” on page 211
“$UTF8Xw. Format” on page 220

Informats:
“$UCS2Bw. Informat” on page 411
“$UCS2Lw. Informat” on page 413
“$UCS2Xw. Informat” on page 415

210 $UCS4LEw. Format � Chapter 7

“$UCS4Bw. Informat” on page 417
“$UCS4Lw. Informat” on page 418
“$UCS4Xw. Informat” on page 419
“$UTF8Xw. Informat” on page 429

$UCS4LEw. Format

Processes a character string that is in little-endian, 32-bit, UCS4, Unicode encoding, and then
writes the character string in the encoding of the current SAS session.

Category: Character
Alignment: left

Syntax
$UCS4LEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 8
Range: 1–32000

Details
The $UCS4LEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in little-endian, 32-bit, UCS4 (universal
character set code in four octets), Unicode encoding.

Comparison
The $UCS4LEw. format performs processing that is the opposite of the $UCS4Lw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’275900004100000042000000’x;

put x $ucs4le4.; AB

Formats for NLS � $UCS4Xw. Format 211

See Also

Formats:

“$UCS4Lw. Format” on page 208

Informats:

“$UCS4Lw. Informat” on page 418

$UCS4Xw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in native-endian, 32-bit, UCS4, Unicode encoding.

Category: Character

Alignment: left

Syntax
$UCS4Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 4

Range: 4–32767

Details
The $UCS4Xw. format writes a character string in 32-bit, UCS4 (universal character
set code in two octets), Unicode encoding, by using byte order that is native to the
operating environment.

Comparisons
The $UCS4Xw. format performs processing that is the opposite of the $UCS4XEw.
format. If you are exchanging data within the same operating environment, use the
$UCS4Xw. format. If you are exchanging data with a different operating environment,
use the $UCS4Bw. format or $UCS4Lw. format.

Example
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating environment.

212 $UCS4XEw. Format � Chapter 7

Statements Results

----+----1

x = ’ ’;

put x $ucs4x4.; ’00005927’x (binary) or ’27590000’x (little endian)

See Also

Formats:
“$UCS2Lw. Format” on page 201
“$UCS4XEw. Format” on page 212
“$UCS2Xw. Format” on page 204
“$UCS4Bw. Format” on page 206
“$UCS4Lw. Format” on page 208
“$UTF8Xw. Format” on page 220

Informats:
“$UCS2Bw. Informat” on page 411
“$UCS2Lw. Informat” on page 413
“$UCS2Xw. Informat” on page 415
“$UCS4Bw. Informat” on page 417
“$UCS4Bw. Format” on page 206
“$UCS4Lw. Informat” on page 418
“$UCS4Xw. Informat” on page 419
“$UTF8Xw. Informat” on page 429

$UCS4XEw. Format

Processes a character string that is in native-endian, 32-bit, UCS4, Unicode encoding, and then
writes the character string in the encoding of the current SAS session.

Category: Character
Alignment: left

Syntax
$UCS4XEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Formats for NLS � $UESCw. Format 213

Default: 8

Range: 1–32000

Details
The $UCS4XEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in native-endian, 32-bit, UCS4
(universal character set code in four octets), Unicode encoding.

Comparison
The $UCS4XEw. format performs processing that is the opposite of the $UCS4Xw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’275900004100000042000000’x;

put x $ucs4be4.; AB (little endian)

See Also

Formats:

“$UCS4Xw. Format” on page 211

Informats:

“$UCS4Xw. Informat” on page 419

$UESCw. Format

Processes a character string that is encoded in the current SAS session, and then writes the
character string in Unicode escape (UESC) representation.

Category: Character

Alignment: left

Syntax
$UESCw.

214 $UESCEw. Format � Chapter 7

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Details
If the characters are not available on all operating environments, for example, 0–9, a–z,
A–Z, they must be represented in UESC. $UESCw. can be nested.

Comparisons
The $UESCw. format performs processing that is opposite of the $UESCEw. format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+----2

x=’ ’ ;

y=’u5927’

z=’uu5927’;

put x = $uesc10. ;

put y = $uesc10. ;

put z = $uesc10. ;

¥u5927

¥uu5927

¥uuu5927

See Also

Formats:
“$UESCEw. Format” on page 214

Informats:
“$UESCw. Informat” on page 421
“$UESCEw. Informat” on page 423

$UESCEw. Format

Processes a character string that is in Unicode escape (UESC) representation, and then writes the
character string in the encoding of the current SAS session.

Category: Character

Formats for NLS � $UNCRw. Format 215

Alignment: left

Syntax
$UESCEw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–32000

Details
If the data is not supported by the encoding of the current SAS session, the data
remains in UESC.

Comparisons
The $UESCEw. format performs processing that is the opposite of the $UESCw. format.

Examples
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1----+----2

x=put(’¥u5927’,$uesce10.) ;

x=put(’¥uu5927’,$uesce10.) ;

x=put(’¥uuu5927’,$uesce10.) ;

x=

x=¥u5927

x=¥uu5927

See Also

Formats:
“$UESCw. Format” on page 213

Informats:
“$UESCw. Informat” on page 421
“$UESCEw. Informat” on page 423

$UNCRw. Format
Processes a character string that is encoded in the current SAS session, and then writes the
character string in numeric character representation (NCR).

216 $UNCRw. Format � Chapter 7

Category: Character

Alignment: left

Syntax

$UNCRw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–32000

Comparison

The $UNCRw. format performs processing that is the opposite of the $UNCREw.
format.

Examples

This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1----+----2

x=’91E5’x ; /* Japanese ’ ’ in
Shift-JIS */

y=’abc’;

put x $uncr10.;

put y $uncr10.;

大

abc

See Also

Formats:

“$UNCREw. Format” on page 217

Informats:

“$UNCRw. Informat” on page 424

“$UNCREw. Informat” on page 425

Formats for NLS � $UNCREw. Format 217

$UNCREw. Format

Processes a character string that is in numeric character representation (NCR), and then writes
the character string in the encoding of the current SAS session.

Category: Character
Alignment: left

Syntax
$UNCREw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–32000

Details
National characters should be represented in NCR.

Comparison
The $UNCREw. format performs processing that is the opposite of the $UNCRw.
format.

Examples
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1

x=’大abc’;

put x $uncr10.; abc

See Also

Formats:
“$UNCRw. Format” on page 215

Informats:
“$UNCRw. Informat” on page 424

218 $UPARENw. Format � Chapter 7

“$UNCREw. Informat” on page 425

$UPARENw. Format

Processes a character string that is encoded in the current SAS session, and then writes the
character string in Unicode parenthesis (UPAREN) representation.

Category: Character

Alignment: left

Syntax
$UPARENw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 27–32000

Details
The character string is encoded with parentheses and Unicode hexadecimal
representation.

Comparisons
The $UPARENw. format performs processing that is the opposite of the $UPARENEw.
format.

Examples
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1----+----2----+----3----+

x=’ ’;

y=’abc3’;

put x $uparen7.;

put y $uparen28.;

<u5927>

<u0061> <u0062> <u0063> <u0033>

Formats for NLS � $UPARENEw. Format 219

See Also

Formats:

“$UPARENEw. Format” on page 219

Informats:

“$UPARENw. Informat” on page 426

“$UPARENEw. Informat” on page 427

$UPARENEw. Format

Processes a character string that is in Unicode parenthesis (UPAREN), and then writes the
character string in the encoding of the current SAS session.

Category: Character

Alignment: left

Syntax
$UPARENEw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–32000

Comparisons
The $UPARENEw. format performs processing that is the opposite of the $UPARENw.
format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+

x=’<u0061><u0062><u0063><u0033>’;

put x $uparene4.; abc3

220 $UTF8Xw. Format � Chapter 7

See Also

Formats:

“$UPARENw. Format” on page 218

Informats:

“$UPARENw. Informat” on page 426

“$UPARENEw. Informat” on page 427

$UTF8Xw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in universal transformation format (UTF-8) encoding.

Category: Character

Alignment: left

Syntax

$UTF8Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to include all of the
characters in the variable. The width of the characters are dependent on the code
point value of the individual characters.

Default: 8

Range: 2–32767

Examples

This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating environment.

Statements Results

----+----1

x =’91E5’x; ; /* Japanese ’ ’ in
Shift-JIS */

put x $utf8x10.; x=’e5a4a7’x

Formats for NLS � $VSLOGw. Format 221

See Also

Formats:

“$UCS2Bw. Format” on page 199

“$UCS2Lw. Format” on page 201
“$UCS2Xw. Format” on page 204

Informats:

“$UCS2Bw. Informat” on page 411

“$UCS2Lw. Informat” on page 413

“$UCS2Xw. Informat” on page 415

$VSLOGw. Format

Processes a character string that is in visual order, and then writes the character string in
left-to-right logical order.

Category: BIDI text handling

Alignment: left

Syntax
$VSLOGw.

Syntax Description

w
specifies the width of the output field.

Default: 200

Range: 1–32000

Details
The $VSLOGw. format is used when transferring data that is stored in visual order. An
example is transferring data from a UNIX server to a Windows client.

Note: The $VSLOGw. format does not correctly process all combinations of data
strings. �

Comparisons
The $VSLOGw. format performs processing that is opposite to the $VSLOGRw. format.

Examples

The following example uses the Hebrew input value of “ flight”.

222 $VSLOGRw. Format � Chapter 7

Statements Results

----+----1----+----2----+

put text $vslog12.; flight

The following example uses the Arabic input value of “ ” computer.

Statements Results

----+----1----+----2----+

put text $vslog12.;

computer

See Also

Formats:

“$VSLOGRw. Format” on page 222

Informats:

“$VSLOGw. Informat” on page 430

“$VSLOGRw. Informat” on page 431

$VSLOGRw. Format

Processes a character string that is in visual order, and then writes the character string in
right-to-left logical order.

Category: BIDI text handling

Alignment: left

Syntax
$VSLOGRw.

Syntax Description

w
specifies the width of the output field.

Default: 200

Range: 1–32000

Formats for NLS � WEEKUw. Format 223

Details
The $VSLOGRw. format is used when transferring data that is stored in visual order.
An example is transferring data from a UNIX server to a Windows client.

Note: The $VSLOGRw. format does not correctly process all combinations of data
strings. �

Comparisons
The $VSLOGRw. format performs processing that is opposite to the $VSLOGw. format.

Examples

The following example uses the Hebrew input value of “ flight.”

Statements Results

----+----1----+

put text $logvs12;
flight

The following example uses the Arabic input value of “ ” computer.

Statements Results

----+----1----+

put text $logvs12;

computer

See Also

Formats:
$VSLOGw.

Informats:
“$VSLOGw. Informat” on page 430
“$VSLOGRw. Informat” on page 431

WEEKUw. Format

Writes a week number in decimal format by using the U algorithm.

Category: Date and Time
Alignment: left

224 WEEKUw. Format � Chapter 7

Syntax

WEEKUw.

Syntax Description

w
specifies the width of the output field.

Default: 11

Range: 3–200

Details

The WEEKUw. format writes a week-number format. The WEEKUw. format writes
the various formats depending on the specified width. Algorithm U calculates the SAS
date value by using the number of the week within the year (Sunday is considered the
first day of the week). The number-of-the-week value is represented as a decimal
number in the range 0–53, with a leading zero and maximum value of 53. For example,
the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons

The WEEKVw. format writes the week number as a decimal number in the range
01–53, with weeks beginning on a Monday and week 1 of the year including both
January 4th and the first Thursday of the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The
WEEKWw. format writes the week number of the year as a decimal number in the
range 00–53, with Monday as the first day of week 1. The WEEKUw. format writes the
week number of the year (Sunday as the first day of the week) as a decimal number in
the range 0–53, with a leading zero.

Examples

sasdate = ’01JAN2003’d;

Formats for NLS � WEEKVw. Format 225

Statements Results

----+----1----+

v=put(sasdate,weeku3.);
w=put(sasdate,weeku5.);
x=put(sasdate,weeku7.);
y=put(sasdate,weeku9.);
z=put(sasdate,weeku11.);
put v;
put w;
put x;
put y;
put z;

W00
03W00
03W0004
2003W0004
2003-W00-04

See Also

Formats:

“WEEKVw. Format” on page 225

“WEEKWw. Format” on page 227

WEEKVw. Format

Writes a week number in decimal format by using the V algorithm.

Category: Date and Time

Alignment: left

Syntax
WEEKVw.

Syntax Description

w
specifies the width of the output field.

Default: 11

Range: 3–200

Details
The WEEKVw. format writes the various formats depending on the specified width.
Algorithm V calculates the SAS date value, with the number-of-the-week value
represented as a decimal number in the range 01–53, with a leading zero and
maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week
that includes both January 4th and the first Thursday of the year. If the first Monday

226 WEEKVw. Format � Chapter 7

of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. For example, the fifth week of the year would be represented as 06.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53, with weeks beginning on a Monday and week 1 of the year including both
January 4th and the first Thursday of the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The
WEEKWw. format writes the week number of the year as a decimal number in the
range 00–53, with Monday as the first day of week 1. The WEEKUw. format writes the
week number of the year (Sunday as the first day of the week) as a decimal number in
the range 0–53, with a leading zero.

Examples

sasdate=’01JAN2003’d;

Statements Results

----+----1----+

v=put(sasdate,weekv3.);
w=put(sasdate,weekv5.);
x=put(sasdate,weekv7.);
y=put(sasdate,weekv9.);
z=put(sasdate,weekv11.);
put v;
put w;
put x;
put y;
put z;

W01
03W01
03W0103
2003W0103
2003-W01-03

See Also

Formats:
“WEEKUw. Format” on page 223
“WEEKWw. Format” on page 227

Formats for NLS � WEEKWw. Format 227

WEEKWw. Format

Writes a week number in decimal format by using the W algorithm.

Category: Date and Time

Alignment: left

Syntax
WEEKWw.

Syntax Description

w
specifies the width of the output field.
Default: 11
Range: 3–200

Details
The WEEKWw. format writes the various formats depending on the specified width.
Algorithm W calculates the SAS date value using the number of the week within the
year (Monday is considered the first day of the week). The number-of-the-week value is
represented as a decimal number in the range 0–53, with a leading zero and maximum
value of 53. For example, the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53. Weeks beginning on a Monday and on week 1 of the year include both January
4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or
4th, the preceding days are part of the last week of the preceding year. The WEEKWw.
format writes the week number of the year as a decimal number in the range 00–53,
with Monday as the first day of week 1. The WEEKUw. format writes the week
number of the year (Sunday as the first day of the week) as a decimal number in the
range 0–53, with a leading zero.

228 YYWEEKUw. Format � Chapter 7

Examples

sasdate = ’01JAN2003’d;

Statements Results

----+----1----+

v=put(sasdate,weekw3.);
w=put(sasdate,weekw5.);
x=put(sasdate,weekw7.);
y=put(sasdate,weekw9.);
z=put(sasdate,weekw11.);
put v;
put w;
put x;
put y;
put z;

W03
03W03
03W0003
2003W0003
2003-W00-03

See Also

Formats:

“WEEKUw. Format” on page 223

“WEEKVw. Format” on page 225

YYWEEKUw. Format

Writes a week number in decimal format by using the U algorithm, excluding day-of-the-week
information.

Category: Date and Time

Alignment: left

Syntax
YYWEEKUw.

Syntax Description

w
specifies the width of the output field.

Default: 7

Range: 3-8

Formats for NLS � YYWEEKUw. Format 229

Details
The YYWEEKUw. format writes a week-number format. The YYWEEKUw. format
writes the various formats depending on the specified width. Algorithm U calculates
the SAS date value by using the number of the week within the year (Sunday is
considered the first day of the week).

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www W01

5-6 yyWww 07W01

7 yyyyWww 2007W01

8 yyyy-Www 2007-W01

9-above invalid invalid

Comparisons
The YYWEEKUw. format is similar to the WEEKUw. format except that the
YYWEEKUw. format does not specify the day-of-week information. Also, the
YYWEEKUw. format does not accept any width that is greater than 8.

Examples

sasdate = ’01JAN2007’d;

Statements Results

----+----1----+

u=put(sasdate,yyweeku3.);
v=put(sasdate,yyweeku4.);
w=put(sasdate,yyweeku5.);
x=put(sasdate,yyweeku6.);
y=put(sasdate,yyweeku7.);
z=put(sasdate,yyweeku8.);
put u;
put v;
put w;
put x;
put y;
put z;

W00
W00
07W00
07W00
2007W00
2007-W00

See Also

Formats:

“WEEKUw. Format” on page 223

230 YYWEEKVw. Format � Chapter 7

YYWEEKVw. Format

Writes a week number in decimal format by using the V algorithm, excluding day-of-the-week
information.

Category: Date and Time

Alignment: left

Syntax
YYWEEKVw.

Syntax Description

w
specifies the width of the output field.

Default: 7

Range: 3–8

Details
The YYWEEKVw. format writes the various formats depending on the specified width.
Algorithm V calculates the SAS date value, with the number-of-the-week value
represented as a decimal number in the range 01–53, with a leading zero and
maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week
that includes both January 4th and the first Thursday of the year. If the first Monday
of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. For example, the fifth week of the year would be represented as 06.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 07W01

7 yyyyWww 2007W01

8 yyyy-Www 2007-W01

9-above invalid invalid

Comparisons
The YYWEEKVw. format is similar to the WEEKVw. format except that the
YYWEEKVw. format does not specify the day-of-week information. Also, the
YYWEEKVw. format does not accept a width that is greater than 8.

Formats for NLS � YYWEEKWw. Format 231

Examples

sasdate = ’01JAN2007’d;

Statements Results

----+----1----+

u=put(sasdate,yyweekv3.);
v=put(sasdate,yyweekv4.);
w=put(sasdate,yyweekv5.);
x=put(sasdate,yyweekv6.);
y=put(sasdate,yyweekv7.);
z=put(sasdate,yyweekv8.);
put u;
put v;
put w;
put x;
put y;
put z;

W01
W01
07W01
07W01
2007W01
2007-W01

See Also

Formats:

“WEEKVw. Format” on page 225

YYWEEKWw. Format

Writes a week number in decimal format by using the W algorithm, excluding the day-of-week
information.

Category: Date and Time

Alignment: left

Syntax
YYWEEKWw.

Syntax Description

w
specifies the width of the output field.

Default: 7

Range: 3–8

232 YYWEEKWw. Format � Chapter 7

Details
The YYWEEKWw. format writes the various formats depending on the specified width.
Algorithm W calculates the SAS date value using the number of the week within the
year.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www W01

5-6 yyWww 07W01

7 yyyyWww 2007W01

8 yyyy-Www 2007-W01

9-above invalid invalid

Comparisons

The YYWEEKWw. format is similar to the WEEKWw. format except that the
YYWEEKWw. format does not specify the day-of-week information. Also, the
YYWEEKWw. format does not accept any width that is greater than 8.

Examples

sasdate = ’01JAN2007’d

Statements Results

----+----1----+

u=put(sasdate,yyweekw3.);
v=put(sasdate,yyweekw4.);
w=put(sasdate,yyweekw5.);
x=put(sasdate,yyweekw6.);
y=put(sasdate,yyweekw7.);
z=put(sasdate,yyweekw8.);
put u;
put v;
put w;
put x;
put y;
put z;

W01
W01
07W01
07W01
2007W01
2007-W01

See Also

Formats:

“WEEKWw. Format” on page 227

Formats for NLS � YENw.d Format 233

YENw.d Format

Writes numeric values with yen signs, commas, and decimal points.

Category: Numeric
Alignment: right

Syntax
YENw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
Restriction: must be either 0 or 2.
Tip: If d is 2, then YENw.d writes a decimal point and two decimal digits. If d is 0,

then YENw.d does not write a decimal point or decimal digits.

Details
The YENw.d format writes numeric values with a leading yen sign and with a comma
that separates every three digits of each value.

The hexadecimal representation of the code for the yen sign character is 5B on
EBCDIC systems and 5C on ASCII systems. The monetary character these codes
represent might be different in other countries.

Examples

put cost yen10.2;

Cost Result

----+----1

1254.71 ¥1,254.71

See Also

Informats:
“YENw.d Informat” on page 433

234

235

C H A P T E R

8
Functions for NLS

Internationalization Compatibility for SAS String Functions 236
Functions for NLS by Category 252

GETLOCENV Function 254

GETPXLANGUAGE Function 255

GETPXLOCALE Function 256

GETPXREGION Function 257
KCOMPARE Function 258

KCOMPRESS Function 259

KCOUNT Function 260

KCVT Function 260

KINDEX Function 262

KINDEXC Function 262
KLEFT Function 263

KLENGTH Function 264

KLOWCASE Function 264

KPROPCASE Function 265

KPROPCHAR Function 268
KPROPDATA Function 268

KREVERSE Function 270

KRIGHT Function 271

KSCAN Function 271

KSTRCAT Function 272
KSUBSTR Function 273

KSUBSTRB Function 274

KTRANSLATE Function 274

KTRIM Function 275

KTRUNCATE Function 276

KUPCASE Function 277
KUPDATE Function 277

KUPDATEB Function 279

KVERIFY Function 280

NLDATE Function 280

NLDATM Function 283
NLTIME Function 286

SORTKEY Function 287

TRANTAB Function 290

VARTRANSCODE Function 291

VTRANSCODE Function 293
VTRANSCODEX Function 294

UNICODE Function 295

UNICODEC Function 297

236 Internationalization Compatibility for SAS String Functions � Chapter 8

UNICODELEN Function 299
UNICODEWIDTH Function 300

Internationalization Compatibility for SAS String Functions
SAS provides string functions and CALL routines that allow you to easily manipulate

your character data. Many of the original SAS string functions assume that the size of
one character is always one byte. This process works well for data in a single-byte
character set (SBCS). However, when some of these functions and CALL routines are
used with data in a double-byte character set (DBCS) or multi-byte character set
(MBCS), the data is often handled improperly and produce incorrect results.

DBCS encodings require a varying number of bytes to represent each character.
MBCS is sometimes used as a synonym for DBCS.

To solve this problem SAS introduced a set of string functions and CALL routines,
called K functions, for those string manipulations where DBCS and MBCS data must
be handled carefully. This page shows the level of I18N compatibility for each SAS
string function. I18N is the abbreviation for internationalization. Compatibility
indicates whether a program using a particular string function can be adapted to
different languages and locales without program changes.

The user needs to understand the difference between byte-based offset-length and
character-based offset-length in order to use the K functions properly. Most K functions
require the character-based offset or length. Under SBCS environments, the byte-based
unit is identical to character-based unit; however, under DBCS or MBCS environment,
there are significant differences, and programmers need to distinguish them. The users
might need to change the programming logic in order to use the K functions. Most K
functions require strings encoded in current SAS session encoding.

String functions are assigned I18N levels depending on whether the functions can
process DBCS, MBCS, or SBCS. Here are descriptions of the levels:

I18N Level 0 This function is designed for SBCS data. Do not use this function to
process DBCS or MBCS data.

I18N Level 1 This function should be avoided, if possible, if you are using a
non-English language. The I18N Level 1 functions might not work
correctly with DBCS or MBCS encodings under certain
circumstances.

I18N Level 2 This function can be used for SBCS, DBCS, and MBCS (UTF-8) data.

Functions for NLS � Internationalization Compatibility for SAS String Functions 237

Table 8.1 SAS String Functions

Function Description I18N Level 0 I18N Level 1 I18N Level 2

ANYALNUM Searches a
character string
for an
alphanumeric
character, and
returns the first
position at which
the character is
found.

X

ANYALPHA Searches a
character string
for an alphabetic
character, and
returns the first
position at which
the character is
found.

X

ANYCNTRL Searches a
character string
for a control
character, and
returns the first
position at which
that character is
found.

X

ANYDIGIT Searches a
character string
for a digit, and
returns the first
position at which
the digit is found.

X

ANYFIRST Searches a
character string
for a character
that is valid as
the first
character in a
SAS variable
name under
VALIDVARNAME=V7,
and returns the
first position at
which that
character is
found.

X

238 Internationalization Compatibility for SAS String Functions � Chapter 8

Function Description I18N Level 0 I18N Level 1 I18N Level 2

ANYGRAPH Searches a
character string
for a graphical
character, and
returns the first
position at which
that character is
found.

X

ANYLOWER Searches a
character string
for a lowercase
letter, and
returns the first
position at which
the letter is
found.

X

ANYNAME Searches a
character string
for a character
that is valid in a
SAS variable
name under
VALIDVARNAME=V7,
and returns the
first position at
which that
character is
found.

X

ANYPRINT Searches a
character string
for a printable
character, and
returns the first
position at which
that character is
found.

X

ANYPUNCT searches a
character string
for a punctuation
character, and
returns the first
position at which
that character is
found.

X

Functions for NLS � Internationalization Compatibility for SAS String Functions 239

Function Description I18N Level 0 I18N Level 1 I18N Level 2

ANYSPACE Searches a
character string
for a white-space
character (blank,
horizontal and
vertical tab,
carriage return,
line feed, and
form feed).
Returns the first
position at which
that character is
found.

X

ANYUPPER Searches a
character string
for an uppercase
letter, and
returns the first
position at which
the letter is
found.

X

ANYXDIGIT Searches a
character string
for a hexadecimal
character that
represents a
digit, and returns
the first position
at which that
character is
found.

X

BYTE Returns one
character in the
ASCII or the
EBCDIC
collating
sequence.

X

CAT Does not remove
leading or
trailing blanks,
and returns a
concatenated
character string.

X

CATS Removes leading
and trailing
blanks, and
returns a
concatenated
character string.

X

240 Internationalization Compatibility for SAS String Functions � Chapter 8

Function Description I18N Level 0 I18N Level 1 I18N Level 2

CATT Removes trailing
blanks, and
returns a
concatenated
character string.

X

CATX Removes leading
and trailing
blanks, inserts
delimiters, and
returns a
character string.

X

CHOOSEC Returns a
character value
that represents
the results of
choosing from a
list of arguments.

X

CHOOSEN Returns a
numeric value
that represents
the results of
choosing from a
list of arguments.

X

COALESCEC Returns the first
non-missing
value from a list
of numeric
arguments.

X

COLLATE Returns a
character string
in ASCII or
EBCDIC
collating
sequence.

X

COMPARE Returns the
position of the
leftmost
character by
which two
strings differ, or
returns 0 if there
is no difference.

X

COMPBL Removes
multiple blanks
from a character
string.

X

Functions for NLS � Internationalization Compatibility for SAS String Functions 241

Function Description I18N Level 0 I18N Level 1 I18N Level 2

COMPGED Returns the
generalized edit
distance between
two strings.

X

COMPLEV Returns the
Levenshtein edit
distance between
two strings.

X

COMPRESS Returns a
character string
with specified
characters
removed from the
original string.

X

COUNT Counts the
number of times
that a specified
substring
appears within a
character string.

X

COUNTC Counts the
number of
characters in a
string that
appear or do not
appear in a list of
characters.

X

DEQUOTE Removes
matching
quotation marks
from a character
string that
begins with a
quotation mark,
and deletes all
characters to the
right of the
closing quotation
mark.

X

FIND Searches for a
specific substring
of characters
within a
character string.

X

FINDC Searches a string
for any character
in a list of
characters.

X

242 Internationalization Compatibility for SAS String Functions � Chapter 8

Function Description I18N Level 0 I18N Level 1 I18N Level 2

HTMLDECODE Decodes a string
that contains
HTML numeric
character
references or
HTML character
entity references,
and returns the
decoded string.

X

HTMLENCODE Encodes
characters using
HTML character
entity references,
and returns the
encoded string.

X

IFC Returns a
character value
based on whether
an expression is
true, false, or
missing.

X

IFN Returns a
numeric value
based on whether
an expression is
true, false, or
missing.

X

INDEX Searches a
character
expression for a
string of
characters, and
returns the
position of the
string’s first
character for the
first occurrence
of the string.

X

INDEXC Searches a
character
expression for
any of the
specified
characters, and
returns the
position of that
character.

X

Functions for NLS � Internationalization Compatibility for SAS String Functions 243

Function Description I18N Level 0 I18N Level 1 I18N Level 2

INDEXW Searches a
character
expression for a
string that is
specified as a
word, and
returns the
position of the
first character in
the word.

X

“KCOMPARE
Function” on
page 258

Returns the
result of a
comparison of
character
expressions.

X

“KCOMPRESS
Function” on
page 259

Removes
specified
characters from a
character
expression.

X

“KCOUNT
Function” on
page 260

Returns the
number of
double-byte
characters in an
expression.

X

“KCVT Function”
on page 260

Converts data
from one type of
encoding data to
another encoding
data.

X

“KINDEX
Function” on
page 262

Searches a
character
expression for a
string of
characters.

X

“KINDEXC
Function” on
page 262

Searches a
character
expression for
specified
characters.

X

“KLEFT
Function” on
page 263

Left-aligns a
character
expression by
removing
unnecessary
leading DBCS
blanks and
SO-SI.

X

244 Internationalization Compatibility for SAS String Functions � Chapter 8

Function Description I18N Level 0 I18N Level 1 I18N Level 2

“KLENGTH
Function” on
page 264

Returns the
length of an
argument.

X

“KLOWCASE
Function” on
page 264

Converts all
letters in an
argument to
lowercase.

X

“KREVERSE
Function” on
page 270

Reverses a
character
expression.

X

“KRIGHT
Function” on
page 271

Right-aligns a
character
expression by
trimming trailing
DBCS blanks
and SO-SI.

X

“KSCAN
Function” on
page 271

Selects a
specified word
from a character
expression.

X

“KSTRCAT
Function” on
page 272

Concatenates two
or more character
expressions.

X

“KSUBSTR
Function” on
page 273

Extracts a
substring from
an argument.

X

“KSUBSTRB
Function” on
page 274

Extracts a
substring from
an argument
according to the
byte position of
the substring in
the argument.

X

“KTRANSLATE
Function” on
page 274

Replaces specific
characters in a
character
expression.

X

“KTRIM
Function” on
page 275

Removes trailing
DBCS blanks
and SO-SI from
character
expressions.

X

“KTRUNCATE
Function” on
page 276

Truncates a
numeric value to
a specified
length.

X

Functions for NLS � Internationalization Compatibility for SAS String Functions 245

Function Description I18N Level 0 I18N Level 1 I18N Level 2

“KUPCASE
Function” on
page 277

Converts all
letters in an
argument to
uppercase.

X

“KUPDATE
Function” on
page 277

Inserts, deletes,
and replaces
character value
contents.

X

“KUPDATEB
Function” on
page 279

Inserts, deletes,
and replaces the
contents of the
character value
according to the
byte position of
the character
value in the
argument.

X

“KVERIFY
Function” on
page 280

Returns the
position of the
first character
that is unique to
an expression.

X

LEFT Left-aligns a
character string.

X

LENGTH Returns the
length of a
non-blank
character string,
excluding trailing
blanks, and
returns 1 for a
blank character
string.

X

LENGTHC Returns the
length of a
character string,
including trailing
blanks.

X

LENGTHM Returns the
amount of
memory (in
bytes) that is
allocated for a
character string.

X

LENGTHN Returns the
length of a
character string,
excluding trailing
blanks.

X

246 Internationalization Compatibility for SAS String Functions � Chapter 8

Function Description I18N Level 0 I18N Level 1 I18N Level 2

LOWCASE Converts all
letters in an
argument to
lowercase.

X

MISSING Returns a
numeric result
that indicates
whether the
argument
contains a
missing value.

X

NLITERAL Converts a
character string
that you specify
to a SAS name
literal.

X

NOTALNUM Searches a
character string
for a non-
alphanumeric
character, and
returns the first
position at which
the character is
found.

X

NOTALPHA Searches a
character string
for a
nonalphabetic
character, and
returns the first
position at which
the character is
found.

X

NOTCNTRL Searches a
character string
for a character
that is not a
control character,
and returns the
first position at
which that
character is
found.

X

Functions for NLS � Internationalization Compatibility for SAS String Functions 247

Function Description I18N Level 0 I18N Level 1 I18N Level 2

NOTDIGIT Searches a
character string
for any character
that is not a
digit, and returns
the first position
at which that
character is
found.

X

NOTFIRST Searches a
character string
for an invalid
first character in
a SAS variable
name under
VALIDVARNAME=V7,
and returns the
first position at
which that
character is
found.

X

NOTGRAPH Searches a
character string
for a
non-graphical
character, and
returns the first
position at which
that character is
found.

X

NOTLOWER Searches a
character string
for a character
that is not a
lowercase letter,
and returns the
first position at
which that
character is
found.

X

248 Internationalization Compatibility for SAS String Functions � Chapter 8

Function Description I18N Level 0 I18N Level 1 I18N Level 2

NOTNAME Searches a
character string
for an invalid
character in a
SAS variable
name under
VALIDVARNAME=V7,
and returns the
first position at
which that
character is
found.

X

NOTPRINT Searches a
character string
for a
nonprintable
character, and
returns the first
position at which
that character is
found.

X

NOTPUNCT Searches a
character string
for a character
that is not a
punctuation
character, and
returns the first
position at which
that character is
found.

X

NOTSPACE Searches a
character string
for a character
that is not a
white-space
character (blank,
horizontal and
vertical tab,
carriage return,
line feed, and
form feed), and
returns the first
position at which
that character is
found.

X

Functions for NLS � Internationalization Compatibility for SAS String Functions 249

Function Description I18N Level 0 I18N Level 1 I18N Level 2

NOTUPPER Searches a
character string
for a character
that is not an
uppercase letter,
and returns the
first position at
which that
character is
found.

X

NOTXDIGIT Searches a
character string
for a character
that is not a
hexadecimal
character, and
returns the first
position at which
that character is
found.

X

NVALID Checks the
validity of a
character string
for use as a SAS
variable name.

X

PROPCASE Converts all
words in an
argument to
proper case.

X

QUOTE Adds double
quotation marks
to a character
value.

X

RANK Returns the
position of a
character in the
ASCII or
EBCDIC
collating
sequence.

X

REPEAT Returns a
character value
that consists of
the first
argument
repeated n+1
times.

X

REVERSE Reverses a
character string.

X

250 Internationalization Compatibility for SAS String Functions � Chapter 8

Function Description I18N Level 0 I18N Level 1 I18N Level 2

RIGHT Right-aligns a
character
expression.

X

SCAN Returns the nth
word from a
character string.

X

SOUNDEX Encodes a string
to facilitate
searching.

X

SPEDIS Determines the
likelihood of two
words matching,
expressed as the
asymmetric
spelling distance
between the two
words.

X

STRIP Returns a
character string
with all leading
and trailing
blanks removed.

X

SUBPAD Returns a
substring that
has a length you
specify, using
blank padding if
necessary.

X

SUBSTR Extracts a
substring from
an argument.

X

SUBSTRN Returns a
substring,
allowing a result
with a length of
zero.

X

TRANSLATE Replaces specific
characters in a
character string.

X

“TRANTAB
Function” on
page 290

Transcodes data
by using the
specified
translation table.

X

TRANWRD Replaces or
removes all
occurrences of a
substring in a
character string.

X

Functions for NLS � Internationalization Compatibility for SAS String Functions 251

Function Description I18N Level 0 I18N Level 1 I18N Level 2

TRIM Removes trailing
blanks from a
character string,
and returns one
blank if the
string is missing.

X

TRIMN Removes trailing
blanks from
character
expressions, and
returns a string
with a length of
zero if the
expression is
missing.

X

UPCASE Converts all
letters in an
argument to
uppercase.

X

URLDECODE Returns a string
that was decoded
using the URL
escape syntax.

X

URLENCODE Returns a string
that was encoded
using the URL
escape syntax.

X

VERIFY Returns the
position of the
first character in
a string that is
not in any of
several other
strings.

X

252 Functions for NLS by Category � Chapter 8

Functions for NLS by Category
The following categories relate to NLS issues:

Table 8.2 Categories of NLS Formats

Category Description

Character processes character data

Currency Conversion converts one currency to another currency

DBCS processes double-byte character set.

Date and Time processes data and time data.

Locale processes data based on the specified locale.

Variable Information processes variable information.

The following table provides brief descriptions of the SAS functions. For more
detailed descriptions, see the NLS entry for each function.

Table 8.3 Summary of NLS Functions by Category

Category Functions for NLS Description

Character “KCVT Function” on page
260

Converts data from one type of encoding data to another
encoding data.

“TRANTAB Function” on
page 290

Transcodes data by using the specified translation table.

“UNICODE Function” on
page 295

converts Unicode characters to the current SAS session
encoding.

“UNICODEC Function” on
page 297

converts characters in the current SAS session encoding
to Unicode characters.

“UNICODELEN Function”
on page 299

specifies the length of the character unit for the Unicode
data.

“UNICODEWIDTH
Function” on page 300

specifies the length of a display unit for the Unicode data.

DBCS “KCOMPARE Function” on
page 258

Returns the result of a comparison of character
expressions.

“KCOMPRESS Function”
on page 259

Removes specified characters from a character
expression.

Functions for NLS � Functions for NLS by Category 253

Category Functions for NLS Description

“KCOUNT Function” on
page 260

Returns the number of double-byte characters in an
expression.

“KINDEX Function” on
page 262

Searches a character expression for a string of characters.

“KINDEXC Function” on
page 262

Searches a character expression for specified characters.

“KLEFT Function” on page
263

Left-aligns a character expression by removing
unnecessary leading DBCS blanks and SO/SI.

“KLENGTH Function” on
page 264

Returns the length of an argument.

“KLOWCASE Function” on
page 264

Converts all letters in an argument to lowercase.

“KPROPCASE Function”
on page 265

Converts Chinese, Japanese, Korean, Taiwanese (CJKT)
characters.

“KPROPCHAR Function”
on page 268

Converts special characters to normal characters.

“KPROPDATA Function”
on page 268

Removes or converts unprintable characters.

“KREVERSE Function” on
page 270

Reverses a character expression.

“KRIGHT Function” on
page 271

Right-aligns a character expression by trimming trailing
DBCS blanks and SO/SI.

“KSCAN Function” on
page 271

Selects a specified word from a character expression.

“KSTRCAT Function” on
page 272

Concatenates two or more character expressions.

“KSUBSTR Function” on
page 273

Extracts a substring from an argument.

“KSUBSTRB Function” on
page 274

Extracts a substring from an argument according to the
byte position of the substring in the argument.

“KTRANSLATE Function”
on page 274

Replaces specific characters in a character expression.

“KTRIM Function” on page
275

Removes trailing DBCS blanks and SO/SI from character
expressions.

“KTRUNCATE Function”
on page 276

Truncates a numeric value to a specified length.

“KUPCASE Function” on
page 277

Converts all letters in an argument to uppercase.

“KUPDATE Function” on
page 277

Inserts, deletes, and replaces character value contents.

“KUPDATEB Function” on
page 279

Inserts, deletes, and replaces the contents of the
character value according to the byte position of the
character value in the argument.

254 GETLOCENV Function � Chapter 8

Category Functions for NLS Description

“KVERIFY Function” on
page 280

Returns the position of the first character that is unique
to an expression.

Date and Time “NLDATE Function” on
page 280

Converts the SAS date value to the date value of the
specified locale by using the date format descriptors.

“NLDATM Function” on
page 283

Converts the SAS datetime value to the time value of the
specified locale by using the datetime- format descriptors.

“NLTIME Function” on
page 286

Converts the SAS time or the datetime value to the time
value of the specified locale by using the NLTIME
descriptors.

Locale “GETLOCENV Function”
on page 254

Returns the current locale/language environment.

“GETPXLANGUAGE
Function” on page 255

Returns the current two-letter language code.

“GETPXLOCALE
Function” on page 256

Returns the POSIX locale value for a SAS locale.

“GETPXREGION
Function” on page 257

Returns the current two-letter region code.

“SORTKEY Function” on
page 287

creates a linguistic sort key.

Variable Information “VARTRANSCODE
Function” on page 291

Returns the transcode attribute of a SAS data set
variable.

“VTRANSCODE Function”
on page 293

Returns a value that indicates whether transcoding is
enabled for the specified character variable.

“VTRANSCODEX
Function” on page 294

Returns a value that indicates whether transcoding is
enabled for the specified argument.

GETLOCENV Function
Returns the current locale/language environment.

Category: Locale

Syntax
GETLOCENV()

Details
The GETLOCENV function returns the locale/language environment value for a valid
SAS locale. The following environment values are possible:

SBCS The SAS session encoding is SBCS (Single-Byte Character Set).
SASWZSD is loaded for string manipulation.

DBCS The SAS session encoding is DBCS (Double-Byte Character Set).
SASWZSD is loaded for string manipulation.

Functions for NLS � GETPXLANGUAGE Function 255

MBCS The SAS session encoding is Unicode(UTF8). SASWZSU is loaded
for string manipulation.

If you receive a blank value, then the WZSS subsystem is not available. This action
suggests a configuration or installation error.

Examples

In the following example, the LOCALE= system option is set to French_France.

Statements Results

option locale=french_france;

environ=getlocenv();

put environ; SBCS

GETPXLANGUAGE Function

Returns the current two-letter language code.

Category: Locale

Syntax
GETPXLANGUAGE()

Details
The GETPXLANGUAGE function returns the two-letter language code based on the
current value of the LOCALE= SAS system option. The length of the language name is
two characters. If the size of the variable that receives the value is less than two
characters, the value is truncated.

Examples

In the first example, the LOCALE= system option is set to French_France. The
second example is set to German. The third example is set to English_United States.

256 GETPXLOCALE Function � Chapter 8

Statements Results

option locale=french_france;

lang=getpxLanguage();

put lang; fr

option locale=German;

lang=getpxLanguage();

put lang; de

option locale=en_US;

lang=getpxLanguage();

put lang; en

See Also

System Options:

“LOCALE System Option” on page 463

Functions:

“GETPXREGION Function” on page 257

“GETPXLOCALE Function” on page 256

GETPXLOCALE Function

Returns the POSIX locale value for a SAS locale.

Category: Locale

Syntax
GETPXLOCALE(<source>)

<source>
is an optional argument that specifies a locale name.

Details
The GETPXLOCALE function returns the POSIX locale value for a valid SAS locale
name. If you specify an invalid locale name, then a null string is returned. If you do
not specify a value for the <source> argument, then the function returns the POSIX
name for the current SAS session. The length of the POSIX locale name is five
characters. If the size of the variable that receives the value is less than five
characters, the value is truncated.

Functions for NLS � GETPXREGION Function 257

Examples

In the first example, the LOCALE= system option is set to French_France. In the
second example, the <source> argument is set to German_Germany. In the third
example, the <source> argument is set to English_United States.

Statements Results

option locale=french_france;

locale=getpxLocale();

put locale; fr_FR

locale=getpxLocale("german_germany");

put locale; de_DE

locale=getpxLocale("english_unitedstates");

put locale; en_US

See Also

System Options:
“LOCALE System Option” on page 463

Functions:
“GETPXLANGUAGE Function” on page 255
“GETPXREGION Function” on page 257

GETPXREGION Function
Returns the current two-letter region code.

Category: Locale

Syntax
GETPXREGION()

Details
The GETPXREGION function returns the two-letter region code based on the current
LOCALE= SAS system option. The length of the region name is two characters. If the
size of the variable that receives the value is less than two characters, the value is
truncated.

Examples

In the first example the LOCALE= system option is set to French_France. The
second example is set to German. The third example is set to English_United States.

258 KCOMPARE Function � Chapter 8

Statements Results

option locale=french_france;

region=getpxRegion();

put region; FR

option locale=German;

region=getpxRegion();

put region; DE

option locale=en_US;

region=getpxRegion();

put region; US

See Also

System Options:
“LOCALE System Option” on page 463

Functions:
“GETPXLOCALE Function” on page 256
“GETPXLANGUAGE Function” on page 255

KCOMPARE Function

Returns the result of a comparison of character expressions.

Category: DBCS
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236
Tip: Non-DBCS equivalent function is COMPARE in SAS Language Reference:
Dictionary

Syntax
KCOMPARE(source,<pos, <count,>>findstr)

Arguments

source
specifies the character expression to be compared.

pos
specifies the starting position in source to begin the comparison. If pos is omitted, the
entire source is compared. If pos is less than 0, source is assumed as extended DBCS
data that does not contain any SO/SI characters.

Functions for NLS � KCOMPRESS Function 259

count
specifies the number of bytes to compare. If count is omitted, all of source that
follows pos is compared, except for any trailing blanks.

findstr
specifies the character expression to compare to source.

Details
KCOMPARE returns values as follows:

� a negative value if source is less than findstr

� 0 if source is equal to findstr

� a positive value if source is greater than findstr

KCOMPRESS Function

Removes specified characters from a character expression.

Category: DBCS

Restriction: Chapter 8, “Functions for NLS,” on page 235

Tip: Non-DBCS equivalent function is COMPARE in SAS Language Reference:
Dictionary.

Syntax
KCOMPRESS(source,<characters-to-remove>)

Arguments

source
specifies a character expression that contains the characters to be removed. When
only source is specified, KCOMPRESS returns this expression with all of the single
and double-byte blanks removed.

characters-to-remove
specifies the character or characters that KCOMPRESS removes from the character
expression.

Note: If characters-to-remove is omitted, KCOMPRESS removes all blanks. �

Tip: Enclose a literal string of characters in quotation marks.

See Also

Functions:

“KLEFT Function” on page 263

“KTRIM Function” on page 275

260 KCOUNT Function � Chapter 8

KCOUNT Function

Returns the number of double-byte characters in an expression.

Category: DBCS
Restrictions: Chapter 8, “Functions for NLS,” on page 235

Syntax
KCOUNT(source)

Arguments

source
specifies the character expression to count.

KCVT Function

Converts data from one type of encoding data to another encoding data.

Category: Character
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Syntax
KCVT(text, intype, outtype, <options,…>)

Arguments

text
specifies the character variable to be converted.

intype
specifies the encoding of the data. The encoding of the text must match the input
data’s encoding. For valid values, see “SBCS, DBCS, and Unicode Encoding Values
for Transcoding Data” on page 549.

Note: ASCIIANY and EBCIDICANY are invalid encoding values. �

outtype
specifies the encoding to be converted into character data. For valid values
see“SBCS, DBCS, and Unicode Encoding Values for Transcoding Data” on page 549.

Note: ASCIIANY and EBCIDICANY are invalid encoding values. �

options
specifies character data options. Here are the available options:

Functions for NLS � KCVT Function 261

NOSOSI |
NOSHIFT

No shift code or Hankaku characters.

INPLACE Replaces character data by conversion. The INPLACE option is
specified to secure the same location between different hosts
whose lengths of character data are not identical. For example,
the INPLACE option converts data from the host which requires
Shift-Codes, into the other host, which does not require shift
codes. Truncation occurs when the length of the character data
that is converted into outtype for Shift-Codes is longer than the
length that is specified in intype.

KANA Includes Hankaku katakana characters in columns of character
data.

UPCASE Converts 2-byte alphabet to uppercase characters.

LOWCASE Converts 2-byte alphabet to lowercase characters.

KATA2HIRA Converts katakana data to Hiragana.

HIRA2KATA Converts Hiragana data to katakana.

Details
The KCVT function converts SBCS, DBCS, and MBCS character strings into encoding
data. For example, the KCVT function can convert: ASCII code data to UCS2 encoding
data, Greek code data to UTF-8, and Japanese SJIS code data to another Japanese code
data. You can specify the following types for Intype and Outtype options: UCS2,
UCS2L, UCS2B, and UTF8. To enable the DBCS mode, specify the following SAS
options in the configuration file or in the command line.

� DBCS
� DBCSLANG Japanese or Korean or Chinese or Taiwanese
� DBCSTYPE dbcstype value

Example

The following code converts IBM PC codes into DEC codes for the external text file
specified as my-input-file, and writes in OUTDD.

data _null_;
infile ’my-input-file’;
file outdd noprint;
input @1 text $char80.;
text = kcvt(text, ’pcibm’, ’dec’);
put @1 text $char80.;

run;

See Also

System options:
“DBCS System Option: UNIX, Windows, and z/OS” on page 454
“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 455
“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 456

Procedure:
Chapter 14, “The DBCSTAB Procedure,” on page 505

262 KINDEX Function � Chapter 8

KINDEX Function

Searches a character expression for a string of characters.

Category: DBCS
Restriction: Chapter 8, “Functions for NLS,” on page 235
Tip: Non-DBCS equivalent function is INDEX in SAS Language Reference: Dictionary

Syntax
KINDEX(source, excerpt)

Arguments

source
specifies the character expression to search.

excerpt
specifies the string of characters to search for in the character expression.
Tip: Enclose a literal string of characters in quotation marks.

Details
The KINDEX function searches source, from left to right, for the first occurrence of the
string that is specified in excerpt, and returns the position in source of the string’s first
character. If the string is not found in source, KINDEX returns a value of 0. If there
are multiple occurrences of the string, KINDEX returns only the position of the first
occurrence.

See Also

Functions:
“KINDEXC Function” on page 262

KINDEXC Function

Searches a character expression for specified characters.

Category: DBCS
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236
Tip: Non-DBCS equivalent function is INDEXC SAS Language Reference: Dictionary

Syntax
KINDEXC(source,excerpt-1<,… excerpt-n>)

Functions for NLS � KLEFT Function 263

Arguments

source
specifies the character expression to search.

excerpt
specifies the characters to search for in the character expression.
Tip: If you specify more than one excerpt, separate them with a comma.

Details
The KINDEXC function searches source, from left to right, for the first occurrence of
any character present in the excerpts and returns the position in source of that
character. If none of the characters in excerpt-1 through excerpt-n in source are found,
KINDEXC returns a value of 0.

Comparisons
The KINDEXC function searches for the first occurrence of any individual character
that is present within the character string, whereas the KINDEX function searches for
the first occurrence of the character string as a pattern.

See Also

Function:
“KINDEX Function” on page 262

KLEFT Function

Left-aligns a character expression by removing unnecessary leading DBCS blanks and SO/SI.

Category: DBCS
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236
Tip: Non-DBCS equivalent function is LEFT in SAS Language Reference: Dictionary.

Syntax
KLEFT(argument)

Arguments

argument
specifies any SAS character expression.

Details
KLEFT returns an argument and removes the leading blanks.

264 KLENGTH Function � Chapter 8

See Also

Functions:

“KCOMPRESS Function” on page 259

“KRIGHT Function” on page 271

“KTRIM Function” on page 275

KLENGTH Function

Returns the length of an argument.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: Non-DBCS equivalent function is LENGTH in SAS Language Reference:
Dictionary.

Syntax
KLENGTH(argument)

Arguments

argument
specifies any SAS expression.

Details
The KLENGTH function returns an integer that represents the position of the
rightmost non-blank character in the argument. If the value of the argument is
missing, KLENGTH returns a value of 1. If the argument is an uninitialized numeric
variable, KLENGTH returns a value of 12 and prints a note in the SAS log that the
numeric values have been converted to character values.

KLOWCASE Function

Converts all letters in an argument to lowercase.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: Non-DBCS equivalent function is LOWCASE in SAS Language Reference:
Dictionary.

Functions for NLS � KPROPCASE Function 265

Syntax
KLOWCASE(argument)

Arguments

argument
specifies any SAS character expression.

Details
The KLOWCASE function copies a character argument, converts all uppercase letters
to lowercase letters, and returns the altered value as a result.

KPROPCASE Function

Converts Chinese, Japanese, Korean, Taiwanese (CJKT) characters.

Category: DBCS

Restriction: Chapter 8, “Functions for NLS,” on page 235

Syntax
str=KPROPCASE(<instr>, (<options>))

Arguments

str
data string that has been converted and is in the current SAS session encoding.

instr
input data string.

options
converts Japanese, Chinese, Korean, and Taiwanese characters based on specified
options.

HALF-KATAKANA, FULL-KATAKANA
This option converts half-width Katakana to full-width Katakana and is used only
with Japanese encoding.

Restriction: This option cannot be used at the same time with the full-Katakana,
half-Katakana option.

FULL-KATAKANA, HALF-KATAKANA
This option converts full-width Katakana to half-width Katakana and is used only
with Japanese encoding.

Restriction: This option cannot be used at the same time with the half-Katakana,
full-Katakana option.

266 KPROPCASE Function � Chapter 8

KATAKANA, ROMAJI
This option converts the Katakana character string to a Romaji character string
and is used only with Japanese encoding.
Restriction: This option cannot be used at the same time with the Romaji,

Katakana option.

ROMAJI, KATAKANA
This option converts the Romaji character string to a Katakana character string
and is used only with Japanese encoding.
Restriction: This option cannot be used at the same time with the Katakana,

Romaji option.

FULL-ALPHABET, HALF-ALPHABET
This option converts the Full-Alphabet characters to Half-Alphabet characters and
is used only with Japanese, Chinese, Korean, and Taiwanese encoding.
Restriction: This option cannot be used at the same time with the Half-Alphabet,

Full-Alphabet option.

HALF-ALPHABET, FULL-ALPHABET
This option converts the Half-Alphabet characters to Full-Alphabet characters and
is used only with Japanese, Chinese, Korean, and Taiwanese encoding.
Restriction: This option cannot be used at the same time with the Full-Alphabet,

Half-Alphabet option.

LOWERCASE, UPPERCASE
This option converts lowercase alphabet characters to uppercase alphabet
characters.
Restriction: This option cannot be used at the same time with the Uppercase,

Lowercase option.

UPPERCASE, LOWERCASE
This option converts uppercase alphabet characters to lowercase alphabet
characters.

Restriction: This option cannot be used at the same time with the Lowercase,
Uppercase option.

PROPER
This option specifies the following default options based on the encoding:

Japanese encoding:
� Half-Katakana,Full-Katakana
� Full-alphabet, Half-alphabet
� Lowercase, Uppercase

Korean encoding:
� Full-alphabet, Half-alphabet

Chinese encoding:
� Full-alphabet, Half-alphabet

Taiwanese encoding:
� Full-alphabet, Half-alphabet

Details
This function converts the input string based on the specified options and default
options. The KPROPCASE function supports the Chinese, Japanese, Korean,
Taiwanese (CJKT) environment.

Functions for NLS � KPROPCASE Function 267

Example

The following example demonstrates the functionality of the KPROPCASE function:

length fullkana halfkana upper lower fullalpha $ 200;
length str1 str2 str3 str4 str5 str7 str8 $ 30 str6 $44;

lower = ’do-naxtutsu’; /* Doughnuts in Japanese Roman word. */
upper = ’DO-NAXTUTSU’; /* Doughnuts in Japanese Roman word. */
fullkana = unicode(’\u30C9\u30FC\u30CA\u30C3\u30C4’);
halfkana = unicode(’\uFF84\uFF9E\uFF70\uFF85\uFF6F\uFF82’);
fullalpha = unicode(’\uFF24\uFF2F\uFF0D\uFF2E\uFF21\uFF38\uFF34

\uFF35\uFF34\uFF33\uFF35’);

str1 = kpropcase(fullkana, ’full-katakana,half-katakana’);
if (halfkana EQ trim(str1)) then
put str1= $hex14.;

str2 = kpropcase(halfkana, ’half-katakana, full-katakana’);
if (fullkana EQ trim(str2)) then
put str2= $hex22.;

str3 = kpropcase(fullkana, ’katakana,romaji’);
if (trim(str3) EQ upper) then
put str3= ;

str4 = kpropcase(upper, ’romaji,katakana’);
if (trim(str4) EQ fullkana) then
put str4= $hex22.;

str5 = kpropcase(fullalpha, ’full-alphabet, half-alphabet’);
if (trim(upper) EQ str5) then
put str5=;

str6 = kpropcase(upper, ’half-alphabet, full-alphabet’);
if (trim(str6) EQ fullalpha) then
put str6= $hex46.;

str7 = kpropcase(lower, ’lowercase, uppercase’);
if (trim(str7) EQ upper) then
put str7=;

str8 = kpropcase(upper, ’uppercase, lowercase’);
if (trim(str8) EQ lower) then
put str8=;

RESULTS:
str1=C4DEB0C5AFC220
str2=8368815B83698362836320
str3=DO-NAXTUTSU
str4=8368815B83698362836320
str5=DO-NAXTUTSU
str6=8263826E817C826D826082778273827482738272827420
str7=DO-NAXTUTSU
str8=do-naxtutsu

268 KPROPCHAR Function � Chapter 8

KPROPCHAR Function

Converts special characters to normal characters.

Category: DBCS

Syntax
str=KPROPCHAR(<instr>)

Arguments

str
result string. Special characters are converted to normal characters.

instr
input data string.

Details
This function converts special characters to normal characters. The KPROPCHAR
function converts the characters from the following ranges:

Enclosed alphanumeric values: \u2460 to \u24FF. See http://www.unicode.org/
charts/PDF/U2460.pdf.

Dingbats: \u2776 to \u2793. See http://www.unicode.org/charts/PDF/
U2700.pdf.

Enclosed CJK letters and months: \u3200 to \u32FF. See http://
www.unicode.org/charts/PDF/U3200.pdf.

Example

The following example demonstrates the functionality of the KPROPCHAR function:

length in1 out1 $30 ;
in1=unicode(’\u2460\u2473\u277F\u325F’);
out1=KPROPCHAR(in1);
put out1;

RESULTS:
(1)(20)(-10)(35)

KPROPDATA Function

Removes or converts unprintable characters.

Category: DBCS

Functions for NLS � KPROPDATA Function 269

Syntax
str=KPROPDATA(<instr>(<option, input encode name, output encode name>))

Arguments

str
data string that has been converted and is in session encoding.

instr
input data string.

options
specifies instructions on processing unprintable characters:

UESC
Converts unprintable characters using a Unicode escaped string (for example,
\u0000\u1234).

TRIM
Removes unprintable characters. No replacement character is used.

BLANK or ’’
Replaces each unprintable character with a single-byte blank.

QUESTION or ’?’
Replaces unprintable characters with a single-byte ’?’.

HEX
Replaces unprintable characters with a hexadecimal representation (for example,
0x810x82).

TRUNCATE or TRUNC
Truncates the data string when the first unprintable character is encountered.

REMOVE
Removes the data string if any unprintable characters are found.

NCR
Encodes the unprintable characters using NCR representation if the code is
available in Unicode.

input encode name
specifies the input data’s encoding name if necessary. If the input encode name is not
specified, then the KPROPDATA function processes the data as the current SAS
session encoded string. For information on SAS encoding names, see “SBCS, DBCS,
and Unicode Encoding Values for Transcoding Data” on page 549.

output encode name
specifies the output data’s encoding name. If the encoding name is not specified, the
KPROPDATA function recognizes the output as the current SAS session encoding.
For information on SAS encoding names, see “SBCS, DBCS, and Unicode Encoding
Values for Transcoding Data” on page 549.

Details
This function converts the input data string to the current SAS session encoding and
removes or replaces unprintable characters based on the options.

270 KREVERSE Function � Chapter 8

Example

The following example demonstrates the functionality of the KPROPDATA function:

length instr $12;
length str1 str2 str3 str4 str5 str6 str7 str8 str9 str10$ 50;

instr = "534153"x||"ae"x || " System";
put instr;

str1 = kpropdata(instr);
put str1= +2 str1= $hex26.;
str2 = kpropdata(instr,’UESC’);
put str2= +2 str2= $hex26.;;
str3 = kpropdata(instr, ’UESC’,’wlatin1’);
put str3= +2 str3= $hex34.;
str4 = kpropdata(instr,’TRIM’,’wlatin1’);
put str4= +2 str4= $hex26.;
str5 = kpropdata(instr,’BLANK’, ’wlatin1’);
put str5= +2 str5= $hex26.;
str6 = kpropdata(instr,’?’, ’wlatin1’);
put str6= +2 str6= $hex26.;
str7 = kpropdata(instr,’hex’, ’wlatin1’);
put str7= +2 str7= $hex26.;
str8 = kpropdata(instr,’TRUNC’, ’wlatin1’);
put str8= +2 str8= $hex26.;
str9 = kpropdata(instr,’REMOVE’, ’wlatin1’);
put str9= +2 str9= $hex26.;
str10 = kpropdata(instr,’NCR’, ’wlatin1’);
put str10= +2 str10= $hex26.;

RESULTS:
SAS? System
str1=SAS? System str1=534153AE2053797374656D2020
str2=SAS? System str2=534153AE2053797374656D2020
str3=SAS\uff6e System str3=5341535C75666636652053797374656D20
str4=SAS System str4=5341532053797374656D202020
str5=SAS System str5=534153202053797374656D2020
str6=SAS? System str6=5341533F2053797374656D2020
str7=SAS\xAE System str7=5341535C784145205379737465
str8=SAS str8=53415320202020202020202020
str9= str9=20202020202020202020202020
str10=SAS® System str10=53415326233137343B20537973

KREVERSE Function

Reverses a character expression.

Category: DBCS
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: Non-DBCS equivalent function is REVERSE in SAS Language Reference:
Dictionary.

Functions for NLS � KSCAN Function 271

Syntax
KREVERSE(argument)

Arguments

argument
specifies any SAS character expression.

KRIGHT Function

Right-aligns a character expression by trimming trailing DBCS blanks and SO/SI.

Category: DBCS
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236
Tip: RIGHT in SAS Language Reference: Dictionary.

Syntax
KRIGHT(argument)

Arguments

argument
specifies any SAS character expression.

Details
The KRIGHT function returns an argument with trailing blanks moved to the start of
the value. The argument’s length does not change.

See Also

Functions:
“KCOMPRESS Function” on page 259
“KLEFT Function” on page 263
“KTRIM Function” on page 275

KSCAN Function

Selects a specified word from a character expression.

272 KSTRCAT Function � Chapter 8

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: Non-DBCS equivalent function is SCAN in SAS Language Reference: Dictionary.

Syntax
KSCAN(argument,n<, delimiters>)

Arguments

argument
specifies any character expression.

n
specifies a numeric expression that produces the number of the word in the character
expression you want KSCAN to select.

Tip: If n is negative, KSCAN selects the word in the character expression starting
from the end of the string. If |n| is greater than the number of words in the
character expression, KSCAN returns a blank value.

delimiters
specifies a character variable that produces characters that you want KSCAN to use
as word separators in the character expression.

Default: If you omit delimiters in an ASCII environment, SAS uses the following
characters:

blank . < (+ & ! $ *); ^ – / , % |

In ASCII environments without the ^ character, KSCAN uses the ~ character
instead.

If you omit delimiters on an EBCDIC environment, SAS uses the following
characters:

blank . < (+ | & ! $ *); – / , % | ¢

Tip: If you represent delimiters as a constant, enclose delimiters in quotation marks.

Details
Leading delimiters before the first word in the character string do not effect KSCAN. If
there are two or more contiguous delimiters, KSCAN treats them as one.

KSTRCAT Function

Concatenates two or more character expressions.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: Non-DBCS equivalent function is CAT in SAS Language Reference: Dictionary.

Functions for NLS � KSUBSTR Function 273

Syntax
KSTRCAT(argument-1, argument-2<, … argument-n>)

Arguments

argument
specifies any single-byte or double-byte character expression.

Details
KSTRCAT concatenates two or more single-byte or double-byte character expressions.
It also removes unnecessary SO/SI pairs between the expressions.

KSUBSTR Function

Extracts a substring from an argument.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: SUBSTR in SAS Language Reference: Dictionary.

Syntax
KSUBSTR(argument,position<,n>)

Arguments

argument
specifies any SAS character expression.

position
specifies a numeric expression that is the beginning character position.

n
specifies a numeric expression that is the length of the substring to extract.

Interaction: If n is larger than the length of the expression that remains in
argument after position, SAS extracts the remainder of the expression.

Tip: If you omit n, SAS extracts the remainder of the expression.

Details
The KSUBSTR function returns a portion of an expression that you specify in
argument. The portion begins with the character specified by position and is the
number of characters specified by n.

A variable that is created by KSUBSTR obtains its length from the length of
argument.

274 KSUBSTRB Function � Chapter 8

See Also

Functions:
“KSUBSTRB Function” on page 274

KSUBSTRB Function
Extracts a substring from an argument according to the byte position of the substring in the
argument.

Category: DBCS
Restriction: Chapter 8, “Functions for NLS,” on page 235

Syntax
KSUBSTRB(argument,position<,n>)

Arguments

argument
specifies any SAS character expression.

position
specifies the beginning character position in byte units.

n
specifies the length of the substring to extract in byte units.
Interaction: If n is larger than the length (in byte units) of the expression that

remains in argument after position, SAS extracts the remainder of the expression.
Tip: If you omit n, SAS extracts the remainder of the expression.

Details
The KSUBSTRB function returns a portion of an expression that you specify in
argument. The portion begins with the byte unit specified by position and is the
number of byte units specified by n.

A variable that is created by KSUBSTRB obtains its length from the length of
argument.

See Also

Functions:
“KSUBSTR Function” on page 273

KTRANSLATE Function
Replaces specific characters in a character expression.

Functions for NLS � KTRIM Function 275

Category: DBCS
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236
Tip: Non-DBCS equivalent function is TRANSLATE in SAS Language Reference:
Dictionary.
See: KTRANSLATE Function in the documentation for your operating environment.

Syntax
KTRANSLATE(source,to-1,from-1<,…to-n,from-n>)

Arguments

source
specifies the SAS expression that contains the original character value.

to
specifies the characters that you want KTRANSLATE to use as substitutes.

from
specifies the characters that you want KTRANSLATE to replace.
Interaction: Values of to and from correspond on a character-by-character basis;

KTRANSLATE changes character one of from to character one of to, and so on. If
to has fewer characters than from, KTRANSLATE changes the extra from
characters to blanks. If to has more characters than from, KTRANSLATE ignores
the extra to characters.

Operating Environment Information: You must have pairs of to and from arguments
on some operating environments. On other operating environments, a segment of the
collating sequence replaces null from arguments. See the SAS documentation for your
operating environment for more information. �

Details
You can use KTRANSLATE to translate a single-byte character expression to a
double-byte character expression, or translate a double-byte character expression to a
single-byte character expression.

The maximum number of pairs of to and from arguments that KTRANSLATE accepts
depends on the operating environment you use to run SAS. There is no functional
difference between using several pairs of short arguments, or fewer pairs of longer
arguments.

KTRIM Function

Removes trailing DBCS blanks and SO/SI from character expressions.

Category: DBCS
Restriction: Chapter 8, “Functions for NLS,” on page 235
Tip: Non-DBCS equivalent function is TRIM in SAS Language Reference: Dictionary.

276 KTRUNCATE Function � Chapter 8

Syntax
KTRIM(argument)

Arguments

argument
specifies any SAS character expression.

Details
KTRIM copies a character argument, removes all trailing blanks, and returns the
trimmed argument as a result. If the argument is blank, KTRIM returns one blank.
KTRIM is useful for concatenating because concatenation does not remove trailing
blanks.

Assigning the results of KTRIM to a variable does not affect the length of the
receiving variable. If the trimmed value is shorter than the length of the receiving
variable, SAS pads the value with new blanks as it assigns it to the variable.

See Also

Functions:
“KCOMPRESS Function” on page 259
“KLEFT Function” on page 263
“KRIGHT Function” on page 271

KTRUNCATE Function

Truncates a numeric value to a specified length.

Category: DBCS
Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Syntax
KTRUNCATE(argument, number, length)

Arguments

argument
specifies any SAS character expression.

number
is numeric.

length
is an integer.

Functions for NLS � KUPDATE Function 277

Details

The KTRUNCATE function truncates a full-length number (stored as a double) to a
smaller number of bytes, as specified in length and pads the truncated bytes with 0s.
The truncation and subsequent expansion duplicate the effect of storing numbers in less
than full length and then reading them.

KUPCASE Function

Converts all letters in an argument to uppercase.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: UPCASE in SAS Language Reference: Dictionary.

Syntax

KUPCASE(argument)

Arguments

argument
specifies any SAS character expression.

Details

The KUPCASE function copies a character argument, converts all lowercase letters to
uppercase letters, and returns the altered value as a result.

KUPDATE Function

Inserts, deletes, and replaces character value contents.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Syntax

KUPDATE(argument,position,n<, characters-to-replace>)

KUPDATE(argument,position<,n>, characters-to-replace)

278 KUPDATE Function � Chapter 8

Arguments

argument
specifies a character variable.

position
specifies a numeric expression that is the beginning character position.

n
specifies a numeric expression that is the length of the substring to be replaced.
Restriction: n cannot be larger than the length of the expression that remains in

argument after position.
Restriction: n is optional, but you cannot omit both n and characters-to-replace

from the function.
Tip: If you omit n, SAS uses all of the characters in characters-to-replace to replace

the values of argument.

characters-to-replace
specifies a character expression that replaces the contents of argument.
Restriction: characters-to-replace is optional, but you cannot omit both

characters-to-replace and n from the function.
Tip: Enclose a literal string of characters in quotation marks.

Details
The KUPDATE function replaces the value of argument with the expression in
characters-to-replace. KUPDATE replaces n characters starting at the character you
specify in position.

Note: If you set the NLSCOMPATMODE system option to on, parameter,
characters-to-replace, processes the data based on previous SAS releases. If
NLSCOMPATMODE is off, then characters-to-replace uses the 9.2 functionality. See the
following table for examples.
�

Statements Results

NLSCOMPATEMODE
kkupdate("123456", 2,3); 156

NLSCOMPATEMODE
kupdate("123456", 2,3,"abcd"); 1abcd56

NONLSCOMPATEMODE
kupdate("123456", 2,3); 1 56

NONLSCOMPATEMODE
kupdate("123456", 2,3,"abcd"); 1abc56

See Also

Functions:
“KUPDATEB Function” on page 279

Functions for NLS � KUPDATEB Function 279

System Options:

“NLSCOMPATMODE System Option: z/OS” on page 466

KUPDATEB Function

Inserts, deletes, and replaces the contents of the character value according to the byte position of
the character value in the argument.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Syntax

KUPDATEB(argument,position,n<,characters-to-replace>)

KUPDATEB(argument,position <, n>, characters-to-replace)

Arguments

argument
specifies a character variable.

position
specifies the beginning character position in byte units.

n
specifies the length of the substring to be replaced in byte units.

Restriction: n cannot be larger than the length (in bytes) of the expression that
remains in argument after position.

Restriction: n is optional, but you cannot omit both n and characters-to-replace
from the function.

Tip: If you omit n, SAS uses all of the characters in characters-to-replace to replace
the values of argument.

characters-to-replace
specifies a character expression to replace the contents of argument.

Restriction: characters-to-replace is optional, but you cannot omit both
characters-to-replace and n from the function.

Tip: Enclose a literal string of characters in quotation marks.

Details

The KUPDATEB function replaces the value of argument with the expression in
characters-to-replace. KUPDATEB replaces n byte units starting at the byte unit that
you specify in position.

280 KVERIFY Function � Chapter 8

See Also

Functions:

“KUPDATE Function” on page 277

KVERIFY Function

Returns the position of the first character that is unique to an expression.

Category: DBCS

Restriction: “Internationalization Compatibility for SAS String Functions” on page 236

Tip: VERIFY in SAS Language Reference: Dictionary

Syntax
KVERIFY(source,excerpt-1<,…excerpt-n>)

Arguments

source
specifies any SAS character expression.

excerpt
specifies any SAS character expression. If you specify more than one excerpt,
separate them with a comma.

Details
The KVERIFY function returns the position of the first character in source that is not
present in any excerpt. If KVERIFY finds every character in source in at least one
excerpt, it returns a 0.

NLDATE Function

Converts the SAS date value to the date value of the specified locale by using the date format
descriptors.

Category: Date and Time

Syntax
NLDATE(date,descriptor)

Functions for NLS � NLDATE Function 281

Arguments

date
specifies a SAS date value.

descriptor
is a variable or expression that specifies how dates and times are formatted in
output. The following descriptors are case sensitive:

#
removes the leading zero from the result.

%%
specifies the % character.

%a
specifies the short-weekday descriptor. The range for the day descriptor is
Mon–Sun.

%A
specifies the long-weekday descriptor. The range for the long-weekday descriptor is
Monday–Sunday.

%b
specifies the short-month descriptor. The range for the short-month descriptor is
Jan–Dec.

%B
specifies the long-month descriptor. The range for the long-month descriptor is
January–December.

%C
specifies the long-month descriptor and uses blank padding. The range for the
long-month descriptor is January–December.

%d
specifies the day descriptor and uses 0 padding. The range for the day modifier is
01–31.

%e
specifies the day descriptor and uses blank padding. The range for the day
descriptor is 01–31.

%F
specifies the long-weekday descriptor and uses blank padding. The range for the
day descriptor is Monday–Sunday.

%j
specifies the day-of-year descriptor as a decimal number and uses a leading zero.
The range for the day-of-year descriptor is 1–366.

%m
specifies the month descriptor and uses 0 padding. The range for the month
descriptor is 01–12.

%o
specifies the month descriptor. The range for the month descriptor is 1–12 with
blank padding.

%u
specifies the weekday descriptor as a number in the range 1–7 that represents
Monday–Sunday.

282 NLDATE Function � Chapter 8

%U
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value using the number of week within the year (Sunday is
considered the first day of the week). The number-of-the-week value is represented
as a decimal number in the range 0–53 and uses a leading zero and a maximum
value of 53.

%V
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value. The number-of-week value is represented as a decimal number
in the range 01–53 and uses a leading zero and a maximum value of 53. Weeks
begin on a Monday and week 1 of the year is the week that includes both January
4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year.

%w
specifies the weekday descriptor as a number in the range 0–6 that represents
Sunday–Saturday.

%W
specifies the week-number-of-year descriptor by calculating the descriptor value as
SAS date value by using the number of week within the year (Monday is considered
the first day of the week). The number-of-week value is represented as a decimal
number in the range 0–53 and uses a leading zero and a maximum value of 53.

%y
specifies the year (2-digit) modifier. The range for the year descriptor is 00–99.

%Y
specifies the year (4-digit) descriptor. The range for the year descriptor is
1970–2069.

Details
The NLDATE function converts the SAS date value to the date value of the specified
locale by using the date descriptors.

Examples

The following example shows a log filename that is created from a SAS date value.

Statements Results

options locale=English_Unitedstates;

logfile=nldate(’24Feb2003’d,’%B-%d.log’);

put logfile; February-24.log

options locale=German_Germany;

logfile=nldate(’24Feb2003’d,’%B-%d.log’);

put logfile; Februar-24.log

The following example shows a weekday name that is created from a SAS date value.

Functions for NLS � NLDATM Function 283

Statements Results

----+----1----+

options locale=English_unitedstates;

weekname=nldate(’24Feb2003’d,’%A’);

put weekname; Monday

options locale=German_Germany;

weekname=nldate(’24Feb2003’d,’%A’);

put weekname; Montag

See Also

Format:

“NLDATEw. Format” on page 89

NLDATM Function

Converts the SAS datetime value to the time value of the specified locale by using the datetime-
format descriptors.

Category: Date and Time

Syntax
NLDATM(datetime,descriptor)

Arguments

datetime
specifies a SAS datetime value.

descriptor
is a variable or expression that specifies how dates and times are formatted in
output. The following descriptors are case sensitive:

#
removes the leading zero from the result.

%%
specifies the % character.

%a
specifies the short-weekday descriptor. The range for the day descriptor is
Mon–Sun.

284 NLDATM Function � Chapter 8

%A
specifies the long-weekday descriptor. The range for the long-weekday descriptor is
Monday–Sunday.

%b
specifies the short-month descriptor. The range for the short-month descriptor is
Jan–Dec.

%B
specifies the long-month descriptor. The range for the long-month descriptor is
January–December.

%c
specifies the long-month descriptor and uses blank padding. The range for the
long-month descriptor is January–December.

%d
specifies the day descriptor and uses 0 padding. The range for the day descriptor
is 01–31.

%e
specifies the day descriptor and uses blank padding. The range for the day
descriptor is 01–31.

%F
specifies the long-weekday descriptor and uses blank padding. The range for the
day descriptor is Monday–Sunday.

%H
specifies the hour descriptor that is based on a 24-hour clock. The range for the
hour descriptor is 00–23.

%I
specifies the hour descriptor that is based on a 12-hour clock. The range for the
hour descriptor is 01–12.

%j
specifies the day-of-year descriptor as a decimal number and uses a leading zero.
The range for the day-of-year descriptor is 1–366.

%m
specifies the month descriptor and uses 0 padding. The range for the month
descriptor is 01–12.

%M
specifies the minute descriptor. The range for the minute descriptor is 00–59.

%o
specifies the month descriptor and uses blank padding. The range for the month
descriptor is 1–12.

%p
specifies a.m. or p.m. descriptor.

%S
specifies the second descriptor. The range for the second descriptor is 00–59.

%u
specifies the weekday descriptor as a number in the range of 1–7 that represents
Monday–Sunday.

Functions for NLS � NLDATM Function 285

%U
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value and uses the number-of-week value within the year (Sunday is
considered the first day of the week). The number-of-week value is represented as
a decimal number in the range 0–53. A leading zero and a maximum value of 53 is
used.

%V
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value. The number-of-week value is represented as a decimal number
in the range 01–53. A leading zero and a maximum value of 53 is used. Weeks
begin on a Monday and week 1 of the year is the week that includes both January
4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year.

%w
specifies the weekday descriptor as a number in the range of 0–6 that represents
Sunday–Saturday.

%W
specifies the week-number-of-year descriptor by calculating the descriptor value as
SAS date value using the number of week within the year (Monday is considered
the first day of the week). The number-of-week value is represented as a decimal
number in the range of 0–53. A leading zero and a maximum value of 53 are used.

%y
specifies the year (2-digit) descriptor. The range for the year descriptor is 00–99.

%Y
specifies the year (4-digit) descriptor. The range for the year descriptor is
1970–2069.

Details

The NLDATM function converts the SAS datetime value to the datetime value of the
specified locale by using the datetime descriptors.

Examples

The following example shows a time (a.m or p.m.) that is created from a SAS
datetime value.

Statements Results

----+----1----+

options locale=English;

time_ampm=nldatm(’24Feb2003:12:39:43’dt,’%I%p’);

put time_ampm; 00 PM

options locale=German;

time_ampm=nldatm(’’24Feb2003:12:39:43’dt,’%I%p’);

put time_ampm; 00 nachm

286 NLTIME Function � Chapter 8

See Also

Format:
“NLDATMw. Format” on page 98

NLTIME Function

Converts the SAS time or the datetime value to the time value of the specified locale by using the
NLTIME descriptors.

Category: Date and Time

Syntax
NLTIME(time|datetime,descriptor,startpos)

Arguments

time
specifies a SAS time value.

datetime
specifies a SAS datetime value.

descriptor
is a variable, or expression, that specifies the value of a descriptor. You can enter the
following descriptors in uppercase or lowercase:

#
removes the leading zero from the result.

%%
specifies the % character.

%H
specifies the hour descriptor that is based on a 24-hour clock. The range for the
hour descriptor is 00–23.

%I
specifies the hour descriptor that is based on a 12-hour clock. The range for the
hour descriptor is 01–12.

%M
specifies the minute modifier. The range for the minute descriptor is 00–59.

%P
specifies the a.m. or p.m. descriptor.

%S
specifies the second descriptor. The range for the second descriptor is 00–59.

startpos
is an integer that specifies the position at which the search should start and that
specifies the direction of the search.

Functions for NLS � SORTKEY Function 287

Details
The NLTIME function converts a SAS time or datetime value to the time value of the
specified locale by using the time descriptors.

Examples

The following example shows an a.m. or p.m. time that is created from a SAS time.

Statements Results

----+----1----+

options locale=English;

time_ampm=nltime(’12:39:43’t,’%i%p’);

put time_ampm; 00 PM

options locale=German;

time_ampm=nltime(’12:39:43’t,’%i%p’);

put time_ampm; 00 nachm

See Also

Formats:

“NLTIMEw. Format” on page 197

SORTKEY Function

creates a linguistic sort key.

Category: Locale

Syntax
sortKey(string, <locale, strength, case, numeric, order>)

Arguments

string
character expression

locale
specifies the locale name in the form of a POSIX name (ja_JP). See Table 16.1 on
page 539 for a list of locale names and Posix values.

288 SORTKEY Function � Chapter 8

strength
The value of strength is related to the collation level. There are five collation-level
values. The following table provides information regarding the five levels. The
default value for strength is related to the locale.

Value Type of Collation Description

PRIMARY or P PRIMARY specifies differences
between base characters (for
example, "a" < "b").

It is the strongest difference. For
example, dictionaries are divided
into different sections by base
character.

SECONDARY or S Accents in the characters are
considered secondary differences (for
example, "as" < "às" < "at").

Other differences between letters
can also be considered secondary
differences, depending on the
language. A secondary difference
is ignored when there is a primary
difference anywhere in the strings.

TERTIARY or T Upper and lower case differences in
characters are distinguished at the
tertiary level (for example, "ao" <
"Ao" < "aò").

An example is the difference
between large and small Kana. A
tertiary difference is ignored when
there is a primary or secondary
difference anywhere in the strings.

QUATERNARY or
Q

When punctuation is ignored at level
1-3, an additional level can be used to
distinguish words with and without
punctuation (for example, "ab" < "a-b"
< "aB").

This difference is ignored when
there is a primary, secondary, or
tertiary difference. The
quaternary level should be used if
ignoring punctuation is required or
when processing Japanese text.

IDENTICAL or I When all other levels are equal, the
identical level is used as a tiebreaker.
The Unicode code point values of the
NFD form of each string are
compared at this level, just in case
there is no difference at levels 1-4.

For example, only Hebrew
cantillation marks are
distinguished at this level. This
level should be used sparingly, as
only code point values differences
between two strings is an
extremely rare occurrence.

case order
sorts uppercase and lowercase letters. This argument is valid for only TERTIARY,
QUATERNARY, or IDENTICAL. The following table provides the values and
information for the case order argument.

Functions for NLS � SORTKEY Function 289

Value Description

UPPER or U Sorts upper case letters first, then the lower case letters.

LOWER or L Sorts lower case letters first, then the upper case letters.

numeric collation
orders numbers by the numeric value instead of the number’s characters.

Table 8.4

Value Description

NUMERIC or N Order numbers (integers) by the numeric value. For example, "8
Main St." would sort before "45 Main St.".

collation order
There are two types of collation values: Phonebook and Traditional. If you do not
select a collation value, then the user’s locale-default collation is selected. The
following table provides more information.

Value Description

PHONEBOOK or P specifies a phonebook style ordering of characters. Select
PHONEBOOK only with the German language.

TRADITIONAL or T specifies a traditional style ordering of characters. Select
TRADITIONAL only with the Spanish language.

Details
The SORTKEY function creates a linguistic sort key for data. You must enter at least
one argument. If the length of the variable that receives the key is not large enough,
the data truncates, and a warning is displayed.

locale Locale values use the POSIX name (ll_RR). LL represents the
two-letter language code, and RR represents the two-letter region
code. For example, en_US is the POSIX name for English, United
States. en represents the English language, and US represents the
United States. If a locale value is not specified, then the session
locale is used.

strength The strength argument determines whether accents or case affect
collating or matching text. If no value is specified for strength, then
the locale determines the value. The following values can be
specified for strength.

PRIMARY This value includes base letters, for example, the
letters, A, a, and Å are all processed the same.

SECONDARY This value processes data the same as PRIMARY,
and accents are processed. The letters A and a
are processed equally, and Å is processed as an
accented character.

290 TRANTAB Function � Chapter 8

TERTIARY This value processes data the same as
SECONDARY, and the character’s case is
processed. For example, A, a, and Å are all
processed differently.

QUATERNARY This value processes data the same as
TERTIARY, and punctuation is processed.

IDENTICAL This value process data the same as
QUATERNARY, and code point is processed.

case order specifies to sort data using upper case or lower case letter. The
following table shows examples of specifying the UPPER value or
the LOWER value.

UPPER LOWER

Aztec aztec

aztec Aztec

Mars mars

mars Mars

collation order The collation order value PHONEBOOK is ignored unless the locale
is a German language.

The collation order value TRADITIONAL is ignored unless the
locale is a Spanish language.

A warning message displays for other locales.

TRANTAB Function

Transcodes data by using the specified translation table.

Category: Character

Syntax
TRANTAB(string,trantab_name)

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an
improvement on direct use of translation tables. SAS 9.2 supports the TRANTAB
function for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases. �

Functions for NLS � VARTRANSCODE Function 291

Arguments

string
input data that is transcoded.

trantab_name
translation table.

Details
The TRANTAB function transcodes a data string by using a translation table to remap
the characters from one internal representation to another. The encoding of the data in
the input string must match the encoding of table 1 in the translation table. The
TRANTAB function remaps the data from the encoding using table 1.

CAUTION:
Only experienced SAS users should use the TRANTAB function. �

Examples

The following example uses a translation table that transcodes data that is encoded
in Latin2 to an uppercase Latin2 encoding:

Statements Result

teststrg=trantab(’testing’,’lat2_ucs’);
put teststrg; TESTING

See Also

Procedures:

Chapter 15, “The TRANTAB Procedure,” on page 511

VARTRANSCODE Function

Returns the transcode attribute of a SAS data set variable.

Category: Variable Information

Syntax
VARTRANSCODE(data-set-id, var-num)

292 VARTRANSCODE Function � Chapter 8

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the position of the variable in the SAS data set.
Tip: The VARNUM function returns this value.

Details
Transcoding is the process of converting data from one encoding to another. The
VARTRANSCODE function returns 0 if the var-num variable does not transcode its
value, or 1 if the var-num variable transcodes its value.

For more information about transcoding variables, see “Transcoding” in SAS
National Language Support (NLS): Reference Guide. For information about encoding
values and transcoding data, see “SBCS, DBCS, and Unicode Encoding Values When
Transcoding SAS Data” in SAS National Language Support (NLS): Reference Guide.

Examples

The following example shows how to determine whether a character variable is
transcoded:

data a;
attrib x length=$3. transcode=no;
attrib y length=$3. transcode=yes;
x=’abc’;
y=’xyz’;

run;

data _null_;
dsid=open(’work.a’,’i’);
nobs=attrn(dsid,"nobs");
nvars=attrn(dsid,"nvars");
do i=1 to nobs;

xrc=fetch(dsid,1);
do j=1 to nvars;

transcode = vartranscode(dsid,j);
put transcode=;

end;
end;

run;

SAS writes the following output to the log:

transcode=0
transcode=1

See Also

Functions:
ATTRN in SAS Language Reference: Dictionary

Functions for NLS � VTRANSCODE Function 293

OPEN in SAS Language Reference: Dictionary
VARNUM in SAS Language Reference: Dictionary

“VTRANSCODE Function” on page 293
“VTRANSCODEX Function” on page 294

VTRANSCODE Function

Returns a value that indicates whether transcoding is enabled for the specified character variable.

Category: Variable Information

Syntax
VTRANSCODE (var)

Arguments

var
specifies a character variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
The VTRANSCODE function returns 0 if transcoding is off, and 1 if transcoding is on.

By default, all character variables in the DATA step are transcoded. You can use the
TRANSCODE= attribute of the ATTRIB statement to turn transcoding off.

Comparisons
� The VTRANSCODE function returns a value that indicates whether transcoding is

enabled for the specified variable. The VTRANSCODEX function, however,
evaluates the argument to determine the variable name. The function then returns
the transcoding status (on or off) that is associated with that variable name.

� The VTRANSCODE function does not accept an expression as an argument. The
VTRANSCODEX function accepts expressions, but the value of the specified
expression cannot denote an array reference.

� Related functions return the value of other variable attributes, such as the
variable name, type, format, and length. For a list of the variable attributes, see
the “Variable Information” functions in SAS Language Reference: Dictionary.

294 VTRANSCODEX Function � Chapter 8

Example

Statements Result

----+----1----+

attrib x transcode = yes;
attrib y transcode = no;
rc1 = vtranscode(y);
put rc1=; rc1=0

See Also

Functions:
“VTRANSCODEX Function” on page 294

Statements:
ATTRIB in SAS Language Reference: Dictionary

VTRANSCODEX Function

Returns a value that indicates whether transcoding is enabled for the specified argument.

Category: Variable Information

Syntax
VTRANSCODEX (var)

Arguments

var
specifies any SAS character expression that evaluates to a character variable name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
The VTRANSCODEX function returns 0 if transcoding is off, and 1 if transcoding is on.

By default, all character variables in the DATA step are transcoded. You can use the
TRANSCODE= attribute of the ATTRIB statement to turn transcoding off.

Comparisons
� The VTRANSCODE function returns a value that indicates whether transcoding is

enabled for the specified variable. The VTRANSCODEX function, however,

Functions for NLS � UNICODE Function 295

evaluates the argument to determine the variable name. The function then returns
the transcoding status (on or off) that is associated with that variable name.

� The VTRANSCODE function does not accept an expression as an argument. The
VTRANSCODEX function accepts expressions, but the value of the specified
expression cannot denote an array reference.

� Related functions return the value of other variable attributes, such as the
variable name, type, format, and length. For a list of the variable attributes, see
the “Variable Information” functions in SAS Language Reference: Dictionary.

Examples

Statements Result

----+----1----+

attrib x transcode = yes;
attrib y transcode = no;
rc1 = vtranscodex(’y’);
put rc1=; rc1=0

See Also

Functions:

“VTRANSCODE Function” on page 293

Statements:

ATTRIB in SAS Language Reference: Dictionary

UNICODE Function

converts Unicode characters to the current SAS session encoding.

Category: Character

Syntax
STR=UNICODE(< instr>(,<Unicode type>))

Arguments

str
Data string that has been converted to the current SAS session encoding.

instr
input data string.

296 UNICODE Function � Chapter 8

Unicode type
Unicode character formats

ESC Unicode Escape (for example, \u0042). ESC is the default format.

NCR Numeric Character Representation (for example, 大 or
± ;)

PAREN Unicode Parenthesis Escape (for example, <u0061>)

UCS2 UCS2 encoding with native endian.

UCS2B UCS2 encoding with big endian.

UCS2L UCS2 encoding with little endian.

UCS4 UCS4 encoding with native endian.

UCS4B UCS4 encoding with big endian.

UCS4L UCS4 encoding with little endian.

UTF16 UTF16 encoding with big endian.

UTF16B UTF16 encoding with big endian.

UTF16L UTF16 encoding with little endian.

UTF8 UTF8 encoding.

Details
This function reads Unicode characters and converts them to the current SAS session
encoding.

Examples

The following example demonstrates the functionality of the UNICODE function:

Functions for NLS � UNICODEC Function 297

UNICODEC Function

converts characters in the current SAS session encoding to Unicode characters.

Category: Character

Syntax
STR=UNICODEC(< instr>(,<Unicode type>))

Arguments

str
data string that has been converted to Unicode encoding.

instr
input data string.

298 UNICODEC Function � Chapter 8

Unicode type
Unicode character formats

ESC Unicode Escape (for example, \u0042)ESC is the default format.

NCR Numeric Character Representation (for example, 大 or
± ;)

PAREN Unicode Parenthesis Escape (for example, <u0061>)

UCS2 UCS2 encoding with native endian.

UCS2B UCS2 encoding with big endian.

UCS2L UCS2 encoding with little endian.

UCS4 UCS4 encoding with native endian.

UCS4B UCS4 encoding with big endian.

UCS4L UCS4 encoding with little endian.

UTF16 UTF16 encoding with big endian.

UTF16B UTF16 encoding with big endian.

UTF16L UTF16 encoding with little endian.

UTF8 UTF8 encoding.

Details
This function reads characters that are in the current SAS session encoding and
converts them to Unicode encoding.

Examples

The following example demonstrates the functionality of the UNICODEC function:

length str4 $20;
dai=unicode(’\u5927’);

str1=unicodec("ABC");
str2=unicodec("ABC",’esc’);
str3=unicodec(dai, ’ncr’);
str4=unicodec("ab",’paren’);
str5=unicodec(dai, ’ucs2’);
str6=unicodec(dai, ’ucs2b’);
str7=unicodec(dai, ’ucs2l’);
str8=unicodec(dai, ’ucs4’);
str9=unicodec(dai, ’ucs4b’);
str10=unicodec(dai, ’ucs4l’);
str11=unicodec(dai, ’utf8’);
str12=unicodec(dai, ’utf16’);
str13=unicodec(dai, ’utf16b’);
str14=unicodec(dai, ’utf16l’);

Results:
str1=414243
str2=414243
str3=
str4=str5=2759

Functions for NLS � UNICODELEN Function 299

str6=5927
str7=2759
str8=27590000
str9=00005927
str10=27590000
str11=E5A4A7
str12=2759
str13=5927
str14=2759

UNICODELEN Function

specifies the length of the character unit for the Unicode data.

Category: Character

Syntax

UNICODELEN()

Details

The UNICODELEN function specifies the length of the character unit for the
UNICODE data.

Examples

This example uses the Japanese Shift_JIS session encoding, which is supported
under the UNIX operating system.

Statements Results

len1=unicodelen("abc "); len1=4

len2=unicodelen("\u0041\u0042\u0043\u5927",’esc’) len2=4

len3=unicodelen("大’ ,’ncr’); len3=1

len4=unicodelen("<u0061><u0062>",’paren’); len4=2

See Also

Functions:

“UNICODEWIDTH Function” on page 300

300 UNICODEWIDTH Function � Chapter 8

UNICODEWIDTH Function

specifies the length of a display unit for the Unicode data.

Category: Character

Syntax
UNICODEWIDTH()

Details
The UNICODEWIDTH function specifies the length of a display unit for the Unicode
data. The display unit displays the width of a character when the character is
displayed with fixed width font. Characters between 0x3000 and 0x303F, 0x3400 and
0x4DFF, 0x4E00 and 0x9FFF, 0xF900 and 0xFAFF, inclusively, have the value of a
display unit 2. Other characters are display unit 1

Examples

This example uses the Japanese Shift_JIS session encoding, which is supported
under the UNIX operating system.

Statements Results

len1=unicodewidth("abc "); len1=5

len2=unicodewidth("\u0041\u0042\u0043\u5927",’esc’); len2=5

len3=unicodewidth("大 ",’ncr’); len3=2

len4=unicodewidth("<u0061><u0062>",’paren’); len4=2

See Also

Functions:
“UNICODELEN Function” on page 299

301

C H A P T E R

9
Informats for NLS

Informats for NLS by Category 303
$CPTDWw. Informat 310

$CPTWDw. Informat 311

EUROw.d Informat 312

EUROXw.d Informat 313

JDATEYMDw. Informat 315
JNENGOw. Informat 316

$KANJIw. Informat 317

$KANJIXw. Informat 318

$LOGVSw. Informat 319

$LOGVSRw. Informat 320

MINGUOw. Informat 321
NENGOw. Informat 323

NLDATEw. Informat 324

NLDATMw. Informat 325

NLMNIAEDw.d Informat 326

NLMNIAUDw.d Informat 327
NLMNIBGNw.d Informat 328

NLMNIBRLw.d Informat 329

NLMNICADw.d Informat 330

NLMNICHFw.d Informat 331

NLMNICNYw.d Informat 332
NLMNICZKw.d Informat 333

NLMNIDKKw.d Informat 334

NLMNIEEKw.d Informat 335

NLMNIEGPw.d Informat 336

NLMNIEURw.d Informat 337

NLMNIGBPw.d Informat 338
NLMNIHKDw.d Informat 339

NLMNIHRKw.d Informat 340

NLMNIHUFw.d Informat 341

NLMNIIDRw.d Informat 342

NLMNIILSw.d Informat 343
NLMNIINRw.d Informat 344

NLMNIJPYw.d Informat 345

NLMNIKRWw.d Informat 346

NLMNILTLw.d Informat 347

NLMNILVLw.d Informat 348
NLMNIMOPw.d Informat 349

NLMNIMXNw.d Informat 350

NLMNIMYRw.d Informat 351

302 Contents � Chapter 9

NLMNINOKw.d Informat 352
NLMNINZDw.d Informat 353

NLMNIPLNw.d Informat 354

NLMNIRUBw.d Informat 355

NLMNISEKw.d Informat 356

NLMNISGDw.d Informat 357
NLMNITHBw.d Informat 358

NLMNITRYw.d Informat 359

NLMNITWDw.d Informat 360

NLMNIUSDw.d Informat 361

NLMNIZARw.d Informat 362

NLMNLAEDw.d Informat 363
NLMNLAUDw.d Informat 364

NLMNLBGNw.d Informat 365

NLMNLBRLw.d Informat 366

NLMNLCADw.d Informat 367

NLMNLCHFw.d Informat 368
NLMNLCNYw.d Informat 369

NLMNLCZKw.d Informat 370

NLMNLDKKw.d Informat 371

NLMNLEEKw.d Informat 372

NLMNLEGPw.d Informat 373
NLMNLEURw.d Informat 374

NLMNLGBPw.d Informat 375

NLMNLHKDw.d Informat 376

NLMNLHRKw.d Informat 377

NLMNLHUFw.d Informat 378

NLMNLIDRw.d Informat 379
NLMNLILSw.d Informat 380

NLMNLINRw.d Informat 381

NLMNLJPYw.d Informat 382

NLMNLKRWw.d Informat 383

NLMNLLTLw.d Informat 384
NLMNLLVLw.d Informat 385

NLMNLMOPw.d Informat 386

NLMNLMXNw.d Informat 387

NLMNLMYRw.d Informat 388

NLMNLNOKw.d Informat 389
NLMNLNZDw.d Informat 390

NLMNLPLNw.d Informat 391

NLMNLRUBw.d Informat 392

NLMNLSEKw.d Informat 393

NLMNLSGDw.d Informat 394

NLMNLTHBw.d Informat 395
NLMNLTRYw.d Informat 396

NLMNLTWDw.d Informat 397

NLMNLUSDw.d Informat 398

NLMNLZARw.d Informat 399

NLMNYw.d Informat 400
NLMNYIw.d Informat 401

NLNUMw.d Informat 402

NLNUMIw.d Informat 403

NLPCTw.d Informat 405

NLPCTIw.d Informat 406

Informats for NLS � Informats for NLS by Category 303

NLTIMAPw. Informat 407
NLTIMEw. Informat 408

$REVERJw. Informat 409

$REVERSw. Informat 410

$UCS2Bw. Informat 411

$UCS2BEw. Informat 412
$UCS2Lw. Informat 413

$UCS2LEw. Informat 414

$UCS2Xw. Informat 415

$UCS2XEw. Informat 416

$UCS4Bw. Informat 417

$UCS4Lw. Informat 418
$UCS4Xw. Informat 419

$UCS4XEw. Informat 420

$UESCw. Informat 421

$UESCEw. Informat 423

$UNCRw. Informat 424
$UNCREw. Informat 425

$UPARENw. Informat 426

$UPARENEw. Informat 427

$UPARENPw. Informat 428

$UTF8Xw. Informat 429
$VSLOGw. Informat 430

$VSLOGRw. Informat 431

YENw.d Informat 433

Informats for NLS by Category
There are six categories of SAS informats that support NLS:

Table 9.1 Categories of Informats for NLS

Category Description

BIDI text handling Instructs SAS to read bidirectional data values from data variables.

Character Instructs SAS to read character data values into character variables.

DBCS Instructs SAS to manage various Asian languages.

Date and Time Instructs SAS to read data values into variables that represent dates,
times, and datetimes.

Hebrew text handling Instructs SAS to read Hebrew data from data variables.

Numeric Instructs SAS to read numeric data values into numeric variables.

The following table provides brief descriptions of the SAS informats. For more
detailed descriptions, see the NLS entry for each informat.

304 Informats for NLS by Category � Chapter 9

Table 9.2 Summary of NLS Informats by Category

Category Informats for NLS Description

BIDI text handling “$LOGVSw. Informat” on
page 319

Reads a character string that is in left-to-right logical
order, and then converts the character string to visual
order.

“$LOGVSRw. Informat” on
page 320

Reads a character string that is in right-to-left logical
order, and then converts the character string to visual
order.

“$VSLOGw. Informat” on
page 430

Reads a character string that is in visual order, and then
converts the character string to left-to-right logical order.

“$VSLOGRw. Informat” on
page 431

Reads a character string that is in visual order, and then
converts the character string to right-to-left logical order.

Character “$REVERJw. Informat” on
page 409

Reads character data from right to left and preserves
blanks.

“$REVERSw. Informat” on
page 410

Reads character data from right to left, and then left
aligns the text.

“$UCS2Bw. Informat” on
page 411

Reads a character string that is encoded in big-endian,
16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

“$UCS2BEw. Informat” on
page 412

Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to big-endian, 16-bit, UCS2, Unicode encoding.

“$UCS2Lw. Informat” on
page 413

Reads a character string that is encoded in little-endian,
16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

“$UCS2LEw. Informat” on
page 414

Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to little-endian, 16-bit, UCS2, Unicode encoding.

“$UCS2Xw. Informat” on
page 415

Reads a character string that is encoded in 16-bit, UCS2,
Unicode encoding, and then converts the character string
to the encoding of the current SAS session.

“$UCS2XEw. Informat” on
page 416

Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to 16-bit, UCS2, Unicode encoding.

“$UCS4Bw. Informat” on
page 417

Reads a character string that is encoded in big-endian,
32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

“$UCS4Lw. Informat” on
page 418

Reads a character string that is encoded in little-endian,
32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

“$UCS4Xw. Informat” on
page 419

Reads a character string that is encoded in 32-bit, UCS4,
Unicode encoding, and then converts the character string
to the encoding of the current SAS session.

Informats for NLS � Informats for NLS by Category 305

Category Informats for NLS Description

“$UCS4XEw. Informat” on
page 420

Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to 32-bit, UCS4, Unicode encoding.

“$UESCw. Informat” on
page 421

Reads a character string that is encoded in UESC
representation, and then converts the character string to
the encoding of the current SAS session.

“$UESCEw. Informat” on
page 423

Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to UESC representation.

“$UNCRw. Informat” on
page 424

Reads an NCR character string, and then converts the
character string to the encoding of the current SAS
session.

“$UNCREw. Informat” on
page 425

Reads a character string in the encoding of the current
SAS session, and then converts the character string to
NCR.

“$UPARENw. Informat”
on page 426

Reads a character string that is encoded in UPAREN
representation, and then converts the character string to
the encoding of the current SAS session.

“$UPARENEw. Informat”
on page 427

Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to UPAREN representation.

“$UPARENPw. Informat”
on page 428

Reads a character string that is encoded in UPAREN
representation, and then converts the character string to
the encoding of the current SAS session, with national
characters remaining in the encoding of the UPAREN
representation.

“$UTF8Xw. Informat” on
page 429

Reads a character string that is encoded in UTF-8, and
then converts the character string to the encoding of the
current SAS session.

DBCS “$KANJIw. Informat” on
page 317

Removes shift code data from DBCS data.

“$KANJIXw. Informat” on
page 318

Adds shift-code data to DBCS data.

Date and Time “JDATEYMDw. Informat”
on page 315

Reads Japanese kanji date values in the format
yymmmdd or yyyymmmdd.

“JNENGOw. Informat” on
page 316

Reads Japanese kanji date values in the form yymmdd.

“MINGUOw. Informat” on
page 321

Reads dates in Taiwanese format.

“NENGOw. Informat” on
page 323

Reads Japanese date values in the form eyymmdd.

“NLDATEw. Informat” on
page 324

Reads the date value in the specified locale, and then
converts the date value to the local SAS date value.

“NLDATMw. Informat” on
page 325

Reads the datetime value of the specified locale, and then
converts the datetime value to the local SAS datetime
value.

306 Informats for NLS by Category � Chapter 9

Category Informats for NLS Description

“NLTIMAPw. Informat” on
page 407

Reads the time value and uses a.m. and p.m. in the
specified locale, and then converts the time value to the
local SAS time value.

“NLTIMEw. Informat” on
page 408

Reads the time value in the specified locale, and then
converts the time value to the local SAS time value.

Hebrew text handling “$CPTDWw. Informat” on
page 310

Reads a character string that is in Hebrew DOS (cp862)
encoding, and then converts the character string to
Windows (cp1255) encoding.

“$CPTWDw. Informat” on
page 311

Reads a character string that is in Windows (cp1255)
encoding, and then converts the character string to
Hebrew DOS (cp862) encoding.

Numeric “EUROw.d Informat” on
page 312

Reads numeric values, removes embedded characters in
European currency, and reverses the comma and decimal
point.

“EUROXw.d Informat” on
page 313

Reads numeric values and removes embedded characters
in European currency.

“NLMNIAEDw.d
Informat” on page 326

Reads the monetary format of the international
expression for the United Arab Emirates.

“NLMNIAUDw.d
Informat” on page 327

Reads the monetary format of the international
expression for Australia.

“NLMNIBGNw.d
Informat” on page 328

Reads the monetary format of the international
expression for Bulgaria.

“NLMNIBRLw.d Informat”
on page 329

Reads the monetary format of the international
expression for Brazil.

“NLMNICADw.d
Informat” on page 330

Reads the monetary format of the international
expression for Canada.

“NLMNICHFw.d
Informat” on page 331

Reads the monetary format of the international
expression for Liechtenstein and Switzerland.

“NLMNICNYw.d
Informat” on page 332

Reads the monetary format of the international
expression for China.

“NLMNICZKw.d Informat”
on page 333

Reads the monetary format of the international
expression for the Czech Republic.

“NLMNIDKKw.d
Informat” on page 334

Reads the monetary format of the international
expression for Denmark, Faroe Island, and Greenland.

“NLMNIEEKw.d
Informat” on page 335

Reads the monetary format of the international
expression for Estonia.

“NLMNIEGPw.d Informat”
on page 336

Reads the monetary format of the international
expression for Egypt.

“NLMNIEURw.d
Informat” on page 337

Reads the monetary format of the international
expression for Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, Malta, the
Netherlands, Portugal, Slovenia, and Spain.

“NLMNIGBPw.d Informat”
on page 338

Reads the monetary format of the international
expression for the United Kingdom.

Informats for NLS � Informats for NLS by Category 307

Category Informats for NLS Description

“NLMNIHKDw.d
Informat” on page 339

Reads the monetary format of the international
expression for Hong Kong.

“NLMNIHRKw.d
Informat” on page 340

Reads the monetary format of the international
expression for Croatia.

“NLMNIHUFw.d
Informat” on page 341

Reads the monetary format of the international
expression for Hungary.

“NLMNIIDRw.d Informat”
on page 342

Reads the monetary format of the international
expression for Indonesia.

“NLMNIILSw.d Informat”
on page 343

Reads the monetary format of the international
expression for Israel.

“NLMNIINRw.d Informat”
on page 344

Reads the monetary format of the international
expression for India.

“NLMNIJPYw.d Informat”
on page 345

Reads the monetary format of the international
expression for Japan.

“NLMNIKRWw.d
Informat” on page 346

Reads the monetary format of the international
expression for South Korea.

“NLMNILTLw.d Informat”
on page 347

Reads the monetary format of the international
expression for Lithuania.

“NLMNILVLw.d Informat”
on page 348

Reads the monetary format of the international
expression for Latvia.

“NLMNIMOPw.d
Informat” on page 349

Reads the monetary format of the international
expression for Macau.

“NLMNIMXNw.d
Informat” on page 350

Reads the monetary format of the international
expression for Mexico.

“NLMNIMYRw.d
Informat” on page 351

Reads the monetary format of the international
expression for Malaysia.

“NLMNINOKw.d
Informat” on page 352

Reads the monetary format of the international
expression for Norway.

“NLMNINZDw.d
Informat” on page 353

Reads the monetary format of the international
expression for New Zealand.

“NLMNIPLNw.d Informat”
on page 354

Reads the monetary format of the international
expression for Poland.

“NLMNIRUBw.d
Informat” on page 355

Reads the monetary format of the international
expression for Russia.

“NLMNISEKw.d Informat”
on page 356

Reads the monetary format of the international
expression for Sweden.

“NLMNISGDw.d
Informat” on page 357

Reads the monetary format of the international
expression for Singapore.

“NLMNITHBw.d
Informat” on page 358

Reads the monetary format of the international
expression for Thailand.

“NLMNITRYw.d Informat”
on page 359

Reads the monetary format of the international
expression for Turkey.

“NLMNITWDw.d
Informat” on page 360

Reads the monetary format of the international
expression for Taiwan.

308 Informats for NLS by Category � Chapter 9

Category Informats for NLS Description

“NLMNIUSDw.d
Informat” on page 361

Reads the monetary format of the international
expression for Puerto Rico and the United States.

“NLMNIZARw.d Informat”
on page 362

Reads the monetary format of the international
expression for South Africa.

“NLMNLAEDw.d
Informat” on page 363

Reads the monetary format of the local expression for the
United Arab Emirates.

“NLMNLAUDw.d
Informat” on page 364

Reads the monetary format of the local expression for
Australia.

“NLMNLBGNw.d
Informat” on page 365

Reads the monetary format of the local expression for
Bulgaria.

“NLMNLBRLw.d
Informat” on page 366

Reads the monetary format of the local expression for
Brazil.

“NLMNLCADw.d
Informat” on page 367

Reads the monetary format of the local expression for
Canada.

“NLMNLCHFw.d
Informat” on page 368

Reads the monetary format of the local expression for
Liechtenstein and Switzerland.

“NLMNLCNYw.d
Informat” on page 369

Reads the monetary format of the local expression for
China.

“NLMNLCZKw.d
Informat” on page 370

Reads the monetary format of the local expression for the
Czech Republic.

“NLMNLDKKw.d
Informat” on page 371

Reads the monetary format of the local expression for
Denmark, the Faroe Island, and Greenland.

“NLMNLEEKw.d
Informat” on page 372

Reads the monetary format of the local expression for
Estonia.

“NLMNLEGPw.d
Informat” on page 373

Reads the monetary format of the local expression for
Egypt.

“NLMNLEURw.d
Informat” on page 374

Reads the monetary format of the local expression for
Austria, Belgium, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, Malta, the Netherlands,
Portugal, Slovenia, and Spain.

“NLMNLGBPw.d
Informat” on page 375

Reads the monetary format of the local expression for the
United Kingdom.

“NLMNLHKDw.d
Informat” on page 376

Reads the monetary format of the local expression for
Hong Kong.

“NLMNLHRKw.d
Informat” on page 377

Reads the monetary format of the local expression for
Croatia.

“NLMNLHUFw.d
Informat” on page 378

Reads the monetary format of the local expression for
Hungary.

“NLMNLIDRw.d Informat”
on page 379

Reads the monetary format of the local expression for
Indonesia.

“NLMNLILSw.d Informat”
on page 380

Reads the monetary format of the local expression for
Israel.

“NLMNLINRw.d
Informat” on page 381

Reads the monetary format of the local expression for
India.

Informats for NLS � Informats for NLS by Category 309

Category Informats for NLS Description

“NLMNLJPYw.d
Informat” on page 382

Reads the monetary format of the local expression for
Japan.

“NLMNLKRWw.d
Informat” on page 383

Reads the monetary format of the local expression for
South Korea.

“NLMNLLTLw.d
Informat” on page 384

Reads the monetary format of the local expression for
Lithuania.

“NLMNLLVLw.d
Informat” on page 385

Reads the monetary format of the local expression for
Latvia.

“NLMNLMOPw.d
Informat” on page 386

Reads the monetary format of the local expression for
Macau.

“NLMNLMXNw.d
Informat” on page 387

Reads the monetary format of the local expression for
Mexico.

“NLMNLMYRw.d
Informat” on page 388

Reads the monetary format of the local expression for
Malaysia.

“NLMNLNOKw.d
Informat” on page 389

Reads the monetary format of the local expression for
Norway.

“NLMNLNZDw.d
Informat” on page 390

Reads the monetary format of the local expression for
New Zealand.

“NLMNLPLNw.d
Informat” on page 391

Reads the monetary format of the local expression for
Poland.

“NLMNLRUBw.d
Informat” on page 392

Reads the monetary format of the local expression for
Russia.

“NLMNLSEKw.d
Informat” on page 393

Reads the monetary format of the local expression for
Sweden.

“NLMNLSGDw.d
Informat” on page 394

Reads the monetary format of the local expression for
Singapore.

“NLMNLTHBw.d
Informat” on page 395

Reads the monetary format of the local expression for
Thailand.

“NLMNLTRYw.d
Informat” on page 396

Reads the monetary format of the local expression for
Turkey.

“NLMNLTWDw.d
Informat” on page 397

Reads the monetary format of the local expression for
Taiwan.

“NLMNLUSDw.d
Informat” on page 398

Reads the monetary format of the local expression for
Puerto Rico, and the United States.

“NLMNLZARw.d
Informat” on page 399

Reads the monetary format of the local expression for
South Africa.

“NLMNYw.d Informat” on
page 400

Reads monetary data in the specified locale for the local
expression, and then converts the data to a numeric
value.

“NLMNYIw.d Informat” on
page 401

Reads monetary data in the specified locale for the
international expression, and then converts the data to a
numeric value.

310 $CPTDWw. Informat � Chapter 9

Category Informats for NLS Description

“NLNUMw.d Informat” on
page 402

Reads numeric data in the specified locale for local
expressions, and then converts the data to a numeric
value.

“NLNUMIw.d Informat”
on page 403

Reads numeric data in the specified locale for
international expressions, and then converts the data to
a numeric value.

“NLPCTw.d Informat” on
page 405

Reads percentage data in the specified locale for local
expressions, and then converts the data to a numeric
value.

“NLPCTIw.d Informat” on
page 406

Reads percentage data in the specified locale for
international expressions, and then converts the data to
a numeric value.

“YENw.d Informat” on
page 433

Removes embedded yen signs, commas, and decimal
points.

$CPTDWw. Informat

Reads a character string that is in Hebrew DOS (cp862) encoding, and then converts the character
string to Windows (cp1255) encoding.

Category: Hebrew text handling

Syntax

$CPTDWw.

Syntax Description

w
specifies the width of the input field.

Default: 200

Range: 1–32000

Comparisons

The $CPTDWw. informat performs processing that is opposite of the $CPTWDw.
informat.

Examples

The following example uses the input value of 808182.

Informats for NLS � $CPTWDw. Informat 311

Statements Result

----+----1----+

x=input(’808182’,$cptdw6.);
put x;

See Also

Formats:

“$CPTDWw. Format” on page 74

“$CPTWDw. Format” on page 75

Informats:

“$CPTWDw. Informat” on page 311

$CPTWDw. Informat

Reads a character string that is in Windows (cp1255) encoding, and then converts the character
string to Hebrew DOS (cp862) encoding.

Category: Hebrew text handling

Syntax
$CPTWDw.

Syntax Description

w
specifies the width of the input field.

Default: 200

Range: 1–32000

Comparisons
The $CPTWDw. informat performs processing that is opposite of the $CPTDWw.
informat.

Examples

The following example uses the input value of .

312 EUROw.d Informat � Chapter 9

Statements Result

----+----1----+

x=input (’ ’,$cptwd6.);

put x;

See Also

Formats:
“$CPTWDw. Format” on page 75
“$CPTDWw. Format” on page 74

Informats:
“$CPTDWw. Informat” on page 310

EUROw.d Informat

Reads numeric values, removes embedded characters in European currency, and reverses the
comma and decimal point.

Category: Numeric

Syntax
EUROw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
specifies the power of 10 by which to divide the value. If the data contains decimal
points, the d value is ignored.
Default: 0
Range: 0–31

Details
The EUROw.d informat reads numeric values and removes embedded euro symbols (E),
commas, blanks, percent signs, dashes, and close parentheses from the input data. A

Informats for NLS � EUROXw.d Informat 313

decimal point is assumed to be a separator between the whole number and the decimal
portion. The EUROw.d informat converts an open parenthesis at the beginning of a
field to a minus sign.

Comparisons
� The EUROw.d informat is similar to the EUROXw.d informat, but EUROXw.d

reverses the roles of the decimal point and the comma. This convention is common
in European countries.

� If no commas or periods appear in the input, then the EUROw.d and the
EUROXw.d informats are interchangeable.

Examples

The following table shows input values for currency in euros, the SAS statements
that are applied, and the results.

Values Statements Results

----+----1----2

E1 input x euro10.;
put x; 1

E1.23 input x euro10.;
put x; 1.23

1.23 input x euro10.;
put x; 1.23

1,234.56 input x euro10.;
put x; 1234.56

See Also

Formats:
“EUROw.d Format” on page 76
“EUROXw.d Format” on page 77

Informats:
“EUROXw.d Informat” on page 313

EUROXw.d Informat
Reads numeric values and removes embedded characters in European currency.

Category: Numeric

Syntax
EUROXw.d

314 EUROXw.d Informat � Chapter 9

Syntax Description

w
specifies the width of the input field.

Default: 6

Range: 1–32

d
specifies the power of 10 by which to divide the value. If the data contains a comma,
which represents a decimal point, the d value is ignored.

Default: 0

Range: 0–31

Details

The EUROXw.d informat reads numeric values and removes embedded euro symbols
(E), periods, blanks, percent signs, dashes, and close parentheses from the input data.
A comma is assumed to be a separator between the whole number and the decimal
portion. The EUROXw.d informat converts an open parenthesis at the beginning of a
field to a minus sign.

Comparisons

� The EUROXw.d informat is similar to the EUROw.d informat, but EUROw.d
reverses the roles of the comma and the decimal point. This convention is common
in English-speaking countries.

� If no commas or periods appear in the input, the EUROXw.d and the EUROw.d
informats are interchangeable.

Examples

The following table shows input values for currency in euros, the SAS statements
that are applied, and the results.

Values Statements Results

----+----1----2

E1 input x eurox10.;
put x; 1

E1.23 input x eurox10.;
put x; 123

1.23 input x eurox10.;
put x; 123

1,234.56 input x eurox10.;
put x; 1.23456

Informats for NLS � JDATEYMDw. Informat 315

See Also

Formats:
“EUROw.d Format” on page 76
“EUROXw.d Format” on page 77

Informats:
“EUROw.d Informat” on page 312

JDATEYMDw. Informat

Reads Japanese kanji date values in the format yymmmdd or yyyymmmdd.

Category: Date and Time

Syntax
JDATEYMDw.

Syntax Description

w
specifies the width of the input field.
Default: 12
Range: 12–32

Details
The date values must be in the form yymmmdd or yyyymmmdd.

You can separate the year, month, and day values by blanks or by special characters.
Note that in the example, the date values in the data lines are separated by special
characters.

When you use this informat, ensure that the width of the input field includes space
for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
The following examples show how to use the JDATEYMD informat to convert kanji
values to SAS date values.

316 JNENGOw. Informat � Chapter 9

See Also

Informats:

“JNENGOw. Informat” on page 316

System Options:

YEARCUTOFF= in SAS Language Reference: Dictionary

JNENGOw. Informat

Reads Japanese kanji date values in the form yymmdd.

Category: Date and Time

Alignment: left

Syntax
JNENGOw.

Syntax Description

w
specifies the width of the output field.

Default: 16

Range: 16–32

Informats for NLS � $KANJIw. Informat 317

Details
The JNENGOw. informat reads Japanese kanji values in the form yymmdd.

You can separate the year, month, and day values by blanks or by special characters.
Note that in the example, the date values in the data lines are separated by special
characters.

When you use this informat, ensure that the width of the input field includes space
for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
The following examples show how to use the JNENGO informat to convert kanji values
to SAS date values.

See Also

Informats:
“JDATEYMDw. Informat” on page 315

System Options:
YEARCUTOFF= in SAS Language Reference: Dictionary

$KANJIw. Informat

Removes shift code data from DBCS data.

Category: DBCS

Syntax
$KANJIw.

318 $KANJIXw. Informat � Chapter 9

Syntax Description

w
specifies the width of the input field.
Restriction: The width must be an even number. If it is an odd number, it is

truncated. The width must be equal to or greater than the length of the shift-code
data.

Range: The minimum width for the informat is 2.

Details
The $KANJI informat removes shift-code data from DBCS data. The $KANJI informat
processes host-mainframe data. $KANJI can be used on other platforms. If you use the
$KANJI informat on non-EBCDIC (non-modal encoding) hosts, the data does not
change.

The data must start with SO and end with SI, unless single-byte blank data are
returned. The input data length must be 2 + (SO/SI length)*2.

See Also

Formats:
“$KANJIw. Format” on page 81
“$KANJIXw. Format” on page 82

Informats:
“$KANJIXw. Informat” on page 318

$KANJIXw. Informat

Adds shift-code data to DBCS data.

Category: DBCS

Syntax
$KANJIXw.

Syntax Description

w
specifies the width of the input field.
Restriction: The width must be an even number. If it is an odd number, it is

truncated. The width must be equal to or greater than the length of the shift-code
data.

Range: The minimum width for the informat is 2 + (length of shift code
used on the current DBCSTYPE= setting)*2.

Informats for NLS � $LOGVSw. Informat 319

Details

The $KANJIX informat adds shift-code data to DBCS data that does not have shift-code
data. If the input data is blank, shift-code data is not added. The $KANJIX informat
processes host-mainframe data, but $KANJIX can be used on other platforms. If you
use the $KANJIX informat on non-EBCDIC (non-modal encoding) hosts, the data does
not change.

See Also

Formats:

“$KANJIw. Format” on page 81

“$KANJIXw. Format” on page 82

Informats:

“$KANJIw. Informat” on page 317

$LOGVSw. Informat

Reads a character string that is in left-to-right logical order, and then converts the character string
to visual order.

Category: BIDI text handling

Syntax

$LOGVSw.

Syntax Description

w
specifies the width of the input field.

Default: 200

Range: 1–32000

Comparisons

The $LOGVSw. informat performs processing that is opposite to the LOGVSRw.
informat.

Examples

The following example uses the Hebrew input value of “ flight.”

320 $LOGVSRw. Informat � Chapter 9

Statements Result

----+----1----+

x=input (’ flight’,$logvs12.);

put x; flight

The following example uses the Arabic input value of “ computer.”

Statements Result

----+----1----+

x=input (’ computer’,$logvs12.);

put x; computer

See Also

Formats:
“$LOGVSRw. Format” on page 84
“$LOGVSw. Format” on page 83

Informats:
“$LOGVSRw. Informat” on page 320

$LOGVSRw. Informat

Reads a character string that is in right-to-left logical order, and then converts the character string
to visual order.

Category: BIDI text handling

Syntax
$LOGVSRw.

Syntax Description

w
specifies the width of the input field.
Default: 200
Range: 1–32000

Informats for NLS � MINGUOw. Informat 321

Comparisons
The $LOGVSRw. informat performs processing that is opposite to the $LOGVSw.
informat.

Examples

The following example uses the Hebrew input value of “ flight.”

Statements Results

----+----1----+

x=input (’ flight’,$logvsr12.);

put x; flight

The following example uses the Arabic input value of “ computer.”

Statements Results

----+----1----+

x=input (’ computer’,$logvsr12.);

put x; computer

See Also

Formats:
“$LOGVSw. Format” on page 83
“$LOGVSRw. Format” on page 84

Informats:
“$LOGVSw. Informat” on page 319

MINGUOw. Informat

Reads dates in Taiwanese format.

Category: Date and Time

Syntax
MINGUOw.

322 MINGUOw. Informat � Chapter 9

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 6–10

Details
The general form of a Taiwanese date is yyyymmdd:

yyyy
is an integer that represents the year.

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

The Taiwanese calendar uses 1912 as the base year (01/01/01 is January 1, 1912).
Dates before 1912 are not valid. Year values do not roll over after 100 years; instead,
they continue to increase.

You can separate the year, month, and day values with any delimiters, such as
blanks, slashes, or dashes, that are permitted by the YYMMDDw. informat. If
delimiters are used, place them between all the values. If you omit delimiters, be sure
to use a leading zero for days or months that have a value less than 10.

Examples

The following examples use different dates for input values.

input date minguo10.;
put date date9.;

Values Results

----+----1----+

49/01/01 01JAN1960

891215 15DEC2000

103-01-01 01JAN2014

See Also

Formats:
“MINGUOw. Format” on page 85

Informats:
YYMMDDw. in SAS Language Reference: Dictionary

Informats for NLS � NENGOw. Informat 323

NENGOw. Informat

Reads Japanese date values in the form eyymmdd.

Category: Date and Time

Syntax
NENGOw.

Syntax Description

w
specifies the width of the input field.
Default: 10
Range: 7–32

Details
The general form of a Japanese date is eyymmdd:

e
is the first letter of the name of the imperial era(Meiji, Taisho, Showa, or Heisei).

yy
is an integer that represents the year.

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

The e value can be separated from the integers by a period. If you omit e, SAS uses the
current imperial era. You can separate the year, month, and day values by blanks or
any nonnumeric character. However; if delimiters are used, place them between all the
values. If you omit delimiters, be sure to use a leading zero for days or months that are
values less than 10.

Examples

The following examples use different input values.

input nengo_date nengo8.;
put nengo_date date9.;

324 NLDATEw. Informat � Chapter 9

Values Results

----+----1----+

h11108 08OCT1999

h.11108 08OCT1999

11/10/08 08OCT1999

See Also

Formats:
“NENGOw. Format” on page 86

NLDATEw. Informat
Reads the date value in the specified locale, and then converts the date value to the local SAS
date value.

Category: Date and Time

Syntax
NLDATEw.

Syntax Description

w
specifies the width of the input field.
Default: 20
Range: 10–200

Examples

The following examples use the input February 24, 2003.

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’February 24, 2003,nldate17.);

put y=nldate.; y=February 24, 2003

options locale=German_Germany;

y=input(’24. Februar 2003’,nldate16.);

put y=nldate; y=24. Februar 2003

Informats for NLS � NLDATMw. Informat 325

See Also

Formats:
“NLDATEw. Format” on page 89

NLDATMw. Informat

Reads the datetime value of the specified locale, and then converts the datetime value to the local
SAS datetime value.

Category: Date and Time

Syntax
NLDATMw.

Syntax Description

w
specifies the width of the input field.
Default: 30
Range: 10–200

Examples

The following examples use the input value of February 24, 2003 12:39:43.

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’24.Feb03:12:39:43’, nldatm.);

put y=; 1361709583

options locale=German_Germany;

y=input(’24.Februar 2003 12.39 Uhr’, nldatm.);

put y=; 1330171200

See Also

Formats:
“NLDATMw. Format” on page 98

326 NLMNIAEDw.d Informat � Chapter 9

NLMNIAEDw.d Informat

Reads the monetary format of the international expression for the United Arab Emirates.

Category: Numeric

Alignment: left

Syntax
NLMNIAEDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmniaed32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informat:

“NLMNLAEDw.d Informat” on page 363

Informats for NLS � NLMNIAUDw.d Informat 327

NLMNIAUDw.d Informat

Reads the monetary format of the international expression for Australia.

Category: Numeric

Alignment: left

Syntax
NLMNIAUDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmniaud32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLAUDw.d Informat” on page 364

328 NLMNIBGNw.d Informat � Chapter 9

NLMNIBGNw.d Informat

Reads the monetary format of the international expression for Bulgaria.

Category: Numeric

Alignment: left

Syntax
NLMNIBGNw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnibgn32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLBGNw.d Informat” on page 365

Informats for NLS � NLMNIBRLw.d Informat 329

NLMNIBRLw.d Informat

Reads the monetary format of the international expression for Brazil.

Category: Numeric

Alignment: left

Syntax
NLMNIBRLw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnibrl32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLBRLw.d Informat” on page 366

330 NLMNICADw.d Informat � Chapter 9

NLMNICADw.d Informat

Reads the monetary format of the international expression for Canada.

Category: Numeric

Alignment: left

Syntax
NLMNICADw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmniaud32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNICADw.d Format” on page 112

Informats for NLS � NLMNICHFw.d Informat 331

NLMNICHFw.d Informat

Reads the monetary format of the international expression for Liechtenstein and Switzerland.

Category: Numeric

Alignment: left

Syntax
NLMNICHFw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnichf32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNICHFw.d Format” on page 113

332 NLMNICNYw.d Informat � Chapter 9

NLMNICNYw.d Informat

Reads the monetary format of the international expression for China.

Category: Numeric

Alignment: left

Syntax
NLMNICNYw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnicny32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNICNYw.d Format” on page 114

Informats for NLS � NLMNICZKw.d Informat 333

NLMNICZKw.d Informat

Reads the monetary format of the international expression for the Czech Republic.

Category: Numeric

Alignment: left

Syntax
NLMNICZKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmniczk32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLCZKw.d Informat” on page 370

334 NLMNIDKKw.d Informat � Chapter 9

NLMNIDKKw.d Informat

Reads the monetary format of the international expression for Denmark, Faroe Island, and
Greenland.

Category: Numeric

Alignment: left

Syntax
NLMNIDKKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmniaud32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIDKKw.d Format” on page 116

Informats for NLS � NLMNIEEKw.d Informat 335

NLMNIEEKw.d Informat

Reads the monetary format of the international expression for Estonia.

Category: Numeric

Alignment: left

Syntax
NLMNIEEKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnieek32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLEEKw.d Informat” on page 372

336 NLMNIEGPw.d Informat � Chapter 9

NLMNIEGPw.d Informat

Reads the monetary format of the international expression for Egypt.

Category: Numeric

Alignment: left

Syntax
NLMNIEGPw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmniegp32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLEGPw.d Informat” on page 373

Informats for NLS � NLMNIEURw.d Informat 337

NLMNIEURw.d Informat

Reads the monetary format of the international expression for Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, Malta, the Netherlands, Portugal, Slovakia,
Slovenia, and Spain.

Category: Numeric
Alignment: left

Syntax
NLMNIEURw.d

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.
Default: 0
Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnieur32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:
“NLMNIEURw.d Format” on page 119

338 NLMNIGBPw.d Informat � Chapter 9

NLMNIGBPw.d Informat

Reads the monetary format of the international expression for the United Kingdom.

Category: Numeric

Alignment: left

Syntax
NLMNIGBPw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnigbp32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIGBPw.d Format” on page 120

Informats for NLS � NLMNIHKDw.d Informat 339

NLMNIHKDw.d Informat

Reads the monetary format of the international expression for Hong Kong.

Category: Numeric

Alignment: left

Syntax
NLMNIHKDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnihkd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIHKDw.d Format” on page 121

340 NLMNIHRKw.d Informat � Chapter 9

NLMNIHRKw.d Informat

Reads the monetary format of the international expression for Croatia.

Category: Numeric

Alignment: left

Syntax
NLMNIHRKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnihrk32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLHRKw.d Informat” on page 377

Informats for NLS � NLMNIHUFw.d Informat 341

NLMNIHUFw.d Informat

Reads the monetary format of the international expression for Hungary.

Category: Numeric

Alignment: left

Syntax
NLMNIHUFw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnihuf32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLHUFw.d Informat” on page 378

342 NLMNIIDRw.d Informat � Chapter 9

NLMNIIDRw.d Informat

Reads the monetary format of the international expression for Indonesia.

Category: Numeric

Alignment: left

Syntax
NLMNIIDRw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmniidr32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLIDRw.d Informat” on page 379

Informats for NLS � NLMNIILSw.d Informat 343

NLMNIILSw.d Informat

Reads the monetary format of the international expression for Israel.

Category: Numeric

Alignment: left

Syntax
NLMNIILSw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmniils32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIILSw.d Format” on page 125

344 NLMNIINRw.d Informat � Chapter 9

NLMNIINRw.d Informat

Reads the monetary format of the international expression for India.

Category: Numeric

Alignment: left

Syntax
NLMNIINRw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmniinr32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLINRw.d Informat” on page 381

Informats for NLS � NLMNIJPYw.d Informat 345

NLMNIJPYw.d Informat

Reads the monetary format of the international expression for Japan.

Category: Numeric

Alignment: left

Syntax
NLMNIJPYw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnijpy32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIJPYw.d Format” on page 127

346 NLMNIKRWw.d Informat � Chapter 9

NLMNIKRWw.d Informat

Reads the monetary format of the international expression for South Korea.

Category: Numeric

Alignment: left

Syntax
NLMNIKRWw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnikrw32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLKRWw.d Informat” on page 383

Informats for NLS � NLMNILTLw.d Informat 347

NLMNILTLw.d Informat

Reads the monetary format of the international expression for Lithuania.

Category: Numeric

Alignment: left

Syntax
NLMNILTLw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmniltl32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLLTLw.d Informat” on page 384

348 NLMNILVLw.d Informat � Chapter 9

NLMNILVLw.d Informat

Reads the monetary format of the international expression for Latvia.

Category: Numeric

Alignment: left

Syntax
NLMNILVLw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnilvl32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLLVLw.d Informat” on page 385

Informats for NLS � NLMNIMOPw.d Informat 349

NLMNIMOPw.d Informat

Reads the monetary format of the international expression for Macau.

Category: Numeric

Alignment: left

Syntax
NLMNIMOPw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnimop32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLMOPw.d Informat” on page 386

350 NLMNIMXNw.d Informat � Chapter 9

NLMNIMXNw.d Informat

Reads the monetary format of the international expression for Mexico.

Category: Numeric

Alignment: left

Syntax
NLMNIMXNw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnimxn32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLMXNw.d Informat” on page 387

Informats for NLS � NLMNIMYRw.d Informat 351

NLMNIMYRw.d Informat

Reads the monetary format of the international expression for Malaysia.

Category: Numeric

Alignment: left

Syntax
NLMNIMYRw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmniaud32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIMYRw.d Format” on page 133

352 NLMNINOKw.d Informat � Chapter 9

NLMNINOKw.d Informat

Reads the monetary format of the international expression for Norway.

Category: Numeric

Alignment: left

Syntax
NLMNINOKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmninok32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNINOKw.d Format” on page 134

Informats for NLS � NLMNINZDw.d Informat 353

NLMNINZDw.d Informat

Reads the monetary format of the international expression for New Zealand.

Category: Numeric

Alignment: left

Syntax
NLMNINZDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmniaud32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNINZDw.d Format” on page 135

354 NLMNIPLNw.d Informat � Chapter 9

NLMNIPLNw.d Informat

Reads the monetary format of the international expression for Poland.

Category: Numeric

Alignment: left

Syntax
NLMNIPLNw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
specifies to divide the number by 10d. If the data contains decimal points, the d value
is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnipln32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIPLNw.d Format” on page 136

Informats for NLS � NLMNIRUBw.d Informat 355

NLMNIRUBw.d Informat

Reads the monetary format of the international expression for Russia.

Category: Numeric

Alignment: left

Syntax
NLMNIRUBw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnirub32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIRUBw.d Format” on page 137

356 NLMNISEKw.d Informat � Chapter 9

NLMNISEKw.d Informat

Reads the monetary format of the international expression for Sweden.

Category: Numeric

Alignment: left

Syntax
NLMNISEKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnisek32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNISEKw.d Format” on page 138

Informats for NLS � NLMNISGDw.d Informat 357

NLMNISGDw.d Informat

Reads the monetary format of the international expression for Singapore.

Category: Numeric

Alignment: left

Syntax
NLMNISGDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnisgd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNISGDw.d Format” on page 139

358 NLMNITHBw.d Informat � Chapter 9

NLMNITHBw.d Informat

Reads the monetary format of the international expression for Thailand.

Category: Numeric

Alignment: left

Syntax
NLMNITHBw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnithb2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLTHBw.d Informat” on page 395

Informats for NLS � NLMNITRYw.d Informat 359

NLMNITRYw.d Informat

Reads the monetary format of the international expression for Turkey.

Category: Numeric

Alignment: left

Syntax
NLMNITRYw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnitry32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNLTRYw.d Informat” on page 396

360 NLMNITWDw.d Informat � Chapter 9

NLMNITWDw.d Informat

Reads the monetary format of the international expression for Taiwan.

Category: Numeric

Alignment: left

Syntax
NLMNITWDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnitwd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNITWDw.d Format” on page 142

Informats for NLS � NLMNIUSDw.d Informat 361

NLMNIUSDw.d Informat

Reads the monetary format of the international expression for Puerto Rico and the United States.

Category: Numeric

Alignment: left

Syntax
NLMNIUSDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmniusd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIUSDw.d Format” on page 143

362 NLMNIZARw.d Informat � Chapter 9

NLMNIZARw.d Informat

Reads the monetary format of the international expression for South Africa.

Category: Numeric

Alignment: left

Syntax
NLMNIZARw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnizar32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNIZARw.d Format” on page 144

Informats for NLS � NLMNLAEDw.d Informat 363

NLMNLAEDw.d Informat

Reads the monetary format of the local expression for the United Arab Emirates.

Category: Numeric

Alignment: left

Syntax
NLMNLAEDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlaed32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIAEDw.d Informat” on page 326

364 NLMNLAUDw.d Informat � Chapter 9

NLMNLAUDw.d Informat

Reads the monetary format of the local expression for Australia.

Category: Numeric

Alignment: left

Syntax
NLMNLAUDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlaud32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLAUDw.d Format” on page 146

Informats for NLS � NLMNLBGNw.d Informat 365

NLMNLBGNw.d Informat

Reads the monetary format of the local expression for Bulgaria.

Category: Numeric

Alignment: left

Syntax
NLMNLBGNw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnlbgn32.2);
y=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIBGNw.d Informat” on page 328

366 NLMNLBRLw.d Informat � Chapter 9

NLMNLBRLw.d Informat

Reads the monetary format of the local expression for Brazil.

Category: Numeric

Alignment: left

Syntax
NLMNLBRLw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlbrl32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIBRLw.d Informat” on page 329

Informats for NLS � NLMNLCADw.d Informat 367

NLMNLCADw.d Informat

Reads the monetary format of the local expression for Canada.

Category: Numeric

Alignment: left

Syntax
NLMNLCADw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlcad32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLCADw.d Format” on page 149

368 NLMNLCHFw.d Informat � Chapter 9

NLMNLCHFw.d Informat

Reads the monetary format of the local expression for Liechtenstein and Switzerland.

Category: Numeric

Alignment: left

Syntax
NLMNLCHFw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlchf32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLCHFw.d Format” on page 150

Informats for NLS � NLMNLCNYw.d Informat 369

NLMNLCNYw.d Informat

Reads the monetary format of the local expression for China.

Category: Numeric

Alignment: left

Syntax
NLMNLCNYw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlcny32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLCNYw.d Format” on page 151

370 NLMNLCZKw.d Informat � Chapter 9

NLMNLCZKw.d Informat

Reads the monetary format of the local expression for the Czech Republic.

Category: Numeric

Alignment: left

Syntax
NLMNLCZKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlczk32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNICZKw.d Informat” on page 333

Informats for NLS � NLMNLDKKw.d Informat 371

NLMNLDKKw.d Informat

Reads the monetary format of the local expression for Denmark, the Faroe Island, and Greenland.

Category: Numeric

Alignment: left

Syntax
NLMNLDKKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnldkk32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLDKKw.d Format” on page 153

372 NLMNLEEKw.d Informat � Chapter 9

NLMNLEEKw.d Informat

Reads the monetary format of the local expression for Estonia.

Category: Numeric

Alignment: left

Syntax
NLMNLEEKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnleek32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIEEKw.d Informat” on page 335

Informats for NLS � NLMNLEGPw.d Informat 373

NLMNLEGPw.d Informat

Reads the monetary format of the local expression for Egypt.

Category: Numeric

Alignment: left

Syntax
NLMNLEGPw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlegp32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIEGPw.d Informat” on page 336

374 NLMNLEURw.d Informat � Chapter 9

NLMNLEURw.d Informat

Reads the monetary format of the local expression for Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, Malta, the Netherlands, Portugal, Slovakia,
Slovenia, and Spain.

Category: Numeric
Alignment: left

Syntax
NLMNLEURw.d

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.
Default: 0
Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnleur32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:
“NLMNLEURw.d Format” on page 156

Informats for NLS � NLMNLGBPw.d Informat 375

NLMNLGBPw.d Informat

Reads the monetary format of the local expression for the United Kingdom.

Category: Numeric

Alignment: left

Syntax
NLMNLGBPw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlgbp32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLGBPw.d Format” on page 157

376 NLMNLHKDw.d Informat � Chapter 9

NLMNLHKDw.d Informat

Reads the monetary format of the local expression for Hong Kong.

Category: Numeric

Alignment: left

Syntax
NLMNLHKDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlhkd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLHKDw.d Format” on page 158

Informats for NLS � NLMNLHRKw.d Informat 377

NLMNLHRKw.d Informat

Reads the monetary format of the local expression for Croatia.

Category: Numeric

Alignment: left

Syntax
NLMNLHRKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlhrk32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-1,234.57

See Also

Informats:

“NLMNIHRKw.d Informat” on page 340

378 NLMNLHUFw.d Informat � Chapter 9

NLMNLHUFw.d Informat

Reads the monetary format of the local expression for Hungary.

Category: Numeric

Alignment: left

Syntax
NLMNLHUFw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlhuf32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIHUFw.d Informat” on page 341

Informats for NLS � NLMNLIDRw.d Informat 379

NLMNLIDRw.d Informat

Reads the monetary format of the local expression for Indonesia.

Category: Numeric

Alignment: left

Syntax
NLMNLIDRw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlidr32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIIDRw.d Informat” on page 342

380 NLMNLILSw.d Informat � Chapter 9

NLMNLILSw.d Informat

Reads the monetary format of the local expression for Israel.

Category: Numeric

Alignment: left

Syntax
NLMNLILSw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlils32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLILSw.d Format” on page 162

Informats for NLS � NLMNLINRw.d Informat 381

NLMNLINRw.d Informat

Reads the monetary format of the local expression for India.

Category: Numeric

Alignment: left

Syntax
NLMNLINRw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlinr32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIINRw.d Informat” on page 344

382 NLMNLJPYw.d Informat � Chapter 9

NLMNLJPYw.d Informat

Reads the monetary format of the local expression for Japan.

Category: Numeric

Alignment: left

Syntax
NLMNLJPYw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnljpy32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLJPYw.d Format” on page 164

Informats for NLS � NLMNLKRWw.d Informat 383

NLMNLKRWw.d Informat

Reads the monetary format of the local expression for South Korea.

Category: Numeric

Alignment: left

Syntax
NLMNLKRWw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlkrw32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIKRWw.d Informat” on page 346

384 NLMNLLTLw.d Informat � Chapter 9

NLMNLLTLw.d Informat

Reads the monetary format of the local expression for Lithuania.

Category: Numeric

Alignment: left

Syntax
NLMNLLTLw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlltl32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNILTLw.d Informat” on page 347

Informats for NLS � NLMNLLVLw.d Informat 385

NLMNLLVLw.d Informat

Reads the monetary format of the local expression for Latvia.

Category: Numeric

Alignment: left

Syntax
NLMNLLVLw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnllvl32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNILVLw.d Informat” on page 348

386 NLMNLMOPw.d Informat � Chapter 9

NLMNLMOPw.d Informat

Reads the monetary format of the local expression for Macau.

Category: Numeric

Alignment: left

Syntax
NLMNLMOPw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlmop32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIMOPw.d Informat” on page 349

Informats for NLS � NLMNLMXNw.d Informat 387

NLMNLMXNw.d Informat

Reads the monetary format of the local expression for Mexico.

Category: Numeric

Alignment: left

Syntax
NLMNLMXNw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlmxn32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNIMXNw.d Informat” on page 350

388 NLMNLMYRw.d Informat � Chapter 9

NLMNLMYRw.d Informat

Reads the monetary format of the local expression for Malaysia.

Category: Numeric

Alignment: left

Syntax
NLMNLMYRw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlmyr32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLMYRw.d Format” on page 170

Informats for NLS � NLMNLNOKw.d Informat 389

NLMNLNOKw.d Informat

Reads the monetary format of the local expression for Norway.

Category: Numeric

Alignment: left

Syntax
NLMNLNOKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlnok32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLNOKw.d Format” on page 171

390 NLMNLNZDw.d Informat � Chapter 9

NLMNLNZDw.d Informat

Reads the monetary format of the local expression for New Zealand.

Category: Numeric

Alignment: left

Syntax
NLMNLNZDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlnzd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLNZDw.d Format” on page 172

Informats for NLS � NLMNLPLNw.d Informat 391

NLMNLPLNw.d Informat

Reads the monetary format of the local expression for Poland.

Category: Numeric

Alignment: left

Syntax
NLMNLPLNw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlpln32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLPLNw.d Format” on page 173

392 NLMNLRUBw.d Informat � Chapter 9

NLMNLRUBw.d Informat

Reads the monetary format of the local expression for Russia.

Category: Numeric

Alignment: left

Syntax
NLMNLRUBw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlrub32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLRUBw.d Format” on page 174

Informats for NLS � NLMNLSEKw.d Informat 393

NLMNLSEKw.d Informat

Reads the monetary format of the local expression for Sweden.

Category: Numeric

Alignment: left

Syntax
NLMNLSEKw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlsek32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLSEKw.d Format” on page 175

394 NLMNLSGDw.d Informat � Chapter 9

NLMNLSGDw.d Informat

Reads the monetary format of the local expression for Singapore.

Category: Numeric

Alignment: left

Syntax
NLMNLSGDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlsgd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLSGDw.d Format” on page 176

Informats for NLS � NLMNLTHBw.d Informat 395

NLMNLTHBw.d Informat

Reads the monetary format of the local expression for Thailand.

Category: Numeric

Alignment: left

Syntax
NLMNLTHBw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnlthb32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNITHBw.d Informat” on page 358

396 NLMNLTRYw.d Informat � Chapter 9

NLMNLTRYw.d Informat

Reads the monetary format of the local expression for Turkey.

Category: Numeric

Alignment: left

Syntax
NLMNLTRYw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input(’($12,345.67)’,nlmnltry32.2);
y=input(’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Informats:

“NLMNITRYw.d Informat” on page 359

Informats for NLS � NLMNLTWDw.d Informat 397

NLMNLTWDw.d Informat

Reads the monetary format of the local expression for Taiwan.

Category: Numeric

Alignment: left

Syntax
NLMNLTWDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnltwd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLTWDw.d Format” on page 179

398 NLMNLUSDw.d Informat � Chapter 9

NLMNLUSDw.d Informat

Reads the monetary format of the local expression for Puerto Rico, and the United States.

Category: Numeric

Alignment: left

Syntax
NLMNLUSDw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlusd32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLUSDw.d Format” on page 180

Informats for NLS � NLMNLZARw.d Informat 399

NLMNLZARw.d Informat

Reads the monetary format of the local expression for South Africa.

Category: Numeric

Alignment: left

Syntax
NLMNLZARw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=input’($12,345.67)’,nlmnlzar32.2);
y=input’($12,345.67)’dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNLZARw.d Format” on page 181

400 NLMNYw.d Informat � Chapter 9

NLMNYw.d Informat

Reads monetary data in the specified locale for the local expression, and then converts the data to
a numeric value.

Category: Numeric

Syntax
NLMNYw.d

Syntax Description

w
specifies the width of the input field.
Default: 9
Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLMNYw.d informat reads monetary data in the specified locale for the local
expression, and then converts the data to a numeric value. It removes any thousands
separators, decimal separators, blanks, the currency symbol, and the close parenthesis
from the input data.

Comparisons
The NLMNYw.d informat performs processing that is the opposite of the NLMNYIw.d
informat.

The NLMNYw.d informat is similar to the DOLLARw.d informat except that the
NLMNYw.d informat is locale-specific.

Examples

The following examples use the input value of $12,345.67.

Informats for NLS � NLMNYIw.d Informat 401

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’($12,345.67)’,nlmny32.2);

y=input(’($12,345.67)’,dollar32.2);

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNYw.d Format” on page 182

“NLMNYIw.d Format” on page 184

Informats:

“NLMNYIw.d Informat” on page 401

NLMNYIw.d Informat

Reads monetary data in the specified locale for the international expression, and then converts the
data to a numeric value.

Category: Numeric

Syntax
NLMNYIw.d

Syntax Description

w
specifies the width of the input field.

Default: 9

Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.

Default: 0

Range: 0–31

402 NLNUMw.d Informat � Chapter 9

Details
The NLMNYIw.d informat reads monetary data in the specified locale for the
international expression, and then converts the data to a numeric value. It removes
any thousands separators, decimal separators, blanks, the currency symbol, and the
close parenthesis from the input data.

Comparisons

The NLMNYIw.d informat performs processing that is the opposite of the NLMNYw.d
informat.

Examples

The following examples use the input value of 12,345.67.

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’(USD12,345.67)’,nlmnyi32.2);

y=input(’$-12,345.67)’,dollar32.2);

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNYw.d Format” on page 182

“NLMNYIw.d Format” on page 184

Informats:

“NLMNYw.d Informat” on page 400

NLNUMw.d Informat

Reads numeric data in the specified locale for local expressions, and then converts the data to a
numeric value.

Category: Numeric

Syntax
NLNUMw.d

Informats for NLS � NLNUMIw.d Informat 403

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLNUMw.d) informat reads numeric data in the specified locale for local
expressions, and then converts the data to a numeric value. It removes any thousands
separators, decimal separators, blanks, the currency symbol, and the close parenthesis
from the input data.

Comparisons
The NLNUMw.d informat performs processing that is opposite to the NLNUMIw.d
informat.

Examples

The following example uses –1234356.78 as the input value.

Statements Results

----+----1----+

options locale=English_UnitedStates;

x=input(’-1,234,356.78’,nlnum32.2);

put x=; -1234356.78

See Also

Formats:
“NLNUMw.d Format” on page 185
“NLMNYIw.d Format” on page 184

Informats:
“NLNUMIw.d Informat” on page 403

NLNUMIw.d Informat
Reads numeric data in the specified locale for international expressions, and then converts the
data to a numeric value.

404 NLNUMIw.d Informat � Chapter 9

Category: Numeric

Syntax
NLNUMIw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLNUMIw.d informat reads numeric data in the specified locale for international
expressions, and then converts the data to a numeric value. It removes any thousands
separators, decimal separators, blanks, the currency symbol, and the close parenthesis
from the input data.

Comparisons
The NLNUMIw.d informat performs processing that is opposite to the NLNUMw.d
informat.

Examples

The following example uses –1,234,356.78 as the input value.

Statements Results

----+----1----+

options locale=English_UnitedStates;

x=input(’-1,234,356.78’, nlnumi32.2);

put x=; -1234356.78

See Also

Formats:
“NLNUMw.d Format” on page 185
“NLNUMIw.d Format” on page 186

Informats for NLS � NLPCTw.d Informat 405

Informats:

“NLNUMw.d Informat” on page 402

NLPCTw.d Informat

Reads percentage data in the specified locale for local expressions, and then converts the data to
a numeric value.

Category: Numeric

Syntax

NLPCTw.d

Syntax Description

w
specifies the width of the input field.

Default: 6

Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.

Default: 0

Range: 0–31

Details

The NLPCTw.d informat reads percentage data in the specified locale for local
expressions, and then converts the data to a numeric value. It divides the value by 100
and removes any thousands separators, decimal separators, blanks, the percent sign,
and the close parenthesis from the input data.

Comparisons

The NLPCTw.d informat performs processing that is opposite of the NLPCTIw.d
informat. The NLPCTw.d informat is similar to the PERCENTw.d informat except that
the NLPCTw.d informat is locale-specific.

Examples

The following example uses –12,345.67% as the input value.

406 NLPCTIw.d Informat � Chapter 9

Statements Result

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’-12,345.67%’,nlpct32.2);

y=input(’(12,345.67%)’,percent32.2);

put x=;

put y=;

-123.4567

-123.4567

See Also

Formats:
“NLPCTw.d Format” on page 188
“NLPCTIw.d Format” on page 189

Informats:
“NLPCTIw.d Informat” on page 406

NLPCTIw.d Informat

Reads percentage data in the specified locale for international expressions, and then converts the
data to a numeric value.

Category: Numeric

Syntax
NLPCTIw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLPCTIw.d informat reads percentage data in the specified locale for international
expressions, and then converts the data to a numeric value. It divides the value by 100

Informats for NLS � NLTIMAPw. Informat 407

and removes any thousands separators, decimal separators, blanks, the percent sign,
and the close parentheses from the input data.

Comparisons
The NLPCTIw.d informat performs processing that is opposite of the NLPCTw.d
informat.

Examples

The following example uses -12,345.67% as the input value.

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’-12,345.67%’,nlpct32.2);

y=input(’(12,345.67%)’,percent32.2);

put x=;

put y=;

-123.4567

-123.4567

See Also

Formats:
“NLPCTw.d Format” on page 188
“NLPCTIw.d Format” on page 189

Informats:
“NLPCTw.d Informat” on page 405

NLTIMAPw. Informat

Reads the time value and uses a.m. and p.m. in the specified locale, and then converts the time
value to the local SAS time value.

Category: Date and Time

Syntax
NLTIMAPw.

Syntax Description

w
specifies the width of the input field.

408 NLTIMEw. Informat � Chapter 9

Default: 10
Range: 4–200

Examples

The following example uses 04:24:43 p.m. as the input value.

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’04:24:43 PM’,nltimap11.);

put y time.; 16:24:43

options locale=German_Germany;

y=input(’16.24 Uhr’,nltimap11.);

put y time.; 16:24:43

See Also

Formats:
“NLTIMAPw. Format” on page 198

NLTIMEw. Informat
Reads the time value in the specified locale, and then converts the time value to the local SAS
time value.

Category: Date and Time

Syntax
NLTIMEw.

Syntax Description

w
specifies the width of the input field.
Default: 20
Range: 10–200

Examples

The following example uses 16:24:43 as the input value.

Informats for NLS � $REVERJw. Informat 409

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’16:24:43’,nltime.);

put y time.; 16:24:43

options locale=German_Germany;

y=input(’16.24 Uhr’,nltime.);

put y time; 16:24:00

See Also

Formats:
“NLTIMEw. Format” on page 197

$REVERJw. Informat

Reads character data from right to left and preserves blanks.

Category: Character

Syntax
$REVERJw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if w is not specified
Range: 1–32767

Comparisons
The $REVERJw. informat is similar to the $REVERSw. informat except that
$REVERSw. informat left aligns the result by removing all leading blanks.

Examples

The following example uses ABCD as the input value.

410 $REVERSw. Informat � Chapter 9

input @1 name $reverj7.;

Values Results

----+----1

ABCD ###DCBA

ABCD DCBA###

* The character # represents a blank space.

See Also

Informats:
“$REVERSw. Informat” on page 410

$REVERSw. Informat

Reads character data from right to left, and then left aligns the text.

Category: Character

Syntax
$REVERSw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if w is not specified
Range: 1–32767

Comparisons
The $REVERSw. informat is similar to the $REVERJw. informat except that
$REVERJw. informat preserves all leading and trailing blanks.

Examples

The following example uses ABCD as the input value.

input @1 name $revers7.;

Informats for NLS � $UCS2Bw. Informat 411

Values Results

----+----1

ABCD DCBA###

ABCD DCBA###

* The # character represents a blank space.

See Also

Informats:
“$REVERJw. Informat” on page 409

$UCS2Bw. Informat

Reads a character string that is encoded in big-endian, 16-bit, UCS2, Unicode encoding, and then
converts the character string to the encoding of the current SAS session.

Category: Character

Syntax
$UCS2Bw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32000

Comparisons
The $UCS2Bw. informat performs processing that is opposite of the $UCS2BEw.
informat. If you are processing data within the same operating environment, then use
the $UCS2Xw. informat. If you are processing data from different operating
environments, then use the $UCS2Bw. and $UCS2Lw. informats.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

412 $UCS2BEw. Informat � Chapter 9

Statements Result

----+----1----+

x=input(’5927’x,$ucs2b.);

put x=$hex4.; x=91e5

See Also

Formats:

“$UCS2Bw. Format” on page 199

“$UCS2Lw. Format” on page 201

“$UCS2Xw. Format” on page 204

“$UTF8Xw. Format” on page 220

Informats:

“$UCS2Lw. Informat” on page 413

“$UCS2Xw. Informat” on page 415

“$UTF8Xw. Informat” on page 429

$UCS2BEw. Informat

Reads a character string that is in the encoding of the current SAS session and then converts the
character string to big-endian, 16-bit, UCS2, Unicode encoding.

Category: Character

Syntax
$UCS2BEw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 1–32000

Comparisons
The $UCS2BEw. informat performs processing that is opposite of the $UCS2Bw.
informat.

Informats for NLS � $UCS2Lw. Informat 413

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs2str=input (’ ’, $ucs2be2.);

put ucs2str=$hex4; ucs2str=5927

See Also

Formats:
“$UCS2Bw. Format” on page 199
“$UCS2BEw. Format” on page 200

Informats:
“$UCS2Bw. Informat” on page 411

$UCS2Lw. Informat

Reads a character string that is encoded in little-endian, 16-bit, UCS2, Unicode encoding, and
then converts the character string to the encoding of the current SAS session.

Category: Character

Syntax
$UCS2Lw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32000

Comparisons
The $UCS2Lw. informat performs processing that is opposite of the $UCS2LEw.
informat. If you are processing data within the same operating environment, then use

414 $UCS2LEw. Informat � Chapter 9

the $UCS2Xw.informat. If you are processing data from different operating
environments, then use the $UCS2Bw. and $UCS2Lw. informats.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

x=input(’2759’x,$ucs2l.);

put x=$hex4.; x=91e5

See Also

Formats:
“$UCS2Bw. Format” on page 199
“$UCS2Lw. Format” on page 201
“$UCS2Xw. Format” on page 204
“$UTF8Xw. Format” on page 220

Informats:
“$UCS2Bw. Informat” on page 411
“$UCS2Xw. Informat” on page 415
“$UTF8Xw. Informat” on page 429

$UCS2LEw. Informat

Reads a character string that is in the encoding of the current SAS session and then converts the
character string to little-endian, 16-bit, UCS2, Unicode encoding.

Category: Character

Syntax
$UCS2LEw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8

Informats for NLS � $UCS2Xw. Informat 415

Range: 1–32000

Comparisons
The $UCS2LEw. informat performs processing that is opposite of the $UCS2Lw.
informat.

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs2str=input (’ ’, $ ucs2le2.);

put ucs2str=$hex4; ucs2str=2759

See Also

Formats:
“$UCS2Lw. Format” on page 201

“$UCS2LEw. Format” on page 203
Informats:

“$UCS2Lw. Informat” on page 413

$UCS2Xw. Informat

Reads a character string that is encoded in 16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS session.

Category: Character

Syntax
$UCS2Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8

416 $UCS2XEw. Informat � Chapter 9

Range: 2–32000

Comparisons
The $UCS2Xw. informat performs processing that is the opposite of the $UCS2XEw.
informat. If you are processing data within the same operating environment, then use
the $UCS2Xw. informat. If you are processing data from different operating
environments, then use the $UCS2Bw. and $UCS2Lw. informats.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment. This example uses little-endian formatting.

Statements Result

----+----1----+

x=input(’5927’x,$ucs2x.);

put x=$hex4.; x=91e5

See Also

Formats:

“$UCS2Bw. Format” on page 199

“$UCS2Lw. Format” on page 201

“$UCS2Xw. Format” on page 204

“$UTF8Xw. Format” on page 220

Informats:

“$UCS2Bw. Informat” on page 411

“$UCS2Lw. Informat” on page 413

“$UTF8Xw. Informat” on page 429

$UCS2XEw. Informat

Reads a character string that is in the encoding of the current SAS session and then converts the
character string to 16-bit, UCS2, Unicode encoding.

Category: Character

Syntax
$UCS2XEw.

Informats for NLS � $UCS4Bw. Informat 417

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 1-32000

Comparisons
The $UCS2XEw. informat performs processing that is opposite of the $UCS2Xw.
informat.

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs2str=input (’ ’, $ ucs2xe2.);

put ucs2str=$hex6; ucs2str=5927

See Also

Formats:

“$UCS2Xw. Format” on page 204

“$UCS2XEw. Format” on page 205

Informats:

“$UCS2Xw. Informat” on page 415

$UCS4Bw. Informat

Reads a character string that is encoded in big-endian, 32-bit, UCS4, Unicode encoding, and then
converts the character string to the encoding of the current SAS session.

Category: Character

Syntax
$UCS4Bw.

418 $UCS4Lw. Informat � Chapter 9

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 4
Range: 4–32000

Comparison
If you are processing data within the same operating environment, then use the
$UCS4Xw. informat. If you are processing data from different operating environments,
then use the $UCS4Bw. and $UCS4Lw. informats.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

z=put(’Zero1’,$UCS4B20.);

x=input(z,$UCS4B20.);

put x; Zero1

See Also

Formats:
“$UCS4Bw. Format” on page 206

Informats:
“$UCS4Lw. Informat” on page 418
“$UCS4Xw. Informat” on page 419

$UCS4Lw. Informat

Reads a character string that is encoded in little-endian, 32-bit, UCS4, Unicode encoding, and
then converts the character string to the encoding of the current SAS session.

Category: Character

Syntax
$UCS4Lw.

Informats for NLS � $UCS4Xw. Informat 419

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 4

Range: 4–32000

Comparison
If you are processing data within the same operating environment, then use the
$UCS4Xw. informat. If you are processing data from different operating environments,
then use the $UCS4Bw. and $UCS4Lw. informats.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+----2----+----3----+

z=put(’.com’,$UCS4L16.);

put z $hex32.; 2E000000630000006F0000006D000000

See Also

Formats:

“$UCS4Lw. Format” on page 208

Informats:

“$UCS4Bw. Informat” on page 417

“$UCS4Xw. Informat” on page 419

$UCS4Xw. Informat

Reads a character string that is encoded in 32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS session.

Category: Character

Syntax
$UCS4Xw.

420 $UCS4XEw. Informat � Chapter 9

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 4
Range: 4–32000

Comparisons
The $UCS4Xw. informat performs processing that is the opposite of the $UCS4XEw.
informat. Use the $UCS4Xw. informat when you are processing data within the same
operating environment. Use the $UCS4Bw. and $UCS4Lw. informats when you are
processing data from different operating environments.

Examples
These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment. This example uses little-endian formatting.

Statements Results

----+----1----+

ucs4=put(’91e5’x,$ucs4x.);

sjis=input(ucs4,$ucs4x.);

put ucs4=$hex8. sjis=$hex8.;

run;

ucs4=27590000

sjis=91E52020

See Also

Formats:
“$UCS2Xw. Format” on page 204
“$UCS2Bw. Format” on page 199
“$UCS2Lw. Format” on page 201
“$UCS4Xw. Format” on page 211
“$UTF8Xw. Format” on page 220

Informats:
“$UCS2Bw. Informat” on page 411
“$UCS2Lw. Informat” on page 413
“$UTF8Xw. Informat” on page 429

$UCS4XEw. Informat

Reads a character string that is in the encoding of the current SAS session, and then converts the
character string to 32-bit, UCS4, Unicode encoding.

Informats for NLS � $UESCw. Informat 421

Category: Character

Syntax
$UCS4XEw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 8
Range: 1–32000

Comparisons
The $UCS4XEw. informat performs processing that is the opposite of the $UCS4Xw.
informat.

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs4str=input (’ ’, $ ucs4xe2.);

put ucs4str=$hex8; ucs4str=00005927

See Also

Formats:
“$UCS4Xw. Format” on page 211
“$UCS4XEw. Format” on page 212

Informats:
“$UCS4Xw. Informat” on page 419

$UESCw. Informat

Reads a character string that is encoded in UESC representation, and then converts the character
string to the encoding of the current SAS session.

422 $UESCw. Informat � Chapter 9

Category: Character

Syntax
$UESCw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–32000

Details
If the characters are not available on all operating environments, for example, 0–9, a–z,
A–Z, they must be represented in UESC representation. The $UESCw. informat can be
nested.

Comparisons
The $UESCw. informat performs processing that is the opposite of the $UESCEw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

x=input(’¥u5927’, $uesc10.);
y=input(’¥uu5927’, $uesc10.);
z=input(’¥uuu5927’, $uesc10.);
put x;
put y;
put z;

¥u5927
¥uu5927

See Also

Formats:

“$UESCw. Format” on page 213

“$UESCEw. Format” on page 214

Informats:

“$UESCEw. Informat” on page 423

Informats for NLS � $UESCEw. Informat 423

$UESCEw. Informat

Reads a character string that is in the encoding of the current SAS session, and then converts the
character string to UESC representation.

Category: Character

Syntax
$UESCEw.

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 1–32000

Details
The $UESCEw. informat can be nested.

Comparisons
The $UESCEw. informat performs processing that is opposite of the $UESCw. informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

x=input(’ ’, $uesc10.);

y=input(’¥u5927’,$uesc10.);

z=input(’¥uu5927’,$uesc10.);

put x y z;

¥u5927

¥uu5927

¥uuu5927

See Also

Formats:

“$UESCw. Format” on page 213

“$UESCEw. Format” on page 214

424 $UNCRw. Informat � Chapter 9

Informat:

“$UESCw. Informat” on page 421

$UNCRw. Informat

Reads an NCR character string, and then converts the character string to the encoding of the
current SAS session.

Category: Character

Syntax
$UNCRw.

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 1–32000

Details
The input string must contain only characters and NCR. Any national characters must
be represented in NCR.

Comparison
The $UNCRw. informat performs processing that is opposite of the $UNCREw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Result

----+----1----+

x=input (’大’, $uncr10.);

y=input(’abc’, $uncr10);

put X;

put Y; abc

Informats for NLS � $UNCREw. Informat 425

See Also

Formats:
“$UNCRw. Format” on page 215
“$UNCREw. Format” on page 217

Informats:
“$UNCREw. Informat” on page 425

$UNCREw. Informat
Reads a character string in the encoding of the current SAS session, and then converts the
character string to NCR.

Category: Character

Syntax
$UNCREw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Details
The output string will be converted to plain characters and NCR. Any national
characters will be converted to NCR.

Comparison
The $UNCREw. informat performs processing that is the opposite of the $UNCRw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Result

----+----1----+

x=input (’ abc’, $uncre12.);

put x; 大abc

426 $UPARENw. Informat � Chapter 9

See Also

Formats:
“$UNCRw. Format” on page 215
“$UNCREw. Format” on page 217

Informats:
“$UNCRw. Informat” on page 424

$UPARENw. Informat

Reads a character string that is encoded in UPAREN representation, and then converts the
character string to the encoding of the current SAS session.

Category: Character

Syntax
$UPARENw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Details
If the SAS session encoding does not have a corresponding Unicode expression, the
expression will remain in encoding of the current SAS session.

Comparisons
The $UPARENw. informat performs processing that is opposite of the $UPARENEw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Informats for NLS � $UPARENEw. Informat 427

Statements Results

v=input(’<u0061>’,$uparen10.);
w=input(’<u0062>’,$uparen10.);
x=input(’<u0063>’,$uparen10.);
y=input(’<u0033>’,$uparen10.);
z=input(’<u5927>’,$uparen10.);
put v;
put w;
put x;
put y;
put z;

a
b
c
3

See Also

Formats:
“$UPARENw. Format” on page 218
“$UPARENEw. Format” on page 219

Informats:
“$UPARENEw. Informat” on page 427
“$UPARENPw. Informat” on page 428

$UPARENEw. Informat

Reads a character string that is in the encoding of the current SAS session, and then converts the
character string to UPAREN representation.

Category: Character

Syntax
$UPARENEw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Comparisons
The $UPARENEw. informat performs processing that is opposite of the $UPARENw.
informat.

428 $UPARENPw. Informat � Chapter 9

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

v=input(’a’,$uparen10.);
w=input(’b’,$uparen10.);
x=input(’c’,$uparen10.);
y=input(’3’,$uparen10.);
z=input(’ ’,$uparen10.);
put v;
put w;
put x;
put y;
put z;

<u0061>
<u0062>
<u0063>
<u0033>
<u5927>

See Also

Formats:
“$UPARENw. Format” on page 218
“$UPARENEw. Format” on page 219

Informats:
“$UPARENw. Informat” on page 426
“$UPARENPw. Informat” on page 428

$UPARENPw. Informat

Reads a character string that is encoded in UPAREN representation, and then converts the
character string to the encoding of the current SAS session, with national characters remaining in
the encoding of the UPAREN representation.

Category: Character

Syntax
$UPARENPw.

Syntax Description

w
specifies the width of the input field.
Default: 8

Informats for NLS � $UTF8Xw. Informat 429

Range: 1–32000

Details
If the UPAREN expression contains a national character, whose value is greater than
Unicode 0x00ff, the expression will remain as a UPAREN expression.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

v=input(’<u0061>’,$uparen10.);
w=input(’<u0062>’,$uparen10.);
x=input(’<u0063>’,$uparen10.);
y=input(’<u0033>’,$uparen10.);
z=input(’<u5927>’,$uparen10.);
put v;
put w;
put x;
put y;
put z;

a
b
c
3
<u5927>

See Also

Formats:

“$UPARENw. Format” on page 218

“$UPARENEw. Format” on page 219

Informats:

“$UPARENw. Informat” on page 426

“$UPARENEw. Informat” on page 427

$UTF8Xw. Informat

Reads a character string that is encoded in UTF-8, and then converts the character string to the
encoding of the current SAS session.

Category: Character

Syntax
$UTF8Xw.

430 $VSLOGw. Informat � Chapter 9

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 1–32000

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

x=input (’ e5a4a7’ x,$ utf8x3.);
put x;

See Also

Formats:

“$UCS2Bw. Format” on page 199

“$UCS2Lw. Format” on page 201

“$UCS2Xw. Format” on page 204

“$UTF8Xw. Format” on page 220

Informats:

“$UCS2Bw. Informat” on page 411

“$UCS2Lw. Informat” on page 413

“$UCS2Xw. Informat” on page 415

$VSLOGw. Informat

Reads a character string that is in visual order, and then converts the character string to
left-to-right logical order.

Category: BIDI text handling

Syntax
$VSLOGw.

Informats for NLS � $VSLOGRw. Informat 431

Syntax Description

w
specifies the width of the input field.
Default: 200
Range: 1–32000

Comparisons
The $VSLOGw. informat performs processing that is opposite of the $VSLOGRw.
informat.

Examples

The following example uses the Hebrew input value of “ flight”.

Statements Result

----+----1----+

x=input (’ ’,$vslog12.);

put x; flight

The following example uses the Arabic input value of “ computer.”

Statements Result

----+----1----+

x=input (’ computer’,$vslog12.);

put x; computer

See Also

Formats:
“$VSLOGRw. Format” on page 222
“$VSLOGw. Format” on page 221

Informats:
“$VSLOGRw. Informat” on page 431

$VSLOGRw. Informat
Reads a character string that is in visual order, and then converts the character string to
right-to-left logical order.

432 $VSLOGRw. Informat � Chapter 9

Category: BIDI text handling

Syntax
$VSLOGRw.

Syntax Description

w
specifies the width of the input field.
Default: 200
Range: 1–32000

Comparisons
The $VSLOGRw. informat performs processing that is opposite of the $VSLOGw.
informat.

Examples

The following example uses the Hebrew input value of “ flight.”

Statements Result

----+----1----+

x=input (’ ’,$vslogr12.);

put x; flight

The following example uses the Arabic input value of “ computer.”

Statements Result

----+----1----+

x=input (’ computer’,$vslogr12.);

put x; computer

Informats for NLS � YENw.d Informat 433

See Also

Formats:

“$VSLOGw. Format” on page 221

“$VSLOGRw. Format” on page 222

Informats:

“$VSLOGw. Informat” on page 430

YENw.d Informat

Removes embedded yen signs, commas, and decimal points.

Category: Numeric

Syntax
YENw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
specifies the power of 10 by which to divide the value.

Requirement: d must be 0 or 2

Tip: If the d is 2, then YENw.d reads a decimal point and two decimal digits. If d is
0, YENw.d reads the value without a decimal point.

Details
The hexadecimal representation of the code for the yen sign character is 5B on EBCDIC
systems and 5C on ASCII systems. The monetary character that these codes represent
might be different in other countries.

Examples

The following example uses yen as the input.

input value yen10.2;

434 YENw.d Informat � Chapter 9

Value Result

----+----1----+

¥1254.71 1254.71

See Also

Formats:

“YENw.d Format” on page 233

435

C H A P T E R

10
Autocall Macros for NLS

Autocall Macros for NLS by Category 435

Autocall Macros for NLS by Category

The following table provides brief descriptions of the SAS NLS autocall macros. For
more detailed descriptions, see the NLS entry for each macro.

Table 10.1 Autocall Macros for NLS by Category

Category Autocall Macros for NLS Description

DBCS “%KLOWCASE and
%QKLOWCAS Autocall
Macros” on page 435

Change uppercase characters to lowercase.

“%KTRIM and %QKTRIM
Autocall Macros” on page
436

Trim trailing blanks.

“%KVERIFY Autocall
Macro” on page 436

Returns the position of the first character unique to an
expression.

%KLOWCASE and %QKLOWCAS Autocall Macros

Change uppercase characters to lowercase.

Category: DBCS

Requirement: MAUTOSOURCE system option

Syntax
%KLOWCASE (text | text expression)

%QKLOWCAS (text | text expression)

Note: Autocall macros are included in a SAS library. This library might not be
installed at your site or might be a site-specific version. If you cannot access this macro

436 %KTRIM and %QKTRIM Autocall Macros � Chapter 10

or if you want to find out if the library is a site-specific version, see your on-site SAS
support personnel. �

Details
The %KLOWCASE and %QKLOWCAS macros change uppercase alphabetic characters
to their lowercase equivalents. If the argument might contain a special character or
mnemonic operator, listed below, use %QKLOWCAS.

%KLOWCASE returns a result without quotation marks, even if the argument has
quotation marks. %QKLOWCAS produces a result with the following special characters
and mnemonic operators masked so the macro processor interprets them as text instead
of as elements of the macro language:

& % ’" ()+ - * / < > = ^ ~ ; , blank AND OR NOT EQ NE LE LT GE GT IN

%KTRIM and %QKTRIM Autocall Macros

Trim trailing blanks.

Category: DBCS

Requirement: MAUTOSOURCE system option

Syntax
%KTRIM (text | text expression)

%QKTRIM (text | text expression)

Note: Autocall macros are included in a SAS library. This library might not be
installed at your site or might be a site-specific version. If you cannot access this macro
or if you want to find out if the library is a site-specific version, see your on-site SAS
support personnel. �

Details
The KTRIM macro and the QKTRIM macro trim trailing blanks. If the argument
contains a special character or mnemonic operator, listed below, use %QKTRIM.

QKTRIM produces a result with the following special characters and mnemonic
operators masked so the macro processor interprets them as text instead of as elements
of the macro language:

& % ’" ()+ - * / < > = ? ~ ; , # blank AND OR NOT EQ NE LE LT GE GT IN

%KVERIFY Autocall Macro

Returns the position of the first character unique to an expression.

Category: DBCS

Requirement: MAUTOSOURCE system option

Autocall Macros for NLS � %KVERIFY Autocall Macro 437

Syntax
%KVERIFY (source, excerpt)

Syntax

source
is text or a text expression that you want to examine for characters that do not exist
in excerpt.

excerpt
is text or a text expression that defines the set of characters that %KVERIFY uses to
examine source.

Note: Autocall macros are included in a SAS library. This library might not be
installed at your site or might be a site-specific version. If you cannot access this macro
or if you want to find out if the library is a site-specific version, see your on-site SAS
support personnel. �

Details
%KVERIFY returns the position of the first character in source that is not also present
in excerpt. If all characters in source are present in excerpt, %KVERIFY returns 0.

438

439

C H A P T E R

11
Macro Functions for NLS

Macro Functions for NLS by Category 439

Macro Functions for NLS by Category
The following table provides brief descriptions of the SAS NLS macro functions. For

more information, see the NLS entry for each macro function.

Table 11.1 Macro Functions for NLS by Category

Category Macro Functions for
NLS

Description

DBCS “%KINDEX Macro
Function” on page 439

Returns the position of the first character of a string.

“%KLEFT and %QKLEFT
Macro Functions” on page
440

Left-aligns an argument by removing leading blanks.

“%KLENGTH Macro
Function” on page 441

Returns the length of a string.

“%KSCAN and %QKSCAN
Functions” on page 441

Searches for a word that is specified by its position in a
string.

“%KSUBSTR and
%QKSUBSTR Macro
Functions” on page 445

Produces a substring of a character string.

“%KUPCASE and
%QKUPCASE Macro
Functions” on page 447

Converts values to uppercase.

%KINDEX Macro Function

Returns the position of the first character of a string.

Category: DBCS
Type: NLS macro function

440 %KLEFT and %QKLEFT Macro Functions � Chapter 11

Syntax
%KINDEX (source, string)

source
is a character string or text expression.

string
is a character string or text expression.

Details
The %KINDEX function searches source for the first occurrence of string and returns
the position of its first character. If string is not found, the function returns 0.

Example

Example 1: Locating a Character The following statements find the first character V
in a string:

%let a=a very long value;
%let b=%kindex(&a,v);
%put V appears at position &b..;

When these statements execute, the following line is written to the SAS log:

V appears at position 3.

%KLEFT and %QKLEFT Macro Functions

Left-aligns an argument by removing leading blanks.

Category: DBCS

Requirement: MAUTOSOURCE system option

Syntax
%KLEFT (text | text expression)

%QKLEFT (text | text expression)

Details
The %KLEFT and %KQLEFT macro functions left-align arguments by removing
leading blanks. If the argument contains a special character or mnemonic operator,
listed here, use %KQLEFT.

%KLEFT returns an unquoted result, even if the argument is quoted. %KQLEFT
produces a result with the following special characters and mnemonic operators masked
so that the macro processor interprets them as text instead of as elements of the macro
language:

Macro Functions for NLS � %KSCAN and %QKSCAN Functions 441

& % ’ " () + - * / < > = ^ ~ ; , # blank
AND OR NOT EQ NE LE LT GE GT IN

%KLENGTH Macro Function

Returns the length of a string.

Category: DBCS

Type: NLS macro function

Syntax
%KLENGTH (character string | text expression)

Details
If the argument is a character string, %KLENGTH returns the length of the string. If
the argument is a text expression, %KLENGTH returns the length of the resolved
value. If the argument has a null value, %KLENGTH returns 0.

Example

Example 1: Returning String Lengths The following statements find the lengths of
character strings and text expressions:

%let a=Happy;
%let b=Birthday;

%put The length of &a is %klength(&a).;
%put The length of &b is %klength(&b).;
%put The length of &a &b To You is %klength(&a &b to you).;

When these statements execute, the following is written to the SAS log:

The length of Happy is 5.
The length of Birthday is 8.
The length of Happy Birthday To You is 21.

%KSCAN and %QKSCAN Functions

Search for a word that is specified by its position in a string.

Category: DBCS

Type: NLS macro function

442 %KSCAN and %QKSCAN Functions � Chapter 11

Syntax
%KSCAN (argument, n<,charlist <,modifiers>>)

%QKSCAN (argument, n<,charlist <,modifiers>>)

argument
is a character string or a text expression. If argument might contain a special
character or mnemonic operator, listed here, use %QKSCAN.

n
is an integer or a text expression that yields an integer, which specifies the position
of the word to return. If n is greater than the number of words in argument, the
functions return a null string.

Note: If n is negative, %KSCAN examines the character string and selects the word
that starts at the end of the string and searches backward. �

charlist
specifies an optional character expression that initializes a list of characters. This
list determines which characters are used as the delimiters that separate words. The
following rules apply:

� By default, all characters in charlist are used as delimiters.
� If you specify the K modifier in the modifier argument, then all characters that

are not in charlist are used as delimiters.

Tip: You can add more characters to charlist by using other modifiers.

modifier
specifies a character constant, a variable, or an expression in which each non-blank
character modifies the action of the %KSCAN function. Blanks are ignored. You can
use the following characters as modifiers:

a or A adds alphabetic characters to the list of characters.

b or B scans backward from right to left instead of from left to right,
regardless of the sign of the count argument.

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

f or F adds an underscore and English letters (that is, valid first
characters in a SAS variable name using VALIDVARNAME=V7) to
the list of characters.

g or G adds graphic characters to the list of characters. Graphic
characters are characters that, when printed, produce an image
on paper.

h or H adds a horizontal tab to the list of characters.

i or I ignores the case of the characters.

k or K treats all characters that are not in the list of characters as
delimiters. That is, if K is specified, then characters that are in
the list of characters are kept in the returned value rather than
being omitted because they are delimiters. If K is not specified,
then all characters that are in the list of characters are treated as
delimiters.

Macro Functions for NLS � %KSCAN and %QKSCAN Functions 443

l or L adds lowercase letters to the list of characters.

m or M specifies that multiple consecutive delimiters, and delimiters at
the beginning or end of the string argument, refer to words that
have a length of zero. If the M modifier is not specified, then
multiple consecutive delimiters are treated as one delimiter, and
delimiters at the beginning or end of the string argument are
ignored.

n or N adds digits, an underscore, and English letters (that is, the
characters that can appear in a SAS variable name using
VALIDVARNAME=V7) to the list of characters.

o or O processes the charlist and modifier arguments only once, rather
than every time the %KSCAN function is called.
Tip: Using the O modifier in the DATA step (excluding WHERE

clauses) or in the SQL procedure can make %KSCAN run
faster when you call it in a loop where the charlist and modifier
arguments do not change. The O modifier applies separately to
each instance of the %KSCAN function in your SAS code. It
does not cause all instances of the %KSCAN function to use the
same delimiters and modifiers.

p or P adds punctuation marks to the list of characters.

q or Q ignores delimiters that are inside of substrings that are enclosed
in quotation marks. If the value of the string argument contains
unmatched quotation marks, then scanning from left to right
produces different words than scanning from right to left.

r or R removes leading and trailing blanks from the word that %KSCAN
returns.
Tip: If you specify both the Q and R modifiers, then the %KSCAN

function first removes leading and trailing blanks from the
word. Then, if the word begins with a quotation mark,
%KSCAN also removes one layer of quotation marks from the
word.

s or S adds space characters to the list of characters (blank, horizontal
tab, vertical tab, carriage return, line feed, and form feed).

t or T trims trailing blanks from the string and charlist arguments.
Tip: If you want to remove trailing blanks from only one

character argument instead of both character arguments, then
use the TRIM function instead of the %KSCAN function with
the T modifier.

u or U adds uppercase letters to the list of characters.

w or W adds printable (writable) characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.
Tip: If the modifier argument is a character constant, then enclose it in quotation

marks. Specify multiple modifiers in a single set of quotation marks. A modifier
argument can also be expressed as a character variable or expression.

Details
The %KSCAN and %QKSCAN functions search argument and return the nth word. A
word is one or more characters separated by one or more delimiters.

444 %KSCAN and %QKSCAN Functions � Chapter 11

%KSCAN does not mask special characters or mnemonic operators in its results, even
when the argument was previously masked by a macro quoting function. %QKSCAN
masks the following special characters and mnemonic operators in its results:

& % ’ " () + − * / < > = ^ ~ ; , # blank
AND OR NOT EQ NE LE LT GE GT IN

Definition of Delimiter and Word
A delimiter is any of several characters that are used to separate words. You can
specify the delimiters in the charlist and modifier arguments.

If you specify the Q modifier, then delimiters inside of substrings that are enclosed in
quotation marks are ignored.

In the %KSCAN function, word refers to a substring that has all of the following
characteristics:

� is bounded on the left by a delimiter or the beginning of the string
� is bounded on the right by a delimiter or the end of the string
� contains no delimiters

A word can have a length of zero if there are delimiters at the beginning or end of
the string or if the string contains two or more consecutive delimiters. However, the
%KSCAN function ignores words that have a length of zero unless you specify the M
modifier.

Using Default Delimiters in ASCII and EBCDIC Environments
If you use the %KSCAN function with only two arguments, then the default delimiters
depend on whether your computer uses ASCII or EBCDIC characters:

� If your computer uses ASCII characters, then the default delimiters are as follows:
blank ! $ % & ()* + , - . / ; < ^¦
In ASCII environments that do not contain the ^ character, the %KSCAN

function uses the ~ character instead.
� If your computer uses EBCDIC characters, then the default delimiters are as

follows:
blank ! $ % & ()* + , - . / ; < | ¢¦

If you use the modifier argument without specifying any characters as delimiters,
then the only delimiters that will be used are delimiters that are defined by the
modifier argument. In this case, the lists of default delimiters for ASCII and EBCDIC
environments are not used. In other words, modifiers add to the list of delimiters that
are specified by the charlist argument. Modifiers do not add to the list of default
modifiers.

Using the %KSCAN Function with the M Modifier
If you specify the M modifier, then the number of words in a string is defined as one
plus the number of delimiters in the string. However, if you specify the Q modifier,
delimiters that are inside quotation marks are ignored.

If you specify the M modifier, then the %KSCAN function returns a word with a
length of zero if one of the following conditions is true:

� The string begins with a delimiter and you request the first word.
� The string ends with a delimiter and you request the last word.
� The string contains two consecutive delimiters and you request the word that is

between the two delimiters.

Macro Functions for NLS � %KSUBSTR and %QKSUBSTR Macro Functions 445

Using the %KSCAN Function without the M Modifier
If you do not specify the M modifier, then the number of words in a string is defined as
the number of maximal substrings of consecutive nondelimiters. However, if you specify
the Q modifier, delimiters that are inside quotation marks are ignored.

If you do not specify the M modifier, then the %KSCAN function does the following:
� ignores delimiters at the beginning or end of the string
� treats two or more consecutive delimiters as if they were a single delimiter

If the string contains no characters other than delimiters or if you specify a count
that is greater in absolute value than the number of words in the string, then the
%KSCAN function returns one of the following:

� a single blank when you call the %KSCAN function from a DATA step
� a string with a length of zero when you call the %KSCAN function from the macro

processor

Using Null Arguments
The %KSCAN function allows character arguments to be null. Null arguments are
treated as character strings with a length of zero. Numeric arguments cannot be null.

Example

Example 1: Comparing the Actions of %KSCAN and %QKSCAN This example
illustrates the actions of %KSCAN and %QKSCAN:

%macro a;
aaaaaa

%mend a;
%macro b;

bbbbbb
%mend b;
%macro c;

cccccc
%mend c;

%let x=%nrstr(%a*%b*%c);
%put X: &x;
%put The third word in X, with KSCAN: %kscan(&x,3,*);
%put The third word in X, with QKSCAN: %qkscan(&x,3,*);

The %PUT statement writes these lines to the log:

X: %a*%b*%c
The third word in X, with KSCAN: cccccc
The third word in X, with QKSCAN: %c

%KSUBSTR and %QKSUBSTR Macro Functions

Produce a substring of a character string.

Category: DBCS
Type: NLS macro function

446 %KSUBSTR and %QKSUBSTR Macro Functions � Chapter 11

Syntax
%KSUBSTR (argument, position<, length>)

%QKSUBSTR (argument, position<, length>)

argument
is a character string or a text expression. If argument might contain a special
character or mnemonic operator, listed here, use %QKSUBSTR.

position
is an integer or an expression (text, logical, or arithmetic) that yields an integer that
specifies the position of the first character in the substring. If position is greater than
the number of characters in the string, %KSUBSTR and %QKSUBSTR issue a
warning message and return a null value.

length
is an optional integer or an expression (text, logical, or arithmetic) that yields an
integer that specifies the number of characters in the substring. If length is greater
than the number of characters following position in argument, %KSUBSTR and
%QKSUBSTR issue a warning message and return a substring containing the
characters from position to the end of the string. By default, %KSUBSTR and
%QKSUBSTR produce a string containing the characters from position to the end of
the character string.

Details
The %KSUBSTR and %QKSUBSTR functions produce a substring of argument, which
begins at position and continues for the number of characters in length.

%KSUBSTR does not mask special characters or mnemonic operators in its result.
%QKSUBSTR masks the following special characters and mnemonic operators:

& % ’ " () + − * / < > = ^ ~ ; , # blank
AND OR NOT EQ NE LE LT GE GT IN

Examples

Example 1: Limiting a Fileref to Eight Characters The macro MAKEFREF uses
%KSUBSTR to assign the first eight characters of a parameter as a fileref, in case a
user assigns one that is longer:

%macro makefref(fileref,file);
%if %klength(&fileref) gt 8 %then

%let fileref = %ksubstr(&fileref,1,8);
filename &fileref "&file";

%mend makefref;

%makefref(humanresource,/dept/humanresource/report96)

SAS reads the following statement:

FILENAME HUMANRES "/dept/humanresource/report96";

Example 2: Storing a Long Macro Variable Value in Segments The macro SEPMSG
separates the value of the macro variable MSG into 40-character units and stores each
unit in a separate variable:

Macro Functions for NLS � %KUPCASE and %QKUPCASE Macro Functions 447

%macro sepmsg(msg);
%let i=1;
%let start=1;
%if %length(&msg)>40 %then

%do;
%do %until(%klength(&&msg&i)<40);

%let msg&i=%qksubstr(&msg,&start,40);
%put Message &i is: &&msg&i;
%let i=%eval(&i+1);
%let start=%eval(&start+40);
%let msg&i=%qksubstr(&msg,&start);

%end;
%put Message &i is: &&msg&i;

%end;
%else %put No subdivision was needed.;

%mend sepmsg;

%sepmsg(%nrstr(A character operand was found in the %EVAL function
or %IF condition where a numeric operand is required. A character
operand was found in the %EVAL function or %IF condition where a
numeric operand is required.));

When this program executes, these lines are written to the SAS log:

Message 1 is: A character operand was found in the %EV
Message 2 is: AL function or %IF condition where a nu
Message 3 is: meric operand is required. A character
Message 4 is: operand was found in the %EVAL function
Message 5 is: or %IF condition where a numeric operan
Message 6 is: d is required.

Example 3: Comparing the Actions of %KSUBSTR and %QKSUBSTR %KSUBSTR
produces a resolved result because it does not mask special characters and mnemonic
operators in the C language before processing it:

%let a=one;
%let b=two;
%let c=%nrstr(&a &b);

%put C: &c;
%put With KSUBSTR: %ksubstr(&c,1,2);
%put With QKSUBSTR: %qKsubstr(&c,1,2);

When these statements execute, these lines are written to the SAS log:

C: &a &b
With KSUBSTR: one
With QKSUBSTR: &a

%KUPCASE and %QKUPCASE Macro Functions

Convert values to uppercase.

Category: DBCS

448 %KUPCASE and %QKUPCASE Macro Functions � Chapter 11

Type: NLS macro function

Syntax
%KUPCASE (character string | text expression)

%QKUPCASE (character string | text expression)

Details
The %KUPCASE and %QKUPCASE functions convert lowercase characters in the
argument to uppercase. %KUPCASE does not mask special characters or mnemonic
operators in its results.

If the argument contains a special character or mnemonic operator, listed here, use
%QKUPCASE. %QKUPCASE masks the following special characters and mnemonic
operators in its results:

& % ’ " () + − * / < > = ^ ~ ; , # blank
AND OR NOT EQ NE LE LT GE GT IN

%KUPCASE and %QKUPCASE are useful in comparing values because the macro
facility does not automatically convert lowercase characters to uppercase before
comparing them.

Examples

Example 1: Capitalizing a Value to be Compared In this example, the macro
RUNREPT compares a value input for the macro variable MONTH to the string DEC.
If the uppercase value of the response is DEC, then PROC FSVIEW runs on the data
set REPORTS.ENDYEAR. Otherwise, PROC FSVIEW runs on the data set with the
name of the month in the REPORTS data library.

%macro runrept(month);
%if %kupcase(&month)=DEC %then

%str(proc fsview data=reports.endyear; run;);
%else %str(proc fsview data=reports.&month; run;);

%mend runrept;

You can invoke the macro in any of these ways to satisfy the %IF condition:

%runrept(DEC)
%runrept(Dec)
%runrept(dec)

Example 2: Comparing %KUPCASE and %QKUPCASE These statements show the
results produced by %KUPCASE and %QKUPCASE:

%let a=begin;
%let b=%nrstr(&a);

%put KUPCASE produces: %kupcase(&b);
%put QKUPCASE produces: %qkupcase(&b);

When these statements execute, the following is written to the SAS log:

Macro Functions for NLS � %KUPCASE and %QKUPCASE Macro Functions 449

KUPCASE produces: begin
QKUPCASE produces: &A

450

451

C H A P T E R

12
System Options for NLS

System Options for NLS by Category 451
BOMFILE System Option 453

DATESTYLE= System Option 453

DBCS System Option: UNIX, Windows, and z/OS 454

DBCSLANG System Option: UNIX, Windows, and z/OS 455

DBCSTYPE System Option: UNIX, Windows, and z/OS 456
DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS 457

ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS 459

FSDBTYPE System Option: UNIX 460

FSIMM System Option: UNIX 461

FSIMMOPT System Option: UNIX 462

LOCALE System Option 463
LOCALELANGCHG System Option 464

NLSCOMPATMODE System Option: z/OS 466

PAPERSIZE= System Option 467

RSASIOTRANSERROR System Option 467

SORTSEQ= System Option: UNIX, Windows, and z/OS 467
TRANTAB= System Option 469

System Options for NLS by Category
The language control category of SAS system options are affected by NLS. The

following table provides brief descriptions of the SAS system options. For more detailed
descriptions, see the dictionary entry for each SAS system option:

Table 12.1 Summary of NLS System Options Category

Category System Options for NLS Description

Environment control:
Language control

“DATESTYLE= System
Option” on page 453

Identifies the sequence of month, day, and year when the
ANYDTDTM, ANYDTDTE, or ANYDTTME informats
encounter input where the year, month, and day
determination is ambiguous.

“DBCS System Option:
UNIX, Windows, and z/
OS” on page 454

Recognizes double-byte character sets (DBCS).

452 System Options for NLS by Category � Chapter 12

Category System Options for NLS Description

“DBCSLANG System
Option: UNIX, Windows,
and z/OS” on page 455

Specifies a double-byte character set (DBCS) language.

“DBCSTYPE System
Option: UNIX, Windows,
and z/OS” on page 456

Specifies the encoding method to use for a double-byte
character set (DBCS).

“DFLANG= System
Option: OpenVMS, UNIX,
Windows, and z/OS” on
page 457

Specifies the language for international date informats
and formats.

“ENCODING System
Option: OpenVMS, UNIX,
Windows, and z/OS” on
page 459

Specifies the default character-set encoding for the SAS
session.

“FSDBTYPE System
Option: UNIX” on page
460

Specifies a full-screen double-byte character set (DBCS)
encoding method.

“FSIMM System Option:
UNIX” on page 461

Specifies input method modules (IMMs) for full-screen
double-byte character set (DBCS).

“FSIMMOPT System
Option: UNIX” on page
462

Specifies options for input method modules (IMMs) that
are used with a full-screen double-byte character set
(DBCS).

“LOCALE System Option”
on page 463

Specifies a set of attributes in a SAS session that reflect
the language, local conventions, and culture for a
geographical region.

“LOCALELANGCHG
System Option” on page
464

Determines whether the language of the text of the ODS
output can be changed

“NLSCOMPATMODE
System Option: z/OS” on
page 466

Provides national language compatibility with previous
releases of SAS.

“PAPERSIZE= System
Option” on page 467

Specifies the paper size for the printer to use.

“TRANTAB= System
Option” on page 469

Specifies the translation tables that are used by various
parts of SAS.

Files: External files “BOMFILE System
Option” on page 453

Specifies whether to write the byte order mark (BOM)
prefix on Unicode-encoded external files.

System Options for NLS � DATESTYLE= System Option 453

Category System Options for NLS Description

Files: SAS files “RSASIOTRANSERROR
System Option” on page
467

Displays a transcoding error when illegal data is read
from a remote application.

Sort: Procedure options Specifies a
language-specific collating
sequence for the SORT
and SQL procedures to use
in the current SAS session.

BOMFILE System Option

Specifies whether to write the byte order mark (BOM) prefix on Unicode-encoded external files.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: External files
PROC OPTIONS GROUP: EXTFILES

Syntax
BOMFILE | NOBOMFILE

Syntax Description

BOMFILE
Specifies to write a byte order mark (BOM) prefix when a Unicode-encoded file is
written to an external file.

NOBOMFILE
Specifies not to write a BOM prefix when a Unicode-encoded file is written to an
external file.

Details
The BOMFILE system option does not apply when a Unicode-encoded external file is
read.

A BOM is a signature at the beginning of a Unicode data stream. The size of the
BOM varies depending on the encoding.

DATESTYLE= System Option

Identifies the sequence of month, day, and year when the ANYDTDTM, ANYDTDTE, or ANYDTTME
informats encounter input where the year, month, and day determination is ambiguous.

454 DBCS System Option: UNIX, Windows, and z/OS � Chapter 12

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL, LANGUAGECONTROL
See: DATESTYLE= system option in SAS Language Reference: Dictionary

DBCS System Option: UNIX, Windows, and z/OS

Recognizes double-byte character sets (DBCS).

Default: NODBCS
Valid in: configuration file, SAS invocation
UNIX specifics: Also valid in SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL

Syntax
-DBCS | -NODBCS (UNIX and Windows)

DBCS | NODBCS (z/OS)

DBCS
recognizes double-byte character sets (DBCS) for encoding values. DBCS encodings
are used to support East Asian languages.

NODBCS
does not recognize a DBCS for encoding values. Instead, a single-byte character set
(SBCS) is used for encoding values. A single byte is used to represent each character
in the character set.

Details
The DBCS system option is used for supporting languages from East Asian countries
such as Chinese, Japanese, Korean, and Taiwanese.

See Also

Conceptual Information:
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 35
“DBCS Values for a SAS Session” on page 547
Chapter 18, “Encoding Values in SAS Language Elements,” on page 549

System Options:
“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 455

System Options for NLS � DBCSLANG System Option: UNIX, Windows, and z/OS 455

“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 456

DBCSLANG System Option: UNIX, Windows, and z/OS

Specifies a double-byte character set (DBCS) language.

Default: none

Valid in: configuration file, SAS invocation

Category: Environment control: Language control

UNIX specifics: Also valid in SASV9_OPTIONS environment variable

PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax

-DBCSLANG language (UNIX and Windows)

DBCSLANG = language (z/OS)

language
depends on the operating environment. The following table contains valid language
values:

Table 12.2 Supported DBCS Languages According to Operating Environment

Language z/OS UNIX Windows

CHINESE (simplified) yes* yes yes

JAPANESE yes yes yes

KOREAN yes yes yes

TAIWANESE

(traditional)

yes yes yes

NONE yes no yes

UNKNOWN yes no no

* For z/OS only, HANGUL and HANZI are valid aliases for CHINESE.

Details

The proper setting for the DBCSLANG system option depends on which setting is used
for the DBCSTYPE system option. Some of the settings of DBCSTYPE support all of
the DBCSLANG languages, while other settings of DBCSTYPE support only Japanese.

CHINESE specifies the language used in the People’s Republic of China, which is
known as simplified Chinese. TAIWANESE specifies the Chinese language used in
Taiwan, which is known as traditional Chinese.

456 DBCSTYPE System Option: UNIX, Windows, and z/OS � Chapter 12

See Also

Conceptual discussion
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 35
“DBCS Values for a SAS Session” on page 547
Chapter 18, “Encoding Values in SAS Language Elements,” on page 549

System Options:
“DBCS System Option: UNIX, Windows, and z/OS” on page 454
“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 456

DBCSTYPE System Option: UNIX, Windows, and z/OS

Specifies the encoding method to use for a double-byte character set (DBCS).

z/OS Default: IBM
UNIX Default: Depends on the specific machine
Windows Default: PCMS
Valid in: configuration file, SAS invocation
Category: Environment control: Language control
UNIX specifics: Also valid in SASV9_OPTIONS environment variable
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
-DBCSTYPE encoding-method (UNIX and Windows)

DBCSTYPE = encoding-method (z/OS)

encoding-method
specifies the method that is used to encode a double-byte character set (DBCS). Valid
values for encoding-method depend on the standard that the computer hardware
manufacturer applies to the operating environment.

Details
DBCS encoding methods vary according to the computer hardware manufacturer and
the standards organization.

The DBCSLANG= system option specifies the language that the encoding method is
applied to. You should specify DBCSTYPE= only if you also specify the DBCS and
DBCSLANG= system options.

z/OS DBCSTYPE= supports the DBCSTYPE= value of IBM.

System Options for NLS � DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS 457

Operating Environment-Specific DBCSTYPE= Values

Table 12.3 DBCS Encoding Methods for z/OS

DBCSTYPE= Value Description

IBM IBM PC encoding method

Table 12.4 DBCS Encoding Methods for UNIX

DBCSTYPE= Value Description

DEC DEC encoding method

EUC Extended UNIX Code encoding method

HP15 Hewlett Packard encoding method

PCIBM IBM PC encoding method

PCMS Microsoft PC encoding method

SJIS Shift-JIS encoding method for the Japanese
language only

NONE Disables DBCS processing

Table 12.5 DBCS Encoding Methods for Windows

DBCSTYPE= Value Description

PCMS Microsoft PC encoding method

WINDOWS Alias for PCMS

SJIS Shift-JIS encoding method for the Japanese
language only

See Also

Conceptual Information:

Chapter 5, “Double-Byte Character Sets (DBCS),” on page 35

“DBCS Values for a SAS Session” on page 547

Chapter 18, “Encoding Values in SAS Language Elements,” on page 549

System Options:

“DBCS System Option: UNIX, Windows, and z/OS” on page 454

“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 455

DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS

Specifies the language for international date informats and formats.

Default: English

458 DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS � Chapter 12

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
DFLANG=’language’

Syntax Description

’language’
specifies the language that is used for international date informats and formats.

These languages are valid values for language:

Table 12.6 Prefix Values for language

Language Prefix

Afrikaans AFR

Catalan CAT

Croatian CRO

Czech CSY

Danish DAN

Dutch NLD

English ENG

Finnish FIN

French FRA

German DEU

Hungarian HUN

Italian ITA

Macedonian MAC

Norwegian NOR

Polish POL

Portuguese PTG

Russian RUS

Slovenian SLO

Spanish ESP

Swedish SVE

System Options for NLS � ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS 459

Language Prefix

Swiss_French FRS

Swiss_German DES

Details
You can change the value during a SAS session, but you can use only one language at a
time. The values for language are not case-sensitive.

ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS

Specifies the default character-set encoding for the SAS session.

OpenVMS and UNIX Default: latin1

z/OS Default: OPEN_ED-1047

Windows Default: wlatin1

Valid in: configuration file, SAS invocation

Category: Environment control: Language control

PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
-ENCODING= ASCIIANY | EBCDICANY | encoding-value (UNIX and Windows)

ENCODING= encoding-value (OpenVMS, UNIX, Windows, and z/OS)

ASCIIANY
Transcoding normally occurs when SAS detects that the session encoding and data
set encoding are different. ASCIIANY enables you to create a data set that SAS will
not transcode if the SAS session that accesses the data set has a session that
encoding value of ASCII. If you transfer the data set to a machine that uses EBCDIC
encoding, transcoding occurs.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

EBCDICANY
is valid only for z/OS. Transcoding normally occurs when SAS detects that the
session encoding and the data set encoding are different. EBCDICANY enables you
to create a data set that SAS will not transcode if the SAS session accessing the data
set has a session encoding value of EBCDIC. If you transfer the data set to a
machine that uses ASCII encoding, transcoding occurs.

encoding-value
For valid values for all operating environments, see Chapter 19, “Encoding Values for
a SAS Session,” on page 555.

460 FSDBTYPE System Option: UNIX � Chapter 12

Details
A character-set encoding is a set of characters that have been mapped to numeric
values called code points.

The ENCODING= system option is valid only when the NONLSCOMPATMODE
system option is set.

The encoding for a SAS session is determined by the values of the ENCODING=,
LOCALE=, DBCSTYPE=, and DBCSLANG= system options as follows:

� If the ENCODING= and LOCALE= system options are not specified, the default
value is ENCODING=. For OpenVMS and UNIX, the default value is latin1; for
Windows, the default value is wlatin1; for z/OS, the default is OPEN_ED-1047.

� If both LOCALE= and ENCODING= are specified, the session encoding is the
value that is specified by the ENCODING= option.

� If LOCALE= is specified and ENCODING= is not specified, SAS infers the
appropriate encoding value from the LOCALE= value.

� If the DBCS option is set, the values for the DBCSLANG= and DBCSTYPE=
system options determine the ENCODING= and LOCALE= values.

See Also

Conceptual Information:
“Overview of Locale Concepts for NLS” on page 5
Conceptual discussion about “Overview: Encoding for NLS” on page 9
Conceptual discussion about “Overview to Transcoding” on page 27
Chapter 16, “Values for the LOCALE= System Option,” on page 539
Chapter 17, “SAS System Options for Processing DBCS Data,” on page 547
Chapter 18, “Encoding Values in SAS Language Elements,” on page 549

FSDBTYPE System Option: UNIX

Specifies a full-screen double-byte character set (DBCS) encoding method.

Default: DEFAULT
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL
UNIX specifics: all

Syntax
-FSDBTYPE encoding-method

Details
The FSDBTYPE= system option specifies the encoding method that is appropriate for a
full-screen DBCS enabling method. Full-screen DBCS encoding methods vary according
to the computer hardware manufacturer and the standards organization.

System Options for NLS � FSIMM System Option: UNIX 461

Table 12.7 Full-Screen DBCS Encoding Methods

FSDBTYPE= Encoding Method Description

dec Digital Equipment Corporation encoding method

euc Extended UNIX encoding method

hp15 HP-UX encoding method

jis7 7-bit Shift-JIS encoding method used in an X
windows environment for the Japanese language
only

pcibm IBM PC encoding method

sjis Shift-JIS encoding method for the Japanese
language only

default default method that is used by the specific host

See Also

Conceptual Information:

Chapter 5, “Double-Byte Character Sets (DBCS),” on page 35

“DBCS Values for a SAS Session” on page 547

Chapter 18, “Encoding Values in SAS Language Elements,” on page 549

FSIMM System Option: UNIX

Specifies input method modules (IMMs) for full-screen double-byte character set (DBCS).

Default: none

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment control: Language control

PROC OPTIONS GROUP: LANGUAGECONTROL

UNIX specifics: all

Syntax
-FSIMM fsdevice_name=IMM-name1<, fsdevice_name=IMM-name2>...

Details
You can specify the following values for IMM-name:

TTY | SASWUJT
provides an interface for /dev/tty. This IMM enables you to enter DBCS strings
through a terminal emulator that has DBCS input capability.

462 FSIMMOPT System Option: UNIX � Chapter 12

PIPE | SASWUJP
provides a pipe interface. This interface forks the DBCS input server process. The
default server name is saswujms, which uses the vendor-supplied MOTIF toolkit.

For example, to use the PIPE input method module for X11 drivers, you would specify:

-FSIMM X11=PIPE

Note: The server is specified by using the FSIMMOPT option. �

See Also

Conceptual Information:

Chapter 5, “Double-Byte Character Sets (DBCS),” on page 35

System Option:

“FSIMMOPT System Option: UNIX” on page 462

FSIMMOPT System Option: UNIX

Specifies options for input method modules (IMMs) that are used with a full-screen double-byte
character set (DBCS).

Default: none

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment control: Language control

PROC OPTIONS GROUP: LANGUAGECONTROL

UNIX specifics: all

Syntax

-FSIMMOPT fullscreen-IMM:IMM-option

Details

The FSIMMOPT system option specifies an option for each full-screen IMM (input
method module). You can specify only one FSIMMOPT option for each IMM. If you
specify multiple FSIMMOPT options for the same IMM, only the last specification is
used.

For option values for each IMM, see SAS Technical Report J-121, DBCS Support
Usage Guide (in Japanese).

For example, you can use the FSIMMOPT option to specify the name of the server,
MOTIF, to be used for the PIPE IMM:

-fsimmopt PIPE:MOTIF

System Options for NLS � LOCALE System Option 463

See Also

Conceptual Information:
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 35

System Option:
“FSIMM System Option: UNIX” on page 461

LOCALE System Option

Specifies a set of attributes in a SAS session that reflect the language, local conventions, and
culture for a geographical region.

Default: English_UnitedStates
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
UNIX specifics: Also valid in SASV9_OPTIONS environment variable
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
-LOCALE locale-name (UNIX and Windows)

LOCALE=locale-name (UNIX, Windows, and z/OS)

locale-name
For a complete list of locale values (SAS names and POSIX names), see Chapter 16,
“Values for the LOCALE= System Option,” on page 539.

Details
The LOCALE= system option is used to specify the locale, which reflects the local
conventions, language, and culture a geographical region.

If the value of the LOCALE= system option is not compatible with the value of the
ENCODING= system option, the character-set encoding is determined by the value of
the ENCODING= system option.

If the DBCS= system option is active, the values of the DBCSTYPE= and
DBCSLANG= system options determine the locale and character-set encoding.

When you set a value for LOCALE=, the value of the following system options are
modified unless explicit values have been specified:

ENCODING=
The locale that you set has a common encoding value that is used most often in
the operating environment where SAS runs. If you start SAS with the LOCALE=
system option and you do not specify the ENCODING= system option, SAS
compares the default value for ENCODING= and the most common locale
encoding value. If the two encoding values are not the same, the ENCODING=
system option is set to the LOCALE= encoding value. When the ENCODING=
system option is set, the TRANTAB= system option is also set.

464 LOCALELANGCHG System Option � Chapter 12

DATESTYLE=
When LOCALE= is set, the DATESTYLE= system option uses the value that
corresponds to the chosen locale.

DFLANG=
When LOCALE= is set, the DFLANG= system option is set to a value that
corresponds to the chosen locale.

PAPERSIZE=
When LOCALE= is set, the PAPERSIZE= system option is set to a value that
corresponds to the chosen locale and the ODS printer is set to the preferred unit of
measurement, inches or centimeters, for that locale.

CAUTION:
Under the Windows operating systems only: The LOCALE= option can be used to
specify PAPERSIZE= only if the UNIVERSALPRINT and
UPRINTMENUSWITCH system options are also specified. For details about
the UNIVERSALPRINT system option, see SAS Language Reference:
Dictionary. For details about the UPRINTMENUSWITCH system option, see
SAS Companion for Windows. �

See Also

Conceptual Information:
Chapter 2, “Locale for NLS,” on page 5
Chapter 16, “Values for the LOCALE= System Option,” on page 539

System Options:
“ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS” on page 459
DATESTYLE in SAS Language Reference: Dictionary

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457
PAPERSIZE in SAS Language Reference: Dictionary

“TRANTAB= System Option” on page 469

LOCALELANGCHG System Option

Determines whether the language of the text of the ODS output can be changed

Default: LOCALELANGCHG is set to off in all servers except for the UNICODE server
Valid in: configuration file, SAS invocation
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL
Tip: The Language Switching feature, which uses the LOCALELANGCHG option, is
supported in a Unicode server (a SAS server with a session encoding of UTF-8,
ENCODING=utf8).

Syntax
LOCALELANGCHG | NOLOCALELANGCHG

System Options for NLS � LOCALELANGCHG System Option 465

Syntax Description

LOCALELANGCHG
Specifies that the language of the SAS message text in ODS output can change when
the LOCALE option is set after startup.

NOLOCALELANGCHG
Specifies that the language of the SAS message text in ODS output cannot change
when the LOCALE option is set after startup.

Details
The Language Switching feature allows you to change the language of SAS messages
after startup. You must enable LOCALELANGCHG to use this feature.

During startup, the configuration file and LOCALE option determine the language
for SAS messages. After startup, if the LOCALE option and LOCALELANGCHG option
are set, then the language for messages and ODS templates can change to reflect the
LOCALE setting when the localizations are available.

You can enable LOCALELANGCHG but not translate into the language of the locale.
For example, if you enable LOCALELANGCHG, then start a SAS session in French and
set the locale to Greek, NLDATE displays in Greek. The output displays in French. The
output displays in French because SAS does not translate into Greek.

Comparisons
If LOCALELANGCHG is enabled at startup and LOCALE is changed during the
session, the ODS PATH is updated to include the translated template item store if it
exists for the language of the new locale. Messages that do not appear in the SAS log
appear in the language of the new locale. Also log messages appear in the original
language of the session locale.

If LOCALELANGCHG is not enabled at startup and LOCALE is changed during the
session, ODS output appears in the language that was set at startup.

Examples

Example 1 is a French server with LOCALELANGCHG not enabled
(NOLOCALELANGCHG).

If a French-client application connects to the server, the output appears in French,
and dates, formatted by using the NLDATE format, appear in French. If a
German-client application connects to the French server, and the locale is set to
German on the executive session, then output messages appear in French, and dates
formatted with NLDATE appear in German.

Example 2 is a French server with LOCALELANGCHG enabled
(LOCALELANGCHG).

If a French-client application connects to the server, the output appears in French,
and dates, formatted by using the NLDATE format, appear in French. If a
German-client application connects to the French server, and the locale is set to
German on the executive session, then output messages appear in German, and dates
formatted with NLDATE appear in German.

466 NLSCOMPATMODE System Option: z/OS � Chapter 12

NLSCOMPATMODE System Option: z/OS

Provides national language compatibility with previous releases of SAS.

Default: NONLSCOMPATMODE

Valid in: configuration file, SAS invocation

Category: Environment control: Language control

PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax

NLSCOMPATMODE | NONLSCOMPATMODE

Syntax Description

NLSCOMPATMODE
provides compatibility with previous releases of SAS in order to process data in
languages other than English, which is the default language. Programs that ran in
previous releases of SAS will continue to work when NLSCOMPATMODE is set.

Note: NLSCOMPATMODE might affect the format of outputs that are produced
using ODS. If you are using ODS, set the option value to NONLSCOMPATMODE. �

NONLSCOMPATMODE
provides support for data processing using native characters for languages other than
English. When NONLSCOMPATMODE is set, character data is processed using the
encoding that is specified for the SAS session.

When NONLSCOMPATMODE is in effect, SAS does not support substitution
characters in SAS syntax. If you run SAS with NONLSCOMPATMODE, you must
update existing programs to use national characters instead of substitution
characters. For example, Danish customers who have substituted the ‘Å’ for the ‘$’
character in existing SAS programs will have to update the SAS syntax to use the ‘$’
in their environments.

Details

The NONLSCOMPATMODE system option is provided for international customers who
use non-English encodings and who want to take advantage of emerging industry
standards when they are coding new applications.

The NLSCOMPATMODE or NONLSCOMPATMODE settings do not change the
value of the LOCALE or ENCODING system options. When NONLSCOMPATMODE is
in effect, the encoding that SAS uses to process character data is the encoding that is
set by the ENCODING or LOCATE options. Compiler and Session encoding characters
remain separate.

Note: In preperation for deprecating the NLSCOMPATMODE option, the following
warning will be displayed in the SAS log when NLSCOMPATMODE is set: SAS has
been started in NLS compatibility mode with the NLSCOMPATMODE option.

System Options for NLS � RSASIOTRANSERROR System Option 467

This option will be deprecated in a future release of SAS and NLS compatibility
mode will no longer be supported. For more information, contact a SAS
representative or Technical Support.

�

PAPERSIZE= System Option

Specifies the paper size for the printer to use.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Language control

PROC OPTIONS GROUP: LANGUAGECONTROL

See: PAPERSIZE= System Option in SAS Language Reference: Dictionary

RSASIOTRANSERROR System Option

Displays a transcoding error when illegal data is read from a remote application.

Default: RSASIOTRANSERROR

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS files
PROC OPTIONS GROUP: SASFILES

Syntax
RSASIOTRANSERROR | NOSASIOTRANSERROR

Syntax Description

RSASIOTRANSERROR
specifies to display a transcoding error when illegal values are read from a remote
application.

NOSASIOTRANSERROR
specifies not to display a transcoding error when illegal values are read from a
remote application.

Details
The RSASIOTRANSERROR system option enables remote users of SASIO, for example
SAS Enterprise Guide and SAS Enterprise Miner, to ignore illegal data values. An

468 SORTSEQ= System Option: UNIX, Windows, and z/OS � Chapter 12

illegal data value typically will cause a transcoding error when the data is read by a
remote application.

SORTSEQ= System Option: UNIX, Windows, and z/OS

Specifies a language-specific collating sequence for the SORT and SQL procedures to use in the
current SAS session.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure options

PROC OPTIONS GROUP: SORT

Syntax
SORTSEQ=collating-sequence

Syntax Description

collating-sequence
specifies the collating sequence that the SORT procedure is to use in the current SAS
session. Valid values can be user-supplied, or they can be one of the following:

� ASCII

� DANISH (alias NORWEGIAN)

� EBCDIC

� FINNISH

� ITALIAN

� NATIONAL

� POLISH

� REVERSE

� SPANISH

� SWEDISH

Details
To create or change a collating sequence, use the TRANTAB procedure to create or
modify translation tables. When you create your own translation tables, they are stored
in your PROFILE catalog, and they override any translation tables with the same name
that are stored in the HOST catalog.

Note: System managers can modify the HOST catalog by copying newly created
tables from the PROFILE catalog to the HOST catalog. All users can access the new or
modified translation tables. �

If you are in a windowing environment, use the Explorer window to display the
SASHELP HOST catalog. In the HOST catalog, entries of type TRANTAB contain
collating sequences that are identified by the entry name.

System Options for NLS � TRANTAB= System Option 469

If you are not in a windowing environment, issue the following statements to
generate a list of the contents of the HOST catalog. Collating sequences are entries of
the type TRANTAB.

proc catalog catalog=sashelp.host;
contents;

run;

To see the contents of a particular translation table, use these statements:

proc trantab table=translation-table-name;
list;

run;

The contents of collating sequences are displayed in the SAS log.

Example

This example demonstrates the functionality of SORTSEQ with PROC SORT and
PROC SQL:

options sortseq=reverse;
proc sort data=sashelp.class out=foo1;
by name;
run;

proc sql;
create table foo2 as select * from sashelp.class order by name;
quit;
run;

See Also

“Collating Sequence” on page 16

System Options:
“TRANTAB= System Option” on page 469

TRANTAB= System Option

Specifies the translation tables that are used by various parts of SAS.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL
Interaction: The TRANTAB= system option specifies a translation table to use for the
SAS session, including file transfers. The TRANTAB statement specifies a customized
translation table (for example, to map an EBCDIC character to an ASCII character) to
apply to the character set in the SAS file that is being exported or transferred.

470 TRANTAB= System Option � Chapter 12

Syntax
TRANTAB=(catalog-entries)

Note: TRANTAB= was introduced in SAS 6 to support the requirements of national
languages. SAS 8.2 introduced the LOCALE= system option as an improvement on the
features of TRANTAB=. SAS 9.2 supports TRANTAB= for backward compatibility.
However, using the LOCALE= system option is preferred in later SAS releases. �

Syntax Description

catalog-entries
specifies SAS catalog entries that contain translation tables. If you specify
entry-name.type, SAS searches SASUSER.PROFILE first and then SASUSER.HOST.

Details
Translation tables are specified in a list that is enclosed in parentheses and has ten
positions. The position in which a table appears in the list determines the type of
translation table that is specified. Individual entries in the list are separated by
commas. See the list of positions and types that follows:

Position Type of Translation Table

1st local-to-transport-format

2nd transport-to-local-format

3rd lowercase-to-uppercase

4th uppercase-to-lowercase

5th character classification

6th scanner translation

7th delta characters

8th scanner character classification

9th not used

10th DBCS user table

CAUTION:
Do not change a translation table unless you are familiar with its purpose. Translation
tables are used internally by the SAS supervisor to implement NLS. If you are
unfamiliar with the purpose of translation tables, do not change the specifications
without proper technical advice. �

To change one table, specify null entries for the other tables. For example, to change
the lowercase-to-uppercase table, which is third in the list, specify uppercase as follows:

options trantab = (, , new-uppercase-table);

The other tables remain unchanged. The output from the OPTIONS procedure
reflects the last specification for the TRANTAB= option and not the composite
specification. Here is an example:

System Options for NLS � TRANTAB= System Option 471

options trantab = (, , new-uppercase-table);
options trantab = (, , , new-lowercase-table);

PROC OPTIONS shows that the value for TRANTAB= is
(, , , new-lowercase-table), but both the new-uppercase and new-lowercase tables are

in effect.

See Also

Chapter 15, “The TRANTAB Procedure,” on page 511

472

473

C H A P T E R

13
Options for Commands,
Statements, and Procedures for
NLS

Commands, Statements, and Procedures for NLS by Category 473
CHARSET= Option 474

Collating Sequence Option 475

CORRECTENCODING= Option 481

CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options 482

ENCODING= Option 487
INENCODING= and OUTENCODING= Options 490

ODSCHARSET= Option 492

ODSTRANTAB= Option 493

TRANSCODE= Column Modifier on PROC SQL 494

RENCODING= Option 494

TRANSCODE= Option 496
TRANTAB= Option 498

XMLENCODING= Option 499

TRANTAB Statement 500

Commands, Statements, and Procedures for NLS by Category
The data set control and data access categories of options for selected SAS

statements are affected by NLS. The following table provides brief descriptions of the
statement options. For more detailed descriptions, see the dictionary entry for each
statement option:

Table 13.1 Summary of NLS Statements by Category

Category Commands, Statements,
and Procedures for NLS
by Category

Description

Data Access “CVPBYTES=,
CVPENGINE=, and
CVPMULTIPLIER=
Options” on page 482

Specifies attributes for character variables that are
needed in order to transcode a SAS file.

“ENCODING= Option” on
page 487

Overrides and transcodes the encoding for input or
output processing of external files.

“INENCODING= and
OUTENCODING=
Options” on page 490

Overrides and changes the encoding when reading or
writing SAS data sets in the SAS library.

474 CHARSET= Option � Chapter 13

Category Commands, Statements,
and Procedures for NLS
by Category

Description

“ODSCHARSET= Option”
on page 492

Specifies the character set to be generated in the META
declaration for the output.

“ODSTRANTAB= Option”
on page 493

Specifies the translation table to use when transcoding
an XML document for an output file.

“RENCODING= Option”
on page 494

Specifies the ASCII-based or EBCDIC-based encoding to
use for transcoding data for a SAS/SHARE server session
that is using an EBCDICANY or ASCIIANY session
encoding.

“XMLENCODING=
Option” on page 499

Overrides the encoding of an XML document to import or
export an external document.

Information “TRANSCODE= Option”
on page 496

Specifies an attribute in the ATTRIB statement (which
associates a format, informat, label, and length with one
or more variables) that indicates whether character
variables are to be transcoded.

ODS: Third-Party
Formatted

“CHARSET= Option” on
page 474

Specifies the character set to be generated in the META
declaration for the output.

“TRANTAB= Option” on
page 498

Specifies the translation table to use when you are
transcoding character data in a SAS file for the
appropriate output file.

CHARSET= Option

Specifies the character set to be generated in the META declaration for the output.

Valid in: LIBNAME statement for the ODS MARKUP and ODS HTML statements

Category: ODS: Third-Party Formatted

Syntax
CHARSET=character-set ;

Arguments

character-set
Specifies the character set to use in the META tag for HTML output.

An example of an encoding is ISO-8859-1. Official character sets for use on the
Internet are registered by IANA (Internet Assigned Numbers Authority). IANA is
the central registry for various Internet protocol parameters, such as port, protocol
and enterprise numbers, and options, codes and types. For a complete list of
character-set values, visit www.unicode.org/reports/tr22/index.html and
www.iana.org/assignments/character-sets.

Options for Commands, Statements, and Procedures for NLS � Collating Sequence Option 475

Note: A character set is like an encoding-value in this context. However,
character set is the term that is used to identify an encoding that is suitable for use
on the Internet. �

Examples

Example 1: Generated Output in a META Declaration for an ODS MARKUP Statement

<META http-equiv="Content-Type" content="text/html; charset=iso-8858-1">

See Also

Conceptual Information:

Chapter 3, “Encoding for NLS,” on page 9

Statements:

ODS MARKUP in SAS Output Delivery System: User’s Guide

ODS HTML in SAS Output Delivery System: User’s Guide

Collating Sequence Option

Specifies the collating sequence for PROC SORT.

Valid in: PROC SORT statement

PROC SORT statement: Sorts observations in a SAS data set by one or more characters or
numeric variables

Syntax

PROC SORT collating-sequence-option <other option(s)>;

Options

Task Option

Specify the collating sequence

Specify ASCII ASCII

Specify EBCDIC EBCDIC

Specify Danish DANISH

Specify Finnish FINNISH

Specify Norwegian NORWEGIAN

Specify Polish POLISH

Specify Swedish SWEDISH

476 Collating Sequence Option � Chapter 13

Task Option

Specify a customized sequence NATIONAL

Specify any of the collating sequences listed
above (ASCII, EBCDIC, DANISH, FINNISH,
ITALIAN, NORWEGIAN, POLISH, SPANISH,
SWEDISH, or NATIONAL), the name of any
other system provided translation table
(POLISH, SPANISH), and the name of a
user-created translation table. You can specify
an encoding. You can also specify either the
keyword LINGUISTIC or UCA to achieve a
locale-appropriate collating sequence.

SORTSEQ=

Options can include one collating-sequence-option and multiple other options. The
order of the two types of options does not matter and both types are not necessary in
the same PROC SORT step. Only the explanations for the PROC SORT
collating-sequence-options follow.

Operating Environment Information: For information about behavior specific to your
operating environment for the DANISH, FINNISH, NORWEGIAN, or SWEDISH
collating-sequence-option, see the SAS documentation for your operating environment. �

ASCII
sorts character variables using the ASCII collating sequence. You need this option
only when you want to achieve an ASCII ordering on a system where EBCDIC is
the native collating sequence.

DANISH
NORWEGIAN

sorts characters according to the Danish and Norwegian convention.
The Danish and Norwegian collating sequence is shown in Figure 13.1 on page

477.

EBCDIC
sorts character variables using the EBCDIC collating sequence. You need this
option only when you want to achieve an EBCDIC ordering on a system where
ASCII is the native collating sequence.

POLISH
sorts characters according to the Polish convention.

FINNISH
SWEDISH

sorts characters according to the Finnish and Swedish convention. The Finnish
and Swedish collating sequence is shown in Figure 13.1 on page 477.

NATIONAL
sorts character variables using an alternate collating sequence, as defined by your
installation, to reflect a country’s National Use Differences. To use this option,
your site must have a customized national sort sequence defined. Check with the
SAS Installation Representative at your site to determine whether a customized
national sort sequence is available.

NORWEGIAN
See DANISH.

Options for Commands, Statements, and Procedures for NLS � Collating Sequence Option 477

SWEDISH
See FINNISH.

SORTSEQ=collating-sequence
specifies the collating sequence. The collating-sequence can be a
collating-sequence-option, a translation table, an encoding, or the keyword
LINGUISTIC. Only one collating sequence can be specified. For detailed
information, refer to “Collating Sequence” on page 16.

Here are descriptions of the collating sequences:

collating—sequence—option | translation_table
specifies either a translation table, which can be one that SAS provides or
any user-defined translation table, or one of the PROC SORT statement
Collating-Sequence-Options. For an example of using PROC TRANTAB and
PROC SORT with SORTSEQ=, see Using Different Translation Tables for
Sorting.

The available translation tables are

ASCII

DANISH

EBCDIC

FINNISH

ITALIAN

NORWEGIAN

POLISH

REVERSE

SPANISH

SWEDISH
The following figure shows how the alphanumeric characters in each

language will sort.

Figure 13.1 National Collating Sequences of Alphanumeric Characters

Restriction: You can specify only one collating-sequence-option in a PROC
SORT step.

Tip: The SORTSEQ= collating sequence options are specified without
parenthesis and have no arguments associated with them. An example of
how to specify a collating sequence follows:

proc sort data=mydata SORTSEQ=ASCII;

478 Collating Sequence Option � Chapter 13

encoding-value
specifies an encoding value. The result is the same as a binary collation of
the character data represented in the specified encoding. See the supported
encoding values in “SBCS, DBCS, and Unicode Encoding Values for
Transcoding Data” on page 549.
Restriction: PROC SORT is the only procedure or part of the SAS system

that recognizes an encoding specified for the SORTSEQ= option.
Tip: When the encoding value contains a character other than an

alphanumeric character or underscore, the value needs to be enclosed in
quotation marks.

See: The list of the encodings that can be specified in “SBCS, DBCS, and
Unicode Encoding Values for Transcoding Data” on page 549.

LINGUISTIC<(collating—rules)>
specifies linguistic collation, which sorts characters according to rules of the
specified language. The rules and default collating sequence options are
based on the language specified in the current locale setting. The
implementation is provided by the International Components for Unicode
(ICU) library and produces results that are largely compatible with the
Unicode Collation Algorithms (UCA).
Alias: UCA
Restriction: The SORTSEQ=LINGUISTIC option is available only on the

PROC SORT SORTSEQ= option and is not available for the SAS System
SORTSEQ= option.

Restriction Note that linguistic collation is not supported on platforms VMS
on Itanium (VMI) or 64-bit Windows on Itanium (W64).

Tip: LINGUISTIC sorting requires more memory with the z/OS mainframe.
You might need to set your REGION to 50M or higher. This action must be
done in JCL, if you are running in batch mode, or in the VERIFY screen if
you are running interactively. This action allows the ICU libraries to load
properly and does not affect the memory that is used for sorting.

Tip: The collating-rules must be enclosed in parentheses. More than one
collating rule can be specified.

Tip: When BY processing is performed on data sets that are sorted with
linguistic collation, the NOBYSORTED system option might need to be
specified in order for the data set to be treated properly. BY processing is
performed differently than collating sequence processing.

See: The ICU License agreement in the Base SAS Procedures Guide.
See: The “Collating Sequence” on page 16 for detailed information on

linguistic collation.
See Also: Refer to http://www.unicode.org Web site for the Unicode

Collation Algorithm (UCA) specification.
The following are the collation-rules that can be specified for the

LINGUISTIC option. These rules modify the linguistic collating sequence:

ALTERNATE_HANDLING=SHIFTED
controls the handling of variable characters like spaces, punctuation,
and symbols. When this option is not specified (using the default value
Non-Ignorable), differences among these variable characters are of the
same importance as differences among letters. If the
ALTERNATE_HANDLING option is specified, these variable characters
are of minor importance.
Default: NON_IGNORABLE

Options for Commands, Statements, and Procedures for NLS � Collating Sequence Option 479

Tip: The SHIFTED value is often used in combination with
STRENGTH= set to Quaternary. In such a case, whitespace,
punctuation, and symbols are considered when comparing strings, but
only if all other aspects of the strings (base letters, accents, and case)
are identical.

CASE_FIRST=
specify order of uppercase and lowercase letters. This argument is valid
for only TERTIARY, QUATERNARY, or IDENTICAL levels. The
following table provides the values and information for the
CASE_FIRST argument:

Value Description

UPPER Sorts uppercase letters first, then the lowercase letters.

LOWER Sorts lowercase letters first, then the uppercase letters.

COLLATION=
The following table lists the available COLLATION= values: If you do
not select a collation value, then the user’s locale-default collation is
selected.

Value Description

BIG5HAN specifies Pinyin ordering for Latin and specifies big5
charset ordering for Chinese, Japanese, and Korean
characters.

DIRECT specifies a Hindi variant.

GB2312HAN specifies Pinyin ordering for Latin and specifies
gb2312han charset ordering for Chinese, Japanese, and
Korean characters.

PHONEBOOK specifies a telephone-book style for ordering of
characters. Select PHONEBOOK only with the German
language.

PINYIN specifies an ordering for Chinese, Japanese, and Korean
characters based on character-by-character
transliteration into Pinyin.This ordering is typically
used with simplified Chinese.

POSIX is the Portable Operating System Interface. This option
specifies a "C" locale ordering of characters.

STROKE specifies a nonalphabetic writing style ordering of
characters. Select STROKE with Chinese, Japanese,
Korean, or Vietnamese languages. This ordering is
typically used with Traditional Chinese.

TRADITIONAL specifies a traditional style for ordering of characters.
For example, select TRADITIONAL with the Spanish
language.

480 Collating Sequence Option � Chapter 13

LOCALE=locale_name
specifies the locale name in the form of a POSIX name. For example,
ja_JP. See the Table 16.1 on page 539 for a list of locale and POSIX
values supported by PROC SORT.
Restriction: The following locales are not supported by PROC SORT:

Afrikaans_SouthAfrica, af_ZA
Cornish_UnitedKingdom, kw_GB
ManxGaelic_UnitedKingdom, gv_GB

NUMERIC_COLLATION=
orders integer values within the text by the numeric value instead of
characters used to represent the numbers.

Value Description

ON Order numbers by the numeric value. For example, "8
Main St." would sort before "45 Main St.".

OFF Order numbers by the character value. For example, "45
Main St." would sort before "8 Main St.".

Default: OFF

STRENGTH=
The value of strength is related to the collation level. There are five
collation-level values. The following table provides information about
the five levels. The default value for strength is related to the locale.

Value Type of Collation Description

PRIMARY or 1 PRIMARY specifies differences
between base characters (for
example, "a" < "b").

It is the strongest difference.
For example, dictionaries are
divided into different
sections by base character.

SECONDARY
or 2

Accents in the characters are
considered secondary
differences (for example, "as" <
"às" < "at").

A secondary difference is
ignored when there is a
primary difference anywhere
in the strings. Other
differences between letters
can also be considered
secondary differences,
depending on the language.

TERTIARY or
3

Upper and lowercase
differences in characters are
distinguished at the tertiary
level (for example, "ao" < "Ao" <
"aò").

A tertiary difference is
ignored when there is a
primary or secondary
difference anywhere in the
strings. Another example is
the difference between large
and small Kana.

Options for Commands, Statements, and Procedures for NLS � CORRECTENCODING= Option 481

Value Type of Collation Description

QUATERNARY
or 4

When punctuation is ignored at
level 1-3, an additional level
can be used to distinguish
words with and without
punctuation (for example, "ab"
< "a-b" < "aB").

The quaternary level should
be used if ignoring
punctuation is required or
when processing Japanese
text. This difference is
ignored when there is a
primary, secondary or
tertiary difference.

IDENTICAL or
5

When all other levels are equal,
the identical level is used as a
tiebreaker. The Unicode code
point values of the
Normalization Form D (NFD)
form of each string are
compared at this level, just in
case there is no difference at
levels 1-4.

This level should be used
sparingly, as only code point
values differences between
two strings is an extremely
rare occurrence. For
example, only Hebrew
cantillation marks are
distinguished at this level.

Alias: LEVEL=

CAUTION:
If you use a host sort utility to sort your data, then specifying a translation table
based collating sequence with the SORTSEQ= option might corrupt the character BY
variables. For more information, see the PROC SORT documentation for your
operating environment. �

See Also

“Collating Sequence” on page 16
Procedures

The SORT Procedure in Base SAS Procedures Guide.
System Options:

“SORTSEQ= System Option: UNIX, Windows, and z/OS” on page 467
“TRANTAB= System Option” on page 469

CORRECTENCODING= Option

Explicitly changes the encoding attribute of a SAS file to match the encoding of the data in the
SAS file.

Valid in: MODIFY statement of the DATASETS procedure

Syntax
MODIFY SAS file </<CORRECTENCODING=encoding-value>> ;

482 CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options � Chapter 13

Options
</ <CORRECTENCODING=encoding-value> >

enables you to change the encoding indicator, which is recorded in the file’s
descriptor information, in order to match the actual encoding of the file’s data. You
cannot use this option in parenthesis after the name of each SAS file; you must
specify CORRECTENCODING= after the forward slash. For example:

modify mydata / correctencoding=latin2;

For a list of valid encoding values for transcoding, see “SBCS, DBCS, and
Unicode Encoding Values for Transcoding Data” on page 549.
Restriction: CORRECTENCODING= can be used only when the SAS file uses

the default base engine, which is V9 in SAS 9.

Example

Example 1: Using the CORRECTENCODING= Option to Resolve a SAS Session Encoding and
a SAS File Encoding A file’s encoding indicator can be different from the data’s
encoding. For example, a SAS file that was created before SAS 9 has no encoding
indicator stored on the file. If such a SAS file that has no recorded encoding is opened
in a SAS 9 session, SAS assigns the encoding of the current session. For example, if the
encoding of the data is Danish EBCDIC, but the encoding for the current session is
Western Wlatin1, then the actual encoding of the file’s data and the encoding indicator
that is stored in the file’s descriptor information do not match. When this action occurs,
the data does not transcode correctly and could result in unreadable output. The
following MODIFY statement would resolve the problem by explicitly assigning an
EDCDIC encoding:

Note: CEDA creates a read-only copy. You need to copy the data with PROC COPY
or a DATA step to transcode the data permanently. �

proc datasets library=myfiles;
modify olddata / correctencoding=ebcdic1142;

quit;

CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options

Specifies attributes for character variables that are needed in order to transcode a SAS file.

Valid in: LIBNAME statement
Category: Data Access
PROC OPTIONS GROUP: LIBNAME statement in the documentation for your operating
environment
See Also: LIBNAME, SAS/ACCESS

Syntax
LIBNAME libref <CVPBYTES=bytes> <CVPENGINE=engine>

<CVPMULTIPLIER=multiplier> ’SAS data-library’;

Options for Commands, Statements, and Procedures for NLS � CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options 483

Options

CVPBYTES=bytes
specifies the number of bytes by which to expand character variable lengths when
processing a SAS data file that requires transcoding. The CVP engine expands the
lengths so that character data truncation does not occur. The lengths for character
variables are increased by adding the specified value to the current length. You can
specify a value from 0 to 32766.

For example, the following LIBNAME statement implicitly assigns the CVP engine
by specifying the CVPBYTES= option.

libname expand ’SAS data-library’ cvpbytes=5;

Character variable lengths are increased by adding 5 bytes. A character variable
with a length of 10 is increased to 15, and a character variable with a length of 100
is increased to 105.
Default: If you specify CVPBYTES=, SAS automatically uses the CVP engine in

order to expand the character variable lengths according to your specification. If
you explicitly assign the CVP engine but do not specify either CVPBYTES= or
CVPMULTIPLIER=, then SAS uses CVPMULTIPLIER=1.5 to increase the lengths
of the character variables.

Requirement: The number of bytes that you specify must be large enough to
accommodate any expansion; otherwise, truncation will still occur, which results in
an error message in the SAS log.

Restriction: The CVP engine supports SAS data files only; that is, no SAS views,
catalogs, item stores, and so on.

Restriction: The CVP engine is available for input (read) processing only.
Limitation: For library concatenation with mixed engines that include the CVP

engine, only SAS data files are processed. For example, if you execute the COPY
procedure, only SAS data files are copied.

Interaction: You cannot specify both CVPBYTES= and CVPMULTIPLIER=.
Specify one of these options.

Featured in: Example 1 on page 484
See also: “Avoiding Character Data Truncation by Using the CVP Engine” on page

38

CVPENGINE=engine
specifies the engine to use in order to process a SAS data file that requires
transcoding. The CVP engine expands the character variable lengths to transcoding
so that character data truncation does not occur. Then the specified engine does the
actual file processing.
Alias: CVPENG
Default: SAS uses the default SAS engine.
See also: “Avoiding Character Data Truncation by Using the CVP Engine” on page

38

CVPMULTIPLIER=multiplier
specifies a multiplier value in order to expand character variable lengths when you
are processing a SAS data file that requires transcoding. The CVP engine expands
the lengths so that character data truncation does not occur. The lengths for
character variables are increased by multiplying the current length by the specified
value. You can specify a multiplier value from 1 to 5.

484 CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options � Chapter 13

For example, the following LIBNAME statement implicitly assigns the CVP engine
by specifying the CVPMULTIPLIER= option.

libname expand ’SAS data-library’ cvpmultiplier=2.5;

Character variable lengths are increased by multiplying the lengths by 2.5. A
character variable with a length of 10 is increased to 25, and a character variable
with a length of 100 is increased to 250.
Alias: CVPMULT
Default: If you specify CVPMULTIPLIER=, SAS automatically uses the CVP engine

in order to expand the character variable lengths according to your specification. If
you explicitly specify the CVP engine but do not specify either CVPMULTIPLIER=
or CVPBYTES=, then SAS uses CVPMULTIPLIER=1.5 to increase the lengths.

Requirement: The number of bytes that you specify must be large enough to
accommodate any expansion; otherwise, truncation will still occur, which results in
an error in the SAS log.

Restriction: The CVP engine supports SAS data files only; that is, no SAS views,
catalogs, item stores, and so on.

Restriction: The CVP engine is available for input (read) processing only.
Limitation: For library concatenation with mixed engines that include the CVP

engine, only SAS data files are processed. For example, if you execute the COPY
procedure, only SAS data files are copied.

Interaction: You cannot specify both CVPMULTIPLIER= and CVPBYTES=.
Specify one of these options.

See also: “Avoiding Character Data Truncation by Using the CVP Engine” on page
38

Example

Example 1: Using the CVP (Character Variable Padding) Engine The following example
illustrates how to avoid character data truncation by using the CVP engine. The
example uses a SAS data set named MYFILES.WLATIN2, which contains some
national characters in Wlatin2 encoding.

Here is PROC CONTENTS output for MYFILES.WLATIN2, which shows that the
encoding is Wlatin2 and that the length for each character variable is 1 byte:

Options for Commands, Statements, and Procedures for NLS � CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options 485

Output 13.1 PROC CONTENTS Output for MYFILES.WLATIN2

The SAS System 1

The CONTENTS Procedure

Data Set Name MYFILES.WLATIN2 Observations 1

Member Type DATA Variables 4

Engine V9 Indexes 0

Created Thursday, November 07, 2003 02:02:36 Observation Length 4

Last Modified Thursday, November 07, 2003 02:02:36 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin2 Central Europe (Windows)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 987

Obs in First Data Page 1

Number of Data Set Repairs 0

File Name C:\Documents and Settings\xxxxxx\My

Documents\myfiles\wlatin2.sas7bdat

Release Created 9.0100A0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len

1 Var1 Char 1

2 Var2 Char 1

3 Var3 Char 1

4 Var4 Char 1

The following code is executed with the session encoding Wlatin2.

options msglevel=i;
libname myfiles ’SAS data-library’;

data myfiles.utf8 (encoding="utf-8");
set myfiles.wlatin2;

run;

The DATA step requests a new data set named MYFILES.UTF8, and requests that the
data be read into the new data set in UTF-8 encoding, which means that the data must
be transcoded from Wlatin2 to UTF-8. The request results in errors due to character
data truncation that occurs from the transcoding. The new data set MYFILES.UTF8 is
created but does not contain any data.

486 CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options � Chapter 13

Output 13.2 SAS Log with Transcoding Error

1 options msglevel=i;

2 libname myfiles ’C:\Documents and Settings\xxxxxx\My Documents\myfiles’;

NOTE: Libref MYFILES was successfully assigned as follows:

Engine: V9

Physical Name: C:\Documents and Settings\xxxxxx\My Documents\myfiles

3 data myfiles.utf8 (encoding="utf-8");

4 set myfiles.wlatin2;

5 run;

INFO: Data file MYFILES.UTF8.DATA is in a format native to another

host or the file encoding does not match the session encoding.

Cross Environment Data Access will be used, which may require additional

CPU resources and reduce performance.

ERROR: Some character data was lost during transcoding in the data set MYFILES.UTF8.

NOTE: The data step has been abnormally terminated.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 1 observations read from the data set MYFILES.WLATIN2.

WARNING: The data set MYFILES.UTF8 may be incomplete. When this step was stopped there were 0

observations and 4 variables.

The following code is executed again with the session encoding Wlatin2.

options msglevel=i;
libname myfiles ’SAS data-library’;

libname expand cvp ’SAS data-library’ cvpbytes=2;

data myfiles.utf8 (encoding="utf-8");
set expand.wlatin2;

run;

In this example, the CVP engine is used to expand character variable lengths by
adding two bytes to each length. The data is read into the new file in UTF-8 encoding
by transcoding from Wlatin2 to UTF-8. There is no data truncation due to the
expanded character variable lengths, and the new data set is successfully created:

Output 13.3 SAS Log Output for MYFILES.UTF8

12 options msglevel=i;

13 libname myfiles ’C:\Documents and Settings\xxxxxx\My Documents\myfiles’;

NOTE: Directory for library MYFILES contains files of mixed engine types.

NOTE: Libref MYFILES was successfully assigned as follows:

Engine: V9

Physical Name: C:\Documents and Settings\xxxxxx\My Documents\myfiles

14 libname expand cvp ’C:\Documents and Settings\xxxxxx\My Documents\myfiles’ cvpbytes=2;

WARNING: Libname EXPAND refers to the same physical library as MYFILES.

NOTE: Libref EXPAND was successfully assigned as follows:

Engine: CVP

Physical Name: C:\Documents and Settings\xxxxxx\My Documents\myfiles

15 data myfiles.utf8 (encoding="utf-8");

16 set expand.wlatin2;

17 run;

INFO: Data file MYFILES.UTF8.DATA is in a format native to another

host or the file encoding does not match the session encoding.

Cross Environment Data Access will be used, which may require additional

CPU resources and reduce performance.

NOTE: There were 1 observations read from the data set EXPAND.WLATIN2.

NOTE: The data set MYFILES.UTF8 has 1 observations and 4 variables.

Options for Commands, Statements, and Procedures for NLS � ENCODING= Option 487

Finally, here is PROC CONTENTS output for MYFILES.UTF8 showing that it is in
UTF-8 encoding and that the length of each character variable is 3:

Output 13.4 PROC CONTENTS Output for MYFILES.UTF8

The SAS System 1

The CONTENTS Procedure

Data Set Name MYFILES.UTF8 Observations 1

Member Type DATA Variables 4

Engine V9 Indexes 0

Created Thursday, November 07, 2003 02:40:34 Observation Length 12

Last Modified Thursday, November 07, 2003 02:40:34 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding utf-8 Unicode (UTF-8)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 335

Obs in First Data Page 1

Number of Data Set Repairs 0

File Name C:\Documents and Settings\xxxxxx\My Documents\myfiles\utf8.sas7bdat

Release Created 9.0100A0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len

1 Var1 Char 3

2 Var2 Char 3

3 Var3 Char 3

4 Var4 Char 3

ENCODING= Option

Overrides and transcodes the encoding for input or output processing of external files.

Valid in: %INCLUDE statement; FILE statement; FILENAME statement; FILENAME
statement, EMAIL (SMTP) Access Method; INFILE statement; ODS statements; FILE
command; INCLUDE command
%INCLUDE statement: Reads SAS statements and data lines from the specified source file
Category: Data Access
%INCLUDE statement-specific: Is not supported under z/OS
FILE statement: Writes to an external file
FILENAME statement: Reads from or writes to an external file
FILENAME statement, EMAIL (SMTP) Access Method: Sends electronic mail programmatically
from SAS using the SMTP (Simple Mail Transfer Protocol)
INFILE statement: Reads from an external file

488 ENCODING= Option � Chapter 13

ODS statements: Controls features of the Output Delivery System that are used to
generate, store, or reproduce SAS procedure and DATA step output
FILE command: Saves the contents of a window to an external file
INCLUDE command: Copies an external file into the current window

Syntax
ENCODING= ’encoding-value’

Options
ENCODING= ’encoding-value’

specifies the encoding to use for reading, writing, copying, or saving an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read, write, copy, or save data using an external file, SAS transcodes
the data from the session encoding to the specified encoding.

For details, see “SBCS, DBCS, and Unicode Encoding Values for Transcoding
Data” on page 549.
Default: SAS uses the current session encoding.

Examples

Example 1: Using the FILE Statement to Specify an Encoding for Writing to an External
File This example creates an external file from a SAS data set. The current session
encoding is Wlatin1, but the external file’s encoding needs to be UTF-8. By default, SAS
writes the external file using the current session encoding.

To specify what encoding to use for writing data to the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

filename outfile ’external-file’;

data _null_;
set myfiles.cars;
file outfile encoding="utf-8";
put Make Model Year;

run;

When you tell SAS that the external file is to be in UTF-8 encoding, SAS then
transcodes the data from Wlatin1 to the specified UTF-8 encoding.

Example 2: Using the FILENAME Statement to Specify an Encoding for Reading an
External File This example creates a SAS data set from an external file. The external
file is in UTF-8 character-set encoding, and the current SAS session is in the Wlatin1
encoding. By default, SAS assumes that an external file is in the same encoding as the
session encoding, which causes the character data to be written to the new SAS data
set incorrectly.

To specify which encoding to use when reading the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

Options for Commands, Statements, and Procedures for NLS � ENCODING= Option 489

filename extfile ’external-file’ encoding="utf-8";

data myfiles.unicode;
infile extfile;
input Make $ Model $ Year;

run;

When you specify that the external file is in UTF-8, SAS then transcodes the
external file from UTF-8 to the current session encoding when writing to the new SAS
data set. Therefore, the data is written to the new data set correctly in Wlatin1.

Example 3: Using the FILENAME Statement to Specify an Encoding for Writing to an
External File This example creates an external file from a SAS data set. By default,
SAS writes the external file using the current session encoding. The current session
encoding is Wlatin1, but the external file’s encoding needs to be UTF-8.

To specify which encoding to use when writing data to the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

filename outfile ’external-file’ encoding="utf-8";

data _null_;
set myfiles.cars;
file outfile;
put Make Model Year;

run;

When you specify that the external file is to be in UTF-8 encoding, SAS then
transcodes the data from Wlatin1 to the specified UTF-8 encoding when writing to the
external file.

Example 4: Changing Encoding for Message Body and Attachment This example
illustrates how to change text encoding for the message body as well as for the
attachment.

filename mymail email ’Joe.Developer@sas.com’;

data _null_;
file mymail

subject=’Text Encoding’
encoding=greek u

attach=(’C:\My Files\Test.out’ v

content_type=’text/plain’
encoding=’ebcdic1047’
outencoding=’latin1’); w

run;

In the program, the following occurs:
1 The ENCODING= e-mail option specifies that the message body will be encoded to

Greek (ISO) before being sent.
2 For the ATTACH= e-mail option, the attachment option ENCODING= specifies the

encoding of the attachment that is read into SAS, which is Western (EBCDIC).
3 Because SMTP and other e-mail interfaces do not support EBCDIC, the

attachment option OUTENCODING= converts the attachment to Western (ISO)
before sending it.

490 INENCODING= and OUTENCODING= Options � Chapter 13

Example 5: Using the INFILE= Statement to Specify an Encoding for Reading from an
External File This example creates a SAS data set from an external file. The external
file’s encoding is in UTF-8, and the current SAS session encoding is Wlatin1. By default,
SAS assumes that the external file is in the same encoding as the session encoding,
which causes the character data to be written to the new SAS data set incorrectly.

To specify which encoding to use when reading the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

filename extfile ’external-file’;

data myfiles.unicode;
infile extfile encoding="utf-8";
input Make $ Model $ Year;

run;

When you specify that the external file is in UTF-8, SAS then transcodes the
external file from UTF-8 to the current session encoding when writing to the new SAS
data set. Therefore, the data is written to the new data set correctly in Wlatin1.

See Also

Statements:
%INCLUDE in SAS Companion for OpenVMS on HP Integrity Servers
%INCLUDE in SAS Companion for UNIX Environments
%INCLUDE in SAS Companion for Windows
FILE in SAS Language Reference: Dictionary
FILENAME in SAS Language Reference: Dictionary
INFILE in SAS Language Reference: Dictionary
ODS statements that use encoding options in SAS Output Delivery System: User’s

Guide
Commands:

FILE in SAS Companion for OpenVMS on HP Integrity Servers
FILE in SAS Companion for z/OS
FILE in SAS Companion for UNIX Environments
FILE in SAS Companion for Windows
INCLUDE in SAS Companion for OpenVMS on HP Integrity Servers
INCLUDE in SAS Companion for z/OS
INCLUDE in SAS Companion for UNIX Environments
INCLUDE in SAS Companion for Windows

INENCODING= and OUTENCODING= Options

Overrides and changes the encoding when reading or writing SAS data sets in the SAS library.

Valid in: LIBNAME statement
Category: Data Access

Options for Commands, Statements, and Procedures for NLS � INENCODING= and OUTENCODING= Options 491

Syntax
INENCODING=

INENCODING= ANY | ASCIIANY | EBCDICANY | encoding-value
OUTENCODING=

OUTENCODING= ANY | ASCIIANY | EBCDICANY | encoding-value

Syntax Description

ANY
specifies no transcoding between ASCII and EBCDIC encodings.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

ASCIIANY
specifies that no transcoding occurs, assuming that the mixed encodings are ASCII
encodings.

EBCDICANY
specifies that no transcoding occurs, assuming that the mixed encodings are EBCDIC
encodings.

encoding-value
specifies an encoding value. For a list of encoding values, see Chapter 19, “Encoding
Values for a SAS Session,” on page 555.

Details
The INENCODING= option is used to read SAS data sets in the SAS library. The
OUTENCODING= option is used to write SAS data sets in the SAS library.

The INENCODING= or the OUTENCODING= value is written to the SAS log when
you use the LIST argument.

INENCODING= and OUTENCODING= are most appropriate when using an existing
library that contains mixed encodings. To read a library that contains mixed encodings,
you can set INENCODING= to ASCIIANY or EBCDICANY. To write a separate data
set, you can use OUTENCODING= to specify a specific encoding, which is applied to
the data set when it is created.

Comparisons
� Session encoding is specified using the ENCODING= system option or the

LOCALE= system option. Each operating environment has a default encoding.

� You can specify the encoding for reading data sets in a SAS library by using the
LIBNAME statement INENCODING= option for input files. If both the LIBNAME
statement option and the ENCODING= data set option are specified, SAS uses the
data set option.

� You can specify the encoding for writing data sets to a SAS library by using the
LIBNAME statement OUTENCODING= option for output files. If both the
LIBNAME statement option and the ENCODING= data set option are specified,
SAS uses the data set option.

492 ODSCHARSET= Option � Chapter 13

� For the COPY procedure, the default CLONE option uses the encoding attribute of
the input data set instead of the encoding value specified on the OUTENCODING=
option. For more information on CLONE and NOCLONE, see COPY Statement.

Note: This interaction does not apply when using SAS/CONNECT or
SAS/SHARE. �

See Also

“Overview: Encoding for NLS” on page 9

Statements:

LIBNAME in SAS Language Reference: Dictionary

System Options:

“ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS” on page 459

“LOCALE System Option” on page 463

Data Set Options:

“ENCODING= Data Set Option” on page 43

ODSCHARSET= Option

Specifies the character set to be generated in the META declaration for the output.

Valid in: LIBNAME statement for the XML engine

Category: Data Access

LIBNAME statement for the XML engine: Specifies the character set to use for generating an
output XML document

Syntax
ODSCHARSET=character-set;

Arguments

character-set
For the LIBNAME statement for the XML engine, specifies the character set to use
in the ENCODING= attribute.

An example of an encoding is ISO-8859-1. Official character sets for use on the
Internet are registered by IANA (Internet Assigned Numbers Authority). IANA is
the central registry for various Internet protocol parameters, such as port, protocol
and enterprise numbers, options, codes and types. For a complete list of character-set
values, visit www.unicode.org/reports/tr22/index.html and
www.iana.org/assignments/character-sets.

Note: A character set is like an encoding-value in this context. However,
character set is the term that is used to identify an encoding that is suitable for use
on the Internet. �

Options for Commands, Statements, and Procedures for NLS � ODSTRANTAB= Option 493

Details
An XML declaration is not required in all XML documents. Such a declaration is
required only when the character encoding of the document is other than the default
UTF-8 or UTF-16 and no encoding was determined by a higher-level protocol.

See Also

Conceptual Information:

Chapter 3, “Encoding for NLS,” on page 9

Statements:

LIBNAME XML in SAS XML LIBNAME Engine: User’s Guide

ODSTRANTAB= Option

Specifies the translation table to use when transcoding an XML document for an output file.

Valid in: the LIBNAME statement for the XML engine

Category: Data Access

Syntax
TRANTAB =’translation-table’

Options
translation-table

specifies the translation table to use for the output file. The translation table is an
encoding method that maps characters (letters, logograms, digits, punctuation,
symbols, control characters, and so on) in the character set to numeric values. An
example of a translation table is one that converts characters from EBCDIC to
ASCII-ISO. The table-name can be any translation table that SAS provides, or any
user-defined translation table. The value must be the name of a SAS catalog entry
in either the SASUSER.PROFILE catalog or the SASHELP.HOST catalog.

Details
For SAS 9.2, using the ODSTRANTAB= option in the LIBNAME statement for the
XML Engine is supported for backward compatibility. The preferred method for
specifying an encoding is to use the LOCALE= system option.

See Also

Conceptual Information:

“Transcoding and Translation Tables” on page 28

Conceptual discussion of Chapter 2, “Locale for NLS,” on page 5

494 TRANSCODE= Column Modifier on PROC SQL � Chapter 13

System Options:
“TRANTAB= System Option” on page 469
“LOCALE System Option” on page 463

Procedures:
Chapter 15, “The TRANTAB Procedure,” on page 511

Statements:
LIBNAME XML in SAS XML LIBNAME Engine: User’s Guide

TRANSCODE= Column Modifier on PROC SQL

Specifies whether values can be transcoded for character columns.

Valid in: Column modifier component in the SQL Procedure

Syntax
TRANSCODE=YES|NO

Arguments
TRANSCODE=YES|NO

for character columns, specifies whether values can be transcoded. Use
TRANSCODE=NO to suppress transcoding. Note that when you create a table
using the CREATE TABLE AS statement, the transcoding attribute for a
particular character column in the created table is the same as it is in the source
table unless you change it with the TRANSCODE= column modifier.

Default: YES

Restriction: Suppression of transcoding is not supported for the V6TAPE engine.

See Also
Conceptual Information:
Chapter 4, “Transcoding for NLS,” on page 27
The SQL Procedure in Base SAS Procedures Guide

RENCODING= Option

Specifies the ASCII-based or EBCDIC-based encoding to use for transcoding data for a SAS/SHARE
server session that is using an EBCDICANY or ASCIIANY session encoding.

Valid in: LIBNAME statement for SAS/SHARE only
Category: Data Access

Options for Commands, Statements, and Procedures for NLS � RENCODING= Option 495

Important: The RENCODING= option in the LIBNAME statement is relevant only if
using a SAS/SHARE server that has a session encoding set to EBCDICANY or
ASCIIANY to preserve a mixed-encoding computing environment, which was more
common before SAS 9.
See Also: LIBNAME statement in SAS/SHARE User’s Guide

Syntax
RENCODING=ASCII-encoding-value | EBCDIC-encoding-value

Syntax Description

ASCII-encoding-value
For a list of valid values for ASCII encodings for UNIX and Windows, see Chapter
19, “Encoding Values for a SAS Session,” on page 555.

EBCDIC-encoding-value
For a list of valid values for EBCDIC encodings for z/OS, see Chapter 19, “Encoding
Values for a SAS Session,” on page 555.

Details
If you use SAS/SHARE in a mixed-encoding environment (for example, SAS/SHARE
client sessions using incompatible encodings such as Latin1 and Latin2), you can set
the following options:

� in the SAS/SHARE server session, set the SAS system option
ENCODING=EBCDICANY or ENCODING=ASCIIANY

� in the SAS/SHARE client session, set the RENCODING= option in the LIBNAME
statement(s) under these conditions:

� a client session that uses an ASCII-based encoding accesses an EBCDICANY
server

� a client session that uses an EBCDIC- based encoding accesses an ASCIIANY
server.

The RENCODING= option enables SAS/SHARE clients to specify which encoding
to assume the server’s data is in when transcoding to or from the client session
encoding.

For SAS 9 and 9.2, if you are processing data in a SAS/SHARE client/server session
from more than one SBCS or DBCS encoding, you are advised to use the UTF8
encoding. For more information about Unicode servers that run the UTF8 session
encoding, go to http://rnd.sas.com/sites/i18n/i18ndocs/i18nsupport/Pages/
SAS%20Technical%20Papers.aspx and search for SAS 9.1.3 Service Pack 4 in a
Unicode Environment and Processing Multilingual Data with the SAS ® 9.2 Unicode
Server.

Background
In SAS 9 and 9.2, you can maintain multilingual data that contains characters from
more than one traditional SBCS or DBCS encoding in a SAS data set by using a UTF8
encoding. To share update access to that data using SAS/SHARE, you must also run

496 TRANSCODE= Option � Chapter 13

the SAS/SHARE server using a session encoding of UTF8. SAS will transcode the data
to the client encoding if necessary.

Before SAS 9, if a SAS/SHARE client and a SAS/SHARE server ran on common
architectures (for example, the client and server ran on UNIX machines), there was no
automatic transcoding of character data. It was possible to build applications that
accessed data sets in different EBCDIC or ASCII encodings within a single SAS/SHARE
server, or that accessed data sets in mixed different encodings within a single data set.
This method was very uncommon and required careful programming to set up
transcoding tables from clients that ran in different operating environments.

The following steps describe how you can maintain mixed encoding in SAS 9, if
necessary.

� The SAS/SHARE server must run by using a session encoding of EBCDICANY for
mixed-EBCDIC encodings or ASCIIANY for mixed-ASCII encodings.

This will restore the behavior of Version 8 and earlier releases and prevent the
automatic character transcoding between different client and server encodings in
the same EBCDIC or ASCII family. That is, no transcoding will occur under these
circumstances:

� if the client session encoding is an EBCDIC encoding and the server session
encoding is EBCDICANY

� if the client session encoding is an ASCII encoding and the server session
encoding is ASCIIANY.

� A SAS/SHARE client that does not share the same encoding family as an
ASCIIANY or EBCDICANY server can control the necessary transcoding by using
an RENCODING= option on the first LIBNAME statement that accesses the
server.

For example, an ASCII client that runs in a Polish locale could access a z/OS
EBCDICANY server and specify RENCODING=EBCDIC870 to access data that
the client knows contains Polish-encoded data. Another ASCII client that runs in
a German locale could access the same z/OS EBCDICANY server and specify
RENCODING=EBCDIC1141 to access data that the client knows contains German
data. Similarly, EBCDIC clients that access an ASCIIANY server can specify the
precise ASCII encoding of the data they are accessing by using the RENCODING=
option in the LIBNAME statement.

See Also

Conceptual Information:
Chapter 4, “Transcoding for NLS,” on page 27

Statements:
LIBNAME in SAS/SHARE User’s Guide

TRANSCODE= Option

Specifies an attribute in the ATTRIB statement (which associates a format, informat, label, and
length with one or more variables) that indicates whether character variables are to be transcoded.

Valid in: the ATTRIB statement in a DATA step
Category: Information
Type: Declarative

Options for Commands, Statements, and Procedures for NLS � TRANSCODE= Option 497

See: ATTRIB Statement in the documentation for your operating environment.

Syntax
ATTRIB variable-list(s) attribute-list(s) ;

Arguments

variable-list
names the variables that you want to associate with the attributes.
Tip: List the variables in any form that SAS allows.

attribute-list
specifies one or more attributes to assign to variable-list. Multiple attributes can be
specified in the ATTRIB statement. For a complete list of attributes, see the ATTRIB
Statement in SAS Language Reference: Dictionary.

TRANSCODE= YES | NO
Specifies whether to transcode character variables. Use TRANSCODE=NO to
suppress transcoding. For more information, see “Overview to Transcoding” on
page 27.
Default: YES
Restriction: The TRANSCODE=NO attribute is not supported by some SAS

Workspace Server clients. Variables with TRANSCODE=NO are not returned in
SAS 9.2. Before SAS 9.2, variables with TRANSCODE=NO are transcoded.
Prior releases of SAS cannot access a SAS 9.2 data set that contains a variable
with a TRANSCODE=NO attribute.

Interaction: You can use the VTRANSCODE and VTRANSCODEX functions to
return whether transcoding is on or off for a character variable.

Interaction: If the TRANSCODE= attribute is set to NO for any character
variable in a data set, PROC CONTENTS prints a transcode column that
contains the TRANSCODE= value for each variable in the data set. If all
variables in the data set are set to the default TRANSCODE= value (YES), no
transcode column is printed.

Examples

Example 1: Using the TRANSCODE= Option With the SET Statement When you use the
SET statement to create a data set from several data sets, SAS makes the
TRANSCODE= attribute of the variable in the output data set equal to the
TRANSCODE= value of the variable in the first data set. In this example, the variable
Z’s TRANSCODE= attribute in data set A is NO because B is the first data set and Z’s
TRANSCODE= attribute in data set B is NO.

data b;
length z $4;
z = ’ice’;
attrib z transcode = NO;

data c;
length z $4;
z = ’snow’;
attrib z transcode = YES;

498 TRANTAB= Option � Chapter 13

data a;
set b;
set c;
/* Check transcode setting for variable Z */
rc1 = vtranscode(z);
put rc1=;

run;

Example 2: Using the TRANSCODE= Option With the MERGE Statement When you use
the MERGE statement to create a data set from several data sets, SAS makes the
TRANSCODE= attribute of the variable in the output data set equal to the
TRANSCODE= value of the variable in the first data set. In this example, the variable
Z’s TRANSCODE= attribute in data set A is YES because C is the first data set and Z’s
TRANSCODE= attribute in data set C is YES.

data b;
length z $4;
z = ’ice’;
attrib z transcode = NO;

data c;
length z $4;
z = ’snow’;
attrib z transcode = YES;

data a;
merge c b;
/* Check transcode setting for variable Z */
rc1 = vtranscode(z);
put rc1=;

run;

Note: The TRANSCODE= attribute is set when the variable is first seen on an
input data set or in an ATTRIB TRANSCODE= statement. If a SET or MERGE
statement comes before an ATTRIB TRANSCODE= statement and the TRANSCODE=
attribute contradicts the SET statement, an error message will occur. �

See Also

Functions:

“VTRANSCODE Function” on page 293

“VTRANSCODEX Function” on page 294

TRANTAB= Option

Specifies the translation table to use when you are transcoding character data in a SAS file for the
appropriate output file.

Valid in: ODS MARKUP statement and ODS RTF statement

Category: ODS: Third-Party Formatted

Options for Commands, Statements, and Procedures for NLS � XMLENCODING= Option 499

Syntax
TRANTAB = (translation-table)

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an
improvement on direct use of translation tables. SAS 9.1 supports the TRANTAB=
option for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases. �

Options

translation-table
specifies the translation table to use for the output file. The translation table is an
encoding method that maps characters (letters, logograms, digits, punctuation,
symbols, control characters, and so on) in the character set to numeric values. An
example of a translation table is one that converts characters from EBCDIC to
ASCII-ISO. The table-name can be any translation table that SAS provides, or any
user-defined translation table. The value must be the name of a SAS catalog entry in
either the SASUSER.PROFILE catalog or the SASHELP.HOST catalog.

Details
Note: For SAS 9.1, using the TRANTAB = option in the ODS MARKUP is supported

for backward compatibility. For specifying encoding, the LOCALE= system option is
preferred. �

See Also

Conceptual Information:
“Transcoding and Translation Tables” on page 28
Chapter 2, “Locale for NLS,” on page 5

System Options:
“TRANTAB= System Option” on page 469
“LOCALE System Option” on page 463

Procedures:
Chapter 15, “The TRANTAB Procedure,” on page 511

Statements:
ODS MARKUP in SAS Output Delivery System: User’s Guide

ODS RTF in SAS Output Delivery System: User’s Guide

XMLENCODING= Option

Overrides the encoding of an XML document to import or export an external document.

Valid in: LIBNAME statement for the XML engine
Category: Data Access

500 TRANTAB Statement � Chapter 13

LIBNAME statement for the XML engine: Associates a SAS libref with an XML document to
import or export an external document

Syntax
XMLENCODING= ’encoding-value’

Options
encoding-value

specifies the encoding to use when you read, write, copy, or save an external file.
The value for XMLENCODING= indicates that the external file has a different
encoding from the current session encoding.

For details, see “SBCS, DBCS, and Unicode Encoding Values for Transcoding
Data” on page 549.
Default: SAS uses the current session encoding.

See Also

Statements:
LIBNAME XML in SAS XML LIBNAME Engine: User’s Guide

TRANTAB Statement

Specifies the translation table to use when you transcode character data in order to export or
transfer a SAS file.

Valid in: CPORT Procedure, UPLOAD procedure, DOWNLOAD procedure
PROC CPORT: Used when you export a SAS file across a network
PROC UPLOAD and PROC DOWNLOAD: Used when you transfer a SAS file across a network
Requirements for UPLOAD and DOWNLOAD: To use the TRANTAB statement, you must specify
the INCAT= and OUTCAT= options in the PROC UPLOAD or PROC DOWNLOAD
statement.
Restrictions: You can specify only one translation table per TRANTAB statement. To
specify additional translation tables, use additional TRANTAB statements.
Interaction: The TRANTAB statement specifies a customized translation table (for
example, to map an EBCDIC character to an ASCII character) to apply to the character
set in the SAS file that is being exported or transferred. The TRANTAB= system option
specifies a translation table to use for the SAS session, including file transfers.

Syntax
TRANTAB NAME=translation-table-name <TYPE=(etype-list) <OPT=DISP | SRC |

(DISP SRC)>>;

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an

Options for Commands, Statements, and Procedures for NLS � TRANTAB Statement 501

improvement on direct use of translation tables. SAS 9.2 supports the TRANTAB
statement for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases.

For more information, see TS-639, Data Conversion Issues in V6–V8. This technical
support note provides information for customers using non-English languages
http://support.sas.com/techsup/technote/ts639.pdf. �

Arguments

NAME=translation-table-name
specifies the name of the translation table to apply to the SAS catalog that you want
to export (PROC CPORT) or transfer (PROC UPLOAD or PROC DOWNLOAD). The
translation-table-name that you specify as the name of a catalog entry in either your
SASUSER.PROFILE catalog or the SASHELP.HOST catalog. The
SASUSER.PROFILE catalog is searched first, and then the SASHELP.HOST catalog
is searched.

In most cases, the default translation table is the correct one to use, but you might
need to apply additional translation tables if, for example, your application requires
different national language characters.

You can specify a translation table other than the default in two ways:

� To specify a translation table for an invocation of the procedure, use the
TRANTAB statement in the procedure, as appropriate.

� To specify a translation table for your entire SAS session or job (including all
file exports or transfers), use the TRANTAB= system option.

Options

TYPE=(etype-list)
applies the translation table only to the entries with the type or types that you
specify. The etype-list can be one or more entry types. Examples of catalog entry types
include DATA and FORMAT. If etype-list is a simple entry type, omit the parentheses.

By default, the UPLOAD, DOWNLOAD, and CPORT procedures apply the
translation table to all specified catalog entries.

OPT=DISP | SRC | (DISP SRC)

OPT=DISP applies the translation table only to the specified catalog entries,
which produce window displays.

OPT=SRC applies the translation table only to the specified catalog entries
that are of the type SOURCE.

OPT=(DISP
SRC)

applies the translation table only to the specified catalog entries
that either produce window displays or are of type SOURCE.

If you do not specify the OPT= option, the UPLOAD or DOWNLOAD procedure
applies the translation table to all of the entries in the catalog that you specify.

Default: PROC CPORT, PROC UPLOAD, and PROC DOWNLOAD apply the
translation table to all entries and data sets in the specified catalog.

502 TRANTAB Statement � Chapter 13

Examples
Procedure features:

PROC CPORT statement option: FILE=

TRANTAB statement option: TYPE=

This example shows how to apply a customized translation table to the transport file
before PROC CPORT exports it. For this example, assume that you have already
created a customized translation table called TTABLE1.

Example 1: Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Apply the translation specifics. The TRANTAB statement applies the translation that you
specify with the customized translation table TTABLE1. TYPE= limits the translation to
FORMAT entries.

proc cport catalog=source.formats file=tranfile;
trantab name=ttable1 type=(format);

run;

Example 2: SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

See Also

Conceptual Information:

Chapter 4, “Transcoding for NLS,” on page 27

System Options:

“TRANTAB= System Option” on page 469

Procedures:

Chapter 15, “The TRANTAB Procedure,” on page 511

CPORT in Base SAS Procedures Guide

UPLOAD in SAS/CONNECT User’s Guide

DOWNLOAD in SAS/CONNECT User’s Guide

503

P A R T3

Procedures for NLS

Chapter 14.The DBCSTAB Procedure 505

Chapter 15.The TRANTAB Procedure 511

504

505

C H A P T E R

14
The DBCSTAB Procedure

Overview: DBCSTAB Procedure 505
Syntax: DBCSTAB Procedure 505

PROC DBCSTAB Statement 505

Examples: DBCSTAB Procedure 507

Example 1: Creating a Conversion Table with the DBCSTAB Procedure 507

Example 2: Producing Japanese Conversion Tables with the DBCSTAB Procedure 508

Overview: DBCSTAB Procedure

The DBCSTAB procedure produces conversion tables for the double-byte character
sets that SAS supports.

Use the DBCSTAB procedure to modify an existing DBCS table when

� the DBCS encoding system that you are using is not supported by SAS

� the DBCS encoding system that you are using has a nonstandard translation table.

A situation where you would be likely to use the DBCSTAB procedure is when a valid
DBCSTYPE= value is not available. These values are operating environment dependent.
In such cases, you can use the DBCSTAB procedure to modify a similar translation
table, and then you can specify the use of the new table with the TRANTAB option.

Syntax: DBCSTAB Procedure

PROC DBCSTAB TABLE=table-name
<BASETYPE=base-type> <CATALOG=<libref.>catalog-name>
<DATA=< libref.>table-name > <DBCSLANG=language>
<DESC=’description’> <FORCE> <VERIFY> <VERBOSE>;

PROC DBCSTAB Statement

PROC DBCSTAB TABLE=table-name
<option(s)>;

506 PROC DBCSTAB Statement � Chapter 14

Required Arguments

TABLE=table-name
specifies the name of the double-byte code table to produce. This table name becomes
an entry of type DBCSTAB in the catalog that is specified with the CATALOG=
option. By default, the catalog name is SASUSER.DBCS.
Alias: NAME=, N=

Options

BASETYPE=base-type
specifies a base type for the double-byte code table conversion. If you use this option,
you reduce the number of tables that are produced.

If you specify BASETYPE=, then all double-byte codes are first converted to the
base code, and then converted to the required code. If you have n codes, then there
are n(n-1) conversions that must be made.
Alias: BTYPE=

CATALOG=<libref.>catalog-name
specifies the name of the catalog in which the table is to be stored. If the catalog does
not exist, it is created.
Default: SASUSER.DBCS

DATA=<libref.>table-name
specifies the data for producing the double-byte code table. Several double-byte
character variables are required to produce the table. Use variable names that are
equivalent to the value of the DBCSTYPE system option and are recognized by the
KCVT function.

DBCSLANG=language
specifies the language that the double-byte code table uses. The value of this option
should match the value of the DBCSLANG system option.
Alias: DBLANG

DESC=’description’
specifies a text string to put in the DESCRIPTION field for the entry.

FORCE
produces the conversion tables even if errors are present.

VERIFY
checks the data range of the input table per code. This option is used to check for
invalid double-byte code.

VERBOSE
causes the statistics detail to be printed when building DBCS tables.

The DBCSTAB Procedure � Example 1: Creating a Conversion Table with the DBCSTAB Procedure 507

Examples: DBCSTAB Procedure

Example 1: Creating a Conversion Table with the DBCSTAB Procedure

Procedure features:
PROC DBCSTAB statement options:

CATALOG=
DBLANG=
BASETYPE=
VERIFY

The following example creates a Japanese translation table called CUSTAB and
demonstrates how the TRANTAB option can be used to specify this new translation
table.

Note: The DBCS, DBCSLANG, and DBCSTYPE options are specified at startup. �

The TRANTAB data set is created as follows:

data trantab;
pcms=’8342’x; dec=’b9b3’x;

run;

proc dbcstab
/* name of the new translate table */

name=custtab
/* based on pcibm encoding */

basetype=pcms
/* data to create the new table */

data=trantab
/* japanese language */

dbcslang=japanese
/* catalog descriptor */

desc=’Modified Japanese Trantab’
/* where the table is stored */

catalog=sasuser.dbcs
/* checks for invalid DBCS in the new data */

verify;
run;

To specify the translate table, use the TRANTAB option:

options trantab=(,,,,,,,,,custtab);

Translate tables are generally used for DBCS conversion with SAS/CONNECT
software, PROC CPORT and PROC CIMPORT, and the DATA step function, KCVT.

The TRANTAB= option might be used to specify DBCS translate tables. For SAS
release 8.2 and earlier versions, the ninth argument was formerly used to specify the
DBCS system table. However, for SAS 9 and later versions, instead of using the ninth
argument, the SAS system uses a system table that is contained in a loadable module.

508 Example 2: Producing Japanese Conversion Tables with the DBCSTAB Procedure � Chapter 14

options trantab=(,,,,,,,,systab); /* ninth argument */

Japanese, Korean, Chinese, and Taiwanese are acceptable for the systab name.
The tenth argument specifies the DBCS user table:

options trantab=(,,,,,,,,,usrtab); /* tenth argument */

Example 2: Producing Japanese Conversion Tables with the DBCSTAB
Procedure

Procedure features:
PROC DBCSTAB statement options:

TABLE=
DATA=
DBLANG=
BASETYPE=
VERIFY

Program
data ja_jpn;

length ibm jis euc pcibm $2.;
ibm=’4040’x;
jis=’2121’x;
euc=’a1a1’x;
pcibm=’8140’x;

run;

proc dbcstab
table=japanese
data=ja_jpn
dblang=japanese
basetype=jis
verify;

run;

The DBCSTAB Procedure � See Also 509

Log

1 proc dbcstab
2 table=ja_jpn
3 data=work.ja_jpn
4 dblang=japanese
5 basetype=jis
6 verify;
7 run;

NOTE: Base table for JIS created.
NOTE: IBM table for JIS created.
NOTE: PCIBM table for JIS created.
NOTE: EUC table for JIS created.
NOTE: Base table for IBM created.
NOTE: JIS table for IBM created.
NOTE: Base table for PCIBM created.
NOTE: JIS table for PCIBM created.
NOTE: Base table for EUC created.
NOTE: JIS table for EUC created.
NOTE: 10 DBCS tables are generated. Each table has 1 DBCS characters.
NOTE: Each table is 2 bytes in size.
NOTE: Required table memory size is 612.
NOTE: There were 1 observations read from the data set WORK.JA_JPN.

See Also

Functions:
“KCVT Function” on page 260

Procedures:
Chapter 15, “The TRANTAB Procedure,” on page 511

System Options:
“TRANTAB= System Option” on page 469
“DBCS System Option: UNIX, Windows, and z/OS” on page 454
“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 455
“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 456

510

511

C H A P T E R

15
The TRANTAB Procedure

Overview: TRANTAB Procedure 511
Concepts: TRANTAB Procedure 512

Understanding Translation Tables and Character Sets for PROC TRANTAB 512

Storing Translation Tables with PROC TRANTAB 512

Modifying SAS Translation Tables with PROC TRANTAB 513

Using Translation Tables Outside PROC TRANTAB 513
Using Translation Tables in the SORT Procedure 513

Using Translation Tables with the CPORT and CIMPORT Procedures 513

Using Translation Tables with Remote Library Services 514

Using Translation Tables in SAS/GRAPH Software 514

Syntax: TRANTAB Procedure 515

PROC TRANTAB Statement 516
CLEAR Statement 517

INVERSE Statement 517

LIST Statement 517

LOAD Statement 518

REPLACE Statement 519
SAVE Statement 520

SWAP Statement 520

Examples: TRANTAB Procedure 521

Example 1: Viewing a Translation Table 521

Example 2: Creating a Translation Table 522
Example 3: Editing by Specifying a Decimal Value for Starting Position 524

Example 4: Editing by Using a Quoted Character for Starting Position 527

Example 5: Creating the Inverse of a Table 529

Example 6: Using Different Translation Tables for Sorting 531

Example 7: Editing Table 1 and Table 2 533

Overview: TRANTAB Procedure

The TRANTAB procedure creates, edits, and displays customized translation tables.
In addition, you can use PROC TRANTAB to view and modify translation tables that
are supplied by SAS. These SAS supplied tables are stored in the SASHELP.HOST
catalog. Any translation table that you create or customize is stored in your
SASUSER.PROFILE catalog. Translation tables have an entry type of TRANTAB.

Translation tables are operating environment-specific SAS catalog entries that are
used to translate the values of one (coded) character set to another. A translation table
has two halves: table one provides a translation, such as ASCII to EBCDIC; table two
provides the inverse (or reverse) translation, such as EBCDIC to ASCII. Each half of a

512 Concepts: TRANTAB Procedure � Chapter 15

translation table is an array of 256 two-digit positions, each of which contains a
one-byte unsigned number that corresponds to a coded character.

The SAS System uses translation tables for the following purposes:
� determining the collating sequence in the SORT procedure
� performing transport-format translations when you transfer files with the CPORT

and CIMPORT procedures
� performing translations between operating environments when you access remote

data in SAS/CONNECT or SAS/SHARE software
� facilitating data communications between the operating environment and a

graphics device when you run SAS/GRAPH software in an IBM environment
� accommodating national language character sets other than U.S. English.

PROC TRANTAB produces no output. It can display translation tables and notes in
the SAS log.

Concepts: TRANTAB Procedure

Understanding Translation Tables and Character Sets for PROC
TRANTAB

The kth element in a translation table corresponds to the kth element of an ordered
character set. For example, position 00 (which is byte 1) in a translation table contains
a coded value that corresponds to the first element of the ordered character set. To
determine the position of a character in your operating environment’s character set, use
the SAS function RANK. The following example shows how to use RANK:

data _null_;
x=rank(’a’);
put "The position of a is " x ".";

The SAS log prints the following message: The position of a is 97 .
Each position in a translation table contains a hexadecimal number that is within

the range of 0 (’00’x) to 255 (’FF’x). Hexadecimal values always end with an x. You can
represent one or more consecutive hexadecimal values within quotation marks followed
by a single x. For example, a string of three consecutive hexadecimal values can be
written as ’08090A’x. The SAS log displays each row of a translation table as 16
hexadecimal values enclosed in quotes followed by an x. The SAS log also lists reference
numbers in the vertical and horizontal margins that correspond to the positions in the
table. Example 1 on page 521 shows how the SAS log displays a translation table.

Storing Translation Tables with PROC TRANTAB
When you use PROC TRANTAB to create a customized translation table, the

procedure automatically stores the table in your SASUSER.PROFILE catalog. This
enables you to use customized translation tables without affecting other users. When
you specify the translation table in the SORT procedure or in a GOPTIONS statement,
the software first looks in your SASUSER.PROFILE catalog to find the table. If the
specified translation table is not in your SASUSER.PROFILE catalog, the software
looks in the SASHELP.HOST catalog.

The TRANTAB Procedure � Using Translation Tables Outside PROC TRANTAB 513

If you want the translation table you create to be globally accessed, have your SAS
Installation Representative copy the table from your SASUSER.PROFILE catalog
(using the CATALOG procedure) to the SASHELP.HOST catalog. If the table is not
found there, the software will continue to search in SASHELP.LOCALE for the table.

Modifying SAS Translation Tables with PROC TRANTAB
If a translation table that is provided by SAS does not meet your needs, you can use

PROC TRANTAB to edit it and create a new table. That is, you can issue the PROC
TRANTAB statement that specifies the SAS table, edit the table, and then save the
table using the SAVE statement. The modified translation table is saved in your
SASUSER.PROFILE catalog. If you are a SAS Installation Representative, you can
modify a translation table with PROC TRANTAB and then use the CATALOG
procedure to copy the modified table from your SASUSER.PROFILE catalog to the
SASHELP.HOST catalog, as shown in the following example:

proc catalog c=sasuser.profile;
copy out=sashelp.host entrytype=trantab;

run;

You can use PROC TRANTAB to modify translation tables stored in the
SASHELP.HOST catalog only if you have update (or write) access to that data library
and catalog.

Using Translation Tables Outside PROC TRANTAB

Using Translation Tables in the SORT Procedure
PROC SORT uses translation tables to determine the collating sequence to be used

by the sort. You can specify an alternative translation table with the SORTSEQ= option
of PROC SORT. For example, if your operating environment sorts with the EBCDIC
sequence by default, and you want to sort with the ASCII sequence, you can issue the
following statement to specify the ASCII translation table:

proc sort sortseq=ascii;

You can also create a customized translation table with PROC TRANTAB and specify
the new table with PROC SORT. This table is useful when you want to specify sorting
sequences for languages other than U.S. English.

See Example 6 on page 531 for an example that uses translation tables to sort data in
different ways. For information on the tables available for sorting and the SORTSEQ=
option, see “SORTSEQ= System Option: UNIX, Windows, and z/OS” on page 467.

Using Translation Tables with the CPORT and CIMPORT Procedures
The CPORT and CIMPORT procedures use translation tables to translate characters

in catalog entries that you export from one operating environment and import on
another operating environment. You might specify the name of a supplied translation
table or a customized translation table in the TRANTAB statement of PROC CPORT.
See “TRANTAB Statement” on page 500 in the CPORT Procedure for more information.

514 Using Translation Tables Outside PROC TRANTAB � Chapter 15

Using Translation Tables with Remote Library Services
Remote Library Services (RLS) uses translation tables to translate characters when

you access SAS 8 remote data. SAS/CONNECT and SAS/SHARE software use
translation tables to translate characters when you transfer or share files between two
operating environments that use different encoding standards.

Note: For more information, see TS-706: How to use the %lswbatch macro
http://support.sas.com/techsup/technote/ts706.pdf. �

Using Translation Tables in SAS/GRAPH Software
In SAS/GRAPH software, translation tables are most commonly used on an IBM

operating environment where tables are necessary because graphics commands must
leave IBM operating environments in EBCDIC representation but must reach
asynchronous graphics devices in ASCII representation. Specifically, SAS/GRAPH
software builds the command stream for these devices internally in ASCII
representation but must convert the commands to EBCDIC representation before they
can be given to the communications software for transmission to the device. SAS/
GRAPH software uses a translation table internally to make the initial conversion from
ASCII to EBCDIC. The communications software then translates the command stream
back to ASCII representation before it reaches the graphics device.

Translation tables are operating environment-specific. In most cases, you can simply
use the default translation table, SASGTAB0, or one of the SAS supplied graphics
translation tables. However, if these tables are not able to do all of the translation
correctly, you can create your own translation table with PROC TRANTAB. The
SASGTAB0 table might fail to do the translation correctly when it encounters
characters from languages other than U.S. English.

To specify an alternative translation table for SAS/GRAPH software, you can either
use the TRANTAB= option in a GOPTIONS statement or modify the TRANTAB device
parameter in the device entry. For example, the following GOPTIONS statement
specifies the GTABTCAM graphics translation table:

goptions trantab=gtabtcam;

Translation tables used in SAS/GRAPH software perform both device-to-operating
environment translation and operating environment-to-device translation. Therefore, a
translation table consists of 512 bytes, with the first 256 bytes used to perform
device-to-operating environment translation (ASCII to EBCDIC on IBM mainframes)
and the second 256 bytes used to perform operating environment-to-device translation
(EBCDIC to ASCII on IBM mainframes). For PROC TRANTAB, the area of a
translation table for device-to-operating environment translation is considered to be
table one, and the area for operating environment-to-device translation is considered to
be table two. See Example 1 on page 521 for a listing of the ASCII translation table (a
SAS provided translation table), which shows both areas of the table.

On operating environments other than IBM mainframes, translation tables can be
used to translate specific characters in the data stream that are created by the driver.
For example, if the driver normally generates a vertical bar in the data stream, but you
want another character to be generated in place of the vertical bar, you can create a
translation table that translates the vertical bar to an alternate character.

For details on how to specify translation tables with the TRANTAB= option in SAS/
GRAPH software, see SAS/GRAPH Software: Reference, Version 6, First Edition,
Volume 1 and Volume 2.

SAS/GRAPH software also uses key maps and device maps to map codes generated
by the keyboard to specified characters and to map character codes to codes required by
the graphics output device. These maps are specific to SAS/GRAPH software and are
discussed in "The GKEYMAP Procedure" in SAS/GRAPH Software: Reference.

The TRANTAB Procedure � Syntax: TRANTAB Procedure 515

Syntax: TRANTAB Procedure
Tip: Supports RUN-group processing

PROC TRANTAB TABLE=table-name <NLS>;
CLEAR <ONE|TWO|BOTH>;
INVERSE;
LIST <ONE|TWO|BOTH>;
LOAD TABLE=table-name <NLS>;
REPLACE position value-1<…value-n>;
SAVE <TABLE=table-name> <ONE|TWO|BOTH>;
SWAP;

Task Statement

Set all positions in the translation table to zero “CLEAR Statement” on page 517

Create an inverse of table 1 “INVERSE Statement” on page 517

Display a translation table in hexadecimal
representation

“LIST Statement” on page 517

Load a translation table into memory for editing “LOAD Statement” on page 518

Replace the characters in a translation table with
specified values

“REPLACE Statement” on page 519

Save the translation table in your
SASUSER.PROFILE catalog

“SAVE Statement” on page 520

Exchange table 1 with table 2 “SWAP Statement” on page 520

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an
improvement on direct use of translation tables. SAS 9.2 supports the TRANTAB
procedure for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases.

PROC TRANTAB is an interactive procedure. Once you submit a PROC TRANTAB
statement, you can continue to enter and execute statements without repeating the
PROC TRANTAB statement. To terminate the procedure, submit a QUIT statement or
submit another DATA or PROC statement. �

516 PROC TRANTAB Statement � Chapter 15

PROC TRANTAB Statement
Tip: If there is an incorrect table name in the PROC TRANTAB statement, use the
LOAD statement to load the correct table. You do not need to reinvoke PROC
TRANTAB. New tables are not stored in the catalog until you issue the SAVE
statement, so you will not have unwanted tables in your catalog.

PROC TRANTAB TABLE=table-name <NLS>;

Required Arguments

TABLE=table-name
specifies the translation table to create, edit, or display. The specified table name
must be a valid one-level SAS name with no more than eight characters.

Options

NLS
specifies that the table you listed in the TABLE= argument is one of five special
internal translation tables provided with every copy of the SAS System. You must
use the NLS option when you specify one of the five special tables in the TABLE=
argument:

SASXPT
the local-to-transport format translation table (used by the CPORT procedure)

SASLCL
the transport-to-local format translation table (used by the CIMPORT procedure)

SASUCS
the lowercase-to-uppercase translation table (used by the UPCASE function)

SASLCS
the uppercase-to-lowercase translation table (used by the LOWCASE macro)

SASCCL
the character classification table (used internally), which contains flag bytes that
correspond to each character position that indicate the class or classes to which
each character belongs.

NLS stands for National Language Support. This option and the associated translation
tables provide a method to translate characters that exist in languages other than
English. To make SAS use the modified NLS table, specify its name in the SAS system
option TRANTAB= .

Note: When you load one of these special translation tables, the SAS log displays a
note that states that table 2 is uninitialized. That is, table 2 is an empty table that
contains all zeros. PROC TRANTAB does not use table 2 at all for translation in these
special cases, so you do not need to be concerned about this note. �

The TRANTAB Procedure � LIST Statement 517

CLEAR Statement

Sets all positions in the translation table to zero; used when you create a new table.

CLEAR <ONE|TWO|BOTH>;

Options

ONE | TWO | BOTH

ONE
clears table 1.

TWO
clears table 2.

BOTH
clears both table 1 and table 2.

Default: ONE

INVERSE Statement

Creates an inverse of table 1 in a translation table; that is, it creates table 2.

Featured in: Example 5 on page 529

INVERSE;

Details
INVERSE does not preserve multiple translations. Suppose table 1 has two (or more)

different characters translated to the same value; for example, "A" and "B" are both
translated to "1". For table 2, INVERSE uses the last translated character for the
value; that is, "1" is always translated to "B" and not "A", assuming that "A" appears
before "B" in the first table.

Sort programs in SAS require an inverse table for proper operation.

LIST Statement

Displays in the SAS log a translation table in hexadecimal representation.

Featured in: All examples

LIST <ONE|TWO|BOTH>;

518 LOAD Statement � Chapter 15

Options

ONE | TWO | BOTH

ONE
displays table 1.

TWO
displays table 2.

BOTH
displays both table 1 and table 2.

Default: ONE

LOAD Statement

Loads a translation table into memory for editing.

Tip: Use LOAD when you specify an incorrect table name in the PROC TRANTAB
statement. You can specify the correct name without reinvoking the procedure.

Tip: Use LOAD to edit multiple translation tables in a single PROC TRANTAB step.
(Be sure to save the first table before you load another one.)

Featured in: Example 4 on page 527

LOAD TABLE=table-name <NLS>;

Required Arguments

TABLE=table-name
specifies the name of an existing translation table to be edited. The specified table
name must be a valid one-level SAS name.

Option

NLS
specifies that the table you listed in the TABLE= argument is one of five special
internal translation tables that are provided with SAS. You must use the NLS option
when you specify one of the five special tables in the TABLE= argument:

SASXPT
is the local-to-transport format translation table

SASLCL
is the transport-to-local format translation table

SASUCS
is the lowercase-to-uppercase translation table

The TRANTAB Procedure � REPLACE Statement 519

SASLCS
is the uppercase-to-lowercase translation table

SASCCL
is the character classification table, which contains flag bytes that correspond to
each character position, these positions indicate the class or classes to which each
character belongs.

NLS stands for National Language Support. This option and the associated translation
tables provide a method to map characters from languages other than English to
programs, displays, and files.

Note: When you load one of these special translation tables, the SAS log displays a
note that states that table 2 is uninitialized. That is, table 2 is an empty table that
contains all zeros. PROC TRANTAB does not use table 2 for translation in these special
cases. �

REPLACE Statement

Replaces characters in a translation table with the specified values, starting at the specified
position.

Alias: REP

Tip: To save edits, you must issue the SAVE statement.

Featured in: Example 2 on page 522, Example 3 on page 524, and Example 4 on page 527

REPLACE position value-1<…value-n>;

Required Arguments

position
specifies the position in a translation table where the replacement is to begin. The
editable positions in a translation table begin at position decimal 0 and end at
decimal 255. To specify the position, you can do either of the following:

� Use a decimal or hexadecimal value to specify an actual location. If you specify
a decimal value, for example, 20, PROC TRANTAB locates position 20 in the
table, which is byte 21. If you specify a hexadecimal value, for example, ’14’x,
PROC TRANTAB locates the decimal position that is equivalent to the specified
hexadecimal value, which in this case is position 20 (or byte 21) in the table.

� Use a quoted character. PROC TRANTAB locates the quoted character in the
table (that is, the quoted character’s hexadecimal value) and uses that
character’s position as the starting position. For example, if you specify the
following REPLACE statement, the statement replaces the first occurrence of
the hexadecimal value for "a" and the next two hexadecimal values with the
hexadecimal equivalent of "ABC":

replace ’a’ ’ABC’;

This action is useful when you want to locate alphabetic and numerical
characters but you do not know their actual location. If the quoted character is

520 SAVE Statement � Chapter 15

not found, PROC TRANTAB displays an error message and ignores the
statement.

To edit positions 256 through 511 (table two), follow this procedure:
1 Issue the SWAP statement.
2 Issue the appropriate REPLACE statement.
3 Issue the SWAP statement again to reposition the table.

value-1 <…value-n>
is one or more decimal, hexadecimal, or character constants that give the actual
value to be put into the table, starting at position. You can also use a mixture of the
types of values. That is, you can specify a decimal, a hexadecimal, and a character
value in one REPLACE statement. Example 3 on page 524 shows a mixture of all
three types of values in the REPLACE statement.

SAVE Statement
Saves the translation table in your SASUSER.PROFILE catalog.

Featured in: Example 2 on page 522 and Example 4 on page 527

SAVE <TABLE=table-name> <ONE|TWO|BOTH>;

Options

TABLE=table-name
specifies the name under which the current table is to be saved. The name must be a
valid one-level SAS name.
Default: If you omit the TABLE= option, the current table is saved under the name

you specify in the PROC TRANTAB statement or the LOAD statement.

ONE | TWO | BOTH

ONE
saves table one.

TWO
saves table two.

BOTH
saves both table one and table two.

Default: BOTH

SWAP Statement
Exchanges table 1 with table 2 to enable you to edit positions 256 through 511.

Tip: After you edit the table, you must the issue SWAP statement again to reposition
the table.
Featured in: Example 7 on page 533

The TRANTAB Procedure � Program 521

SWAP;

Examples: TRANTAB Procedure

Note: All examples were produced in the UNIX environment. �

Example 1: Viewing a Translation Table

Procedure features:
LIST statement

This example uses PROC TRANTAB to display the ASCII translation table supplied
by SAS.

Program

Set the options and specify a translation table.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=ascii;

Display both halves of the translation table. The LIST BOTH statement displays both the
table that provides the translation and the table that provides the inverse translation.

list both;

522 SAS Log � Chapter 15

SAS Log

NOTE: Table specified is ASCII.
ASCII table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x
70 ’707172737475767778797A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

ASCII table 2:
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x
70 ’707172737475767778797A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Example 2: Creating a Translation Table

Procedures features:
LIST statement
REPLACE statement
SAVE statement

This example uses PROC TRANTAB to create a customized translation table.

The TRANTAB Procedure � Program 523

Program

Set the system options and specify the translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=newtable;

Replace characters in the translation table starting at a specified position. The
REPLACE statement places the values in the table starting at position 0. You can use
hexadecimal strings of any length in the REPLACE statement. This example uses strings of
length 16 to match the way that translation tables appear in the SAS log.

replace 0
’00010203a309e57ff9ecc40b0c0d0e0f’x
’10111213a5e008e71819c6c51c1d1e1f’x
’c7fce9e2e40a171beaebe8efee050607’x
’c9e616f4f6f2fb04ffd6dca2b6a7501a’x
’20e1edf3faf1d1aababfa22e3c282b7c’x
’265facbdbca1abbb5f5f21242a293bac’x
’2d2f5fa6a6a6a62b2ba6a62c255f3e3f’x
’a62b2b2b2b2b2b2d2d603a2340273d22’x
’2b6162636465666768692d2ba6a62b2b’x
’2d6a6b6c6d6e6f7071722da62d2b2d2d’x
’2d7e737475767778787a2d2b2b2b2b2b’x
’2b2b2b5f5fa65f5f5fdf5fb65f5fb55f’x
’7b4142434445464748495f5f5f5f5f5f’x
’7d4a4b4c4d4e4f5051525f5f5fb15f5f’x
’5c83535455565758595a5f5ff75f5fb0’x
’30313233343536373839b75f6eb25f5f’x
;

Save the table. The SAVE statement saves the table under the name that is specified in the
PROC TRANTAB statement. By default, the table is saved in your SASUSER.PROFILE catalog.

save;

Display both halves of the translation table in the SAS log. The LIST BOTH statement
displays both the table that provides the translation and the table that provides the inverse
translation.

list both;

524 SAS Log � Chapter 15

SAS Log

Create and edit table 2. Table 2 is empty; that is, it consists entirely of 0s. To create table 2,
you can use the INVERSE statement. (See Example 5 on page 529 .) To edit table 2, you can
use the SWAP statement with the REPLACE statement. (See Example 7 on page 533.)

NOTE: Table specified is NEWTABLE.
WARNING: Table NEWTABLE not found! New table is assumed.
NOTE: NEWTABLE table 1 is uninitialized.
NOTE: NEWTABLE table 2 is uninitialized.

NOTE: Saving table NEWTABLE.
NOTE: NEWTABLE table 2 will not be saved because it is uninitialized.
NEWTABLE table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9ECC40B0C0D0E0F’x
10 ’10111213A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

NOTE: NEWTABLE table 2 is uninitialized.
NEWTABLE table 2:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00000000000000000000000000000000’x
10 ’00000000000000000000000000000000’x
20 ’00000000000000000000000000000000’x
30 ’00000000000000000000000000000000’x
40 ’00000000000000000000000000000000’x
50 ’00000000000000000000000000000000’x
60 ’00000000000000000000000000000000’x
70 ’00000000000000000000000000000000’x
80 ’00000000000000000000000000000000’x
90 ’00000000000000000000000000000000’x
A0 ’00000000000000000000000000000000’x
B0 ’00000000000000000000000000000000’x
C0 ’00000000000000000000000000000000’x
D0 ’00000000000000000000000000000000’x
E0 ’00000000000000000000000000000000’x
F0 ’00000000000000000000000000000000’x

Example 3: Editing by Specifying a Decimal Value for Starting Position
Procedure features:

LIST statement
REPLACE statement

The TRANTAB Procedure � SAS Log 525

SAVE statement

This example edits the translation table that was created in Example 2 on page 522.
The decimal value specified in the REPLACE statement marks the starting position for
the changes to the table.

The vertical arrow in both SAS logs marks the point at which the changes begin.

Program 1: Display the Original Table

Set the system options and specify the translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=newtable;

Display the original table. This LIST statement displays the original NEWTABLE
translation table.

list one;

SAS Log

The Original NEWTABLE Translation Table

NOTE: Table specified is NEWTABLE.
NOTE: NEWTABLE table 2 is uninitialized.
NEWTABLE table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9ECC40B0C0D0E0F’x
10 ’10111213A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

526 Program 2: Edit the Table � Chapter 15

Program 2: Edit the Table

Replace characters in the translation table, starting at a specified position. The
REPLACE statement starts at position decimal 10, which is byte 11 in the original table, and
performs a byte-to-byte replacement with the given values.

replace 10
20 10 200 ’x’ ’ux’ ’092040’x;

Save the changes. The SAVE statement saves the changes that you made to the NEWTABLE
translation table.

save;

Display the new table. The second LIST statement displays the edited NEWTABLE
translation table.

list one;

SAS Log

The Edited NEWTABLE Translation Table

NOTE: Saving table NEWTABLE.
NOTE: NEWTABLE table 2 will not be saved because it is uninitialized.
NEWTABLE table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9EC140AC8787578’x
10 ’09204013A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

At position 10 (which is byte 11), a vertical arrow denotes the starting point for the
changes to the translation table.

� At byte 11, decimal 20 (which is hexadecimal 14) replaces hexadecimal C4.

The TRANTAB Procedure � Program 1: Display the Original Table 527

� At byte 12, decimal 10 (which is hexadecimal 0A) replaces hexadecimal 0B.
� At byte 13, decimal 200 (which is hexadecimal C8) replaces hexadecimal 0C.
� At byte 14, character ’x’ (which is hexadecimal 78) replaces hexadecimal 0D.
� At bytes 15 and 16, characters ’ux’ (which are hexadecimal 75 and 78, respectively)

replace hexadecimal 0E and 0F.
� At bytes 17, 18, and 19, hexadecimal 092040 replaces hexadecimal 101112.

Example 4: Editing by Using a Quoted Character for Starting Position

Procedure features:
LIST statement
LOAD statement
REPLACE statement
SAVE statement

This example creates a new translation table by editing the already fixed ASCII
translation table. The first occurrence of the hexadecimal equivalent of the quoted
character that was specified in the REPLACE statement is the starting position for the
changes to the table. This method differs from Example 3 on page 524 in that you do
not need to know the exact position at which to start the changes to the table. PROC
TRANTAB finds the correct position for you.

The edited table is saved under a new name. Horizontal arrows in both SAS logs
denote the edited rows in the translation table.

Program 1: Display the Original Table

Set the system options and specify which translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=ascii;

Display the translation table. The LIST statement displays the original translation table in
the SAS log.

list one;

528 SAS Log � Chapter 15

SAS Log

NOTE: Table specified is ASCII.
ASCII table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x �

70 ’707172737475767778797A7B7C7D7E7F’x �

80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Program 2: Edit the Table

Replace characters in the translation table, starting at a specified position. The
REPLACE statement finds the first occurrence of the hexadecimal "a" (which is 61) and replaces
it, and the next 25 hexadecimal values, with the hexadecimal values for uppercase "A" through
"Z."

replace ’a’ ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’;

Save your changes. The SAVE statement saves the changes made to the ASCII translation
table under the new table name UPPER. The stored contents of the ASCII translation table
remain unchanged.

save table=upper;

Load and display the translation table. The LOAD statement loads the edited translation
table UPPER. The LIST statement displays the translation table UPPER in the SAS log.

load table=upper;
list one;

The TRANTAB Procedure � Program 529

SAS Log

The UPPER Translation Table
The horizontal arrows in the SAS log denote the rows in which the changes are made.

NOTE: Table UPPER being loaded.
UPPER table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x �

70 ’505152535455565758595A7B7C7D7E7F’x �

80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Example 5: Creating the Inverse of a Table
Procedure features:

INVERSE statement
LIST statement
SAVE statement

This example creates the inverse of the translation table that was created in
Example 4 on page 527. The new translation table that is created in this example is the
operating environment-to-device translation for use in data communications.

Program

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=upper;

Create the inverse translation table, save the tables, and display the tables. The
INVERSE statement creates table 2 by inverting the original table 1 (called UPPER). The SAVE
statement saves the translation tables. The LIST BOTH statement displays both the original
translation table and its inverse.

inverse;
save;

530 SAS Log � Chapter 15

list both;

SAS Log

The UPPER Translation Table and Its Inverse

The SAS log lists all the duplicate values that it encounters as it creates the inverse of table
one. To conserve space, most of these messages are deleted in this example.

NOTE: Table specified is UPPER.
NOTE: This table cannot be mapped one to one.
duplicate of ’41’x found at ’61’x in table one.
duplicate of ’42’x found at ’62’x in table one.
duplicate of ’43’x found at ’63’x in table one.

.

.

.
duplicate of ’58’x found at ’78’x in table one.
duplicate of ’59’x found at ’79’x in table one.
duplicate of ’5A’x found at ’7A’x in table one.
NOTE: Saving table UPPER.
UPPER table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

The TRANTAB Procedure � Program 531

The INVERSE statement lists in the SAS log all of the multiple translations that it
encounters as it inverts the translation table. In Example 4 on page 527, all the
lowercase letters were converted to uppercase in the translation table UPPER, which
means that there are two sets of uppercase letters in UPPER. When INVERSE cannot
make a translation, PROC TRANTAB fills the value with 00. Note that the inverse of
the translation table UPPER has numerous 00 values.

Example 6: Using Different Translation Tables for Sorting

Procedure features:
PROC SORT statement option:

SORTSEQ=

Other features:
PRINT procedure

This example shows how to specify a different translation table to sort data in an
order that is different from the default sort order. Characters that are written in a
language other than U.S. English might require a sort order that is different from the
default order.

Note: You can use the TRABASE program in the SAS Sample Library to create
translation tables for several languages. �

Program

Set the SAS system options.

options nodate pageno=1 linesize=80 pagesize=60;

Create the TESTSORT data set. The DATA step creates a SAS data set with four pairs of
words, each pair differing only in the case of the first letter.

data testsort;
input Values $10.;
datalines;

Always
always
Forever
forever
Later
later
Yesterday
yesterday
;

532 SAS Output � Chapter 15

Sort the data in an order that is different from the default sort order. PROC SORT sorts
the data by using the default translation table, which sorts all lowercase words first, then all
uppercase words.

proc sort;
by values;

run;

Print the data set. PROC PRINT prints the sorted data set.

proc print noobs;
title ’Default Sort Sequence’;

run;

SAS Output

Output from Sorting Values with Default Translation Table

The default sort sequence sorts all the capitalized words in alphabetical order before it sorts any
lowercase words.

Default Sort Sequence 1

Values

Always
Forever
Later
Yesterday
always
forever
later
yesterday

Sort the data according to the translation table UPPER and print the new data set.
The SORTSEQ= option specifies that PROC SORT sort the data according to the customized
translation table UPPER, which treats lowercase and uppercase letters alike. This method is
useful for sorting without regard for case. PROC PRINT prints the sorted data set.

proc sort sortseq=upper;
by values;

run;
proc print noobs;

title ’Customized Sort Sequence’;
run;

The TRANTAB Procedure � Program 533

SAS Output

Output from Sorting Values with Customized Translation Table

The customized sort sequence sorts all the words in alphabetical order, without regard for the
case of the first letters.

Customized Sort Sequence 2

Values

Always
always
Forever
forever
Later
later
Yesterday
yesterday

Example 7: Editing Table 1 and Table 2
Procedure features:

LIST statement
REPLACE statement
SAVE statement
SWAP statement

This example shows how to edit both areas of a translation table. To edit positions
256 through 511 (table 2), you must

1 Issue the SWAP statement to have table 2 change places with table 1.
2 Issue an appropriate REPLACE statement to make changes to table two.
3 Issue the SWAP statement again to reposition the table.

Arrows in the SAS logs mark the rows and columns that are changed.

Program

Set the SAS system options and specify the translation table.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=upper;

Display the original translation table. The LIST statement displays the original UPPER
translation table.

list both;

534 SAS Log � Chapter 15

SAS Log

The Original UPPER Translation Table

NOTE: Table specified is UPPER.
UPPER table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Replace characters in the translation table starting at a specified position. The
REPLACE statement starts at position 1 and replaces the current value of 01 with ’0A’.

replace 1 ’0A’x;

The TRANTAB Procedure � SAS Log 535

Prepare table 2 to be edited. The first SWAP statement positions table 2 so that it can be
edited. The second REPLACE statement makes the same change in table 2 that was made in
table 1.

swap;
replace 1 ’0A’x;

Save and display the tables in their original positions. The second SWAP statement
restores tables 1 and table 2 to their original positions. The SAVE statement saves both areas of
the translation table by default. The LIST statement displays both areas of the table.

swap;
save;
list both;

536 SAS Log � Chapter 15

SAS Log

The Edited UPPER Translation Table In byte 2, in both areas of the translation table,
hexadecimal value ’0A’ replaces hexadecimal value 01. Arrows mark the rows and columns of
the table in which this change is made.

NOTE: Table specified is UPPER.
UPPER table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000A02030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000A02030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

See Also

Conceptual discussion about “Transcoding and Translation Tables” on page 28

System Options:
“TRANTAB= System Option” on page 469

537

P A R T4

Values for Locale, Encoding, and
Transcoding

Chapter 16.Values for the LOCALE= System Option 539

Chapter 17.SAS System Options for Processing DBCS Data 547

Chapter 18.Encoding Values in SAS Language Elements 549

Chapter 19.Encoding Values for a SAS Session 555

538

539

C H A P T E R

16
Values for the LOCALE= System
Option

LOCALE= Values and Default Settings for ENCODING, PAPERSIZE, DFLANG, and DATESTYLE
options 539

LOCALE= Values and Default Settings for ENCODING, PAPERSIZE,
DFLANG, and DATESTYLE options

Table 15.1 lists the valid LOCALE= values, specified by using the SAS name or the
Posix name. The alias name is also listed. Some locales do not have an alias.

Table 16.1 Values for the LOCALE= System Option

SAS Name Posix Locale Alias

Afrikaans_SouthAfrica af_ZA Afrikaans

Albanian_Albania sq_AL Albanian

Arabic_Algeria ar_DZ

Arabic_Bahrain ar_BH

Arabic_Egypt ar_EG

Arabic_India ar_IN

Arabic_Iraq ar_IQ

Arabic_Jordan ar_JO

Arabic_Kuwait ar_KW

Arabic_Lebanon ar_LB

Arabic_Libya ar_LY

Arabic_Morocco ar_MA

Arabic_Oman ar_OM

Arabic_Qatar ar_QA

Arabic_SaudiArabia ar_SA

Arabic_Sudan ar_SD

Arabic_Syria ar_SY

Arabic_Tunisia ar_TN

Arabic_UnitedArabEmirates ar_AE Arabic

540 Default Settings for ENCODING, PAPERSIZE, DFLANG, DATESTYLE options � Chapter 16

SAS Name Posix Locale Alias

Arabic_Yemen ar_YE

Bengali_India bn_IN Bengali

Bosnian_BosniaHerzegovina bs_BA

Bulgarian_Bulgaria bg_BG Bulgarian

Byelorussian_Belarus be_BY Byelorussian

Catalan_Spain ca_ES Catalan

Chinese_China zh_CN Chinese

Chinese_HongKong zh_HK

Chinese_Macau zh_MO

Chinese_Singapore zh_SG

Chinese_Taiwan zh_TW

Cornish_UnitedKingdom kw_GB Cornish

Croatian_BosniaHerzegovina hr_BA

Croatian_Croatia hr_HR Croatian

Czech_CzechRepublic cs_CZ Czech

Danish_Denmark da_DK Danish

Dutch_Belgium nl_BE

Dutch_Netherlands nl_NL Dutch

English_Australia en_AU

English_Belgium en_BE

English_Botswana en_BW

English_Canada en_CA

English_Caribbean en_CB

English_HongKong en_HK

English_India en_IN

English_Ireland en_IE

English_Jamaica en_JM

English_NewZealand en_NZ

English_Philippines en_PH

English_Singapore en_SG

English_SouthAfrica en_ZA

English_UnitedKingdom en_GB

English_UnitedStates en_US English

English_Zimbabwe en_ZW

Estonian_Estonia et_EE Estonian

Faroese_FaroeIslands fo_FO Faroese

Finnish_Finland fi_FI Finnish

Values for the LOCALE= System Option � Default Settings for ENCODING, PAPERSIZE, DFLANG, DATESTYLE options 541

SAS Name Posix Locale Alias

French_Belgium fr_BE

French_Canada fr_CA

French_France fr_FR French

French_Luxembourg fr_LU

French_Switzerland fr_CH

German_Austria de_AT

German_Germany de_DE German

German_Liechtenstein de_LI

German_Luxembourg de_LU

German_Switzerland de_CH

Greek_Greece el_GR Greek

Greenlandic_Greenland kl_GL Greenlandic

Hebrew_Israel he_IL Hebrew

Hindi_India hi_IN Hindi

Hungarian_Hungary hu_HU Hungarian

Icelandic_Iceland is_IS Icelandic

Indonesian_Indonesia id_ID Indonesian

Italian_Italy it_IT Italian

Italian_Switzerland it_CH

Japanese_Japan ja_JP Japanese

Korean_Korea ko_KR Korean

Latvian_Latvia lv_LV Latvian

Lithuanian_Lithuania lt_LT Lithuanian

Macedonian_Macedonia mk_MK Macedonian

Malay_Malaysia ms_MY Malay

Maltese_Malta mt_MT Maltese

ManxGaelic_UnitedKingdom gv_GB ManxGaelic

Marathi_India mr_IN Marathi

NorwegianBokmal_Norway nb_NO NorwegianBokmal

NorwegianNynorsk_Norway nn_NO NorwegianNynorsk

Norwegian_Norway no_NO Norwegian

Persian_India fa_IN

Persian_Iran fa_IR Persian

Polish_Poland pl_PL Polish

Portuguese_Brazil pt_BR

Portuguese_Portugal pt_PT Portuguese

Romanian_Romania ro_RO Romanian

542 Default Settings for ENCODING, PAPERSIZE, DFLANG, DATESTYLE options � Chapter 16

SAS Name Posix Locale Alias

Russian_Russia ru_RU Russian

Russian_Ukraine ru_UA

Serbian_BosniaHerzegovina sr_BA

Serbian_Montenegro sr_ME

Serbian_Serbia sr_RS

Serbian_Yugoslavia sr_YU Serbian

SerboCroatian_BosniaHerzegovina sh_BA

SerboCroatian_Montenegro sh_ME

SerboCroatian_Serbia sh_RS

Slovak_Slovakia sk_SK Slovak

Slovenian_Slovenia sl_SI Slovenian

Spanish_Argentina es_AR

Spanish_Bolivia es_BO

Spanish_Chile es_CL

Spanish_Colombia es_CO

Spanish_CostaRica es_CR

Spanish_DominicanRepublic es_DO

Spanish_Ecuador es_EC

Spanish_ElSalvador es_SV

Spanish_Guatemala es_GT

Spanish_Honduras es_HN

Spanish_Mexico es_MX

Spanish_Nicaragua es_NI

Spanish_Panama es_PA

Spanish_Paraguay es_PY

Spanish_Peru es_PE

Spanish_PuertoRico es_PR

Spanish_Spain es_ES Spanish

Spanish_UnitedStates es_US

Spanish_Uruguay es_UY

Spanish_Venezuela es_VE

Swedish_Sweden sv_SE Swedish

Tamil_India ta_IN Tamil

Telugu_India te_IN Telugu

Thai_Thailand th_TH Thai

Turkish_Turkey tr_TR Turkish

Values for the LOCALE= System Option � Default Settings for ENCODING, PAPERSIZE, DFLANG, DATESTYLE options 543

SAS Name Posix Locale Alias

Ukrainian_Ukraine uk_UA Ukrainian

Vietnamese_Vietnam vi_VN Vietnamese

Table 15.2 lists the valid Posix values and the default settings for the ENCODING=
option, by operating environment. The settings for DFLANG, DATESTYLE, and
PAPERSIZE system options are set automatically.

Here is an example:

sas9 -locale arabic_algeria

When the Arabic_Algeria LOCALE= value is specified, corresponding default settings
for the system options are as follows:

DFLANG=English
DATESTYLE=DMY
PAPERSIZE=A4

Table 16.2 Default Values for the ENCODING, DFLANG, DATESTYLE, and PAPERSIZE System Options
Based on the LOCALE= System Option

Posix
Locale

Windows
Encoding

UNIX
Encoding

z/OS
Encoding

DFLANG= DATESTYLE= PAPERSIZE=

af_ZA wlatin1 latin1 open_ed-1047 English YMD A4

ar_AE warabic arabic open_ed-425 English DMY A4

ar_BH warabic arabic open_ed-425 English DMY A4

ar_DZ warabic arabic open_ed-425 English DMY A4

ar_EG warabic arabic open_ed-425 English DMY A4

ar_IN warabic arabic open_ed-425 English DMY A4

ar_IQ warabic arabic open_ed-425 English DMY A4

ar_JO warabic arabic open_ed-425 English DMY A4

ar_KW warabic arabic open_ed-425 English DMY A4

ar_LB warabic arabic open_ed-425 English DMY A4

ar_LY warabic arabic open_ed-425 English DMY A4

ar_MA warabic arabic open_ed-425 English DMY A4

ar_OM warabic arabic open_ed-425 English DMY A4

ar_QA warabic arabic open_ed-425 English DMY A4

ar_SA warabic arabic open_ed-425 English DMY A4

ar_SD warabic arabic open_ed-425 English DMY A4

ar_SY warabic arabic open_ed-425 English DMY A4

ar_TN warabic arabic open_ed-425 English DMY A4

ar_YE warabic arabic open_ed-425 English DMY A4

be_BY wcyrillic cyrillic open_ed-1025 English DMY A4

bg_BG wcyrillic cyrillic open_ed-1025 English YMD A4

bn_IN wlatin1 latin1 open_ed-1047 English DMY A4

544 Default Settings for ENCODING, PAPERSIZE, DFLANG, DATESTYLE options � Chapter 16

Posix
Locale

Windows
Encoding

UNIX
Encoding

z/OS
Encoding

DFLANG= DATESTYLE= PAPERSIZE=

ca_ES wlatin1 latin1 open_ed-1148 English DMY A4

cs_CZ wlatin2 latin2 open_ed-870 Czech DMY A4

da_DK wlatin1 latin9 open_ed-1142 Danish DMY A4

de_AT wlatin1 latin9 open_ed-1141 German DMY A4

de_CH wlatin1 latin9 open_ed-1148 Swiss_

German

DMY A4

de_DE wlatin1 latin9 open_ed-1141 German DMY A4

de_LI wlatin1 latin9 open_ed-1141 German DMY A4

de_LU wlatin1 latin9 open_ed-1141 German DMY A4

el_GR wgreek greek open_ed-875 English DMY A4

en_AU wlatin1 latin1 open_ed-1047 English DMY A4

en_BE wlatin1 latin9 open_ed-1148 English DMY A4

en_BW wlatin1 latin1 open_ed-1047 English DMY A4

en_CA wlatin1 latin1 open_ed-1047 English DMY letter

en_CB wlatin latin1 open_ed-1047 English MDY letter

en_GB wlatin1 latin9 open_ed-1146 English DMY A4

en_HK wlatin1 latin9 open_ed-1146 English DMY A4

en_IE wlatin1 latin9 open_ed-1146 English DMY A4

en_IN wlatin1 latin9 open_ed-1146 English DMY A4

en_JM wlatin1 latin1 open_ed-1047 English DMY letter

en_NZ wlatin1 latin1 open_ed-1047 English DMY A4

en_PH wlatin1 latin1 open_ed-1047 English MDY A4

en_SG wlatin1 latin9 open_ed-1146 English DMY A4

en_US wlatin1 latin1 open_ed-1047 English MDY A4

en_ZA wlatin1 latin1 open_ed-1047 English DMY A4

en_ZW wlatin1 latin1 open_ed-1047 English DMY A4

es_AR wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_BO wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_CL wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_CO wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_CR wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_DO wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_EC wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_ES wlatin1 latin9 open_ed-1145 Spanish DMY A4

es_GT wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_HN wlatin1 latin1 open_ed-1047 Spanish MDY letter

Values for the LOCALE= System Option � Default Settings for ENCODING, PAPERSIZE, DFLANG, DATESTYLE options 545

Posix
Locale

Windows
Encoding

UNIX
Encoding

z/OS
Encoding

DFLANG= DATESTYLE= PAPERSIZE=

es_MX wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_NI wlatin1 latin1 open_ed-1047 Spanish MDY letter

es_PA wlatin1 latin1 open_ed-1047 Spanish MDY letter

es_PE wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_PR wlatin1 latin1 open_ed-1047 Spanish MDY letter

es_PY wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_SV wlatin1 latin1 open_ed-1047 Spanish MDY letter

es_US wlatin1 latin1 open_ed-1047 Spanish DMY letter

es_UY wlatin1 latin1 open_ed-1047 Spanish DMY A4

es_VE wlatin1 latin1 open_ed-1047 Spanish DMY letter

et_EE wbaltic latin6 open_ed-1122 English DMY A4

fa_IN warabic arabic open_ed-1097 English YMD A4

fa_IR warabic arabic open_ed-1097 English YMD A4

fi_FI wlatin1 latin9 open_ed-1143 Finnish DMY A4

fo_FO wlatin1 latin1 open_ed-1047 English DMY A4

fr_BE wlatin1 latin9 open_ed-1148 French DMY A4

fr_CA wlatin1 latin1 open_ed-1047 French DMY letter

fr_CH wlatin1 latin9 open_ed-1148 Swiss_French DMY A4

fr_FR wlatin1 latin9 open_ed-1147 French DMY A4

fr-LU wlatin1 latin9 open_ed-1147 French DMY A4

gv_GB wlatin1 latin8 open_ed-1148 English DMY A4

he_IL whebrew hebrew open_ed-424 English DMY A4

hi_IN PCISCII806 latin1 open_ed-1137 English DMY A4

hr_HR wlatin2 latin2 open_ed-870 Croatian YMD A4

hu_HU wlatin2 latin2 open_ed-870 Hungarian YMD A4

is_IS wlatin1 latin1 open_ed-1047 English DMY A4

id_ID wlatin1 latin1 open_ed-1047 English DMY A4

it_CH wlatin1 latin9 open_ed-1148 Italian DMY A4

it_IT wlatin1 latin9 open_ed-1144 Italian DMY A4

ja_JP not applicable not applicable not applicable Japanese YMD A4

kl_GL wlatin1 latin1 open_ed-1047 English DMY A4

ko_KR not applicable not applicable not applicable Locale YMD A4

kw_GB wlatin1 latin1 open_ed-1148 English DMY A4

lt_LT wbaltic latin6 open_ed-1112 English YMD A4

lv_LV wbaltic latin6 open_ed-1112 English YMD A4

mk_MK wcyrillic cyrillic open_ed-1154 English DMY A4

546 Default Settings for ENCODING, PAPERSIZE, DFLANG, DATESTYLE options � Chapter 16

Posix
Locale

Windows
Encoding

UNIX
Encoding

z/OS
Encoding

DFLANG= DATESTYLE= PAPERSIZE=

mr_IN PCISCII806 latin1 open_ed-1137 English DMY A4

ms_MY wlatin1 latin1 open_ed-1047 English DMY A4

mt_MT wlatin1 latin3 open_ed-905 English DMY A4

nb_NO wlatin1 latin9 open_ed-1142 Norwegian DMY A4

nl_BE wlatin1 latin1 open_ed-1148 Dutch DMY A4

nl_NL wlatin1 latin1 open_ed-1140 Dutch DMY A4

nn_NO wlatin1 latin9 open_ed-1142 Norwegian DMY A4

no_NO wlatin1 latin9 open_ed-1142 Norwegian DMY A4

pl_PL wlatin2 latin2 open_ed-870 Polish YMD A4

pt_BR wlatin1 latin1 open_ed-275 Portuguese DMY letter

pt_PT wlatin1 latin1 open_ed-1140 Portuguese DMY A4

ro_RO wlatin2 latin2 open_ed-870 English DMY A4

ru_RU wcyrillic cyrillic open_ed-1025 Russian DMY A4

ru_UA wcyrillic cyrillic open_ed-1154 Russian DMY A4

sh_YU wlatin2 latin2 open_ed-870 English DMY A4

sk_SK wlatin2 latin2 open_ed-870 English DMY A4

sl_SL wlatin2 latin2 open_ed-870 Slovenian YMD A4

sr_YU wcyrillic cyrillic open_ed-1025 English DMY A4

sq_AL wlatin2 latin2 open_ed-1153 English YMD A4

sv_SE wlatin1 latin9 open_ed-1143 Swedish YMD A4

ta_IN wlatin1 latin1 open_ed-1047 English DMY A4

te_IN wlatin1 latin1 open_ed-1047 English DMY A4

th_TH pcoem874 thai open_ed-838 English DMY A4

tr_TR wturkish latin5 open_ed-1026 English DMY A4

uk_UA wcyrillic cyrillic open_ed-1025 English DMY A4

vi_VN wvietnamese latin1 open_ed-1130 English DMY A4

zh_CN not applicable not applicable not applicable Locale YMD A4

zh_HK not applicable not applicable not applicable Locale YMD A4

zh_MO not applicable not applicable not applicable Locale YMD A4

zh_SG not applicable not applicable not applicable Locale DMY A4

zh_TW not applicable not applicable not applicable Locale YMD A4

547

C H A P T E R

17
SAS System Options for
Processing DBCS Data

Overview to System Options Used in a SAS Session for DBCS 547
DBCS Values for a SAS Session 547

Overview to System Options Used in a SAS Session for DBCS

You use the DBCSLANG= and DBCSTYPE= system options to specify the DBCS
encoding values for a SAS session. You do not directly use the ENCODING= system
option when you are using DBCS.

DBCS Values for a SAS Session

Operating Environment Information: The following table shows the supported values
for the DBCSLANG= and DBCSTYPE= system options under the z/OS, UNIX, and
Windows operating environments. �

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 17.1 DBCS Supported Values for the DBCSLANG= and DBCSTYPE= System
Options

DBCSLANG= z/OS DBCSTYPE= UNIX DBCSTYPE= Windows
DBCSTYPE=

Chinese ibm dec pcms

Chinese not applicable hp15 not applicable

Chinese not applicable euc not applicable

Chinese not applicable pcms not applicable

Japanese ibm dec pcms

Japanese pcibm euc sjis

Japanese not applicable hp15 not applicable

Japanese not applicable sjis not applicable

Korean ibm pcibm pcms

548 DBCS Values for a SAS Session � Chapter 17

DBCSLANG= z/OS DBCSTYPE= UNIX DBCSTYPE= Windows
DBCSTYPE=

Korean not applicable pcms not applicable

Korean not applicable dec not applicable

Korean not applicable euc not applicable

Korean not applicable hp15 not applicable

Taiwanese ibm dec pcms

Taiwanese pcibm euc not applicable

Taiwanese not applicable hp15 not applicable

Taiwanese not applicable pcms not applicable

549

C H A P T E R

18
Encoding Values in SAS
Language Elements

Overview to SAS Language Elements That Use Encoding Values 549
SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 549

Overview to SAS Language Elements That Use Encoding Values
When the encoding of the SAS session is different from the encoding of the SAS file

or from the data that resides in the SAS file, transcoding must occur. Consider a SAS
file that was created in the Western Latin1 encoding, then moved to an IBM mainframe
that uses the German EBCDIC encoding. In order for the IBM mainframe to
successfully access the file, the SAS data file must be transcoded from the Western
Latin1 encoding to the German EBCDIC encoding. For information about transcoding
concepts, including SAS language elements that contain options for transcoding, see
Chapter 4, “Transcoding for NLS,” on page 27.

SBCS, DBCS, and Unicode Encoding Values for Transcoding Data

Table 17.1 presents a list of SBCS, DBCS, and Unicode encoding values for
transcoding data for all operating environments. The encoding values in Table 16.1 are
valid for SAS language elements that contain options for transcoding.

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 18.1 SBCS, DBCS, and Unicode Encoding Values Used to Transcode Data

Encoding Name Short Name Description

aarabic aara Arabic Macintosh

agreek agrk Greek Macintosh

ahebrew aheb Hebrew Macintosh

aiceland aice Icelandic Macintosh

any anye no transcoding is specified

arabic arab Arabic ISO

aroman arom Roman Macintosh

550 SBCS, DBCS, and Unicode Encoding Values for Transcoding Data � Chapter 18

Encoding Name Short Name Description

aturkish atur Turkish Macintosh

aukrainian aukr Ukrainian Macintosh

big5 big5 Traditional Chinese Big5

cyrillic cyrl Cyrillic ISO

dec-cn jums Simplified Chinese DEC

dec-jp jvms Japanese DEC

dec-tw yvms Traditional Chinese DEC

ebcdic037 e037 North American EBCDIC

ebcdic275 e275 Brazil EBCDIC

ebcdic424 e424 Hebrew EBCDIC

ebcdic425 e425 Arabic EBCDIC

ebcdic500 e500 International EBCDIC

ebcdic838 e838 Thai EBCDIC

ebcdic870 e870 Central European EBCDIC

ebcdic875 e875 Greek EBCDIC

ebcdic924 e924 European EBCDIC

ebcdic1025 ecyr Cyrillic EBCDIC

ebcdic1026 etur Turkish EBCDIC

ebcdic1047 elat Western EBCDIC

ebcdic1112 ebal Baltic EBCDIC

ebcdic1122 eest Estonian EBCDIC

ebcdic1130 evie Vietnamese EBCDIC

ebcdic1140 e140 North American EBCDIC

ebcdic1141 e141 Austria/Germany EBCDIC

ebcdic1142 e142 Denmark/Norway EBCDIC

ebcdic1143 e143 Finland/Sweden EBCDIC

ebcdic1144 e144 Italy EBCDIC

ebcdic1145 e145 Spain EBCDIC

ebcdic1146 e146 United Kingdom EBCDIC

ebcdic1147 e147 France EBCDIC

ebcdic1148 e148 International EBCDIC

ebcdicany eany enables you to create a data set
that is compatible with all
EBCDIC encodings

euc-cn zeuc Simplified Chinese EUC

euc-jp jeuc Japanese EUC

euc-kr keuc Korean EUC

euc-tw yeuc Traditional Chinese EUC

Using Encoding Values � SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 551

Encoding Name Short Name Description

fujitsu-cn zfuj Simplified Chinese FACOM

fujitsu-jp jfug Japanese FACOM

fujitsu-ko kfuj Korean FACOM

fujitsu-tw yfuj Traditional Chinese FACOM

greek grek Greek ISO

hebrew hebr Hebrew ISO

hitachi-cn zhit Simplified Chinese HITAC

hitachi-jp jhit Japanese HITAC

hitachi-ko khit Korean HITAC

hitachi-tw yhit Traditional Chinese HITAC

hitsas-jp jhts Japanese XHITAC

hitsas-ko khts Korean XHITAC

hitsas-tw yhts Traditional Chinese XHITAC

hp15-tw yhpx Traditional Chinese HP15

ibm-1381 zpce Simplified Chinese PCIBM

ibm-930 j930 Japanese Katakana - 930

ibm-933 kibm Korean IBM

ibm-935 zibm Simplified Chinese IBM

ibm-937 yibm Traditional Chinese IBM

ibm-939 jibm Japanese IBM

ibm-942 j942 Japanese PCIBM

ibm-949 kpce Korean PCIBM

latin1 lat1 Western ISO

latin2 lat2 Central European ISO

latin5 lat5 Turkish ISO

latin6 lat6 Baltic ISO

latin9 lat9 European ISO

macos-1 jmac Japanese PCMAC

macos-2 ymac Traditional Chinese PCMAC

macos-3 kmac Korean PCMAC

macos-25 zmac Simplified Chinese PCMAC

ms-932 j932 Japanese PCMS

ms-936 zwin Simplified Chinese PCMS

ms-949 kwin Korean PCMS

ms-950 ywin Traditional Chinese PCMS

msdos720 p720 Arabic MS-DOS

msdos737 p737 Greek MS-DOS

552 SBCS, DBCS, and Unicode Encoding Values for Transcoding Data � Chapter 18

Encoding Name Short Name Description

msdos775 p775 Baltic MS-DOS

open_ed-275 eobr Brazil OpenEdition

open_ed-424 eoiw Hebrew OpenEdition

open_ed-425 eoa2 Arabic OpenEdition

open_ed-838 eoth Thai OpenEdition

open_ed-870 eolz Central European OpenEdition

open_ed-875 eoel Greek OpenEdition

open_ed-924 eolt European OpenEdition

open_ed-1025 eocy Cyrillic OpenEdition

open_ed-1026 eotr Turkish OpenEdition

open_ed-1047 eol1 Western OpenEdition

open_ed-1112 eobl Baltic OpenEdition

open_ed-1122 eoet Estonian OpenEdition

open_ed-1130 eovi Vietnamese OpenEdition

open_ed-1140 eo40 North American OpenEdition

open_ed-1141 e041 Austria/Germany OpenEdition

open_ed-1142 e042 Denmark/Norway OpenEdition

open_ed-1143 e043 Finland/Sweden OpenEdition

open_ed-1144 e044 Italy OpenEdition

open_ed-1145 e045 Spain OpenEdition

open_ed-1146 e046 United Kingdom OpenEdition

open_ed-1147 e047 France OpenEdition

open_ed-1148 e048 International OpenEdition

pcoem437 p437 USA IBM-PC

pcoem850 p850 Western IBM-PC

pcoem852 p852 Central European IBM-PC

pcoem857 p857 Turkish IBM-PC

pcoem858 p858 European IBM-PC

pcoem860 p860 Portuguese MS-DOS

pcoem862 p862 Hebrew IBM-PC

pcoem863 p863 French Canadian IBM-PC

pcoem864 p864 Arabic IBM-PC

pcoem865 p865 Nordic IBM-PC

pcoem866 p866 Cyrillic IBM-PC

pcoem869 p869 Greek IBM-PC

pcoem874 p874 Thai IBM-PC

Using Encoding Values � SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 553

Encoding Name Short Name Description

pcoem921 p921 Baltic IBM-PC

pcoem922 p922 Estonia IBM-PC

pcoem1129 pvie Vietnamese IBM-PC

shift-jis sjis Japanese SJIS

thai thai Thai ISO

utf-8 utf8 Unicode (UTF-8)

utf-16be u16b Unicode (UTF-16BE)

utf-16le u16l Unicode (UTF-16LE)

utf-32be u32b Unicode (UTF-32BE)

utf-32le u32l Unicode (UTF-32LE)

us-ascii ansi enables you to create a data set
that is compatible with all
ASCII encodings

warabic wara Arabic Windows

wbaltic wbal Baltic Windows

wcyrillic wcyr Cyrillic Windows

wgreek wgrk Greek Windows

whebrew wheb Hebrew Windows

wlatin1 wlt1 Western Windows

wlatin2 wlt2 Central European Windows

wturkish wtur Turkish Windows

wvietnamese wvie Vietnamese Windows

554

555

C H A P T E R

19
Encoding Values for a SAS
Session

OpenVMS Encoding Values 555
UNIX Encoding Values 555

Windows Encoding Values 556

z/OS Encoding Values 558

OpenVMS Encoding Values
The encodings in the following tables are valid in the OpenVMS operating

environment.

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 19.1 Single-Byte Encodings for OpenVMS

ENCODING= Value Description

arabic Arabic (ISO)

cyrillic Cyrillic (ISO)

greek Greek (ISO)

hebrew Hebrew (ISO)

latin1 Western (ISO)

latin2 Central Europe (ISO)

latin5 Turkish (ISO)

latin6 Baltic (ISO)

latin9 European (ISO)

thai Thai (ISO)

UNIX Encoding Values
The encodings in the following tables are valid in UNIX environments.

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

556 Windows Encoding Values � Chapter 19

Table 19.2 Single-Byte Encodings for UNIX

ENCODING= Value Description

arabic Arabic (ISO 8859-6)

cyrillic Cyrillic (ISO 8859-5)

greek Greek (ISO 8859-7)

hebrew Hebrew (ISO 8859-8)

latin1 Western (ISO 8859-1)

latin2 Central Europe (ISO 8859-2)

latin5 Turkish (ISO 8859-9)

latin6 Baltic (ISO 8859-4)

latin8 Celtic (ISO 8859-14)

latin9 European (ISO 8859-15)

thai Thai (ISO 8859-11)

Table 19.3 Double-Byte Encodings for UNIX

ENCODING= Value Description

big5 Traditional Chinese (Big5)

euc-cn Simplified Chinese (EUC)

euc-jp Japanese (EUC)

euc-kr Korean (EUC)

euc-tw Traditional Chinese (EUC)

shift-jis Japanese (SJIS)

UNIX also supports the UTF-8 Unicode encoding.

Windows Encoding Values

The encodings in the following tables are valid in the Windows operating
environment.

Note: If an encoding-value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 19.4 Single-Byte Encodings for Windows

Description Windows
ENCODING= Value

MS-DOS
ENCODING= Value

IBM-PC
ENCODING= Value

Arabic warabic msdos720 pcoem864

Baltic wbaltic msdos775 pcoem921

Encoding Values � Windows Encoding Values 557

Description Windows
ENCODING= Value

MS-DOS
ENCODING= Value

IBM-PC
ENCODING= Value

Central Europe wlatin2 not applicable pcoem852

Cyrillic wcyrillic not applicable pcoem866

pcoem855

Central Europe not applicable not applicable pcoem852

Estonia not applicable not applicable pcoem922

European not applicable not applicable pcoem858

Farsi not applicable not applicable pc1098

French Canadian not applicable not applicable pcoem863

Greek wgreek msdos737 not applicable

Hebrew whebrew not applicable pcoem862

Indian Script Code not applicable not applicable pciscii806

Nordic not applicable not applicable pcoem865

Portuguese not applicable pcoem860 not applicable

Thai not applicable not applicable pcoem874

Turkish wturkish not applicable pcoem857

USA not applicable not applicable pcoem437

Vietnamese wvietnamese not applicable not applicable

Western wlatin1 not applicable pcoem850

Table 19.5 Windows Double-Byte Encodings

Description PCMS ENCODING= Value No Vendor ENCODING=
Value

Traditional Chinese ms-950 big5

Simplified Chinese ms-936 not applicable

558 z/OS Encoding Values � Chapter 19

Description PCMS ENCODING= Value No Vendor ENCODING=
Value

Japanese ms-932 shift-jis

Korean ms-949 not applicable

Note: Windows also supports the utf-8 Unicode encoding. �

z/OS Encoding Values

The encodings in the following tables are valid in the z/OS operating environment.

Note: If an encoding-value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 19.6 Single-Byte Encodings for z/OS

Encoding ENCODING=
Value Description

EBCDIC037 EBCDIC cp037- Old North America

EBCDIC275 EBCDIC cp275-Brazil

EBCDIC425 EBCDIC cp425-Arabic

EBCDIC838 EBCDIC cp838-Thai

EBCDIC870 EBCDIC cp870-Central Europe

EBCDIC875 EBCDIC cp875-Greek

EBCDIC905 EBCDIC cp905-Latin 3

EBCDIC924 EBCDIC cp924-Western Europe

EBCDIC1025 EBCDIC cp1025-Cyrillic

EBCDIC1026 EBCDIC cp1026-Turkish

EBCDIC1047 EBCDIC cp1047-Latin1

EBCDIC1097 EBCDIC cp1097-Farsi Bilingual

EBCDIC1112 EBCDIC cp1112-Baltic

EBCDIC1122 EBCDIC cp1122-Estonian

EBCDIC1130 EBCDIC cp1130-Vietnamese

EBCDIC1137 EBCDIC cp1137-Devanagari

EBCDIC1140 EBCDIC cp1140-North America

EBCDIC1141 EBCDIC cp1141-German/Austrian

EBCDIC1142 EBCDIC cp1142-Danish/Norwegian

EBCDIC1143 EBCDIC cp1143-Finnish/Swedish

EBCDIC1144 EBCDIC cp1144-Italian

EBCDIC1145 EBCDIC cp1145-Spanish

EBCDIC1146 EBCDIC cp1146-English (UK)

Encoding Values � z/OS Encoding Values 559

Encoding ENCODING=
Value Description

EBCDIC1147 EBCDIC cp1147-French

EBCDIC1148 EBCDIC cp1148-International

EBCDIC1149 EBCDIC cp1149-Iceland

EBCDIC1153 EBCDIC cp1153-Latin 2 Multilingual with euro

EBCDIC1154 EBCDIC cp1154-Cyrillic Multilingual with euro

EBCDIC1155 EBCDIC cp1155-Turkey with euro

EBCDIC1156 EBCDIC cp1156-Baltic Multilingual with euro

EBCDIC1157 EBCDIC cp1157-Estonia with euro

EBCDIC1158 EBCDIC cp1158-Cyrillic Ukraine with euro

OPEN_ED-037 OpenEdition EBCDIC cp037-Old North America

OPEN_ED-275 OpenEdition EBCDIC cp275-Brazil

OPEN_ED-425 OpenEdition EBCDIC cp425-Arabic

OPEN_ED-838 OpenEdition EBCDIC cp838-Thai

OPEN_ED-870 OpenEdition EBCDIC cp870-Central Europe

OPEN_ED-875 OpenEdition EBCDIC cp875-Greek

OPEN_ED-905 OpenEdition EBCDIC cp905-Latin 3

OPEN_ED-924 OpenEdition EBCDIC cp924-Western Europe

OPEN_ED-1025 OpenEdition EBCDIC cp1025-Cyrillic

OPEN_ED-1026 OpenEdition EBCDIC cp1026-Turkish

OPEN_ED-1047 OpenEdition EBCDIC cp1047-Latin1

OPEN_ED_1097 OpenEdition EBCDIC cp1097-Farsi Bilingual

OPEN_ED-1112 OpenEdition EBCDIC cp1112-Baltic

OPEN_ED-1122 OpenEdition EBCDIC cp1122-Estonian

OPEN_ED-1130 OpenEdition EBCDIC cp1130-Vietnamese

OPEN_ED-1137 OpenEdition EBCDIC cp1137-Devanagari

OPEN_ED-1140 OpenEdition EBCDIC cp1140-North America

OPEN_ED-1141 OpenEdition EBCDIC cp1141-German/Austrian

OPEN_ED-1142 OpenEdition EBCDIC cp1142-Danish/Norwegian

OPEN_ED-1143 OpenEdition EBCDIC cp1143-Finnish/Swedish

OPEN_ED-1144 OpenEdition EBCDIC cp1144-Italian

OPEN_ED-1145 OpenEdition EBCDIC cp1145-Spanish

OPEN_ED-1146 OpenEdition EBCDIC cp1146-English (UK)

OPEN_ED-1147 OpenEdition EBCDIC cp1147-French

OPEN_ED-1148 OpenEdition EBCDIC cp1148-International

OPEN_ED-1149 OpenEdition EBCDIC cp1149-Iceland

OPEN_ED-1153 OpenEdition EBCDIC cp1153-Latin 2 Multilingual with euro

560 z/OS Encoding Values � Chapter 19

Encoding ENCODING=
Value Description

OPEN_ED-1154 OpenEdition EBCDIC cp1154-Cyrillic Multilingual with euro

OPEN_ED-1155 OpenEdition EBCDIC cp1155-Turkey with euro

OPEN_ED-1156 OpenEdition EBCDIC cp1156-Baltic Multilingual with euro

OPEN_ED-1157 OpenEdition EBCDIC cp1157-Estonia with euro

OPEN_ED-1158 OpenEdition EBCDIC cp1158-Cyrillic Ukraine with euro

Table 19.7 Double-Byte Encodings for z/OS

Description ENCODING= Value

Japanese IBM-939

Korean IBM-933

Simplified Chinese IBM-935

Traditional Chinese IBM-937

561

P A R T5

Appendixes

Appendix 1.Additional NLS Language Elements 563

Appendix 2.Recommended Reading 649

562

563

A P P E N D I X

1
Additional NLS Language
Elements

Additional NLS Language Elements 564
EURDFDDw. Format 564

EURDFDEw. Format 566

EURDFDNw. Format 568

EURDFDTw.d Format 569

EURDFDWNw. Format 571
EURDFMNw. Format 573

EURDFMYw. Format 575

EURDFWDXw. Format 577

EURDFWKXw. Format 579

EURFRATSw.d Format 582

EURFRBEFw.d Format 583
EURFRCHFw.d Format 584

EURFRCZKw.d Format 585

EURFRDEMw.d Format 586

EURFRDKKw.d Format 588

EURFRESPw.d Format 589
EURFRFIMw.d Format 590

EURFRFRFw.d Format 591

EURFRGBPw.d Format 592

EURFRGRDw.d Format 593

EURFRHUFw.d Format 594
EURFRIEPw.d Format 596

EURFRITLw.d Format 597

EURFRLUFw.d Format 598

EURFRNLGw.d Format 599

EURFRNOKw.d Format 600

EURFRPLZw.d Format 601
EURFRPTEw.d Format 602

EURFRROLw.d Format 604

EURFRRURw.d Format 605

EURFRSEKw.d Format 606

EURFRSITw.d Format 607
EURFRTRLw.d Format 608

EURFRYUDw.d Format 609

EURTOATSw.d Format 610

EURTOBEFw.d Format 612

EURTOCHFw.d Format 613
EURTOCZKw.d Format 614

EURTODEMw.d Format 615

EURTODKKw.d Format 616

564 Additional NLS Language Elements � Appendix 1

EURTOESPw.d Format 617
EURTOFIMw.d Format 618

EURTOFRFw.d Format 619

EURTOGBPw.d Format 621

EURTOGRDw.d Format 622

EURTOHUFw.d Format 623
EURTOIEPw.d Format 624

EURTOITLw.d Format 625

EURTOLUFw.d Format 626

EURTONLGw.d Format 627

EURTONOKw.d Format 629

EURTOPLZw.d Format 630
EURTOPTEw.d Format 631

EURTOROLw.d Format 632

EURTORURw.d Format 633

EURTOSEKw.d Format 634

EURTOSITw.d Format 635
EURTOTRLw.d Format 637

EURTOYUDw.d Format 638

EURDFDEw. Informat 639

EURDFDTw. Informat 640

EURDFMYw. Informat 642
EUROCURR Function 644

Additional NLS Language Elements
The following EUR language elements have been replaced with NL language

elements. The EUR elements are supported in SAS 9.2, but SAS recommends that you
use the NL elements.

EURDFDDw. Format

Writes international date values in the form dd.mm.yy or dd.mm.yyyy.

Category: Date and Time

Alignment: right

Syntax
EURDFDDw.

Syntax Description

w
specifies the width of the output field.

Default: 8 (except Finnish, which is 10)

Additional NLS Language Elements � EURDFDDw. Format 565

Range: 2–10
Tip: When w is from 2 to 5, SAS prints as much of the month and day as possible.

When w is 7, the date appears as a two-digit year without slashes, and the value
is right-aligned in the output field.

Details
The EURDFDDw. format writes SAS date values in the form dd.mm.yy or dd.mm.yyyy,
where

dd
is the two-digit integer that represents the day of the month.

mm
is the two-digit integer that represents the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= system
option.

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
international date value. The third PUT statement uses the French language prefix in
the format to write the international date value. Therefore, the value of the DFLANG=
option is ignored.

Statement Result

----+----1

put date eurdfdd8.; 02.01.02

put date espdfdd8.; 02.01.02

put date fradfdd8.; 02/01/02

See Also

Formats:
DATEw. in SAS Language Reference: Dictionary

566 EURDFDEw. Format � Appendix 1

DDMMYYw. in SAS Language Reference: Dictionary
MMDDYYw. in SAS Language Reference: Dictionary
YYMMDDw. in SAS Language Reference: Dictionary

Functions:
MDY in SAS Language Reference: Dictionary

Informats:
DATEw. in SAS Language Reference: Dictionary
DDMMYYw. in SAS Language Reference: Dictionary
MMDDYYw. in SAS Language Reference: Dictionary
YYMMDDw. in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURDFDEw. Format

Writes international date values in the form ddmmmyy or ddmmmyyyy.

Category: Date and Time
Alignment: right

Syntax
EURDFDEw.

Syntax Description

w
specifies the width of the output field.
Default: 7 (except Finnish)
Range: 5–9 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 9–10 and the

default is 9. �

Details
The EURDFDEw. format writes SAS date values in the form ddmmmyy or ddmmmyyyy:

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the

Additional NLS Language Elements � EURDFDEw. Format 567

site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats do not work correctly using non-European encodings. When running in a DBCS
environment, the default format width and max width are larger than in the single byte
system to allow formats to use a double byte representation of certain characters.
However, you must use a session encoding that supports the European characters set,
such as UTF-8. �

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write
the international date value in Spanish. The third PUT statement uses the French
language prefix in the format to write the international date value in French.
Therefore, the value of the DFLANG= option is ignored.

Statements Results

----+----1

put date eurdfde9.; 02ene2002

put date espdfde9.; 02ene2002

put date fradfde9.; 02jan2002

See Also

Formats:
DATEw. in SAS Language Reference: Dictionary

Functions:
DATE in SAS Language Reference: Dictionary

Informats:
“EURDFDEw. Informat” on page 639

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

568 EURDFDNw. Format � Appendix 1

EURDFDNw. Format

Writes international date values as the day of the week.

Category: Date and Time

Alignment: right

Syntax

EURDFDNw.

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

Details

The EURDFDNw. format writes SAS date values in the form day-of-the-week:

day-of-the-week
is represented as 1=Monday, 2=Tuesday, and so forth.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats work correctly using non-European encodings. When running in a DBCS
environment, the default format width and max width are larger than in the single byte
system to allow formats to use a double byte representation of certain characters.
However, you must use a session encoding that supports the European characters set
like UTF-8. �

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
day of the week in Spanish. The third PUT statement uses the Italian language prefix

Additional NLS Language Elements � EURDFDTw.d Format 569

in the format to write the day of the week in Italian. Therefore, the value of the
DFLANG= option is ignored.

Statements Results

----+----1

put day eurdfdn.; 3

put day espdfdn.; 3

put day itadfdn.; 3

See Also

Formats:

DOWNAMEw. in SAS Language Reference: Dictionary

WEEKDAYw. in SAS Language Reference: Dictionary

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURDFDTw.d Format

Writes international datetime values in the form ddmmmyy:hh:mm:ss.ss or
ddmmmyyyy hh:mm:ss.ss.

Category: Date and Time

Alignment: right

Syntax
EURDFDTw.d

Syntax Description

w
specifies the width of the output field.

Default: 16

Range: 7–40

Tip: If you want to write a SAS datetime value with the date, hour, and seconds,
the width (w) must be at least 16. Add an additional two places to the width if you
want to return values with optional decimal fractions of seconds.

570 EURDFDTw.d Format � Appendix 1

d
specifies the number of digits to the right of the decimal point in the numeric value.

Range: 1–39

Restriction: must be less than w

Restriction: If w – d < 17, SAS truncates the decimal values.

Details

The EURDFDTw.d format writes SAS datetime values in the form
ddmmmyy:hh:mm:ss.ss:

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

ss.ss
is the number of seconds that range from 00 through 59 with the fraction of a
second following the decimal point.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Examples

The example table uses the input value of 1347453583, which is the SAS datetime
value that corresponds to September 12, 2002, at 12:39:43 p.m. The first PUT
statement assumes that the DFLANG= system option is set to German.

options dflang=german;

The second PUT statement uses the German language prefix in the format to write the
international datetime value in German. The third PUT statement uses the Italian
language prefix in the format to write the international datetime value in Italian. The
value of the DFLANG= option, therefore, is ignored.

Additional NLS Language Elements � EURDFDWNw. Format 571

Statements Results

----+----1----+----2

put date eurdfdt20.; 12Sep2002:12:39:43

put date deudfdt20.; 12Sep2002:12:39:43

put date itadfdt20.; 12Set2002:12:39:43

See Also

Formats:

DATEw. in SAS Language Reference: Dictionary

DATETIMEw.d in SAS Language Reference: Dictionary

TIMEw.d in SAS Language Reference: Dictionary

Functions:

DATETIME in SAS Language Reference: Dictionary

Informats:

DATEw. in SAS Language Reference: Dictionary

DATETIMEw.d in SAS Language Reference: Dictionary

“EURDFDTw. Informat” on page 640

TIMEw.d in SAS Language Reference: Dictionary

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURDFDWNw. Format

Writes international date values as the name of the day.

Category: Date and Time

Alignment: right

Syntax
EURDFDWNw.

Syntax Description

w
specifies the width of the output field.

572 EURDFDWNw. Format � Appendix 1

Default: depends on the language prefix you use. The following table shows the
default value for each language:

Language Default

Afrikaans (AFR) 9

Catalan (CAT) 9

Croatian (CRO) 10

Czech (CSY) 7

Danish (DAN) 7

Dutch (NLD) 9

Finnish (FIN) 11

French (FRA) 8

German (DEU) 10

Hungarian (HUN) 9

Italian (ITA) 9

Macedonian (MAC) 10

Norwegian (NOR) 7

Polish (POL) 12

Portuguese (PTG) 13

Russian (RUS) 11

Slovenian (SLO) 10

Spanish (ESP) 9

Swedish (SVE) 7

Swiss-French (FRS) 8

Swiss-German (DES) 10

Range: 1–32
Tip: If you omit w, SAS prints the entire name of the day.

Details
If necessary, SAS truncates the name of the day to fit the format width. The
EURDFDWNw. format writes SAS date values in the form day-name:

day-name
is the name of the day.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats do not work correctly using non-European encodings. When running in a DBCS

Additional NLS Language Elements � EURDFMNw. Format 573

environment, the default format width and max width are larger than in the single-
byte system to allow formats to use a double-byte representation of certain characters.
However, you must use a session encoding that supports the European characters set
like UTF-8. �

Examples

The following example table uses the input value 15344, which is the SAS date value
that corresponds to January 4, 2002. The first PUT statement assumes that the
DFLANG= system option is set to French.

options dflang=french;

put day eurdfdwn8.;

The second PUT statement uses the French language prefix in the format to write the
day of the week in French. The third PUT statement uses the Spanish language prefix
in the format to write the day of the week in Spanish. Therefore, the value of the
DFLANG= option is ignored.

Statements Results

----+----1

put day eurdfdwn8.; Vendredi

put day fradfdwn8.; Vendredi

put day espdfdwn8.; viernes

See Also

Formats:
DOWNAMEw. in SAS Language Reference: Dictionary

WEEKDAYw. in SAS Language Reference: Dictionary

Informats:
DATEw. in SAS Language Reference: Dictionary

DATETIMEw.d in SAS Language Reference: Dictionary

“EURDFDTw. Informat” on page 640

TIMEw.d in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURDFMNw. Format

Writes international date values as the name of the month.

574 EURDFMNw. Format � Appendix 1

Category: Date and Time

Alignment: right

Syntax

EURDFMNw.

Syntax Description

w
specifies the width of the output field.

Default: 9 (except for Finnish and Spanish)

Range: 1–32

Note: If you use the Finnish (FIN) language prefix, the default value for w is 11. If
you use the Spanish (ESP) language prefix, the default value for w is 10. �

Details

If necessary, SAS truncates the name of the month to fit the format width. The
EURDFMNw. format writes SAS date values in the form month-name:

month-name
is the name of the month.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats do not work correctly using non-European encodings. When running in a DBCS
environment, the default format width and max width will be larger than in the
single-byte system to allow formats to use a double-byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Examples

The example table uses the input value 15344, which is the SAS date value that
corresponds to January 4, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Italian.

options dflang=ita;

The second PUT statement uses the Italian language prefix in the format to write the
name of the month in Italian. The third PUT statement uses German language prefix

Additional NLS Language Elements � EURDFMYw. Format 575

in the format to write the name of the month in German. Therefore, the value of the
DFLANG= option is ignored.

Statements Results

----+----1

put date eurdfmn10.; janvier

put date itadfmn10.; Gennaio

put date deudfmn10.; Januar

See Also

Formats:

MONNAMEw. in SAS Language Reference: Dictionary

Functions:

DATE in SAS Language Reference: Dictionary

Informats:

“EURDFDEw. Informat” on page 639

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURDFMYw. Format

Writes international date values in the form mmmyy or mmmyyyy.

Category: Date and Time

Alignment: right

Syntax
EURDFMYw.

Syntax Description

w
specifies the width of the output field.

Default: 5 (except for Finnish)

Range: 5–7

Note: If you use the Finnish (FIN) language prefix, the value for w must be 8, which
is the default value. �

576 EURDFMYw. Format � Appendix 1

Details
The EURDFMYw. format writes SAS date values in the form mmmyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats do not work correctly using non-European encodings. When running in a DBCS
environment, the default format width and max width are larger than in the single-byte
system to allow formats to use a double-byte representation of certain characters.
However, you must use a session encoding that supports the European characters set
like UTF-8. �

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
name of the month in Spanish. The third PUT statement uses the French language
prefix in the format to write the name of the month in French. Therefore, the value of
the DFLANG= option is ignored.

Statements Results

----+----1

put date eurdfmy7.; ene2002

put date espdfmy7.; ene2002

put date fradfmy7.; jan2002

See Also

Formats:

DDMMYYw. in SAS Language Reference: Dictionary

MMDDYYw. in SAS Language Reference: Dictionary

MONYYw. in SAS Language Reference: Dictionary

YYMMDDw. in SAS Language Reference: Dictionary

Additional NLS Language Elements � EURDFWDXw. Format 577

Functions:
MONTH in SAS Language Reference: Dictionary

YEAR in SAS Language Reference: Dictionary

Informats:
“EURDFMYw. Informat” on page 642
MONYYw. in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURDFWDXw. Format

Writes international date values as the name of the month, the day, and the year in the form dd
month-name yy (or yyyy).

Category: Date and Time
Alignment: right

Syntax
EURDFWDXw.

Syntax Description

w
specifies the width of the output field.
Default: depends on the language prefix you use. The following table shows the

default value for each language:

Language Maximum Default

Afrikaans (AFR) 37 29

Catalan (CAT) 40 16

Croatian (CRO) 40 16

Czech (CSY) 40 16

Danish (DAN) 18 18

Dutch (NLD) 37 29

Finnish (FIN) 20 20

French (FRA) 18 18

German (DEU) 18 18

Hungarian (HUN) 40 18

Italian (ITA) 17 17

Macedonian (MAC) 40 17

578 EURDFWDXw. Format � Appendix 1

Language Maximum Default

Norwegian (NOR) 17 17

Polish (POL) 40 20

Portuguese (PTG) 37 23

Russian (RUS) 40 16

Slovenian (SLO) 40 17

Spanish (ESP) 24 24

Swedish (SVE) 17 17

Swiss-French (FRS) 17 17

Swiss-German (DES) 18 18

Range: 3–(maximum width)

Tip: If the value for w is too small to include the complete day of the week and the
month, SAS abbreviates as necessary.

Details

The EURDFWDXw. format writes SAS date values in the form dd month-name yy or
dd month-name yyyy:

dd
is an integer that represents the day of the month.

month-name
is the name of the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Comparisons

The EURDFWKXw. format is the same as the EURDFWDXw. format except that
EURDFWKX w. format adds the day-of-week in front of dd.

Additional NLS Language Elements � EURDFWKXw. Format 579

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Dutch.

options dflang=dutch;

The second PUT statement uses the Dutch language prefix in the format to write the
name of the month in Dutch. The third PUT statement uses the Italian language prefix
in the format to write the name of the month in Italian. Therefore, the value of the
DFLANG= option is ignored.

Statements Results

----+----1----+----2----+----3

put day eurdfwdx29.; 2 januari 2002

put day nlddfwdx29.; 2 januari 2002

put day itadfwdx17.; 02 Gennaio 1998

See Also

Formats:
WORDDATXw. in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURDFWKXw. Format

Writes international date values as the name of the day and date in the form day-of-week, dd
month-name yy (or yyyy).

Category: Date and Time
Alignment: right

Syntax
EURDFWKXw.

580 EURDFWKXw. Format � Appendix 1

Syntax Description

w
specifies the width of the output field.
Default: depends on the language prefix you use. The following table shows the

default value for each language:

Language Minimum Maximum Default

Afrikaans (AFR) 2 38 28

Catalan (CAT) 2 40 27

Croatian (CRO) 3 40 27

Czech (CSY) 2 40 25

Danish (DAN) 2 31 31

Dutch (NLD) 2 38 28

Finnish (FIN) 2 37 37

French (FRA) 3 27 27

German (DEU) 3 30 30

Hungarian (HUN) 3 40 28

Italian (ITA) 3 28 28

Macedonian (MAC) 3 40 29

Norwegian (NOR) 3 26 26

Polish (POL) 2 40 34

Portuguese (PTG) 3 38 38

Russian (RUS) 2 40 29

Slovenian (SLO) 3 40 29

Spanish (ESP) 1 35 35

Swedish (SVE) 3 26 26

Swiss-French (FRS) 3 26 26

Swiss-German (DES) 3 30 30

Tip: If the value for w is too small to include the complete day of the week and the
month, SAS abbreviates as necessary.

Details
The EURDFWKXw. format writes SAS date values in the form day-of-week, dd
month-name yy (or yyyy):

day-of-week
is the name of day.

dd
is an integer that represents the day of the month.

Additional NLS Language Elements � EURDFWKXw. Format 581

month-name
is the name of the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats do not work correctly using non-European encodings. When running in a DBCS
environment, the default format width and max width are larger than in the single byte
system to allow formats to use a double byte representation of certain characters.
However, you must use a session encoding that supports the European characters set
like UTF-8. �

Comparisons
The EURDFWKXw. format is the same as the EURDFWDXw. format except that
EURDFWKXw. format adds day-of-week in front of dd.

Examples

The example table uses the input value 15344, which is the SAS date value that
corresponds to January 4, 2002. The first PUT statement assumes that the DFLANG=
system option is set to German.

options dflang=German;

The second PUT statement uses the German language prefix in the format to write the
name of the month in German. The third PUT statement uses the Italian language
prefix in the format to write the name of the month in Italian. Therefore, the value of
the DFLANG= option is ignored.

Statements Results

----+----1----+----2----+----3

put date eurdfwkx30.; Freitag, 4. Januar 2002

put date deudfwkx30.; Freitag, 4. Januar 2002

put date itadfwkx17.; Ven, 04 Gen 2002

See Also

Formats:
DATEw. in SAS Language Reference: Dictionary
DDMMYYw. in SAS Language Reference: Dictionary
MMDDYYw. in SAS Language Reference: Dictionary
TODw. in SAS Language Reference: Dictionary

582 EURFRATSw.d Format � Appendix 1

WEEKDATXw. in SAS Language Reference: Dictionary

YYMMDDw. in SAS Language Reference: Dictionary

Functions:

JULDATE in SAS Language Reference: Dictionary

MDY in SAS Language Reference: Dictionary

WEEKDAY in SAS Language Reference: Dictionary

Informats:

DATEw. in SAS Language Reference: Dictionary

DDMMYYw. in SAS Language Reference: Dictionary

MMDDYYw. in SAS Language Reference: Dictionary

YYMMDDw. in SAS Language Reference: Dictionary

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

EURFRATSw.d Format

Converts an amount from Austrian schillings to euros.

Category: Currency Conversion

Alignment: right

Syntax

EURFRATSw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURFRATS w.d format converts an amount from Austrian schillings to an amount
in euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRATSw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61 .

Additional NLS Language Elements � EURFRBEFw.d Format 583

Examples

The following table shows input values in Austrian schillings, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrats5.;

put amount eurfrats9.2;

E4

E3,63

5234.56 put amount eurfrats5.;

put amount eurfrats9.2;

E380

E380,41

52345 put amount eurfrats5.;

put amount eurfrats9.2;

3.804

E3.804,06

See Also

Formats:
“EURTOATSw.d Format” on page 610

Functions:
“EUROCURR Function” on page 644

EURFRBEFw.d Format
Converts an amount from Belgian francs to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRBEFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRBEFw.d format converts an amount from Belgian francs to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is

584 EURFRCHFw.d Format � Appendix 1

incorporated into the EURFRBEFw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Belgian francs, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrbef5.;

put amount eurfrbef9.2;

E1

E1,24

5234.56 put amount eurfrbef5.;

put amount eurfrbef9.2;

E130

E129,76

52345 put amount eurfrbef5.;

put amount eurfrbef9.2;

1.298

E1.297,60

See Also

Formats:

“EURTOBEFw.d Format” on page 612

Functions:

“EUROCURR Function” on page 644

EURFRCHFw.d Format

Converts an amount from Swiss francs to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRCHFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Additional NLS Language Elements � EURFRCZKw.d Format 585

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRCHFw.d format converts an amount from Swiss francs to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRCHFw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Swiss francs, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrchf5.;

put amount eurfrchf9.2;

E31

E31,17

1234.56 put amount eurfrchf5.;

put amount eurfrchf9.2;

E770

E769,53

12345 put amount eurfrchf5.;

put amount eurfrchf9.2;

7.695

E7.694,94

See Also

Formats:

“EURTOCHFw.d Format” on page 613

Functions:

“EUROCURR Function” on page 644

EURFRCZKw.d Format

Converts an amount from Czech koruny to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRCZKw.d

586 EURFRDEMw.d Format � Appendix 1

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRCZKw.d format converts an amount from Czech koruny to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRCZKw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Czech koruny, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrczk5.;

put amount eurfrczk9.2;

E1

E1,43

5234.56 put amount eurfrczk5.;

put amount eurfrczk9.2;

E150

E150,18

52345 put amount eurfrczk5.;

put amount eurfrczk9.2;

1.502

E1.501,74

See Also

Formats:
“EURTOCZKw.d Format” on page 614

Functions:
“EUROCURR Function” on page 644

EURFRDEMw.d Format

Converts an amount from Deutsche marks to euros.

Category: Currency Conversion
Alignment: right

Additional NLS Language Elements � EURFRDEMw.d Format 587

Syntax

EURFRDEMw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURFRDEMw.d format converts an amount from Deutsche marks to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRDEMw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Deutsche marks, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrdem5.;

put amount eurfrdem9.2;

E26

E25,56

1234.56 put amount eurfrdem5.;

put amount eurfrdem9.2;

E631

E631,22

12345 put amount eurfrdem5.;

put amount eurfrdem9.2;

6.312

E6.311,90

See Also

Formats:

“EURTODEMw.d Format” on page 615

Functions:

“EUROCURR Function” on page 644

588 EURFRDKKw.d Format � Appendix 1

EURFRDKKw.d Format

Converts an amount from Danish kroner to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRDKKw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRDKKw.d format converts an amount from Danish kroner to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRDKKw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Danish kroner, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrdkk5.;

put amount eurfrdkk9.2;

E7

E6,68

1234.56 put amount eurfrdkk5.;

put amount eurfrdkk9.2;

E165

E164,83

12345 put amount eurfrdkk5.;

put amount eurfrdkk9.2;

1.648

E1.648,18

Additional NLS Language Elements � EURFRESPw.d Format 589

See Also

Formats:

“EURTODKKw.d Format” on page 616

Functions:

“EUROCURR Function” on page 644

EURFRESPw.d Format

Converts an amount from Spanish pesetas to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRESPw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRESPw.d format converts an amount from Spanish pesetas to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRESPw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Spanish pesetas, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

200 put amount eurfresp5.;

put amount eurfresp9.2;

E1

E1,20

590 EURFRFIMw.d Format � Appendix 1

Amounts Statements Results

20234.56 put amount eurfresp5.;

put amount eurfresp9.2;

E122

E121,61

202345 put amount eurfresp5.;

put amount eurfresp9.2;

1.216

E1.216,12

See Also

Formats:

“EURTOESPw.d Format” on page 617

Functions:

“EUROCURR Function” on page 644

EURFRFIMw.d Format

Converts an amount from Finnish markkaa to euros.

Category: Currency Conversion

Alignment: right

Syntax

EURFRFIMw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURFRFIMw.d format converts an amount from Finnish markkaa to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRFIMw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Additional NLS Language Elements � EURFRFRFw.d Format 591

Examples

The following table shows input values in Finnish markkaa, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrfim5.;

put amount eurfrfim9.2;

E8

E8,41

1234.56 put amount eurfrfim5.;

put amount eurfrfim9.2;

E208

E207,64

12345 put amount eurfrfim5.;

put amount eurfrfim9.2;

2.076

E2.076,28

See Also

Formats:
“EURTOFIMw.d Format” on page 618

Functions:
“EUROCURR Function” on page 644

EURFRFRFw.d Format
Converts an amount from French francs to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRFRFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRFRFw.d format converts an amount from French francs to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is

592 EURFRGBPw.d Format � Appendix 1

incorporated into the EURFRFRFw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in French francs, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrfrf5.;

put amount eurfrfrf9.2;

E8

E7,62

1234.56 put amount eurfrfrf5.;

put amount eurfrfrf9.2;

E188

E188,21

12345 put amount eurfrfrf5.;

put amount eurfrfrf9.2;

1.882

E1.881,98

See Also

Formats:

“EURTOFRFw.d Format” on page 619

Functions:

“EUROCURR Function” on page 644

EURFRGBPw.d Format

Converts an amount from British pounds to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRGBPw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Additional NLS Language Elements � EURFRGRDw.d Format 593

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRGBPw.d format converts an amount from British pounds to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRGBPw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in British pounds, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrgbp5.;

put amount eurfrgbp9.2;

E71

E71.42

1234.56 put amount eurfrgbp5.;

put amount eurfrgbp9.2;

1,763

E1,763.32

12345 put amount eurfrgbp5.;

put amount eurfrgbp9.2;

17632

17,632.39

See Also

Formats:

“EURTOGBPw.d Format” on page 621

Functions:

“EUROCURR Function” on page 644

EURFRGRDw.d Format

Converts an amount from Greek drachmas to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRGRDw.d

594 EURFRHUFw.d Format � Appendix 1

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRGRDw.d format converts an amount from Greek drachmas to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRGRDw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Greek drachmas, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

400 put amount eurfrgrd5.;

put amount eurfrgrd9.2;

E1

E1,17

40234.56 put amount eurfrgrd5.;

put amount eurfrgrd9.2;

E118

E118,03

402345 put amount eurfrgrd5.;

put amount eurfrgrd9.2;

1.180

E1.180,30

See Also

Formats:
“EURTOGRDw.d Format” on page 622

Functions:
“EUROCURR Function” on page 644

EURFRHUFw.d Format

Converts an amount from Hungarian forints to euros.

Category: Currency Conversion
Alignment: right

Additional NLS Language Elements � EURFRHUFw.d Format 595

Syntax

EURFRHUFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURFRHUFw.d format converts an amount from Hungarian forints to an amount
in euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRHUFw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Hungarian forints, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

300 put amount eurfrhuf5.;

put amount eurfrhuf9.2;

E1

E1,15

30234.56 put amount eurfrhuf5.;

put amount eurfrhuf9.2;

E116

E116,14

302345 put amount eurfrhuf5.;

put amount eurfrhuf9.2;

1.161

E1.161,41

See Also

Formats:

“EURTOHUFw.d Format” on page 623

Functions:

“EUROCURR Function” on page 644

596 EURFRIEPw.d Format � Appendix 1

EURFRIEPw.d Format

Converts an amount from Irish pounds to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRIEPw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRIEPw.d format converts an amount from Irish pounds to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRIEPw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Irish pounds, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

1 put amount eurfriep5.;

put amount eurfriep9.2;

E1

E1.27

1234.56 put amount eurfriep5.;

put amount eurfriep9.2;

1,568

E1,567.57

12345 put amount eurfriep5.;

put amount eurfriep9.2;

15675

15,674.92

Additional NLS Language Elements � EURFRITLw.d Format 597

See Also

Formats:

“EURTOIEPw.d Format” on page 624

Functions:

“EUROCURR Function” on page 644

EURFRITLw.d Format

Converts an amount from Italian lire to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRITLw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRITLw.d format converts an amount from Italian lire to an amount in euros
and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRITLw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Italian lire, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

2000 put amount eurfritl5.;

put amount eurfritl9.2;

E1

E1,03

598 EURFRLUFw.d Format � Appendix 1

Amounts Statements Results

7234.56 put amount eurfritl5.;

put amount eurfritl9.2;

E4

E3,74

72345 put amount eurfritl5.;

put amount eurfritl9.2;

E37

E37,36

See Also

Formats:

“EURTOITLw.d Format” on page 625

Functions:

“EUROCURR Function” on page 644

EURFRLUFw.d Format

Converts an amount from Luxembourg francs to euros.

Category: Currency Conversion

Alignment: right

Syntax

EURFRLUFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURFRLUFw.d format converts an amount from Luxembourg francs to an amount
in euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRLUFw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Additional NLS Language Elements � EURFRNLGw.d Format 599

Examples

The following table shows input values in Luxembourg francs, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrluf5.;

put amount eurfrluf9.2;

E1

E1,24

1234.56 put amount eurfrluf5.;

put amount eurfrluf9.2;

E31

E30,60

12345 put amount eurfrluf5.;

put amount eurfrluf9.2;

E306

E306,02

See Also

Formats:
“EURTOLUFw.d Format” on page 626

Functions:
“EUROCURR Function” on page 644

EURFRNLGw.d Format
Converts an amount from Dutch guilders to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRNLGw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRNLGw.d format converts an amount from Dutch guilders to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is

600 EURFRNOKw.d Format � Appendix 1

incorporated into the EURFRNLGw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Dutch guilders, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrnlg5.;

put amount eurfrnlg9.2;

E23

E22,69

1234.56 put amount eurfrnlg5.;

put amount eurfrnlg9.2;

E560

E560,22

12345 put amount eurfrnlg5.;

put amount eurfrnlg9.2;

5.602

E5.601,92

See Also

Formats:

“EURTONLGw.d Format” on page 627

Functions:

“EUROCURR Function” on page 644

EURFRNOKw.d Format

Converts an amount from Norwegian krone to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRNOKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Additional NLS Language Elements � EURFRPLZw.d Format 601

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRNOKw.d format converts an amount from Norwegian krone to an amount
in euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRNOKw.d format and the EUROCURR function.
For more information about European currency conversion and currency conversion
rate tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Norwegian krone, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrnok5.;

put amount eurfrnok9.2;

E5

E5,44

1234.56 put amount eurfrnok5.;

put amount eurfrnok9.2;

E134

E134,22

12345 put amount eurfrnok5.;

put amount eurfrnok9.2;

1.342

E1.342,18

See Also

Formats:

“EURTONOKw.d Format” on page 629

Functions:

“EUROCURR Function” on page 644

EURFRPLZw.d Format

Converts an amount from Polish zlotys to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRPLZw.d

602 EURFRPTEw.d Format � Appendix 1

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRPLZw.d format converts an amount from Polish zlotys to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRPLZw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Polish zlotys, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrplz5.;

put amount eurfrplz9.2;

E12

E11,90

1234.56 put amount eurfrplz5.;

put amount eurfrplz9.2;

E294

E293,94

12345 put amount eurfrplz5.;

put amount eurfrplz9.2;

2.939

E2.939,29

See Also

Formats:
“EURTOPLZw.d Format” on page 630

Functions:
“EUROCURR Function” on page 644

EURFRPTEw.d Format

Converts an amount from Portuguese escudos to euros.

Category: Currency Conversion
Alignment: right

Additional NLS Language Elements � EURFRPTEw.d Format 603

Syntax

EURFRPTEw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURFRPTEw.d format converts an amount from Portuguese escudos to an amount
in euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRPTEw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Portuguese escudos, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

300 put amount eurfrpte5.;

put amount eurfrpte9.2;

E1

E1,50

30234.56 put amount eurfrpte5.;

put amount eurfrpte9.2;

E151

E150,81

302345 put amount eurfrpte5.;

put amount eurfrpte9.2;

1.508

E1.508,09

See Also

Formats:

“EURTOPTEw.d Format” on page 631

Functions:

“EUROCURR Function” on page 644

604 EURFRROLw.d Format � Appendix 1

EURFRROLw.d Format

Converts an amount from Romanian lei to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRROLw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRROLw.d format converts an amount from Romanian lei to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRROLw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Romanian lei, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrrol5.;

put amount eurfrrol9.2;

E4

E3,65

5234.56 put amount eurfrrol5.;

put amount eurfrrol9.2;

E382

E381,81

52345 put amount eurfrrol5.;

put amount eurfrrol9.2;

3.818

E3.818,02

Additional NLS Language Elements � EURFRRURw.d Format 605

See Also

Formats:

“EURTOROLw.d Format” on page 632

Functions:

“EUROCURR Function” on page 644

EURFRRURw.d Format

Converts an amount from Russian rubles to euros.

Category: Currency Conversion

Alignment: right

Syntax
EURFRRURw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRRURw.d format converts an amount from Russian rubles to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRRURw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Examples

The following table shows input values in Russian rubles, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrrur5.;

put amount eurfrrur9.2;

E3

E2,53

606 EURFRSEKw.d Format � Appendix 1

Amounts Statements Results

5234.56 put amount eurfrrur5.;

put amount eurfrrur9.2;

E265

E264,80

52345 put amount eurfrrur5.;

put amount eurfrrur9.2;

2.648

E2.647,97

See Also

Formats:

“EURTORURw.d Format” on page 633

Functions:

“EUROCURR Function” on page 644

EURFRSEKw.d Format

Converts an amount from Swedish kronor to euros.

Category: Currency Conversion

Alignment: right

Syntax

EURFRSEKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURFRSEKw.d format converts an amount from Swedish kronor to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRSEKw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 61.

Additional NLS Language Elements � EURFRSITw.d Format 607

Examples

The following table shows input values in Swedish kronor, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrsek5.;

put amount eurfrsek9.2;

E5

E5,34

1234.56 put amount eurfrsek5.;

put amount eurfrsek9.2;

E132

E131,81

12345 put amount eurfrsek5.;

put amount eurfrsek9.2;

1.318

E1.318,08

See Also

Formats:
“EURTOSEKw.d Format” on page 634

Functions:
“EUROCURR Function” on page 644

EURFRSITw.d Format
Converts an amount from Slovenian tolars to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRSITw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRSITw.d format converts an amount from Slovenian tolars to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate

608 EURFRTRLw.d Format � Appendix 1

that is incorporated into the EURFRSITw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “Overview to European Currency Conversion” on page 61.

Note: Slovenia’s currency is the Euro. The information for EURFRSIT is provided
for user’s historical data. �

Examples

The following table shows input values in Slovenian tolars, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

200 put amount eurfrsit5.;

put amount eurfrsit9.2;

E1

E1,05

20234.56 put amount eurfrsit5.;

put amount eurfrsit9.2;

E106

E105,94

202345 put amount eurfrsit5.;

put amount eurfrsit9.2;

1.059

E1.059,40

See Also

Formats:
“EURTOSITw.d Format” on page 635

Functions:
“EUROCURR Function” on page 644

EURFRTRLw.d Format

Converts an amount from Turkish liras to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRTRLw.d

Syntax Description

w
specifies the width of the output field.

Additional NLS Language Elements � EURFRYUDw.d Format 609

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRTRLw.d format converts an amount from Turkish liras to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRTRLw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “Overview to European Currency Conversion” on page 61.

Examples

The following table shows input values in Turkish liras, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

400 put amount eurfrtrl5.;

put amount eurfrtrl9.2;

E1

E1,19

40234.56 put amount eurfrtrl5.;

put amount eurfrtrl9.2;

E119

E119,42

402345 put amount eurfrtrl5.;

put amount eurfrtrl9.2;

1.194

E1.194,21

See Also

Formats:

“EURTOTRLw.d Format” on page 637

Functions:
“EUROCURR Function” on page 644

EURFRYUDw.d Format

Converts an amount from Yugoslavian dinars to euros.

Category: Currency Conversion
Alignment: right

Syntax
EURFRYUDw.d

610 EURTOATSw.d Format � Appendix 1

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURFRYUDw.d format converts an amount from Yugoslavian dinars to an amount
in euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRYUDw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “Overview to European Currency Conversion” on page 61.

Examples

The following table shows input values in Yugoslavian dinars, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfryud5.;

put amount eurfryud9.2;

E4

E3,83

5234.56 put amount eurfryud5.;

put amount eurfryud9.2;

E401

E400,67

52345 put amount eurfryud5.;

put amount eurfryud9.2;

4.007

E4.006,69

See Also

Formats:
“EURTOYUDw.d Format” on page 638

Functions:
“EUROCURR Function” on page 644

EURTOATSw.d Format

Converts an amount from euros to Austrian schillings.

Category: Currency Conversion
Alignment: right

Additional NLS Language Elements � EURTOATSw.d Format 611

Syntax

EURTOATSw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURTOATSw.d format converts an amount in euros to an amount in Austrian
schillings. The conversion rate is a fixed rate that is incorporated into the
EURTOATSw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Austrian schillings.

Amounts Statements Results

----+----1----2

1 put amount eurtoats6.;

put amount eurtoats12.2;

14

13.76

1234.56 put amount eurtoats6.;

put amount eurtoats12.2;

16988

16987.92

12345 put amount eurtoats6.;

put amount eurtoats12.2;

169871

169870.90

See Also

Formats:

“EURFRATSw.d Format” on page 582

Functions:

“EUROCURR Function” on page 644

612 EURTOBEFw.d Format � Appendix 1

EURTOBEFw.d Format

Converts an amount from euros to Belgian francs.

Category: Currency Conversion
Alignment: right

Syntax
EURTOBEFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOBEFw.d format converts an amount in euros to an amount in Belgian
francs. The conversion rate is a fixed rate that is incorporated into the EURTOBEFw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Belgian francs.

Amounts Statements Results

----+----1----2

1 put amount eurtobef6.;

put amount eurtobef12.2;

40

40.34

1234.56 put amount eurtobef6.;

put amount eurtobef12.2;

49802

49802.03

12345 put amount eurtobef6.;

put amount eurtobef12.2;

497996

497996.07

See Also

Formats:

Additional NLS Language Elements � EURTOCHFw.d Format 613

“EURFRBEFw.d Format” on page 583
Functions:

“EUROCURR Function” on page 644

EURTOCHFw.d Format

Converts an amount from euros to Swiss francs.

Category: Currency Conversion
Alignment: right

Syntax
EURTOCHFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOCHFw.d format converts an amount in euros to an amount in Swiss francs.
The conversion rate is a changeable rate that is incorporated into the EURTOCHFw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Swiss francs.

Amounts Statements Results

----+----1----2

1 put amount eurtochf6.;

put amount eurtochf12.2;

2

1.60

1234.56 put amount eurtochf6.;

put amount eurtochf12.2;

1981

1980.60

12345 put amount eurtochf6.;

put amount eurtochf12.2;

19805

19805.08

614 EURTOCZKw.d Format � Appendix 1

See Also

Formats:

“EURFRCHFw.d Format” on page 584

Functions:

“EUROCURR Function” on page 644

EURTOCZKw.d Format

Converts an amount from euros to Czech koruny.

Category: Currency Conversion

Alignment: right

Syntax
EURTOCZKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOCZKw.d format converts an amount in euros to an amount in Czech
koruny. The conversion rate is a changeable rate that is incorporated into the
EURTOCZKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Czech koruny.

Amounts Statements Results

----+----1----2

1 put amount eurtoczk6.;

put amount eurtoczk12.2;

35

34.86

Additional NLS Language Elements � EURTODEMw.d Format 615

Amounts Statements Results

1234.56 put amount eurtoczk6.;

put amount eurtoczk12.2;

43032

43032.19

12345 put amount eurtoczk6.;

put amount eurtoczk12.2;

430301

430301.02

See Also

Formats:

“EURFRCZKw.d Format” on page 585

Functions:

“EUROCURR Function” on page 644

EURTODEMw.d Format

Converts an amount from euros to Deutsche marks.

Category: Currency Conversion

Alignment: right

Syntax

EURTODEMw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURTODEMw.d format converts an amount in euros to an amount in Deutsche
marks. The conversion rate is a fixed rate that is incorporated into the EURTODEMw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

616 EURTODKKw.d Format � Appendix 1

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Deutsche marks.

Amounts Statements Results

----+----1----2

1 put amount eurtodem6.;

put amount eurtodem12.2;

2

1.96

1234.56 put amount eurtodem6.;

put amount eurtodem12.2;

2415

2414.59

12345 put amount eurtodem6.;

put amount eurtodem12.2;

24145

24144.72

See Also

Formats:
“EURFRDEMw.d Format” on page 586

Functions:
“EUROCURR Function” on page 644

EURTODKKw.d Format
Converts an amount from euros to Danish kroner.

Category: Currency Conversion
Alignment: right

Syntax
EURTODKKw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTODKKw.d format converts an amount in euros to an amount in Danish
kroner. The conversion rate is a changeable rate that is incorporated into the

Additional NLS Language Elements � EURTOESPw.d Format 617

EURTODKKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Danish kroner.

Amounts Statements Results

----+----1----2

1 put amount eurtodkk6.;

put amount eurtodkk12.2;

7

7.49

1234.56 put amount eurtodkk6.;

put amount eurtodkk12.2;

9247

9246.97

12345 put amount eurtodkk6.;

put amount eurtodkk12.2;

92465

92465.16

See Also

Formats:

“EURFRDKKw.d Format” on page 588

Functions:

“EUROCURR Function” on page 644

EURTOESPw.d Format

Converts an amount from euros to Spanish pesetas.

Category: Currency Conversion

Alignment: right

Syntax
EURTOESPw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

618 EURTOFIMw.d Format � Appendix 1

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOESPw.d format converts an amount in euros to an amount in Spanish
pesetas. The conversion rate is a fixed rate that is incorporated into the
EURTOESPw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Spanish pesetas.

Amounts Statements Results

—-+—-1—-2

1 put amount eurtoesp8.;

put amount eurtoesp12.2;

166

166.39

1234.56 put amount eurtoesp8.;

put amount eurtoesp12.2;

205414

205413.50

12345 put amount eurtoesp8.;

put amount eurtoesp12.2;

2054035

2054035.17

See Also

Formats:

“EURFRESPw.d Format” on page 589

Functions:

“EUROCURR Function” on page 644

EURTOFIMw.d Format

Converts an amount from euros to Finnish markkaa.

Category: Currency Conversion

Alignment: right

Syntax
EURTOFIMw.d

Additional NLS Language Elements � EURTOFRFw.d Format 619

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOFIMw.d format converts an amount in euros to an amount in Finnish
markkaa. The conversion rate is a fixed rate that is incorporated into the
EURTOFIMw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Finnish markkaa.

Amounts Statements Results

----+----1----2

1 put amount eurtofim6.;

put amount eurtofim12.2;

6

5.95

1234.56 put amount eurtofim6.;

put amount eurtofim12.2;

7340

7340.36

12345 put amount eurtofim6.;

put amount eurtofim12.2;

73400

73400.04

See Also

Formats:
“EURFRFIMw.d Format” on page 590

Functions:
“EUROCURR Function” on page 644

EURTOFRFw.d Format

Converts an amount from euros to French francs.

Category: Currency Conversion
Alignment: right

620 EURTOFRFw.d Format � Appendix 1

Syntax

EURTOFRFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURTOFRFw.d format converts an amount in euros to an amount in French
francs. The conversion rate is a fixed rate that is incorporated into the EURTOFRFw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in French francs.

Amounts Statements Results

----+----1----2

1 put amount eurtofrf6.;

put amount eurtofrf12.2;

7

6.56

1234.56 put amount eurtofrf6.;

put amount eurtofrf12.2;

8098

8098.18

12345 put amount eurtofrf6.;

put amount eurtofrf12.2;

80978

80977.89

See Also

Formats:

“EURFRFRFw.d Format” on page 591

Functions:

“EUROCURR Function” on page 644

Additional NLS Language Elements � EURTOGBPw.d Format 621

EURTOGBPw.d Format

Converts an amount from euros to British pounds.

Category: Currency Conversion
Alignment: right

Syntax
EURTOGBPw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOGBPw.d format converts an amount in euros to an amount in British
pounds. The conversion rate is a changeable rate that is incorporated into the
EURTOGBPw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in British pounds.

Amounts Statements Results

----+----1----2

1 put amount eurtogbp6.;

put amount eurtogbp12.2;

1

0.70

1234.56 put amount eurtogbp6.;

put amount eurtogbp12.2;

864

864.35

12345 put amount eurtogbp6.;

put amount eurtogbp12.2;

8643

8643.13

622 EURTOGRDw.d Format � Appendix 1

See Also

Formats:

“EURFRGBPw.d Format” on page 592

Functions:

“EUROCURR Function” on page 644

EURTOGRDw.d Format

Converts an amount from euros to Greek drachmas.

Category: Currency Conversion

Alignment: right

Syntax
EURTOGRDw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOGRDw.d format converts an amount in euros to an amount in Greek
drachmas. The conversion rate is a fixed rate that is incorporated into the
EURTOGRDw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Greek drachmas.

Amounts Statements Results

----+----1----2

1 put amount eurtogrd8.;

put amount eurtogrd16.2;

341

340.89

Additional NLS Language Elements � EURTOHUFw.d Format 623

Amounts Statements Results

1234.56 put amount eurtogrd8.;

put amount eurtogrd16.2;

420843

420842.99

12345 put amount eurtogrd8.;

put amount eurtogrd16.2;

4208225

4208225.33

See Also

Formats:

“EURFRGRDw.d Format” on page 593

Functions:

“EUROCURR Function” on page 644

EURTOHUFw.d Format

Converts an amount from euros to Hungarian forints.

Category: Currency Conversion

Alignment: right

Syntax

EURTOHUFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURTOHUFw.d format converts an amount in euros to an amount in Hungarian
forints. The conversion rate is a changeable rate that is incorporated into the
EURTOHUFw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

624 EURTOIEPw.d Format � Appendix 1

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Hungarian forints.

Amounts Statements Results

----+----1----2

1 put amount eurtohuf8.;

put amount eurtohuf14.2;

260

260.33

1234.56 put amount eurtohuf8.;

put amount eurtohuf14.2;

321387

321386.83

12345 put amount eurtohuf8.;

put amount eurtohuf14.2;

3213712

3213712.13

See Also

Formats:
“EURFRHUFw.d Format” on page 594

Functions:
“EUROCURR Function” on page 644

EURTOIEPw.d Format
Converts an amount from euros to Irish pounds.

Category: Currency Conversion
Alignment: right

Syntax
EURTOIEPw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOIEPw.d format converts an amount in euros to an amount in Irish pounds.
The conversion rate is a fixed rate that is incorporated into the EURTOIEPw.d format

Additional NLS Language Elements � EURTOITLw.d Format 625

and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Irish pounds.

Amounts Statements Results

----+----1----2

1 put amount eurtoiep6.;

put amount eurtoiep12.2;

1

0.79

1234.56 put amount eurtoiep6.;

put amount eurtoiep12.2;

972

972.30

12345 put amount eurtoiep6.;

put amount eurtoiep12.2;

9722

9722.48

See Also

Formats:

“EURFRIEPw.d Format” on page 596

Functions:

“EUROCURR Function” on page 644

EURTOITLw.d Format

Converts an amount from euros to Italian lire.

Category: Currency Conversion

Alignment: right

Syntax
EURTOITLw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

626 EURTOLUFw.d Format � Appendix 1

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOITLw.d format converts an amount in euros to an amount in Italian lire.
The conversion rate is a fixed rate that is incorporated into the EURTOITLw.d format
and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Italian lire.

Amounts Statements Results

----+----1----2

1 put amount eurtoitl8.;

put amount eurtoitl12.2;

1936

1936.27

1234.56 put amount eurtoitl8.;

put amount eurtoitl12.2;

2390441

2390441.49

12345 put amount eurtoitl8.;

put amount eurtoitl12.2;

23903253

23903253.15

See Also

Formats:

“EURFRITLw.d Format” on page 597

Functions:

“EUROCURR Function” on page 644

EURTOLUFw.d Format

Converts an amount from euros to Luxembourg francs.

Category: Currency Conversion

Alignment: right

Syntax
EURTOLUFw.d

Additional NLS Language Elements � EURTONLGw.d Format 627

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOLUFw.d format converts an amount in euros to an amount in Luxembourg
francs. The conversion rate is a fixed rate that is incorporated into the EURTOLUFw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Luxembourg francs.

Amounts Statements Results

----+----1----2

1 put amount eurtoluf6.;

put amount eurtoluf12.2;

40

40.34

1234.56 put amount eurtoluf6.;

put amount eurtoluf12.2;

49802

49802.03

12345 put amount eurtoluf6.;

put amount eurtoluf12.2;

497996

497996.07

See Also

Formats:
“EURFRLUFw.d Format” on page 598

Functions:
“EUROCURR Function” on page 644

EURTONLGw.d Format

Converts an amount from euros to Dutch guilders.

Category: Currency Conversion
Alignment: right

628 EURTONLGw.d Format � Appendix 1

Syntax

EURTONLGw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURTONLGw.d format converts an amount in euros to an amount in Dutch
guilders. The conversion rate is a fixed rate that is incorporated into the
EURTONLGw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Dutch guilders.

Amounts Statements Results

----+----1----2

1 put amount eurtonlg6.;

put amount eurtonlg12.2;

2

2.20

1234.56 put amount eurtonlg6.;

put amount eurtonlg12.2;

2721

2720.61

12345 put amount eurtonlg6.;

put amount eurtonlg12.2;

27205

27204.80

See Also

Formats:

“EURFRNLGw.d Format” on page 599

Functions:

“EUROCURR Function” on page 644

Additional NLS Language Elements � EURTONOKw.d Format 629

EURTONOKw.d Format

Converts an amount from euros to Norwegian krone.

Category: Currency Conversion
Alignment: right

Syntax
EURTONOKw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTONOKw.d format converts an amount in euros to an amount in Norwegian
krone. The conversion rate is a changeable rate that is incorporated into the
EURTONOKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Norwegian krone.

Amounts Statements Results

----+----1----2

1 put amount eurtonok6.;

put amount eurtonok12.2;

9

9.20

1234.56 put amount eurtonok6.;

put amount eurtonok12.2;

11355

11355.11

12345 put amount eurtonok6.;

put amount eurtonok12.2;

113546

113545.61

630 EURTOPLZw.d Format � Appendix 1

See Also

Formats:

“EURFRNOKw.d Format” on page 600

Functions:

“EUROCURR Function” on page 644

EURTOPLZw.d Format

Converts an amount from euros to Polish zlotys.

Category: Currency Conversion

Alignment: right

Syntax
EURTOPLZw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOPLZw.d format converts an amount in euros to an amount in Polish zlotys.
The conversion rate is a changeable rate that is incorporated into the EURTOPLZw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Polish zlotys.

Amounts Statements Results

----+----1----2

1 put amount eurtoplz6.;

put amount eurtoplz12.2;

4

4.20

Additional NLS Language Elements � EURTOPTEw.d Format 631

Amounts Statements Results

1234.56 put amount eurtoplz6.;

put amount eurtoplz12.2;

5185

5185.15

12345 put amount eurtoplz6.;

put amount eurtoplz12.2;

51849

51849.00

See Also

Formats:

“EURFRPLZw.d Format” on page 601

Functions:

“EUROCURR Function” on page 644

EURTOPTEw.d Format

Converts an amount from euros to Portuguese escudos.

Category: Currency Conversion

Alignment: right

Syntax

EURTOPTEw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details

The EURTOPTEw.d format converts an amount in euros to an amount in Portuguese
escudos. The conversion rate is a fixed rate that is incorporated into the
EURTOPTEw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

632 EURTOROLw.d Format � Appendix 1

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Portuguese escudos.

Amounts Statements Results

----+----1----2

1 put amount eurtopte8.;

put amount eurtopte12.2;

200

200.48

1234.56 put amount eurtopte8.;

put amount eurtopte12.2;

247507

247507.06

12345 put amount eurtopte8.;

put amount eurtopte12.2;

2474950

2474950.29

See Also

Formats:
“EURFRPTEw.d Format” on page 602

Functions:
“EUROCURR Function” on page 644

EURTOROLw.d Format
Converts an amount from euros to Romanian lei.

Category: Currency Conversion
Alignment: right

Syntax
EURTOROLw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOROLw.d format converts an amount in euros to an amount in Romanian
lei. The conversion rate is a changeable rate that is incorporated into the

Additional NLS Language Elements � EURTORURw.d Format 633

EURTOROLw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Romanian lei.

Amounts Statements Results

----+----1----2

1 put amount eurtorol6.;

put amount eurtorol12.2;

14

13.71

1234.56 put amount eurtorol6.;

put amount eurtorol12.2;

16926

16925.82

12345 put amount eurtorol6.;

put amount eurtorol12.2;

169250

169249.95

See Also

Formats:

“EURFRROLw.d Format” on page 604

EURTORURw.d Format

Converts an amount from euros to Russian rubles.

Category: Currency Conversion

Alignment: right

Syntax
EURTORURw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

634 EURTOSEKw.d Format � Appendix 1

Details
The EURTORURw.d format converts an amount in euros to an amount in Russian
rubles. The conversion rate is a changeable rate that is incorporated into the
EURTORURw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Russian rubles.

Amounts Statements Results

----+----1----2

1 put amount eurtorur6.;

put amount eurtorur12.2;

20

19.77

1234.56 put amount eurtorur6.;

put amount eurtorur12.2;

24405

24404.78

12345 put amount eurtorur6.;

put amount eurtorur12.2;

244036

244035.96

See Also

Formats:
“EURFRRURw.d Format” on page 605

Functions:
“EUROCURR Function” on page 644

EURTOSEKw.d Format

Converts an amount from euros to Swedish kronor.

Category: Currency Conversion
Alignment: right

Syntax
EURTOSEKw.d

Additional NLS Language Elements � EURTOSITw.d Format 635

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOSEKw.d format converts an amount in euros to an amount in Swedish
kronor. The conversion rate is a changeable rate that is incorporated into the
EURTOSEKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Swedish kronor.

Amounts Statements Results

----+----1----2

1 put amount eurtosek6.;

put amount eurtosek12.2;

9

9.37

1234.56 put amount eurtosek6.;

put amount eurtosek12.2;

11563

11562.78

12345 put amount eurtosek6.;

put amount eurtosek12.2;

115622

115622.16

See Also

Formats:
“EURFRSEKw.d Format” on page 606

Functions:
“EUROCURR Function” on page 644

EURTOSITw.d Format

Converts an amount from euros to Slovenian tolars.

Category: Currency Conversion
Alignment: right

636 EURTOSITw.d Format � Appendix 1

Syntax
EURTOSITw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOSITw.d format converts an amount in euros to an amount in Slovenian
tolars. The conversion rate is a changeable rate that is incorporated into the
EURTOSITw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Note: Slovenia’s currency is the Euro. The information for EURTOSIT is provided
for user’s historical data. �

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Slovenian tolars.

Amounts Statements Results

----+----1----2

1 put amount eurtosit8.;

put amount eurtosit14.2;

191

191.00

1234.56 put amount eurtosit8.;

put amount eurtosit14.2;

235801

235800.96

12345 put amount eurtosit8.;

put amount eurtosit14.2;

2357895

2357895.00

See Also

Formats:

“EURFRSITw.d Format” on page 607

Functions:

“EUROCURR Function” on page 644

Additional NLS Language Elements � EURTOTRLw.d Format 637

EURTOTRLw.d Format

Converts an amount from euros to Turkish liras.

Category: Currency Conversion
Alignment: right

Syntax
EURTOTRLw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOTRLw.d format converts an amount in euros to an amount in Turkish liras.
The conversion rate is a changeable rate that is incorporated into the EURTOTRLw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “Overview to European Currency
Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Turkish liras.

Amounts Statements Results

----+----1----2

1 put amount eurtotrl8.;

put amount eurtotrl14.2;

337

336.91

1234.56 put amount eurtotrl8.;

put amount eurtotrl14.2;

415938

415938.08

12345 put amount eurtotrl8.;

put amount eurtotrl14.2;

4159179

4159178.64

638 EURTOYUDw.d Format � Appendix 1

See Also

Formats:

“EURFRTRLw.d Format” on page 608

Functions:

“EUROCURR Function” on page 644

EURTOYUDw.d Format

Converts an amount from euros to Yugoslavian dinars.

Category: Currency Conversion

Alignment: right

Syntax
EURTOYUDw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The EURTOYUDw.d format converts an amount in euros to an amount in Yugoslavian
dinars. The conversion rate is a changeable rate that is incorporated into the
EURTOYUDw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “Overview to
European Currency Conversion” on page 61.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Yugoslavian dinars.

Amounts Statements Results

----+----1----2

1 put amount eurtoyud6.;

put amount eurtoyud12.2;

13

13.06

Additional NLS Language Elements � EURDFDEw. Informat 639

Amounts Statements Results

1234.56 put amount eurtoyud6.;

put amount eurtoyud12.2;

16129

16128.79

12345 put amount eurtoyud6.;

put amount eurtoyud12.2;

161280

161280.02

See Also

Formats:
“EURFRYUDw.d Format” on page 609

Functions:
“EUROCURR Function” on page 644

EURDFDEw. Informat

Reads international date values.

Category: Date and Time

Syntax
EURDFDEw.

w
specifies the width of the input field.
Default: 7 (except Finnish)
Range: 7–32 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 10–32 and the

default w is 10. �

Details
The date values must be in the form ddmmmyy or ddmmmyyyy:

dd
is an integer from 01–31 that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can place blanks and other special characters between day, month, and year
values.

640 EURDFDTw. Informat � Appendix 1

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes .
When you specify the language prefix in the informat, SAS ignores the DFLANG=
system option.

Examples

This INPUT statement uses the value of the DFLANG= system option to read the
international date values in Spanish.

options dflang=spanish;
input day eurdfde10.;

This INPUT statement uses the Spanish language prefix in the informat to read the
international date values in Spanish. The value of the DFLANG= option, therefore, is
ignored.

input day espdfde10.;

Values Results

----+----1

01abr1999 14335

01-abr-99 14335

See Also

Formats:
“EURDFDEw. Format” on page 566

Informats:
DATEw. in SAS Language Reference: Dictionary
“EURDFDTw. Informat” on page 640
“EURDFMYw. Informat” on page 642

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457
YEARCUTOFF= in SAS Language Reference: Dictionary

EURDFDTw. Informat

Reads international datetime values in the form ddmmmyy hh:mm:ss.ss or
ddmmmyyyy hh:mm:ss.ss.

Additional NLS Language Elements � EURDFDTw. Informat 641

Category: Date and Time

Syntax
EURDFDTw.

Syntax Description

w
specifies the width of the input field.

Default: 18

Range: 13–40

Details
The date values must be in the form ddmmmyy or ddmmmyyyy, followed by a blank or
special character, and then the time values as hh:mm:ss.ss. The syntax for the date is
represented as follows:

dd
is an integer from 01–31 that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

The syntax for time is represented as follows:

hh
is the number of hours ranging from 00–23,

mm
is the number of minutes ranging from 00–59,

ss.ss
is the number of seconds ranging from 00–59 with the fraction of a second
following the decimal point.

The EURDFDTw. informat requires values for both the date and the time; however,
the ss.ss portion is optional.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes .
When you specify the language prefix in the informat, SAS ignores the DFLANG=
system option.

642 EURDFMYw. Informat � Appendix 1

Examples

This INPUT statement uses the value of the DFLANG= system option to read the
international datetime values in German.

options dflang=german;
input date eurdfdt20.;

This INPUT statement uses the German language prefix to read the international
datetime values in German. The value of the DFLANG= option, therefore, is ignored.

input date deudfdt20.;

Values Results

----+----1----+----2

23dez99:10:03:17.2 1261562597.2

23dez1999:10:03:17.2 1261562597.2

See Also

Formats:

DATEw. in SAS Language Reference: Dictionary

DATETIMEw.d in SAS Language Reference: Dictionary

“EURDFDTw.d Format” on page 569

TIMEw.d in SAS Language Reference: Dictionary

Functions:

DATETIME in SAS Language Reference: Dictionary

Informats:

DATETIMEw. in SAS Language Reference: Dictionary

“EURDFDEw. Informat” on page 639

“EURDFMYw. Informat” on page 642

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

YEARCUTOFF= in SAS Language Reference: Dictionary

EURDFMYw. Informat

Reads month and year date values in the form mmmyy or mmmyyyy.

Category: Date and Time

Additional NLS Language Elements � EURDFMYw. Informat 643

Syntax
EURDFMYw.

Syntax Description

w
specifies the width of the input field.
Default: 5 (except Finnish)
Range: 5–32 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 7–32 and the

default value for w is 7. �

Details
The date values must be in the form mmmyy or mmmyyyy:

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can place blanks and other special characters between day, month, and year
values. A value that is read with EURDFMYw. results in a SAS date value that
corresponds to the first day of the specified month.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 457 for the list of language prefixes .
When you specify the language prefix in the informat, SAS ignores the DFLANG=
option.

Examples

This INPUT statement uses the value of DFLANG= system option to read the
international date values in French.

options dflang=french;
input month eurdfmy7.;

The second INPUT statement uses the French language prefix, and DFLANG is not
specified.

input month fradfmy7.;

644 EUROCURR Function � Appendix 1

Values Results

----+----1

avr1999 14335

avr 99 14335

See Also

Formats:

DDMMYYw. in SAS Language Reference: Dictionary

“EURDFMYw. Format” on page 575

MMDDYYw. in SAS Language Reference: Dictionary

MONYYw. in SAS Language Reference: Dictionary

YYMMDDw. in SAS Language Reference: Dictionary

Functions:

MONTH in SAS Language Reference: Dictionary

YEAR in SAS Language Reference: Dictionary

Informats:

“EURDFDEw. Informat” on page 639

“EURDFDTw. Informat” on page 640

MONYYw. in SAS Language Reference: Dictionary

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 457

YEARCUTOFF= in SAS Language Reference: Dictionary

EUROCURR Function

Converts one European currency to another.

Category: Currency Conversion

Syntax

EUROCURR(from-currency-amount, from-currency-code, to-currency-code)

Additional NLS Language Elements � EUROCURR Function 645

Arguments

from-currency-amount
is a numeric value that specifies the amount to convert.

from-currency-code
specifies a three-character currency code that identifies the currency that you are
converting from. (See European Currency and Currency CodesTable A1.1 on page
645.)

Tip: If from-currency-code has a blank value, EUROCURR converts currency values
from euros to the currency of the European country that you specify.

Featured in: Example 4 on page 647

to-currency-code
specifies a three-character currency code that identifies the currency that you are
converting to. (See European Currency and Currency CodesTable A1.1 on page 645.)

Tip: If to-currency-code has a blank value, EUROCURR converts values from the
currency of the European country that you specify to euros.

Details
The following table lists European currencies and the associated currency codes. Use
the currency codes to identify the type of currency that you are converting to or
converting from. Several countries use the Euro as their currency instead of the
currency listed in the following table. This information is provided in order to satisfy
user’s historical data.buildnlsOTKEY

Table A1.1 European Currency and Currency Codes

Currency Currency code

Austrian schilling ATS

Belgian franc BEF

British pound sterling GBP

Czech koruna CZK

Danish krone DKK

Deutsche mark DEM

Dutch guilder NLG

Euro EUR

Finnish markka FIM

French franc FRF

Greek drachma GRD

Hungarian forint HUF

Irish pound IEP

Italian lira ITL

Luxembourg franc LUF

Norwegian krone NOK

646 EUROCURR Function � Appendix 1

Currency Currency code

Polish zloty PLZ

Portuguese escudo PTE

Romanian leu ROL

Russian ruble RUR

Slovenian tolar SIT

Spanish peseta ESP

Swedish krona SEK

Swiss franc CHF

Turkish lira TRL

Yugoslavian dinar YUD

The EUROCURR function converts a specific country’s currency to an equivalent
amount in another country’s currency. It can also convert a specific country’s currency
to euros. EUROCURR uses the values in either the fixed currency conversion rate table
or the changeable currency conversion rate table to convert currency.

If you are converting from one country’s currency to euros, SAS divides the
from-currency-amount by that country’s rate from one of the conversion rate tables. See
Example 1 on page 646. If you are converting from euros to a country’s currency, SAS
multiplies the from-currency-amount by that country’s rate from one of the conversion
rate tables. See Example 2 on page 646. If you are converting one country’s currency to
another country’s currency, SAS first converts the from-currency-amount to euros. SAS
stores the intermediate value in as much precision as your operating environment
allows, and does not round the value. SAS then converts the amount in euros to an
amount in the currency you are converting to. See Example 3 on page 646.

Examples

Example 1: Converting from Deutsche Marks to Euros The following example converts
one Deutsche mark to an equivalent amount of euros.

data _null_;
amount=eurocurr(50,’dem’,’eur’);
put amount= ;

run;

The value in the SAS log is: amount=25.56459406.

Example 2: Converting from Euros to Deutsche Marks The following example converts
one euro to an equivalent amount of Deutsche marks.

data _null_;
amount=eurocurr(25,’eur’,’dem’);
put amount= ;

run;

The value in the SAS log is: amount=48.89575.

Example 3: Converting from French Francs to Deutsche Marks The following example
converts 50 French francs to an equivalent amount of Deutsche marks.

Additional NLS Language Elements � EUROCURR Function 647

data _null_;
x=50;
amount=eurocurr(x,’frf’,’dem’);
put amount=;

run;

The value in the SAS log is: amount=14.908218069.

Example 4: Converting Currency When One Variable is Blank The following example
converts 50 euros to Deutsche marks.

data _null_;
x=50;
amount=eurocurr(x,’ ’,’dem’);
put amount=;

run;

The value in the SAS log is: amount=97.7915.

See Also

Formats:
“EUROw.d Format” on page 76
“EUROXw.d Format” on page 77

Informats:

“EUROw.d Informat” on page 312
“EUROXw.d Informat” on page 313

648

649

A P P E N D I X

2
Recommended Reading

Recommended Reading 649

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� SAS Output Delivery System: User’s Guide
� Base SAS Procedures Guide
� SAS/CONNECT User’s Guide

� SAS/GRAPH: Reference, Second Edition
� SAS Companion for your operating environment

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

650

651

Glossary

ANSI (American National Standards Institute)
an organization in the United States that coordinates voluntary standards and
conformity to those standards. ANSI works with ISO to establish global standards.
See also ISO (International Organization for Standardization).

ASCII (American Standard Code for Information Interchange)
a 7-bit encoding that is the U.S. national variant of ISO 646. The ASCII encoding
includes the upper- and lowercase letters A-Z, digits, symbols (such as &, #, and
mathematical symbols), punctuation marks, and control characters. This set of 128
characters is also included in most other encodings. See also ISO 646 family.

BIDI (bidirectional) text
a mixture of characters that are read from left to right and characters that are read
from right to left. Most Arabic and Hebrew strings of text, for example, are read
from right to left, but numbers and embedded Western terms within Arabic and
Hebrew text are read from left to right.

CEDA (Cross-Environment Data Access)
a feature of SAS software that enables a SAS data file that was created in any
directory-based operating environment (for example, Solaris, Windows, HP-UX) to be
read by a SAS session that is running in another directory-based environment. You
can access the SAS data files without using any intermediate conversion steps. See
also data representation.

character set
the set of characters that are used by a language or group of languages. A character
set includes national characters, special characters (such as punctuation marks and
mathematical symbols), the digits 0-9, and control characters that are needed by the
computer. Most character sets also include the unaccented upper- and lowercase
letters A-Z. See also national character.

code page
an ordered character set in which a numeric index (code point) is associated with
each character. See also character set.

code point
a hexadecimal value that represents a character in an encoding or that is associated
with a character on a code page. See also code page, encoding.

652 Glossary

code position
the row and column location of a character in a code page. See also code page.

code table
another term for code page. See code page.

data representation
the form in which data is stored in a particular operating environment. Different
operating environments use different standards or conventions for storing
floating-point numbers (for example, IEEE or IBM 390); for character encoding
(ASCII or EBCDIC); for the ordering of bytes in memory (big Endian or little
Endian); for word alignment (4-byte boundaries or 8-byte boundaries); and for
data-type length (16-bit, 32-bit, or 64-bit).

DBCS (double-byte character set)
any East Asian character set (Japanese, Korean, Simplified Chinese, and Traditional
Chinese) that requires a mixed-width encoding because most characters occupy more
than one byte of computer memory or storage. This term is somewhat misleading
because not all characters in a DBCS require more than one byte, and some DBCS
characters actually require four bytes. See also character set.

EBCDIC (Extended Binary Coded Decimal Interchange Code)
a group of 8-bit encodings that each include up to 256 characters. EBCDIC is used
on IBM mainframes and on most IBM mid-range computers. EBCDIC follows ISO
646 conventions in order to facilitate transcoding between EBCDIC encodings,
ASCII, the ISO 646 family of encodings, and 8-bit extensions to ASCII such as the
ISO 8859 family. The 95 EBCDIC graphical characters include 82 invariant
characters (including the SPACE character), which occupy the same code positions
across most single-byte EBCDIC code pages, and 13 variant graphic characters,
which occupy varying code positions across most single-byte EBCDIC code pages. See
also ASCII (American Standard Code for Information Interchange), encoding, ISO
(International Organization for Standardization), ISO 646 family, ISO 8859 family.

encoding
a set of characters (letters, logograms, digits, punctuation marks, symbols, and
control characters) that have been mapped to hexadecimal values (called code points)
that can be used by computers. An encoding results from applying an encoding
method to a specific character set. Groups of encodings that apply the same encoding
method to different character sets are sometimes referred to as families of encodings.
For example, German EBCDIC is an encoding in the EBCDIC family, Windows
Cyrillic is an encoding in the Windows family, and Latin 1 is an encoding in the ISO
8859 family. See also character set, encoding method.

encoding method
the set of rules that is used for assigning numeric representations to the characters
in a character set. For example, these rules specify how many bits are used for
storing the numeric representation of the character, as well as the ranges in the code
page in which characters appear. The encoding methods are standards that have
been developed in the computing industry. An encoding method is often specific to a
computer hardware vendor. See also character set, encoding.

internationalization
the process of designing a software application without making assumptions that are
based on a single language or locale. See also NLS (National Language Support).

ISO (International Organization for Standardization)
an organization that promotes the development of standards and that sponsors
related activities in order to facilitate the dissemination of products and services

Glossary 653

among nations and to support the exchange of intellectual, scientific, and
technological information.

ISO 646 family
a group of 7-bit encodings that are defined in the ISO 646 standard and that each
include up to 128 characters. The ISO 646 encodings are similar to ASCII except for
12 code points that are used for national variants. National variants are specific
characters that are needed for a particular language. See also ASCII (American
Standard Code for Information Interchange), ISO (International Organization for
Standardization).

ISO 8859 family
a group of 8-bit extensions to ASCII that support all 128 of the ASCII code points
plus an additional 128 code points, for a total of 256 characters. ISO-8859-1 (Latin 1)
is a commonly used member of the ISO 8859 family of encodings. In addition to the
ASCII characters, ISO-8859-1 contains accented characters, other letters that are
needed for languages of Western Europe, and some special characters. See also
ASCII (American Standard Code for Information Interchange), ISO (International
Organization for Standardization).

language
an aspect of locale that is not necessarily unique to any one country or geographic
region. For example, Portuguese is spoken in Brazil as well as in Portugal, but there
are separate locales for Portuguese_Portugal and Portuguese_Brazil. See also locale.

locale
a value that reflects the language, local conventions, and culture for a geographic
region. Local conventions can include specific formatting rules for dates, times, and
numbers, and a currency symbol for the country or region. Collating sequences,
paper sizes, and conventions for postal addresses and telephone numbers are also
typically specified for each locale. Some examples of locale values are
French_Canada, Portuguese_Brazil, and Chinese_Singapore.

localization
the process of adapting a product to meet the language, cultural, and other
requirements of a specific target environment or market so that customers can use
their own languages and conventions when using the product. Translation of the
user interface, system messages, and documentation is part of localization.

MBCS (multi-byte character set)
a synonym for DBCS. See DBCS (double-byte character set).

national character
any character that is specific to a language as it is written in a particular nation or
group of nations.

NLS (national language support)
the set of features that enable a software product to function properly in every global
market for which the product is targeted.

SBCS (single-byte character set)
a character set in which each character occupies only one byte of computer memory
or storage. A single-byte character set can be either 7 bits (providing up to 128
characters) or 8 bits (providing up to 256 characters). An example of an 8-bit SBCS
is the ISO-8859-5 character set, which includes the Cyrillic characters that are used
in Russian and other languages. See also character set.

transcoding
the process of converting the contents of a SAS file from one encoding to another
encoding. Transcoding is necessary if the session encoding and the file encoding are

654 Glossary

different, such as when transferring data from a Latin 1 encoding under UNIX to a
German EBCDIC encoding on an IBM mainframe. See also encoding, translation
table.

translation table
a SAS catalog entry that is used for transcoding data from one encoding to another
encoding. SAS language elements that control locale values and encoding properties
automatically invoke the appropriate translation table. Translation tables are
specific to the operating environment. For example, there is a specific translation
table that maps the Windows Latin 2 encoding to the ISO Latin 2 encoding. See also
encoding, transcoding.

Unicode
a 16-bit encoding that supports the interchange, processing, and display of characters
and symbols from dozens of writing systems, for a total of up to 65,536 characters.
Unicode includes all characters from most modern written languages as well as
characters from some historical languages.

Unicode Consortium
an organization that develops and promotes the Unicode standard. See also Unicode.

655

Index

Numbers
8859 ISO family 13

A
alignment

character expressions 263, 271
ANSI (American National Standards Institute) 15
Arabic characters

reversing 73
storing logical-ordered text on visual server 83, 84

arguments
converting to lowercase 265
converting to uppercase 277
extracting a substring from 273
extracting a substring from, based on byte position 274
length of 264
transcoding for specified argument 294

ASCII 13, 476
transferring data between EBCDIC and 31

ASCII option
PROC SORT statement 476

ATTRIB statement 497
TRANSCODE= option 497

Australia
monetary format 110, 147

Austria
monetary format 157

Austrian schillings
converting to euros 582

autocall macros
by category 435, 439

B
BASETYPE= option

PROC DBCSTAB statement 506
Belgium

monetary format 120, 157
$BIDIw. format 73
binary collation 16
blanks

removing leading DBCS blanks 263
trimming trailing 436
trimming trailing DBCS blanks 271

BOMFILE system option 453
BOTH option

CLEAR statement (TRANTAB) 517

LIST statement (TRANTAB) 518
SAVE statement (TRANTAB) 520

Brazil
monetary format 112, 149

Bulgaria
monetary format 111, 148

Byte Order Mark (BOM) prefix
on Unicode external files 453

C
Canada

monetary format 113, 150
case

changing uppercase characters to lowercase 435
CATALOG= option

PROC DBCSTAB statement 506
CEDA 29
character data

avoiding truncation of 38
reading from right to left 409, 410

character expressions
comparing 258
compressing 259
concatenating 273
deleting character value contents 278
deleting character value contents, based on byte unit 279
inserting character value contents 278
inserting character value contents, based on byte unit 279
left-aligning 263
number of double-byte characters in 260
position of first unique character 280
removing trailing blanks and SO/SI 276
replacing character value contents 278
replacing character value contents, based on byte

unit 279
replacing specific characters 275
reversing 271
right-aligning 271
searching for specific characters 263
searching for string of characters 262
selecting a specified word from 272
translating 275
trimming 276
updating 278
updating, based on byte unit 279
verifying 280

character-set encoding
for SAS session 459

656 Index

character sets 12
definition 10
displaying DBCS 36
specifying, for META declaration in output 474
translation tables and 512

character strings
split 38
substring of 446

character variables
transcoding enabled for specified variable 293

characters
locating 440

CHARSET= option 474
China

monetary format 115, 152
CIMPORT procedure

transcoding between operating environments 29
translation tables with 513

CLEAR statement
TRANTAB procedure 517

code page 9
collating sequence 16

alternate sequences 17
binary collation 16
encoding value 18
language-specific 468
linguistic collation 19
overview 16
results of different sequences 16
translation tables 18

commas, removing 433
compatibility 466

SAS string functions 236
compatible encodings 31
concatenation

character expressions 273
conversion tables

creating 507
for DBCS 505
Japanese 508

CPORT procedure
transcoding between operating environments 29
translation tables with 513

$CPTDWw. format 74
CPTDWw. informat 310
$CPTWDw. format 75
CPTWDw informat. 311
Croatia

monetary format 123, 160
cross-environment data access (CEDA) 29
currency 6, 55

converting one European currency to another 645
customized representations 56
dollars 55
European conversion 61
example 60
localized euros 56
localized representations 57
unique representations 59
yen 233

CVP engine
avoiding character data truncation 38

Czech Republic
monetary format 116, 153

D
DANISH option

PROC SORT statement 476
data conversion

between DBCS encodings 37
DATA= option

PROC DBCSTAB statement 506
data set options 43

for transcoding 29
data sets

encoding 21
encoding support, by release 23
mixed encodings 45
suppressing transcoding 45
transcode attributes of variables 292
with a particular encoding 45

date format descriptors 281
date values

as a date 90
converting to specified locale 281
date and day of week 93
day of week 94
Hebrew 79
international 639
international month and year 643
Japanese 87, 323
Jewish calendar 80
name and day of month 91
name of month 92
Taiwanese 85, 322
year 96
year and name of month 95
year and quarter 96
year and week 97

dates 5
date values as 90

DATESTYLE= system option
default values 543

datetime-format descriptors 283
datetime formats 50
datetime values

as a datetime 98
converting to specified locale 283, 286
day of week 104
day of week and datetime 104
international 641
name and day of month 101
name of month 102
name of month, day of month and year 100
time of day 103
with a.m. or p.m. 99
year 107
year and name of month 105
year and name of week 108
year and quarter 106

DBCS
See double-byte character sets (DBCS)

DBCS data
adding shift-code data to 81, 318
removing shift-code data from 82, 318

DBCS encoding 12, 35
See also double-byte character sets (DBCS)
character data truncation 38
data conversion between encodings 37
East Asian languages 32
encoding values for transcoding data 549

Index 657

full-screen 460
full-screen input method modules (IMMs) 461, 462
removing leading blanks 263
requirements for displaying character sets 36
SAS on mainframe and 37
specifying 36
split character strings 38
system option values for 547
system options in SAS session for 547
trimming blanks and SO/SI 276
trimming trailing blanks 271
when you can use 36

DBCS system option 454
DBCSLANG= option

PROC DBCSTAB statement 506
DBCSLANG system option 455
DBCSTAB procedure 505

creating conversion tables 507
examples 507
Japanese conversion tables 508
PROC DBCSTAB statement 506
syntax 505

DBCSTYPE system option 456
decimal points, removing 433
Denmark

monetary format 117, 154
DESC= option

PROC DBCSTAB statement 506
DFLANG= system option 458

default values 543
dollars 55
double-byte character sets (DBCS) 12, 454

See also DBCS encoding
conversion tables for 505
encoding method 456
language for 455
recognizing 454

double-byte characters
number in a character expression 260

E
East Asian languages 35

DBCS encodings 32, 35
encodings for 14

EBCDIC 13, 476
code point discrepancies among encodings 15
German code page 11
OpenEdition encoding and 32
transferring data between ASCII and 31

EBCDIC option
PROC SORT statement 476

Egypt
monetary format 119, 156

encoding 9
behavior in SAS sessions 23
character sets for 12
compatibility for transcoding 31
converting one type of data to another 260
data set support by release 23
data sets 21
default SAS session encoding 21
definition 10
for East Asian languages 14
input processing 25, 46
mixed 45

output processing 24
overriding 43
reading and writing external files 25
SAS sessions 20
setting for SAS sessions 22
standards organizations for 15
versus transcoding 12
z/OS support 24

ENCODING= data set option 43
encoding methods 10, 12

for DCBS 456
ENCODING= system option 459

default settings 543
Posix values 543

encoding values 18, 549
DBCS 549
default, based on LOCALE= system option 23
default SAS session values 22
for transcoding data 549
OpenVMS 555
SBCS 549
Unicode 549
UNIX 555
Windows 556
z/OS 558

escape codes 37
Estonia

monetary format 118, 155
EUR language elements 564
EURDFDDw. format 564
EURDFDEw. format 566
EURDFDEw. informat 639
EURDFDNw. format 568
EURDFDTw. format 569
EURDFDTw. informat 641
EURDFDWNw. format 571
EURDFMNw. format 574
EURDFMYw. format 575
EURDFMYw. informat 643
EURDFWDXw. format 577
EURDFWKXw. format 580
EURFRATSw.d format 582
EURFRBEFw.d format 583
EURFRCHFw.d format 584
EURFRCZKw.d format 586
EURFRDEMw.d format 587
EURFRDKKw.d format 588
EURFRESPw.d format 589
EURFRFIMw.d format 590
EURFRFRFw.d format 591
EURFRGBPw.d format 592
EURFRGRDw.d format 594
EURFRHUFw.d format 595
EURFRIEPw.d format 596
EURFRITLw.d format 597
EURFRLUFw.d format 598
EURFRNLGw.d format 599
EURFRNOKw.d format 600
EURFRPLZw.d format 602
EURFRPTEw.d format 603
EURFRROLw.d format 604
EURFRRURw.d format 605
EURFRSEKw.d format 606
EURFRSITw.d format 607
EURFRTRLw.d format 608
EURFRYUDw.d format 610

658 Index

euro conversion
Austrian schillings to euros 582
example 63
fixed rates for 62
variable rates for 62

EUROCURR function 645
European currency conversion 61

converting one currency to another 645
direct conversion between currencies 63
example 63
fixed rates for euro conversion 62
variable rates for euro conversion 62

euros
formats for 76, 78
localized 56

EUROw.d format 76
EUROw.d informat 312
EUROXw.d format 78
EUROXw.d informat 314
EURTOATSw.d format 611
EURTOBEFw.d format 612
EURTOCHFw.d format 613
EURTOCZKw.d format 614
EURTODEMw.d format 615
EURTODKKw.d format 616
EURTOFIMw.d format 619
EURTOFRFw.d format 620
EURTOGBPw.d format 621
EURTOGRDw.d format 622
EURTOHUFw.d format 623
EURTOIEPw.d format 624
EURTOITLw.d format 625
EURTOLUFw.d format 627
EURTONLGw.d format 628
EURTONOKw.d format 629
EURTOPLZw.d format 630
EURTOPTEw.d format 631
EURTOROLw.d format 632
EURTORURw.d format 633
EURTOSEKw.d format 635
EURTOSITw.d format 636
EURTOTRLw.d format 637
EURTOYUDw.d format 638
external files

BOM prefix on Unicode files 453
encoding and 25

F
Faroe Island

monetary format 117, 154
filerefs

limiting to eight characters 446
Finland

monetary format 120, 157
FINNISH option

PROC SORT statement 476
FORCE option

PROC DBCSTAB statement 506
formats 50

associating with variables 497
by category 64
international date and datetime 50
language for international dates 458
supporting DBCS on SO/SI systems 37

France
monetary format 120, 157

FSDBTYPE system option 460
FSIMM system option 461
FSIMMOPT system option 462
full-screen DBCS encoding 460

input method modules (IMMs) for 461, 462
functions 252

by category 252
K functions 236
SAS string functions 236

G
German EBCDIC code page 11
Germany

monetary format 120, 157
GETPXLANGUAGE function 255
GETPXLOCALE function 256
GETPXREGION function 257
Greece

monetary format 120, 157
Greenland

monetary format 117, 154

H
HDATEw. format 79
HEBDATEw. format 80
Hebrew characters 74, 75

reversing 73
storing logical-ordered text on visual server 83, 84

Hebrew date values 79
hexadecimal representation

translation tables in 518
Hong Kong

monetary format 122, 159
Hungary

monetary format 124, 161

I
IBw.d informat 400, 401, 403, 404
illegal data 467
incompatible encodings 31
India

monetary format 127, 164
Indonesia

monetary format 125, 162
informats

associating with variables 497
by category 303
language for international dates 458
supporting DBCS on SO/SI systems 37

input method modules (IMMs) 461
options for 462

input processing 25
overriding encoding for 46

integer binary values, reading 400, 401, 403, 404
international date and datetime formats 50
international date formats and informats

specifying language for 458
international date values, writing

day-of-week and date 580
day-of-week name 571
day-of-week number 568

Index 659

ddmmmyy 566
dd.mm.yy 564
mmmyy 575
month name 574, 577

international datetime values, writing
ddmmmyy:hh:mm:ss:ss 569

International Organization for Standardization (ISO) 15
internationalization 4
INVERSE statement

TRANTAB procedure 517
Ireland

monetary format 120, 157
ISO encodings 13

8859 family 13
Windows family 13

ISO (International Organization for Standardization) 15
Israel

monetary format 126, 163
Italy

monetary format 120, 157

J
Japan

monetary format 128, 165
Japanese conversion tables 508
Japanese dates 87, 323
JDATEYMDw. informat 315
Jewish calendar dates 80
JNENGOw. informat 316

K
K functions 236
$KANJIw. format 81
$KANJIw. informat 318
$KANJIXw. format 82
$KANJIXw. informat 318
KCOMPARE function 258
KCOMPRESS function 259
KCOUNT function 260
KCVT function 260
KINDEX function 262
%KINDEX function 440
KINDEXC function 263
KLEFT function 263
KLENGTH function 264
%KLENGTH function 441
KLOWCASE function 265
KLOWCASE macro 435
KREVERSE function 271
KRIGHT function 271
KSCAN function 272
%KSCAN function 442
KSTRCAT function 273
KSUBSTR function 273
%KSUBSTR function 446
KSUBSTRB function 274
KTRANSLATE function 275
%KTRIM autocall macro 436
KTRIM function 276
KTRUNCATE function 276
KUPCASE function 277
%KUPCASE function 448
KUPDATE function 278
KUPDATEB function 279

%KVERIFY autocall macro 437
KVERIFY function 280

L
labels, associating with variables 497
language 5
language codes

current two-letter code 255
language switching 7

changing text language of ODS output 465
languages

for international date informats and formats 458
Latin1 code page 9
Latvia

monetary format 131, 168
left-aligning character expressions 263
length

associating with variables 497
of arguments 264

length of a string 441
Liechtenstein

monetary format 114, 151
line-feed characters 31
linguistic collation 19
linguistic sort keys 287
LIST statement

TRANTAB procedure 518
Lithuania

monetary format 130, 167
LOAD statement

TRANTAB procedure 518
locale 5

best numerical notation based on 88
converting date values to specified locale 281
converting datetime values to specified locale 283
converting time or datetime values to specified lo-

cale 286
language switching 7
of SAS sessions 463
POSIX value for 256
specifying 6
specifying at SAS invocation 6
specifying during SAS session 7

LOCALE= system option 463
default encoding values based on 23
values for 539

LOCALELANGCHT system option 465
localization 4
localized euros 56
localized international currency representation 58
localized national currency representation 57
logical-ordered text

storing on visual server 83, 84
$LOGVSRw. format 84
LOGVSRw. informat 320
$LOGVSw. format 83
LOGVSw. informat 319
long macro variables

storing values in segments 446
lowercase characters

changing uppercase characters to 435
converting arguments to 265

Luxembourg
monetary format 120, 157

660 Index

M
Macau

monetary format 132, 169
macro variables

storing long values in segments 446
mainframes

DBCS and 37
Malaysia

monetary format 134, 171
Malta

monetary format 120, 157
MBCS encoding 12
META declaration 474
Mexico

monetary format 133, 170
MINGUOw. format 85
MINGUOw. informat 322
monetary formats

Australia 110, 147
Austria 157
Belgium 120, 157
Brazil 112, 149
Bulgaria 111, 148
Canada 113, 150
China 115, 152
Croatia 123, 160
Czech Republic 116, 153
Denmark 117, 154
Egypt 119, 156
Estonia 118, 155
Faroe Island 117, 154
Finland 120, 157
France 120, 157
Germany 120, 157
Greece 120, 157
Greenland 117, 154
Hong Kong 122, 159
Hungary 124, 161
India 127, 164
Indonesia 125, 162
Ireland 120, 157
Israel 126, 163
Italy 120, 157
Japan 128, 165
Latvia 131, 168
Liechtenstein 114, 151
Lithuania 130, 167
Luxembourg 120, 157
Macau 132, 169
Malaysia 134, 171
Malta 120, 157
Mexico 133, 170
Netherlands 120, 157
New Zealand 136, 173
Norway 135, 172
Poland 137, 174
Portugal 120, 157
Puerto Rico 144, 181
Russia 138, 175
Singapore 140, 177
Slovenia 120, 157
South Africa 145, 182
South Korea 129, 166
Spain 120, 157
Sweden 139, 176
Switzerland 114, 151

Taiwan 143, 180
Thailand 141, 178
Turkey 142, 179
United Arab Emirates 109, 146
United Kingdom 121, 158
United States 144, 181

monetary representations 59

N
National Language Support

See NLS (National Language Support)
NATIONAL option

PROC SORT statement 476
NENGOw. format 87
NENGOw. informat 323
Netherlands

monetary format 120, 157
New Zealand

monetary format 136, 173
NLBESTw. format 88
NLDATE function 281
NLDATEMDw. format 91
NLDATEMNw. format 92
NLDATEw. format 90
NLDATEw. informat 324
NLDATEWNw. format 94
NLDATEWw. format 93
NLDATEYMw. format 95
NLDATEYQw. format 96
NLDATEYRw. format 96
NLDATEYWw. format 97
NLDATMAPw. format 99
NLDATMDTw. format 100
NLDATMMDw. format 101
NLDATMMNw. format 102
NLDATMTMw. format 103
NLDATMw. format 98
NLDATMw. informat 325
NLDATMWNw. format 104
NLDATMWw. format 104
NLDATMYMw. format 105
NLDATMYQw. format 106
NLDATMYRw. format 107
NLDATMYWw. format 108
NLMNIAEDw.d format 109
NLMNIAEDw.d informat 326
NLMNIAUDw.d format 110
NLMNIAUDw.d informat 327
NLMNIBGNw.d format 111
NLMNIBGNw.d informat 328
NLMNIBRLw.d format 112
NLMNIBRLw.d informat 329
NLMNICADw.d format 113
NLMNICADw.d informat 330
NLMNICHFw.d format 114
NLMNICHFw.d informat 331
NLMNICNYw.d format 115
NLMNICNYw.d informat 332
NLMNICZKw.d format 116
NLMNICZKw.d informat 333
NLMNIDKKw.d format 117
NLMNIDKKw.d informat 334
NLMNIEEKw.d format 118
NLMNIEEKw.d informat 335
NLMNIEGPw.d format 119

Index 661

NLMNIEGPw.d informat 336
NLMNIEURw.d format 120
NLMNIEURw.d informat 337
NLMNIGBPw.d format 121
NLMNIGBPw.d informat 338
NLMNIHKDw.d format 122
NLMNIHKDw.d informat 339
NLMNIHRKw.d format 123
NLMNIHRKw.d informat 340
NLMNIHUFw.d format 124
NLMNIHUFw.d informat 341
NLMNIIDRw.d format 125
NLMNIIDRw.d informat 342
NLMNIILSw.d format 126
NLMNIILSw.d informat 343
NLMNIINRw.d format 127
NLMNIINRw.d informat 344
NLMNIJPYw.d format 128
NLMNIJPYw.d informat 345
NLMNIKRWw.d format 129
NLMNIKRWw.d informat 346
NLMNILTLw.d format 130
NLMNILTLw.d informat 347
NLMNILVLw.d format 131
NLMNILVLw.d informat 348
NLMNIMOPw.d format 132
NLMNIMOPw.d informat 349
NLMNIMXNw.d format 133
NLMNIMXNw.d informat 350
NLMNIMYRw.d format 134
NLMNIMYRw.d informat 351
NLMNINOKw.d format 135
NLMNINOKw.d informat 352
NLMNINZDw.d format 136
NLMNINZDw.d informat 353
NLMNIPLNw.d format 137
NLMNIPLNw.d informat 354
NLMNIRUBw.d format 138
NLMNIRUBw.d informat 355
NLMNISEKw.d format 139
NLMNISEKw.d informat 356
NLMNISGDw.d format 140
NLMNISGDw.d informat 357
NLMNITHBw.d format 141
NLMNITHBw.d informat 358
NLMNITRYw.d format 142
NLMNITRYw.d informat 359
NLMNITWDw.d format 143
NLMNITWDw.d informat 360
NLMNIUSDw.d format 144
NLMNIUSDw.d informat 361
NLMNIZARw.d format 145
NLMNIZARw.d informat 362
NLMNLAEDw.d format 146
NLMNLAEDw.d informat 363
NLMNLAUDw.d format 147
NLMNLAUDw.d informat 364
NLMNLBGNw.d format 148
NLMNLBGNw.d informat 365
NLMNLBRLw.d format 149
NLMNLBRLw.d informat 366
NLMNLCADw.d format 150
NLMNLCADw.d informat 367
NLMNLCHFw.d format 151
NLMNLCHFw.d informat 368
NLMNLCNYw.d format 152

NLMNLCNYw.d informat 369
NLMNLCZKw.d format 153
NLMNLCZKw.d informat 370
NLMNLDKKw.d format 154
NLMNLDKKw.d informat 371
NLMNLEEKw.d format 155
NLMNLEEKw.d informat 372
NLMNLEGPw.d format 156
NLMNLEGPw.d informat 373
NLMNLEURw.d format 157
NLMNLEURw.d informat 374
NLMNLGBPw.d format 158
NLMNLGBPw.d informat 375
NLMNLHKDw.d format 159
NLMNLHKDw.d informat 376
NLMNLHRKw.d format 160
NLMNLHRKw.d informat 377
NLMNLHUFw.d format 161
NLMNLHUFw.d informat 378
NLMNLIDRw.d format 162
NLMNLIDRw.d informat 379
NLMNLILSw.d format 163
NLMNLILSw.d informat 380
NLMNLINRw.d format 164
NLMNLINRw.d informat 381
NLMNLJPYw.d format 165
NLMNLJPYw.d informat 382
NLMNLKRWw.d format 166
NLMNLKRWw.d informat 383
NLMNLLTLw.d format 167
NLMNLLTLw.d informat 384
NLMNLLVLw.d format 168
NLMNLLVLw.d informat 385
NLMNLMOPw.d format 169
NLMNLMOPw.d informat 386
NLMNLMXNw.d format 170
NLMNLMXNw.d informat 387
NLMNLMYRw.d format 171
NLMNLMYRw.d informat 388
NLMNLNOKw.d format 172
NLMNLNOKw.d informat 389
NLMNLNZDw.d format 173
NLMNLNZDw.d informat 390
NLMNLPLNw.d format 174
NLMNLPLNw.d informat 391
NLMNLRUBw.d format 175
NLMNLRUBw.d informat 392
NLMNLSEKw.d format 176
NLMNLSEKw.d informat 393
NLMNLSGDw.d format 177
NLMNLSGDw.d informat 394
NLMNLTHBw.d format 178
NLMNLTHBw.d informat 395
NLMNLTRYw.d format 179
NLMNLTRYw.d informat 396
NLMNLTWDw.d format 180
NLMNLTWDw.d informat 397
NLMNLUSDw.d format 181
NLMNLUSDw.d informat 398
NLMNLZARw.d format 182
NLMNLZARw.d informat 399
NLMNYIw.d format 184
NLMNYw.d format 183
NLNUMIw.d format 187
NLNUMw.d format 185
NLPCTIw.d format 189

662 Index

NLPCTIw.d informat 406
NLPCTw.d format 188
NLPCTw.d informat 405
NLS (National Language Support) 3

compatibility 466
data set options 43
DBCS 35
DBCSTAB procedure 505
encoding 9
formats 50
functions 252
informats 303
locale 5
statement options 473
system options 451
transcoding 27
TRANTAB procedure 511

NLS option
LOAD statement (TRANTAB) 518
PROC TRANTAB statement 516

NLSCOMPATMODE system option 466
NLTIMAPw. format 198
NLTIMAPw. informat 407
NLTIME descriptors 286
NLTIME function 286
NLTIMEw. format 197
NLTIMEw. informat 408
NODATM function 283
Norway

monetary format 135, 172
NORWEGIAN option

PROC SORT statement 476
numbers 6
numeric data

Japanese dates 87
Taiwanese date values 85
yen 233

numeric values
truncating 276

numerical notation
best, based on locale 88

O
ODS output

changing language of the text 465
ONE option

CLEAR statement (TRANTAB) 517
LIST statement (TRANTAB) 518
SAVE statement (TRANTAB) 520

OpenEdition encoding 32
OpenVMS

encoding values 555
operating environments

transcoding between 29
OPT= option, TRANTAB statement 501
output processing 24
overriding encoding 43

P
paper size and measurement 6
PAPERSIZE= system option

default values 543
Poland

monetary format 137, 174

Portugal
monetary format 120, 157

PROC DBCSTAB statement 506
PROC TRANTAB statement 516
Puerto Rico

monetary format 144, 181

Q
%QKSCAN function 442
%QKSUBSTR function 446
%QKTRIM autocall macro 436
%QKUPCASE function 448

R
region codes

current two-letter code 257
release compatibility 466
remote applications

illegal data 467
Remote Library Services (RLS)

translation tables with 514
REPLACE statement

TRANTAB procedure 519
$REVERJw. informat 409

compared to $REVERSw. informat 410
$REVERSw. informat 410

compared to $REVERJw. informat 410
right-alignment

character expressions 271
RLS (Remote Library Services)

translation tables with 514
RSASIOTRANSERROR system option 467
Russia

monetary format 138, 175

S
SAS/CONNECT

Compute Services 30
Data Transfer Services 30
Remote Library Services 30

SAS/GRAPH
translation tables in 514

SAS language elements
using encoding values 549

SAS sessions
default character-set encoding 459
default encoding 21
encoding 20
encoding behavior in 23
locale of 463
setting encoding of 22
specifying locale during 7
system options for DBCS 547

SAS/SHARE
Remote Library Services 30

SAS string functions
internationalization compatibility for 236

SAVE statement
TRANTAB procedure 520

SBCS encoding 12
encoding values for transcoding data 549

searching
for a word, by position in a string 442

Index 663

for specific characters in character expression 263
for string of characters in character expression 262

segments
storing long macro variable values in 446

shift-code data
adding to DBCS data 81, 318
removing from DBCS data 82, 318

shift out/shift in (SO/SI) 37
trimming from character expressions 276

Singapore
monetary format 140, 177

single-byte character set (SBCS) 12
encoding values for transcoding data 549

Slovenia
monetary format 120, 157

SO/SI (shift out/shift in) 37
trimming from character expressions 276

sort keys
linguistic 287

sort order
ASCII 476
EBCDIC 476

SORT procedure
language-specific collating sequence for 468
translation tables in 513

sorting
translation tables for 531

SORTKEY function 287
SORTSEQ= option

PROC SORT statement 477
SORTSEQ= system option 468
South Africa

monetary format 145, 182
South Korea

monetary format 129, 166
Spain

monetary format 120, 157
split character strings 38
SQL procedure

language-specific collating sequence for 468
standards organizations 15
statement options 473
string functions

internationalization compatibility for 236
strings

length of 441
locating first character in 440
reducing length of 441
searching for words by position in 442
substring of a character string 446

substrings
extracting from an argument 273
extracting from an argument, based on byte position 274
of a character string 446

SWAP statement
TRANTAB procedure 521

Sweden
monetary format 139, 176

SWEDISH option
PROC SORT statement 476

Switzerland
monetary format 114, 151

system options
by category 451
DBCS values for 547
for transcoding 29

in SAS sessions for DBCS 547

T
TABLE= option

SAVE statement (TRANTAB) 520
Taiwan

monetary format 143, 180
Taiwanese dates 85, 322
Thailand

monetary format 141, 178
time 5
time values

converting to specified locale 286
trailing blanks

trimming 436
transcode attributes

of data set variables 292
TRANSCODE= option

ATTRIB statement 497
transcoding 12, 27

between operating environments 29
by specified translation table 291
compatible and incompatible encodings 31
considerations for 30
EBCDIC and OpenEdition encodings 32
enabled for specified argument 294
enabled for specified character variable 293
encoding values for 549
line-feed characters 31
preventing 32
reasons for 27
SAS options for 29
suppressing 45
transferring data between EBCDIC and ASCII 31
translation tables and 28
versus encoding 12

transcoding errors 467
translating character expressions 275
translation tables 18, 511

applying to transport files 502
character sets and 512
CIMPORT procedure with 513
clearing positions 517
CPORT procedure with 513
creating 522
definition 511
editing 524, 527, 533
hexadecimal representation of 518
in SAS/GRAPH 514
in SORT procedure 513
inverse tables 517, 529
loading into memory for editing 518
modifying 513
outside TRANTAB procedure 513
positions 511
Remote Library Services (RLS) with 514
replacing characters in 519
saving 520
sorting data 531
specifying 470
storing 512
swapping 521
transcoding and 28
transcoding by specified table 291
viewing 521

664 Index

transport files
applying translation tables to 502

TRANTAB function 291
TRANTAB procedure 511, 515

CLEAR statement 517
concepts 512
creating translation tables 522
examples 521
INVERSE statement 517
inverse translation tables 529
LIST statement 518
LOAD statement 518
modifying translation tables 513, 524, 527, 533
PROC TRANTAB statement 516
REPLACE statement 519
SAVE statement 520
storing translation tables 512
SWAP statement 521
syntax 515
task table 515
translation tables and character sets 512
translation tables for sorting 531
viewing translation tables 521

TRANTAB statement
UPLOAD procedure 501

TRANTAB= system option 470
trimming trailing blanks 436
truncating numeric values 276
truncation of character data 38
Turkey

monetary format 142, 179
TWO option

CLEAR statement (TRANTAB) 517
LIST statement (TRANTAB) 518
SAVE statement (TRANTAB) 520

TYPE= option, TRANTAB statement 501

U
$UCS2BEw. format 200
$UCS2BEw. informat 412
$UCS2Bw. format 199
$UCS2Bw. informat 411
$UCS2LEw. format 203
$UCS2LEw. informat 414
$UCS2Lw. format 202
$UCS2Lw. informat 413
$UCS2XEw. format 205
$UCS2Xw. format 204
$UCS2Xw. informat 415
$UCS4BEw. format 208
$UCS4Bw. format 206
$UCS4Bw informat 418
$UCS4LEw. format 210
$UCS4Lw. format 209
$UCS4XEw. format 212
$UCS4XEw. informat 421
$UCS4Xw. format 211
$UCS4Xw. informat 420
$UESCEw. format 215
$UESCEw. informat 423
$UESCw. format 214
$UESCw. informat 422
$UNCREw. format 217
$UNCREw. informat 425
$UNCRw. format 216

$UNCRw. informat 424
Unicode 13

BOM prefix on external files 453
encoding values for transcoding data 549
length of character unit 299
length of display unit 300

Unicode Consortium 15
UNICODELEN function 299
UNICODEWIDTH function 300
unique international monetary representation 60
unique national monetary representation 59
United Arab Emirates

monetary format 109, 146
United Kingdom

monetary format 121, 158
United States

monetary format 144, 181
UNIX

encoding values 555
$UPARENEw. format 219
$UPARENEw. informat 427
$UPARENPw. informat 428
$UPARENw. format 218
$UPARENw. informat 426
UPLOAD procedure

TRANTAB statement 501
uploading files

translation tables 501
uppercase characters

changing to lowercase 435
converting arguments to 277

UTF-16 13
UTF-32 13
UTF-8 13
$UTF8Xw. format 220
$UTF8Xw. informat 430

V
variables

associating formats with 497
associating informats with 497
labels 497
length, associating with 497
transcode attributes of 292
transcoding enabled for specified character variable 293

variant characters 15
VARTRANSCODE function 292
VERBOSE option

PROC DBCSTAB statement 506
VERIFY option

PROC DBCSTAB statement 506
visual server

storing logical-ordered text on 83, 84
$VSLOGRw. format 222
$VSLOGRw. informat 432
$VSLOGw. format 221
$VSLOGw. informat 431
VTRANSCODE function 293
VTRANSCODEX function 294

W
WEEKUw. format 224
WEEKVw. format 225
WEEKWw. format 227

Index 665

Windows
encoding values 556
ISO encodings 13
Latin1 code page 9

words
searching for, by position in a string 442

Y
yen signs, removing 433
YENw.d format 233

YENw.d informat 433

YYWEEKUw. format 228

YYWEEKVw. format 230

YYWEEKWw. format 231

Z
z/OS

encoding support 24

encoding values 558

66

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

66

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	What’s New
	Overview
	Documentation Enhancements
	Internationalization Compatibility for SAS String Functions
	National Collating Sequences of Alphanumeric Characters
	Language Switching
	Locales
	Encodings
	Autocall Macros
	Macro Functions
	Formats
	Informats
	Functions
	System Options

	Part 1 NLS Concepts
	National Language Support (NLS)
	Overview to National Language Support
	Definition of Localization and Internationalization

	Locale for NLS
	Overview of Locale Concepts for NLS
	Specifying a Locale
	How Locale Is Specified at SAS Invocation
	How Locale Is Specified During a SAS Session
	Language Switching

	Encoding for NLS
	Overview: Encoding for NLS
	Difference between Encoding and Transcoding
	Character Sets for Encoding in NLS
	Common Encoding Methods
	Standards Organizations for NLS Encodings
	Code Point Discrepancies among EBCDIC Encodings
	Collating Sequence
	Overview to Collating Sequence
	Request Alternate Collating Sequence
	Specifying a Translation Table
	Specifying an Encoding Value
	Specifying Linguistic Collation

	Determining the Encoding of a SAS Session and a Data Set
	Encoding of a SAS Session
	Encoding of a SAS Data Set

	Default SAS Session Encoding
	Setting the Encoding of a SAS Session
	Encoding Behavior in a SAS Session
	Encoding Support for Data Sets by SAS Release
	z/OS: Ensuring Compatibility with Previous SAS Releases
	Output Processing
	Input Processing
	Reading and Writing External Files

	Transcoding for NLS
	Overview to Transcoding
	Common Reasons for Transcoding
	Transcoding and Translation Tables
	SAS Options That Transcode SAS Data
	Transcoding between Operating Environments
	Transcoding Considerations
	Compatible and Incompatible Encodings
	Overview to Compatible and Incompatible Encodings
	Line-feed Characters and Transferring Data between EBCDIC and ASCII
	EBCDIC and OpenEdition Encodings Are Compatible
	Some East Asian MBCS Encodings Are Compatible

	Preventing Transcoding

	Double-Byte Character Set (DBCS)
	Overview to Double-Byte Character Sets (DBCS)
	East Asian Languages
	Specifying DBCS
	Requirements for Displaying DBCS Character Sets
	When You Can Use DBCS Features
	DBCS and SAS on a Mainframe
	SAS Data Conversion between DBCS Encodings
	Avoiding Problems with Split DBCS Character Strings
	Avoiding Character Data Truncation by Using the CVP Engine

	Part 2 SAS Language Elements for NLS Data
	Data Set Options for NLS
	Data Set Options for NLS by Category
	ENCODING= Data Set Option
	OUTREP= Data Set Option

	Formats for NLS
	International Date and Datetime Formats
	Currency Representation
	Overview to Currency
	U.S. Dollars
	Localized Euros
	Customized Currency Representations
	Localized National and International Currency Representations
	Unique National and International Monetary Representations
	Example: Representing Currency in National and International Formats

	European Currency Conversion
	Overview to European Currency Conversion
	Fixed Rates for Euro Conversion
	Variable Rates for Euro Conversion
	Example: Converting between a European Currency and Euros
	Direct Conversion between European Currencies

	Formats for NLS by Category
	$BIDIw. Format
	$CPTDWw. Format
	$CPTWDw. Format
	EUROw.d Format
	EUROXw.d Format
	HDATEw. Format
	HEBDATEw. Format
	$KANJIw. Format
	$KANJIXw. Format
	$LOGVSw. Format
	$LOGVSRw. Format
	MINGUOw. Format
	NENGOw. Format
	NLBESTw. Format
	NLDATEw. Format
	NLDATEMDw. Format
	NLDATEMNw. Format
	NLDATEWw. Format
	NLDATEWNw. Format
	NLDATEYMw. Format
	NLDATEYQw. Format
	NLDATEYRw. Format
	NLDATEYWw. Format
	NLDATMw. Format
	NLDATMAPw. Format
	NLDATMDTw. Format
	NLDATMMDw. Format
	NLDATMMNw. Format
	NLDATMTMw. Format
	NLDATMWNw. Format
	NLDATMWw. Format
	NLDATMYMw. Format
	NLDATMYQw. Format
	NLDATMYRw. Format
	NLDATMYWw. Format
	NLMNIAEDw.d Format
	NLMNIAUDw.d Format
	NLMNIBGNw.d Format
	NLMNIBRLw.d Format
	NLMNICADw.d Format
	NLMNICHFw.d Format
	NLMNICNYw.d Format
	NLMNICZKw.d Format
	NLMNIDKKw.d Format
	NLMNIEEKw.d Format
	NLMNIEGPw.d Format
	NLMNIEURw.d Format
	NLMNIGBPw.d Format
	NLMNIHKDw.d Format
	NLMNIHRKw.d Format
	NLMNIHUFw.d Format
	NLMNIIDRw.d Format
	NLMNIILSw.d Format
	NLMNIINRw.d Format
	NLMNIJPYw.d Format
	NLMNIKRWw.d Format
	NLMNILTLw.d Format
	NLMNILVLw.d Format
	NLMNIMOPw.d Format
	NLMNIMXNw.d Format
	NLMNIMYRw.d Format
	NLMNINOKw.d Format
	NLMNINZDw.d Format
	NLMNIPLNw.d Format
	NLMNIRUBw.d Format
	NLMNISEKw.d Format
	NLMNISGDw.d Format
	NLMNITHBw.d Format
	NLMNITRYw.d Format
	NLMNITWDw.d Format
	NLMNIUSDw.d Format
	NLMNIZARw.d Format
	NLMNLAEDw.d Format
	NLMNLAUDw.d Format
	NLMNLBGNw.d Format
	NLMNLBRLw.d Format
	NLMNLCADw.d Format
	NLMNLCHFw.d Format
	NLMNLCNYw.d Format
	NLMNLCZKw.d Format
	NLMNLDKKw.d Format
	NLMNLEEKw.d Format
	NLMNLEGPw.d Format
	NLMNLEURw.d Format
	NLMNLGBPw.d Format
	NLMNLHKDw.d Format
	NLMNLHRKw.d Format
	NLMNLHUFw.d Format
	NLMNLIDRw.d Format
	NLMNLILSw.d Format
	NLMNLINRw.d Format
	NLMNLJPYw.d Format
	NLMNLKRWw.d Format
	NLMNLLTLw.d Format
	NLMNLLVLw.d Format
	NLMNLMOPw.d Format
	NLMNLMXNw.d Format
	NLMNLMYRw.d Format
	NLMNLNOKw.d Format
	NLMNLNZDw.d Format
	NLMNLPLNw.d Format
	NLMNLRUBw.d Format
	NLMNLSEKw.d Format
	NLMNLSGDw.d Format
	NLMNLTHBw.d Format
	NLMNLTRYw.d Format
	NLMNLTWDw.d Format
	NLMNLUSDw.d Format
	NLMNLZARw.d Format
	NLMNYw.d Format
	NLMNYIw.d Format
	NLNUMw.d Format
	NLNUMIw.d Format
	NLPCTw.d Format
	NLPCTIw.d Format
	NLPCTNw.d Format
	NLPCTPw.d Format
	NLPVALUEw.d Format
	NLSTRMONw.d Format
	NLSTRQTRw.d Format
	NLSTRWKw.d Format
	NLTIMEw. Format
	NLTIMAPw. Format
	$UCS2Bw. Format
	$UCS2BEw. Format
	$UCS2Lw. Format
	$UCS2LEw. Format
	$UCS2Xw. Format
	$UCS2XEw. Format
	$UCS4Bw. Format
	$UCS4BEw. Format
	$UCS4Lw. Format
	$UCS4LEw. Format
	$UCS4Xw. Format
	$UCS4XEw. Format
	$UESCw. Format
	$UESCEw. Format
	$UNCRw. Format
	$UNCREw. Format
	$UPARENw. Format
	$UPARENEw. Format
	$UTF8Xw. Format
	$VSLOGw. Format
	$VSLOGRw. Format
	WEEKUw. Format
	WEEKVw. Format
	WEEKWw. Format
	YYWEEKUw. Format
	YYWEEKVw. Format
	YYWEEKWw. Format
	YENw.d Format

	Functions for NLS
	Internationalization Compatibility for SAS String Functions
	Functions for NLS by Category
	GETLOCENV Function
	GETPXLANGUAGE Function
	GETPXLOCALE Function
	GETPXREGION Function
	KCOMPARE Function
	KCOMPRESS Function
	KCOUNT Function
	KCVT Function
	KINDEX Function
	KINDEXC Function
	KLEFT Function
	KLENGTH Function
	KLOWCASE Function
	KPROPCASE Function
	KPROPCHAR Function
	KPROPDATA Function
	KREVERSE Function
	KRIGHT Function
	KSCAN Function
	KSTRCAT Function
	KSUBSTR Function
	KSUBSTRB Function
	KTRANSLATE Function
	KTRIM Function
	KTRUNCATE Function
	KUPCASE Function
	KUPDATE Function
	KUPDATEB Function
	KVERIFY Function
	NLDATE Function
	NLDATM Function
	NLTIME Function
	SORTKEY Function
	TRANTAB Function
	VARTRANSCODE Function
	VTRANSCODE Function
	VTRANSCODEX Function
	UNICODE Function
	UNICODEC Function
	UNICODELEN Function
	UNICODEWIDTH Function

	Informats for NLS
	Informats for NLS by Category
	$CPTDWw. Informat
	$CPTWDw. Informat
	EUROw.d Informat
	EUROXw.d Informat
	JDATEYMDw. Informat
	JNENGOw. Informat
	$KANJIw. Informat
	$KANJIXw. Informat
	$LOGVSw. Informat
	$LOGVSRw. Informat
	MINGUOw. Informat
	NENGOw. Informat
	NLDATEw. Informat
	NLDATMw. Informat
	NLMNIAEDw.d Informat
	NLMNIAUDw.d Informat
	NLMNIBGNw.d Informat
	NLMNIBRLw.d Informat
	NLMNICADw.d Informat
	NLMNICHFw.d Informat
	NLMNICNYw.d Informat
	NLMNICZKw.d Informat
	NLMNIDKKw.d Informat
	NLMNIEEKw.d Informat
	NLMNIEGPw.d Informat
	NLMNIEURw.d Informat
	NLMNIGBPw.d Informat
	NLMNIHKDw.d Informat
	NLMNIHRKw.d Informat
	NLMNIHUFw.d Informat
	NLMNIIDRw.d Informat
	NLMNIILSw.d Informat
	NLMNIINRw.d Informat
	NLMNIJPYw.d Informat
	NLMNIKRWw.d Informat
	NLMNILTLw.d Informat
	NLMNILVLw.d Informat
	NLMNIMOPw.d Informat
	NLMNIMXNw.d Informat
	NLMNIMYRw.d Informat
	NLMNINOKw.d Informat
	NLMNINZDw.d Informat
	NLMNIPLNw.d Informat
	NLMNIRUBw.d Informat
	NLMNISEKw.d Informat
	NLMNISGDw.d Informat
	NLMNITHBw.d Informat
	NLMNITRYw.d Informat
	NLMNITWDw.d Informat
	NLMNIUSDw.d Informat
	NLMNIZARw.d Informat
	NLMNLAEDw.d Informat
	NLMNLAUDw.d Informat
	NLMNLBGNw.d Informat
	NLMNLBRLw.d Informat
	NLMNLCADw.d Informat
	NLMNLCHFw.d Informat
	NLMNLCNYw.d Informat
	NLMNLCZKw.d Informat
	NLMNLDKKw.d Informat
	NLMNLEEKw.d Informat
	NLMNLEGPw.d Informat
	NLMNLEURw.d Informat
	NLMNLGBPw.d Informat
	NLMNLHKDw.d Informat
	NLMNLHRKw.d Informat
	NLMNLHUFw.d Informat
	NLMNLIDRw.d Informat
	NLMNLILSw.d Informat
	NLMNLINRw.d Informat
	NLMNLJPYw.d Informat
	NLMNLKRWw.d Informat
	NLMNLLTLw.d Informat
	NLMNLLVLw.d Informat
	NLMNLMOPw.d Informat
	NLMNLMXNw.d Informat
	NLMNLMYRw.d Informat
	NLMNLNOKw.d Informat
	NLMNLNZDw.d Informat
	NLMNLPLNw.d Informat
	NLMNLRUBw.d Informat
	NLMNLSEKw.d Informat
	NLMNLSGDw.d Informat
	NLMNLTHBw.d Informat
	NLMNLTRYw.d Informat
	NLMNLTWDw.d Informat
	NLMNLUSDw.d Informat
	NLMNLZARw.d Informat
	NLMNYw.d Informat
	NLMNYIw.d Informat
	NLNUMw.d Informat
	NLNUMIw.d Informat
	NLPCTw.d Informat
	NLPCTIw.d Informat
	NLTIMAPw. Informat
	NLTIMEw. Informat
	$REVERJw. Informat
	$REVERSw. Informat
	$UCS2Bw. Informat
	$UCS2BEw. Informat
	$UCS2Lw. Informat
	$UCS2LEw. Informat
	$UCS2Xw. Informat
	$UCS2XEw. Informat
	$UCS4Bw. Informat
	$UCS4Lw. Informat
	$UCS4Xw. Informat
	$UCS4XEw. Informat
	$UESCw. Informat
	$UESCEw. Informat
	$UNCRw. Informat
	$UNCREw. Informat
	$UPARENw. Informat
	$UPARENEw. Informat
	$UPARENPw. Informat
	$UTF8Xw. Informat
	$VSLOGw. Informat
	$VSLOGRw. Informat
	YENw.d Informat

	Autocall Macros for NLS
	Autocall Macros for NLS by Category
	%KLOWCASE and %QKLOWCAS Autocall Macros
	%KTRIM and %QKTRIM Autocall Macros
	%KVERIFY Autocall Macro

	Macro Functions for NLS
	Macro Functions for NLS by Category
	%KINDEX Macro Function
	%KLEFT and %QKLEFT Macro Functions
	%KLENGTH Macro Function
	%KSCAN and %QKSCAN Functions
	%KSUBSTR and %QKSUBSTR Macro Functions
	%KUPCASE and %QKUPCASE Macro Functions

	System Options for NLS
	System Options for NLS by Category
	BOMFILE System Option
	DATESTYLE= System Option
	DBCS System Option: UNIX, Windows, and z/OS
	DBCSLANG System Option: UNIX, Windows, and z/OS
	DBCSTYPE System Option: UNIX, Windows, and z/OS
	DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS
	ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS
	FSDBTYPE System Option: UNIX
	FSIMM System Option: UNIX
	FSIMMOPT System Option: UNIX
	LOCALE System Option
	LOCALELANGCHG System Option
	NLSCOMPATMODE System Option: z/OS
	PAPERSIZE= System Option
	RSASIOTRANSERROR System Option
	SORTSEQ= System Option: UNIX, Windows, and z/OS
	TRANTAB= System Option

	Options for Commands, Statements, and Procedures for NLS
	Commands, Statements, and Procedures for NLS by Category
	CHARSET= Option
	Collating Sequence Option
	CORRECTENCODING= Option
	CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options
	ENCODING= Option
	INENCODING= and OUTENCODING= Options
	ODSCHARSET= Option
	ODSTRANTAB= Option
	TRANSCODE= Column Modifier on PROC SQL
	RENCODING= Option
	TRANSCODE= Option
	TRANTAB= Option
	XMLENCODING= Option
	TRANTAB Statement

	Part 3 Procedures for NLS
	The DBCSTAB Procedure
	Overview: DBCSTAB Procedure
	Syntax: DBCSTAB Procedure
	PROC DBCSTAB Statement

	Examples: DBCSTAB Procedure
	Example 1: Creating a Conversion Table with the DBCSTAB Procedure
	Example 2: Producing Japanese Conversion Tables with the DBCSTAB
	Procedure

	See Also

	The TRANTAB Procedure
	Overview: TRANTAB Procedure
	Concepts: TRANTAB Procedure
	Understanding Translation Tables and Character Sets for PROC TRANTAB
	Storing Translation Tables with PROC TRANTAB
	Modifying SAS Translation Tables with PROC TRANTAB
	Using Translation Tables Outside PROC TRANTAB

	Syntax: TRANTAB Procedure
	PROC TRANTAB Statement
	CLEAR Statement
	INVERSE Statement
	LIST Statement
	LOAD Statement
	REPLACE Statement
	SAVE Statement
	SWAP Statement

	Examples: TRANTAB Procedure
	Example 1: Viewing a Translation Table
	Example 2: Creating a Translation Table
	Example 3: Editing by Specifying a Decimal Value for Starting Position
	Example 4: Editing by Using a Quoted Character for Starting Position
	Example 5: Creating the Inverse of a Table
	Example 6: Using Different Translation Tables for Sorting
	Example 7: Editing Table 1 and Table 2

	See Also

	Part 4 Values for Locale, Encoding, and Transcoding
	Values for the LOCALE= System Option
	LOCALE= Values and Default Settings for ENCODING, PAPERSIZE, DFLANG, and DATESTYLE options

	SAS System Options for Processing DBCS Data
	Overview to System Options Used in a SAS Session for DBCS
	DBCS Values for a SAS Session

	Encoding Values in SAS Language Elements
	Overview to SAS Language Elements That Use Encoding Values
	SBCS, DBCS, and Unicode Encoding Values for Transcoding Data

	Encoding Values for a SAS Session
	OpenVMS Encoding Values
	UNIX Encoding Values
	Windows Encoding Values
	z/OS Encoding Values

	Part 5 Appendixes
	Additional NLS Language Elements
	Additional NLS Language Elements
	EURDFDDw. Format
	EURDFDEw. Format
	EURDFDNw. Format
	EURDFDTw.d Format
	EURDFDWNw. Format
	EURDFMNw. Format
	EURDFMYw. Format
	EURDFWDXw. Format
	EURDFWKXw. Format
	EURFRATSw.d Format
	EURFRBEFw.d Format
	EURFRCHFw.d Format
	EURFRCZKw.d Format
	EURFRDEMw.d Format
	EURFRDKKw.d Format
	EURFRESPw.d Format
	EURFRFIMw.d Format
	EURFRFRFw.d Format
	EURFRGBPw.d Format
	EURFRGRDw.d Format
	EURFRHUFw.d Format
	EURFRIEPw.d Format
	EURFRITLw.d Format
	EURFRLUFw.d Format
	EURFRNLGw.d Format
	EURFRNOKw.d Format
	EURFRPLZw.d Format
	EURFRPTEw.d Format
	EURFRROLw.d Format
	EURFRRURw.d Format
	EURFRSEKw.d Format
	EURFRSITw.d Format
	EURFRTRLw.d Format
	EURFRYUDw.d Format
	EURTOATSw.d Format
	EURTOBEFw.d Format
	EURTOCHFw.d Format
	EURTOCZKw.d Format
	EURTODEMw.d Format
	EURTODKKw.d Format
	EURTOESPw.d Format
	EURTOFIMw.d Format
	EURTOFRFw.d Format
	EURTOGBPw.d Format
	EURTOGRDw.d Format
	EURTOHUFw.d Format
	EURTOIEPw.d Format
	EURTOITLw.d Format
	EURTOLUFw.d Format
	EURTONLGw.d Format
	EURTONOKw.d Format
	EURTOPLZw.d Format
	EURTOPTEw.d Format
	EURTOROLw.d Format
	EURTORURw.d Format
	EURTOSEKw.d Format
	EURTOSITw.d Format
	EURTOTRLw.d Format
	EURTOYUDw.d Format
	EURDFDEw. Informat
	EURDFDTw. Informat
	EURDFMYw. Informat
	EUROCURR Function

	Recommended Reading

	Glossary
	Index

