
SAS® 9.2 OLAP Server
MDX Guide

ColorTitlePage.indd   1 1/14/2009   4:36:15 PM



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 OLAP Server: MDX Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 OLAP Server: MDX Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-339-8
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
2nd electronic book, September 2009

1st printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.



Contents

What’s New v

Overview v

OLAP Cube Building Features v

OLAP Cube Maintenance Features vi

Cube Aggregation Tuning Features vii

Incremental Cube Update Features vii

Security For Cubes vii

SAS Tree View Features vii

New OLAP Procedure Options viii

Chapter 1 � MDX Introduction and Overview 1
MDX Overview 1

Basic MDX and Cube Concepts 1

Additional MDX Concepts and Expressions - Tuples and Sets 2

Chapter 2 � MDX Queries and Syntax 5
Basic MDX Queries and Syntax 5

MDX Drillthrough 7

Basic MDX DDL Syntax 8

SAS Functions 9

Using Derived Statistics with the Aggregate Function 14

SAS OLAP Security Totals and Permission Conditions 19

Chapter 3 � MDX Usage Examples 23
Basic Examples 23

Calculated Member Examples 27

Query-Calculated Member Examples 28

Session-Level Calculated Member Examples 29

Drill-Down Examples 31

Session-Named Set Examples 34

Appendix 1 � MDX Functions 41
Dimension Functions 41

Hierarchy Functions 42

Level Functions 42

Logical Functions 42

Member Functions 43

Numeric Functions 44

Set Functions 47

String Functions 57

Tuple Functions 58

Miscellaneous Functions and Operators 59



iv

Appendix 2 � Recommended Reading 61
Recommended Reading 61

Glossary 63

Index 69



v

What’s New

Overview
The SAS OLAP Server contains various new functions, tools, and features for SAS

9.2.
� OLAP cube building features
� OLAP cube maintenance features
� cube aggregation tuning features
� incremental cube update features
� security for cubes
� SAS tree view features
� OLAP procedure options

These functions are accessed from SAS OLAP Cube Studio. In addition, some of
these functions have equivalent OLAP procedure statements or options.

OLAP Cube Building Features
� The data table selection process in the Cube Designer wizard has been simplified

and reorganized into an easier and more intuitive order. Tables are now grouped
based on the libraries that the tables are registered to. The table selection pages
also contain functions that enable you to access the properties for a table and view
the data for a table.

� You can now create multiple hierarchies for a dimension with the Define a
Hierarchy dialog box in the Dimension Designer. You can also designate one of the
hierarchies as a default hierarchy.

� You can now build a time dimension with user-supplied time hierarchies that
auto-populate the levels and formats for the Time dimension. The Add-Supplied
dialog box enables you to select from suggested time hierarchies that are based on
a single date-formatted column.

The COLUMN= option is used on the LEVEL statement when the Add-Supplied
function is used.



vi What’s New

� If the metadata server connection is lost during a SAS OLAP Cube Studio session,
a new metadata server connection is automatically attempted during the same
SAS OLAP Cube Studio session. This enables you to continue your work in that
same session without losing any data changes you are making.

OLAP Cube Maintenance Features
� The Calculated Members Wizard is now fully integrated into SAS OLAP Cube

Studio. The addition of the advanced expression builder enables you to specify
user-defined formats, set the solve order, and build a custom MDX formula for a
calculated member.

� The View Cube function enables you to verify the cube build process and visualize
the data structure of a cube.

� SAS OLAP cube metadata can now be exported and imported as part of a SAS
package or in batch mode. Cubes built with SAS OLAP Cube Studio 4.2 can be
copied or moved between SAS 9.2 systems with the Export SAS Package and
Import SAS Package functions that are part of SAS OLAP Cube Studio 4.2. Cubes
that were built with a version of SAS that is earlier than 9.2 can also be moved to
the SAS 9.2 environment by using the ExportCubes and ImportCubes batch tools.

Note: The ExportCubes batch tool is supported in a hot fix that is applied to SAS
9.1.3 SP4. Cube metadata that is exported with the ExportCubes tool can then be
imported in the second maintenance release after SAS 9.2 with the ImportCubes
batch tool. �

� The Synchronize Column Changes function enables you to synchronize a cube
when the input table for an existing cube has encountered a column name change.
This function finds the name differences between the cube and its input table. It
then changes the internal cube files to match the input table column names.

� The Refresh Cube function enables the SAS OLAP Server to access calculated
members that were created or updated since the cube was last accessed by the
SAS OLAP Server. This function notifies running SAS OLAP Server instances to
capture calculated member changes made to the cube since it was last loaded by
those instances.

� You can now quickly change the OLAP schema for a cube from within SAS OLAP
Cube Studio.

� Cubes can now be disabled to make necessary changes and updates and then
enabled again. Disabling a cube makes it transparent to the users connected to
any active OLAP Server instances. A cube is disabled in order make edits to the
cube or to perform administrative tasks on the cube. Enabling a cube brings it
back into production.

� You can now choose to export the code generated by PROC OLAP in either a long
form or short form. The Export Code function enables you to store in a text file the
PROC OLAP code that is used to edit or build the cube. The long form contains all
PROC code that is used to create a cube. The short form text file contains only the
PROC OLAP statement, the cube name, and the METASVR statement and obtains
the remainder of the cube structure from an existing registration on the metadata
server.

� You can now perform impact analysis for a cube. This function enables you to view
the relationship of a cube to the objects that it is associated with. Impact analysis
shows the potential impact of changes that you might make to a cube.

� A cube or cube-related object can now have documents and notes attached to
provide additional information about the cube or object.



What’s New vii

� Cube jobs are now automatically generated when a cube is built. A cube job is a
collection of SAS tasks that create output. When you deploy a cube job, the code
needed to create the cube is generated.

� You can now change the name of a cube or other object (such as a job, document,
or note) by selecting that object in the tree view and then selecting the Rename
function.

Cube Aggregation Tuning Features
� The newly designed Aggregation Tuning wizard enables you to build, edit, and

customize aggregations for a cube. You can generate new aggregations for a cube
based on the ARM log or cardinality, or you can use the manual aggregation
builder.

Incremental Cube Update Features
� You can now add data and members to a cube without having to rebuild the cube.

To support this feature, new PROC OLAP statements and options have been added.
Within SAS OLAP Cube Studio, the Incremental Update wizard has been added.

� The Coalesce Aggregations function is part of the Incremental Update function. It
enables you to combine all of the individual rack tables that result from
incremental updates into a single aggregation table. The
COALESCE_AGGREGATIONS option has been added to support this function. In
SAS OLAP Cube Studio, the Coalesce Aggregations wizard has been added.

Security For Cubes
� You can now define member-level security in SAS OLAP Cube Studio. The Add

Authorization dialog box enables you to add MDX expressions that limit access to
a cube dimension. This ensures that only designated portions of the data are
visible to a user or group of users.

The SECURITY_SUBSET= option is now available in the OLAP procedure. The
option determines whether security totals will be used. The subset that is defined
is then applied when calculating the cell values.

� Identity-driven security enables you to substitute identity values in a permission
condition. It enables you to insert a placeholder into the permission condition that,
at query time, gets resolved to a string that represents the user identity.

SAS Tree View Features
� The tree view is now divided into two tabs, the Folders tab and Inventory tab.

The Inventory tab lists the cubes and their components, such as schemas, tables,
and libraries. The Folders tab displays a folder view of the components of the
cube. This view shows which folders a cube, source tables, and libraries are
located in.

� You can now access functions that are specific to an object in the tree view. The
functions that are listed in the context menu are specific to that object and the
current status of that object. You can access the context menu by right-clicking an
object.



viii What’s New

� In SAS OLAP Cube Studio, you can now copy or move objects between folders. You
can also find the folder location of an object in the Inventory tab with the Find In
Folders function.

New OLAP Procedure Options
The following OLAP procedure options are new for SAS OLAP 9.2:

PROC OLAP Statement Options
� ADD_DATA
� COALESCE_AGGREGATIONS
� ESRI_MAP_SERVER=
� ESRI_REPLACE
� MAX_RETRIES=
� MAX_RETRY_WAIT=
� MIN_RETRY_WAIT=
� NONUPDATEABLE
� OUTCUBE=
� OUTSCHEMA=
� RENAME
� SECURITY_SUBSET= YES|NO
� SYNCHRONIZE_COLUMNS (replacing SYNCHRONIZE_LEVELS)
� UPDATE_DISPLAY_NAMES
� UPDATE_IN_PLACE

Dimension Statement Options
� MAP_SERVICE=
� UPDATE_DIMENSION=

LEVEL Statement Options
� COLUMN=
� ESRI_MAP_LAYER=
� FORMAT=

MEASURE Statement Options
� INCLUDE_CALCULATED_MEMBERS
� NOINCLUDE_CALCULATED_MEMBERS

PROPERTY Statement Options
� ESRI_MAP_FIELD=



1

C H A P T E R

1
MDX Introduction and Overview

MDX Overview 1
Basic MDX and Cube Concepts 1

Dimensions 2

Hierarchies 2

Levels 2

Members and Measures 2
Additional MDX Concepts and Expressions - Tuples and Sets 2

MDX Overview
Multidimensional Expressions (MDX) is a powerful syntax that enables you to query

multidimensional objects and provide commands that retrieve and manipulate
multidimensional data from those objects. MDX is designed to ease the process of
accessing data from multiple dimensions. It addresses the conceptual differences
between two-dimensional and multidimensional querying. MDX provides functionality
for creating and querying multidimensional structures called cubes with a full and
complete language of its own.

MDX is similar to the Structured Query Language (SQL), and MDX provides Data
Definition Language (DDL) syntax for managing data structures. However, its features
can be more complex and robust than SQL’s features. The SAS 9.2 OLAP Server
technology uses MDX to create OLAP cubes and data queries. MDX is part of the
underlying foundation for the SAS 9.2 OLAP Server architecture, and it offers detailed
and efficient searches of multidimensional data.

With MDX, specific portions of data from a cube can be extracted and then further
manipulated for analysis. This allows for a thorough and flexible examination of SAS
OLAP cube data. Users of MDX can take advantage of such features as calculated
measures, numeric operations, and axis and slicer dimensions.

Basic MDX and Cube Concepts
To better understand the MDX language and the OLAP technology it supports, a

basic understanding of the OLAP cube components is required.



2 Dimensions � Chapter 1

Dimensions
Dimensions are the top or highest categories of a cube. They contain subcategories of

data known as levels and measures. A dimension can have multiple hierarchies and
can be used in multiple cubes. A cube can have up to 64 dimensions.

Hierarchies
A dimension might be categorized into different hierarchies. For example, a company

might categorize its profit dimension along the verticals of geography, sales territory, or
market.

Levels
Levels are categories of organization within a dimension. Levels are hierarchical, and

each level descending in a dimension is a component of the previous level. For example,
a time dimension could include the following levels: Year, Quarter, Month, Week, and
Day.

Members and Measures
An additional component of a dimension and a level is a member. A member is a

component of a level and is analogous to the value of a variable on an individual record
in a data set. It is the smallest level of data in an OLAP cube. In addition to creating
dimension members, a user can create calculated members and named sets that are
based on underlying members or on other calculated members and named sets. These
user-defined objects are based on evaluated query data from the cube.

Calculated members and named sets can be created in three different ways:

Query scope
calculated
member

is only available during the query that defines it. It is created by
using the WITH MEMBER/SET keyword.

Session scope
calculated
member

is available for the user that defines the object for the duration of
that session. It is created by using the CREATE SESSION
MEMBER/SET keyword.

Global scope
calculated
member

is available for anyone to use and is stored with the cube. It is
created by using the CREATE GLOBAL MEMBER/SET keyword.
Named sets have the same three scopes.

Calculated members can be created in the Measures dimension and can include any
combination of members. Calculated members can also be created in any other
dimension and are known as nonmeasure-based calculated members. Examples of
measures include sales counts, profit margins, and distribution costs.

Additional MDX Concepts and Expressions - Tuples and Sets
MDX extracts multidimensional views of data. A tuple is a slice of data from a cube.

It is a selection of members (or cells) across dimensions in a cube. It can also be viewed
as a cross-section or vector of member data in a cube. A tuple can be composed of



MDX Introduction and Overview � Additional MDX Concepts and Expressions - Tuples and Sets 3

member(s) from one or more dimensions. However, a tuple cannot be composed of more
than one member from the same dimension.

Sets are collections of tuples. The order of tuples in a set is important when querying
cube data and is known as dimensionality. It is important to note that the order of the
dimension members in every tuple must be the same. For example, if your first tuple is
(time_dimension_member, geography_dimension_member), then every other tuple in
that set must also have two members in it, the first from the time dimension and the
second from the geography dimension.



4



5

C H A P T E R

2
MDX Queries and Syntax

Basic MDX Queries and Syntax 5
MDX Syntax 6

MDX Drillthrough 7

Specifying the Maximum Number of Drill-Through Rows 7

Ensuring That Tables Are Accessible at Query Time 7

Working with User-Defined Formats 8
Basic MDX DDL Syntax 8

SAS Functions 9

SetToList MDX Function 9

Function Arguments and Return Types 9

Numeric Precision 9

Magnitude versus Precision 10
Computational Considerations of Fractions 10

Using the TRUNC Function 10

Differences with Microsoft Analysis Services 2000 10

SAS MDX Reserved Keywords 11

Using Derived Statistics with the Aggregate Function 14
Example 1 14

Example 2 14

Example 3 15

Example 4 16

Example 5 17
Example 6 17

Example 7 18

Standard Statistics 18

Derived Statistics 18

SAS OLAP Security Totals and Permission Conditions 19

Example 1— Applying the SECURITY_SUBSET Option to an MDX Query 19
Example 2— Applying the SECURITY_SUBSET Option to an MDX Query 20

Default Member and the All Member 21

Virtual Members and Security Totals 22

Basic MDX Queries and Syntax

Basic MDX queries use the SELECT statement to identify a data set that contains a
subset of multidimensional data. The basic MDX SELECT statement is composed of the
following clauses:

WITH clause
(optional)

This allows calculated members or named sets to be computed
during the processing of the SELECT and WHERE clauses.



6 MDX Syntax � Chapter 2

Note: You might encounter a syntax error when a member name
containing a single quotation mark is used for a calculated member
in an MDX query. To prevent this, include an additional single
quotation mark in the member name that contains the quotation
mark.

�

SELECT clause The SELECT clause defines the axes for the MDX query structure
by identifying the dimension members to include on each axis. The
number of axis dimensions of an MDX SELECT statement is also
determined by the SELECT clause. The members from each
dimension (to include on each axis of the MDX query) must be
identified.

FROM clause The cube that is being queried is named in the FROM clause. It
determines which multidimensional data source will be used when
extracting data to populate the result set of the MDX SELECT
statement. The FROM clause (in an MDX query) can list only a
single cube. Queries are restricted to a single data source or cube.

WHERE clause
(optional)

The WHERE clause further restricts the result data. The axis that
is formed by the WHERE clause is often referred to as the slicer.
The WHERE clause determines which dimension or member is used
as a slicer dimension. This restricts the extracting of data to a
specific dimension or member. Any dimension that does not appear
on an axis in the SELECT clause can be named on the slicer.

Note: MDX queries, and specifically the SELECT statement, can have up to 128
axis dimensions. The first five axes have aliases. Furthermore, an axis can be referred
to by its ordinal position within an MDX query or by its alias. In total you can have a
maximum of 64 different axes. �

The SELECT clause of the statement supports using MDX functions to construct
different members in a set on axes. The WITH clause of the statement supports using
MDX functions to construct calculated members to be used in an axis or slicer. The
following example shows the syntax for the SELECT statement:

[WITH
[MEMBER <member-name> AS ’<value-expression>’ |
SET <set-name> AS ’<set-expression>’] . . .]

SELECT [<axis_specification>
[, <axis_specification>...]]

FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

MDX Syntax
When you create and edit MDX queries, be aware of the following syntax guidelines:
� MDX keywords are case insensitive. However, to easily locate keywords in your

code, consider using uppercase text when documenting keywords in an MDX query.
� Do not use reserved words as names or identifiers. You can, however, quote

reserved words.

Note: For more information on reserved words see “SAS MDX Reserved
Keywords” on page 11. �

� Brackets used in MDX queries should balance.—for example: [ ], ( ), and { }. If
brackets do not balance, you should use the SAS option VALIDVARNAME.



MDX Queries and Syntax � Ensuring That Tables Are Accessible at Query Time 7

� Single and double quotation marks should balance.

MDX Drillthrough

The DRILLTHROUGH statement is used in Multidimensional Expressions (MDX) to
retrieve the source rowset or rowsets from the source data for a cube cell or specified
tuple. This statement enables a client application to retrieve the rowsets that were
used to create a specified cell in a cube. An MDX statement is used to specify the
subject cell. All of the rowsets that make up the source data of that cell are returned.
The total number of rowsets that are returned can also be afected by the MAXROWS
and FIRSTROWSET modifiers. Not all cubes support drill–through. Only cubes that
have a drill-through table that is specified at cube creation support drill-through.

Here is the syntax for the DRILLTHROUGH statement:

<drillthrough> :=DRILLTHROUGH [<maxrows>][<firstrowset>] <MDX select>
<maxrows> := MAXROWS <positive number>
<firstrowset> := FIRSTROWSET <positive number>

MAXROWS indicates the maximum number of rows that should be returned by
the resulting rowset.

FIRSTROWSET specifies the first rowset to return.

Specifying the Maximum Number of Drill-Through Rows
You can limit the number of drill-through rows that users request in a query by

selecting the OLAP srver definition setting Maximum number of flattened rows from
SAS Management Console. This setting controls the maximum number of flattened
rows that are allowed for flattened (two-dimensional) data sets.

1 In the tree view for the Server Manager plug-in of SAS Management Console,
select the node for your OLAP server. This is the physical OLAP server and is
located by drilling down from the top of the Server Manager tree view.

2 After selecting the physical OLAP server, right-click and select Properties.

3 At the SAS OLAP Server Properties dialog box, select the Options tab, and then
the Advanced Options button.

4 At the Advanced Options dialog box, select the Server tab and enter the needed
value for the Maximum number of flattened rows field. The default setting is
300,000 rows.

Ensuring That Tables Are Accessible at Query Time
Data that is external to a cube must be available to the SAS OLAP Server under the

following conditions:

� If the cube does not include an NWAY, then the SAS OLAP Server must have
access to the input data source table (also called the detail data) and any specified
dimension tables.

� If the cube is associated with a drill-through table, then the SAS OLAP Server
must have access to the drill-through table.

� If the cube uses pre-summarized aggregation tables, then the SAS OLAP Server
must have access to those tables.



8 Working with User-Defined Formats � Chapter 2

To ensure that the necessary tables are accessible at query time, the applicable
library names need to be allocated when the OLAP server that is associated with the
OLAP schema that contains the cubes is invoked. For more information, see the SAS
Intelligence Platform: Data Administration Guide and the SAS Intelligence Platform:
System Administration Guide.

Note: If any of the tables contain user-defined formats, then the SAS OLAP Server
also needs information about how to find those formats. User-defined formats cannot be
used with drill-through tables. �

Working with User-Defined Formats
If you have existing SAS data sets, you might also have a catalog of user-defined

formats and informats. You have two options for making these formats available to
applications such as SAS Data Integration Studio:

� The preferred solution is to name the format catalog formats.sas7bcat and to
place the catalog in the following directory:

path-to-configuration-directory\Lev1\SASMain\SASEnvironment\SASFormats

� An alternative method of making user-defined formats “visible” is to follow this
procedure:

1 Add a line to the configuration file
path-to-configuration-directory\Lev1\SASMain\sasv9.cfg that points to a
configuration file for handling user-defined format catalogs. For example, you
might add the following line:

-config path-to-configuration-directory\Lev1\SASMain\userfmt.cfg

2 In the file userfmt.cfg, enter a SET statement and a FMTSEARCH statement.

-set fmtlib1 "path-to-configuration-directory\Lev1\Data\orformat"
-fmtsearch (work fmtlib1.orionfmt library)

This makes the format catalog fmtlib1.orionfmt available. For more
information, see the SAS Intelligence Platform: Data Administration Guide.

Basic MDX DDL Syntax

The SAS OLAP Server provides support for the MDX Data Definition Language
(DDL). DDL enables users and administrators to manage the definitions of calculated
members and named sets at either a session or a global level. Management of calculated
members and named sets is provided by the CREATE and DROP DDL statements.

By using the CREATE DDL statement, a user can create definitions of calculated
members or named sets for use within a client session or for use within a cube on a
global scale. Here is the format for the CREATE DDL statement:

CREATE [global | session]
[MEMBER . AS ’’ |
SET AS ’’] . . .]

If GLOBAL or SESSION is not specified, then the default scope is SESSION. When a
calculated member or named set is defined within the SESSION scope, the definition is
available only for the lifetime of the user’s client session. When a calculated member or
named set is defined within the GLOBAL scope, the definition is permanently attached to
the cube definition and is visible to all current and future client sessions.



MDX Queries and Syntax � Numeric Precision 9

By using the DROP DDL statement, a user can remove definitions of calculated
members or a named set from use within a client session or from use within a cube on a
global scale. Here is the format for the DROP DDL statement:

DROP [MEMBER . . . .] |
[SET ] . . .] .

When using the DROP statement, only calculated members or named sets can be
dropped at the same time. However, a user cannot drop both calculated members and
named sets in a single DROP statement.

Note: The name of the calculated member or named set must contain the cube
name. �

SAS Functions
When building MDX expressions, you can use all SAS functions, functions included

in other SAS products, and user-written functions created with the SAS/TOOLKIT.
Here is an MDX query that uses a SAS function called MDY:

WITH MEMBER measures.mdy AS ’SAS!mdy(2,9,2003)’
SELECT {cars.members} ON 0 FROM mddbcars
WHERE (measures.mdy)

Note: If you use a SAS function that has the same name as an MDX function (for
example: SUM()), you must prefix it with SAS!. �

SetToList MDX Function
For SAS functions that take variable-length parameter lists, the SetToList MDX

function can be useful as it enables you to convert MDX sets into variable-length
parameter lists. See the SetToList function description for further information.

Function Arguments and Return Types
Currently only floating-point (double) arguments, character string arguments, and

return values are supported. There is no limit to the number of arguments. The
promotion of arguments from MDX types to SAS data types is automatically performed
when there is a difference between the two types.

Numeric Precision
To store numbers of large magnitude and to perform computations that require many

digits of precision to the right of the decimal point, the SAS OLAP Server stores all
numeric values as floating-point representation. Floating-point representation is an
implementation of scientific notation, in which numbers are represented as numbers
between 0 and 1 times a power of 10.

In most situations, the way the SAS OLAP Server stores numeric values does not
affect you as a user. However, floating-point representation can account for anomalies
that you might notice in MDX numeric expressions. This section identifies the types of
problems that can occur and how you can anticipate and avoid them.



10 Differences with Microsoft Analysis Services 2000 � Chapter 2

Magnitude versus Precision
Floating-point representation allows for numbers of very large magnitude (such as 230)

and high degrees of precision (many digits to the right of the decimal place). However,
operating systems differ on how much precision and how much magnitude to allow.

Whether magnitude or precision is more important depends on the characteristics of
your data. For example, if you are working with engineering data, very large numbers
might be needed and magnitude will probably be more important. However, if you are
working with financial data where every digit is important, but the number of digits is
not great, then precision is more important. Most often, applications that are created
with the SAS OLAP Server need a moderate amount of both magnitude and precision,
which is handled well by floating-point representation.

Computational Considerations of Fractions
Regardless of how much precision is available, there is still the problem that some

numbers cannot be represented exactly. For example, the fraction 1/3 cannot be
rendered exactly in floating-point representation. Likewise, .1 cannot be rendered
exactly in a base 2 or base 16 representation, so it also cannot be accurately rendered in
floating-point representation. This lack of precision is aggravated by arithmetic
operations. Consider the following example:

((10 * .1) = 1)

This expression might not always return TRUE due to differences in numeric precision.
However, the following expression uses the ROUND function to compensate for numeric
precision and therefore will always return TRUE:

(round((10 * .1), .001) = 1)

Usually, if you are doing comparisons with fractional values, it is good practice to use
the ROUND function.

Using the TRUNC Function
The TRUNC function truncates a number to a requested length and then expands

the number back to full precision. The truncation and subsequent expansion duplicate
the effect of storing numbers in less than full precision. So in the following example,
the first expression would return FALSE and the second would return TRUE:

((1/3) = .333)

(TRUNC((1/3), 3) = .333)

When you compare the result of a numeric expression to be equal to a specific value,
such as 0, it is important that you use the TRUNC and ROUND functions to ensure
that the comparison evaluates as intended.

Differences with Microsoft Analysis Services 2000
Microsoft Analysis Services 2000 (AS2K) labels external functions as user-defined

functions (UDFs). Because AS2K runs only on Windows, it supports calling COM
libraries (usually written in Visual Basic). Because MDX evaluation can occur on either
the client or the server, Microsoft provides a means to install and use libraries on either
location (due to a dual-mode OLE DB for OLAP provider, MSOLAP).

If you use a client-side function, then all the execution is on the client. The SAS
OLAP Server is a thin-client system that is designed for high volume and scalability,



MDX Queries and Syntax � SAS MDX Reserved Keywords 11

with all evaluation done on the server. Therefore, external function libraries such as
SAS functions can only be installed on the server. Additionally, with the proper license,
you can run a server on your own computer and install any libraries that you need.

SAS MDX Reserved Keywords
A reserved keyword should not be used to reference a dimension, hierarchy, level, or

member name unless the reference is enclosed in square brackets [ ]. Otherwise, the
keyword might be interpreted incorrectly.

Note: The SAS OLAP Server currently does not support the use of square brackets
in cube, dimension, hierarchy, level, or member names or captions.
�

( DRILLDOWNMEMBER NONEMPTYCROSSJOIN

) DRILLDOWNMEMBERBOTTOM NOT

* DRILLDOWNMEMBERTOP NULL

+ DRILLTHROUGH ON

’ DRILLUPLEVEL OPENINGPERIOD

- DRILLUPMEMBER OR

. DROP ORDER

/ ELSE ORDINAL

: EMPTY PAGES

< END PARALLELPERIOD

<= EXCEPT PARENT

<> EXCLUDEEMPTY PARENT_COUNT

= EXTRACT PARENT_LEVEL

> FALSE PARENT_UNIQUE_NAME

>= FILTER PERIODSTODATE

{ FIRSTCHILD POST

} FIRSTROWSET PREDICT

|| FIRSTSIBLING PREVMEMBER

ABSOLUTE FONT_FLAGS PROPERTIES

ADDCALCULATEDMEMBERS FONT_NAME PTD

AFTER FONT_SIZE PUT

AGGREGATE FORMATTED_VALUE QTD



12 SAS MDX Reserved Keywords � Chapter 2

ALL FORMAT_STRING RANGE

ALLMEMBERS FORE_COLOR RANK

ANCESTOR FROM RECURSIVE

ANCESTORS GENERATE RELATIVE

AND GLOBAL ROLLUPCHILDREN

AS HEAD ROOT

ASC HIERARCHIZE ROWS

ASCENDANTS HIERARCHY SCHEMA_NAME

AVG HIERARCHY_UNIQUE_NAME SECTIONS

AXIS IGNORE SELECT

BACK_COLOR IIF SELF

BASC INCLUDEEMPTY SELF_AND_AFTER

BDESC INTERSECT SELF_AND_BEFORE

BEFORE IS SELF_BEFORE_AFTER

BEFORE_AND_AFTER ISANCESTOR SESSION

BOTTOMCOUNT ISEMPTY SET

BOTTOMPERCENT ISGENERATION SETTOARRAY

BOTTOMSUM ISLEAF SETTOSTR

CALCULATIONCURRENTPASS ISSIBLING SIBLINGS

CALCULATIONPASSVALUE ITEM SOLVE_ORDER

CALL LAG STDDEV

CAPTION LASTCHILD STDDEVP

CASE LASTPERIODS STDEV

CATALOG_NAME LASTSIBLING STDEVP

CELL LEAD STRIPCALCULATEDMEMBERS

CELL_ORDINAL LEAVES STRTOMEMBER

CHAPTERS LEVEL STRTOSET

CHILDREN LEVELS STRTOTUPLE

CHILDREN_CARDINALITY LEVEL_NUMBER STRTOVALUE



MDX Queries and Syntax � SAS MDX Reserved Keywords 13

CLOSINGPERIOD LEVEL_UNIQUE_NAME SUBSET

COALESCEEMPTY LIBRARY SUM

COLUMNS LINKMEMBER TAIL

CORRELATION LINREGINTERCEPT THEN

COUNT LINREGPOINT TOGGLEDRILLSTATE

COUSIN LINREGR2 TOPCOUNT

COVARIANCE LINREGSLOPE TOPPERCENT

COVARIANCEN LINREGVARIANCE TOPSUM

CREATE LOOKUPCUBE TRUE

CROSSJOIN MAX TUPLETOSTR

CUBE_NAME MAXROWS UNION

CURRENT MEDIAN UNIQUENAME

CURRENTMEMBER MEMBER USE

DATAMEMBER MEMBERS USERNAME

DEFAULTMEMBER MEMBERTOSTR VALIDMEASURE

DESC MEMBER_CAPTION VALUE

DESCENDANTS MEMBER_GUID VAR

DESCRIPTION MEMBER_NAME VARIANCE

DIMENSION MEMBER_ORDINAL VARIANCEP

DIMENSIONS MEMBER_TYPE VARP

DIMENSION_UNIQUE_NAME MEMBER_UNIQUE_NAME VISUALTOTALS

DISPLAY_INFO MIN WHEN

DISTINCT MTD WHERE

DISTINCTCOUNT NAME WITH

DRILLDOWNLEVEL NAMETOSET WTD

DRILLDOWNLEVELBOTTOM NEXTMEMBER XOR

DRILLDOWNLEVELTOP NON YTD



14 Using Derived Statistics with the Aggregate Function � Chapter 2

Using Derived Statistics with the Aggregate Function

Example 1
When the aggregate function is used in a calculated member, the statistic associated

with the current measure will determine how the values are aggregated. For example:

WITH
MEMBER [measures].[calc] AS ’
[measures].[actual_max]-[measures].[actual_min]’

MEMBER [time].[agg complexfunc] AS
’aggregate([time].[all time].[1994].children)’

SELECT
{[time].[all time].[1994].children, [time].[agg complexfunc]} ON 0,
{measures].[actual_max], [measures].[actual_min],
[measures].[actual_sum], [masures].[actual_n],
[measures].[actual_avg], measures.calc} on 1

FROM [prdmddb]

This example returns the following:

1 2 3 4 agg complexfunc
actual_max $1,000.00 $987.00 $992.00 $1,000.00 $1,000.00
actual_min $13.00 $3.00 $20.00 $15.00 $3.00
actual_sum $89,763.00 $93,359.00 $89,049.00 $88,689.00 $360,860.00
actual_n 180 180 180 180 720
actual_avg $498.68 $518.66 $494.72 $492.72 $501.19

calc 987 984 972 985 997

For each current measure listed on the left, the aggregate function does the following:

actual_max It takes the MAX of the actual_max values associated with the
children of 1994.

actual_min It takes the MIN of the actual_min values associated with the
children of 1994.

actual_sum It summarizes the actual_sum values associated with the children of
1994.

actual_n It counts the actual_n values associated with the children of 1994.

actual_avg It divides the aggregated sum of the children of 1994 by the
aggregated count value of the children of 1994.

calculated
measure calc

It takes the MAX of the actual_max values for the children of 1994
(1000) and subtracts the MIN of the actual_min values for the
children of 1994 (3).

Example 2
This example shows what happens when the query is changed to include a numeric

expression:



MDX Queries and Syntax � Example 3 15

WITH
MEMBER [time].[agg complexfunc] AS

’aggregate([time].[all time].[1994].children, measures.actual_max + 1)’

SELECT
{[time].[all time].[1994].children, [time].[agg complexfunc]} ON 0,
{[measures].[actual_max], [measures].[actual_min],
[measures].[actual_sum], [measures].[actual_n],
[measures].[actual_avg]} on 1

FROM [prdmddb]

This example returns the following:

1 2 3 4 agg complexfunc
actual_max $1,000.00 $987.00 $992.00 $1,000.00 $1,001.00
actual_min $13.00 $3.00 $20.00 $15.00 $988.00
actual_sum $89,763.00 $93,359.00 $89,049.00 $88,689.00 $3,983.00
actual_n 180 180 180 180 3983
actual_avg $498.68 $518.66 $494.72 $492.72

For each current measure listed on the left, the aggregate function does the following::

actual_max It takes the MAX of the actual_max values associated with the
children of 1994 and adds 1 to it.

actual_min It takes the MIN of the actual_max values associated with the
children of 1994 and adds 1 to it.

actual_sum It adds 1 to each of the actual_max values associated with the
children of 1994 and SUMs the values.

actual_n It adds 1 to each of the actual_max values associated with the
children of 1994 and SUMs the values.

actual_avg It cannot compute a derived measure based on another measure, so
it returns a missing value.

Example 3
This example shows what happens when the query is changed to include a numeric

expression with measures that aggregate differently.

WITH
MEMBER [time].[agg complexfunc] AS

’aggregate([time].[all time].[1994].children, measures.actual_max -
measures.actual_min)’

SELECT
{[time].[all time].[1994].children, [time].[agg complexfunc]} ON 0,
{[measures].[actual_max], [measures].[actual_min],
[measures].[actual_sum], [measures].[actual_n],
[measures].[actual_avg]} on 1

FROM [prdmddb]



16 Example 4 � Chapter 2

This example returns the following:

1 2 3 4 agg complexfunc
actual_max $1,000.00 $987.00 $992.00 $1,000.00 $987.00
actual_min $13.00 $3.00 $20.00 $15.00 $972.00
actual_sum $89,763.00 $93,359.00 $89,049.00 $88,689.00 $3,928.00
actual_n 180 180 180 180 3928
actual_avg $498.68 $518.66 $494.72 $492.72

For each current measure listed on the left, the aggregate function does the following:

actual_max It subtracts the actual_min value associated with each child of 1994
from the corresponding actual_max value. It picks the MAX of these
values (1000–13).

actual_min It subtracts the actual_min value associated with each child of 1994
from the corresponding actual_max value. It picks the MIN of these
values (992 - 20).

actual_sum It subtracts the actual_min value associated with each child of 1994
from the corresponding actual_max value. It then sums all of these
values.

actual_n It subtracts the actual_min value associated with each child of 1994
from the corresponding actual_max value. It then sums all of these
values.

actual_avg It cannot compute a derived measure based on other measures, so it
returns a missing value.

Example 4
This example shows what happens when the query is changed to have the aggregate

function on a calculated measure, and the numeric expression is the actual_avg
measure.

WITH
MEMBER [measures].[agg complexfunc] AS
’aggregate([time].[all time].[1994].children, measures.actual_avg)’

SELECT
{[measures].[actual_sum], [measures].[actual_n],
[measures].[agg complexfunc]}ON 0,

{[time].[all time].[1994].children} ON 1
FROM [prdmddb]

This example returns the following:

actual_sum actual_n agg complexfunc
1 $89,763.00 180 501.194444444444
2 $93,359.00 180 501.194444444444
3 $89,049.00 180 501.194444444444
4 $88,689.00 180 501.194444444444

The current measure is the calculated measure [agg complexFunc]. However, using
this would cause infinite recursion, so the aggregate function aggregates based only on
the numeric expression. In this case, the statistic is average, which divides the sum by
the count. For each child of 1994, the sum is divided by the count, and these values are



MDX Queries and Syntax � Example 6 17

summed together. This total is then divided by the number of children of 1994 to give
the aggregate value.

Example 5

This example shows what happens when the numeric expression is changed to an
expression that used a derived statistic.

WITH
MEMBER [measures].agg complexfunc] AS

’aggregate([time].[all time].[1994].children, measures.actual_avg + 12)’

SELECT
{[measures].[actual_sum], [measures].[actual_n],

[measures].[agg complexfunc]} ON 0,
{[time].[all time].[1994].children} ON 1

FROM [prdmddb]

This example returns the following:

actual_sum actual_n agg complexfunc
1 $89,763.00 180
2 $93,359.00 180
3 $89,049.00 180
4 $88,689.00 180

In this case, the value of the aggregation is missing. When measures that are
associated with derived statistics are used in an expression for the aggregate function,
it is not able to calculate the correct value, so it simply returns missing.

Example 6

This example shows what happens when the query is changed to have a standard
statistic in the expression.

WITH
MEMBER [measures].[agg complexfunc] AS

’aggregate([time].[all time].[1994].children, measures.actual_max + 12)’

SELECT
{[measures].[actual_max],

[measures].[agg complexfunc]} ON 0,
{[time].[all time].[1994].children} ON 1

FROM [prdmddb]

This example returns the following:

actual_max agg complexfunc
1 $1,000.00 1012
2 $987.00 1012
3 $992.00 1012
4 $1,000.00 1012

In this case, the aggregate function looks for the max value associated with the
actual_max measure for the children of 1994. Then 12 is added to this value.



18 Example 7 � Chapter 2

Example 7
This example shows what happens when the query is changed to still have the

aggregate function on a calculated measure, and it has a numeric expression that
includes measures that aggregate differently.

WITH
MEMBER [measures].[agg complexfunc] AS
’aggregate([time].[all time].[1994].children, measures.actual_max +

measures.actual_min)’

SELECT
{[measures].[actual_max], measures.actual_min,
[measures].[agg complexfunc]} ON 0,

{[time].[all time].[1994].children} ON 1
FROM [prdmddb]

This example returns the following:

actual_max actual_min agg complexfunc
1 $1,000.00 $13.00
2 $987.00 $3.00
3 $992.00 $20.00
4 $1,000.00 $15.00

In this case, one measure is a max and the other a min. It is unclear how to
aggregate the values, so a missing value is returned.

Standard Statistics
Here are the standard statistics and how they are aggregated.

Standard Statistic How it is aggregated

MAX Get the MAXIMUM of the values

MIN Get the MINIMUM of the values

N Count the values

NMISS Sum the NMISS values

SUM Sum the SUM values

SUMWGT Sum the SUMWGT values

USS Sum the USS values

UWSUM Sum the UWSUM values

Derived Statistics
For measures associated with these statistics, the system will use the values that are

being aggregated to determine the result value based on the statistic. For example, for



MDX Queries and Syntax � Example 1— Applying the SECURITY_SUBSET Option to an MDX Query 19

AVG, it will take the SUM of the values and divide it by the N of the values. Here are
the derived statistics:

� AVG
� RANGE
� CSS
� VAR
� STD
� ERR
� CV
� T
� PRT
� LCLM
� UCLM
� NUNIQUE

SAS OLAP Security Totals and Permission Conditions
As part of the SAS security model, SAS OLAP cubes can have member-level

authorizations applied as permission conditions. Permission conditions limit access to a
cube dimension so that only designated portions of the data is visible to a user or group
of users. These permission conditions can affect the rolled-up values for measures at
query time. In order for a cube to control the roll-up values for designated members,
the PROC OLAP option SECURITY_SUBSET = YES must be set when the cube is
built. In addition, users who access the cube must have the necessary permissions to
see the members in the roll-up values. If the PROC OLAP option SECURITY_SUBSET
= YES is set for a cube, then the rolled-up values will only include those members that
the user has permission to see.

When you create MDX queries for security totals, there is no designated MDX code
that needs to be written in order to apply security totals to a cube. The only difference
between a query written against a cube without the SECURITY_SUBSET option and
the same query written against a cube with the SECURITY_SUBSET option is in the
values of the output.

Example 1— Applying the SECURITY_SUBSET Option to an MDX Query
Below is an example of an MDX query:

SELECT measures on_columns,
dealers.members on_rows
FROM mddbcars

This query has the following applied permission condition:

{[dealers].[all dealers],
descendants([dealers].[all dealers].[smith])}



20 Example 2— Applying the SECURITY_SUBSET Option to an MDX Query � Chapter 2

Here is the resulting data table if the SECURITY_SUBSET option has not been set.

However, if the SECURITY_SUBSET option has been set to YES, then here is the
resulting data table:

Note that themembers displayed in both resulting data tables don’t change. This is
because both data tables were built with the same permission condition. It is the final
value for the All Dealers member that changes from $229,000 in the first table to
$108,000 in the second table and shows the sales value of Smith only. The $229,000 in
the first table includes sales figures for all dealers.

Example 2— Applying the SECURITY_SUBSET Option to an MDX Query
Here is a second example of an MDX query:

SELECT measures on 0,
date.members on 1
FROM mddbcars

This query has the following applied permission condition:

{[dealers].[all dealers],
descendants([dealers].[all dealers].[smith])}

Here is the resulting data table:



MDX Queries and Syntax � Default Member and the All Member 21

However, if the SECURITY_SUBSET option is applied, then the resulting data table
is as follows:

Note that the members in the output data are the same for both queries. It is the
date member values that are different. The table values in the first data set reflect
sales values for All Dealers, even if the dealers are not displayed. The table values in
the second data set reflect sales values for Smith only. Specifically, you can see that
there were no sales for Smith during May. It is when the SECURITY_SUBSET option
is applied in the second data table that the sales values reflect only dealer Smith.

Default Member and the All Member

Every dimension for a cube has a default member. That member is implicitly used if
no other members of that dimension are explicitly selected in a cube query. In addition,
if you don’t have permission to see the default member, then the default member will be
the first member in the permission condition set. Usually, the All member of a
dimension is also the default member.

Note: The All member (parent of the highest level node in the cube) is a
system-generated member. It does not have a corresponding column in the underlying
data table. �



22 Virtual Members and Security Totals � Chapter 2

Virtual Members and Security Totals
Virtual members are associated with those records that have missing values in one

or more columns. The values associated with virtual members will be included in the
roll-up for security totals if you have permission conditions set to see the virtual parent
of the virtual member.

For example, here is a sample data set.

DISTRICT REGION ACTUAL BUDGET
. . 30 5
Atlantic . 10 35
Atlantic Eastern US 5 .
Atlantic Great Britain 12 .
Atlantic France 8 .
Atlantic Spain 5 .
Pacific . -5 30
Pacific Western US 8 .
Pacific Japan 12 .
Pacific Korea 10 .

In this data set, if the user has a permission conditions to see the following:

{[salesregion].[all regions],
[salesregion].[all regions].[atlantic],
[salesregion].[all regions].[atlantic].children}

then the value for the [salesregion].[all regions] member would include records from
rows 1 through 6.

Here is a possible query of that data:

SELECT
measures on 0,
salesregion.members on 1

FROM nonleaf

Here is the resulting data from that query:

sum of actual
all regions 70

atlantic 40
eastern us 5

great britain 12
france 8
spain 5

These are the values you will see when the permission conditon is set and the
SECURITY_SUBSET option is set to YES. Note that if the permission condition is set,
but the SECURITY_SUBSET option is not set, then the values will be different.



23

C H A P T E R

3
MDX Usage Examples

Basic Examples 23
Additional Basic Examples 25

Joins and Extractions for Queries Examples 26

Examples of Displaying Multiple Dimensions on Columns and Eliminating Empty Cells 26

Calculated Member Examples 27

Query-Calculated Member Examples 28
Example 1 28

Example 2 28

Example 3 29

Session-Level Calculated Member Examples 29

Example 1 30

Example 2 30
Example 3 30

Example 4 31

Drill-Down Examples 31

Example 1 31

Example 2 32
Example 3 33

Example 4 33

Session-Named Set Examples 34

Example 1 34

Example 2 35
Example 3 35

Example 4 36

Example 5 37

Example 6 38

Example 7 38

Additional Named Set Examples 38

Basic Examples
This topic shows several basic MDX queries. For detailed information on the MDX

functions used in these examples see “Basic MDX Queries and Syntax” on page 5 and
Appendix 1, “MDX Functions,” on page 41.

The data that is used in these simple examples is from a company that sells various
makes and models of cars. The company needs to report sales figures for different
months.



24 Basic Examples � Chapter 3

Example of a simple two-dimensional query:

SELECT
{ [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
{ [date].[all date].[march], [date].[all date].[april] } ON ROWS

FROM mddbcars

Example of how you can flip the rows and columns:

SELECT
{ [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON ROWS,
{ [date].[all date].[march], [date].[all date].[april] } ON COLUMNS

FROM mddbcars

Example of selecting a different measure (sales_n) to be the default:

SELECT
{ [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
{ [date].[all date].[march], [date].[all date].[april] } ON ROWS

FROM mddbcars
WHERE ([measures].[sales_n])

Example of using ":" to get a range of members:

SELECT
{ [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
{ [date].[all date].[january] : [date].[all date].[april] } ON _ROWS

FROM mddbcars

Example of the .MEMBERS function:

SELECT
{ [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
{ [date].members } ON ROWS

FROM mddbcars

example of the .CHILDREN function:

SELECT
{ [cars].[all cars].[ford].children } ON COLUMNS,
{ [date].members } ON ROWS

FROM mddbcars

Example of selecting more than one dimension in a tuple:

SELECT
{ ( [cars].[all cars].[chevy], [measures].[sales_sum] ),
( [cars].[all cars].[chevy], [measures].[sales_n] ),
( [cars].[all cars].[ford], [measures].[sales_sum] ),
( [cars].[all cars].[ford], [measures].[sales_n] )

} ON COLUMNS,
{ [date].members } ON ROWS

FROM mddbcars



MDX Usage Examples � Additional Basic Examples 25

Example of how the CROSSJOIN function makes tuple combinations for you:

SELECT
{ CROSSJOIN ( { [cars].[all cars].[chevy], [cars].[all cars].[ford] },

{ [measures].[sales_sum], [measures].[sales_n] } )
} ON COLUMNS,
{ [date].members } ON ROWS

FROM mddbcars

Example of using the NON_EMPTY keyword to discard the row with no sales:

SELECT
{ CROSSJOIN ( { [cars].[all cars].[chevy], [cars].[all cars].[ford] },

{ [measures].[sales_sum], [measures].[sales_n] } )
} ON COLUMNS,
NONEMPTY { [date].members } ON ROWS

FROM mddbcars

Additional Basic Examples
Example of a basic two-dimension table:

SELECT {[time].[all yqm]} ON COLUMNS ,
{[geography].[global].[all global] } ON ROWS
FROM [orionstar]

Example of a basic two-dimension table with an analysis variable (Measures):

SELECT {[time].[all yqm]} ON COLUMNS ,
{[geography].[global].[all global]} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]

Example of a basic two-dimension table with specific columns selected within the
same level:

SELECT {[time].[all yqm].[2001] , [time].[all yqm].[2002]} ON COLUMNS ,
{[geography].[global].[all global] } ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]

Example of a basic two-dimension table with specific rows selected within the same
level:

SELECT {[time].[all yqm].[2001] , [time].[all yqm].[2002]} ON COLUMNS ,
{[geography].[global].[all global].[europe] ,
[geography].[global].[all global].[asia] } ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]



26 Joins and Extractions for Queries Examples � Chapter 3

Joins and Extractions for Queries Examples
Example of the CROSSJOIN function:

SELECT {CROSSJOIN({[yqm].[all yqm]},
{[measures].[actualsalessum]})} ON COLUMNS,
{[geography].[all geography]} ON ROWS
FROM [booksnall]

Example of the UNION function:

SELECT { union([yqm].[all yqm].[1999],
[yqm].[all yqm].[2000],all)} ON COLUMNS, {
[geography].[all geography] } ON ROWS
FROM [booksnall]
WHERE [measures].[predictedsalessum]

Example of the EXCEPT function as a query:

SELECT {except({[yqm].[qtr].members},
{([yqm].[all yqm].[1998].[1]): ([yqm].[all yqm].[2001].[1])})} ON COLUMNS,
{[geography].[all geography]} ON ROWS
FROM [booksnall]

Example of the EXTRACT function:

SELECT {extract ({([yqm].[all yqm].[1998]),
([yqm].[all yqm].[2000])},time )} ON COLUMNS,
{[geography].[all geography]} ON ROWS
FROM [booksnall]

Examples of Displaying Multiple Dimensions on Columns and
Eliminating Empty Cells

Example of displaying a measure as a column by using the CROSSJOIN function:

SELECT
CROSSJOIN ([time].[yqm].[year_id].members ,
[measures].[total_retail_pricesum]) ON COLUMNS,
{[geography].[global].[all global].children } ON ROWS
FROM [orionstar]

Example of eliminating empty values by using the NON EMPTY function (in the
previous example there are several missing values for Year and Regions):

SELECT
NONEMPTY (CROSSJOIN ([time].[yqm].[all yqm].children ,
[measures].[total_retail_pricesum])) ON COLUMNS,
NONEMPTY({[geography].[global].[all global].children }) ON ROWS
FROM [orionstar]

Example of using a second CROSSJOIN to combine all three values:

SELECT
non_empty(CROSSJOIN(CROSSJOIN ([time].[yqm].[all yqm].children ,
[measures].[total_retail_pricesum]),{[demographics].[all demographics].
female} )) ON COLUMNS,
non_empty({[geography].[global].[all global].children }) ON ROWS
FROM [orionstar]



MDX Usage Examples � Calculated Member Examples 27

Example of executing the previous step with one function and adding a third set:

Note: The number controls which columns are viewed as well as the crossjoins. �

SELECT
NONEMPTY CROSSJOIN ([time].[all yqm].children,[measures].[total_retail_pricesum],
{[demographics].[all demographics].female},3) ON COLUMNS,
NONEMPTY({[geography].[global].[all global].children }) ON ROWS
FROM [orionstar]

Example of the COALESCE EMPTY function:

WITH MEMBER [measures].[quantity_nomiss] as ’COALESCE EMPTY
(measures.[quantitysum], 0)’

Calculated Member Examples
Example of the WITH MEMBER statement:

WITH MEMBER [measures].[target_difference] AS
’[measures].[actualsalessum]-[measures].[predictedsalessum]’

SELECT
CROSSJOIN([yqm].[all yqm].[2000],

{[measures].[actualsalessum],
[measures].[predictedsalessum],
[measures].[target_difference]}) ON COLUMNS ,

{[geography].[all geography].[mexico],
[geography].[all geography].[canada]} ON ROWS

FROM [booksnall]

Example of the WITH MEMBER statement and Format:

WITH MEMBER [measures].[target_difference] AS
’[measures].[actualsalessum]-[measures].[predictedsalessum]’ ,
format_string="dollar20.2"

Example of the CREATE GLOBAL MEMBER statement:

CREATE GLOBAL MEMBER [booksnall].[measures].[percentage_increase] AS
’([measures].[actualsalessum] - [measures].[predictedsalessum])/
[measures].[actualsalessum]’,
format_string="Percent8.2"

Example of the DEFINE MEMBER statement:

DEFINE MEMBER [booksnall].[Measures].[Percentage_Increase] AS
’([Measures].[ActualSalesSUM] - [Measures].[PredictedSalesSUM])/
[Measures].[ActualSalesSUM]’ ,
format_string="Percent8.2"

Example of defining a member with a dimension other than Measures:

WITH MEMBER [geography].[all geography].[non usa] AS
’SUM({[geography].[all geography].[canada],[geography].
[all geography].[mexico]})’



28 Query-Calculated Member Examples � Chapter 3

SELECT {CROSSJOIN({[time].[yqm].[all yqm]}, {[measures].
[actualsalessum]})} ON COLUMNS ,
{[geography].[all geography].[u.s.a], [geography].[all geography].
[non usa]} ON ROWS
FROM [booksnall]

Example of the DROP MEMBER statement:

DROP MEMBER [booksnall].[measures].[percentage_increase]

Query-Calculated Member Examples
The data that is used in these examples is from a company that sells various makes

and models of cars. The company needs to report on sales figures for different months.

Example 1
This query creates a calculation for the average price of a car. The average price of a

car is calculated by dividing the sales_sum by the count (sales_n). The query returns
the sales_sum, sales_n, and the average price for March and April.

WITH
MEMBER[measures].[avg price] AS

’[measures].[sales_sum] / [measures].[sales_n]’
SELECT

{ [measures].[sales_sum] , [measures].[sales_n], [measures].[avg price] }
ON COLUMNS,

{ [date].[all date].[march], [date].[all date].[april] } ON ROWS
FROM mddbcars

Here is the resulting output:

Date Sales_sum Sales_n Avg Price

March $59,000.00 4 14750

April $34,000.00 3 11333.33

Example 2
This query has the same calculation that was created in example 1. This time the

calculation is put in the slicer instead of an axis. In this query, the types of cars that
were sold are on the column and the months that the cars were sold are on the rows.
The value in the cells is the average price of the car for that month.

WITH
MEMBER [measures].[avg price] as ’[measures].[sales_sum] /

[measures].[sales_n]’
SELECT

{ [cars].[car].members } ON COLUMNS,
{ [date].members } ON ROWS



MDX Usage Examples � Session-Level Calculated Member Examples 29

FROM mddbcars
WHERE ([measures].[avg price])

Here is the resulting output:

Date Chevy Chrysler Ford Toyota

All date 13500 20000 12285.71 8444.45

January 20000 10000 8000

February 20000 11000

March 17000 14000

April 10000 12000

May 10000 4000

Example 3
This query adds the values of the Chevy, Chrysler, and Ford cars and combines them

into one calculation called US. The query shows the sales SUM for the U.S. cars and
the Toyota for January through May.

WITH
MEMBER[cars].[all cars].[us] AS ’

SUM( { [cars].[all cars].[chevy],
[cars].[all cars].[chrysler],
[cars].[all cars].[ford]

} ) ’
SELECT

{ [cars].[all cars].us, [cars].[all cars].toyota } ON COLUMNS,
{ [date].members } ON ROWS

FROM mddbcars

Here is the resulting output:

Date U.S. Toyota

All Date $153,000.00 $76,000.00

January $ 30,000.00 $24,000.00

February $ 20,000.00 $44,000.00

March $ 59,000.00

April $ 34,000.00

May $ 10,000.00 $ 8,000.00

Session-Level Calculated Member Examples
The data that is used in these examples is from a company that sells electronics and

outdoor and sporting goods equipment.



30 Example 1 � Chapter 3

Example 1
This example creates the session-level calculated member called avg_price in the sales

cube on the Measures dimension. This calculated measure shows the average price:

create session
member [sales].[measures].[avg_price] as

’[Measures].[total] / [Measures].[qty]’

Nothing is returned when you create a session-level calculated member.

Example 2
This example uses the session-level calculated member called “avg_price.” It shows

the quantity, total, and average price of goods sold from 1998 through 2000.

SELECT
{[measures].[qty], [measures].[total],

[measures].[avg_price]} ON COLUMNS,
{[time].[all time].children} ON ROWS

FROM sales

Here is the resulting output:

Year Qty Total Average Price

1998 440,852 10,782,352.94 24.4579880322648

1999 539,433 14,080,419.58 26.1022584454418

2000 32,267 859,108.83 26.6249986053863

Example 3
This example uses the session-level calculated member called “avg_price.” It shows

the quantity, total, and average price of goods sold in different customer regions.

SELECT
{[measures].[qty], [measures].[total],

[measures].[avg_price]} ON COLUMNS,
{[customer].[all customer].children} ON ROWS

FROM sales

Here is the resulting output:

Region Qty Total Average Price

Central 157,659 3,942,290.26 25.0051710336866

Mid-Atlantic 79,555 2,011,008.77 25.2782197222048

Midwest 259,759 6,614,999.09 25.4659091311562

Mountains 32,768 838,064.62 25.5757025146485



MDX Usage Examples � Example 1 31

Region Qty Total Average Price

Northeast 143,934 3,658,452.99 25.4175732627454

South-Central 64,943 1,662,479.79 25.5990605607995

Southeast 122,888 3,134,589.55 25.5076944046611

West 151,046 3,859,996.28 25.5551042728705

Example 4
This example uses the session-level calculated member called “avg_price.” It shows

the quantity, total, and average price of goods sold in the different product groups.

SELECT
{[measures].[qty], [measures].[total],

[measures].[avg_price]} On COLUMNS,
{[product].[all product].children} ON ROWS

FROM sales

Here is the resulting output:

Product Qty Total Average Price

Doing 191,321 4,850,302.26 25.3516459771797

Electronics 330,977 8,426,846.64 25.4605203382712

Health & Fitness 185,909 4,717,790.80 25.3768822380842

Outdoor & Sporting 304,345 7,726,941.65 25.3887583170415

Drill-Down Examples
The data that is used in these examples is from a company that sells electronics and

outdoor and sporting goods equipment.

Example 1
This example drills down on the electronics and outdoor and sporting goods members

from the family level.

SELECT
{[measures].[qty]} on 0,

drilldownlevel
(

{[product].[all product].[electronics],
[product].[all product].[outdoor & sporting]
},
[product].[family]

) on 1



32 Example 2 � Chapter 3

FROM sales

Here is the resulting output:

Item Qty

Electronics 330,977

Auto Electronics 13,862

Computers, Peripherals 78,263

Digital Photography 9,008

Home Audio 38,925

Personal Electronics 31,979

Phones 59,964

Portable Audio 27,645

TV, DVD, Video 47,725

Video Games 23,606

Outdoor & Sporting 304,345

Bikes, Scooters 45,297

Camping, Hiking 63,362

Exercise, Fitness 50,700

Golf 41,467

Outdoor Gear 52,305

Sports Equipment 51,214

Example 2
This example drills down on the electronics and outdoor and sporting goods members

to the family level, but it shows only the top two members at each level based on the
value of Qty.

SELECT
{[measures].[qty]} on 0,
drilldownleveltop
(

{[product].[all product].[electronics],
[product].[all product].[outdoor & sporting]
},
2,
[product].[family],
[measures].[qty]

) on 1
FROM sales

Here is the resulting output:



MDX Usage Examples � Example 4 33

Item Qty

Electronics 330,977

Computers, Peripherals 78,263

Phones 59,964

Outdoor & Sporting 304,345

Camping, Hiking 63,362

Outdoor Gear 52,305

Example 3
This example drills down on the electronics and outdoor and sporting goods members

to the family level, but it shows only the bottom two members at each level based on
the value of Qty.

SELECT
{[measures].[qty]} on 0,

drilldownlevelbottom
(
{[product].[all product].[electronics],
[product].[all product].[outdoor & sporting]

},
2,
[product].[family],
[measures].[qty]

) on 1
FROM sales

Here is the resulting output:

Item Qty

Electronics 330,977

Digital Photography 9,008

Auto Electronics 13,862

Outdoor & Sporting 304,345

Golf 41,467

Bikes, Scooters 45,297

Example 4
This example drills up to the members of the set that are below the category level. It

returns only those members that are at the category level or higher.

SELECT
{[measures].[qty]} on 0,



34 Session-Named Set Examples � Chapter 3

drilluplevel
(

{[product].[all product].[electronics].[computers, peripherals],
[product].[all product].[electronics].[tv, dvd, video],
[product].[all product].[electronics].[video games].[gameplace],
[product].[all product].[electronics].[video games].[play guy color].[caller],
[product].[all product].[outdoor & sporting],
[product].[all product].[outdoor & sporting].[bikes, scooters].[kids’ bikes],
[product].[all product].[outdoor & sporting].[golf].[clubs].[designed],
[product].[all product].[outdoor & sporting].[sports equipment],
[product].[all product].[outdoor & sporting].[sports equipment].[baseball]
},
[product].[category]

) on 1
FROM sales

Here is the resulting output:

Item Qty

Computers, Peripherals 78,263

TV, DVD, Video 47,725

Outdoor & Sporting 304,345

Sports Equipment 51,214

Session-Named Set Examples
The data that is used in these examples is from a company that sells electronics and

outdoor and sporting goods equipment.

Example 1
This example creates the session-named set called “prod in SE” in the sales cube.

This named set shows the crossing of the product family with the customer members in
the Southeast.

CREATE SESSION
set sales.[prod in se] as ’
CROSSJOIN

(
[customer].[all customer].[southeast].children,
[product].[family].members

)’

Nothing is returned when you create a session-named set.



MDX Usage Examples � Example 3 35

Example 2
This example creates the session-named set called “prod in NE” in the sales cube.

This named set shows the crossing of the product family with the customer members in
the Northeast.

CREATE SESSION
set sales.[prod in ne] as ’
CROSSJOIN
(

[customer].[all customer].[northeast].children,
[product].[family].members

)’

Nothing is returned when you create a session-level named set.

Example 3
This example uses the session-named set called “prod in SE.” It shows the quantity

and total sales for products that customers in the Southeast purchased.

SELECT
{[measures].[qty], [measures].[total]} ON COLUMNS,
[prod in se] ON ROWS

FROM sales

Here is the resulting output:

State Product Qty Total

FL Doing 21,091 550,672.41

FL Electronics 31,056 794,730.61

FL Health & Fitness 16,321 415,708.57

FL Outdoor & Sporting 30,065 742,907.85

GA Doing 1,907 44,360.08

GA Electronics 2,316 61,577.03

GA Health & Fitness 1,318 35,589.84

GA Outdoor & Sporting 2,458 68,438.03

NC Doing 235 5,404.65

NC Electronics 3,727 101,688.42

NC Health & Fitness 1,228 31,310.45

NC Outdoor & Sporting 835 21,312.83

SC Doing 1 ,266 31,596.69

SC Electronics 2,646 66,565.97

SC Health & Fitness 3,483 89,633.82

SC Outdoor & Sporting 2,936 73,092.30



36 Example 4 � Chapter 3

Example 4
This example uses the session-named set called “prod in NE.” It shows the quantity

and total sales for products that customers in the Northeast purchased.

SELECT
{[measures].[qty], [measures].[total]} ON COLUMNS,
[prod in ne] ON ROWS

FROM sales

Here is the resulting output:

State Product Qty Total

CT Doing 844 20,961.12

CT Electronics 2,659 69,540.52

CT Health & Fitness 969 22,995.63

CT Outdoor & Sporting 2,569 61,528.35

MA Doing 7,918 206,472.36

MA Electronics 11,184 281,371.34

MA Health & Fitness 4,339 105,356.59

MA Outdoor & Sporting 10,076 250,323.21

ME Doing 1,362 35,151.55

ME Electronics 4,496 110,153.94

ME Health & Fitness 2,218 58,342.02

ME Outdoor & Sporting 3,014 79,426.68

NH Doing 141 4,207.76

NH Electronics 466 10,750.48

NH Health & Fitness 1,095 26,158.29

NH Outdoor & Sporting 603 14,893.73

NY Doing 17,493 435,513.26

NY Electronics 29,246 759,166.44

NY Health & Fitness 13,880 347,481.77

NY Outdoor & Sporting 26,714 692,416.36

RI Doing 265 6,437.18

RI Electronics 833 22,723.54

RI Health & Fitness 693 17,760.85

RI Outdoor & Sporting 857 19,320.02



MDX Usage Examples � Example 5 37

Example 5

This example uses both of the session-named sets called “prod in NE” and “prod in
SE”. It shows the quantity and total sales for products that customers in the Northeast
and the Southeast purchased.

SELECT
{[measures].[qty], [measures].[total]} ON COLUMNS,
{[prod in ne], [prod in se]} ON ROWS

FROM sales

Here is the resulting output:

State Product Qty Total

CT Doing 844 20,961.12

CT Electronics 2,659 69,540.52

CT Health & Fitness 969 22,995.63

CT Outdoor & Sporting 2,569 61,528.35

MA Doing 7,918 206,472.36

MA Electronics 11,184 281,371.34

MA Health & Fitness 4,339 105,356.59

MA Outdoor & Sporting 10,076 250,323.21

ME Doing 1,362 35,151.55

ME Electronics 4,496 110,153.94

ME Health & Fitness 2,218 58,342.02

ME Outdoor & Sporting 3,014 79,426.68

NH Doing 141 4,207.76

NH Electronics 466 10,750.48

NH Health & Fitness 1,095 26,158.29

NH Outdoor & Sporting 603 14,893.73

NY Doing 17,493 435,513.26

NY Electronics 29,246 759,166.44

NY Health & Fitness 13,880 347,481.77

NY Outdoor & Sporting 26,714 692,416.36

RI Doing 265 6,437.18

RI Electronics 833 22,723.54

RI Health & Fitness 693 17,760.85

RI Outdoor & Sporting 857 19,320.02

FL Doing 21,091 550,672.41

FL Electronics 31,056 794,730.61

FL Health & Fitness 16,321 415,708.57

FL Outdoor & Sporting 30,065 742,907.85



38 Example 6 � Chapter 3

State Product Qty Total

GA Doing 1,907 44,360.08

GA Electronics 2,316 61,577.03

GA Health & Fitness 1,318 35,589.84

GA Outdoor & Sporting 2,458 68,438.03

NC Doing 235 5,404.65

NC Electronics 3,727 101,688.42

NC Health & Fitness 1,228 31,310.45

NC Outdoor & Sporting 835 21,312.83

SC Doing 1,266 31,596.69

SC Electronics 2,646 66,565.97

SC Health & Fitness 3,483 89,633.82

SC Outdoor & Sporting 2,936 73,092.30

Example 6
This example removes (drops) the session-named set called “prod in SE” in the sales

cube.

DROP SET sales.[prod in SE]

Nothing is returned when you drop a session-named set.

Example 7
This example removes (drops) the session-named set called “prod in NE” in the sales

cube.

DROP SET [sales].[prod in NE]

Nothing is returned when you drop a session-named set.

Additional Named Set Examples
Example of a session set using SQL pass-through and CREATE SET:

proc sql;
connect to olap (host=host-name port=port-number

user="userid" pass="password");
execute
(
create set booksnall.threeyears as
{[YQM].[All YQM].[1999] :[YQM].[All YQM].[2001]}

) by olap;
create table temp as select * from connection to olap

(
SELECT threeyears ON COLUMNS ,



MDX Usage Examples � Additional Named Set Examples 39

{[products].[all products].[books]} ON ROWS
FROM [booksnall]

);
disconnect from olap;

quit;

Example of how to drop a set by using DROP SET:

proc sql;
connect to olap (host=host-name port=port-number user="userid"

pass="password");
execute

(
DROP SET booksnall.threeyears

) by olap;

disconnect from olap;
quit;



40



41

A P P E N D I X

1
MDX Functions

Dimension Functions 41
Hierarchy Functions 42

Level Functions 42

Logical Functions 42

Member Functions 43

Numeric Functions 44
Set Functions 47

String Functions 57

Tuple Functions 58

Miscellaneous Functions and Operators 59

Dimension Functions
The MDX functions that are listed here indicate their return type.

Dimension returns a dimension that contains a specified member, level, or
hierarchy.

<Member>.Dimension

<Level>.Dimension

<Hierarchy>.Dimension

Dimensions returns a dimension that is specified by a numeric or string
expression.

Dimensions(<Numeric Expression>)

Dimensions(<String Expression>)



42 Hierarchy Functions � Appendix 1

Hierarchy Functions
The MDX functions that are listed here indicate their return type.

Hierarchy returns a hierarchy that contains a specified member or level.

<Member>.Hierarchy

<Level>.Hierarchy

Level Functions
The MDX functions that are listed here indicate their return type.

Level returns the level of a member.

<Member>.Level

Levels returns levels that are specified by a numeric or string expression.

<Dimension>.Levels(<NumericExpression>)

Levels(<StringExpression>)

Logical Functions
The MDX functions that are listed here indicate their return type.

IsEmpty returns TRUE if the evaluated expression is an empty cell value.
Otherwise, FALSE is returned.

IsEmpty(<Value Expression>)

IS returns TRUE if two compared objects are equivalent. Otherwise,
FALSE is returned.

<Object 1>IS Null

<Object 1>IS <Object 2>

IsAncestor returns TRUE if a specified member is an ancestor of another
specified member. Otherwise, FALSE is returned.

IsAncestor(<Member1>,<Member2>)

IsLeaf returns TRUE if a specified member is a leaf member. Otherwise,
FALSE is returned.

IsLeaf(<Member>)

IsSibling returns TRUE if a specified member is a sibling of another specified
member. Otherwise, FALSE is returned.



MDX Functions � Member Functions 43

IsSibling(<Member1>,<Member2>)

Member Functions
The MDX functions that are listed here indicate their return type.

Ancestor returns the ancestor of a member at a specified level or distance.

Ancestor(<Member>,<Level>)

Ancestor(<Member>,<Numeric Expression>)

ClosingPeriod returns the last sibling among the descendants of a member to a
specified level.

ClosingPeriod([<Level>[,<Member>]])

Cousin returns the child member with the same relative position under its
parent member as the specified child member.

Cousin (<Member1>,<Member2>)

CurrentMember returns the current member of a dimension or hierarchy during an
iteration over a set of members of that dimension or hierarchy.

<Dimension>.CurrentMember

<Hierarchy>.CurrentMember

DataMember returns a system-generated data member that is associated with a
non-leaf member of a dimension.

<Member>.DataMember

DefaultMember returns the default member of a dimension or hierarchy.

<Dimension>.DefaultMember

<Hierarchy>.DefaultMember

FirstChild returns the first child of a specified member.

<Member>.FirstChild

FirstSibling returns the first child of the parent of a specified member.

<Member>.FirstSibling

Item returns a member from a specified tuple. Alternatively, it returns a
tuple from a set.



44 Numeric Functions � Appendix 1

<Tuple>.Item(<Index>)

Note: If a tuple is returned, then it is a tuple function, not a
member function. �

Lag returns a member that is located at a specified number of positions
before a designated member at the same level as that member.

<Member>.Lag(<Numeric Expression>)

LastChild returns the last child of a specified member.

<Member>.LastChild

LastSibling returns the last child of the parent of a specified member.

<Member>.LastSibling

Lead returns a member that is located at a specified number of positions
before a designated member at the same level as that member.

<Member>.Lead(<Numeric Expression>)

NextMember returns the next member of the level that contains the specified
member.

<Member>.NextMember

OpeningPeriod returns the first sibling among the descendants of a specified
member at the specified level.

OpeningPeriod([<Level>[,<Member>]])

ParallelPeriod returns a member at the level of the specified member that is in the
same relative position under its ancestor at the specified level.

ParallelPeriod([<Level>[,Numeric Expression>[,<Member>]]])

Parent returns the parent of a member.

<Member>.Parent

PrevMember returns the previous member at the level of the specified member.

<Member>.PrevMember

StrToMember returns a member from a string expression in Multidimensional
Expressions (MDX) format.

StrToMember(<String Expression>)

Numeric Functions
The MDX functions that are listed here indicate their return type.

Aggregate returns a calculated value by using the appropriate aggregate
function, which is based on the aggregation type of the member.

Aggregate(<Set[,<Numeric Expression>])



MDX Functions � Numeric Functions 45

Avg returns the average value of a numeric expression that is evaluated
over a set.

Avg(<Set>[,<Numeric Expression>])

Example: The following example shows a moving average across all
dimensions of time.

Avg(time.currentmember.lag
(if(time.currentmember.level is time.month_num,2,
if(time.currentmember.level is time.quarter,1,0)))
:time.currentmember, measures.[total_retail_pricesum])

The Total_Retail_PriceSUM is included in the following query to see
the difference between the moving average and the total retail price.

SELECT
{[measures].[movingaverage],[measures].
[total_retail_pricesum] } ON COLUMNS ,
{[time].[yqm].[all yqm].children } ON ROWS
FROM [orionstar]

CoalesceEmpty returns a coalesced value. This value is derived when an empty cell
value is coalesced to a number or string.

CoalesceEmpty(<Numeric Expression>[,<Numeric Expression>])

Correlation returns the correlation of two series that are evaluated over a set.

Correlation(<Set>,<Numeric Expression>[,<Numeric Expression>])

Count depending on the collection, returns the number of items in a
collection.

<Dimension>|<Hierarchy>.Levels.Count

<Tuple>.Count

<Set>.Count

Count(<Set>[,ExcludeEmpty | IncludeEmpty])

Covariance returns the population covariance of two series that are evaluated
over a set by using the biased population formula.

Covariance(<Set>,<Numeric Expression>[,<Numeric Expression>])

CovarianceN returns the sample covariance of two series that are evaluated over
a set by using the unbiased population formula.

CovarianceN(<Set>,<Numeric Expression>[,<Numeric Expression>])

DistinctCount returns the number of distinct, non-empty tuples in a set.

DistinctCount(<Set>)

IIf returns one of two numeric or string values that are determined by
a logical test.

IIF(<Logical Expression>, <Numeric Expression1>,
<Numeric Expression2>)



46 Numeric Functions � Appendix 1

Note: If a string is returned, then it is a string function, not a
numeric function. �

LinRegIntercept calculates the linear regression of a set and returns the value of b in
the regression line y = ax + b.

LinRegIntercept(<Set>,<Numeric Expression>[,<NumericExpression>])

LinRegPoint calculates the linear regression of a set and returns the value of y in
the regression line y = ax + b.

LinRegPoint(<NumericExpression>,<Set>,<NumericExpression>
[,<Numeric Expression>])

LinRegR2 calculates the linear regression of a set and returns R2 (the
coefficient of determination).

(Set, Numeric Expression[, Numeric Expression])

LinRegSlope calculates the linear regression of a set and returns the value of a in
the regression line y = ax + b.

LinRegSlope(<Set>,<NumericExpression>[,<NumericExpression>])

LinRegVariance calculates the linear regression of a set and returns the variance
associated with the regression line y = ax + b.

(Set, Numeric Expression[, Numeric Expression])

Max returns the maximum value of a numeric expression that is
evaluated over a set.

Max(<Set>[,<Numeric Expression>])

Median returns the median value of a numeric expression that is evaluated
over a set.

Median(<Set>[,<Numeric Expression>])

Min returns the minimum value of a numeric expression that is
evaluated over a set.

Min(<Set>[,<Numeric Expression>])

Ordinal returns the zero-based ordinal value that is associated with a level.

<Level>.Ordinal

Range returns the range, which is the difference between the maximum
and minimum value of a numeric expression that is evaluated over a
set.

Range (<Set>[,<Numeric Expression>])

Rank returns the one-based rank of a specified tuple in a specified set.

Rank(<Tuple>,<set>[,<Calc Expression>])

RollupChildren returns a value that is generated by rolling up the values of the
children of a specified member by using the specified unary operator.

RollupChildren(<Member>,<String Expression>)



MDX Functions � Set Functions 47

Stdev using the unbiased population formula, returns the sample standard
deviation of a numeric expression that is evaluated over a set.

Stdev(<set>[,<Numeric Expression>])

StdevP using the biased population formula, returns the population
standard deviation of a numeric expression that is evaluated over a
set.

StdevP(<set>[,<Numeric Expression>])

StrToValue returns a value from a string expression.

StrToValue(<StringExpression>)

Sum returns the sum of a numeric expression that is evaluated over a set.

Sum(<Set>[,<Numeric Expression>])

Value returns the value of a measure.

<Member>.Value

Var using the unbiased population formula, returns the sample variance
of a numeric expression that is evaluated over a set.

Var(<Set>[,<Numeric Expression>])

VarP using the biased population formula, returns the population
variance of a numeric expression that is evaluated over a set.

VarP(<Set>[,<Numeric Expression>])

Set Functions
The MDX functions that are listed here indicate their return type.

AddCalculated
Members

returns a set that includes calculated members that meet the
criteria of a given set definition (by default, calculated members are
not returned by set functions).

AddCalculatedMembers(<Set>)

Example:

WITH MEMBER [geography].[geography].[all geography].[u.s.a].
[north u.s.a] AS ’
SUM(
{[geography].[geography].[all geography].[u.s.a].[north central],
[geography].[geography].[all geography].[u.s.a].[north east],
[geography].[geography].[all geography].[u.s.a].[north west]})’

SELECT [Measures].ActualSalesSUM ON COLUMNS,
AddCalculatedMembers({[geography].[geography].[All

geography].[u.s.a].[north central]})
ON ROWS
FROM [booksnall]



48 Set Functions � Appendix 1

AllMembers returns a set that contains all members of the specified dimension,
hierarchy, or level, including calculated members.

<Dimension>.AllMembers

<Hierarchy>.AllMembers

<Level>.AllMembers

The following example references all levels/members below a specific
level using AllMembers Function. You can include calculated
Members (set function).

SELECT
{[time].AllMembers} ON COLUMNS ,
{[geography].[global].[all global].[europe]} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]

SELECT {[measures].AllMembers} ON COLUMNS ,
[geography].[global].[all global].[europe] on ROWS
FROM [orionstar]

Ancestors returns the set of ancestors of a member to a specified level or
distance. This includes or excludes ancestors at other levels. Here is
the syntax for the Ancestors function:

Ancestors(<member>,[<level>[,<anc_flags>]])

Ancestors(<member>,<distance>[,<anc_flags>])

The following example shows retrieving the Ancestor at a particular
level.

WITH MEMBER [measures].[product family sales] AS
’(ancestor([product].currentmember,[product].
[product family]),[measures].[unit sales])’

SELECT
{[measures].[unit sales],[measures].[product family sales]}
ON COLUMNS,
{[product].members} ON ROWS
FROM [sales]

Level
returns the set of ancestors of a member that are specified by
<Member> to the level that is specified by <Level>. Optionally,
the set is modified by a flag that is specified in <Anc_flags>.

Ancestors(<member>,[<level>[, <Anc_flags>]])

If no <Level> or <Anc_flags> arguments are specified, then
the function behaves as in the following syntax:

Ancestors(<member>, <member>.Level, SELF_BEFORE_AFTER)



MDX Functions � Set Functions 49

Distance
returns the set of ancestors of a member. The set of ancestors
is specified by <member> and is <distance> steps away in the
hierarchy. Optionally, the set is modified by a flag that is
specified in <Anc_flags>. Specifying a <Distance> of 0 returns a
set consisting only of the member that is specified in <Member>.

Ancestors(<member>, <distance>[,<Anc_flags>])

Table A1.1 Ancestor Flag Options

Options Value Returned

AFTER Returns ancestor members from all levels
between <Level> and <Member>, including
<Member> itself, but not member(s) found at
<Level>.

BEFORE Returns ancestor members from all levels above
<Level>.

BEFORE_AND_AFTER Returns ancestor members from all levels above
the level of <Member> except members from
<Level>.

ROOT Returns the root-level member. This flag is the
opposite of the LEAVES flag for the Descendants
function.

SELF (default) Returns ancestor members from <Level> only.
Includes <Member>, if and only if <Level> that
is specified is the level of <Member>.

SELF_AND_AFTER Returns ancestor members from <Level> and all
levels below <Level>, down to and including
<Member>.

SELF_AND_BEFORE Returns ancestor members from <Level> and all
levels between and above <Member>.

SELF_BEFORE_AFTER Returns ancestor members from all levels above
the level of <Member>, including <Member> and
member(s) at <Level>.

Note: By default, only members at the specified level or distance are included. This
function corresponds to an <Anc_flags> value of SELF. By changing the value of
<Anc_flags>, you can include or exclude ancestors at the specified level or distance, the
ancestors before or the ancestors after the specified level or distance (until the root
node), as well as all requests of the root ancestor or ancestors regardless of the specified
level or distance. �

Assuming that the levels in the Location dimension are named in a hierarchical
order, an example of levels would be All, Countries, States, Counties, and Cities.

Table A1.2 Ancestor Expressions and Returned Values

Expressions Value Returned

Ancestors (USA) All members

Ancestors (Wake, Counties) USA



50 Set Functions � Appendix 1

Expressions Value Returned

Ancestors (Wake, Counties, SELF) USA

Ancestors (Wake, States, BEFORE) USA, All

Ancestors (Wake, Counties, AFTER) Wake (includes member itself), North Carolina

Ancestors (Raleigh, States,
BEFORE_AND_AFTER)

Raleigh, Wake, USA, All members

Ancestors (Raleigh, States,
SELF_BEFORE_AFTER)

Raleigh, Wake, NC, USA, All members

Ancestors (NC, Counties, Root) All members

Ancestors (Wake, 1) North Carolina

Ancestors (Wake, 2, SELF_BEFORE_AFTER) Wake, NC, USA, All members

Ascendants returns all ancestors of the specified member up through the root
level, including the member itself.

Ascendants (<Member>)

Example: The following example shows retrieving the member at
the specific level above and the current member dynamically using
the Ascendants function (set function).

SELECT
{Ascendants([time].[all yqm] .[2002])} ON COLUMNS ,
{Descendants([geography].[global].[all global],2)} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]

Axis returns a set that is defined in an axis. Axis (0) pertains to row
members, where Axis (1) pertains to column members.

Axis (<Numeric Expression>)

Example:

Axis (0)
Axis (1)

Note: The Axis function is not allowed in session- or
global-named sets or calculations. �

BottomCount returns a specified number of items from the bottom of a set.

BottomCount(<Set>,<Count>[,Numeric Expression>[,<True|False>]])

Example: The following example shows displaying the bottom 5
products in the Clothes product category for 2002Q4 using the
BottomCount function.

SELECT
{[time].[yqm].[all yqm].[2002].[2002q4] } ON COLUMNS ,
{BottomCount([product].[all product].[clothes & shoes].[clothes].
children ,5,[measures].[total_retail_pricesum] ) } ON ROWS
FROM [orionstar]
WHERE [measures].[Total_retail_pricesum]



MDX Functions � Set Functions 51

Note: The True|False flag is for including duplicates. If it is set
to TRUE, then any member that has the same value as the last
member will also be returned. If it is set to FALSE, then it will work
as it always did. The default value for the flag is FALSE. �

Note: Constant numeric expressions should not be entered for
this function. �

BottomPercent sorts a set and returns the specified number of bottommost elements
whose cumulative total is at least a specified percentage.

(<Set>,<Percentage>[,<Numeric Expression>])

Example: The following example shows displaying the bottom
25% of Clothes Items in the Product Category for 2002 using the
BottomPercent function.

SELECT
{[time].[yqm].[all yqm].[2002] } ON COLUMNS ,
{BottomPercent([product].[all product].[clothes & shoes].
[clothes].children ,25,[measures].[total_retail_pricesum] )
} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]

Note: Constant numeric expressions should not be entered for
this function. �

BottomSum sorts a set by using a numeric expression and returns the specified
number of

bottommost elements whose sum is at least a specified value.

(<Set>,<Value>[,<Numeric Expression>])

Example: The following example shows obtaining the items that
have a cumulative total below the specified amount using
BottomSum function.

SELECT
{[time].[yqm].[all yqm].[2002] } ON COLUMNS ,
{BottomSum([product].[all product].[clothes & shoes].
[clothes].children ,6000000,[measures].[total_retail_pricesum] )
} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]
WHERE [measures].[total_retail_pricesum]

Note: Constant numeric expressions should not be entered for
this function. �

Children returns the children of a member.

<Member>.Children

Crossjoin returns the cross-product of two sets.

Crossjoin(<Set1>,<Set2>)



52 Set Functions � Appendix 1

Descendants returns the set of descendants of a member to a specified level or
distance. Optionally, this includes or excludes descendants at other
levels. By default, only members at the specified level or distance
are included.

Descendants(<Member>,[<Level>[,<Desc_flags>]])

Descendants(<Member>,<Distance>[,<Desc_flags>])

Table A1.3 Descendants Flag Options

Options Value Returned

AFTER Returns descendant members from all levels
that are subordinate to <Level>.

BEFORE Returns descendant members from all levels
between <Member> and <Level>, not including
members from <Level>.

BEFORE_AND_AFTER Returns descendant members from all levels
that are subordinate to the level of <Member>,
except members from <Level>.

LEAVES Returns leaf descendant members between
<Member> and <Level> or <Distance>. This flag
is the opposite of the ROOT flag for the
Ancestors function.

SELF (default) Returns descendant members from <Level> only.
Includes <Member>, only if <Level> is specified
at the level of <Member>.

SELF_AND_AFTER Returns descendant members from <Level> and
all levels subordinate to <Level>.

SELF_AND_BEFORE Returns descendant members from <Level> and
all levels between <Member> and <Level>.

SELF_BEFORE_AFTER Returns descendant members from all levels
that are subordinate to the level of <Member>.

Distinct returns a set by removing duplicate tuples from a specified set.
Duplicates are eliminated from the tail.

Distinct(<Set>)

Drilldown
Level

drills down to the members of a set one level below the lowest level
that is represented in the set, or to one level below an optionally
specified level of a member that is represented in the set.

DrilldownLevel(<Set>[,{<Level>|,<Index}])

Drilldown
LevelBottom

drills down the members of a set to one level below the lowest level
that is represented in the set, or to one level below an optionally
specified level of a member that is represented in the set. However,
instead of including all children for each member at the specified
<Level>, only the bottom <Count> of children is returned, based on
<Numeric Expression>.



MDX Functions � Set Functions 53

DrilldownLevelBottom(<Set>,<Count>[,[<Level>]
[,<Numeric Expression>]])

Note: Constant numeric expressions should not be entered for
this function. �

Drilldown
LevelTop

drills down the members of a set to one level below the lowest level
that is represented in the set, or to one level below an optionally
specified level of a member that is represented in the set. However,
instead of including all children for each member at the specified
<Level>, only the top <Count> of children is returned, based on
<Numeric Expression>.

DrilldownLevelTop(<Set>,<Count>[,[<Level>]
[,<Numeric Expression>]])

Note: Constant numeric expressions should not be entered for
this function. �

Drilldown
Member

drills down to the members in a specified set that are present in a
second specified set.

DrilldownMember(<Set1>,<Set2[,Recursive])

Drilldown
MemberBottom

drills down to the members in a specified set that are present in a
second specified set, therefore limiting the result set to a specified
number of members.

DrilldownMemberBottom(<Set1>,<Set2>, <Count>[,
[<Numeric Expression>]
[,Recursive]])

Note: Constant numeric expressions should not be entered for
this function. �

Drilldown
MemberTop

drills to the members in a specified set that are present in a second
specified set, therefore limiting the result set to a specified number
of members.

DrilldownMemberTop(<Set1>,<Set2>, <Count>[,
[<Numeric Expression>]
[,Recursive]])

Note: Constant numeric expressions should not be entered for
this function. �

DrillupLevel removes all members in the set that are below the specified level. If
the level is not given, then it determines the lowest level in the set
and removes all members at that level.

DrillupLevel(<Set>[,<Level>])

DrillupMember drills to the members in a specified set that are present in a second
specified set.

DrillupMember(<Set1>,<Set2>)

Except locates the difference between two sets and optionally retains
duplicates.

Except(<Set1>,<Set2>[,All])

Extract returns a set of tuples from extracted dimension elements.



54 Set Functions � Appendix 1

Extract(<Set>,<Dimension>[,<Dimension>...])

Filter returns the set that results from filtering a specified set that is
based on a search condition.

Filter(<Set>,<Search Condition>)

Generate applies a set to each member of another set and is joined to the
resulting sets.

Generate(<Set1>,<Set2>[,All])

Head returns the first specified number of elements in a set.

Head(<Set>[,<Numeric Expression>])

Hierarchize orders the members of a set in a hierarchy.

Hierarchize(<Set>)

Intersect returns the intersection of two input sets and optionally retains
duplicates.

Intersect(<Set1>,<Set2>[,All])

LastPeriods returns a set of members prior to and including a specified member.

LastPeriods(<Index>[,<Member>])

Members returns the set of members in a dimension, level, or hierarchy.

<Dimension>.Members

<Level>.Members

<Hierarchy>.Members

Mtd returns the set of members that consist of the descendants of the
Month level ancestor of the specified member, including the specified
member itself. This function is analogous to the PeriodsToDate()
function with the level defined as Month.

Mtd([<Member>])

NameToSet returns a set that contains a single member. The set is based on a
string expression that contains a member name.

NameToSet(<Member Name>)

NonEmpty
Crossjoin

returns the cross-product of one or more sets as a set. This excludes
empty tuples and tuples without associated fact table data.

NonEmptyCrossjoin(<Set1>[,<Set2>][,<Set3>...]
[,<Crossjoin Set Count>])



MDX Functions � Set Functions 55

Order arranges members of a specified set and optionally preserves or
breaks the hierarchy.

Order(<Set>[,[<Numeric Expression>][,BASC|BDESC]])

Order(<Set>[,[<String Expression>][,BASC|BDESC]])

Order(<Set>,<Numeric Expression>[,ASC|DESC])

Order(<Set>,<String Expression>[,ASC|DESC])

Note: Constant numeric expressions should not be entered for
this function. �

PeriodsToDate returns the set of members that consist of the descendants of the
ancestor of the specified member at the specified level, including the
specified member itself.

PeriodsToDate([<Level>[,<Member>]])

Qtd returns the set of members that consist of the descendants of the
Quarter level ancestor of the specified member, including the
specified member itself. This function is analogous to the
PeriodsToDate() function with the level defined as Quarter.

Qtd([<Member>])

SetToList takes an MDX set as input and returns a list of variable-length
parameters. Functions that take variable-length parameter lists
include the descriptive statistics functions (SUM(), MEAN(), PCTL(),
etc.), COALESCE(), and CHOOSEC/N(). In addition, it takes the
character parameters CAT/S/T/X() and COALESCEC().

Settolist(<Set>[,<Numeric Expression | Character Expression>])

Siblings returns the siblings of a specified member, including the member
itself.

<Member>.Siblings

StripCalculated
Members

returns a set that is generated by removing calculated members
from a specified set.

StripCalculatedMembers(<Set>)

StrToSet returns a set that is constructed from a specified string expression
in Multidimensional Expressions (MDX) format.

StrToSet (<String Expression>)

Subset returns a subset of tuples from a specified set.

Subset(<Set>,<Start>[,<Count>])

Tail returns a subset from the end of a set.

Tail(<Set>[,<Count>])



56 Set Functions � Appendix 1

ToggleDrillState Toggles the drill state of members.

ToggleDrillState(<Set1>,<Set2>[,RECURSIVE])

Note: In a graphical user interface, drilling up and down is often
accomplished by double-clicking a label to expand or contract the
information. Drilling down on a member causes the member’s
children to be returned; drilling up causes them to disappear from
the results. �

TopCount returns a specified number of items from the topmost members of a
specified set.

TopCount(<Set>,<Count>[,<Numeric Expression>[,<True|False>]])

Note: The True|False flag is for including duplicates. If it is set
to TRUE, then any member that has the same value as the last
member will also be returned. If it is set to FALSE, then it will work
as it always did. The default value for the flag is FALSE. �

Note: Constant numeric expressions should not be entered for
this function. �

TopPercent sorts a set and returns the topmost elements, whose cumulative
total is at least a specified percentage.

TopPercent(<Set>,<Percentage>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for
this function. �

TopSum sorts a set and returns the topmost elements whose cumulative total
is at least a specified value.

TopSum(<Set>,<Value>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for
this function. �

Union returns a set that is generated by the union of two sets. Optionally,
duplicate members are retained.

Union(<Set1>,<Set2>[,All])

VisualTotals returns a set that is generated by dynamically totaling child
members in a specified set. A pattern for the name of the parent
member in the result set is used.

VisualTotals (<Set>,<Pattern>)

Wtd returns the set of members that consist of the descendants of the
Week level ancestor of the specified member, including the specified
member itself. This function is analogous to the PeriodsToDate()
function with the level defined as Week.

Wtd([<Member>])

Ytd returns the set of members that consist of the descendants of the
Year level ancestor of the specified member, including the specified
member itself. This function is analogous to the PeriodsToDate()
function with the level defined as Year.

Ytd([<Member>])



MDX Functions � String Functions 57

String Functions
The MDX functions that are listed here indicate their return type.

CoalesceEmpty coalesces an empty cell value to a number or string and returns the
coalesced value.

CoalesceEmpty(<String Expression>[,<String Expression>]...)

Generate returns a concatenated string that is created by evaluating a string
expression over a set.

Generate(<Set>,<String Expression>[,Delimiter>])

IIf returns one of two numeric or string values that are determined by
a logical test.

IIf(<Logical Expression>,<String Expression1>,
<String Expression2>)

Note: If a numeric value is returned, then it is a numeric
function, not a string function. �

MemberToStr returns a string in Multidimensional Expressions (MDX) format
from a member.

MemberToStr(<Member>)

Name returns the name of a level, dimension, member, or hierarchy.

<Level>.Name

<Dimension>.Name

<Member>.Name

<Hierarchy>.Name

Properties returns a string that contains a member property value.

<Member>.Properties(Caption)

<Member>.Properties(Name)

<Member>.Properties(UniqueName)

<Member>.Properties(<String Expression>,<TRUE | FALSE>)

Note: The raw data associated with the property can be either
numeric or character, depending on the property type. If the
parameter is set to TRUE, then the function returns the raw value
for the property instead of the formatted value. If the parameter is



58 Tuple Functions � Appendix 1

set to FALSE, then the function returns the formatted string
property. The default value is FALSE. �

Put returns a string that contains the formatted output based on a SAS
format.

Put(<Numeric Expression>,<String Expression>)

Put(<String Expression>,<String Expression>)

SetToStr constructs a string in Multidimensional Expressions (MDX) format
from a set.

SetToStr(<Set>)

TupleToStr returns a string in Multidimensional Expressions (MDX) format
from a specified tuple.

TupleToStr(<Tuple>)

UniqueName returns the unique name of a specified level, dimension, member, or
hierarchy.

<Level>.UniqueName

<Dimension>.UniqueName

<Member>.UniqueName

<Hierarchy>.UniqueName

UserName returns the domain name and user name of the current connection.

UserName

<member>
.member_caption

returns the caption of the member. It is in non-standard MDX
format.

<dimension>
.caption

returns the caption of the member. It is in non-standard MDX
format.

<hierarchy>
.caption

returns the caption of the member. It is in non-standard MDX
format.

<level>
.caption

returns the caption of the member. It is in non-standard MDX
format.

<member>
.caption

returns the caption of the member. It is in non-standard MDX
format.

Tuple Functions

The MDX functions that are listed here indicate their return type.

Current returns the current tuple from a set during an iteration.

<Set>.Current



MDX Functions � Miscellaneous Functions and Operators 59

Item returns a member from a specified tuple. Alternatively, it returns a
tuple from a set.

<Set>.Item(<Index>)

Note: If a member is returned, then it is a member function, not
a tuple function. �

StrToTuple constructs a tuple from a specified string expression in
Multidimensional Expressions (MDX) format.

StrToTuple(<String expression>)

Miscellaneous Functions and Operators

Miscellaneous Functions and Operators

Functon or Operator Explanation

, (comma operator) An operator that is used to combine tuples to
construct sets. For example:

{[time].[all time].[2001].[january],
[time].[all time].
[2001].[February],[time].
[all time].[2001].[march]},

or to combine members to construct tuples such
as
([Time].[January 2001],
[Geography].[U.S.A])

: (colon operator) An operator that is used in part to construct
sets and tuples. It replaces a series of comma
operators. For example:

{[Time].[all Time].[2001].[January] :
[Time].[all Time].[2001].[March]}

{} (braces) The SET constructor operator.

* (asterisk operator) The alternative for CrossJoin. If you use a
single operator, it is a direct replacement. You
can nest CrossJoins by stringing additional
operators and sets. For example, these
expressions are equivalent:

A * B – CrossJoin( A, B )

A * B * C – CrossJoin (A, CrossJoin( B, C ))

+ (plus operator for sets) An alternative to union().

+ (plus operator for strings) A concatenation of two strings.

/**/ (style comments) Cause the OLAP server to ignore anything
between the initial token and final token. These
comments can span lines. NOTE: these
comments do NOT nest.



60 Miscellaneous Functions and Operators � Appendix 1

Functon or Operator Explanation

// (style comments) Cause the OLAP server to ignore anything after
the double slash until the end of the line. These
comments can NOT span lines.

- - (style comments) Cause the OLAP server to ignore anything after
the double dash until the end of the line. These
comments can NOT span lines.

These are essentially the same as the
double-slash comments.

NON EMPTY When applied to an axis, causes the OLAP
Server to post-process the results of the axis set
and remove any tuples which have empty
results.

For the SAS OLAP Server, it works with
CrossJoin to provide "Optimize NON EMPTY
CrossJoin" performance improvements.

<Set> AS aliasname Creates an alias for an intermediate set. An
intermediate set is one which is generated
during the evaluation of an axis and has one or
more functions operating on it.

Supports TRUE and FALSE TRUE and FALSE conditional operaters are
supported in MDX queries

Call<UDF Name> Executes a void returning user-defined function.

MAX SET SIZE Limits the size of sets that the OLAP server
creates. A value of 0 indicates there is no limit.
The default is 1,000,000 components, where
components are defined as the number of tuples
in the set times the number of dimensions in
each tuple. This function enables the
administrator to control the system resources
that are used by individual queries.



61

A P P E N D I X

2
Recommended Reading

Recommended Reading 61

Recommended Reading

Here is the recommended reading list for this title:
� SAS OLAP Server: User’s Guide
� SAS Providers for OLE DB: Cookbook
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Intelligence Platform: Overview
� SAS Intelligence Platform: Administration Guide
� SAS Intelligence Platform: Data Administration Guide
� SAS Intelligence Platform: System Administration Guide
� SAS Intelligence Platform: Application Server Administration Guide
� SAS Intelligence Platform: Security Administration Guide
� SAS Intelligence Platform: Web Application Administration Guide
� SAS Intelligence Platform: 9.1.3 to 9.2 Migration Guide
� SAS Intelligence Platform: Desktop Application Administration Guide
� SAS Data Integration Studio: User’s Guide
� SAS Web OLAP Viewer for Java: Help
� SAS OLAP Server Monitor Plug-In for SAS Management Console: Help
� SAS Management Console Main Application: Help
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.



62



63

Glossary

aggregation
a summary of detail data that is stored with or referred to by a cube. Aggregations
support rapid and efficient answers to business questions.

ancestor
within a dimension hierarchy, a member that resides at a higher level in relation to
other members in the hierarchy. For example, if a Geography dimension includes the
levels Continent, Country, and City, then Europe and France would be ancestors of
Paris, and Asia and Thailand would be ancestors of Bangkok.

Application Response Measurement
the name of an application programming interface that was developed by an industry
partnership and which is used to monitor the availability and performance of
software applications. ARM monitors the application tasks that are important to a
particular business. Short form: ARM.

ARM
See Application Response Measurement.

calculated member
in a dimension, a member whose value is derived from the values of other members.

cell
in a cube, the intersection that is defined by selecting one member from each
dimension of that cube.

child
within a dimension hierarchy, a descendant in level n-1 of a member that is at level
n. For example, if a Geography dimension includes the levels Country and City, then
Bangkok would be a child of Thailand, and Hamburg would be a child of Germany.

cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement. A cube is a directory structure, not a single file. A
cube includes measures, and it can have numerous dimensions and levels of data.

descendant
in a dimension hierarchy, a member that resides at a lower level in relation to other
members in the hierarchy. For example, if a Geography dimension includes the levels
Country, State, and City, then California and Los Angeles would be descendants of
USA.



64 Glossary

detail data
nonsummarized (or partially summarized) factual information that pertains to a
single area of interest, such as sales figures, inventory data, or human-resource data.

dimension
a group of closely related hierarchies. Hierarchies within a dimension typically
represent different groupings of information that pertains to a single concept. For
example, a Time dimension might consist of two hierarchies: (1) Year, Month, Date,
and (2) Year, Week, Day. See also hierarchy.

dimension table
in a star schema, a table that contains the data for one of the dimensions. The
dimension table is connected to the star schema’s fact table by a primary key. The
dimension table contains fields for each level of each hierarchy that is included in the
dimension.

drill down
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more lower levels until you reach the data that you are interested in.

drill up
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more higher levels until you reach the level of summarized data that
you are interested in.

drill-through table
a view, data set, or other data file that contains data that is used to define a cube.
Drill-through tables can be used by client applications to provide a view from
processed data into the underlying data source.

fact
a single piece of factual information in a data table. For example, a fact can be an
employee name, a customer’s phone number, or a sales amount. It can also be a
derived value such as the percentage by which total revenues increased or decreased
from one year to the next.

fact table
the central table in a star schema. The fact table contains the individual facts that
are being stored in the database as well as the keys that connect each fact to the
appropriate value in each dimension.

hierarchy
an arrangement of members of a dimension into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific. For example, in a Time dimension, a hierarchy might consist of the members
Year, Quarter, Month, and Day. In a Geography dimension, a hierarchy might consist
of the members Country, State or Province, and City. More than one hierarchy can be
defined for a dimension. Each hierarchy provides a navigational path that enables
users to drill down to increasing levels of detail. See also member and level.

leaf member
the lowest-level member of a hierarchy. Leaf members do not have any child
members.

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.



Glossary 65

MDX language
See multidimensional expressions language.

measure
a special dimension that contains summarized numeric data values that are
analyzed. Total Sales and Average Revenue are examples of measures. For example,
you might drill down within the Clothing hierarchy of the Product dimension to see
the value of the Total Sales measure for the Shirts member.

member
a name that represents a particular data element within a dimension. For example,
September 1996 might be a member of the Time dimension. A member can be either
unique or non-unique. For example, 1997 and 1998 represent unique members in the
Year level of a Time dimension. January represents non-unique members in the
Month level, because there can be more than one January in the Time dimension if
the Time dimension contains data for more than one year.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

MOLAP
See multidimensional online analytical processing.

multidimensional expressions language
a standardized, high-level language that is used to query multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language). Short form: MDX language.

multidimensional online analytical processing
a type of OLAP that stores aggregates in multidimensional database structures.
Short form: MOLAP.

NWAY aggregation
the aggregation that has the minimum set of dimension levels that is required for
answering any business question. The NWAY aggregation is the aggregation that has
the finest granularity. See also granularity.

ODBO
See OLE DB for OLAP.

OLAP
See online analytical processing.

OLAP schema
a group of cubes. A cube is assigned to an OLAP schema when it is created, and an
OLAP schema is assigned to a SAS OLAP Server when the server is defined in the
metadata. A SAS OLAP Server can access only the cubes that are in its assigned
OLAP schema.

OLE DB for OLAP
an OLAP API that is used to link OLAP clients and servers by means of a
multidimensional expressions (MDX) language. Short form: ODBO. See also
multidimensional expressions language.

online analytical processing
a software technology that enables users to dynamically analyze data that is stored
in multidimensional database (MDDB) tables. Short form: OLAP.



66 Glossary

parent
within a dimension hierarchy, the ancestor in level n of a member in level n-1. For
example, if a Geography dimension includes the levels Country and City, then
Thailand would be the parent of Bangkok, and Germany would be the parent of
Hamburg. The parent value is usually a consolidation of all of its children’s values.

result set
the set of rows or records that a server or other application returns in response to a
query.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the
SAS ARM interface, the ARM API is implemented as an ARM agent. In addition,
SAS supplies ARM macros, which generate calls to the ARM API function calls, and
ARM system options, which enable you to manage the ARM environment and to log
internal SAS processing transactions. See also ARM (Application Response
Measurement).

SAS format
a pattern or set of instructions that SAS uses to determine how the values of a
variable (or column) should be written or displayed. SAS provides a set of standard
formats and also enables you to define your own formats.

SAS informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried
using the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

slice
a subset of data from a cube, where the data in the slice pertains to one or more
members of one or more dimensions. For example, from a cube that contains data
about customer feedback, one slice might pertain to feedback on one particular
product (one member of the Product dimension). Another slice might pertain to
feedback on that product from customers residing in particular geographic areas who
submitted their feedback during a certain time period (one member of the Product
dimension, multiple members of the Geography dimension, one or more members of
the Time dimension).



Glossary 67

SMP
See symmetric multiprocessing.

SQL
See Structured Query Language.

Structured Query Language
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. Short form: SQL.

symmetric multiprocessing
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller. Short form: SMP.

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating system. In an SMP environment, which uses
multiple CPUs, multiple threads can be spawned and processed simultaneously.
Regardless of whether there is one CPU or many, each thread is an independent flow
of control that is scheduled by the operating system. See also symmetric
multiprocessing, thread-enabled operating system, and threading.

Time dimension
a dimension that divides time into levels such as Year, Quarter, Month, and Day.

tuple
a data object that contains two or more components. In OLAP, a tuple is a slice of
data from a cube. It is a selection of members (or cells) across dimensions in a cube.
It can also be viewed as a cross-section of member data in a cube. For example,
([time].[all time].[2003], [geography].[all geography].[u.s.a.], [measures].[actualsum])
is a tuple that contains data from the Time, Geography, and Measures dimensions.

wizard
an interactive utility program that consists of a series of dialog boxes, windows, or
pages. Users supply information in each dialog box, window, or page, and the wizard
uses that information to perform a task.



68



69

Index

A
aggregate function

derived statistics with 14
analysis variables 25

C
calculated members 2

examples 27
.CHILDREN function 24
COALESCE EMPTY function 27
CREATE DDL statement 8
CREATE GLOBAL MEMBER statement 27
CROSSJOIN function 25, 26
cubes

concepts 1

D
DDL syntax 8
DEFINE MEMBER statement 27
derived statistics 18

with aggregate function 14
dimension functions 41
dimensionality 3
dimensions 2

displaying multiple dimensions on columns 26
more than one in a tuple 24

drillthrough 7
examples 31
maximum number of rows 7
table access at query time 7
user-defined formats and 8

DRILLTHROUGH statement 7
DROP DDL statement 9
DROP MEMBER statement 28

E
empty values 26
examples

basic examples 23
calculated members 27
drill-down 31
joins and extractions for queries 26
query-calculated members 28
session-level calculated members 29
session-named sets 34

EXCEPT function 26
expressions

function arguments and return types 9
SAS functions and 9

EXTRACT function 26

F
flipping rows and columns 24
floating-point representation 9
formats

user-defined formats and drillthrough 8
fractions 10
functions

arguments and return types 9
.CHILDREN 24
COALESCE EMPTY 27
CROSSJOIN 25, 26
dimension functions 41
EXCEPT 26
EXTRACT 26
hierarchy functions 42
in MDX expressions 9
level functions 42
lists and tables of 41
logical functions 42
member functions 43
.MEMBERS 24
NON EMPTY 26
numeric functions 44
numeric precision 9
operators 59
set functions 47
string functions 57
tuple functions 58
UNION 26

G
global scope calculated members 2

H
hierarchies 2
hierarchy functions 42

J
joins 26



70 Index

K
keywords

NON EMPTY 25
reserved 11

L
level functions 42
levels 2
logical functions 42

M
MDX 1

concepts 1
measures 2

default measure 24
member functions 43
members 2

getting a range of 24
.MEMBERS function 24
Microsoft Analysis Services 2000 10
Multidimensional Expressions

See MDX

N
NON EMPTY function 26
NON EMPTY keyword 25
nonmeasure-based calculated members 2
numeric functions 44
numeric precision 9

fractions 10
magnitude versus precision 10
TRUNC function 10

O
operators 59

Q
queries 5

examples 24, 26
syntax 5

query scope calculated members 2
examples 28

R
reserved keywords 11

S
SELECT clause 6

SELECT statement 5

session-named sets 34

session scope calculated members 2

examples 29

set functions 47

sets 3

session-named 34

slicer 6

statistics

derived statistics 18

derived statistics with aggregate function 14

standard statistics and aggregation 18

string functions 57

T
tables

two-dimensional 25

TRUNC function 10

tuple functions 58

tuples 2

making combinations 25

more than one dimension in 24

two-dimensional tables 25

selecting specific columns 25

selecting specific rows 25

with analysis variable 25

U
UNION function 26

user-defined formats

drillthrough and 8

W
WHERE clause 6

WITH clause 5

WITH MEMBER statement 27



Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.



 


	Contents
	What’s New
	Overview
	OLAP Cube Building Features
	OLAP Cube Maintenance Features
	Cube Aggregation Tuning Features
	Incremental Cube Update Features
	Security For Cubes
	SAS Tree View Features
	New OLAP Procedure Options
	PROC OLAP Statement Options
	Dimension Statement Options
	LEVEL Statement Options
	MEASURE Statement Options
	PROPERTY Statement Options


	MDX Introduction and Overview
	MDX Overview
	Basic MDX and Cube Concepts
	Dimensions
	Hierarchies
	Levels
	Members and Measures

	Additional MDX Concepts and Expressions - Tuples and Sets

	MDX Queries and Syntax
	Basic MDX Queries and Syntax
	MDX Syntax

	MDX Drillthrough
	Specifying the Maximum Number of Drill-Through Rows
	Ensuring That Tables Are Accessible at Query Time
	Working with User-Defined Formats

	Basic MDX DDL Syntax
	SAS Functions
	SetToList MDX Function
	Function Arguments and Return Types
	Numeric Precision
	Differences with Microsoft Analysis Services 2000
	SAS MDX Reserved Keywords

	Using Derived Statistics with the Aggregate Function
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Standard Statistics
	Derived Statistics

	SAS OLAP Security Totals and Permission Conditions
	Example 1— Applying the SECURITY_SUBSET Option to an MDX Query
	Example 2— Applying the SECURITY_SUBSET Option to an MDX Query
	Default Member and the All Member
	Virtual Members and Security Totals


	MDX Usage Examples
	Basic Examples
	Additional Basic Examples
	Joins and Extractions for Queries Examples
	Examples of Displaying Multiple Dimensions on Columns and Eliminating Empty Cells

	Calculated Member Examples
	Query-Calculated Member Examples
	Example 1
	Example 2
	Example 3

	Session-Level Calculated Member Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Drill-Down Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Session-Named Set Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Additional Named Set Examples


	MDX Functions
	Dimension Functions
	Hierarchy Functions
	Level Functions
	Logical Functions
	Member Functions
	Numeric Functions
	Set Functions
	String Functions
	Tuple Functions
	Miscellaneous Functions and Operators

	Recommended Reading
	Recommended Reading

	Glossary
	Index



