
SAS® 9.2
Language Interfaces
to Metadata

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Language Interfaces to Metadata. Cary, NC: SAS Institute Inc.

SAS® 9.2 Language Interfaces to Metadata
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-781-6
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
2nd electronic book, May 2010
1st printing, March 2009
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

System Options vii

Metadata LIBNAME Engine vii

Procedures viii

DATA Step Functions viii

Documentation Enhancements ix

P A R T 1 Introduction 1

Chapter 1 � What Are the Metadata Language Elements? 3
Overview of Metadata Language Elements 3

When to Use Metadata Language Elements 3

Accessibility Features of SAS Language Interfaces to Metadata 4

Chapter 2 � Metadata Object Identifiers and URIs 5
What Is a Metadata Identifier? 5

Obtaining Metadata Names and Identifiers 5

What Is a URI? 6

Chapter 3 � Examples: Using Metadata Language Elements 7
Overview of the Examples 7

Example: Pausing the Server for an Administration Task 7

Example: Creating a PropertySet Object for Use with LIBOPTSET= 8

Example: Creating a Report with the METADATA Procedure and the XML Engine 9

Example: Creating a Report with the DATA Step 14

P A R T 2 System Options 21

Chapter 4 � Introduction to System Options for Metadata 23
Overview of System Options for Metadata 23

Connection Options 24

Encryption Options 25

Resource Option 26

Chapter 5 � System Options for Metadata 27

P A R T 3 Metadata LIBNAME Engine 43

Chapter 6 � Introduction to the Metadata LIBNAME Engine 45
Overview of the Metadata LIBNAME Engine 45

What Is Supported? 46

iv

Advantages of Using the Metadata Engine 46

The Metadata Engine and Authorization 47

How the Metadata Engine Constructs a LIBNAME Statement 47

How the Metadata Engine Constructs Options 47

Chapter 7 � Reference for the Metadata Engine 51
LIBNAME Statement for the Metadata Engine 51

SAS Data Set Options for the Metadata Engine 55

Chapter 8 � Reference to Metadata Objects for the Metadata Engine 59
Overview of Metadata Requirements 59

Diagrams of the SAS Metadata Model 59

Metadata Objects, Listed by Language Element 63

Metadata Objects, Listed by Type 66

Chapter 9 � Examples for the Metadata Engine 75
Example: Submitting the LIBNAME Statement 75

Example: Before and After the Metadata Engine 75

P A R T 4 Procedures 79

Chapter 10 � Introduction to Procedures for Metadata 81
Overview of Procedures for Metadata 81

Comparison of the METADATA Procedure and the METAOPERATE Procedure 81

Chapter 11 � METADATA Procedure 83
Overview: METADATA Procedure 83

Syntax: METADATA Procedure 84

Concepts: METADATA Procedure 87

Results: METADATA Procedure 89

Examples: METADATA Procedure 90

Chapter 12 � METALIB Procedure 99
Overview: METALIB Procedure 99

Syntax: METALIB Procedure 100

Concepts: METALIB Procedure 108

Results: METALIB Procedure with the REPORT Statement 109

Examples: METALIB Procedure 111

Chapter 13 � METAOPERATE Procedure 117
Overview: METAOPERATE Procedure 117

Syntax: METAOPERATE Procedure 117

Concepts: METAOPERATE Procedure 123

Examples: METAOPERATE Procedure 124

P A R T 5 DATA Step Functions 129

v

Chapter 14 � Introduction to DATA Step Functions for Metadata 131
Overview of DATA Step Functions for Metadata 131
Best Practices 131
Array Parameters 132

Chapter 15 � DATA Step Functions for Reading and Writing Metadata 133
Introduction to DATA Step Functions for Reading and Writing Metadata 135
METADATA_DELASSN Function 137
METADATA_DELOBJ Function 139
METADATA_GETATTR Function 140
METADATA_GETNASL Function 142
METADATA_GETNASN Function 143
METADATA_GETNATR Function 145
METADATA_GETNOBJ Function 147
METADATA_GETNPRP Function 149
METADATA_GETNTYP Function 151
METADATA_GETPROP Function 152
METADATA_NEWOBJ Function 153
METADATA_PATHOBJ Function 155
METADATA_PAUSED Function 157
METADATA_PURGE Function 158
METADATA_RESOLVE Function 160
METADATA_SETASSN Function 162
METADATA_SETATTR Function 165
METADATA_SETPROP Function 166
METADATA_VERSION Function 167

Chapter 16 � DATA Step Functions for Metadata Security Administration 169
Introduction to DATA Step Functions for Metadata Security Administration 171
METASEC_APPLYACT Function 173
METASEC_BEGTRAN Function 174
METASEC_DELACT Function 176
METASEC_ENDTRAN Function 177
METASEC_GETACTA Function 178
METASEC_GETNACT Function 180
METASEC_GETNACTA Function 182
METASEC_GETNAUTH Function 183
METASEC_GETNID Function 187
METASEC_NEWACT Function 189
METASEC_REMACT Function 191
METASEC_SETACTA Function 192
METASEC_SETAUTH Function 194
Examples: DATA Step Functions for Metadata Security Administration 196

Appendix 1 � Recommended Reading 207
Recommended Reading 207

Glossary 209

Index 213

vi

vii

What’s New

Overview
Changes and enhancements in the SAS language interfaces to metadata include the

following:
� a new system option METASPN= and defaults for METAREPOSITORY=,

METAENCRYPTALG, and METAENCRYPTLEVEL system options
� read-only access to metadata with the metadata LIBNAME engine, and

enhancements for data processing
� several new arguments in the METALIB procedure
� changes to what the METAOPERATE procedure can control, including the SAS

Metadata Server’s pause state and the metadata server journal file
� new arguments and values for some DATA step functions
� a new set of DATA step functions for security administration and reporting
� new syntax in the metadata LIBNAME engine, PROC METALIB, and the new

METADATA_PATHOBJ function for the pathname where metadata is stored in
SAS folders

� documentation enhancements

System Options
� The system option METASPN= is new. This option specifies the service principal

name (SPN) for the metadata server. The SPN is a feature of Integrated Windows
authentication (IWA).

� The default for the METAREPOSITORY= system option is Foundation.
� The default for the METAENCRYPTALG is SASPROPRIETARY.
� The default for the METAENCRYPTLEVEL system option is CREDENTIALS.

Metadata LIBNAME Engine
The metadata LIBNAME engine has the following changes and enhancements:

viii What’s New

� Metadata is read-only. If you want to update metadata, use PROC METALIB.
� The argument METAOUT=DATAREG is new. This argument specifies that you

can read, update, and delete only the tables and columns that are defined in the
metadata. The other values of METAOUT= have been changed to reflect the fact
that metadata is read-only.

� The LIBRARY= value can specify a pathname where metadata is stored in SAS
folders.

� The metadata LIBNAME engine supports SAS views.
� SAS file passwords can be passed to the underlying engine.

Procedures
The METALIB procedure has the following changes and enhancements:
� In the third maintenance release for SAS 9.2, column names in metadata are

updated to match the case of the column names in the data source.
� The LIBRARY=, FOLDER=, or FOLDERID= value can specify a pathname where

metadata is stored in SAS folders. In the third maintenance release for SAS 9.2, a
table can be defined in more than one folder.

� The IMPACT_LIMIT statement limits the number of Job or Transformation
objects that can be changed.

� The PREFIX= statement adds a text string to the beginning of all new metadata
object names.

� Arguments in the REPORT statement determine the level of detail in the output
report.

� The READ= argument in the SELECT statement enables PROC METALIB to read
password-protected data sets.

� PROC METALIB updates WorkTable objects.

The METAOPERATE procedure has the following changes and enhancements:
� The PAUSE and RESUME actions affect the metadata server, not an individual

SAS Metadata Repository or the repository manager. The pause state is still a
property of each repository. However, a repository’s pause state is not set directly;
it is computed from both the metadata server state and the repository’s registered
access mode.

� The PURGE action is no longer supported.
� XML strings in the OPTIONS statement can specify a pathname for the metadata

server journal file and provide a comment to users about the metadata server’s
pause state.

The METADATA procedure has the following changes and enhancements:
� The input and output XML strings might differ from previous releases. This

change is a result of enhancements to the SAS 9.2 Metadata Model, with new
metadata types, modifications to existing metadata types, and modifications to the
object hierarchy. See SAS Metadata Model: Reference.

DATA Step Functions

� An argument in the DATA step functions METADATA_GETPROP and
METADATA_SETPROP provides the Uniform Resource Identifier (URI) of the
Property object.

What’s New ix

� The METADATA_SETASSN function can perform replace, modify, and merge.

� The METADATA_PATHOBJ function is new. This function returns the attributes
of an object that you specify by its pathname in SAS folders.

� A new set of DATA step functions can define and query the authorization settings
for the metadata server. You can use macros with the functions to create reports.

� The DATA step functions’ input and output parameters might differ from previous
releases. This change is a result of enhancements to the SAS 9.2 Metadata Model,
with new metadata types, modifications to existing metadata types, and
modifications to the object hierarchy. See SAS Metadata Model: Reference.

Documentation Enhancements
This book is new. SAS Language Interfaces to Metadata is a reference to the

language elements that you can submit in a SAS session (in batch or from the SAS
windowing environment) to use, query, and maintain the metadata server. Most of
these language elements were previously documented in several other books. This book
brings the documentation together, adds new language elements and new features, and
expands the conceptual information.

x What’s New

1

P A R T1

Introduction

Chapter 1.What Are the Metadata Language Elements? 3

Chapter 2.Metadata Object Identifiers and URIs 5

Chapter 3.Examples: Using Metadata Language Elements 7

2

3

C H A P T E R

1
What Are the Metadata
Language Elements?

Overview of Metadata Language Elements 3
When to Use Metadata Language Elements 3

Accessibility Features of SAS Language Interfaces to Metadata 4

Overview of Metadata Language Elements
SAS Open Metadata Architecture enables an administrator to define metadata

objects that are common to one or more SAS client applications. For example, you can
set security that supplements protections from the host environment and other systems.

In most cases, an administrator maintains the metadata by using products like SAS
Management Console, SAS Data Integration Studio, or SAS Enterprise Guide.
However, an administrator can also maintain metadata by running a SAS program in
batch or from the SAS windowing environment. The code that can be submitted in a
SAS session uses the SAS metadata language elements.

Many of the metadata language elements enable you to maintain metadata that
defines a data source. A convention in the SAS Open Metadata Architecture is to refer
to data in terms of SAS libraries, tables, rows, and columns. A data source is defined in
metadata as a table. SAS tables are organized by being stored in a library. In SAS
documentation, a row in a table is often called an observation, and a column is called a
variable.

This book is a reference to the metadata language elements. For information about
metadata administration tasks, see the administration books in “Recommended
Reading” on page 207.

The SAS commands METABROWSE, METACON, and METAFIND are documented
in the online Help that is available from the SAS windowing environment.

When to Use Metadata Language Elements
Submitting a batch program can be helpful for repetitive maintenance tasks. You

might want to run reports automatically overnight, when usage of the SAS Metadata
Server is low. The language elements are flexible and can be adapted to almost any
maintenance task. Here is an overview of the language elements:

System options
Use the system options to set defaults for metadata. They are organized into three
groups: connection to the metadata server, encryption, and resources.

Metadata LIBNAME statement

4 Accessibility Features of SAS Language Interfaces to Metadata � Chapter 1

As with other SAS engines, an administrator can assign a libref to serve as a
shorthand for users. With the metadata engine, the underlying LIBNAME
information is stored in metadata objects. The metadata engine helps implement
security across an enterprise.

Data set options for the metadata engine
You can apply these data set options to one table, rather than to an entire library.

Procedures
You can use the procedures to perform many common maintenance tasks on
metadata and the metadata server.

DATA step functions
The DATA step functions cover some of the same maintenance tasks as the
procedures and, in many cases, do more than the procedures. The DATA step
functions execute within a DATA step, so you can use the output from one function
as the input to another function.

Accessibility Features of SAS Language Interfaces to Metadata

This product has not been tested for compliance with U.S. Section 508 standards. If
you have specific questions about the accessibility of SAS products, send them to
accessibility@sas.com or call SAS Technical Support.

5

C H A P T E R

2
Metadata Object Identifiers and
URIs

What Is a Metadata Identifier? 5
Obtaining Metadata Names and Identifiers 5

What Is a URI? 6

What Is a Metadata Identifier?
The SAS Metadata Server uses a unique identifier for every metadata object. The

17-character identifier consists of two parts, separated by a period. It is often
represented in documentation as reposid.objectid. An example is A52V87R9.A9000001.

� The first eight characters (A52V87R9 in the example) identify the SAS Metadata
Repository in which the object is stored.

� The ninth character is always a period.
� The second set of eight characters (A9000001 in the example) identifies the object

in the repository.

Obtaining Metadata Names and Identifiers
Most of the metadata language elements require you to identify an object by its name

or identifier. If you need the name or identifier of a single object, and you know where
the object is located in SAS Management Console or in SAS Data Integration Studio,
then this task is simple. The metadata identifier is shown in the object’s properties.
For more information, see the Online Help that is available from the product.

Another way to locate an object is to issue the METABROWSE command to open the
Metadata Browser window, or issue the METAFIND command to open the Metadata
Find window. For more information, select Using This Window from the Help menu in
the SAS windowing environment.

To retrieve a series of metadata identifiers programmatically, you can use the
METADATA_RESOLVE function if you are processing within a DATA step.

Another choice is to submit a GetMetadataObjects method call with PROC
METADATA, and then use the XML LIBNAME engine to import the procedure’s XML
output as a SAS data set. For a PROC METADATA example that retrieves object IDs,
see “Example: Creating a Report with the METADATA Procedure and the XML Engine”
on page 9.

6 What Is a URI? � Chapter 2

What Is a URI?
For many of the metadata language elements, you can specify a metadata resource

by its name or identifier. Some of the language elements accept a Uniform Resource
Identifier (URI), which is a standard from SAS Open Metadata Architecture. The
following URI formats are supported:

ID
is the metadata object identifier. Some language elements support the 8-character
identifier, and some support the full 17-character identifier, which references both
the repository and the object. Examples are A9000001 and A52V87R9.A9000001.
In general, the ID format is the least efficient.

type/ID
is the metadata type name and metadata object identifier. Some language
elements support the 8-character object identifier, and some support the full
17-character repository and object identifier. Examples are SASLibrary/A9000001
and SASLibrary/A52V87R9.A9000001. In general, the type/ID format is the most
efficient.

type?@attribute=’value’
is the metadata type name, followed by a search string. For metadata language
elements, the search string is in the form of an attribute=’value’ pair. Examples
are SASLibrary?@libref=’mylib’ and SASLibrary?@engine=’base’. Some
language elements require the entire value to be enclosed in quotation marks.

See the language elements in this book for important usage details.

7

C H A P T E R

3
Examples: Using Metadata
Language Elements

Overview of the Examples 7
Example: Pausing the Server for an Administration Task 7

Example: Creating a PropertySet Object for Use with LIBOPTSET= 8

Example: Creating a Report with the METADATA Procedure and the XML Engine 9

Example: Creating a Report with the DATA Step 14

Overview of the Examples

These examples show a few typical maintenance tasks that can be performed with
metadata language elements. For information about metadata administration tasks,
see the administration books in “Recommended Reading” on page 207.

Example: Pausing the Server for an Administration Task

The following example is copied from SAS Intelligence Platform: System
Administration Guide. See that book for information about system administration.

This example uses the COMPARE procedure to compare the MDASSOC and
RPOSCTRL data sets in the current and backup repository manager directories. PROC
METAOPERATE pauses the metadata server temporarily while the PROC COMPARE
statements complete.

options
metaserver="localhost"
metaport=8561
metauser="userID"
metapass="encoded-password"
;
/* Pause the metadata server */
proc metaoperate

action=pause;
run;

/* Assign libraries to the physical locations in your operating environment */
libname origrpos "C:\SAS\BIserver\Lev1\SASMeta\MetadataServer\rposmgr";
libname backup "C:\SAS\BIserver\Lev1\SASMeta\MetadataServer\SASBackup\REPOSMGR";

proc compare base=origrpos.mdassoc compare=backup.mdassoc; run;
proc compare base=origrpos.rposctrl compare=backup.rposctrl; run;

8 Example: Creating a PropertySet Object for Use with LIBOPTSET= � Chapter 3

/* Resume the metadata server */
proc metaoperate

action=resume;
run;

Example: Creating a PropertySet Object for Use with LIBOPTSET=

The metadata LIBNAME statement supports the LIBOPTSET= argument, which
specifies a PropertySet object. The PropertySet object is associated to Property objects
that store information. This information is used to construct a LIBNAME statement for
the underlying engine.

In this release of SAS, no products enable you to directly create a PropertySet object.
Instead, you can use code like this example to programmatically create the object.

The example uses the DATA step with PUT statements to create a temporary XML
file. Then the METADATA procedure submits the XML file to the metadata server in
order to add the metadata objects.

The PropertySet object has an OwningObject of SASLibrary, and the Property objects
need an OwningType and PropertyType. This example defines a PropertyType with
Name="String" and SQLType="1".

options metaserver="my-metadata-server"
metaport=8561
metauser="my-id"
metapass="my-pw"
metarepository="Foundation";

/*provide the name of the metadata library with which to associate this set of options*/
%let LibraryName=Oracle Library;

/*provide a name for the PropertySet object*/
%let PropSetName=SetOraBuffOptions;

/*create temporary files for building and receiving XML for PROC METADATA*/
filename inxml temp lrecl=32767;
filename outxml temp lrecl=32767;

/*generate the temporary IN= XML file for PROC METADATA*/
data _null_;

length uri $256 LibId $17;

/*retrieve the uri for the requested library*/
rc=metadata_getnobj("omsobj:SASLibrary?@Name=’"||"&LibraryName"||"’", 1, uri);

/*verify that the library exists in the metadata, if so retrieve the metadata Id*/
if rc <= 0 then put ’Library not found in metadata’;
else rc=metadata_getattr(uri,’Id’,LibId);

/*build the XML for PROC METADATA to add the new PropertySet to the metadata*/
file inxml;
put ’<AddMetadata>’;
put ’ <Metadata>’;

/*the <PropertySet> tag creates the object with the name from %LET above*/

� Example: Creating a Report with the METADATA Procedure and the XML Engine 9

put ’ <PropertySet Name="’"&PropSetName"’"’;
put ’ Desc="Set ReadBuff=50 and InsertBuff=100">’;

/*the PropertySet will be owned by the library specified in the %LET above*/
put ’ <OwningObject>’;
put ’ <SASLibrary ObjRef="’LibId’" />’;
put ’ </OwningObject>’;

/*each object is defined as a <Property>*/
put ’ <SetProperties>’;
put ’ <Property Name="Block insert buffer size" DefaultValue="50" Delimiter="=" ’;
put ’ PropertyName="INSERTBUFF" UseValueOnly="0">’;
put ’ </Property>’;
put ’ <Property Name="Block read buffer size" DefaultValue="100" Delimiter="=" ’;
put ’ PropertyName="READBUFF" UseValueOnly="0">’;
put ’ </Property>’;
put ’ <Property Name="Use extended memory" DefaultValue="MEMLIB" UseValueOnly="1">’;
put ’ </Property>’;
put ’ </SetProperties>’;
put ’ </PropertySet>’;
put ’ </Metadata>’;
put ’ <Reposid>$METAREPOSITORY</Reposid>’;
put ’ <NS>SAS</NS>’;
put ’ <Flags>268435456</Flags>’;
put ’ <Options/>’;
put ’</AddMetadata>’;

run;

/*pass the XML to PROC METADATA to create the new PropertySet in the metadata*/
proc metadata in=inxml out=outxml header=full verbose;
run;

After an administrator submits the previous code to set the LIBNAME options, a
user can submit the following code to assign the library:

libname mylib meta library="Oracle Library" liboptset="SetOraBuffOptions";

The options INSERTBUFF=50, READBUFF=100, and MEMLIB are applied to the
library. For more information, see “How the Metadata Engine Constructs Options” on
page 47.

Example: Creating a Report with the METADATA Procedure and the XML
Engine

This example creates a report about all the tables in a user’s library, including the
tables’ column names, librefs, and engines.

PROC METADATA requests the column names, and so on, from metadata, and
outputs the values in an XML file. Then the XML LIBNAME engine uses an XML map
to read the XML file and create SAS data sets. When the information is in SAS data
sets, an administrator can run SAS code like DATA steps and procedures. This example
uses ODS to create an HTML report.

To be clear, the files that are used in this example are described in the following list.
The XML files are temporary and exist during the session only. However, you can also
create permanent files.

� the user’s library, which contains an unknown number of tables
� an input XML file, which is created by a DATA step to query the metadata

10 Example: Creating a Report with the METADATA Procedure and the XML Engine � Chapter 3

� an output XML file, which is created by PROC METADATA and contains
information about the user’s tables

� an XML map, created by a DATA step
� two SAS data sets, created by the XML LIBNAME engine and an XML map
� a third SAS data set, created by a DATA step MERGE
� an HTML report, created by ODS (Output Delivery System) statements

The METADATA procedure is documented in this book; see Chapter 11, “METADATA
Procedure,” on page 83. The XML LIBNAME engine and XML maps are not
documented in this book; see SAS XML LIBNAME Engine: User’s Guide.

The example begins by connecting to the metadata server, updating the metadata
about the library, and creating the input XML file.

/* submit connection information to server */

options metaport=8561
metaserver="a123.us.company.com"
metauser="myuserid"
metapass="mypasswd";

/* Run PROC METALIB to be sure the metadata is current. */
/* The library must be registered already in the SAS Metadata Server. */
/* Use the library name that is defined in the metadata, not the libref. */

proc metalib;
omr (library="mylib");
report;

run;

/* Assign filerefs and libref. */
filename query temp;
filename rawdata temp;
filename map temp;
libname myxml xml xmlfileref=rawdata xmlmap=map;

/* Create temporary query file. */
/* 2309 flag plus template gets table name, column name, */
/* engine, libref, and object IDs. The template specifies */
/* attributes of the nested objects. */

data _null_;
file query;
input;
put _infile_;
datalines;

<GetMetadataObjects>
<Reposid>$METAREPOSITORY</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<Ns>SAS</Ns>
<Flags>2309</Flags>
<Options>
<Templates>

<PhysicalTable/>
<Column SASColumnName=""/>

� Example: Creating a Report with the METADATA Procedure and the XML Engine 11

<SASLibrary Engine="" Libref=""/>
</Templates>
</Options>

</GetMetadataObjects>
;;
run;
proc metadata

in=query
out=rawdata;

run;

The next section of example code creates a temporary text file that contains the XML
map. The map enables the XML LIBNAME engine to process the XML file as two data
sets, ColumnDetails and LibrefDetails.

In the ColumnDetails data set, the observation boundary (TABLE-PATH) is at
Column. Putting the boundary at Column is necessary because the PhysicalTable
elements have multiple Column elements. If you need to read multiple elements, you
must set the observation boundary at that element, so the XML LIBNAME engine can
create multiple observations for the element.

Because the observation boundary is set at Column, each observation stops at
Column, and any elements that follow Column are not properly read. Therefore another
data set is required. The LibrefDetails data set contains the SASLibrary elements.
Later in the code, the ColumnDetails and LibrefDetails data sets are merged into a
final data set.

The XML map is created in the following code to illustrate the process. You can use a
graphical interface, SAS XML Mapper, to generate an XML map. For more information,
see SAS XML LIBNAME Engine: User’s Guide.

data _null_;
file map;
input;
put _infile_;
datalines;

<?xml version="1.0" ?>
<SXLEMAP version="1.2">

<TABLE name="ColumnDetails">
<TABLE-PATH syntax="xpath">
/GetMetadataObjects/Objects/PhysicalTable/Columns/Column

</TABLE-PATH>

<COLUMN name="SASTableName" retain="yes">
<PATH>

/GetMetadataObjects/Objects/PhysicalTable/@SASTableName
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>14</LENGTH>

</COLUMN>

<COLUMN name="Columns">
<PATH>

/GetMetadataObjects/Objects/PhysicalTable/Columns/Column/@SASColumnName

12 Example: Creating a Report with the METADATA Procedure and the XML Engine � Chapter 3

</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>12</LENGTH>

</COLUMN>

<COLUMN name="Column IDs">
<PATH>

/GetMetadataObjects/Objects/PhysicalTable/Columns/Column/@Id
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>17</LENGTH>

</COLUMN>

</TABLE>

<TABLE name="LibrefDetails">
<TABLE-PATH syntax="xpath">
/GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary

</TABLE-PATH>

<COLUMN name="SASTableName">
<PATH>

/GetMetadataObjects/Objects/PhysicalTable/@SASTableName
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>14</LENGTH>

</COLUMN>

<COLUMN name="Libref">
<PATH>

/GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary/@Libref
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>10</LENGTH>

</COLUMN>

<COLUMN name="Engine">
<PATH>

/GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary/@Engine
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>10</LENGTH>

</COLUMN>

</TABLE>

</SXLEMAP>
;

� Example: Creating a Report with the METADATA Procedure and the XML Engine 13

/* Optional: print XML mapped data sets before the merge. */

title ’Tables and their Columns’;
proc print data=myxml.ColumnDetails;
run;

title ’Tables and their Librefs’;
proc print data=myxml.LibrefDetails;
run;

/* Create data sets that contain the metadata. */

libname mybase base ’c:\myxml\data’;

data mybase.ColumnDetails;
set myxml.ColumnDetails;

run;

data mybase.LibrefDetails;
set myxml.LibrefDetails;

run;

/* Sort by table name. */

proc sort data=mybase.ColumnDetails out=mybase.ColumnDetails;
by SASTableName;

run;

proc sort data=mybase.LibrefDetails out=mybase.LibrefDetails;
by SASTableName;

run;

/* Merge into one data set. */

data mybase.final;
merge mybase.ColumnDetails mybase.LibrefDetails ;
by SASTableName;

run;

After ColumnDetails and LibrefDetails are merged into the final data set, an ODS
step creates the HTML report:

title ’Table Metadata’;
filename reports ’c:\myxml\reports\’;

ods html file="tables.html" path=reports;
proc print data=mybase.final;
run;

ods html close;

Here is the HTML report:

14 Example: Creating a Report with the DATA Step � Chapter 3

Example: Creating a Report with the DATA Step

This example creates an HTML report about servers that are defined in the
repository.

%macro server_report (metaserver=myserver,
metaport=8561,
usr=sasadm@saspw,
pw=Password1,
includeopt=N,
htmlloc=c:\reports\myservers.htm
);

options metaserver="&metaserver"
metarepository="Foundation"
metaport=&metaport
metauser="&usr"
metapass="&pw";

data _null_;

� Example: Creating a Report with the DATA Step 15

length ver $20;
ver=left(put(metadata_version(),8.));
put ver=;
call symput(’METAVER’,ver);

run;

%if %eval(&metaver>0) %then
%do; /* connected to metadata server */

data
server_connections(keep=id name vendor productname softwareversion hostname

port con_name app_pro com_pro authdomain)
server_options (keep=name server_opts)
;

length mac_uri dom_uri con_uri urivar uri $500
id $17 name vendor productname $50 softwareversion $10 port $4
authdomain authdesc hostname con_name $40
app_pro com_pro propname $20 pvalue pdesc $200 server_opts $500
assn attr value $200;
nobj=1;
n=1;

nobj=metadata_getnobj("omsobj:ServerComponent?@Id contains ’.’",n,uri);
do i=1 to nobj;

nobj=metadata_getnobj("omsobj:ServerComponent?@Id contains ’.’",i,uri);
put name=;
put ’-----------------------------------’;

rc=metadata_getattr(uri,"Name",Name);
rc=metadata_getattr(uri,"id",id);
rc=metadata_getattr(uri,"vendor",vendor);
rc=metadata_getattr(uri,"productname",productname);
rc=metadata_getattr(uri,"softwareversion",softwareversion);

hostname=’ ’;

nummac=metadata_getnasn(uri,
"AssociatedMachine",
1,
mac_uri);

if nummac then
do;

rc=metadata_getattr(mac_uri,"name",hostname);
end;

numcon=metadata_getnasn(uri,
"SourceConnections",
1,
con_uri);

port=’ ’;
con_name=’ ’;
app_pro=’ ’;
com_pro=’ ’;

16 Example: Creating a Report with the DATA Step � Chapter 3

if numcon>0 then
do; /* server with connections */

do k=1 to numcon;
numcon=metadata_getnasn(uri,

"SourceConnections",
k,
con_uri);

/* Walk through all the notes on this machine object. */
rc=metadata_getattr(con_uri,"port",port);
rc=metadata_getattr(con_uri,"hostname",hostname);
rc=metadata_getattr(con_uri,"name",con_name);
rc=metadata_getattr(con_uri,"applicationprotocol",app_pro);
rc=metadata_getattr(con_uri,"communicationprotocol",com_pro);

numdom=metadata_getnasn(con_uri,
"Domain",
1,
dom_uri);

put numdom=;
if numdom >=1 then

do;
rc=metadata_getattr(dom_uri,"name",authdomain);
rc=metadata_getattr(dom_uri,"desc",authdesc);

end;
else authdomain=’none’;

put authdomain=;
output server_connections;

end;

end;

else
do;

put ’Server with no connections=’ name;
if hostname ne ’ ’ then

output server_connections;
end;

server_opts=’none’;
numprop=metadata_getnasn(uri,

"Properties",
1,
con_uri);

do x=1 to numprop;
numcon=metadata_getnasn(uri,

"Properties",
x,
con_uri);

/* Walk through all the notes on this machine object. */
rc=metadata_getattr(con_uri,"propertyname",propname);
rc=metadata_getattr(con_uri,"name",pdesc);
rc=metadata_getattr(con_uri,"defaultvalue",pvalue);
server_opts=cat(trim(pdesc),’ : ’,trim(pvalue));

� Example: Creating a Report with the DATA Step 17

output server_options;

end;

end;

run;

proc sort data=server_connections;
by name;

run;

proc sort data=server_options;
by name;

run;

proc transpose data=server_options out=sopts prefix=opt;
by name ;
var server_opts;

run;

%if &includeopt=Y %then
%do; /* include server options on the report */

data server_report;
length server_opts $70.;
merge server_connections server_options;
by name;

run;
%end; /* include server options on the report */

%else
%do;

data server_report;
length server_opts $1.;
set server_connections;

run;
%end;

ods listing close;
ods html body="&htmlloc";

title "Report for Metadata Server &metaserver:&metaport, &sysdate9";
footnote ;

proc report data=server_report
nowindows headline headskip split=’*’ nocenter;

column name vendor productname softwareversion hostname port
con_name app_pro com_pro authdomain
%if &includeopt=Y %then

%do; /* include server options on the report */
server_opts

%end; /* include server options on the report */
;

define name / group flow missing "Server*Name";

18 Example: Creating a Report with the DATA Step � Chapter 3

define vendor / group flow missing "Vendor";
define productname / group flow missing "Product";
define softwareversion / group missing "Version";
define port / group missing "Port";
define hostname / group missing "Host Name";
define con_name / group missing "Connection*Name";
define authdomain / group missing "Authentication*Domain";
define app_pro / group missing "App*Protocol";
define com_pro / group missing "Com*Protocol";

%if &includeopt=Y %then
%do; /* include server options on the report */

define server_opts / group missing "Server Options";
%end; /* include server options on the report */

break after name / style=[BACKGROUND=CCC];

%if &includeopt=Y %then
%do; /* include server options on the report */

compute after name ;
line ’ ’;
line server_opts $70.;
line ’ ’;
endcomp;

%end; /* include server options on the report */

run;

ods html close;
ods listing;

%end; /* connected to metadata server */

%else
%do; /* could not connect to metadata server */

%put ERROR: could not connect to &metaserver &metaport. ;
%put ERROR: check connection details, userid and password.;

%end; /* could not connect to metadata server */

%mend;

%server_report (metaserver=myserver,
metaport=8561,
usr=sasadm@saspw,
pw=Password1,
includeopt=N,
htmlloc=c:\reports\myservers.htm
);

Here is the HTML report:

� Example: Creating a Report with the DATA Step 19

20

21

P A R T2

System Options

Chapter 4.Introduction to System Options for Metadata 23

Chapter 5.System Options for Metadata 27

22

23

C H A P T E R

4
Introduction to System Options
for Metadata

Overview of System Options for Metadata 23
Connection Options 24

Introduction to Connection Options 24

Specifying Connection Properties Directly 24

Example: Configuration File 24

Example: OPTIONS Statement 25
Specifying a Stored Connection Profile 25

Configuration File Example 25

Encryption Options 25

Resource Option 26

Overview of System Options for Metadata
SAS provides a family of system options to define the default SAS Metadata Server.

The following table shows the system options by category.

Category System Options

Connection METACONNECT=

METAPASS=

METAPORT=

METAPROFILE

METAPROTOCOL=

METAREPOSITORY=

METASERVER=

METASPN=

METAUSER=

Encryption METAENCRYPTALG

METAENCRYPTLEVEL

Resource METAAUTORESOURCES

To determine what system option settings are active in your SAS session, you can
issue the OPTIONS command on the command line. Or submit the following procedure
statement:

24 Connection Options � Chapter 4

proc options group=meta; run;

Usually these system options are set in a configuration file or at invocation. Some of
the options can be changed at any time; see the options documentation. The metadata
system options affect every server that uses an Integrated Object Model (IOM)
connection to the metadata server. IOM servers include the SAS Workspace Server,
SAS Pooled Workspace Server, SAS Stored Process Server, SAS OLAP Server, and SAS
Table Server, as well as any Base SAS session that connects to the metadata server.

For general information about SAS system options, see the SAS Language Reference:
Dictionary. For information about configuration files, see the SAS Companion for your
operating environment. For information about administration, see SAS Intelligence
Platform: System Administration Guide.

Connection Options

Introduction to Connection Options
The connection properties are required to establish a connection to the metadata

server. You can establish a connection in the following ways:
� Set the connection properties directly with the METAPASS=, METAPORT=,

METAPROTOCOL=, METAREPOSITORY=, METASERVER=, METASPN=, and
METAUSER= system options. See “Specifying Connection Properties Directly” on
page 24.

� Specify a stored metadata server connection profile with the METACONNECT=
and METAPROFILE options. See “Specifying a Stored Connection Profile” on page
25.

� You can specify connection properties when you issue a metadata procedure. See
“Overview of Procedures for Metadata” on page 81.

� You can specify connection properties when you issue the metadata LIBNAME
statement. See “LIBNAME Statement for the Metadata Engine” on page 51.

� When you are running interactively, you can be prompted for connection values.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or Integrated Windows authentication (IWA) connection is rejected.
For information about trusted peer and IWA, see the SAS Intelligence Platform:
Security Administration Guide.

If the connection fails, check the connection properties to be sure you have specified
or omitted quotation marks exactly as documented.

Specifying Connection Properties Directly
The METAPASS=, METAPORT=, METAPROTOCOL=, METAREPOSITORY=,

METASERVER=, METASPN=, and METAUSER= options each specify a connection
property. Typically these values are set in a configuration file.

Example: Configuration File
To set the default metadata server to use the password sasuser1, port 9999, protocol

bridge, repository myrepos, metadata server a123.us.company.com, and user ID
myuserid, you would add the following lines to the configuration file:

Introduction to System Options for Metadata � Encryption Options 25

-METAPASS "sasuser1"
-METAPORT 9999
-METAPROTOCOL BRIDGE
-METAREPOSITORY "myrepos"
-METASERVER "a123.us.company.com"
-METAUSER "myuserid"

Example: OPTIONS Statement
The following OPTIONS statement has the same effect as the configuration file

example:

options metapass="sasuser1"
metaport=8561
metaprotocol=bridge
metarepository="myrepos"
metaserver="a123.us.company.com"
metauser="myuserid";

Specifying a Stored Connection Profile
Instead of specifying individual connection options for the metadata server, you can

use the METACONNECT= and METAPROFILE options.
METAPROFILE must be specified at SAS invocation or in a configuration file. It

specifies the pathname of an XML document that contains connection profiles.
METACONNECT= can be submitted at any time. It specifies one named connection
profile in the XML document. A connection profile contains metadata server connection
properties, such as the name of the host computer on which the metadata server is
invoked, the TCP port, and the user ID and password of the requesting user.

You can create connection profiles with the Metadata Server Connections dialog box.
Open the dialog box by executing the SAS windowing environment command
METACON. The dialog box enables you to save (export) one or more connection profiles
to a permanent XML document. To learn more about the METACON command, see the
online Help in the SAS windowing environment.

The connection profiles are similar to the ones that are used by SAS Management
Console. However, SAS Management Console stores its connection profiles in a different
way. For more information about connection profiles in SAS Management Console, see
the online Help that is available fromSAS Management Console.

Configuration File Example
Here is a configuration file example that invokes a user connection profile named

Mike’s profile:

-METAPROFILE "!SASROOT\metauser.xml"
-METACONNECT "Mike’s profile"

Encryption Options

The METAENCRYPTALG and METAENCRYPTLEVEL options are used to encrypt
communication with the metadata server. You do not have to license SAS/SECURE
software if you specify the SAS proprietary algorithm. For more information, see

26 Resource Option � Chapter 4

“METAENCRYPTALG System Option” on page 30 and “METAENCRYPTLEVEL
System Option” on page 32.

Resource Option

The METAAUTORESOURCES option identifies resources to be assigned at SAS
start-up. The resources are defined in SAS metadata. For example, in SAS
Management Console, you can define a list of librefs (SAS library references) that are
associated with the LogicalServer, ServerComponent, or ServerContext object.
METAAUTORESOURCES points to the object and assigns the associated libraries at
start-up.

For more information, see “METAAUTORESOURCES System Option” on page 27.

27

C H A P T E R

5
System Options for Metadata

METAAUTORESOURCES System Option 27
METACONNECT= System Option 29

METAENCRYPTALG System Option 30

METAENCRYPTLEVEL System Option 32

METAPASS= System Option 33

METAPORT= System Option 34
METAPROFILE System Option 35

METAPROTOCOL= System Option 37

METAREPOSITORY= System Option 38

METASERVER= System Option 39

METASPN= System Option 40

METAUSER= System Option 41

METAAUTORESOURCES System Option

Identifies the metadata resources that are assigned when SAS starts.

Valid in: configuration file, SAS invocation
Category: Communications: Metadata
PROC OPTIONS GROUP= META

Syntax
METAAUTORESOURCES server-object

Syntax Description

server-object
is the name or URI of a LogicalServer, ServerComponent, or ServerContext metadata
object in a repository on the SAS Metadata Server. The maximum length is 32,000
characters. If you specify either single or double quotation marks, they are not saved
as part of the value.

METAAUTORESOURCES accepts the following name and URI formats:

name
specifies the metadata name of the object. An example is the following:

28 METAAUTORESOURCES System Option � Chapter 5

-metaautoresources ’SASApp’

This format is supported for a ServerContext object only. For LogicalServer and
ServerComponent objects, use one of the following URI formats:

OMSOBJ:identifier.identifier
specifies the metadata identifier of the object. An example is the following:

-metaautoresources "omsobj:A5HMMB7P.AV000005"

OMSOBJ:type/ID
specifies the metadata type name and metadata identifier of the object. An
example is the following:

-metaautoresources "omsobj:ServerComponent/A5HMMB7P.AV000005"

OMSOBJ:type?@attribute=’value’
specifies the metadata type name, followed by a search string, which is in the form
of an attribute=’value’ pair. An example is the following:

-metaautoresources "OMSOBJ:ServerComponent?@Name=’My Server’"

.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
METAAUTORESOURCES identifies metadata resources that are assigned when you
invoke SAS. In this release, the option is used to assign libraries. In future releases,
additional resources might be supported. In SAS Management Console, when you
define a library, you can assign a server. METAAUTORESOURCES specifies the server
object and assigns the associated libraries at start-up.

If the metadata server is not available, this option is ignored. If libraries are
assigned in an autoexec file, those assignments take precedence over assignment with
METAAUTORESOURCES.

See Also

For information about pre-assigning SAS libraries, see the SAS Intelligence Platform:
Data Administration Guide.

See other system options:
“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

System Options for Metadata � METACONNECT= System Option 29

METACONNECT= System Option

Identifies one named profile from the metadata user connection profiles for connecting to the
metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Metadata
PROC OPTIONS GROUP= META
Default: NULL

Syntax
METACONNECT="named-connection"

Syntax Description

"named-connection"
is a named connection that is contained in the metadata user profiles. The maximum
length is 256 characters. Quotation marks are required.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
This system option is one of a category of system options that define a connection to the
metadata server. Instead of specifying individual connection options for the metadata
server, you can use the METACONNECT= and METAPROFILE options.

METAPROFILE must be specified at SAS invocation or in a configuration file. It
specifies the pathname of an XML document that contains connection profiles.
METACONNECT= can be submitted at any time. It specifies one named connection
profile in the XML document. A connection profile contains metadata server connection
properties, such as the name of the host computer on which the metadata server is
invoked, the TCP port, and the user ID and password of the requesting user.

You can create connection profiles with the Metadata Server Connections dialog box.
Open the dialog box by executing the SAS windowing environment command
METACON. The dialog box enables you to save (export) one or more connection profiles
to a permanent XML document. To learn more about the METACON command, see the
online Help in the SAS windowing environment.

The connection profiles are similar to the ones that are used by SAS Management
Console. However, SAS Management Console stores its connection profiles in a different
way.

Example
Here is an example from a configuration file, followed by an explanation:

-METAPROFILE "C:\userprofile.xml"
-METACONNECT "B"

30 METAENCRYPTALG System Option � Chapter 5

1 The METAPROFILE system option specifies the file C:\userprofile.xml. The
file contains three named connection profiles: A, B, and C. Each named connection
profile contains properties for connecting to the metadata server.

2 The METACONNECT system option specifies the named connection profile B.
3 The metadata server connection properties that are specified in the named

connection profile B are loaded from the metadata user B and are used as the
properties for connecting to the metadata server.

See Also

For information about the metadata server, see SAS Intelligence Platform: System
Administration Guide.

See the “Configuration File Example” on page 25.
See other system options:

“METAAUTORESOURCES System Option” on page 27
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

METAENCRYPTALG System Option

Specifies the type of encryption to use when communicating with the metadata server.

Valid in: configuration file, SAS invocation
Alias: METAENCRYPTALGORITHM
Category: Communications: Metadata
PROC OPTIONS GROUP= META
Default: SASPROPRIETARY

Syntax
METAENCRYPTALG NONE | RC2 | RC4 | DES | TRIPLEDES |

SASPROPRIETARY | SAS

Syntax Description

NONE

System Options for Metadata � METAENCRYPTALG System Option 31

specifies that no encryption is used.

RC2
specifies to use the RC2 encryption algorithm that was developed by RSA Security.
The RC2 algorithm uses a block cipher to encrypt 64-bit blocks. The RC2 key size is
variable and can range from 8 to 256 bits. A single message can be expanded to 8
bytes. RC2 encryption is an alternative to Data Encryption Standard (DES)
encryption.

RC4
specifies to use the RC4 encryption algorithm that was developed by RSA Security.
The RC4 algorithm uses a stream cipher to encrypt 1 byte at a time. The RC4 key
size is variable and can range from 8 to 2,048 bits.

DES
specifies to use the Data Encryption Standard (DES) encryption algorithm that was
developed by IBM. The DES algorithm uses a block cipher to encrypt 64-bit blocks.
DES uses a 56-bit key.

TRIPLEDES
specifies to use the TRIPLEDES encryption algorithm, which processes the DES
encryption algorithm sequentially three times on the data. TRIPLEDES uses a
different 56-bit key for each iteration of the encryption. A single message can be
expanded to 8 bytes.

SASPROPRIETARY
specifies to use basic encryption services in all operating environments. The
SASPROPRIETARY algorithm uses a 32-bit key and can expand a single message by
one-third. No additional product license is required. This is the default.
Alias: SAS

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
The SAS IOM supports encrypted communication with the metadata server. Use the
METAENCRYPTALG and METAENCRYPTLEVEL system options to define the type
and level of encryption that SAS clients use when they communicate with the metadata
server.

If you specify an encryption algorithm other than SASPROPRIETARY (alias SAS),
you must have a product license for SAS/SECURE software. For more information, see
the SAS Intelligence Platform: Security Administration Guide.

See Also

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

For information about security, see the SAS Intelligence Platform: Security
Administration Guide.

See other system options:
“METAAUTORESOURCES System Option” on page 27

“METACONNECT= System Option” on page 29
“METAENCRYPTLEVEL System Option” on page 32

32 METAENCRYPTLEVEL System Option � Chapter 5

“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

METAENCRYPTLEVEL System Option

Specifies the level of encryption when communicating with the metadata server.

Valid in: configuration file, SAS invocation
Category: Communications: Metadata
PROC OPTIONS GROUP= META
Default: CREDENTIALS

Syntax
METAENCRYPTLEVEL EVERYTHING | CREDENTIALS

Syntax Description

EVERYTHING
specifies to encrypt all communication with the metadata server.

CREDENTIALS
specifies to encrypt only login credentials. This is the default.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
The SAS IOM supports encrypted communication with the metadata server. Use the
METAENCRYPTLEVEL and METAENCRYPTALG system options to define the level
and type of encryption that SAS clients use when they communicate with the metadata
server.

If the METAENCRYPTALG system option specifies an encryption algorithm other
than SASPROPRIETARY (alias SAS), you must have a product license for SAS/
SECURE software. For more information, see the SAS Intelligence Platform: Security
Administration Guide.

See Also

System Options for Metadata � METAPASS= System Option 33

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

For information about security, see the SAS Intelligence Platform: Security
Administration Guide.

See other system options:

“METAAUTORESOURCES System Option” on page 27

“METACONNECT= System Option” on page 29

“METAENCRYPTALG System Option” on page 30

“METAPASS= System Option” on page 33

“METAPORT= System Option” on page 34

“METAPROFILE System Option” on page 35

“METAPROTOCOL= System Option” on page 37

“METAREPOSITORY= System Option” on page 38

“METASERVER= System Option” on page 39

“METASPN= System Option” on page 40

“METAUSER= System Option” on page 41

METAPASS= System Option

Specifies the password for the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS GROUP= META

Syntax
METAPASS=password

Syntax Description

password
is the password for the user ID on the metadata server. The maximum length is 512
characters.

Note: To specify an encoded password, use the PWENCODE procedure to disguise
the text string, and specify the encoded password for METAPASS=. The metadata
server decodes the encoded password. For more information, see the PWENCODE
procedure in the Base SAS Procedures Guide. �

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

34 METAPORT= System Option � Chapter 5

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

See Also

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

See “Example: Configuration File” on page 24.
See other system options:

“METAAUTORESOURCES System Option” on page 27
“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

METAPORT= System Option

Specifies the TCP port for the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Metadata
PROC OPTIONS GROUP= META
Default: 8561
Range: 1–65535

Syntax
METAPORT=number

Syntax Description

System Options for Metadata � METAPROFILE System Option 35

number
is the TCP port that the metadata server is listening to for connections. An example
is metaport=5282.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection values.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

See Also

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

See “Example: Configuration File” on page 24.

See other system options:

“METAAUTORESOURCES System Option” on page 27

“METACONNECT= System Option” on page 29

“METAENCRYPTALG System Option” on page 30

“METAENCRYPTLEVEL System Option” on page 32

“METAPASS= System Option” on page 33

“METAPROFILE System Option” on page 35

“METAPROTOCOL= System Option” on page 37

“METAREPOSITORY= System Option” on page 38

“METASERVER= System Option” on page 39

“METASPN= System Option” on page 40

“METAUSER= System Option” on page 41

METAPROFILE System Option

Identifies the XML document that contains user connection profiles for the metadata server.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC OPTIONS GROUP= META

Default: metaprofile.xml in the current working directory, except under z/OS

See: METAPROFILE System Option in SAS Companion for z/OS

36 METAPROFILE System Option � Chapter 5

Syntax
METAPROFILE "XML-document"

Syntax Description

"XML–document"
is the pathname of the XML document that contains user connection profiles for
connecting to the metadata server. The pathname is the physical location that is
recognized by the operating environment. The maximum length is 32,000 characters.
Quotation marks are required.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
This system option is one of a category of system options that define a connection to the
metadata server. Instead of specifying individual connection options for the metadata
server, you can use the METACONNECT= and METAPROFILE options.

METAPROFILE must be specified at SAS invocation or in a configuration file. It
specifies the pathname of an XML document that contains connection profiles.
METACONNECT= can be submitted at any time. It specifies one named connection
profile in the XML document. A connection profile contains metadata server connection
properties, such as the name of the host computer on which the metadata server is
invoked, the TCP port, and the user ID and password of the requesting user.

You can create connection profiles with the Metadata Server Connections dialog box.
Open the dialog box by executing the SAS windowing environment command
METACON. The dialog box enables you to save (export) one or more connection profiles
to a permanent XML document. To learn more about the METACON command, open
the online Help and in the SAS windowing environment.

The connection profiles are similar to the ones that are used by SAS Management
Console. However, SAS Management Console stores its connection profiles in a different
way.

METAPROFILE behavior is different under z/OS than under other operating
environments. See SAS Companion for z/OS.

Example
Here is a configuration file example that invokes a user connection profile named

Mike’s profile from the metauser.xml file:

-METAPROFILE "!SASROOT\metauser.xml"
-METACONNECT "Mike’s profile"

See Also

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

See “Configuration File Example” on page 25.
See other system options:

“METAAUTORESOURCES System Option” on page 27

System Options for Metadata � METAPROTOCOL= System Option 37

“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

METAPROTOCOL= System Option

Specifies the network protocol for connecting to the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Metadata
PROC OPTIONS GROUP= META
Default: BRIDGE

Syntax
METAPROTOCOL=BRIDGE

Syntax Description

BRIDGE
specifies that the connection to the metadata server uses the SAS Bridge protocol.
This is the default. In this release, it is the only supported value.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
This system option is one of a category of system options that define a connection to the
metadata server.

See Also

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

See “Example: Configuration File” on page 24.

38 METAREPOSITORY= System Option � Chapter 5

See other system options:
“METAAUTORESOURCES System Option” on page 27
“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

METAREPOSITORY= System Option

Specifies the SAS Metadata Repository to use with the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Metadata
PROC OPTIONS GROUP= META
Default: Foundation

Syntax
METAREPOSITORY=name

Syntax Description

name
is the name of the repository to use. The maximum length is 32,000 characters.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
This system option is one of a category of system options that define a connection to the
metadata server.

You can use the $METAREPOSITORY substitution variable in the input XML with
PROC METADATA. The variable resolves to the metadata identifier of the repository
that is named by this option.

See Also

System Options for Metadata � METASERVER= System Option 39

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

See other system options:
“METAAUTORESOURCES System Option” on page 27
“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

METASERVER= System Option

Specifies the host name or address of the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Metadata
PROC OPTIONS GROUP= META

Syntax
METASERVER=address

Syntax Description

address
is the host name or network IP address of the computer that hosts the metadata
server. An example is metaserver=a123.us.company.com. The value localhost
can be used when connecting to a metadata server on the same computer. The
maximum length is 256 characters.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.

40 METASPN= System Option � Chapter 5

Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

See Also

For information about the metadata server, see the SAS Intelligence Platform:
System Administration Guide.

See “Example: Configuration File” on page 24.
See other system options:

“METAAUTORESOURCES System Option” on page 27
“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASPN= System Option” on page 40
“METAUSER= System Option” on page 41

METASPN= System Option

Specifies the service principal name (SPN) for the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Metadata
PROC OPTIONS GROUP= META
Default: Generated in the form SAS/machine:port

Syntax
METASPN=SPN-name

Syntax Description

SPN-name
is the SPN for the principal that runs the metadata server. The maximum length is
256 characters.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

System Options for Metadata � METAUSER= System Option 41

Details
When using IWA, a site can assign an SPN that is used by clients such as the object
spawner or a batch SAS job to connect to the metadata server. METASPN= is used with
METASERVER= and METAPORT= to establish that connection. If you specify
METAUSER= and METAPASS=, then the METASPN= value is not used. For
information about the SPN and IWA, see the SAS Intelligence Platform: Security
Administration Guide.

Example

Here is an example that shows a METASPN= value in the default form:

-METASERVER "a123.us.company.com"
-METAPORT 9999
-METASPN "SAS/a123.us.company.com:9999"

See Also

For information about the SPN and IWA, see the SAS Intelligence Platform: Security
Administration Guide.

For information about the SAS Metadata Server, see the SAS Intelligence Platform:
System Administration Guide.

See other system options:
“METAAUTORESOURCES System Option” on page 27
“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METAUSER= System Option” on page 41

METAUSER= System Option

Specifies the user ID for connecting to the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Metadata
PROC OPTIONS GROUP= META

Syntax
METAUSER=ID

42 METAUSER= System Option � Chapter 5

Syntax Description

ID
is the user ID for connecting to the metadata server. The maximum length is 256
characters.

Note: In a configuration file or at SAS invocation, the syntax for SAS system options
is specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

In a network environment, METAUSER= must specify a fully qualified user ID in
the form of SERVERNAME\USERID. For information about user definitions, see the
SAS Intelligence Platform: Security Administration Guide.

See Also

For information about the SAS Metadata Server, see SAS Intelligence Platform:
System Administration Guide.

See “Example: Configuration File” on page 24.
See other system options:

“METAAUTORESOURCES System Option” on page 27
“METACONNECT= System Option” on page 29
“METAENCRYPTALG System Option” on page 30
“METAENCRYPTLEVEL System Option” on page 32
“METAPASS= System Option” on page 33
“METAPORT= System Option” on page 34
“METAPROFILE System Option” on page 35
“METAPROTOCOL= System Option” on page 37
“METAREPOSITORY= System Option” on page 38
“METASERVER= System Option” on page 39
“METASPN= System Option” on page 40

43

P A R T3

Metadata LIBNAME Engine

Chapter 6.Introduction to the Metadata LIBNAME Engine 45

Chapter 7.Reference for the Metadata Engine 51

Chapter 8.Reference to Metadata Objects for the Metadata Engine 59

Chapter 9.Examples for the Metadata Engine 75

44

45

C H A P T E R

6
Introduction to the Metadata
LIBNAME Engine

Overview of the Metadata LIBNAME Engine 45
What Is Supported? 46

Advantages of Using the Metadata Engine 46

The Metadata Engine and Authorization 47

How the Metadata Engine Constructs a LIBNAME Statement 47

How the Metadata Engine Constructs Options 47
Examples: CONOPTSET= or LIBOPTSET= Argument 48

Examples: OPTSET= Data Set Option 50

Overview of the Metadata LIBNAME Engine
The metadata engine is similar to other SAS engines. In a batch file or in the SAS

windowing environment, you can submit a LIBNAME statement that assigns a libref
and the metadata engine. You then use that libref throughout the SAS session where a
libref is valid.

However, unlike other librefs, the metadata engine’s libref is not assigned to the
physical location of a SAS library. The metadata engine’s libref is assigned to a set of
metadata objects that are registered in the SAS Metadata Server. These metadata
objects must already be defined by an administrator with a product like SAS
Management Console.

The objects contain the specifications that you would normally submit with a
LIBNAME statement. The metadata engine uses the information in the objects to
construct a LIBNAME statement that specifies the data source, the engine that
processes the data (referred to as the underlying engine), and options.

After you submit the metadata LIBNAME statement, you can reference the
metadata engine’s libref in your SAS code. The metadata engine calls the underlying
engine to process the data.

In other words, the metadata LIBNAME statement takes the place of your usual
LIBNAME statement and creates the usual LIBNAME statement from information in
metadata.

The following diagram illustrates this process. In the example, an Oracle data
library is already defined in metadata. You reference the Oracle data library with the
metadata LIBNAME statement, and the metadata engine constructs a LIBNAME
statement that assigns the SAS/ACCESS interface to Oracle as the underlying engine.
Then, when you submit the PRINT procedure, the metadata engine issues a request to
the SAS Metadata Repository for the library member’s metadata, and uses the Oracle
engine to run the PROC PRINT.

46 What Is Supported? � Chapter 6

Figure 6.1 Metadata Engine Process

What Is Supported?
The metadata engine supports the following features:
� Enforces authorizations that are set in the metadata by an administrator.
� Processes tables and views from SAS and third-party DBMSs (database

management systems) by using an underlying engine. The metadata engine
supports only tables and views, and does not support other SAS files such as
catalogs.

� Applies library and data set options that are set in the metadata by an
administrator.

� Passes data set options directly to the underlying engine, including SAS file
passwords. (If a password is required, but it is not submitted or is incorrect, and
you are running interactively, SAS displays a dialog box. You can specify a
password that lasts for the duration of the SAS session.)

� Supports SQL implicit pass-through.

The DBLOAD procedure and the LOCK statement are not supported.
For metadata requirements, see “Overview of Metadata Requirements” on page 59.

Advantages of Using the Metadata Engine
Using the metadata engine provides the following advantages:
� The metadata engine is a single point of access to many heterogeneous data

sources. If an administrator has registered the metadata with the metadata

Introduction to the Metadata LIBNAME Engine � How the Metadata Engine Constructs Options 47

server, a user or application can specify the appropriate metadata engine libref,
and omit specifications for the underlying engine. In many cases, the user can
change the data source for their SAS program by simply changing the libref. The
user can ignore the syntax, options, behavior, and tuning that are required by the
underlying engines, because the administrator has registered that information in
the metadata.

� The metadata engine, in conjunction with the metadata server’s authorization
facility, enables an administrator to control access to data. The Create, Write, and
Delete permissions are enforced only if the metadata engine is used to access the
data. See “The Metadata Engine and Authorization” on page 47.

� Some data sources do not store column formats, informats, labels, and other SAS
information. This information is stored by the metadata server and is included
with the data that is accessed by the metadata engine.

The Metadata Engine and Authorization

An administrator uses a product like SAS Management Console to set authorization.
This security model is a metadata-based authorization layer that supplements security
from the host environment and other systems. The metadata engine enforces the
authorizations that are set in metadata, but it does not create or update any
authorization. For more information, see the SAS Intelligence Platform: Security
Administration Guide.

The administrator can use authorization in the following ways for member-level and
column-level security:

� The administrator can associate authorizations to any metadata resource in a
repository. The metadata engine enforces effective permissions (which is a
calculation of the net effect of all applicable metadata layer permission settings)
for libraries and tables.

� The administrator can associate different authorizations to individual libraries
and tables. For example, suppose a library has 20 tables defined in the repository.
The administrator restricts access to five of the tables, because the five tables
contain sensitive information. Only a few users can access all 20 tables. Most
users can access only 15 tables.

How the Metadata Engine Constructs a LIBNAME Statement

As noted in “Overview of the Metadata LIBNAME Engine” on page 45, the metadata
engine uses information from metadata to construct a LIBNAME statement for a SAS
library.

When you submit a metadata LIBNAME statement, you assign a libref to a
SASLibrary metadata object. The SASLibrary object is the primary object from which
all other metadata is obtained. The metadata defines attributes of the data, such as
table and column names. The metadata identifies the underlying engine that processes
the data, and how the engine should be assigned.

How the Metadata Engine Constructs Options

Each option is constructed from the PropertyName, Delimiter, DefaultValue, and
UseValueOnly attributes in a Property object. The default option values are represented

48 Examples: CONOPTSET= or LIBOPTSET= Argument � Chapter 6

by one or more Property objects. These Property objects are associated directly with an
owning object (a SASLibrary, SASClientConnection, or PhysicalTable object).

To provide users with a different set of values from the default option values, an
administrator can group one or more Property objects by using a PropertySet object. If
you do not want the default options, use the LIBOPTSET= or CONOPTSET= argument,
or the OPTSET= data set option to specify a PropertySet object. One or more
PropertySet objects can be associated with an owning object.

However, only the default options or one PropertySet object can be used with an
owning object at one time. For more information about the metadata objects, see
Property and PropertySet in “How the Metadata Engine Uses SAS Metadata Types” on
page 66.

Because some options do not take delimiters and a value, the UseValueOnly attribute
specifies whether to use the DefaultValue only, or to precede it with the PropertyName
and Delimiter. Notice in the examples when UseValueOnly is set to 0, and when it is
set to 1. See “Examples: CONOPTSET= or LIBOPTSET= Argument” on page 48 and
“Examples: OPTSET= Data Set Option” on page 50.

See also “Example: Creating a PropertySet Object for Use with LIBOPTSET=” on
page 8.

Examples: CONOPTSET= or LIBOPTSET= Argument

This example shows how the metadata engine constructs a LIBNAME statement for
the underlying engine. In particular, the example illustrates how option values are
obtained from metadata objects.

In this example, the user assigns a libref to a SASLibrary object that has the unique
identifier AD000001. This object represents the physical SAS library. The metadata
engine uses the SASLibrary object AD000001 to obtain all of the necessary values to
construct a LIBNAME statement for the underlying engine (in this case, the V9 engine).

The following table shows how the option values (for the underlying engine) are
obtained from the attributes of metadata objects.

Table 6.1 Metadata for a Base SAS LIBNAME Statement

Metadata Object Relevant Object
Attributes

Language Element Value

SASLibrary (unique
identifier = AD000001)

Libref=’sas9’ libref SAS9

SASLibrary (same object
as above)

Engine=’V9’ engine V9

Directory DirectoryName=’sales’

IsRelative=’1’

’SAS-data-library’ sales

Directory (parent to above
Directory object)

DirectoryName=’C:\’

IsRelative=’0’

’SAS-data-library’ C:\

Property PropertyName=’repempty’

Delimiter=’=’

DefaultValue=’no’

UseValueOnly=’0’

option REPEMPTY=NO

Introduction to the Metadata LIBNAME Engine � Examples: CONOPTSET= or LIBOPTSET= Argument 49

Metadata Object Relevant Object
Attributes

Language Element Value

Property PropertyName=’access’

Delimiter=’=’

DefaultValue=’readonly’

UseValueOnly=’0’

option ACCESS=READONLY

Property DefaultValue=’nodltrunchk’

UseValueOnly=’1’

option NODLTRUNCHK

Property DefaultValue=’extend’

UseValueOnly=’1’

option EXTEND

PropertySet Name=’basetrun’ group of options LIBOPTSET=BASETRUN

With the metadata already registered in a repository, the user submits the following
metadata LIBNAME statement to SAS:

libname mytest meta libid=AD000001 repname=sasrepos
ipaddr=’a123.us.company.com’ port=8561
userid=sasabc pw=srvpw;

The metadata engine constructs the following LIBNAME statement for the V9 engine:

libname sas9 v9 ’C:\sales’ repempty=no access=readonly nodltrunchk extend;

The next example illustrates the use of a PropertySet object with the LIBOPTSET
argument. The following table shows the option values that are represented by a
PropertySet object named BASETRUN, which groups several Property objects. Three of
the option values are identical to the default option values for the data library. One
value, the z/OS option DLTRUNCHK, is different from the default option value.

Table 6.2 The BASETRUN PropertySet Object

SAS Option PropertyName
Attribute

Delimiter
Attribute

DefaultValue
Attribute

UseValueOnly
Attribute

REPEMTY=NO REPEMPTY = NO 0

ACCESS=READONLY ACCESS = READONLY 0

NODLTRUNCHK DLTRUNCHK 1

EXTEND EXTEND 1

With the metadata already registered in a repository, the user submits the following
metadata LIBNAME statement to SAS:

libname mytest meta libid=AD000001 repname=sasrepos
ipaddr=’a123.us.company.com’ port=8561
userid=sasabc pw=srvpw liboptset=basetrun;

The metadata engine constructs a LIBNAME statement as in the previous example, but
with the DLTRUNCHK option instead of the default option:

libname sas9 v9 ’C:\sales’ repempty=no access=readonly dltrunchk extend;

50 Examples: OPTSET= Data Set Option � Chapter 6

Examples: OPTSET= Data Set Option
Here are some examples with and without the OPTSET= data set option:

� In the following PRINT procedure, the metadata engine uses the SAS/ACCESS
Interface to Oracle engine as its underlying engine. No options are specified in the
PROC PRINT statement, and no OPTSET= value is specified. Therefore, this
PROC PRINT uses the default options. The default option values are obtained
from Property objects that are associated with the PhysicalTable object.

proc print data=x.dept;
run;

� The next PROC PRINT uses the SAS/ACCESS Interface to Oracle engine. Options
are specified in the PROC PRINT statement, so they take precedence over option
values in the metadata.

proc print data=oralib.dept (dbnull=(empid=no jobcode=no));
run;

� In the next PROC PRINT, option values are obtained from the NULLSET
PropertySet object:

proc print data=x.dept (optset=nullset);
run;

� In the next procedure, option values are obtained from the OPTS2 PropertySet
object:

proc append base=work.sasbig data=mymeta.bigtable (optset=’opts2’);
run;

� In this DATA step, option values are obtained from the DS1 PropertySet object:

data a;
set x.b(optset=ds1);

run;

51

C H A P T E R

7
Reference for the Metadata
Engine

LIBNAME Statement for the Metadata Engine 51
Overview: Metadata LIBNAME Statement 51

Syntax: Metadata LIBNAME Statement 51

Required Arguments 52

Server Connection Arguments 53

METAOUT= Argument 54
CONOPTSET= and LIBOPTSET= Arguments 55

SAS Data Set Options for the Metadata Engine 55

METAOUT= Data Set Option 55

Overview: METAOUT= Data Set Option 55

Syntax: METAOUT= Data Set Option 56

OPTSET= Data Set Option 56
Overview: OPTSET= Data Set Option 56

Syntax: OPTSET= Data Set Option 57

LIBNAME Statement for the Metadata Engine

Overview: Metadata LIBNAME Statement
To learn how the metadata engine works, see Chapter 6, “Introduction to the

Metadata LIBNAME Engine,” on page 45.
The SAS Metadata Server must be running before you submit the metadata

LIBNAME statement. The required metadata must already exist in the metadata
server. (If you specify METAOUT=DATA, table metadata is not required.) For the
necessary metadata, see Chapter 8, “Reference to Metadata Objects for the Metadata
Engine,” on page 59.

In the syntax, wherever quotation marks are optional, they can be single or double
quotation marks.

Syntax: Metadata LIBNAME Statement

LIBNAME libref

META
LIBID=<">identifier<"> | LIBRARY=<">name<"> |

52 Syntax: Metadata LIBNAME Statement � Chapter 7

LIBRARY="/folder-pathname/name" | LIBURI="URI-format"
<server-connection-arguments>
<METAOUT=ALL | DATA | DATAREG | META>
<CONOPTSET="propertyset-object">
<LIBOPTSET="propertyset-object">;

Required Arguments
libref

specifies a SAS name that serves as a shortcut name to associate with metadata in
the SAS Metadata Repository on the metadata server. This name must conform to
the rules for SAS names. A libref cannot exceed eight characters.

META
is the name of the metadata engine.

LIBID=<">identifier<"> | LIBRARY=<">name<"> | LIBRARY="/folder-pathname/
name" | LIBURI="URI-format"

specifies a SASLibrary object, which defines a SAS library. This SAS library
contains the data that you want to process.

LIBID=<">identifier<">
specifies the 8– or 17–character metadata identifier of the SASLibrary object.
Examples are libid=AW000002 and libid="A57DQR88.AW000002". For more
information, see Chapter 2, “Metadata Object Identifiers and URIs,” on page
5.

LIBRARY=<">name<">
specifies the value in the SASLibrary object’s Name= attribute. An example
is library=mylib. The maximum length is 256 characters.
Alias: LIBRNAME=

LIBRARY="/folder-pathname/name"
specifies the folder pathname and the value in the SASLibrary object’s
Name= attribute. The pathname is the object’s location in a SAS folder. The
pathname begins with a forward slash. An example is library="/Users/
Dmitri/My Folder/test/mylib". The maximum length is 256 characters.

LIBURI="URI-format"
specifies a URI, which is a standard from SAS Open Metadata Architecture.
For more information, see Chapter 2, “Metadata Object Identifiers and URIs,”
on page 5. The following URI formats are supported.

LIBURI="identifier.identifier"
specifies the full 17–character metadata identifier, which references both
the repository and the object. This syntax is equivalent to specifying
both LIBID= and REPID=. An example is
liburi="A57DQR88.AW000002".

LIBURI="SASLibrary/identifier.identifier"
specifies the SASLibrary object type, followed by the full 17–character
metadata identifier. This syntax is equivalent to specifying both LIBID=
and REPID=. An example is liburi="SASLibrary/
A57DQR88.AW000002".

LIBURI="SASLibrary?@attribute=’value’"
specifies the SASLibrary object type, followed by a search string.
Examples are liburi="SASLibrary?@libref=’mylib’" and liburi="
SASLibrary?@engine=’base’".

Reference for the Metadata Engine � Syntax: Metadata LIBNAME Statement 53

Requirement: You must enclose the LIBURI= value in quotation marks.

Server Connection Arguments
The following LIBNAME statement arguments for the metadata engine establish a

connection to the metadata server. For more information, see “Introduction to
Connection Options” on page 24.

METASERVER=<">host-name<">
specifies the host name or network IP address of the computer that hosts the
metadata server. The value localhost can be used if the SAS session is
connecting to the metadata server on the same computer. If you do not specify this
argument, the value of the METASERVER= system option is used; for more
information, see “METASERVER= System Option” on page 39. The maximum
length is 256 characters.
Alias: HOST=

IPADDR=

PASSWORD=<">password<">
specifies the password for the user ID on the metadata server. If you do not specify
this argument, the value of the METAPASS= system option is used; for more
information, see “METAPASS= System Option” on page 33. The maximum length
is 256 characters.
Alias: METAPASS=

PW=

PORT=<">number<">
specifies the TCP port that the metadata server listens to for connections. This
port number was used to start the metadata server. If you do not specify this
argument, the value of the METAPORT= system option is used; for more
information, see “METAPORT= System Option” on page 34. The default for the
METAPORT= system option is 8561. The range is 1–65535.
Alias: METAPORT=

PROTOCOL=BRIDGE
specifies the network protocol for connecting to the metadata server. If you do not
specify this argument, the value of the METAPROTOCOL= system option is used;
for more information, see “METAPROTOCOL= System Option” on page 37. In this
release, the only supported value is BRIDGE, which specifies the SAS Bridge
protocol.
Alias: METAPROTOCOL=
Requirement: Do not enclose the value in quotation marks.

REPID=<">identifier<"> | REPNAME=<">name<">
specifies the repository that contains the SASLibrary object. If you specify both
REPID= and REPNAME=, REPID= takes precedence over REPNAME=. If you do
not specify REPID= or REPNAME=, the value of the METAREPOSITORY= system
option is used; for more information, see “METAREPOSITORY= System Option” on
page 38. The default for the METAREPOSITORY= system option is Foundation.

REPID=<">identifier<">
specifies an 8–character identifier. This identifier is the first half of the
SASLibrary’s 17–character identifier, and is the second half of the
repository’s identifier. For more information, seeChapter 2, “Metadata Object
Identifiers and URIs,” on page 5.

REPNAME=<">name<">

54 Syntax: Metadata LIBNAME Statement � Chapter 7

specifies the value in the repository’s Name= attribute. The maximum length
is 256 characters.
Alias: METAREPOSITORY=

REPOS=
REPOSITORY=

USER=<">userid<">
specifies the user ID for an account that is known to the metadata server. For
information about user definitions, see the SAS Intelligence Platform: Security
Administration Guide. If you do not specify this argument, the value of the
METAUSER= system option is used; see “METAUSER= System Option” on page
41. The maximum length is 256 characters.
Alias: ID=

METAUSER=
USERID=

METAOUT= Argument

METAOUT=ALL | DATA | DATAREG | META
specifies the metadata engine’s output processing of tables in the data source.
Default: ALL
Restriction: The following descriptions refer to the physical table. Metadata is

read-only with the metadata engine. When you create, update, or delete
physical data with the metadata engine, you must perform an additional step if
you want to update the metadata. You can use a product like SAS Management
Console, or you can submit the METALIB procedure. For more information, see
Chapter 12, “METALIB Procedure,” on page 99.

Restriction: As a LIBNAME statement argument, the behavior applies to all
members in the library, and remains for the duration of the library assignment.
To specify METAOUT= behavior for an individual table, use the METAOUT=
data set option.

Interaction: If metadata for a table is defined, any authorizations for that table
are enforced, regardless of the METAOUT= value.

ALL
specifies that you can read, create, update, and delete observations in
existing physical tables that are defined in metadata. You cannot create or
delete entire physical tables. This is the default behavior.
Interaction: The user is restricted to only the tables that have been defined

in the repository.

DATA
specifies that you can read, create, update, and delete physical tables.
Interaction: The user can access any table, regardless of whether it has been

defined in the repository.

DATAREG
specifies that you can read, update, and delete physical tables that are
defined in metadata. You can create a table, but you cannot read, update, or
delete the new table until it is defined in metadata. This value is like ALL,
but it adds the ability to create new tables.
Interaction: The user is restricted to only the tables that have been defined

in the repository.

Reference for the Metadata Engine � METAOUT= Data Set Option 55

META
specifies that you can read physical tables that are defined in metadata. You
cannot create, update, or delete physical tables or observations. This value is
like ALL, without the ability to create, update, and delete observations.

Interaction: The user is restricted to only the tables that have been defined
in the repository.

Caution: The METAOUT=META value might not be supported in future
releases of the software.

CONOPTSET= and LIBOPTSET= Arguments
If you do not specify the CONOPTSET= or LIBOPTSET= arguments, the default

options for the constructed LIBNAME statement are used. For more information, see
“How the Metadata Engine Constructs Options” on page 47. See also “Examples:
CONOPTSET= or LIBOPTSET= Argument” on page 48.

CONOPTSET=<">propertyset-object<">
specifies a PropertySet object that is associated with the SASClientConnection
object that corresponds to the SASLibrary object specified by the LIBID=,
LIBRARY=, or LIBURI= argument. The Property objects that are associated with
this PropertySet object are used as connection arguments for the constructed
LIBNAME statement for the underlying engine. A SASClientConnection object
exists only for engines that connect to a server, such as the SAS/ACCESS engines.
The maximum length is 60 characters.

LIBOPTSET=<">propertyset-object<">
specifies a PropertySet object that is associated with the SASLibrary object
specified by the LIBID=, LIBRARY=, or LIBURI= argument. The Property objects
that are associated with this PropertySet object are used as statement arguments
for the constructed LIBNAME statement for the underlying engine. The maximum
length is 60 characters.

SAS Data Set Options for the Metadata Engine

METAOUT= Data Set Option

Overview: METAOUT= Data Set Option
The METAOUT= data set option for the metadata engine specifies access to an

individual table in the data source.

Note: While the METAOUT= data set option enables you to specify behavior for
individual tables, you can use the METAOUT= argument for the LIBNAME statement
to specify behavior for an entire library. However, for a library, the behavior applies to
all members in the library, and remains for the duration of the library assignment. �

Note: For library procedures such as PROC DATASETS, you must specify
METAOUT= as an argument on the LIBNAME statement. You cannot specify it as a
data set option. �

56 OPTSET= Data Set Option � Chapter 7

Syntax: METAOUT= Data Set Option
METAOUT=ALL | DATA | DATAREG | META

Default: ALL

Restriction: The following descriptions refer to the physical table. Metadata is
read-only with the metadata engine. When you create, update, or delete
physical data with the metadata engine, you must perform an additional step if
you want to update the metadata. You can use a product like SAS Management
Console, or you can submit the METALIB procedure. For more information, see
Chapter 12, “METALIB Procedure,” on page 99.

Interaction: If metadata for a table is defined, any authorizations are enforced
for that table, regardless of the METAOUT= value.

ALL
specifies that you can read, create, update, and delete observations in an
existing physical table that is defined in metadata. You cannot create or
delete a physical table. This is the default behavior.

Interaction: The user is restricted to only the tables that have been defined
in the repository.

DATA
specifies that you can read, create, update, and delete a physical table.

Interaction: The user can access any table, regardless of whether it has been
defined in the repository.

DATAREG
specifies that you can read, update, and delete a physical table that is defined
in metadata. You can create a table, but you cannot read, update, or delete
the new table until it is defined in metadata. This value is like ALL, but it
adds the ability to create new tables.

Interaction: The user is restricted to only the tables that have been defined
in the repository.

META
specifies that you can read a physical table that is defined in metadata. You
cannot create, update, or delete a physical table or observations. This value
is like ALL, without the ability to create, update, and delete observations.

Interaction: The user is restricted to only the tables that have been defined
in the repository.

Caution: The METAOUT=META value might not be supported in the future
releases of the software.

OPTSET= Data Set Option

Overview: OPTSET= Data Set Option

If you do not specify the OPTSET= data set option, the default options for the
constructed LIBNAME statement are used. For more information, see “How the
Metadata Engine Constructs Options” on page 47. See also “Examples: OPTSET= Data
Set Option” on page 50.

Reference for the Metadata Engine � OPTSET= Data Set Option 57

Syntax: OPTSET= Data Set Option

OPTSET=<">propertyset-object<">
specifies a PropertySet metadata object that is associated with the PhysicalTable
object that corresponds to the table that is being referenced. The PropertySet
object specifies data set options that will be applied to the table.

58

59

C H A P T E R

8
Reference to Metadata Objects
for the Metadata Engine

Overview of Metadata Requirements 59
Diagrams of the SAS Metadata Model 59

Metadata Objects, Listed by Language Element 63

The Constructed LIBNAME Statement for a Base SAS Engine 63

The Constructed LIBNAME Statement for a DBMS SAS/ACCESS Engine 64

The Constructed LIBNAME Statement for the REMOTE Engine 65
Metadata Objects, Listed by Type 66

What Is a Metadata Type? 66

How the Metadata Engine Uses SAS Metadata Types 66

Overview of Metadata Requirements
This chapter lists the minimum requirements to use the metadata engine. An

administrator can use a product like SAS Management Console to define metadata.
� For the metadata engine to construct a LIBNAME statement for the underlying

engine and to process data, the metadata must be available from an existing
SASLibrary metadata object, and it must conform to metadata engine model
requirements as described in this book.

� The metadata must be consistent with the data source. For example, if metadata
defines a column as numeric data, then the data source must define the column as
numeric data.

� For the metadata engine to access members in a SAS library, the SASLibrary
object must have an associated DatabaseSchema object for a DBMS SAS/ACCESS
engine, or a Directory object for a Base SAS library.

� The SAS Metadata Server must be running before you submit the metadata
LIBNAME statement.

� For the metadata engine to apply metadata server authorization, the
authorization metadata must be defined. Authorizations can control both the
availability of specific metadata (ReadMetadata permission) and the actions that
can be taken on the data source (Read, Write, Create, and Delete permissions).
For more information, see “The Metadata Engine and Authorization” on page 47.

Diagrams of the SAS Metadata Model
The metadata engine uses the SAS Metadata Model as a framework and a common

format for metadata modeling. For the metadata engine to access metadata objects that
are stored in a SAS Metadata Repository, the library metadata must be configured so
that the metadata engine can process it.

60 Diagrams of the SAS Metadata Model � Chapter 8

The metadata engine supports the following models:

Relational
DBMS Model

models a DBMS library, which uses a DBMS SAS/ACCESS engine.

SAS Data Set
Model

models a Base SAS library, which uses a Base SAS engine.

Remote
Relational
DBMS Model

models a remote DBMS library, which uses a SAS/ACCESS engine
and the REMOTE engine.

Remote SAS
Data Set Model

models a remote Base SAS library, which uses a Base SAS engine
and the REMOTE engine.

The following diagrams illustrate the associations between related metadata types in
each supported model. The purpose of the diagrams is to help you understand the
relationships among the metadata types in the SAS metadata model.

Figure 8.1 Relational DBMS Model

Reference to Metadata Objects for the Metadata Engine � Diagrams of the SAS Metadata Model 61

Figure 8.2 SAS Data Set Model

62 Diagrams of the SAS Metadata Model � Chapter 8

Figure 8.3 Remote Relational DBMS Model

Reference to Metadata Objects for the Metadata Engine � For a Base SAS Engine 63

Figure 8.4 Remote SAS Data Set Model

Metadata Objects, Listed by Language Element

The Constructed LIBNAME Statement for a Base SAS Engine
The metadata engine constructs a LIBNAME statement based on the stored

metadata and uses this LIBNAME statement to access your data. The construction is
transparent; however, it is important to understand the components of the LIBNAME
statement so that you can configure the metadata appropriately with a product like
SAS Management Console. For more information about LIBNAME syntax, see SAS
Language Reference: Dictionary for LIBNAME syntax.

Note: The metadata must already be registered. If you specify METAOUT=DATA,
table metadata is not required. �

LIBNAME libref <engine> ’SAS-data-library’ <options>;

libref
references the SAS library that the Base SAS engine will process. This value is
obtained from the Libref attribute in the SASLibrary object.

64 The Constructed LIBNAME Statement for a DBMS SAS/ACCESS Engine � Chapter 8

engine
is the name of the Base SAS engine that will process the SAS library. This value
is obtained from the Engine attribute in the SASLibrary object.

’SAS-data-library’
is the physical name of the SAS library. This value is obtained from the
DirectoryName attribute in the Directory object that is associated with the
SASLibrary object. The DirectoryName attribute must include any delimiters that
are specific to the operating environment.

The Directory object also contains the IsRelative attribute, which indicates
whether the value in the DirectoryName attribute is the complete physical name
or is relative to a parent directory. If the IsRelative attribute is set to true (1), the
metadata engine retrieves the parent directory and obtains the value from its
DirectoryName attribute. The metadata engine appends the parent directory’s
physical name to the beginning of the subdirectory’s physical name.

A parent directory can have an IsRelative attribute set to true (1). Several
parent directories can be appended to the beginning of the physical name before it
is complete.

options
are the LIBNAME statement options for the Base SAS engine. Each option is
constructed from the PropertyName, Delimiter, DefaultValue, and UseValueOnly
attributes in a Property object.

Property objects can be associated directly with the SASLibrary object.
PropertySet objects can associate different groups of Property objects with the
SASLibrary object. For more information, see “How the Metadata Engine
Constructs Options” on page 47.

The Constructed LIBNAME Statement for a DBMS SAS/ACCESS Engine
The metadata engine constructs a LIBNAME statement for a DBMS SAS/ACCESS

engine based on the stored metadata and uses this LIBNAME statement to access your
data. The construction is transparent; however, it is important to understand the
components of the LIBNAME statement so that you can configure the metadata
appropriately with a product like SAS Management Console. For more information
about LIBNAME syntax, see the documentation for the specific SAS/ACCESS product.

Note: The metadata must already be registered. If you specify METAOUT=DATA,
table metadata is not required. �

LIBNAME libref SAS/ACCESS-engine-name<SAS/
ACCESS-engine-connection-options> <SAS/ACCESS-LIBNAME-options>;

libref
references the data that the SAS/ACCESS engine will process. This value is
obtained from the Libref attribute in the SASLibrary object.

SAS/ACCESS-engine-name
is the name of the underlying engine that will process the data. This value is
obtained from the Engine attribute in the SASLibrary object.

SAS/ACCESS-engine-connection-options
are the engine-specific connection options for the LIBNAME statement for the
SAS/ACCESS engine. Each option is constructed from the PropertyName,
Delimiter, DefaultValue, and UseValueOnly attributes in a Property object.

Reference to Metadata Objects for the Metadata Engine � For the REMOTE Engine 65

Property objects can be associated directly with the SASClientConnection object
that is associated with the SASLibrary object. PropertySet objects can associate
different groups of Property objects with the SASClientConnection object. For
more information, see “How the Metadata Engine Constructs Options” on page 47.
Exception: The values for the USERID= and PASSWORD= connection options

are obtained from a Login object. The Login object can be associated with the
SASLibrary object. If no Login object is associated with the SASLibrary object,
a Login object is obtained from the AuthenticationDomain object that is
associated with the SASClientConnection object.

SAS/ACCESS-LIBNAME-options
are the LIBNAME statement options for the SAS/ACCESS engine. Each option is
constructed from the PropertyName, Delimiter, DefaultValue, and UseValueOnly
attributes in a Property object.

Property objects can be associated directly with the SASLibrary object.
PropertySet objects can associate different groups of Property objects with the
SASLibrary object. For more information, see “How the Metadata Engine
Constructs Options” on page 47.
Exception: The value for the SCHEMA= option is obtained from a

DatabaseSchema object. The DatabaseSchema object must be associated with
the SASLibrary object if the SAS library is processed by a SAS/ACCESS engine.

The Constructed LIBNAME Statement for the REMOTE Engine
The metadata engine constructs a LIBNAME statement for the REMOTE engine

based on the stored metadata and uses this LIBNAME statement to access your data.
The construction is transparent; however, it is important to understand the components
of the LIBNAME statement so that you can configure the metadata appropriately with
a product like SAS Management Console. For more information about LIBNAME
syntax, see the SAS/SHARE User’s Guide.

Note: The metadata must already be registered. If you specify METAOUT=DATA,
table metadata is not required. �

LIBNAME libref SERVER=serverid <ACCESS=READONLY> <OUTREP=format>
<USER=userid> <PASSWORD=password> <SAPW=server-access-password>
<SLIBREF=server-libref> ;

libref
references the local SAS library. This value is obtained from the Libref attribute in
the SASLibrary object for the local SAS library. This value can be the same as the
value for the Libref attribute in the SASLibrary object for the remote SAS library.

SERVER=serverid
specifies a name for the SAS server. This value is constructed from the
PropertyName, Delimiter, DefaultValue, and UseValueOnly attributes in a
Property object that is associated with the SASClientConnection object for the SAS
server.

ACCESS=READONLY
controls read access to a data library (in this case, through the SAS server). This
value is obtained from the PropertyName, Delimiter, DefaultValue, and
UseValueOnly attributes in a Property object that is associated with the local
library’s SASLibrary object.

OUTREP=format

66 Metadata Objects, Listed by Type � Chapter 8

creates new files in a foreign host format. This value is obtained from the
PropertyName, Delimiter, DefaultValue, and UseValueOnly attributes in a
Property object that is associated with the local library’s SASLibrary object.

USER=user-name
specifies the user ID of the accessing client on the server. This value is obtained
from the Userid attribute in a Login object that is associated with the SASLibrary
object.

PASSWORD=password
specifies the password for the accessing client on the server. This value is obtained
from the Password attribute in a Login object that is associated with the
SASLibrary object.

SAPW=server-access-password
specifies a server access password, which is used to gain access to the SAS server.
This value is obtained from the Password attribute in a SASPassword object that
is associated with the SASClientConnection object for the SAS server.

SLIBREF=server-libref
specifies the libref that is used by the server to identify a SAS library. This value
is obtained from the Libref attribute in the remote library’s SASLibrary object.

Metadata Objects, Listed by Type

What Is a Metadata Type?
The SAS metadata model includes metadata types for the most commonly used SAS

applications. A metadata type is like a template. Each metadata object is a unique
instance of a metadata type. For example, the metadata type Column models the
metadata for a variable in a SAS data set. Each Column object has a unique name, but
they are all of the metadata type Column.

A metadata object is also known as a metadata definition. For more information
about the applications that use SAS metadata, see the SAS Intelligence Platform:
System Administration Guide.

How the Metadata Engine Uses SAS Metadata Types
The following list of SAS metadata types is taken from the SAS Open Metadata

Architecture. With the exception of PhysicalTable and Column, metadata must already
be defined in the repository.

AuthenticationDomain
represents the domain that controls user access to the server for the underlying
engine. User login information is retrieved from the authentication domain when
no default login information has been provided with the SAS library. This user
login information is included in the LIBNAME statement constructed for the
underlying engine. An AuthenticationDomain object does not exist if user IDs and
passwords are not used to connect to the server, or if a Base SAS engine is the
underlying engine.

Attributes:

Reference to Metadata Objects for the Metadata Engine � How the Metadata Engine Uses SAS Metadata Types 67

not applicable

Associations:

Logins (0..n)
This association from the AuthenticationDomain object to Login object(s)
is used to retrieve only the user logins (Login objects) that the user is
authorized (through SAS Open Metadata Architecture security) to use.
The logic for retrieving user login information is in the description for
the Login object. The cardinality on this association enables an
authentication domain to control several user logins.

Column
represents a column on a library member. Column metadata is retrieved when
opening a library member, and when retrieving indexes on an opened library
member.

Attributes: The metadata engine uses the following attributes from the Column
object:

Desc
The SAS column label field.

SASColumnName
The column name that is used by SAS. This attribute must be populated.

SASColumnType
The column type that is used by SAS. This attribute must be populated.

SASColumnLength
The column length that is used by SAS. This attribute must be
populated.

SASFormat
The SAS format that is applied to the column.

SASInformat
The SAS informat that is applied to the column.

Associations:
not applicable

DatabaseSchema
represents a DBMS schema. The SCHEMA= option cannot be represented with a
Property object. The DBMS schema must be represented with a DatabaseSchema
object. The DatabaseSchema object, if available, must be associated with a
SASLibrary object. Only one schema can be associated with the SAS library. If
more than one schema is retrieved, the first schema is used.

DBMS schema metadata is retrieved to obtain the name of the DBMS schema
that is used in the LIBNAME statement for the underlying engine. The DBMS
schema metadata is retrieved after the LIBNAME statement for the metadata
engine is executed. The DBMS schema is used as a point of reference when
retrieving library member information and when opening a library member.

Attributes:

SchemaName
The name of the DBMS schema. The metadata engine includes this
schema name as the value for the SCHEMA= option in the LIBNAME
statement for the underlying engine. This attribute must be populated.
Exception: The SAS/ACCESS interfaces for ODBC, OLE DB, Microsoft

Access, and Microsoft Excel do not use a schema when their

68 How the Metadata Engine Uses SAS Metadata Types � Chapter 8

underlying data source does not support schemas. In these cases, the
SchemaName attribute is blank.

Associations:

Tables(0..n)
This association from the DatabaseSchema object to PhysicalTable
object(s) is used to obtain all DBMS tables that are associated with the
DBMS schema in the repository. The tables that are associated with the
schema might differ from the tables that are under the schema in the
DBMS. The cardinality on this association enables the DBMS schema to
have many DBMS tables.

Directory
represents a file system directory. Directory metadata is retrieved to obtain the
physical name that is used as the library specifications in the LIBNAME
statement for the underlying engine. Directory metadata is retrieved after the
LIBNAME statement for the metadata engine is executed. No library members
are associated with a Directory object. The library members are associated with
the SASLibrary object that is using this Directory object.

Attributes:

DirectoryName
Directory name, including any delimiters that are specific to the
operating environment. The metadata engine treats the value of this
attribute as a string, including the total string in the LIBNAME
statement for the underlying engine.

Note: For the metadata engine, do not use quotation marks in the
directory path. �

IsRelative
Indicates that this directory is a subdirectory and has a parent
directory. When this attribute is set to true (1), the DirectoryName
attribute does not contain the complete name. The parent directory
must be retrieved to complete the name. Several subdirectories can be
involved in completing a directory name.

Associations:

Parent(0..1)
This association from the Directory object to another Directory object is
used to obtain the remaining name when a directory is relative to
another directory. To construct a complete directory name, the value of
the DirectoryName attribute in the parent directory is appended to the
beginning of the value of the DirectoryName attribute of the
subdirectory. The cardinality on this association enables a subdirectory
to have (at most) one parent directory. However, many subdirectories
and parents might be traversed before the directory name is complete.

Index
represents an index on a library member. When index information is requested for
an opened library member, index metadata is retrieved to obtain the name of the
index and column(s) that compose the index.

Attributes:

IndexName
The name of the index on the library member. This attribute must be
populated.

Reference to Metadata Objects for the Metadata Engine � How the Metadata Engine Uses SAS Metadata Types 69

Associations:

Columns(0..n)
This association from the Index object to column object(s) is used to
obtain the columns that make up the index. The cardinality on this
association enables the index to be a simple index (of one column) or a
composite index (made up of more than one column).

Login
represents a user’s login information (user ID and password) that is used to
connect to a server. This user login information is retrieved after the LIBNAME
statement for the metadata engine is executed and is included in the LIBNAME
statement constructed for the underlying engine. If no Login object is associated
with the SASLibrary object, the user login information is retrieved from the
AuthenticationDomain object.

Here is the logic for retrieving user login information from the
AuthenticationDomain object:

� If no Login object is retrieved for the user, then no user login information is
included in the LIBNAME statement for the underlying engine. It is
assumed that either no user login information is required to connect to the
server for the underlying engine, or the user login information has been
stored in a location according to the setup for the underlying engine. A
connection is attempted without user login information, and the user is
notified of any connection failures.

� If there is only one Login object retrieved, this user ID and password is
included in the LIBNAME statement for the underlying engine as values for
the USERID= and PASSWORD= connection options.

Attributes:

Userid
A user ID that is used to connect to a server for the underlying engine.
This attribute must be populated.

Password
The password that enables a user to access a server for the underlying
engine. This attribute must be populated.

Associations:
not applicable

PhysicalTable
represents a member in a SAS library. Metadata for a library member is retrieved
when a library member listing is requested, a library member is opened for use, or
an index is requested. Metadata for a library member is retrieved to obtain the
name and type of the member and, in some cases, the columns of the library
member.

Note: To access physical data with METAOUT=ALL, the table’s PhysicalTable
and Column objects must be defined in the repository. To access physical data with
METAOUT=DATA, the PhysicalTable and Column objects are not required. �

Attributes:

Desc
The SAS label field.

SASTableName

70 How the Metadata Engine Uses SAS Metadata Types � Chapter 8

The SAS name for a library member (for example, DBMS table, SAS
data set, and so on). This attribute must be populated.

MemberType
The SAS type for a library member (for example, DATA or VIEW). This
attribute must be populated.

Associations:

Columns(0..n)
This association from the PhysicalTable object to Column object(s) is
used to obtain the columns of an opened library member. The cardinality
on this association enables a library member to have many columns.

Indexes(0..n)
This association from the PhysicalTable object to Index object(s) is used
to identify the indexes of an opened library member. The cardinality on
this association enables a library member to have several indexes.

Properties(0..n)
This association from the PhysicalTable object to Property object(s) is
used to obtain the data set options to be used when accessing a library
member. These options are considered the default data set options.
They are applied each time the library member is opened unless a
PropertySet object is specified in the metadata engine data set option
OPTSET=. The cardinality on this association enables a library member
to have an unlimited number of data set options.

PropertySets(0..n)
This association from the PhysicalTable object to PropertySet object(s) is
used to obtain the data set options to be used when opening a library
member. This association is used when a PropertySet object is specified
in the metadata engine data set option OPTSET=. If OPTSET= is not
specified, any default data set options from the Properties association is
applied. The cardinality on this association enables a library member to
have many PropertySet objects

SASPasswords(0..n)
This association from the PhysicalTable object to SASPassword object(s)
is used to obtain the READ=, WRITE=, ALTER=, and PW= password
values for a SAS data set. This association is valid only when a Base
SAS engine is the underlying engine for the metadata engine. This
association is used each time the SAS data set is opened. The
cardinality on this association enables a SAS data set to have more than
one SAS password.

TablePackage(1)
This association from the PhysicalTable object to a DatabaseSchema or
SASLibrary object is used to identify the DBMS schema or SAS library,
respectively, to which this library member belongs. The cardinality on
this association enables a library member to belong to one DBMS
schema or SAS library.

Property
represents a SAS option. A Property object can be associated with a SASLibrary
object for LIBNAME options, and a SASClientConnection object for server
connection options. These options are the default options that are included in the
LIBNAME statement for the underlying engine. A Property object can be
associated with a PhysicalTable object for data set options. In this case, these

Reference to Metadata Objects for the Metadata Engine � How the Metadata Engine Uses SAS Metadata Types 71

options are the default options that are applied when the associated library
member is referenced. A Property object can be associated with a PropertySet
object. In this case, these options are applied only when the PropertySet object is
included as a value in the metadata LIBNAME statement arguments
LIBOPTSET=, CONOPTSET=, or the metadata engine data set option OPTSET=.
When options within a PropertySet object are used, default options are not used.
For more information, see “How the Metadata Engine Constructs Options” on page
47.

The USERID=, PASSWORD=, and SCHEMA= options cannot be represented
with a Property object. User IDs and passwords must be represented with a Login
object. A DBMS schema must be represented with a DatabaseSchema object. The
READ=, WRITE=, ALTER=, and PW= data set password options cannot be
represented with a Property object. The SAPW= remote server access password
option cannot be represented with a Property object. These passwords must be
represented with a SASPassword object.

Attributes:

DefaultValue
Value for the option. This attribute must be populated.

Delimiter
The delimiter between the option name and the option value. For most
SAS options, the delimiter is an equal sign (=). This attribute is not
used if the UseValueOnly attribute is set to true (1).

PropertyName
Name of the option. This attribute is not used if the UseValueOnly
attribute is set to true (1).

UseValueOnly
Indicates a Boolean option. When this attribute is set to true (1), only
the DefaultValue attribute is used to specify the option. When this
attribute is set to false (0), the PropertyName, Delimiter, and
DefaultValue attributes are used to specify the option.

Associations:
not applicable

PropertySet
groups a set of Property objects, representing SAS options, to be used in a
particular context. PropertySet objects can be used to group a set of LIBNAME
statement, connection, or data set options as follows:

� When you specify a PropertySet name in the LIBOPTSET= argument, the
metadata engine includes a set of LIBNAME options in the constructed
LIBNAME statement for the underlying engine. The OwningObject for these
sets of Property objects is a SASLibrary object.

� When you specify a PropertySet name in the CONOPTSET= argument, the
metadata engine includes a set of connection options in the constructed
LIBNAME statement for the underlying engine. The OwningObject for these
sets of Property objects is a SASClientConnection object.

� When you specify a PropertySet name in the OPTSET= data set option, the
metadata engine applies a set of data set options to the specified table. The
OwningObject for this set of Property objects is a PhysicalTable object.

Only one set of Property objects is used for an OwningObject, which is either
the set of Property objects that are associated directly with the OwningObject, or

72 How the Metadata Engine Uses SAS Metadata Types � Chapter 8

the set of Property objects that are associated with the PropertySet object specified
for an OwningObject. For more information, see “How the Metadata Engine
Constructs Options” on page 47 and “Example: Creating a PropertySet Object for
Use with LIBOPTSET=” on page 8.

Attributes:

Name
Name of the PropertySet object. This name is the value specified for the
LIBOPTSET= or CONOPTSET= argument or the OPTSET= data set
option. This attribute must be populated.

Associations:

SetProperties(0..n)
This association from the PropertySet object to Property object(s) is used
to obtain the options defined in the PropertySet. The cardinality of this
association enables the PropertySet to contain many options.

SASClientConnection
represents information needed by SAS to connect to a server for the underlying
engine.

Attributes:
not applicable

Associations:

Domain(0..1)
This association from the SASClientConnection object to an
AuthenticationDomain object is used to access the authorization domain
that maintains the user identities (user IDs and passwords) used to
access the server. The cardinality on this association enables the client
connection to be associated with (at most) one authentication domain.

Properties(0..n)
This association from the SASClientConnection to Property object(s) is
used to obtain the connection options to be included in the LIBNAME
statement for the underlying engine. These options are considered the
default connection options and are applied each time a LIBNAME
statement is constructed for the underlying engine, unless a PropertySet
object is specified in the metadata engine LIBNAME statement option
CONOPTSET=. The cardinality of this association enables a connection
to have many connection options.

PropertySets(0..n)
This association from the SASClientConnection to PropertySet object(s)
is used to obtain connection options to be included in the LIBNAME
statement for the underlying engine. This association is used when a
PropertySet object is specified in the CONOPTSET= argument. If
CONOPTSET= is not specified, any default connection options from the
Properties association is applied. The cardinality of this association
enables a connection to have many sets of connection options.

SAPW(0..1)
This association from the SASClientConnection to a SASPassword object
is used to obtain a SAS server access password option to be included in
the LIBNAME statement for the underlying engine. The cardinality of
this association enables a connection to have (at most) one SAS
password.

Reference to Metadata Objects for the Metadata Engine � How the Metadata Engine Uses SAS Metadata Types 73

SASLibrary
represents a SAS library. The SASLibrary object is specified by the LIBID=,
LIBRARY=, or LIBURI= argument in the LIBNAME statement. The metadata
engine exits with an error if the SASLibrary object is not specified in the metadata
LIBNAME statement. Metadata included in this library is used to construct a
LIBNAME statement for the underlying engine.

Attributes:

Engine
The engine that is used with this library. This attribute tells the
metadata engine which engine to assign as the underlying engine. A
SAS library is associated with only one engine. This attribute must be
populated.

Libref
The libref that is used to assign the underlying engine. This attribute
must be populated.

IsDBMSLibname
Indicates whether this library is used to construct a LIBNAME
statement for a DBMS engine. If this attribute is set to true (1), then a
DatabaseSchema object must be associated with this library
(UsingPackages association).

Associations:

DefaultLogin(0..1)
This association from the SASLibrary object to a Login object is used to
obtain the user login (user ID and password) metadata that is used as
values for the user ID and password parameters in the LIBNAME
statement. However, many engines do not require user login metadata;
therefore, this association might not exist. If this association does not
exist, the metadata engine attempts to obtain user login metadata from
the AuthenticationDomain object through the SASClientConnection
object. If user login metadata cannot be obtained through the
AuthenticationDomain object, the metadata engine attempts to assign
the underlying engine with a LIBNAME statement without any user
login information. The cardinality of this association enables the SAS
library to use (at most) one user ID and password for the LIBNAME
statement.

LibraryConnection(0..1)
This association from the SASLibrary object to a SASClientConnection
object is used to obtain engine connection options. These options are
represented as Property objects associated with the
SASClientConnection object, or a with PropertySet object that is
associated with the SASClientConnection object. This association is
used to retrieve user login metadata, where applicable, through the
SASClientConnection object and AuthenticationDomain object. The
cardinality on this association enables the SAS library to access (at
most) one SASClientConnection object.

Properties(0..n)
This association from the SASLibrary object to Property object(s) is used
to obtain library options that should be included in the LIBNAME
statement for the underlying engine. These options are considered the
default options and are applied each time a LIBNAME statement is
constructed for the underlying engine unless a PropertySet object is

74 How the Metadata Engine Uses SAS Metadata Types � Chapter 8

specified in the metadata engine LIBOPTSET= argument in the
metadata LIBNAME statement. The cardinality on this association
enables a SAS library to have many library options.

PropertySets(0..n)
This association from the SASLibrary object to PropertySet object(s) is
used to obtain LIBNAME options to be included in the LIBNAME
statement for the underlying engine. This association is used when a
PropertySet object is specified in the LIBOPTSET= argument in the
metadata LIBNAME statement. If no LIBNAME option is specified, any
default LIBNAME options from the Properties association will be
applied. The cardinality of this association enables a SAS data library to
have many sets of options.

UsingPackages(0..1)
This association from the SASLibrary object to either a DatabaseSchema
or Directory is used to obtain metadata concerning a DBMS schema or a
system directory, respectively. Only one DatabaseSchema or Directory
object can be associated with a SASLibrary object.

SASPassword
represents a SAS password. The READ=, WRITE=, ALTER=, and PW= data set
password options cannot be represented with a Property object. The SAPW=
remote engine server password option cannot be represented with a Property
object. These options must be represented with a SASPassword object. SAS
passwords are retrieved when the underlying engine for the metadata engine is a
Base SAS engine and a password-protected SAS data set is opened. A
SASPassword can also be retrieved when the LIBNAME statement is executed for
the metadata engine.

75

C H A P T E R

9
Examples for the Metadata
Engine

Example: Submitting the LIBNAME Statement 75
Example: Before and After the Metadata Engine 75

Overview 75

Using the SAS/ACCESS Interface to Oracle Engine Directly 76

Using the Metadata Engine 76

Example: Submitting the LIBNAME Statement

This example shows two metadata LIBNAME statements. One statement uses
defaults, and one statement specifies all of the arguments.

� The following LIBNAME statement uses defaults. The connection information for
the SAS Metadata Server is obtained from the metadata system options. Other
defaults are obtained from metadata.

libname metaeng meta library=mylib;

� This example specifies all of the LIBNAME statement options for the metadata
engine to connect to the metadata server. It also specifies PropertySet objects in
the LIBOPTSET= and CONOPTSET= arguments.

libname myeng meta library=mylib
repname=temp metaserver=’a123.us.company.com’ port=8561
user=idxyz pw=abcdefg
liboptset=’libset2’
conoptset=’conset2’
;

Example: Before and After the Metadata Engine

Overview

This example shows how data can be accessed with the SAS/ACCESS Interface to
Oracle and then, for comparison, shows how the same data can be accessed with the
metadata engine. The code accesses Oracle data, lists the tables that exist in the data
source, and prints the contents of one table.

76 Using the SAS/ACCESS Interface to Oracle Engine Directly � Chapter 9

Using the SAS/ACCESS Interface to Oracle Engine Directly
To use the SAS/ACCESS Interface to Oracle engine directly to access the data, you

submit statements like the following, which require that you know how to use the
Oracle engine and that you know the appropriate options to access the data:

libname oralib oracle user=myuser pw=mypw
path=ora_dbms preserve_tab_names=yes
connection=sharedread schema=myschema; u

proc datasets library=oralib; v

quit;

proc print data=oralib.Sales (readbuff=1000); w

run;

data work.temp;
set oralib.Sales (dbindex=myindex); x

run;

1 Identifies an Oracle library that contains the Oracle tables that you want to
process.

2 Lists all of the Oracle tables that are available.

3 Displays the Oracle Sales table.

4 Attempts to use the specified index to improve performance.

Using the Metadata Engine
You can access the same data using the metadata engine. However, when using the

metadata engine, you do not have to know how to use the Oracle engine, or know the
appropriate options to access the data. You do not need to be aware that you are using
an Oracle database.

Using SAS Management Console or SAS Data Integration Studio, an administrator
creates metadata in a SAS Metadata Repository for your Oracle environment. The
metadata engine interprets this metadata and locates your data. You do not have to
know how to connect to the metadata server or the repository, because this information
can be provided by the metadata system options.

Here is what happens when you use the metadata engine to access the Oracle data:

1 You submit the following LIBNAME statement for the metadata engine.
LIBRARY= identifies the SASLibrary object that defines information about the
Oracle library. This SASLibrary object serves as an anchor point for obtaining
other metadata.

libname metaeng meta library=mylib
liboptset=myopts;

The metadata server connection properties are specified by metadata system
options, so they are omitted from the LIBNAME statement.

2 The metadata engine queries the repository. The query retrieves information from
the SASLibrary object that is specified by LIBRARY=, and from other objects that
are associated with the SASLibrary object, such as DatabaseSchema,
SASClientConnection, Login, or Property objects.

Examples for the Metadata Engine � Using the Metadata Engine 77

The following table lists objects that are returned from the query. The table
does not show the SASClientConnection objects and PropertySet objects.

Table 9.1 SASLibrary Object Query Results

SASLibrary DatabaseSchemaLogin Property Property Property

Libref: oralib SchemaName:
myschema

User:
myuser

PropertyName:
preserve_tab_
names

PropertyName:
path

PropertyName:
Connection

Engine:
oracle

Password:
mypw

DefaultValue:
yes

DefaultValue:
ora_dbms

DefaultValue:
sharedread

isDBMSLibname:
TRUE

Delimiter: = Delimiter: = Delimiter: =

UseValueOnly:
False

UseValueOnly:
False

UseValueOnly:
False

Note: The relational DBMS model in “Diagrams of the SAS Metadata Model”
on page 59 can help you determine how to associate these objects with one
another. �

3 From the information embedded in the objects, and from information that is
implied in the relational DBMS model, the metadata engine is able to generate the
following LIBNAME statement, which is the same LIBNAME statement that is
shown at the beginning of this example:

libname oralib oracle user=myuser pw=mypw
path=ora_dbms preserve_tab_names=yes
connection=sharedread schema=myschema;

4 With the generated LIBNAME statement, the metadata engine uses the Oracle
engine anytime it needs to access the Oracle data. For example, to view the tables
that exist, you would submit the following:

proc datasets library=metaeng;
quit;

The metadata engine sends a query to the repository. The query requests all
members of the SASLibrary that was specified by LIBRARY=. The metadata
engine returns only those members that are defined in the repository. Any Oracle
table that is not defined in the metadata is not displayed. (If METAOUT=DATA,
all tables are displayed, regardless of whether they are defined in metadata.)

5 For the following PRINT procedure, the metadata engine sends a request to the
repository for the metadata that is associated with the Sales table.

proc print data=metaeng.Sales (optset=myopts);
run;

The metadata includes PhysicalTable, Column, and Property object information.
The OPTSET= data set option, a metadata engine option, tells the metadata
engine to return Property objects that are associated with the MYOPTS
PropertySet object. The Property objects contain the values of data set options
that have been customized for this table. These data set options are used by the
Oracle engine while processing the data.

The metadata engine returns the columns that are defined in the metadata.
Therefore, if the Sales table has 20 columns, and only five columns are defined in

78 Using the Metadata Engine � Chapter 9

the metadata, then you see only five columns. (If METAOUT=DATA, all columns
are displayed, regardless of whether they are defined in the metadata.)

6 The relational DBMS model allows you to store index information for tables. Each
Index object is associated with a table and with the columns that make up the
index. Any use of the metadata engine that uses indexes causes a query to the
repository that requests index information. The index metadata must match the
physical index on the table. In the following statements, the OPTSET= data set
option specifies to use indexes to process the table. The metadata engine uses the
index information that is stored in the repository:

data work.temp;
set metaeng.Sales (optset=index_opts);

run;

79

P A R T4

Procedures

Chapter 10.Introduction to Procedures for Metadata 81

Chapter 11.METADATA Procedure 83

Chapter 12.METALIB Procedure 99

Chapter 13.METAOPERATE Procedure 117

80

81

C H A P T E R

10
Introduction to Procedures for
Metadata

Overview of Procedures for Metadata 81
Comparison of the METADATA Procedure and the METAOPERATE Procedure 81

Overview of Procedures for Metadata

As with the other metadata language elements, you can use the metadata procedures
in a batch SAS program or in the SAS windowing environment. You can also perform
these tasks with a product like SAS Management Console. For more information, see
the administration books in “Recommended Reading” on page 207.

The procedures enable you to create and maintain the metadata in a SAS Metadata
Repository.

� The METADATA procedure sends a method call, in the form of an XML string, to
the SAS Metadata Server.

� The METALIB procedure updates metadata to match the tables in a library.

� The METAOPERATE procedure performs administrative tasks on the metadata
server.

To submit the procedures, you must establish a connection with the metadata server.
You can specify connection information in the procedure, in system options, or in a
dialog box. For more information, see “Connection Options” on page 24.

Comparison of the METADATA Procedure and the METAOPERATE
Procedure

The METAOPERATE procedure and the METADATA procedure perform some of the
same tasks. The benefit of PROC METAOPERATE is simpler syntax. The benefit of
PROC METADATA is a broader range of tasks (you can submit many different SAS
Open Metadata methods). In addition, PROC METADATA creates XML output that you
can use in another program (for example, to run reports). In addition, PROC
METADATA supports all parameters of the methods it submits, and some of those
parameters are not supported by PROC METAOPERATE.

Here is an example that uses PROC METAOPERATE to check whether the metadata
server is paused or running:

proc metaoperate
action=status;

run;

82 Comparison of the METADATA Procedure and the METAOPERATE Procedure � Chapter 10

The metadata server returns the following information to the SAS log:

NOTE: Server a123.us.company.com SAS Version is 9.02.02B0P012308.
NOTE: Server a123.us.company.com SAS Long Version is 99.02.02B0P01232008.
NOTE: Server a123.us.company.com Operating System is XP_PRO.
NOTE: Server a123.us.company.com Operating System Family is WIN.
NOTE: Server a123.us.company.com Operating System Version is Service Pack 2.
NOTE: Server a123.us.company.com Client is janedoe.
NOTE: Server a123.us.company.com Metadata Model is Version 11.02.
NOTE: Server a123.us.company.com is RUNNING on 11Aug08:15:54:15.

PROC METADATA can perform a similar query with the following code:

proc metadata
in=’ <Status>

<Metadata>
</Metadata>

</Status>’;
run;

The metadata server returns the following information to the SAS log in the form of
XML. The status parameters differ slightly from those returned by PROC
METAOPERATE.

<Status><Metadata><ModelVersion>11.02</ModelVersion>
<PlatformVersion>9.2.0.0</PlatformVersion><ServerState>ONLINE</ServerState>
<PauseComment/><ServerLocale>en_US</ServerLocale></Metadata></Status>

PROC METADATA can submit parameters that are not supported by PROC
METAOPERATE. Here is an example:

proc metadata
in=’ <Status>

<Metadata>
<OMA JournalState=""/>
</Metadata>

</Status> ’;
run;

The metadata server returns the journal state:

<Status><Metadata><OMA JournalState="IDLE"/></Metadata></Status>

If you have a simple query that is not supported by PROC METAOPERATE, and you
do not want to assign an XML LIBNAME engine to parse the output of PROC
METADATA, another choice is the metadata DATA step functions. For more
information, see Chapter 14, “Introduction to DATA Step Functions for Metadata,” on
page 131.

83

C H A P T E R

11
METADATA Procedure

Overview: METADATA Procedure 83
Syntax: METADATA Procedure 84

PROC METADATA Statement 84

Concepts: METADATA Procedure 87

Introduction to the Input XML String 87

The Entire Method Is an XML Element 88
A Method’s Parameter Is an XML Element 88

A Metadata Object Is an XML Element 88

A Metadata Association Is an XML Element 89

See Also 89

Results: METADATA Procedure 89

Examples: METADATA Procedure 90
Example 1: Change a Repository’s State 90

Example 2: Simple Request for Server Status 90

Example 3: Filerefs with the IN= and OUT= Arguments 91

Example 4: Fileref to a Temporary File with the IN= Argument 92

Example 5: HEADER= Argument 93
Example 6: VERBOSE Argument 94

Example 7: Request the Metadata for One Object 95

Example 8: Request the Metadata for One Type of Object 96

Overview: METADATA Procedure
The METADATA procedure sends an XML string to the SAS Metadata Server. The

XML string, which you specify with the IN= argument, contains a method call. You
form the method call as if you were submitting it with the inMetadata parameter of the
DoRequest method. These methods are all part of the SAS Open Metadata Interface.
For more information, see “Concepts: METADATA Procedure” on page 87.

The METAOPERATE procedure and the metadata DATA step functions can perform
some of the same tasks as the METADATA procedure. For more information, see
“Comparison of the METADATA Procedure and the METAOPERATE Procedure” on
page 81.

84 Syntax: METADATA Procedure � Chapter 11

Syntax: METADATA Procedure
Requirement: The metadata server must be running.

Tip: Be careful when you modify metadata objects, because many objects have
dependencies on other objects. A product like SAS Management Console or SAS Data
Integration Studio is recommended for the routine maintenance of metadata. Before
you use PROC METADATA, run a full backup of repositories. For more information, see
the SAS Intelligence Platform: System Administration Guide. If you create a new
object, the object might be unusable if you do not create the proper attributes and
associations. For more information, see SAS Metadata Model: Reference.

Featured in: “Example: Creating a Report with the METADATA Procedure and the XML
Engine” on page 9

PROC METADATA <server-connection-arguments>

IN = "XML–formatted–method–call" | fileref

<OUT = fileref>

<HEADER = NONE | SIMPLE | FULL>

<VERBOSE>;

Task Statement

Send an XML string to the metadata server “PROC METADATA Statement” on
page 84

PROC METADATA Statement

PROC METADATA <server-connection-arguments>

IN = "XML–formatted–method–call" | fileref

<OUT = fileref>

<HEADER = NONE | SIMPLE | FULL>

<VERBOSE>;

Task Argument

Connect to the metadata server server-connection-arguments

Specify an XML-formatted method call, or an XML file that
contains the method call

IN=

Save the XML output in a file OUT=

METADATA Procedure � PROC METADATA Statement 85

Task Argument

Add a character-set encoding tag to the XML output HEADER=

Write the input XML string to the log VERBOSE

Server Connection Arguments
The server connection arguments establish communication with the metadata server.

If you omit these arguments, then the values of the system options are used, or the
values can be obtained interactively. For more information, see “Connection Options” on
page 24.

PASSWORD="password"
is the password for the authenticated user ID on the metadata server. If you do not
specify PASSWORD=, the value of the METAPASS= system option is used; for more
information, see “METAPASS= System Option” on page 33. The maximum length is
512 characters.
Alias: METAPASS=

PW=

PORT=number
is the TCP port that the metadata server listens to for requests. This port number
was used to start the metadata server. If you do not specify PORT=, the value of the
METAPORT= system option is used; for more information, see “METAPORT= System
Option” on page 34. The default for the METAPORT= system option is 8561. The
range is 1–65535.
Alias: METAPORT=
Requirement: Do not enclose the value in quotation marks.

PROTOCOL=BRIDGE
specifies the network protocol for connecting to the metadata server. If you do not
specify PROTOCOL=, the value of the METAPROTOCOL= system option is used; for
more information, see “METAPROTOCOL= System Option” on page 37. In this
release, the only supported value is BRIDGE, which specifies the SAS Bridge protocol.
Alias: METAPROTOCOL=
Requirement: Do not enclose the value in quotation marks.

REPOSITORY= "name"
is the name of the SAS Metadata Repository to use when resolving the
$METAREPOSITORY substitution variable. PROC METADATA enables you to
specify the substitution variable $METAREPOSITORY in your input XML. The
substitution variable is resolved to the repository that you specify in REPOSITORY=.
This value is the repository’s Name= attribute. If you do not specify REPOSITORY=,
the value of the METAREPOSITORY= system option is used; for more information,
see “METAREPOSITORY= System Option” on page 38. The default for the
METAREPOSITORY= system option is Foundation. The maximum length is 32,000
characters.
Alias: METAREPOSITORY=

REPOS=

SERVER="host-name"
is the host name or network IP address of the computer that hosts the metadata
server. The value localhost can be used if the SAS session is connecting to the

86 PROC METADATA Statement � Chapter 11

metadata server on the same computer. If you do not specify SERVER=, the value of
the METASERVER= system option is used; for more information, see
“METASERVER= System Option” on page 39. The maximum length is 256
characters.
Alias: HOST=

IPADDR=
METASERVER=

USER="authenticated-user-ID"
is an authenticated user ID on the metadata server. The metadata server supports
several authentication providers. For more information about authentication, see the
SAS Intelligence Platform: Security Administration Guide. If you do not specify
USER=, the value of the METAUSER= system option is used; for more information,
see “METAUSER= System Option” on page 41. The maximum length is 256
characters.
Alias: ID=

METAUSER=
USERID=

Input Argument

IN= " XML–formatted–method–call " | fileref
specifies an XML-formatted method call, or specifies an XML file that contains the
method call.

You form the method call as if you were submitting it with the inMetadata
parameter of the DoRequest method. The methods are part of the SAS Open
Metadata Interface. For more information, see “Concepts: METADATA Procedure” on
page 87. See also Example 3 on page 91 and Example 4 on page 92.

Note: Under z/OS, fixed-length records in the XML method call are not supported
by PROC METADATA. Specify RECFM=V when you create the XML method call. �

Output Arguments

OUT=fileref
specifies an XML file in which to store the output that is returned by the metadata
server. The value must be a fileref, not a pathname. Therefore, you must first submit
a FILENAME statement to assign a fileref to a pathname. In most cases, the output
XML string is identical to the input XML string, with the addition of the requested
values within the XML elements. If the OUT= argument is omitted, PROC
METADATA output is written to the SAS log. For more information, see “Results:
METADATA Procedure” on page 89. See also Example 3 on page 91.

Note: PROC METADATA can generate large XML output. You might need to
specify a large LRECL value or RECFM=N (streaming output) to avoid truncation of
long output lines. �

Note: Under z/OS, fixed-length records in the XML method call are not supported
by PROC METADATA. Specify RECFM=V (or RECFM=N as suggested above) when
you create the XML method call. �

HEADER= NONE | SIMPLE | FULL
specifies whether to include an XML header in the output XML file. The declaration
specifies the character-set encoding for Web browsers and XML parsers to use when

METADATA Procedure � Introduction to the Input XML String 87

processing national language characters in the output XML file. For more
information, see Example 5 on page 93.

NONE
omits an encoding declaration. Web browsers and parsers might not handle
national language characters appropriately.

SIMPLE
inserts an XML header that specifies the XML version number: <?xml
version="1.0"?>.

FULL
inserts an XML declaration that represents the encoding that was used when
creating the output XML file. In most cases, the encoding is recognized by Web
browsers and XML parsers. However, if you encounter errors, you might want to
know where SAS finds the encoding, and how SAS uses the encoding.

1 The source for the encoding varies, depending on the operating environment.
In general, the encoding value is taken from the ENCODING= option specified
in the FILENAME argument, or from the ENCODING= system option.

2 SAS attempts to use that encoding for the output XML file (and in the XML
header). The encoding can vary. A single encoding can have multiple names
or aliases that can appear in the XML header. These names might not be
valid or recognized in all XML parsers. When generating the encoding
attribute in the XML header, SAS attempts to use an alias that will be
recognized by Internet Explorer. If the alias is not found, SAS attempts to
use a name that will be recognized by Java XML parsers. If the name is not
found, SAS uses an alias by which SAS will recognize the encoding.

For information about encoding and transcoding, see SAS National Language
Support (NLS): Reference Guide.

VERBOSE
specifies to print the input XML string after it has been preprocessed. For more
information, see Example 6 on page 94.

Concepts: METADATA Procedure

Introduction to the Input XML String
The IN= argument of PROC METADATA submits an XML-formatted method call to

the metadata server. You can submit any method that is supported by the DoRequest
method of the SAS Open Metadata Interface, including:

� all methods in the IOMI class

� the Status method in the IServer class.

The methods are documented with many usage examples in SAS Open Metadata
Interface: Reference. PROC METADATA is among several clients that can submit the
DoRequest method to the metadata server. You are strongly advised to read SAS Open
Metadata Interface: Reference for help in understanding concepts such as flags, filters,
and templates. The following topics provide a brief introduction to the usage with
PROC METADATA.

88 The Entire Method Is an XML Element � Chapter 11

The Entire Method Is an XML Element
With PROC METADATA, you submit a request as an XML string. In the request, a

method is represented as an XML element. In the following example, the method is
Status. The request starts and ends with Status tags. Do not include the DoRequest
method in the XML string, because the procedure calls DoRequest for you.

proc metadata
in=’<Status>

<Metadata>
</Metadata>
</Status>’;

run;

A Method’s Parameter Is an XML Element
A method’s parameters are represented as XML elements, which are nested within

the method’s XML element. In the following example, the <Metadata> element
represents the Status method’s InMetadata= parameter. You always use a <Metadata>
element to represent an inMetadata= or inMeta= parameter.

proc metadata
in=’<Status>

<Metadata>
<OMA JournalSpaceAvailable="" />
</Metadata>
</Status>’;

run;

When you read the documentation about the Status method in SAS Open Metadata
Interface: Reference, you learn that the inMetadata= parameter can submit an XML
string itself. The XML string is represented as XML elements that are nested within
the <Metadata> element.

With the Status method, if nothing is submitted within the <Metadata> element, the
metadata server returns the default status information. In the previous example,
however, an XML string is submitted. The string is an <OMA> element. The
documentation for the Status method states that the <OMA> element requests the
value for a specified attribute. In this example, the requested attribute is
JournalSpaceAvailable. The metadata server returns the information to the SAS log:

<Status><Metadata><OMA JournalSpaceAvailable="200000000"/></Metadata></Status>

A Metadata Object Is an XML Element
Some methods input metadata objects. Within your XML string, metadata objects

are represented as XML elements. Object attributes, if any, are XML tag attributes. In
the following code, a PhysicalTable object has "NE Sales" in its Name= attribute:

<PhysicalTable Name="NE Sales"/>

METADATA Procedure � Results: METADATA Procedure 89

A Metadata Association Is an XML Element

Metadata associations are XML elements, which are nested within the primary
object’s XML element. In the following code, a PhysicalTable object has a Columns
association to a Column object:

<PhysicalTable>
<Columns>
<Column/>

<Columns>
</PhysicalTable>

Empty XML elements (that is, XML elements with no content between start and end
tags) can be expressed in XML shorthand as a singleton tag, like this: <Column/>.

See Also

Forming proper XML input can be a challenge. Use the following resources:

� See “Examples: METADATA Procedure” on page 90 and “Example: Creating a
Report with the METADATA Procedure and the XML Engine” on page 9.

� SAS Open Metadata Interface: Reference provides the following information:

� which methods to use for common tasks

� the DoRequest method and other methods in the IOMI class

� the Status method in the IServer class

� SAS Metadata Model: Reference shows the relationships among objects,
associations, and attributes that you specify in XML tags.

Results: METADATA Procedure

The METADATA procedure produces output in the SAS log or in an XML file. If you
do not specify the OUT= argument, the output is written to the SAS log. In most cases,
the output XML string is identical to the input XML string, with the addition of the
requested values within the XML elements. If you specify the VERBOSE argument, the
input XML is written to the SAS log. For example output, see Example 7 on page 95.

If you process the output in a subsequent DATA step, and the processing updates an
INFILE buffer variable in place (for example, _infile_=tranwrd(_infile_,
’old’, ’new’), the resulting XML string might be truncated at 80 characters. To
avoid truncation, create a temporary variable instead of the _INFILE_ buffer variable.
Set the length of the temporary variable (for example, with a LENGTH statement
within the DATA step).

To send the output to an XML file, you must first submit a FILENAME statement to
assign a fileref to the pathname. The file can be temporary or permanent.

To use the output XML file (for example, to run reports), submit an XML LIBNAME
statement that assigns an XML map. The XML LIBNAME statement imports the XML
file to a SAS data set. Like the output XML file, this data set can be temporary or
permanent. For more information, see “Example: Creating a Report with the
METADATA Procedure and the XML Engine” on page 9. For more information about
the XML engine and XML maps, see the SAS XML LIBNAME Engine: User’s Guide.

90 Examples: METADATA Procedure � Chapter 11

Examples: METADATA Procedure

Example 1: Change a Repository’s State
Procedure features:

IN= argument

A repository’s state is computed from both the repository’s registered access mode
and the metadata server’s state. To change the repository’s state, submit the
UpdateMetadata method with PROC METADATA. The example code re-registers the
repository with a different access mode, causing the repository’s state to be recomputed.
To properly execute this code, the repository manager must be in a read-write state.
For example, if the metadata server is paused offline, the repository manager will be
offline and cannot be updated with this code.

The value of the Access= attribute can be any of the following integers:

Access= Attribute Computed Repository State

0 online

1 readonly

2 admin

4 offline

Program

Set the Access= attribute for the repository. This example results in full access for the
repository.

proc metadata
in="<UpdateMetadata>

<Metadata>
<RepositoryBase id=’A0000001.A58LN5R2’ Access=’0’/>
</Metadata>
<NS>repos</NS>
<Flags>268435456</Flags>
</UpdateMetadata>";

run;

Example 2: Simple Request for Server Status
Procedure features:

METADATA Procedure � Program 91

IN= argument

This PROC METADATA example queries the metadata server for its status
information. The procedure uses the Status method in the IServer class in the SAS
Open Metadata Interface. You can also submit the STATUS action with PROC
METAOPERATE.

Program

Submit the Status method. Always use the <Metadata> element to represent the
inMetadata= or inMeta= parameter of a method.

proc metadata
in=’<Status>

<Metadata>
</Metadata>

</Status>’;
run;

SAS Log

NOTE: Response XML:

<Status><Metadata><ModelVersion>8.01/<ModelVersion>
<PlatformVersion>9.2.0.0</PlatformVersion>
<ServerState>ONLINE</ServerState><PauseComment/></Metadata></Status>

Example 3: Filerefs with the IN= and OUT= Arguments

Procedure features:
Connection arguments
IN= argument
OUT= argument

This example shows how filerefs are used with the IN= and OUT= arguments.

Program

Create filerefs. These filerefs specify pathnames to XML files that are stored on a C: drive. If
you specify the OUT= argument in the procedure, you must first submit a FILENAME
statement, because the OUT= value accepts a fileref only, not a pathname. Record length is
specified by the LRECL= argument.

filename myinput "c:\myxml\query\weeklyquery.xml" lrecl=256;
filename myoutput "c:\myxml\results\weeklyresults.xml" lrecl=256;

92 Example 4: Fileref to a Temporary File with the IN= Argument � Chapter 11

Submit PROC METADATA. The code specifies metadata server connection arguments, so the
defaults are not used. REPOS= is an alias for REPOSITORY=. The procedure submits the
contents of weeklyquery.xml (the fileref MYINPUT) to the metadata server, and stores the
server’s response in weeklyresults.xml (the fileref MYOUTPUT).

proc metadata
server="myserver.us.company.com"
port=8561
repos="My Repository"
userid="testid"
password="testpw"
in=myinput
out=myoutput;

run;

Example 4: Fileref to a Temporary File with the IN= Argument

Procedure features:
IN= argument

Other features:
DATA _NULL_ and DATALINES statements
DATA _NULL_ and PUT statements

You might want to test your code without creating a permanent input XML file. You
can use a DATA _NULL_ step to create a temporary input XML file.

Program

Create filerefs. The input fileref is temporary.

filename myinput temp lrecl=256;
filename myoutput "c:\myxml\results\weeklyresults.xml" lrecl=256;

Submit the DATALINES statement to create a temporary file. Later in the example, the
temporary input XML file is called by the procedure’s IN= argument.

data _null_;
file myinput;
input;
put _infile_ ’ ’;
datalines;

<GetMetadataObjects>
<Reposid>$METAREPOSITORY</Reposid>
<Type>Column</Type>
<Objects/>
<Ns>SAS</Ns>
<Flags>1</Flags>
<Options/>

</GetMetadataObjects>
;;

METADATA Procedure � Program 93

run;
proc metadata

in=myinput
out=myoutput;

run;

The following code performs the same task with PUT statements:

Alternatively, submit PUT statements to create a temporary file. Each PUT statement is
one line in the temporary input XML file. This code references the same filerefs as the previous
code, and produces the same output.

data _null_;
file myinput;
put "<GetMetadataObjects";
put " <Reposid>$METAREPOSITORY</Reposid>";
put " <Type>Column</Type>";
put " <Objects/>";
put " <Ns>SAS</Ns>";
put " <Flags>1</Flags>";
put " <Options/>";
put "</GetMetadataObjects>";

run;
proc metadata

in=myinput
out=myoutput;

run;

Example 5: HEADER= Argument

Procedure features:
HEADER= argument

This example shows how the HEADER=SIMPLE and HEADER=FULL arguments
are used.

Program

Insert a header at the top of the output XML. This code inserts the static header <?xml
version="1.0" ?> in the output XML file that is identified by the fileref MYOUTPUT.

filename myoutput "u:\out.xml";
proc metadata

header=simple
out=myoutput
in="<GetTypes>

<Types/>
<Ns>SAS</Ns>
<Flags/>

94 Example 6: VERBOSE Argument � Chapter 11

<Options/>
</GetTypes>";

run;

Insert a header at the top of the output XML. This code inserts the header <?xml
version="1.0" encoding="ebcdic1047"?> in the output XML file that is identified by the fileref
MYOUTPUT. ENCODING= EBCDIC1047 in the FILENAME statement indicates the encoding
for Western EBCDIC. For a list of encoding values, see the SAS National Language Support
(NLS): Reference Guide.

filename myoutput "u:\out.xml" encoding=ebcdic1047;
proc metadata

header=full
out=myoutput
in="<GetTypes>

<Types/>
<Ns>SAS</Ns>
<Flags/>
<Options/>
</GetTypes>";

run;

Example 6: VERBOSE Argument

Procedure features:
VERBOSE argument

IN= argument

Program

Issue PROC METADATA with VERBOSE. In this example, PROC METADATA issues a
GetMetadataObjects method to list all of the objects of type PhysicalTable that are defined in
the active repository. The active repository identifier is substituted where $METAREPOSITORY
appears in the XML string.

proc metadata
in="<GetMetadataObjects>

<Reposid>$METAREPOSITORY</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<Ns>SAS</Ns>
<Flags/>
<Options/>
</GetMetadataObjects>"

verbose;
run;

METADATA Procedure � Program 95

SAS Log
The VERBOSE argument returns the preprocessed input XML, which includes the

repository identifier referenced by $METAREPOSITORY. The XML output shows two
objects: a table that is named INVENTORY, and another table that is named
LOCATIONS.

NOTE: Input XML:

<GetMetadataObjects> <Reposid>A0000001.A5K2EL3N</Reposid>
<Type>PhysicalTable</Type> <Objects/> <Ns>SAS</Ns> <Flags/>
<Options/> </GetMetadataObjects>

NOTE: Response XML:

<GetMetadataObjects><Reposid>A0000001.A5K2EL3N</Reposid><Type>PhysicalTable</Type>
<Objects><PhysicalTable Id="A58LNR2.AR000001" Name="INVENTORY"><PhysicalTable
Id="A58LNR2.AR0000RT" Name="LOCATIONS"></Objects><Ns>SAS</Ns><Flags/><Options/>
</GetMetadataObjects>

Example 7: Request the Metadata for One Object

Procedure features:
IN= argument

Other features:
<Flags> element

Program

Request all properties of a specific table. This code submits a GetMetadata method for a
table whose object identifier is A58LN5R2.AR000001. The <Flags> value 1 represents the
OMI_ALL flag. For more information about flags, see SAS Open Metadata Interface:
Reference.

proc metadata
in=’<GetMetadata>

<Metadata>
<PhysicalTable Id="A58LN5R2.AR000001"/>

</Metadata>
<Ns>SAS</Ns>
<Flags>1</Flags>
<Options/>
</GetMetadata>’;

run;

96 SAS Log � Chapter 11

SAS Log

NOTE: Response XML:

<GetMetadata><Metadata><PhysicalTable Id="A58LN5R2.AR000001" ChangeState=""
DBMSType="" Desc="" IsCompressed="0" IsDBMSView="0" IsEncrypted="0" LockedBy=""
MemberType="DATA" MetadataCreated="17Oct2006:20:54:16"
MetadataUpdated="17Oct2006:20:54:17" Name="INVENTORY" NumRows="-1" PublicType=""
SASTableName="INVENTORY" TableName="INVENTORY" UsageVersion="0"><AccessControls/>
<Aggregations/><AnalyticTables/><AssociatedXMLMap/><Changes/><Columns>
<Column Id="A58LN5R2.AS000001" Name="Product" Desc=""/><Column Id="A58LN5R2.AS000002"
Name="Test1" Desc=""/><Column Id="A58LN5R2.AS000003" Name="Test2" Desc=""/>
<Column Id="A58LN5R2.AS000004" Name="Final" Desc=""/></Columns><CustomAssociations/>
<Documents/><Extensions/><ExternalIdentities/><ForeignKeys/><Groups/><Implementors/>
<Indexes/><Keywords/><LocalizedAttributes/><ModelResults/><Notes/>
<PrimaryPropertyGroup/><Prompts/><Properties/><PropertySets/><ReachThruCubes/>
<ReferencedObjects/><ResponsibleParties/><Roles/><SASPasswords/>
<SourceClassifierMaps/><SourceTransformations/><SpecSourceTransformations/>
<SpecTargetTransformations/><TableCollections/><TablePackage>
<SASLibraryId="A58LN5R2.AP000001" Name="blue" Desc="This is in the c:/blue directory
and its SAS libname is MYFILES"/></TablePackage><TargetClassifierMaps/>
<TargetTransformations/><Timestamps/><TrainedModelResults/><Trees/>
<TSObjectNamespace/><UniqueKeys/><UsedByPrototypes/><UsingPrototype/><Variables/>
<XPaths/></PhysicalTable></Metadata><Ns>SAS</Ns><Flags>1</Flags><Options/>
</GetMetadata>

Example 8: Request the Metadata for One Type of Object
Procedure features:

IN= argument
Other features:

<XMLSelect> element

Program

Submit the GetMetadataObjects method. The <XMLSelect> element searches for
InformationMap, which is a specific TransformRole of a Transformation object. The metadata
server returns metadata for all of the SAS Information Maps that are registered in the specified
repository. For details about information maps, see the Base SAS Guide to Information
Maps. For more information about using the <XMLSelect> element, see SAS Open Metadata
Interface: Reference.

filename myinput temp lrecl=256;
filename myoutput "C:\results.xml" lrecl=256;

data _null_;
file myinput;
input;
put _infile_ ’ ’;
datalines;

<GetMetadataObjects>
<Reposid>A0000001.A57DQR88</Reposid>
<Type>Transformation</Type>
<Objects/>
<NS>SAS</NS>

METADATA Procedure � Program 97

<Flags>401</Flags>
<Options>
<XMLSelect search="Transformation[@TransformRole=’InformationMap’]"/>
</Options>
</GetMetadataObjects>
;;
run;

proc metadata
in=myinput
out=myoutput;

run;

98

99

C H A P T E R

12
METALIB Procedure

Overview: METALIB Procedure 99
Syntax: METALIB Procedure 100

PROC METALIB Statement 101

OMR Statement 101

EXCLUDE or SELECT Statement 104

FOLDER or FOLDERID Statement 105
IMPACT_LIMIT Statement 106

NOEXEC Statement 106

PREFIX Statement 107

REPORT Statement 107

UPDATE_RULE Statement 108

Concepts: METALIB Procedure 108
How PROC METALIB Works 108

What Metadata Is Updated? 109

Results: METALIB Procedure with the REPORT Statement 109

Introduction 109

Output Delivery System (ODS) Reports 110
Details in the Report 110

Examples: METALIB Procedure 111

Example 1: Synchronizing Metadata with the Data Source 111

Example 2: Selecting Tables for Processing 112

Example 3: Generating an Impact Analysis 113
Example 4: Adding a Prefix to New Metadata Names 114

Overview: METALIB Procedure

The METALIB procedure supports SAS data sets (data files and data views), DBMS
data, and SAS Information Maps. The data source or information map is referred to as
a table in this documentation and the procedure’s output.

When you run PROC METALIB, you specify a SAS library that is already defined in
the SAS Metadata Server. A SAS library is defined in the metadata by a SASLibrary
object. A table in a SAS library is defined in the metadata by several objects that are
collectively called a table definition. All of the table definitions that are associated with
a SASLibrary object are tracked in an association list.

The METALIB procedure updates the metadata in the metadata server to match the
tables in a library. By default, the procedure performs the following tasks:

� creates metadata for any table that does not have metadata

� updates metadata about all of the tables’ columns, indexes, unique keys, foreign
keys, and key associations

100 Syntax: METALIB Procedure � Chapter 12

With optional statements, PROC METALIB can perform the following additional
tasks:

� select or exclude specific tables from processing
� specify where new metadata is stored in SAS folders
� limit the update of table definitions that would affect Job or Transformation objects
� add a prefix to the name of all new metadata objects
� generate a report of changes that the procedure made to metadata
� generate a report of needed metadata changes without making the changes
� in the generated report, include an impact analysis for Job and Transformation

objects
� in the generated report, include a list of tables that match the metadata
� suppress the metadata add action, the metadata update action, or both
� delete metadata that is obsolete or duplicated

For more information, see “How PROC METALIB Works” on page 108. For details
about information maps, see Base SAS Guide to Information Maps.

Syntax: METALIB Procedure
Requirement: The metadata server must be running. The SAS library must already be
defined in the metadata by using a product such as SAS Management Console.
Requirement: If the data source is ADABAS, you must set the META_ADABAS
environment variable to 1.

PROC METALIB;
OMR <=> (LIBID = <">identifier<"> | LIBRARY = <">name<"> | LIBRARY = "/

folder-pathname/name" | LIBURI = "URI-format"
<server-connection-arguments>);
<EXCLUDE <=> (table-specification <table-specification-n>);>
| <SELECT (table-specification <READ=read-password> <table-specification-n

<READ=read-password-n>>);>
<FOLDER <=> "/pathname";> | <FOLDERID <=> "identifier.identifier";>
<IMPACT_LIMIT = n;>
<NOEXEC;>
<PREFIX <=> <">text<">;>
<REPORT <<=> (report-arguments)>;>
<UPDATE_RULE <=> (<DELETE> <NOADD> <NODELDUP> <NOUPDATE>);>

Task Statement

Update metadata in the metadata server to match the tables
in a library

“PROC METALIB Statement” on
page 101

Specify the data source and connection parameters for the
SAS Metadata Server

“OMR Statement” on page 101

Exclude or select a table, or a list of tables, for processing “EXCLUDE or SELECT
Statement” on page 104

METALIB Procedure � OMR Statement 101

Task Statement

Specify where new metadata is stored in SAS folders “FOLDER or FOLDERID
Statement” on page 105

Specify the maximum number of Job or Transformation
objects that can be affected by updates to table definitions

“IMPACT_LIMIT Statement” on
page 106

Suppress the metadata changes from being made “NOEXEC Statement” on page 106

Specify a text string to add to the beginning of all new
metadata object names

“PREFIX Statement” on page 107

Create a report that summarizes metadata changes “REPORT Statement” on page 107

Override default update behavior “UPDATE_RULE Statement” on
page 108

PROC METALIB Statement

PROC METALIB;

Task Statement

Update metadata to match the data source PROC METALIB

OMR Statement

Specifies the data source and connection parameters for the SAS Metadata Server.

OMR <=> (LIBID=<">identifier<"> | LIBRARY=<">name<"> | LIBRARY="/
folder-pathname/name" | LIBURI="URI-format"

<server-connection-arguments>);

Required Argument

LIBID=<">identifier<"> | LIBRARY=<">name<"> | LIBRARY="/folder-pathname/
name" | LIBURI="URI-format"

specifies a SASLibrary object, which defines a SAS library. This SAS library contains
the tables whose metadata is updated.

102 OMR Statement � Chapter 12

Restriction: In SAS Management Console, avoid the Pre-assigned Library
template. When you pre-assign a library, choose the resource template that is
specific to the type of data source library you are creating, and select the This
library is pre-assigned check box. The Pre-assigned Library template is
intended for certain system libraries only, and it will not work for other libraries.
In addition, for PROC METALIB, you must submit the library pre-assignment in
the current SAS session. You can store the LIBNAME statement in an autoexec
file, or you can submit the LIBNAME statement in your SAS session before you
submit the procedure.

LIBID=<">identifier<">
specifies the 8-character metadata identifier of the SASLibrary object that
represents the library. The 8-character identifier is the second half of the
17-character identifier. For more information, see Chapter 2, “Metadata Object
Identifiers and URIs,” on page 5.

LIBRARY=<">name<">
specifies the value in the SASLibrary object’s Name= attribute. If you have more
than one library with the same name, but they are stored in different SAS folders,
then you must use the folder-pathname syntax.

LIBRARY="/folder-pathname/name"
specifies the folder pathname and the value in the SASLibrary object’s Name=
attribute. The pathname is the object’s location in a SAS folder. The pathname
begins with a forward slash. An example is library="/Users/Dmitri/My
Folder/test/mylib". For more information about how PROC METALIB uses
folders, see “FOLDER or FOLDERID Statement” on page 105.

LIBURI="URI-format"
specifies a URI, which is a standard from SAS Open Metadata Architecture. For
more information, see Chapter 2, “Metadata Object Identifiers and URIs,” on page
5. The following URI formats are supported:

LIBURI="identifier.identifier"
specifies the full 17-character metadata identifier, which references both the
repository and the object. This syntax is equivalent to specifying both LIBID=
and REPID=. An example is liburi="A58LN5R2.A9000001".

LIBURI="SASLibrary/identifier.identifier"
specifies the SASLibrary object type, followed by the full 17-character metadata
identifier. This syntax is equivalent to specifying both LIBID= and REPID=. An
example is liburi="SASLibrary/A58LN5R2.A9000001".

LIBURI="SASLibrary?@attribute=’value’"
specifies the SASLibrary object type, followed by a search string. Examples are
liburi="SASLibrary?@libref=’mylib’" and liburi="
SASLibrary?@engine=’base’".

Requirement: You must enclose the LIBURI= value in quotation marks.
Note: SAS Data Integration Studio can process Work tables that exist

temporarily in the Work library. The metadata type is WorkTable. Usually, Work
tables are not assigned to a library and have no library metadata, but they do have
table and column metadata. A Work table that results from a generated
transformation can be dynamic in nature. In other words, its structure might be
modified by the transformation. PROC METALIB can be used to update the
metadata to match the Work table.

If there is no library assignment, submit a blank library specification and identify
the Work table with the SELECT statement. Here is an example with a blank
library specification:

METALIB Procedure � OMR Statement 103

proc metalib;
omr (libid="" repid="A5O7HLNB");
select ("A5O7HLNB.A9000001");

run;

�

Server Connection Arguments
The server connection arguments establish communication with the metadata server.

If you omit these arguments, then the values of the system options are used, or the
values can be obtained interactively. For more information, see “Connection Options” on
page 24.

PASSWORD=<">password<">
is the password for the authorized user ID on the metadata server. If you do not
specify PASSWORD=, the value of the METAPASS= system option is used; for more
information, see “METAPASS= System Option” on page 33. The maximum length is
256 characters.
Alias: METAPASS=

PW=

PORT="number"
is the TCP port that the metadata server listens to for connections. This port number
was used to start the metadata server. If you do not specify PORT=, the value of the
METAPORT= system option is used; for more information, see “METAPORT= System
Option” on page 34. The default for the METAPORT= system option is 8561. The
range is 1–65535.
Alias: METAPORT=
Requirement: The value must be enclosed in quotation marks.

PROTOCOL=BRIDGE
specifies the network protocol for connecting to the metadata server. If you do not
specify PROTOCOL=, the value of the METAPROTOCOL= system option is used; for
more information, see “METAPROTOCOL= System Option” on page 37. In this
release, the only supported value is BRIDGE, which specifies the SAS Bridge protocol.
Alias: METAPROTOCOL=
Requirement: Do not enclose the value in quotation marks.

REPID=<">identifier<"> | REPNAME=<">name<">
specifies the repository that contains the SASLibrary object. If you specify both
REPID= and REPNAME=, REPID= takes precedence over REPNAME=. If you do
not specify REPID= or REPNAME=, the value of the METAREPOSITORY= system
option is used; for more information, see “METAREPOSITORY= System Option” on
page 38. The default for the METAREPOSITORY= system option is Foundation.

REPID=<">identifier<">
specifies an 8-character identifier. This identifier is the first half of the
SASLibrary’s 17-character identifier, and is the second half of the repository’s
identifier. For more information, see Chapter 2, “Metadata Object Identifiers and
URIs,” on page 5.

REPNAME=<">name<">
specifies the value in the repository’s Name= attribute. The maximum length is
256 characters.
Alias: METAREPOSITORY=

104 EXCLUDE or SELECT Statement � Chapter 12

SERVER=<">host-name<">
is the host name or network IP address of the computer that hosts the metadata
server. The value localhost can be used if the SAS session is connecting to a server
on the same computer. If you do not specify SERVER=, the value of the
METASERVER= system option is used; for more information, see “METASERVER=
System Option” on page 39. The maximum length is 256 characters.
Alias: HOST=

IPADDR=
METASERVER=

USER=<">authorized-user-ID<">
is an authorized user ID on the metadata server. An authorized user ID has
ReadMetadata and WriteMetadata permission to the specified SASLibrary, and
WriteMemberMetadata permission to the SAS folders that are affected by the
update. SAS folders that can be affected by the update include the library’s folder
and the table’s folder, if the table is in a different folder from the library. For more
information, see SAS Intelligence Platform: Security Administration Guide. If you do
not specify USER=, the value of the METAUSER= system option is used; for more
information, see “METAUSER= System Option” on page 41. The maximum length is
256 characters.
Alias: ID=

METAUSER=
USERID=

EXCLUDE or SELECT Statement

Excludes or selects a table, or a list of tables, for processing.

Requirement: Use either EXCLUDE or SELECT, not both. Use one form of table
specification (that is, either table-name or table-identifier).

Interaction: When you select or exclude tables, be aware that the tables you select can
affect the associated objects that are updated. For example, both the primary key and
foreign key tables must be selected for foreign key metadata to be updated. The primary
key and foreign key tables must be in the same library and in the same repository.

EXCLUDE<=>(table-specification <table-specification-n>) |
SELECT<=>(table-specification <READ=read-password> <table-specification-n
<READ=read-password-n>>);

Arguments

table-specification

<">table-name<">
is the SAS name of a PhysicalTable that is referenced by the SASLibrary object. If
metadata already exists for the table, the table name is the value of the
SASTableName= attribute of the PhysicalTable object. Do not specify the value of
the Name= attribute, which is a user-defined name that can differ from the SAS
name.

METALIB Procedure � FOLDER or FOLDERID Statement 105

If any of the table names in the list contain special or mixed-case characters,
you must enclose each table name in quotation marks. If any of the table names
contain special or mixed-case characters, PROC METALIB converts all unquoted
table names to uppercase. In the following example, all of the values must be
enclosed in quotation marks, because the fourth value in the statement is mixed
case. If the first three values were not enclosed in quotation marks, they would be
uppercased as TAB1, TAB2, and TAB3.

select ("tab1" "tab2" "tab3" "Table4");

<">reposid.tableid<">
is the full 17-character metadata identifier of a PhysicalTable object. The identifier
is valid for SELECT but not for EXCLUDE. For more information, see Chapter 2,
“Metadata Object Identifiers and URIs,” on page 5. Quotation marks are optional.

Note: SAS Data Integration Studio can process Work tables that exist
temporarily in the Work library. See the note about a blank library specification at
“OMR Statement” on page 101. �

read-password
is the READ password, if any, that was previously assigned to the table. For
information about file protection, see SAS Language Reference: Dictionary. The
following example specifies a READ password for tab1:

select ("tab1" read=mypwd "tab2" "tab3" "Table4");

FOLDER or FOLDERID Statement

Specifies where new metadata is stored in SAS folders.

FOLDER <=> "/pathname" | FOLDERID <=> "identifier.identifier";

Arguments
When you specify FOLDER= or FOLDERID=, you add or update the table definition

in the specified SAS folder. The SASLibrary object remains in its original folder.
Column, ForeignKey, Index, KeyAssociation, and UniqueKey objects are added or
updated in the same folder as the specified PhysicalTable object.

If a table is defined in more than one folder, updating the table definition in all of the
folders is recommended, and you must submit a PROC METALIB step for each folder.
Using the SELECT= statement is recommended, to ensure that you update the correct
table. If the table is defined in more than one folder, then you will see multiple table
definitions in the Data Library Manager on the Plug-ins tab of SAS Management
Console. The multiple table definitions will have the same name but will be in different
SAS folder locations. Every table definition has a unique metadata identifier.

If you do not specify a folder or if the folder specification is not valid, and if table
definitions exist in more than one folder, PROC METALIB updates the first table
definition that is found for each table in the specified library. (If you submit SELECT=,
PROC METALIB updates the specified table in the specified library.) If you do not
specify a folder or if the folder specification is not valid, and if a table is new, PROC
METALIB adds the new table definition to the SASLibrary object’s folder.

FOLDER <=> "/pathname"

106 IMPACT_LIMIT Statement � Chapter 12

is a folder pathname in a SAS folder. The pathname begins with a forward slash.
Here is an example:

folder="/Users/MyUserID/My Folder/Test";

FOLDERID <=> "identifier.identifier"
is the full 17-character metadata identifier of the Tree object that represents the
folder. Using FOLDERID= is not recommended if you can use FOLDER=. The
FOLDER= syntax is preferable because it shows the location of the folder in SAS
Management Console.

IMPACT_LIMIT Statement

Specifies the maximum number of Job or Transformation objects that can be affected by updates
to table definitions.

See also: Example 3 on page 113

IMPACT_LIMIT=n;

Arguments

n
maximum number (an integer) of Job or Transformation objects that can be affected
by changes to a table. For each table that is analyzed, if the specified number is
exceeded, the table’s metadata is not added, updated, or deleted. You can specify
IMPACT_LIMIT with TYPE=DETAIL in the REPORT statement to generate an
impact analysis. The default is no impact limit and no impact analysis.

With this argument, the procedure identifies potential impact only. It does not
verify that a Job or Transformation object will be affected, only that it could be
affected.

The procedure identifies only the Job or Transformation objects that can be directly
affected by the changes. These objects can contain many other objects that could also
be affected by the changes, but those objects are not analyzed. If you would like to
perform a more thorough impact analysis, you can use SAS Data Integration Studio.

For more information about Job and Transformation objects, see the online Help in
SAS Data Integration Studio.

NOEXEC Statement

Suppress the metadata changes from being made.

NOEXEC;

If you specify NOEXEC and the REPORT statement, you can generate a report of
changes that your request would make to metadata, before you commit to making the

METALIB Procedure � REPORT Statement 107

changes. The SAS log contains warnings about any tables that have metadata but no
longer exist in the library.

PREFIX Statement

Specifies a text string to add to the beginning of all new metadata object names.

See also: Example 4 on page 114

PREFIX <=> <">text<">;

Argument

<">text<">
is the text string to add. If you do not enclose the text string in quotation marks, the
text string is converted to uppercase. If the text string includes special or mixed-case
characters, you must enclose the text string in quotation marks. The text string is
added to the beginning of the value of the Name= attribute. This modification does
not affect PROC METALIB processing, because the procedure uses the value of the
SASTableName= attribute to compare the metadata to the tables in the data source.

REPORT Statement

Creates a report that summarizes metadata changes.

See also: “Results: METALIB Procedure with the REPORT Statement” on page 109

REPORT <<=> (report-arguments)>;

Arguments

TYPE=DETAIL | SUMMARY

DETAIL
specifies that the report includes all of the information generated by
TYPE=SUMMARY, and a list of Job and Transformation objects that are directly
related to the table that is being processed. To get the list of Job and
Transformation objects (also known as an impact analysis), you must specify
IMPACT_LIMIT (see “IMPACT_LIMIT Statement” on page 106) . If you do not
specify IMPACT_LIMIT, the report defaults to the TYPE=SUMMARY report.

SUMMARY
specifies that the report includes information about any metadata changes that
were (or would be) made to the table that is being processed. This is the default.

108 UPDATE_RULE Statement � Chapter 12

MATCHING
specifies that the report includes a list of tables whose metadata matches their data
source (that is, they require no metadata changes). By default, the report does not
include the list of these matching tables, but it does include the number of matching
tables.

UPDATE_RULE Statement

Overrides one or both of the default add and update actions, and specifies the delete actions.

Requirement: An error is returned if you specify both NOADD and NOUPDATE and omit
DELETE. The procedure must have an action to perform if both of the default actions
are suppressed.

UPDATE_RULE <=> (<DELETE> <NOADD> <NODELDUP> <NOUPDATE>);

Arguments

DELETE
specifies to delete a table definition in the repository if a corresponding table is not
found in the data source. If duplicate table definitions exist, the additional table
definitions are deleted unless NODELDUP is specified.

NOADD
specifies not to add a table definition to the repository for tables that have no
metadata.

NODELDUP
specifies not to delete duplicate table definitions in the repository. A duplicate table
definition has the same SASTableName= value as the table definition being
processed. Duplicate table definitions are deleted by default when DELETE is
specified. NODELDUP is valid only when DELETE is specified.

NOUPDATE
specifies not to update existing table definitions in the repository to match the
corresponding tables in the data source.

Concepts: METALIB Procedure

How PROC METALIB Works
The procedure examines the data source (the SAS library) that is referenced by the

SASLibrary object. Then the procedure examines the SAS table names in the data
source and compares them to the values of the SASTableName= attributes in the
metadata. For each SAS table name in the data source, the procedure checks the
repository association list to see whether a matching table definition exists.

METALIB Procedure � Introduction 109

� If a matching table definition does not exist, one is created.

� If a matching table definition exists, it is updated to match the table in the data
source.

� If duplicate table definitions exist, only the first table definition is updated. The
additional table definitions are ignored by default. If you specify
UPDATE_RULE=(DELETE), the additional table definitions are deleted. If you
specify UPDATE_RULE=(DELETE NODELDUP), the additional table definitions
are not deleted.

� If a table definition exists that does not correspond to a table in the data source, it
is ignored by default. If you specify UPDATE_RULE=(DELETE), the table
definition is deleted.

� If a column name in a table definition matches the column name in the data
source but is in a different case (for example, lowercase instead of uppercase), then
the following change occurs in the table definition. If the data source is a SAS
table or view, the column name in metadata is updated to match the case of the
column name in the data source. If the data source is a DBMS, the column name
in metadata is deleted and added to match the case of the column name in the
data source. If the DBMS has column mappings in a SAS Data Integration Studio
job, you might have to recreate the column mappings.

For more information, see topics about managing table metadata in the SAS
Intelligence Platform: Administration Guide.

Note: The maximum length for index names that can be registered by PROC
METALIB is 256 characters. However, other components of SAS or the DBMS might
enforce a shorter length, causing the name to be truncated. �

What Metadata Is Updated?
The procedure updates all table definitions that are associated with the specified

SASLibrary object. The affected metadata objects include PhysicalTable, Column,
ForeignKey, Index, KeyAssociation, and UniqueKey. For more information about these
metadata objects, see their descriptions in SAS Metadata Model: Reference.

Results: METALIB Procedure with the REPORT Statement

Introduction
By default, regardless of whether you specify the REPORT statement, the METALIB

procedure writes a summary to the SAS log of changes that were made to the metadata.
Here is an example:

NOTE: A total of 10 tables were analyzed for library "mylib".
NOTE: Metadata for 2 tables was updated.
NOTE: Metadata for 0 tables was added.
NOTE: Metadata for 7 tables matched the data sources.
NOTE: 1 other tables were not processed due to error or UPDATE_RULE.

110 Output Delivery System (ODS) Reports � Chapter 12

If you specify the REPORT statement, a detailed report is written to the SAS Output
window. The report provides the same summary as the SAS log, and additionally lists
the changes to tables and their Column, ForeignKey, Index, KeyAssociation, and
UniqueKey objects.

Some procedure arguments add information to the report:
� If you specify UPDATE_RULE=(DELETE), the report lists the number of table

definitions that were deleted from metadata.
� If you specify the SELECT or EXCLUDE statement, the report lists the number of

tables that were not found in either source (data source or metadata).
� If you specify MATCHING in the REPORT statement, the report lists the tables

that match the metadata.
� If you specify TYPE=DETAIL in the REPORT statement, and you specify the

IMPACT_LIMIT statement, the report lists the number of tables that were not
processed due to large impact, and a list of Job and Transformation objects that
are directly related to the table that is being processed.

If you specify the NOEXEC statement, the procedure does not make any of the
changes to the metadata. The log and output summarize the metadata changes that
would have been applied if NOEXEC had not been specified.

For information about REPORT statement syntax, see “REPORT Statement” on page
107.

Output Delivery System (ODS) Reports
The default report destination is a SAS output listing. In addition, you can choose to

format the report with an Output Delivery System (ODS) destination, such as HTML or
RTF. ODS reports are easier to read than the SAS output listing. To omit the SAS
output listing, submit the ODS LISTING CLOSE statement.

For example code that produces ODS output, see “Examples: METALIB Procedure”
on page 111.

Details in the Report
The METALIB procedure updates the attribute values of the table definition and the

attribute values of associated objects to match the data in the specified SAS library, and
then produces a report. Most of the report is self-explanatory. Here is more information
about two of the columns in the report:

SAS Name
is the SAS name of the item described by the metadata.

� For an index, this value is the IndexName= attribute.

� For a column, this value is the SASColumnName= attribute.
� For a non-primary unique key, this value is a two-part identifier in the form

SASTableName.data-source-key-name.
� For a primary unique key, this value is a two-part identifier in the form

SASTableName.Primary.
� For a foreign key, this value is a two-part identifier in the form

primary-table-SASTableName.foreign-table-SASTableName.

Change
is a system-generated description of the change that was made. The description
can be a single word, such as “Added” or “Deleted,” or an attribute name (which

METALIB Procedure � Program 111

indicates that the attribute’s value was modified). It can also be a “Column” or a
“Column Order” message, followed by the name of the column that was affected by
the change. PROC METALIB changes a table’s Columns association to make the
metadata column order match the data source column order. Affected columns are
listed separately in the report. The column order in the report indicates the new
metadata column order.

Examples: METALIB Procedure

Example 1: Synchronizing Metadata with the Data Source

Procedure features:
OMR statement with LIBID value

Default connection properties

UPDATE_RULE statement with DELETE argument

REPORT statement with MATCHING argument

Other features:
ODS

This example adds, updates, and deletes metadata to match the physical tables in a
SAS library.

Program

Submit an ODS HTML statement. ODS sends the output to an HTML file. In addition, the
ODS LISTING CLOSE statement suppresses the default listing destination.

ods listing close;
ods html body="c:\test\updatereport.html";

proc metalib;

Specify the data source and connect to the metadata server. Specify a SAS library that is
already defined in the metadata. Because this example does not specify connection arguments
for the metadata server, the procedure uses the values of the METAPASS, METAPORT,
METAREPOSITORY, METASERVER, and METAUSER system options.

omr (libid="A58LN5R2.AP000001");

Delete obsolete metadata. This example deletes any table definition that does not correspond
to a table in the SAS library. The default actions of add and update are also performed.

update_rule=(delete);

112 SAS Output: HTML � Chapter 12

Create a report. The MATCHING argument causes the report to include a list of tables whose
metadata matches the data source.

report(matching);
run;

Close the HTML destination. Reopen the listing destination.

ods html close;
ods listing;

SAS Output: HTML

Example 2: Selecting Tables for Processing

Procedure features:
SELECT statement

Program

This example adds or updates metadata for a specific table.

METALIB Procedure � Program 113

Specify a table name. The SELECT statement identifies a table definition that contains the
value MYTABLE in its SASTableName= attribute. Because the UPDATE_RULE statement is
omitted, the default is to update or add the specified metadata. Therefore, if a MYTABLE
definition does not exist, a new table definition is created.

proc metalib;
omr (liburi="SASLibrary?@name=’test’");
select (mytable);
report;

run;

Program
This example uses the SELECT statement, but specifies the table definition’s

metadata identifier instead of its name. This syntax is preferred, because metadata
identifiers are unique.

Specify a table ID. The first part of the two-part metadata identifier (A7892350) identifies the
repository that contains the table definition; the second part (B00265DX) identifies the table
definition in the repository.

proc metalib;
omr (liburi="SASLibrary?@name=’test’");

select (A7892350.B00265DX);
report;

run;

Example 3: Generating an Impact Analysis

Procedure features:
IMPACT_LIMIT statement
REPORT(TYPE=DETAIL) statement
NOEXEC statement

To generate an impact analysis, specify IMPACT_LIMIT and
REPORT(TYPE=DETAIL). Use the NOEXEC statement if you want to examine the
changes before you commit to making the changes. The generated impact analysis
shows how the data source differs from metadata, and how making those changes will
affect the Job and Transformation objects.

Program

Submit the procedure. The impact limit is set to zero, so any impact on Job or
Transformation objects results in a "limit exceeded" entry in the output.

ods listing close;
ods html body="C:\test\update.html";
proc metalib;

omr (library="mydifiles");
update_rule(delete);

114 SAS Output: HTML � Chapter 12

report (type=detail);
impact_limit=0;
noexec;

run;
ods html close;
ods listing;

SAS Output: HTML

Example 4: Adding a Prefix to New Metadata Names

Procedure features:
PREFIX= statement

To add a prefix to the names of new metadata objects during an update, specify the
PREFIX statement.

Program

In this example, the user runs an update on November 30 and wants to add that
date to any new metadata. A new table has been added to the SAS library. In the data
source, the table is named Q3Sales. In the metadata, the table definition is named
November30Q3Sales.

METALIB Procedure � SAS Output: Listing 115

Submit the PREFIX statement with PROC METALIB. If any new metadata objects are
defined, the metadata name (the Name= attribute) begins with the specified prefix.

proc metalib;
omr (library="mylibrary");
prefix="November30";
report;

run;

SAS Output: Listing

Metadata Name Metadata ID SAS Name

November30Q3sales A58LN5R2.AR00066A Q3sales

116

117

C H A P T E R

13
METAOPERATE Procedure

Overview: METAOPERATE Procedure 117
Syntax: METAOPERATE Procedure 117

PROC METAOPERATE Statement 118

Concepts: METAOPERATE Procedure 123

How PROC METAOPERATE Works 123

How PAUSE, REFRESH, and RESUME Affect Repositories 123
Examples: METAOPERATE Procedure 124

Example 1: Submitting ACTION=STATUS 124

Example 2: Submitting ACTION=PAUSE with a Pause Comment 125

Example 3: Submitting ACTION=REFRESH with ARM Logging 126

Example 4: Submitting ACTION=REFRESH with Journaling 126

Example 5: Submitting ACTION=REFRESH to Pause and Resume the Metadata Server 126
Example 6: Submitting ACTION=RESUME 127

Example 7: Submitting ACTION=EMPTY 127

Overview: METAOPERATE Procedure
The METAOPERATE procedure enables you to perform administrative tasks in batch

mode that are associated with the SAS Metadata Server. PROC METAOPERATE
performs the following tasks:

� delete, empty, or unregister a SAS Metadata Repository
� pause the metadata server to temporarily change it to a more restrictive state, and

then resume it to the online state
� refresh the metadata server to:

� recover memory
� reload authorization inheritance rules
� enable or disable Application Response Measurement (ARM) logging
� specify a new filename for metadata server journaling

� stop or get the status of the metadata server

The METADATA procedure and the metadata DATA step functions perform some of
the same tasks as PROC METAOPERATE. For more information, see “Comparison of
the METADATA Procedure and the METAOPERATE Procedure” on page 81.

Syntax: METAOPERATE Procedure

118 PROC METAOPERATE Statement � Chapter 13

PROC METAOPERATE <server-connection-arguments>

ACTION = PAUSE | REFRESH | RESUME | DELETE | EMPTY | UNREGISTER
| STATUS | STOP

<NOAUTOPAUSE>

<OPTIONS = "XML–string">

<OUT = SAS-data-set>;

Task Statement

Perform administrative tasks associated with the metadata
server

“PROC METAOPERATE
Statement” on page 118

PROC METAOPERATE Statement

PROC METAOPERATE <server-connection-arguments>
ACTION = PAUSE | REFRESH | RESUME | DELETE | EMPTY | UNREGISTER

| STATUS | STOP

<NOAUTOPAUSE>

<OPTIONS = "XML–string">

<OUT = SAS-data-set>;

Task Argument

Connect to the metadata server server-connection-arguments

Specify an action for the metadata server ACTION=

Omit the automatic pause and resume when you pass an
action to the metadata server

NOAUTOPAUSE

Submit an XML string to the metadata server OPTIONS=

Create an output data set OUT=

Server Connection Arguments
The server connection arguments establish communication with the metadata server.

If you omit these arguments, then the values of the system options are used, or the
values can be obtained interactively. For more information, see “Connection Options” on
page 24.

PASSWORD="password"
is the password for the authenticated user ID on the metadata server. If you do not
specify PASSWORD=, the value of the METAPASS= system option is used; for more

METAOPERATE Procedure � PROC METAOPERATE Statement 119

information, see “METAPASS= System Option” on page 33. The maximum length is
512 characters.

Alias: METAPASS=
PW=

PORT=number
is the TCP port that the metadata server listens to for connections. This port number
was used to start the metadata server. If you do not specify PORT=, the value of the
METAPORT= system option is used; for more information, see “METAPORT= System
Option” on page 34. The default for the METAPORT= system option is 8561. The
range is 1–65535.

Alias: METAPORT=

Requirement: Do not enclose the value in quotation marks.

PROTOCOL=BRIDGE
is the network protocol for connecting to the metadata server. If you do not specify
PROTOCOL=, the value of the METAPROTOCOL= system option is used; for more
information, see “METAPROTOCOL= System Option” on page 37. In this release,
the only supported value is BRIDGE, which specifies the SAS Bridge protocol.

Alias: METAPROTOCOL=

Requirement: Do not enclose the value in quotation marks.

REPOSITORY="name"
is the name of an existing repository. This value is the repository’s Name=
parameter. The REPOSITORY= argument is required when the action is
UNREGISTER, DELETE, or EMPTY. For other actions, if you do not specify
REPOSITORY=, the value of the METAREPOSITORY= system option is used; for
more information, see “METAREPOSITORY= System Option” on page 38. The
default for the METAREPOSITORY= system option is Foundation. The maximum
length is 32,000 characters.

Alias: METAREPOSITORY=
REPOS=

SERVER="host-name"
is the host name or network IP address of the computer that hosts the metadata
server. The value localhost can be used if the SAS session is connecting to the
metadata server on the same computer. If you do not specify SERVER=, the value of
the METASERVER= system option is used; for more information, see
“METASERVER= System Option” on page 39. The maximum length is 256
characters.

Alias: HOST=
IPADDR=
METASERVER=

USER="authenticated-user-ID"
is an authenticated user ID on the metadata server. The metadata server supports
several authentication providers. For more information about controlling user access
to the metadata server, see the SAS Intelligence Platform: Security Administration
Guide. If you do not specify USER=, the value of the METAUSER= system option is
used; for more information, see “METAUSER= System Option” on page 41. The
maximum length is 256 characters.

Alias: ID=
METAUSER=
USERID=

120 PROC METAOPERATE Statement � Chapter 13

Action Arguments

ACTION=
specifies the action that you want to perform. ACTION is a required argument.
Requirement: You must have the appropriate SAS Administrator role on the

metadata server to execute all actions except STATUS. For more information, see
the SAS Intelligence Platform: System Administration Guide.

Tip: Specifying more than one XML element in a PROC METAOPERATE statement
might cause undesired results. Use more than one XML element only when
specified in the documentation.

Tip: If you use PROC METAOPERATE to delete, empty, or unregister a project
repository, you must first issue an UndoCheckoutMetadata method call with the
METADATA procedure to unlock any checked-out objects. Alternatively, you can
use SAS Management Console to delete, empty, or unregister a project repository.
SAS Management Console unlocks any checked-out objects before it performs the
action.

DELETE
removes the specified repository, and removes the repository’s registration from
the repository manager. To invoke this action, the user must have access privilege
to the repository, the repository must be registered in SAS Management Console
as online, and the metadata server cannot be paused offline. The NOAUTOPAUSE
argument is required.

EMPTY
removes the metadata records from the specified repository, but does not remove
the repository’s registration from the repository manager. To invoke this action,
the user must have access privilege to the repository, the repository must be
registered in SAS Management Console as online, and the metadata server cannot
be paused offline. The NOAUTOPAUSE argument is required. For more
information, see Example 7 on page 127.

PAUSE
limits the availability of the metadata server by setting the metadata server’s
state to admin or offline. Beginning in SAS 9.2, the PAUSE action affects the
metadata server, not an individual repository or the repository manager; for more
information, see “How PAUSE, REFRESH, and RESUME Affect Repositories” on
page 123.

Issue ACTION=PAUSE and use the OPTIONS= argument to specify a <Server
STATE=ADMIN/> or a <Server STATE=OFFLINE/> XML string. The OPTIONS=
argument, the <Server/> element, and the STATE= parameter are optional; the
default is to pause the metadata server to an offline state, which also sets the
repositories to an offline state.

The <PauseComment/> XML element is optional. It enables you to submit
free-form text (for example, details about the pause). For more information, see
Example 2 on page 125.

Here are some examples of situations that can require you to pause the
metadata server to an admin or offline state:

� to close repositories while you perform a system backup
� to troubleshoot system errors
� to install or upgrade software

REFRESH

METAOPERATE Procedure � PROC METAOPERATE Statement 121

affects the metadata server differently, depending on the XML string that you
specify in the OPTIONS= argument. Here are the choices:

� With the <Server/> XML element and no other XML elements specified, the
REFRESH action pauses and resumes (in a single step) the metadata server.
Do not specify the STATE= parameter. The REFRESH action recovers
memory on the metadata server and reloads authorization inheritance rules.
For more information, see Example 5 on page 126. After the refresh, all
repositories return to the same pause state they were in before the refresh.
For more information, see “How PAUSE, REFRESH, and RESUME Affect
Repositories” on page 123.

� With the <ARM/> XML element specified, the REFRESH action enables or
disables ARM logging and specifies a pathname for the ARM log. The
<Server/> XML element is required. For more information, see Example 3 on
page 126.

� With the <OMA/> XML element and the JOURNALPATH= parameter
specified, the REFRESH action specifies a new filename for metadata server
journaling. The <Server/> XML element is required. For more information,
see Example 4 on page 126.

RESUME
restores the paused metadata server to the online state. Beginning in SAS 9.2, the
RESUME action affects the metadata server, not an individual repository or the
repository manager. For more information, see “How PAUSE, REFRESH, and
RESUME Affect Repositories” on page 123 and Example 6 on page 127.

Any text that was specified in the <PauseComment/> XML element during the
PAUSE action is cleared.

STATUS
returns the metadata server’s SAS version or release number, host operating
environment, the user ID that started the metadata server, SAS Metadata Model
version number, and whether the metadata server is paused or running. For more
information, see Example 1 on page 124.

STOP
stops all client activity and terminates the metadata server. In complex
environments, the metadata server shutdown can take a few minutes. Therefore,
PROC METAOPERATE might finish executing before the metadata server finishes
its shutdown. Metadata in repositories is unavailable until the metadata server is
restarted. You cannot restart the metadata server with PROC METAOPERATE.

UNREGISTER
removes the repository’s registration from the repository manager, but does not
remove the metadata records from the repository, and does not remove the
repository from disk. To invoke this action, the user must have access privilege to
the repository, the repository must be registered in SAS Management Console as
online, and the metadata server cannot be paused offline. The NOAUTOPAUSE
argument is required.

NOAUTOPAUSE
omits the automatic pause and resume of the metadata server when PROC
METAOPERATE passes an action to the metadata server. NOAUTOPAUSE is
required for the DELETE, EMPTY, and UNREGISTER actions.

OPTIONS="XML-string"
specifies a quoted string that contains one or more XML elements. Some of the XML
elements specify additional parameters for the actions. The OPTIONS= argument is
required for some actions.

122 PROC METAOPERATE Statement � Chapter 13

Note: To ensure that the XML string is parsed correctly by the metadata server,
you must indicate that quotation marks within the XML element are characters. You
can nest single and double quotation marks, or double and double-double quotation
marks as follows:

options=’<ARM ARMSUBSYS="(ARM_OMA)" ARMLOC="myfileref"/>’
options="<ARM ARMSUBSYS=""(ARM_OMA)"" ARMLOC=""myfileref""/>"

�

The XML strings include the following:

<ARM parameter-name="parameter-value"/>
is one or more <ARM/> XML elements that specify system options to enable or
disable ARM logging. The <Server/> XML element is required. REFRESH is the
most appropriate action to specify the <ARM/> XML element, but the PAUSE and
RESUME actions can also specify it. If the metadata server is refreshed, or
stopped and started, the ARM parameters return to the values in the
configuration file. For more information, see Example 3 on page 126 and the SAS
Intelligence Platform: System Administration Guide, as well as the ARMSUBSYS=
and ARMLOC= system options in SAS Language Reference: Dictionary. An <ARM/
> element can include the following parameters:

ARMSUBSYS="(ARM_NONE | ARM_OMA)"
enables and disables ARM logging.

ARMLOC="fileref | filename"
specifies a location to which to write the ARM log. If ARM logging is already
enabled, specifying ARMLOC= writes the ARM log to a new location. Relative
and absolute pathnames are read as different locations.

<OMA JOURNALPATH="filename"/>
when submitted with the REFRESH action, stops writing journal entries to the
metadata server journal file in the current location, and resumes writing in a new
journal file in the specified physical location. The <Server/> XML element is
required. Journaling must be enabled on the metadata server before you submit
this parameter. If the metadata server is refreshed, or stopped and started, this
parameter returns to the value in the configuration file. For more information,
seeExample 4 on page 126 and the SAS Intelligence Platform: System
Administration Guide.

<PauseComment>text</PauseComment>
when submitted with the PAUSE action, enables you to submit free-form text (for
example, details about the pause). Quotation marks are optional around the text.
For more information, see Example 2 on page 125. When you submit the
RESUME action, you clear the text in <PauseComment>.

<Server STATE="ADMIN | OFFLINE"/>
specifies that the action applies to the metadata server. The <Server/> XML
element has the following uses:

� It is required for the REFRESH action, with no parameters. For more
information, see Example 5 on page 126.

� It is optional for the PAUSE action, and its STATE= parameter is optional.
With the PAUSE action, if you do not specify <Server/> XML element, or if
you specify <Server/> without a STATE= parameter, the default is to pause
the metadata server to an offline state, which also sets the repositories to an
offline state.

For the PAUSE action, STATE= has one of the following values:

ADMIN

METAOPERATE Procedure � How PAUSE, REFRESH, and RESUME Affect Repositories 123

allows only users with administrative status to read and write metadata on the
metadata server.

OFFLINE
disables all read and write access to the metadata server.

OUT=SAS-data-set
names the output data set. This argument is used with the STATUS action. Other
actions do not create output.

Concepts: METAOPERATE Procedure

How PROC METAOPERATE Works
The administrator of the metadata server can perform two kinds of maintenance

with PROC METAOPERATE:
� control the metadata server by calling methods in the IServer class of SAS Open

Metadata Architecture: PAUSE, REFRESH, RESUME, STATUS, STOP
� control a repository by calling methods in the IOMI class of SAS Open Metadata

Architecture: DELETE, EMPTY, UNREGISTER

How PAUSE, REFRESH, and RESUME Affect Repositories
Beginning in SAS 9.2, the PAUSE and RESUME actions affect the metadata server,

not an individual repository or the repository manager. The REFRESH action is
equivalent to a PAUSE action followed by a RESUME action.

The pause state is a property of each repository. However, a repository’s pause state
is not set directly. It is computed from both the metadata server state and the
repository’s registered access mode.

� You can set the metadata server’s state with the PAUSE and RESUME actions in
PROC METAOPERATE or with SAS Management Console.

� You cannot set a repository’s registered access mode with PROC METAOPERATE.
To do so, it is recommended that you use SAS Management Console. Alternatively,
you can change the access mode by issuing an UpdateMetadata method call with
PROC METADATA. You can determine a repository’s registered access mode by
issuing a GetRepositories method call with PROC METADATA. For more
information, see Chapter 11, “METADATA Procedure,” on page 83.

� However, notice in the grid below that when you use PROC METAOPERATE to
pause the metadata server to an OFFLINE state (which is the default), the
repositories are set to an OFFLINE state, regardless of the repositories’ registered
access mode. For more information about the tasks that require PAUSE,
REFRESH, or RESUME actions, see SAS Intelligence Platform: System
Administration Guide, especially the large section about backing up and restoring.

A repository’s computed pause state is one of the following:

admin
allows read and write access for users with administrative status only.

admin(readonly)
allows read-only access for users with administrative status only.

124 Examples: METAOPERATE Procedure � Chapter 13

offline
disables all read and write access, unloads the repository from memory, and closes
the physical files.

online
allows normal access to the repository.

readonly
allows read-only access for any user.

The following grid shows how a repository’s pause state is computed from the
repository’s access mode (the rows) and the metadata server’s state (the columns). For
example, a repository with a registered OMS_READONLY access mode and an ADMIN
server state has an admin(readonly) pause state.

Online Server State Admin Server State Offline Server State

OMS_FULL Access
Mode

online admin offline

OMS_READONLY
Access Mode

readonly admin(readonly) offline

OMS_ADMIN Access
Mode

admin admin offline

OMS_OFFLINE Access
Mode

offline offline offline

Examples: METAOPERATE Procedure

Example 1: Submitting ACTION=STATUS

Procedure features:
Connection arguments
ACTION=STATUS argument

These examples request the status of the metadata server and show the arguments
that connect to the metadata server.

Program

Specify connection arguments and query the metadata server for its status. This
example specifies all connection arguments for the metadata server.

proc metaoperate
server="a123.us.company.com"
port=8561

METAOPERATE Procedure � Program 125

userid="myuserid"
password="mypassword"
action=status;

run;

Specify connection arguments and query the metadata server for its status.
LOCALHOST specifies the metadata server that is running on the same host as the SAS session.

proc metaoperate
server="localhost"
port=8561
userid="myuserid"
password="mypassword"
action=status;

run;

SAS Log

NOTE: Server a123.us.company.com SAS Version is 9.02.02B0P012308.
NOTE: Server a123.us.company.com SAS Long Version is 9.02.02B0P01232008.
NOTE: Server a123.us.company.com Operating System is XP_PRO.
NOTE: Server a123.us.company.com Operating System Family is WIN
NOTE: Server a123.us.company.com Operating System Version is Service Pack 2.
NOTE: Server a123.us.company.com Client is janedoe.
NOTE: Server a123.us.company.com Metadata Model is Version 11.02.
NOTE: Server a123.us.company.com is RUNNING on 11Aug08:15:54:15.

Example 2: Submitting ACTION=PAUSE with a Pause Comment

Procedure features:
ACTION=PAUSE argument

OPTIONS= argument with <PauseComment>

The following example issues a PAUSE action and includes a comment about the
pause.

Program

Specify a comment when you pause the metadata server. You can use the
<PauseComment> text to explain why the metadata server is paused. If any user requests the
status of the metadata server, the <PauseComment> text is included in the information that is
printed to the log.

proc metaoperate
action=pause
options="<Server STATE=’ADMIN’/>

<PauseComment>The server will resume at 2:00 a.m.</PauseComment>";
run;

126 Example 3: Submitting ACTION=REFRESH with ARM Logging � Chapter 13

Example 3: Submitting ACTION=REFRESH with ARM Logging

Procedure features:
ACTION=REFRESH argument

OPTIONS= argument with <ARM/>

Program

Enable ARM logging The ARMLOC= value specifies a pathname for the ARM log file.

proc metaoperate
action=refresh
options="<ARM ARMSUBSYS=""(ARM_OMA)"" ARMLOC=""logs/armfile.log""/>

<Server/>‘‘ ;
run;

Example 4: Submitting ACTION=REFRESH with Journaling

Procedure features:
ACTION=REFRESH argument

OPTIONS= argument with <OMA/>

Program

Change the pathname. The JOURNALPATH= value specifies a pathname for metadata server
journaling.

proc metaoperate
action=refresh
options="<OMA JOURNALPATH=’c:/MyServers/journal/test.dat’/>

<Server/>";
run;

Example 5: Submitting ACTION=REFRESH to Pause and Resume the
Metadata Server

Procedure features:
ACTION=REFRESH argument

OPTIONS= argument with <Server/> only

METAOPERATE Procedure � Program 127

Program

Refresh the metadata server. To recover memory and reload inheritance rules, submit the
REFRESH action with the <Server/> element.

proc metaoperate
action=refresh
options="<Server/>";

run;

Example 6: Submitting ACTION=RESUME

Procedure features:
ACTION=RESUME argument

Program

Resume the metadata server. This example issues a RESUME action to restore the metadata
server to the online state. Tthe RESUME action cannot restart a stopped metadata server.

proc metaoperate
action=resume;

run;

Example 7: Submitting ACTION=EMPTY

Procedure features:
ACTION=EMPTY argument

Program

Delete metadata records. This example removes the metadata records from the specified
repository, but does not remove the repository’s registration from the repository manager. The
EMPTY action is useful for clearing a repository that will be repopulated.

proc metaoperate
action=empty
repository="MyRepos"
noautopause;

run;

128

129

P A R T5

DATA Step Functions

Chapter 14.Introduction to DATA Step Functions for Metadata 131

Chapter 15.DATA Step Functions for Reading and Writing Metadata 133

Chapter 16.DATA Step Functions for Metadata Security
Administration 169

Appendix 1.Recommended Reading 207

130

131

C H A P T E R

14
Introduction to DATA Step
Functions for Metadata

Overview of DATA Step Functions for Metadata 131
Best Practices 131

Array Parameters 132

Overview of DATA Step Functions for Metadata

The metadata DATA step functions provide a programming-based interface to create
and maintain metadata in the SAS Metadata Server. Alternatively, you can perform
metadata tasks by using a product like SAS Management Console. However, with
DATA step functions, you can write a SAS program and submit it in batch. You can
store information in a data set, create your own customized reports, or use information
in an existing data set to update metadata. The DATA step provides broad flexibility
with IF-THEN/ELSE conditional logic, DO loops, and more.

This book documents two categories of DATA step functions:

� Chapter 15, “DATA Step Functions for Reading and Writing Metadata,” on page
133

� Chapter 16, “DATA Step Functions for Metadata Security Administration,” on
page 169

Before you can use the metadata DATA step functions, you must issue the metadata
system options to establish a connection with the metadata server. For more
information, see “Connection Options” on page 24.

For help in forming your DATA step, see the following references:

� For information about metadata objects, see SAS Metadata Model: Reference.

� For information about administering metadata, see the SAS Intelligence Platform:
System Administration Guide.

� For information about using functions in a DATA step, see SAS Language
Reference: Dictionary.

� For information about DATA step concepts, see SAS Language Reference: Concepts.

Best Practices

Be careful when you modify metadata objects, because many objects have
dependencies on other objects. A product like SAS Management Console or SAS Data
Integration Studio is recommended for the routine maintenance of metadata. Before
you modify metadata, run a full backup of repositories. For more information, see the
SAS Intelligence Platform: System Administration Guide. If you create a new object,

132 Array Parameters � Chapter 14

the object might be unusable if you do not create the proper attributes and associations.
For more information, see SAS Metadata Model: Reference.

When the metadata server returns multiple objects, they are returned in the same
order as they are stored in the metadata server. Therefore, if order is important, your
program must examine the objects before it acts on them.

A good programming practice is to define all variables (for example, with a LENGTH
or FORMAT statement) in the DATA step before you call any functions.

For performance reasons, metadata objects are cached by URI. To refresh the
metadata object with the most recent data from the metadata server, purge the URI
with the METADATA_PURGE function.

For best performance, always resolve your URI into an ID instance. For example, if
you make several function calls on the object “OMSOBJ:LogicalServer?@Name=’foo ’”,
first use the METADATA_RESOLVE or METADATA_GETNOBJ function to convert the
object to “OMSOBJ:LogicalServer\A57DQR88.AU000003”. URIs in the ID instance
form can fully exploit object caching and usually require only one read from the
metadata server.

Array Parameters
Several of the DATA step functions use two-dimensional arrays for input or output.

The arrays enable applications to move information in and out of the metadata server
with fewer calls. However, the DATA step is not two-dimensional, so the following
conventions enable you to handle these multiple-row arrays:

� For functions that return arrays, the function asks the metadata s erver to return
only one row (or a specific row) of an output array. The output array is generally
kept in an object cache that lasts only as long as the DATA step. The key to the
cache is the uri argument, and the key to the row is the n argument. When you
submit the function, it checks whether information from the output array already
exists in the cache and, if so, returns the information from the cache. If the
information does not exist in the cache, the function calls the metadata server to
fill the cache. You can use the n argument to iterate through the rows of the array;
see how n is used in “Examples: DATA Step Functions for Metadata Security
Administration” on page 196.

� The functions that input arrays are similar to the functions that return arrays, but
the array is not kept in an object cache. Rather than iterating with an n argument,
you specify the multiple values in a comma-delimited list. In some functions, you
submit two values that must be in parallel. In other words, for a name, value pair,
if you specify three name arguments, then you must specify three value arguments.

For more information about DO loops and array processing in a DATA step, see SAS
Language Reference: Concepts.

133

C H A P T E R

15
DATA Step Functions for
Reading and Writing Metadata

Introduction to DATA Step Functions for Reading and Writing Metadata 135
What Are the DATA Step Functions for Reading and Writing Metadata? 135

Referencing a Metadata Object with a URI 136

Comparison of DATA Step Functions to Metadata Procedures 137

METADATA_DELASSN Function 137

Syntax 137
Arguments 137

Return Values 137

Example 138

Related Functions 139

METADATA_DELOBJ Function 139

Syntax 139
Arguments 139

Return Values 140

Example 140

Related Functions 140

METADATA_GETATTR Function 140
Syntax 140

Arguments 141

Return Values 141

Example 141

Related Functions 142
METADATA_GETNASL Function 142

Syntax 142

Arguments 142

Return Values 142

Example 143

Related Functions 143
METADATA_GETNASN Function 143

Syntax 143

Arguments 144

Return Values 144

Example 144
METADATA_GETNATR Function 145

Syntax 145

Arguments 145

Return Values 145

Examples 146
Example 1: Using an Object URI 146

Example 2: Using a Repository URI 146

Related Functions 147

134 Contents � Chapter 15

METADATA_GETNOBJ Function 147
Syntax 147

Arguments 147

Return Values 148

Examples 148

Example 1 : Determining How Many Machine Objects Exist 148
Example 2 : Looping Through Each Repository on a Metadata Server 149

Related Functions 149

METADATA_GETNPRP Function 149

Syntax 149

Arguments 149

Return Values 150
Example 150

Related Functions 151

METADATA_GETNTYP Function 151

Syntax 151

Arguments 151
Return Values 151

Example 151

METADATA_GETPROP Function 152

Syntax 152

Arguments 152
Return Values 152

Example 153

Related Functions 153

METADATA_NEWOBJ Function 153

Syntax 153

Arguments 153
Return Values 154

Details 154

Example 154

Related Functions 155

METADATA_PATHOBJ Function 155
Syntax 155

Arguments 155

Return Values 156

Examples 156

Example 1: The Path Contains a (deftype) Suffix 156
Example 2: The deftype Is Passed as a Separate Parameter 157

METADATA_PAUSED Function 157

Syntax 158

Return Values 158

Example 158

METADATA_PURGE Function 158
Syntax 158

Arguments 159

Return Values 159

Details 159

Example 159
METADATA_RESOLVE Function 160

Syntax 160

Arguments 160

Return Values 160

Examples 161

DATA Step Functions for Reading and Writing Metadata � What Are the DATA Step Functions for Reading and Writing

Metadata? 135

Example 1: Using an Object URI 161
Example 2: Using a Repository URI 161

METADATA_SETASSN Function 162

Syntax 162

Arguments 162

Return Values 164
Example 164

Related Functions 165

METADATA_SETATTR Function 165

Syntax 165

Arguments 165

Return Values 165
Example 165

Related Functions 166

METADATA_SETPROP Function 166

Syntax 166

Arguments 166
Return Values 166

Example 167

Related Functions 167

METADATA_VERSION Function 167

Syntax 167
Return Values 167

Example 168

Introduction to DATA Step Functions for Reading and Writing Metadata

What Are the DATA Step Functions for Reading and Writing Metadata?
These DATA step functions enable an administrator to set or return information

about attributes, associations, and properties from metadata objects.

Name Description

METADATA_DELASSN Deletes all objects that make up the specified
association

METADATA_DELOBJ Deletes the first object that matches the
specified URI

METADATA_GETATTR Returns the value of the specified attribute for
specified object

METADATA_GETNASL Returns the nth association of the specified
object

METADATA_GETNASN Returns the nth associated object of the specified
association

METADATA_GETNATR Returns the nth attribute on the object specified
by the URI

METADATA_GETNOBJ Returns the nth object that matches the
specified URI

METADATA_GETNPRP Returns the nth property of the specified object

136 Referencing a Metadata Object with a URI � Chapter 15

Name Description

METADATA_GETNTYP Returns the nth object type on the metadata
server

METADATA_GETPROP Returns the specified property of the specified
object

METADATA_NEWOBJ Creates a new metadata object

METADATA_PATHOBJ Returns the Id and Type attributes of the
specified folder object

METADATA_PAUSED Determines whether the metadata server is
paused

METADATA_PURGE Purges the specified URI

METADATA_RESOLVE Resolves a URI into an object on the metadata
server

METADATA_SETASSN Modifies an association list for an object

METADATA_SETATTR Sets the specified attribute for the specified
object

METADATA_SETPROP Sets the specified property for the specified object

METADATA_VERSION Returns the metadata server model version
number

Referencing a Metadata Object with a URI
When you use a metadata DATA step function for reading and writing metadata, you

specify an object by using a URI, which is a concept from SAS Open Metadata
Architecture. For more information, see Chapter 2, “Metadata Object Identifiers and
URIs,” on page 5. Here are examples for the DATA step functions for reading and
writing metadata:

ID

omsobj: A57DQR88.AU000003

type/ID

omsobj: LogicalServer/A57DQR88.AU000003

type?@attribute=’value’

omsobj: LogicalServer?@Name=’SASApp - OLAP Server’

Notes:
� The OMSOBJ: prefix is not case sensitive.
� Escape characters are supported with the %nn URL escape syntax. For more

information, see the URLENCODE function in SAS Language Reference:
Dictionary.

DATA Step Functions for Reading and Writing Metadata � Return Values 137

Comparison of DATA Step Functions to Metadata Procedures
The METAOPERATE procedure and the METADATA procedure perform some of the

same tasks as the DATA step functions for reading and writing metadata. These
language elements can query metadata for reports, or make changes to specified objects.

PROC METAOPERATE has much simpler syntax and is easy to use. However, it
supports a narrow range of tasks.

PROC METADATA can submit any method that is supported by the DoRequest
method of the SAS Open Metadata Interface, including all methods of the IOMI class,
and the Status method of the IServer class. PROC METADATA produces XML output.
By using the XML LIBNAME engine and ODS, you can create reports.

In general, the DATA step functions perform the same tasks as the PROC
METADATA methods. However, with the DATA step functions, you do not have to
understand the XML hierarchy. You can create the same kind of ODS reports as you
can with PROC METADATA. Instead of writing the output to an XML data set, you
execute the DATA step within a macro, and assign macro variables to the returned
values. Those variables become the columns in an output data set. See how these two
examples create similar reports from their output: “Example: Creating a Report with
the DATA Step” on page 14 and “Example: Creating a Report with the METADATA
Procedure and the XML Engine” on page 9.

METADATA_DELASSN Function
Deletes all objects that make up the specified association

Syntax
rc = METADATA_DELASSN(uri,asn);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

asn in Association name

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

138 Example � Chapter 15

Value Description

-2 The deletion was unsuccessful; see the SAS log
for details

-3 No objects match the URI

Example

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length uri $256

curi $256
curi1 $256
curi2 $256;

rc=0;

/* Create a PhysicalTable object. */

rc=metadata_newobj("PhysicalTable",
uri,
"My Table");

put rc=;
put uri=;

/* Create a couple of columns on the new PhysicalTable object. */

rc=metadata_newobj("Column",
curi,
"Column1",
"myrepos",
uri,
"Columns");

put rc=;
put curi=;

rc=metadata_newobj("Column",
curi1,
"Column2",
"myrepos",
uri,
"Columns");

DATA Step Functions for Reading and Writing Metadata � Arguments 139

put rc=;
put curi1=;

rc=metadata_newobj("Column",
curi2,
"Column3",
"myrepos",
uri,
"Columns");

put rc=;
put curi2=;

/* Delete association between table and columns, remove Column objects. */
rc=metadata_delassn(uri,"Columns");
put rc=;

/* Delete PhysicalTable object. */
rc=metadata_delobj(uri);
put rc=;

run;

Related Functions
� “METADATA_SETASSN Function” on page 162

� “METADATA_GETNASN Function” on page 143

METADATA_DELOBJ Function

Deletes the first object that matches the specified URI.

Syntax
rc = METADATA_DELOBJ(uri);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

140 Return Values � Chapter 15

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 The deletion was unsuccessful; see the SAS log
for details

-3 No objects match the URI

Example

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;

rc=metadata_delobj("omsobj:Property?@Name=’My Object’");
put rc=;

run;

Related Functions
� “METADATA_DELASSN Function” on page 137

� “METADATA_GETNOBJ Function” on page 147

� “METADATA_GETNTYP Function” on page 151

� “METADATA_NEWOBJ Function” on page 153

METADATA_GETATTR Function

Returns the value of the specified attribute for the specified object.

Syntax
rc = METADATA_GETATTR(uri, attr, value);

DATA Step Functions for Reading and Writing Metadata � Example 141

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

attr in Attribute of the metadata
object

value out Value of the specified attribute

Return Values

Argument Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 The attribute was not found

-3 No objects match the URI

Example

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;

length name $200
desc $200
modified $100;

rc=metadata_getattr("omsobj:Machine?@Name=’bluedog’","Name",name);
put rc=;
put name=;

rc=metadata_getattr("omsobj:Machine?@Name=’bluedog’","Desc",desc);

142 Related Functions � Chapter 15

put rc=;
put desc=;

rc=metadata_getattr("omsobj:Machine?@Name=’bluedog’","MetadataUpdated",modified);
put rc=;
put modified=;

run;

Related Functions
� “METADATA_GETNATR Function” on page 145
� “METADATA_SETATTR Function” on page 165

METADATA_GETNASL Function
Returns the nth association for the specified object.

Syntax
rc = METADATA_GETNASL(uri, n, asn);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

n in Numeric index value that
indicates which row to return
from the array; see “Array
Parameters” on page 132

asn out Association name

Return Values

DATA Step Functions for Reading and Writing Metadata � Syntax 143

Value Description

n The number of objects that match the URI

-1 Unable to connect to the metadata server

-3 No objects match the URI

-4 n is out of range

Example

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length assoc $256;
rc=1;
n=1;

do while(rc>0);

/* Walk through all possible associations of this object. */

rc=metadata_getnasl("omsobj:Machine?@Name=’bluedog’",
n,
assoc);

put assoc=;
n=n+1;

end;
run;

Related Functions
� “METADATA_GETNASN Function” on page 143
� “METADATA_SETASSN Function” on page 162

METADATA_GETNASN Function
Returns the nth associated object of the specified association.

Syntax
rc = METADATA_GETNASN(uri, asn, n, nuri);

144 Arguments � Chapter 15

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

asn in Association name

n in Numeric index value that
indicates which row to return
from the array; see “Array
Parameters” on page 132

nuri out URI of the nth associated object

Return Values

Value Description

n The number of associated objects

-1 Unable to connect to the metadata server

-3 No objects match the URI

-4 n is out of range

Example

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length uri $256

text $256;
rc=1;
arc=0;
n=1;

DATA Step Functions for Reading and Writing Metadata � Return Values 145

do while(rc>0);

/* Walk through all the notes on this machine object. */

rc=metadata_getnasn("omsobj:Machine?@Name=’bluedog’",
"Notes",
n,
uri);

arc=1;
if (rc>0) then arc=metadata_getattr(uri,"StoredText",text);
if (arc=0) then put text=;
n=n+1;

end;
run;

METADATA_GETNATR Function

Returns the nth attribute of the specified object.

Syntax
rc = METADATA_GETNATR(uri, n, attr, value);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

n in Numeric index value that
indicates which row to return
from the array; see “Array
Parameters” on page 132

attr out Attribute of the metadata
object

value out Value of the specified attribute

Return Values

146 Examples � Chapter 15

Value Description

n The number of attributes for the URI

-1 Unable to connect to the metadata server

-2 No attributes are defined for the object

-3 No objects match the URI

-4 n is out of range

Examples

Example 1: Using an Object URI

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length attr $256

value $256;
rc=1;
n=1;
do while(rc>0);

/* Walk through all the attributes on this machine object. */

rc=metadata_getnatr("omsobj:Machine?@Name=’bluedog’",
n,
attr,
value);

if (rc>0) then put n= attr= value=;

n=n+1;

end;
run;

Example 2: Using a Repository URI

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"

DATA Step Functions for Reading and Writing Metadata � Arguments 147

metarepository="myrepos";

data _null_;
length id $20
type $256
attr $256
value $256;

rc=metadata_resolve("omsobj:RepositoryBase?@Name=’myrepos’",type,id);

put rc=;
put id=;
put type=;
n=1;
rc=1;
do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?@Name=’myrepos’",n,attr,value);
if (rc>=0) then put attr= value=;
n=n+1;

end;
run;

Related Functions
� “METADATA_GETATTR Function” on page 140
� “METADATA_SETATTR Function” on page 165

METADATA_GETNOBJ Function
Returns the nth object that matches the specified URI.

Syntax
rc = METADATA_GETNOBJ(uri, n, nuri);

Arguments

148 Return Values � Chapter 15

Argument Direction Description

uri in Uniform Resource Identifier

n in Numeric index value that
indicates which row to return
from the array; see “Array
Parameters” on page 132

nuri out URI of the nth object that
matches the input URI or
matches a subtype object of the
input URI

Return Values

Value Description

n The number of objects and subtype objects that
match the specified URI

-1 Unable to connect to the metadata server

-3 No objects match the specified URI

-4 n is out of range

Examples

Example 1 : Determining How Many Machine Objects Exist

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length uri $256;
nobj=0;
n=1;

/* Determine how many machine objects are in this repository. */

nobj=metadata_getnobj("omsobj:Machine?@Id contains ’.’",n,uri);
put nobj=; /* Number of machine objects found. */

DATA Step Functions for Reading and Writing Metadata � Arguments 149

put uri=; /* URI of the first machine object. */

run;

Example 2 : Looping Through Each Repository on a Metadata Server

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length uri $256;
nobj=1;
n=1;

/* Determine how many repositories are on this server. */

do while(nobj >= 0);

nobj=metadata_getnobj("omsobj:RepositoryBase?@Id contains ’.’",n,uri);
put nobj=; /* Number of repository objects found. */
put uri=; /* Nth repository. */
n=n+1;

end;
run;

Related Functions
� “METADATA_DELOBJ Function” on page 139
� “METADATA_NEWOBJ Function” on page 153

METADATA_GETNPRP Function
Returns the nth property of the specified object.

Syntax
rc = METADATA_GETNPRP(uri, n, prop, value);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

n in Numeric index value that
indicates which row to return
from the array; see “Array
Parameters” on page 132

150 Return Values � Chapter 15

Argument Direction Description

prop out Abstract property string

value out Value of the specified property
string

Return Values

Value Description

n The number of properties for the URI

-1 Unable to connect to the metadata server

-2 No properties are defined for the object

-3 No objects match the URI

-4 n is out of range

Example
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length prop $256

value $256;
rc=1;
n=1;

do while(rc>0);

/* Walk through all the properties on this machine object. */

rc=metadata_getnprp("omsobj:Machine?@Name=’bluedog’",
n,
prop,
value);

if (rc>0) then put n= prop= value=;
n=n+1;

end;
run;

DATA Step Functions for Reading and Writing Metadata � Example 151

Related Functions
� “METADATA_GETPROP Function” on page 152
� “METADATA_SETPROP Function” on page 166

METADATA_GETNTYP Function
Returns the nth object type on the server.

Syntax
rc = METADATA_GETNTYP(n, type);

Arguments

Argument Direction Description

n in Numeric index value that
indicates which row to return
from the array; see “Array
Parameters” on page 132

type out Metadata type

Return Values

Value Description

n The number of objects that match the URI

-1 Unable to connect to the metadata server

-4 n is out of range

Example
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

152 METADATA_GETPROP Function � Chapter 15

data _null_;
length type $256;
rc=1;
n=1;

do while(rc>0);

/* Walk through all possible types on this server. */
rc=metadata_getntyp(n,type);
put type=;
n=n+1;

end;
run;

METADATA_GETPROP Function
Returns the value and Uniform Resource Identifier (URI) of the specified property

for the specified object.

Syntax
rc = METADATA_GETPROP(uri, prop, value, propuri);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

prop in Abstract property string

value out Value of the specified property
string

propuri out URI of the property object that
is associated with the input
URI

Return Values

DATA Step Functions for Reading and Writing Metadata � Arguments 153

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Named property is undefined

-3 No objects match the specified URI

Example
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length value $200

propuri $200;
rc=metadata_getprop("omsobj:Machine?@Name=’bluedog’","Property 1",value,propuri);
if rc=0 then put value= propuri=;

run;

Related Functions
� “METADATA_GETNPRP Function” on page 149
� “METADATA_SETPROP Function” on page 166

METADATA_NEWOBJ Function
Creates a new metadata object.

Syntax
rc = METADATA_NEWOBJ(type, uri<,name><,repos><,parent><,asn>);

Arguments

Argument Direction Description

type in Metadata type

uri out Uniform Resource Identifier

name in Name attribute for the new
metadata object

154 Return Values � Chapter 15

Argument Direction Description

repos in Repository identifier of an
existing repository; by default,
the new object is created in the
default repository

parent out Parent of the new metadata
object

asn in Association name

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Unable to create object; see the SAS log for
details

Details
When you create a new metadata object, the object might be unusable if you do not

create the proper attributes and associations. For more information, see SAS Metadata
Model: Reference.

Example

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length uri $256

curi $256;
rc=0;

/* Create a PhysicalTable object. */

DATA Step Functions for Reading and Writing Metadata � Arguments 155

rc=metadata_newobj("PhysicalTable",
uri,
"My Table");

put uri=;

/* Create a couple of columns on the new PhysicalTable object. */

rc=metadata_newobj("Column",
curi,
"Column1",
"myrepos",
uri,
"Columns");

put curi=;

rc=metadata_newobj("Column",
curi,
"Column2",
"myrepos",
uri,
"Columns");

put curi=;

rc=metadata_newobj("Column",
curi,
"Column3",
"myrepos",
uri,
"Columns");

put curi=;
run;

Related Functions
� “METADATA_DELOBJ Function” on page 139

� “METADATA_GETNOBJ Function” on page 147

METADATA_PATHOBJ Function
Returns the Id and Type attributes of the specified folder object.

Syntax
rc = METADATA_PATHOBJ(proj, path, deftype, type, ID);

Arguments

156 Return Values � Chapter 15

Argument Direction Description

proj in Not currently used. Set this
argument to null by submitting
an empty string “ ”

path in Pathname of the object in SAS
folders. Pathname begins with
a forward slash. Can include
the deftype in parentheses as a
suffix.

deftype in Optional public object type.
Can be omitted if deftype is
specified as a suffix in the path
argument. The deftype is not
the same as the type. For
example, If you submit a
deftype of StoredProcess, the
returned type will be
ClassifierMap. For more
information, see SAS Metadata
Model: Reference.

type out Metadata object type of the
returned ID

ID out Unique identifier for the object

Return Values

Value Description

n Number of objects that match the URI

0 Successful completion

-1 Unable to connect to the metadata server

-2 Syntax error in the path

-3 Named object not found in the path

Examples

Example 1: The Path Contains a (deftype) Suffix
options metaserver="a123.us.company.com"
metaport=8561

DATA Step Functions for Reading and Writing Metadata � METADATA_PAUSED Function 157

metauser="myid"
metapass="mypassword"
metarepository="myrepos";
data _null_;

length id $20;
length type $256;
proj="";
deftype="";
id="";
type="";

rc=metadata_pathobj(proj,"/Samples/Stored Processes/Sample(StoredProcess)",
deftype,type,id);

put rc=;
put id=;
put type=;

run;

Example 2: The deftype Is Passed as a Separate Parameter
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";
data _null_;

length id $20;
length type $256;
proj="";
deftype="StoredProcess";
id="";
type="";

rc=metadata_pathobj(proj,"/Samples/Stored Processes/Sample,
deftype,type,id);

put rc=;
put id=;
put type=;

run;

METADATA_PAUSED Function
Determines whether the server specified by the METASERVER system option is

paused.

158 Syntax � Chapter 15

Syntax
rc = METADATA_PAUSED();

Return Values

Value Description

0 Server is not paused

1 Server is paused

-1 Unable to connect to the metadata server

Example
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
rc=metadata_paused();
if rc eq 0 then put ’server is not paused’;
else if rc eq 1 then put ’server is paused’;

run;

METADATA_PURGE Function
Purges the specified URI.

Syntax
rc = METADATA_PURGE(<uri>);

DATA Step Functions for Reading and Writing Metadata � Example 159

Arguments

Argument Direction Description

uri in Uniform Resource Identifier; if
no argument is specified, the
entire connection is purged
from the cache

Return Values

Value Description

0 Object successfully purged

Details
For performance reasons, metadata objects are cached by URI. To refresh the

metadata object with the latest data from the metadata server, purge the URI with the
METADATA_PURGE function.

Example
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length association $256;
rc=1;
n=1;

do while(rc>0);

/* This will make this DATA step run much slower by */
/* purging the object cache, which requires the metadata */
/* server to be accessed again. */
/* Compare run timings by commenting out the purge. */

rc=metadata_purge("omsobj:Machine?@Name=’bluedog’");

160 METADATA_RESOLVE Function � Chapter 15

/* Walk through all possible associations of this object. */

rc=metadata_getnasl("omsobj:Machine?@Name=’bluedog’",
n,
association);

put association=;
n=n+1;

end;
run;

METADATA_RESOLVE Function

Resolves a URI into an object on the metadata server.

Syntax
rc = METADATA_RESOLVE(uri, type, ID);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

type out Metadata type

ID out Unique identifier for the first
object (or subtype object) that
matches the input URI

Return Values

Value Description

n Number of objects and subtype objects that
match the specified URI

0 No objects match the URI

-1 Unable to connect to the metadata server

DATA Step Functions for Reading and Writing Metadata � Examples 161

Examples

Example 1: Using an Object URI
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length id $20
type $256;
rc=metadata_resolve("omsobj:Machine?@Name=’bluedog’",type,id);
put rc=;
put id=;
put type=;

run;

Example 2: Using a Repository URI
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;

length id $20
type $256
attr $256
value $256;

rc=metadata_resolve("omsobj:RepositoryBase?@Name=’myrepos’",type,id);

put rc=;
put id=;
put type=;
n=1;
rc=1;
do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?@Name=’myrepos’",n,attr,value);
if (rc>=0) then put attr=;
if (rc>=0) then put value=;
n=n+1;

end;
run;

162 METADATA_SETASSN Function � Chapter 15

METADATA_SETASSN Function
Modifies an association list for an object.

Syntax
rc = METADATA_SETASSN(uri, asn, mod, auri–1<,...auri-n>);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

asn in Association name

DATA Step Functions for Reading and Writing Metadata � Arguments 163

Argument Direction Description

mod in Modification to be performed on the metadata object;
values include the following:

APPEND Appends the specified associations
to the end of the specified object’s
association element list without
modifying any of the other
associations on the list

MERGE Modifies existing associations in the
specified object’s association list,
and adds any associations that do
not already exist (new and changed
associations are placed at the end of
the association list; use REPLACE if
you need to specify the order of the
association list)

MODIFY Modifies an existing association, or
adds an association that does not
already exist (use MODIFY with a
single association; use MERGE* for
a multiple association)

REMOVE Deletes the specified associations
from the specified object’s
association element list without
modifying any of the other
associations on the list

REPLACE For a single association,* replaces
an existing association with the
specified association. For a multiple
association,* replaces an existing
association list with the specified
association list. Any existing
associations that are not
represented in the new association
list are deleted

auri–1<,...auri-n> in List of the URIs of the associated objects; see “Array
Parameters” on page 132.

*A single association refers to an association name with a 0–to-1 or 1–to-1 cardinality.
Only one association of that name is supported between the specified metadata types.

A multiple association refers to an association name with a 0–to-many or 1–to-many
cardinality. Many associations between the specified metadata types is supported.

For more information about associations and cardinality, see SAS Open Metadata
Interface: Reference.

164 Return Values � Chapter 15

Return Values
Number of objects matching the input URI.

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-3 No objects match the input URI

-4 Unable to perform modification; see the SAS log
for details

-5 Invalid modification

-6 Unable to resolve association list URIs

Example
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length uri $256;
rc=0;

/* Create a TextStore object. */

rc=metadata_newobj("TextStore",
uri,
"My TextStore");

put uri=;

rc=metadata_setassn("omsobj:Machine?@Name=’bluedog’",
"Notes",
"Append",
uri);

put rc=;

rc=metadata_setassn("omsobj:Machine?@Name=’bluedog’",
"Notes",
"Remove",
uri);

put rc=;

run;

DATA Step Functions for Reading and Writing Metadata � Example 165

Related Functions
� “METADATA_DELASSN Function” on page 137
� “METADATA_GETNASN Function” on page 143

METADATA_SETATTR Function
Sets the specified attribute for the specified object.

Syntax
rc = METADATA_SETATTR(uri, attr, value);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

attr in Attribute of the metadata
object

value in Value of the specified attribute

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Unable to set the attribute

-3 No objects match the URI

Example
options metaserver="a123.us.company.com"

metaport=8561

166 Related Functions � Chapter 15

metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
rc=metadata_setattr("omsobj:Machine?@Name=’bluedog’",

"Desc",
"My New Description");

put rc=;
run;

Related Functions
� “METADATA_GETATTR Function” on page 140

� “METADATA_GETNATR Function” on page 145

METADATA_SETPROP Function

Sets the specified property for the specified object.

Syntax
rc = METADATA_SETPROP(uri, prop, value, propuri);

Arguments

Argument Direction Description

uri in Uniform Resource Identifier

prop in Abstract property string

value in Value of the specified property
string

propuri out URI of the property object that
is associated with the input
URI

Return Values

DATA Step Functions for Reading and Writing Metadata � Return Values 167

Value Description

1 New property was created and set

0 Existing property was successfully set

-1 Unable to connect to the metadata server

-2 Unable to set the attribute

-3 No objects match the URI

-4 Unable to create a new property

Example

options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
length propuri $200;
rc=metadata_setprop("omsobj:Machine?@Name=’bluedog’","New Property",

"my value",propuri);
if rc>=0 then put propuri=;

run;

Related Functions

� “METADATA_GETPROP Function” on page 152

� “METADATA_GETNPRP Function” on page 149

METADATA_VERSION Function

Returns the metadata server’s model version number.

Syntax

ver = METADATA_VERSION();

Return Values

168 Example � Chapter 15

Value Description

ver Metadata server model version number

-1 Unable to connect to the metadata server

Example
options metaserver="a123.us.company.com"
metaport=8561
metauser="myid"
metapass="mypassword"
metarepository="myrepos";

data _null_;
ver=metadata_version();
put ver=;

run;

169

C H A P T E R

16
DATA Step Functions for
Metadata Security
Administration

Introduction to DATA Step Functions for Metadata Security Administration 171
What Are the DATA Step Functions for Metadata Security Administration? 171

Transaction Contexts and URIs 172

Using the %MDSECCON() Macro 173

METASEC_APPLYACT Function 173

Syntax 173
Arguments 173

Return Values 174

Details 174

Example 174

Related Functions 174

METASEC_BEGTRAN Function 174
Syntax 174

Arguments 175

Return Values 175

Details 175

Example 175
Related Functions 175

METASEC_DELACT Function 176

Syntax 176

Arguments 176

Return Values 176
Details 176

Example 176

Related Functions 177

METASEC_ENDTRAN Function 177

Syntax 177

Arguments 177
Return Values 177

Details 178

Example 178

Related Functions 178

METASEC_GETACTA Function 178
Syntax 178

Arguments 178

Return Values 179

Details 179

Example 179
Related Functions 180

METASEC_GETNACT Function 180

Syntax 180

170 Contents � Chapter 16

Arguments 180
Return Values 181

Details 181

Example 182

Related Functions 182

METASEC_GETNACTA Function 182
Syntax 182

Arguments 182

Return Values 182

Details 183

Example 183

Related Functions 183
METASEC_GETNAUTH Function 183

Syntax 184

Arguments 184

Authorizations and the %MDSECCON() Macro 185

About the in/out Arguments 186
Return Values 186

Details 187

Example 187

Related Functions 187

METASEC_GETNID Function 187
Syntax 187

Arguments 187

Return Values 188

Details 189

Example 189

Related Functions 189
METASEC_NEWACT Function 189

Syntax 189

Arguments 189

Return Values 190

Details 190
Example 191

Related Functions 191

METASEC_REMACT Function 191

Syntax 191

Arguments 191
Return Values 192

Details 192

Example 192

Related Functions 192

METASEC_SETACTA Function 192

Syntax 193
Arguments 193

Return Values 193

Details 193

Example 194

Related Functions 194
METASEC_SETAUTH Function 194

Syntax 194

Arguments 195

Return Values 196

Details 196

DATA Step Functions for Metadata Security Administration � What Are the DATA Step Functions for Metadata Security

Administration? 171

Example 196
Related Functions 196

Examples: DATA Step Functions for Metadata Security Administration 196

Overview 196

Example: Begin and End Transaction Context 197

Example: Working with ACTs 198

Introduction to DATA Step Functions for Metadata Security
Administration

What Are the DATA Step Functions for Metadata Security
Administration?

These DATA step functions enable an administrator to programmatically define or
query authorization settings on objects in the SAS Metadata Server. In addition, these
functions enable the administrator to create and manipulate access control templates
(ACTs) and apply them to objects in the metadata server.

With the metadata security administration functions, the administrator does not need
to know how the access controls are stored in metadata. The administrator specifies
which permission should be granted or denied to a user, and the metadata server makes
the appropriate change in the metadata. These tasks can also be performed with PROC
METADATA or the DATA step functions for reading and writing metadata, but those
methods can be complicated, and achieving the desired result can be more difficult.

Note: To create security reports about authorization, use the macros that SAS
provides. The macros extract authorization information into SAS data sets that you can
use to create security reports. For more information, see the SAS Intelligence Platform:
Security Administration Guide. �

Here are the functions, organized by task:

172 Transaction Contexts and URIs � Chapter 16

Task Functions Example

Transaction context control “METASEC_BEGTRAN
Function” on page 174

“METASEC_ENDTRAN
Function” on page 177

“Example: Begin and End
Transaction Context” on page
197

Access control definition “METASEC_APPLYACT
Function” on page 173

“METASEC_GETNACT
Function” on page 180

“METASEC_GETNAUTH
Function” on page 183

“METASEC_GETNID
Function” on page 187

“METASEC_REMACT
Function” on page 191

“METASEC_SETAUTH
Function” on page 194

“Example: Working with ACTs”
on page 198

ACT manipulation “METASEC_DELACT
Function” on page 176

“METASEC_GETACTA
Function” on page 178

“METASEC_GETNACTA
Function” on page 182

“METASEC_NEWACT
Function” on page 189

“METASEC_SETACTA
Function” on page 192

“Example: Working with ACTs”
on page 198

Transaction Contexts and URIs

The METASEC_BEGTRAN function creates a transaction context (TC), and the
METASEC_ENDTRAN function ends it. The TC instance is located in the metadata
server. The TC instance maintains the state of authorization query results and update
requests for a client that is using the security administration interface. The TC
accumulates changes that are requested for a single object. Submitting the
METASEC_ENDTRAN function commits or discards changes, and then ends the TC.

Here are some usage notes:

� For the value of the TC, if you specify an empty string, a temporary context is
invoked, no server-side state is maintained, and changes to security settings are
made immediately. This choice can be efficient if you have only one change to
make, and you want to make the change immediately.

DATA Step Functions for Metadata Security Administration � Arguments 173

� Specifying the URI is a best practice and is usually required. For DATA step
functions that return information, the URI is the key to a cache of information
about the object. The information is returned one row at a time in two-dimensional
arrays. For more information, see “Array Parameters” on page 132.

If the URI refers to a standard metadata object, but not to an ACT or to a SAS
Metadata Repository, you can use a standard URI. For more information, see “What Is
a URI?” on page 6.

� If the URI refers to an ACT, the URI must be in the form
omsobj:AccessControlTemplate/my-ACTobj-id. For example:

omsobj:AccessControlTemplate/A5DRX6L4.AT000005

� If the URI refers to a repository, the URI must be in the form reposid:my-repos-id.
For example:

reposid:A5DRX6L4

Using the %MDSECCON() Macro
In the DATA step functions for metadata security administration, two arguments are

represented in the SAS Open Metadata Architecture as bit flags that can be combined
with an OR operation. One argument is flags, which is used in many of the functions.
The other argument is auth in the METASEC_GETNAUTH function.

To simplify usage for the DATA step functions, instead of specifying a numeric
parameter, you specify macro variables with easily recognizable names. To use the
macro variables, you must first submit the macro %MDSECCON(). The appropriate
macro variables are documented with the functions.

METASEC_APPLYACT Function
Applies ACT to the access controls on an object.

Syntax
rc = METASEC_APPLYACT(tc,uri,act_uri<,flags>);

Arguments

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context

uri in Character variable or constant that contains the URI of
the object to which you are applying the ACT

174 Return Values � Chapter 16

Argument Direction Description

act_uri in Character variable or constant that contains the URI of
the ACT that you are applying to the object; use the
following form of URI: “omsobj:AccessControlTemplate/
xxxxxxxx.yyyyyyyy”

flags in Not currently used; set to 0 (zero)

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method ApplyACTToObj(). For information about

the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_GETNACT Function” on page 180

� “METASEC_GETNAUTH Function” on page 183
� “METASEC_GETNID Function” on page 187

� “METASEC_REMACT Function” on page 191

� “METASEC_SETAUTH Function” on page 194

METASEC_BEGTRAN Function
Begins the TC.

Syntax
rc = METASEC_BEGTRAN(uri,flags,tc);

DATA Step Functions for Metadata Security Administration � Related Functions 175

Arguments

Argument Direction Description

uri in Character variable or constant that contains the URI of
the object to be manipulated by the transaction

flags in Not currently used; set to 0 (zero)

tc out Character variable that contains the handle of the new TC;
must be at least $16

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Output variable for TC is too small to hold the
TC handle

-3 No objects match the specified URI

-4 Numeric value (flag) exceeds the maximum
usable value

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method BeginTransactionContext(). For

information about the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Begin and End Transaction Context” on page 197

Related Functions
� “METASEC_ENDTRAN Function” on page 177

176 METASEC_DELACT Function � Chapter 16

METASEC_DELACT Function

Deletes ACT from the metadata server.

Syntax
rc = METASEC_DELACT(tc,act_uri);

Arguments

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context; if tc is returned from the
METASEC_BEGTRAN function, then tc references an
existing ACT

act_uri in Character variable or constant that contains the URI of
the ACT that you are deleting; use the following form of
URI: “omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 ACT was not deleted; see sysmsg() for
information

Details
When the ACT is deleted, any associations are also deleted.
This function calls the ISecAdmin method DestroyAccessControlTemplate(). For

information about the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Working with ACTs” on page 198

DATA Step Functions for Metadata Security Administration � Return Values 177

Related Functions
� “METASEC_GETACTA Function” on page 178
� “METASEC_GETNACTA Function” on page 182
� “METASEC_NEWACT Function” on page 189
� “METASEC_SETACTA Function” on page 192

METASEC_ENDTRAN Function
Ends the TC.

Syntax
rc = METASEC_ENDTRAN(uri,tc,flags);

Arguments

Argument Direction Description

uri in Character variable or constant that contains the URI of
the object to be manipulated by the transaction

tc in Character variable that contains the handle of the TC to be
ended

flags in Integer bit field that specifies whether the transaction
should be committed; use one of the following macro
variables from %MDSECCON()

_SECAD_COMMIT_TC
Commit transaction

_SECAD_DISCARD_TC
Do not commit transaction

For more information, see “Using the %MDSECCON()
Macro” on page 173.

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-3 No objects match the specified URI

178 Details � Chapter 16

Value Description

-4 Numeric value (flag) exceeds the maximum
usable value

-5 No TC handle was specified

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method EndTransactionContext(). For information

about the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Begin and End Transaction Context” on page 197

Related Functions
� “METASEC_BEGTRAN Function” on page 174

METASEC_GETACTA Function

Returns an ACT attribute.

Syntax
rc = METASEC_GETACTA(tc,act_uri,attr,attr_value);

Arguments

Argument Direction Description

tc in TC handle; can be an empty string " " to invoke with a
temporary context; if tc is returned from the
METASEC_BEGTRAN function, then tc references an
existing ACT

act_uri in Character variable or constant that contains the URI of
the ACT that is requested; can be blank if the ACT was
specified when creating the TC; use the following form of
URI: “omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”

DATA Step Functions for Metadata Security Administration � Example 179

Argument Direction Description

attr in Character variable that specifies the ACT attribute whose
value you are requesting; see “Details” on page 179.

attr_value out Character variable that contains the value of the ACT
attribute; ee “Details” on page 179.

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-99 or less Attribute is not set; see log or sysmsg() for
information

Details
This function calls the ISecAdmin method GetAccessControlTemplateAttribs(). For

information about this method, see SAS Open Metadata Interface: Reference.
Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically

uppercased (NAME, DESC, USE). The following table provides more information about the
attr and attr_value arguments.

Attribute Attribute Value
Maximum Length of
Attribute Value Notes

NAME Character string 60 Optional

DESC Character string 200 Optional

USE REPOS or empty string 5 Optional; the REPOS
value indicates that
the specified ACT is
the default repository
ACT

Example
� “Example: Working with ACTs” on page 198

180 Related Functions � Chapter 16

Related Functions
� “METASEC_DELACT Function” on page 176
� “METASEC_GETNACTA Function” on page 182
� “METASEC_NEWACT Function” on page 189
� “METASEC_SETACTA Function” on page 192

METASEC_GETNACT Function
Returns the nth ACT.

Syntax
rc = METASEC_GETNACT(tc,uri,n,act_uri,name,desc,use<,flags>);

Arguments

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context

uri in Character variable or constant that contains the URI of
the object from which you want to return the ACTs.

If the URI is for a repository (in the form
"ReposID:xxxxxxxx"), then the metadata server function
GetAccessControlTemplateList() is called to obtain the
ACT information.

If the URI is for an object (in the form "omsobj:ObjectType/
xxxxxxxx.yyyyyyyy"), then GetACTsOnObj() is called.

Search syntax is supported, such as
"omsobj:ObjectType?@Name=’My Object’ "

n in One-based numeric index value that indicates which row to
return from the array; for information, see “Array
Parameters” on page 132

act_uri out Character variable that contains the URI of the ACT that
is requested; this URI is in the following form:
"omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy"

name out Character variable that contains the name of the nth ACT

desc out Character variable that contains the description of the nth
ACT

DATA Step Functions for Metadata Security Administration � Details 181

Argument Direction Description

use out Character variable that contains the value of the USE
attribute of the nth ACT. If the ACT is for a repository, the
returned value is "REPOS". Otherwise the returned value
is an empty string.

flags in Optional integer bit field; if the uri argument is in the
form ReposID:yyyyyyyy (that is,
GetAccessControlTemplateList() is called), you can use the
following macro variable from %MDSECCON();

_SECAD_REPOS_DEPENDENCY_USES
Return all ACTs in all SAS Metadata Repositories
that are not of type PROJECT

For more information see “Using the %MDSECCON()
Macro” on page 173.

Return Values

Value Description

0 Successful completion, but no ACTs are found to
be applied to the object

-1 Unable to connect to the metadata server

-2 Error returning the ACT list; see log or sysmsg()
for information

-3 No objects match the specified URI

-4 Numeric value (n) exceeds the maximum usable
value

-5 n is out of range

-99 or less

Other error; see log or sysmsg() for information

Details
If the uri argument represents a repository, then the ACTs in the repository are

returned. If uri does not represent a repository, then the ACTs that protect the object
are returned.

This function calls the ISecAdmin method GetAccessControlTemplateList() or
GetACTsOnObj(), depending on the form of the URI in the uri argument. For
information about the methods, see SAS Open Metadata Interface: Reference.

182 Example � Chapter 16

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_APPLYACT Function” on page 173
� “METASEC_GETNAUTH Function” on page 183
� “METASEC_GETNID Function” on page 187
� “METASEC_REMACT Function” on page 191
� “METASEC_SETAUTH Function” on page 194

METASEC_GETNACTA Function
Returns the nth attribute for an ACT.

Syntax
rc = METASEC_GETNACTA(tc,act_uri,n,attr,attr_value);

Arguments

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context; if tc is returned from the
METASEC_BEGTRAN function, then tc references an
existing ACT

act_uri in Character variable that contains the URI of the ACT that
is requested; this URI is in the following form:
“omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”

n in One-based numeric index value that indicates which row to
return from the array; for more information, see “Array
Parameters” on page 132

attr out Character variable that contains the name of the nth
attribute found on the ACT; see “Details” on page 183.

attr_value out Character variable that contains the value of the nth
attribute found on the ACT; see “Details” on page 183.

Return Values

DATA Step Functions for Metadata Security Administration � METASEC_GETNAUTH Function 183

Value Description

0 Successful completion, but no ACTs are found

-1 Unable to connect to the metadata server

-4 Numeric value (n) exceeds the maximum usable
value

-5 n is out of range

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method GetAccessControlTemplateAttribs(). For

information about the method, see SAS Open Metadata Interface: Reference.
The following table provides more information about the attr and attr_value

arguments.

Attribute Attribute Value
Maximum Length of
Attribute Value Notes

NAME Character string 60

DESC Character string 200

USE REPOS or empty string 5 The REPOS value
indicates that the
specified ACT is the
default repository ACT

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_DELACT Function” on page 176

� “METASEC_GETACTA Function” on page 178

� “METASEC_NEWACT Function” on page 189

� “METASEC_SETACTA Function” on page 192

METASEC_GETNAUTH Function

Returns the nth authorization for an object.

184 Syntax � Chapter 16

Syntax
rc = METASEC_GETNAUTH(tc,uri,n,type,name,auth,perm,cond<,flags,display>);

Arguments

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context

uri in Character variable or constant that contains the URI of
the object that is requested; can be an empty string " " if tc
is specified; you can optimize performance by using the
following form of URI:
omsobj:metatype/identifier.identifier

n in One-based numeric index value that indicates which row to
return from the array; for more information, see “Array
Parameters” on page 132

type in/out Character variable that contains the identity type. The
variable should be large enough to store the two available
values, IdentityGroup or Person, probably at least $13. If
this argument is empty, all identities associated to
authorizations for the object are returned. Can be a
comma-delimited list that is parallel to a list for the name
argument; for more information, see “About the in/out
Arguments” on page 186.

name in/out Character variable that contains the identity name, which
must be unique for every identity of that type on the
metadata server. If this argument is empty, all identities
associated to authorizations for the object are returned.
Can be a comma-delimited list that is parallel to a list for
the type argument; for more information, see “About the in/
out Arguments” on page 186.

auth out Integer bit field that indicates grant or deny, and the origin
of the grant or deny. You can use macro variables from
%MDSECCON() to translate the integer into a recognizable
message;for more information, see “Authorizations and the
%MDSECCON() Macro” on page 185.

perm in/out For input, it is an optional, comma-delimited list of
permission names for which authorizations are
requested;for more information, see “About the in/out
Arguments” on page 186. If this argument is empty, all
available permissions are returned.

For output, it is a character variable that contains the
name of the permission whose grant or deny state is
specified in the auth argument.

DATA Step Functions for Metadata Security Administration � Authorizations and the %MDSECCON() Macro 185

Argument Direction Description

cond out Character variable that contains the condition if a grant
permission is conditional; can be very long, so if this
argument is too short, the value is truncated

flags in Optional integer bit field; you can use one of the following
macro variables from %MDSECCON()

_SECAD_ACT_CONTENTS
Return the authorizations that define the contents of
an ACT when the tc or uri argument references an
ACT

_SECAD_DO_NOT_RETURN_PERMCOND
Do not return any available values for the cond
argument

For more information see “Using the %MDSECCON()
Macro” on page 173.

display out Optional; character variable that contains the value of the
DisplayName attribute if the identity has a DisplayName
attribute

Authorizations and the %MDSECCON() Macro

As noted in “Arguments” on page 184, the auth parameter of the
METASEC_GETNAUTH function returns an integer that indicates grant or deny and
the origin of the grant or deny. To simplify usage, you can use macro variables from
%MDSECCON() instead of the integer values. Here are the authorizations, macro
variables, and descriptions. For more information, see “Using the %MDSECCON()
Macro” on page 173. For suggested usage, see “Example: Working with ACTs” on page
198.

Authorization Type Macro Variable Description

Explicit deny _SEC_PERM_EXPD Explicit deny that originates
from the authorization that is
directly associated to the object

Explicit grant _SEC_PERM_EXPG Explicit grant that originates
from the authorization that is
directly associated to the object

Explicit mask _SEC_PERM_EXPM Mask to extract explicit value
that originates from the
authorization that is directly
associated to the object

ACT deny _SEC_PERM_ACTD Deny that originates from an
ACT other than the default
ACT

186 About the in/out Arguments � Chapter 16

Authorization Type Macro Variable Description

ACT grant _SEC_PERM_ACTG Grant that originates from an
ACT other than the default
ACT

ACT mask _SEC_PERM_ACTM Mask to extract indirect value
that originates from an ACT
other than the default ACT

Indirect deny _SEC_PERM_NDRD Indirect deny that originates
from an IdentityGroup
membership, through
inheritance, or from the default
ACT; an indirect value is
always returned

Indirect grant _SEC_PERM_NDRG Indirect grant that originates
from an IdentityGroup
membership, via inheritance,
or from the default ACT; an
indirect value is always
returned

Indirect mask _SEC_PERM_NDRM Mask to extract indirect value
that originates from an
IdentityGroup membership, via
inheritance, or from the default
ACT; an indirect value is
always returned.

About the in/out Arguments
Some of this function’s arguments are in/out. After the first call for the specified

URI, the in/out parameters do not need to be reset to the initial calling value.
Subsequent calls will retrieve the output values from the cache, and place them in the
output variable without consideration of the value when the call was made. In other
words, after the first call is made for the URI, the metadata server ignores the input
aspect of the in/out parameters.

Here is an example of comma-delimited lists for type and name arguments:

type = "person,person,person";
name = "Fred,Yolanda,Viktorija";

rc = metasec_getnauth(tc,uri,n,type,name,auth,permission,cond);

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

DATA Step Functions for Metadata Security Administration � Arguments 187

Value Description

-2 Error parsing type or name input list

-3 No objects match the specified URI

-4 Numeric value (flag) exceeds the maximum
usable value

-5 n is out of range

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method GetAuthorizationsOnObj(). For

information about the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_APPLYACT Function” on page 173

� “METASEC_GETNACT Function” on page 180

� “METASEC_GETNID Function” on page 187

� “METASEC_REMACT Function” on page 191

� “METASEC_SETAUTH Function” on page 194

METASEC_GETNID Function

Returns the nth identity for an object. Identities can come directly from the object,
from the inheritance parents, from the default ACT, and from any ACTs that are
directly associated with the object.

Syntax
rc = METASEC_GETNID(tc,uri,n,type,name,flags<,display,origin>);

Arguments

188 Return Values � Chapter 16

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context

uri in Character variable or constant that contains the URI of
the object to be manipulated by the transaction; can be an
empty string “ ”if tc is specified

n in One-based numeric index value that indicates which row to
return from the array; for more information, see “Array
Parameters” on page 132

type out Character variable that contains the identity type; the
variable should be large enough to store the two available
values, IdentityGroup or Person, probably at least $13

name out Character variable that contains the identity name, which
must be unique for every identity of that type on the SAS
Metadata Server

flags in Optional integer bit field; you can use one of the following
macro variables from %MDSECCON()

_SECAD_ACT_CONTENTS
If the uri argument references an ACT, returns the
identities that define the ACT and not the identities
from the access controls that protect the ACT.

_SECAD_RETURN_ROLE_TYPE
Return roles as the type for IdentityGroups that
are acting as roles.

For more information see “Using the %MDSECCON()
Macro” on page 173.

display out Optional; character variable that contains the value of the
DisplayName attribute if the identity has a DisplayName
attribute

origin out Optional; indicates where the identity originates for the
object in security:

D
The identity originates from an ACT or ACE that is
directly attached to the object

I
The identity originates from inheritance

DI
The identity originates from inheritance but is also
involved with direct access controls on the object

Return Values

DATA Step Functions for Metadata Security Administration � Arguments 189

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Error returned from the metadata server; see
log or sysmsg() for information

-3 No objects match the specified URI

-4 Numeric value (flag) exceeds the maximum
usable value

-5 n is out of range

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method GetIdentitiesOnObject(). For information

about the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_APPLYACT Function” on page 173

� “METASEC_GETNACT Function” on page 180

� “METASEC_GETNAUTH Function” on page 183

� “METASEC_REMACT Function” on page 191

� “METASEC_SETAUTH Function” on page 194

METASEC_NEWACT Function

Creates a new ACT.

Syntax
rc = METASEC_NEWACT(tc,repos_uri<,attr,attr_value>...<,attr_3,attr_value_3>);

Arguments

190 Return Values � Chapter 16

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context

repos_uri in Character variable or constant that contains the URI of
the repository where you are creating the ACT; use the
following form of URI: “Reposid:xxxxxxxx”

attr in Character variable or constant that specifies an ACT
attribute. You must pair this argument with an attr_value
argument, and you can specify up to three attr and
attr_value pairs. See “Details” on page 190.

attr_value in Character variable or constant that contains the value of
an ACT attribute; you must pair this argument with an
attr argument, and you can specify up to three attr and
attr_value pairs. See “Details” on page 190.

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method CreateAccessControlTemplate(). For

information about the method, see SAS Open Metadata Interface: Reference.
Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically

uppercased (NAME, DESC, USE). The following table provides more information about the
attr and attr_value arguments.

DATA Step Functions for Metadata Security Administration � Arguments 191

Attribute Attribute Value
Maximum Length of
Attribute Value Notes

NAME Character string 60 Required; he attribute
value must be unique
within the repository

DESC Character string 200 Optional

USE REPOS or empty string 5 Optional; when you
specify REPOS, the
ACT becomes the new
default repository
ACT. See the following
caution.

CAUTION:
Passing in an empty string for the USE attribute is not recommended. Passing in an
empty string has an effect only when the ACT already has USE=REPOS. However,
setting a repository ACT’s USE attribute to a blank leaves the repository in a default
mode where all permissions are granted. If you want to change the default ACT, it is
recommended that you set USE=REPOS on the ACT that you want to use as the
repository ACT. The metadata server automatically removes the USE=REPOS
attribute from the previous repository ACT. Thus the repository is not left in a mode
with no repository ACT. �

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_DELACT Function” on page 176

� “METASEC_GETACTA Function” on page 178

� “METASEC_GETNACTA Function” on page 182

� “METASEC_SETACTA Function” on page 192

METASEC_REMACT Function

Removes an ACT from the object’s access controls.

Syntax
rc = METASEC_REMACT(tc,uri,act_uri<,flags>);

Arguments

192 Return Values � Chapter 16

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context

uri in Character variable or constant that contains the URI of
the object from which you want to remove the ACT

act_uri in Character variable or constant that contains the URI of
the ACT that you are removing; use the following form of
URI: “omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”

flags in Not currently used; set to 0 (zero)

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method RemoveACTFromObj(). For information

about the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_APPLYACT Function” on page 173

� “METASEC_GETNACT Function” on page 180

� “METASEC_GETNAUTH Function” on page 183

� “METASEC_GETNID Function” on page 187

� “METASEC_SETAUTH Function” on page 194

METASEC_SETACTA Function

Sets an ACT attribute.

DATA Step Functions for Metadata Security Administration � Details 193

Syntax
rc = METASEC_SETACTA(tc,act_uri,attr,attr_value);

Arguments

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context; if tc is returned from the
METASEC_BEGTRAN function, then tc references an
existing ACT

act_uri in Character variable or constant that contains the URI of
the ACT that you are modifying; can be blank if the ACT
was specified when creating the TC; use the following form
of URI: ”omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy“

attr in Character variable that specifies the ACT attribute that
you are setting; see “Details” on page 193.

attr_value out Character variable that contains the value of the ACT
attribute that you are setting; any specified attribute
values replace the current values for the ACT; see “Details”
on page 193.

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-99 or less Attribute is not set; see log or sysmsg() for
information

Details
This function calls the ISecAdmin method SetAccessControlTemplateAttribs(). For

information about the method, see SAS Open Metadata Interface: Reference.

194 Example � Chapter 16

Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically
uppercased (NAME, DESC, USE). The following table provides more information about the
attr and attr_value arguments.

Attribute Attribute Value
Maximum Length of
Attribute Value Notes

NAME Character string 60 Optional; the attribute
value must be unique
within the repository.

DESC Character string 200 Optional

USE REPOS or empty string 5 Optional; when you
specify REPOS, the
ACT becomes the new
default repository
ACT. When you specify
an empty string, the
ACT is removed from
being the default
repository ACT. See
the following caution.

CAUTION:
Passing in an empty string for the USE attribute is not recommended. Passing in an
empty string has an effect only when the ACT already has USE=REPOS. However,
setting a repository ACT’s USE attribute to a blank leaves the repository in a default
mode where all permissions are granted. If you want to change the default ACT, it is
recommended that you set USE=REPOS on the ACT that you want to use as the
repository ACT. The metadata server automatically removes the USE=REPOS
attribute from the previous repository ACT. Thus the repository is not left in a mode
with no repository ACT. �

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_DELACT Function” on page 176
� “METASEC_GETACTA Function” on page 178
� “METASEC_GETNACTA Function” on page 182
� “METASEC_NEWACT Function” on page 189

METASEC_SETAUTH Function
Sets authorization for an object.

Syntax
rc = METASEC_SETAUTH(tc,uri,type,name,auth,perm,cond<,flags>);

DATA Step Functions for Metadata Security Administration � Arguments 195

Arguments

Argument Direction Description

tc in Transaction context handle; can be an empty string " " to
invoke with a temporary context

uri in Character variable or constant that contains the URI of
the object to be manipulated by the transaction; can be an
empty string " " if transaction context is specified

type in Character variable or string constant that contains the
identity type; the variable should be large enough to store
the two available values, IdentityGroup or Person,
probably at least $13

name in Character variable that contains the identity name

auth in Character variable that indicates the authorization to set
for the permission and identity (which are specified in the
perm and name arguments, respectively); specify one of the
following values:

G
Grant

D
Deny

R
Remove

perm in Character variable that contains the name of the
permission whose grant, deny, or remove state is specified
in the auth argument

cond in Character variable that contains the condition if a grant
permission is conditional. The value can be very long, so if
this argument is too short, the value is truncated. The
permissions are case sensitive and must match the case of
the permissions that are defined in the metadata server.

flags in Optional integer bit field; you can use one of the following
macro variables from %MDSECCON()

_SECAD_ACT_CONTENTS
Return the authorizations that define the contents of
an ACT when the tc or uri argument references an
ACT

For more information see “Using the %MDSECCON()
Macro” on page 173.

196 Return Values � Chapter 16

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-3 No objects match the specified URI

-99 or less Other error; see log or sysmsg() for information

Details
This function calls the ISecAdmin method SetAuthorizationsOnObj(). For

information about the method, see SAS Open Metadata Interface: Reference.

Example
� “Example: Working with ACTs” on page 198

Related Functions
� “METASEC_APPLYACT Function” on page 173
� “METASEC_GETNACT Function” on page 180
� “METASEC_GETNAUTH Function” on page 183
� “METASEC_GETNID Function” on page 187
� “METASEC_REMACT Function” on page 191

Examples: DATA Step Functions for Metadata Security Administration

Overview
These examples are self-contained. Specify your own connection options, and submit

the code in a SAS session.
To create security reports about authorization, use the macros that SAS provides.

The macros extract authorization information into SAS data sets that you can use to
create security reports. For more information, see the SAS Intelligence Platform:
Security Administration Guide.

CAUTION:
Do not run examples against a production metadata server. The examples create objects
and identities to demonstrate the use of ACTs. Making changes to security settings
poses a risk to a production environment. Be sure to run these examples in an
experimental, nonproduction environment. �

DATA Step Functions for Metadata Security Administration � Example: Begin and End Transaction Context 197

CAUTION:
Do not use this code as an example of creating PhysicalTable and Person objects. The
PhysicalTable and Person objects that are created and deleted in these examples are
not usable by SAS products because they do not have the appropriate attributes and
associations. For information about attributes and associations, see SAS Metadata
Model: Reference. For information about metadata administration tasks, see the
administration books in “Recommended Reading” on page 207. �

Example: Begin and End Transaction Context

options metaserver="myserver"
metaport=8561
metauser="myuser"
metapass="mypwd"
metarepository="Foundation";

/* Get macro variable bit flags. */
%mdseccon();

data _null_;
format tc $20.;
length uri $256;
tc = "";
uri="";

/* Create a PhysicalTable object. */
rc=metadata_newobj("PhysicalTable",

uri,
"My Demo Table for METASEC");

/* Start transaction on object created above using the URI. */
rc=METASEC_BEGTRAN(uri,0,tc);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

/* ... other operations using the TC ... */

/* End the transaction and commit any changes made to */
/* the transaction since it was started. */
rc=METASEC_ENDTRAN(uri,tc, &_SECAD_COMMIT_TC);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

/* Delete the PhysicalTable */
rc=metadata_delobj(uri);

run;

198 Example: Working with ACTs � Chapter 16

Example: Working with ACTs

options metaserver="myserver"
metaport=8561
metauser="myuser"
metapass="mypwd"
metarepository="Foundation";

/* Get macro variable bit flags. */
%mdseccon();

/*--------------------------------------*/
/* Create a new user for demo purposes. */
/*--------------------------------------*/

data _null_;
length uri $256;
rc=0;

/* Create a new Person object. */
rc=metadata_newobj("Person",

uri,
"Demo User for METASEC");

if (rc < 0) then do;
sysmsg = sysmsg();
put sysmsg;
end;

put "The new user’s URI is " uri;
run;

/*---*/
/* Create a new ACT that denies PUBLIC ReadMetadata and grants */
/* SASUSERS ReadMetadata. Grant WriteMetadata and Readmetadata */
/* to a specific person to show the ACT working. */
/*---*/
data _null_;

format tc $20.;
length uri $256

act_uri $256
repos_uri $256
type $60
id $17;

tc = "";
uri="";

/* Start transaction - No URI specified because the ACT does not exist. */
rc=METASEC_BEGTRAN("",0, tc);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;

DATA Step Functions for Metadata Security Administration � Example: Working with ACTs 199

end;

/* build the uri for the foundation repository */
rc=metadata_resolve("omsobj:RepositoryBase?@Name=’Foundation’",type,id);
tmpstr = substr(id, length(id)-7, 8);
repos_uri="REPOSID:" || tmpstr;

/* create the ACT */
rc=METASEC_NEWACT(tc,repos_uri, "Name", "Grant SASUSERS ACT",

"Desc", "ACT that denies PUBLIC but grants SASUSERS.");
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

/* The URI parameter is blank because the ACT has not been written yet. */
/* Note the use of &_SECAD_ACT_CONTENTS to indicate that this is setting */
/* the content of the ACT rather than security on the ACT. */
rc = METASEC_SETAUTH(tc, "","IdentityGroup", "SASUSERS",

"Grant", "ReadMetadata","",&_SECAD_ACT_CONTENTS);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",
"Deny","ReadMetadata","",&_SECAD_ACT_CONTENTS);

if (rc < 0) then do;
sysmsg = sysmsg();
put sysmsg;
end;

rc = METASEC_SETAUTH(tc, "","Person", "Demo User for METASEC",
"Grant", "WriteMetadata","", &_SECAD_ACT_CONTENTS);

if (rc < 0) then do;
sysmsg = sysmsg();
put sysmsg;
end;

rc = METASEC_SETAUTH(tc, "","Person", "Demo User for METASEC",
"Grant", "ReadMetadata","", &_SECAD_ACT_CONTENTS);

if (rc < 0) then do;
sysmsg = sysmsg();
put sysmsg;
end;

/* Protect the ACT so the public cannot edit the ACT. */
rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",

"Grant","ReadMetadata","");
rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",

"Deny","WriteMetadata","");
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;

200 Example: Working with ACTs � Chapter 16

end;

/* Commit the transaction and write the ACT. */
rc=METASEC_ENDTRAN("",tc, &_SECAD_COMMIT_TC);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else
put "Transaction creating the ACT has been committed.";

run;

/*--*/
/* Start a new DATA step to exercise the ACT. */
/*--*/

data _null_;
format tc $20.;
length uri $256

act_uri $256
identitytype $60
identityname $60
act_uri2 $256
actname $60
actdesc $60
auth $ 18
permission $ 60
condval $ 100
authorization $30
authint 8
type $60
id $17
attrname $60
attrvalue $256;

tc="";
uri="";
attrname="";
attrvalue="";

/* Create a PhysicalTable object. */
rc=metadata_newobj("PhysicalTable",

uri,
"Demo Table 2 for METASEC");

/* Start transaction on the object using the object’s URI. */
rc=METASEC_BEGTRAN(uri,0, tc);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

/* In the SAS log, list the object’s URI. */
put "The object’s URI is: " uri;

DATA Step Functions for Metadata Security Administration � Example: Working with ACTs 201

/* In the SAS log, list the identities (both inherited and explicit) */
/* that have access controls related to the object in the TC. */

put "These identities (both inherited and explicit) have access controls
related to the object:";
n=1;
rc =1;
do while (rc > 0) ;

identitytype="";
identityname="";
rc=metasec_getnid(tc, uri, n, identitytype, identityname);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else do;
put n= identitytype= identityname=;
n=n+1;
end;

end;

/* Get list of ACTs on the object. */

put "ACT or ACTs on the object:";
n=1;
rc =1;
do while (rc > 0) ;

act_uri2="";
actname="";
actdesc="";
rc=metasec_getnact(tc, uri, n, act_uri2, actname, actdesc);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else do;
put n= act_uri2= actname= actdesc=;
n=n+1;
end;

end;

/* Get the URI for the ACT that was created above. */
/* For best performance, resolve URI into an ID instance to */
/* exploit object caching. (See the best practices topic.) */

id="";
type="";
rc=metadata_resolve("omsobj:AccessControlTemplate?@Name=’Grant SASUSERS ACT’",

type,id);
act_uri="omsobj:AccessControlTemplate/" || id;

/*---------------------------------*/
/* Apply the ACT to the object. */

202 Example: Working with ACTs � Chapter 16

/*---------------------------------*/
rc = METASEC_APPLYACT(tc, uri, act_uri);

/* In the SAS log, list the identities (both inherited and explicit) */
/* that have access controls related to the object in the TC. */

put "After ACT has been applied, these identities have access controls
related to the object:";
n=1;
rc =1;
do while (rc > 0) ;

identitytype="";
identityname="";
rc=metasec_getnid(tc, uri, n, identitytype, identityname);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else do;
put n= identitytype= identityname=;
n=n+1;
end;

end;

/* Get list of ACTs on the object. */

put "After ACT has been applied, ACT or ACTs on the object:";
n=1;
rc =1;
do while (rc > 0) ;

act_uri2="";
actname="";
actdesc="";
rc=metasec_getnact(tc, uri, n, act_uri2, actname, actdesc);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else do;
put n= act_uri2= actname= actdesc=;
n=n+1;
end;

end;

/*---*/
/* Next in the log, list all the authorizations on the object. */
/* Authorizations will be returned in a loop. The Auth output */
/* parameter is a bit field that returns much information. */
/* It contains bit fields indicating if grants and denies are */
/* explicit, from an ACT, or indirect (group or inheritance). */
/* Use the macro variable defined in %mdseccon() to determine */
/* what is in the fields. */
/* To create security reports about authorization, use the */

DATA Step Functions for Metadata Security Administration � Example: Working with ACTs 203

/* macros that SAS provides. See information above. */
/*---*/

put "These are authorizations on the object:";
rc = 0;
n=1;
do while (rc = 0) ;

condval="";
auth="";
identityname="";
identitytype="";
authorization="";
permission="";

rc=metasec_getnauth(tc, uri,n,
identitytype,identityname,auth,permission,condval);

if (rc = 0)then do;
n=n+1;
authint = input(auth, 16.);

/* The comparisons below must be done in the proper order */
/* to assure precedence is honored. */
authorization = "Neither Granted nor Denied";
if (band(authint, &_SECAD_PERM_EXPM)) then do;

if (band(authint,&_SECAD_PERM_EXPD)) then
authorization = "Denied Explicitly";

else
authorization = "Granted Explicitly";

end;
else if (band(authint, &_SECAD_PERM_ACTM)) then do;

if (band(authint,&_SECAD_PERM_ACTD)) then
authorization = "Denied by ACT";

else
authorization = "Granted by ACT";

end;
else if (band(authint, &_SECAD_PERM_NDRM)) then do;

if (band(authint,&_SECAD_PERM_NDRD)) then
authorization = "Denied Indirectly";

else
authorization = "Granted Indirectly";

end;

put identityname= permission= authorization=;
end; /* if rc =0 */

end; /* while */

/* Commit the transaction and write the ACT. */
rc=METASEC_ENDTRAN("",tc, &_SECAD_COMMIT_TC);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else
put "Transaction has been committed.";

204 Example: Working with ACTs � Chapter 16

put ;

/*--*/
/* The ACT calls below will be made without a transaction handle. */
/* Changes will be immediate. */
/* This code shows how to change the description of an ACT */
/*--*/

/* Get the Desc attribute */
attrvalue = "";
rc = METASEC_GETACTA("",act_uri,"Desc", attrvalue);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else
put "Existing ACT Description:" attrvalue;

/* change the ACT description */
rc = METASEC_SETACTA("",act_uri,"Desc",

"ACT that denies PUBLIC and grants SASUSERS");
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

/* Get the Desc attribute */
attrvalue = "";
rc = METASEC_GETACTA("",act_uri,"Desc", attrvalue);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else
put "New ACT Description:" attrvalue;

/* list all the attributes on the ACT */
put "These are the new attributes on the ACT:";

n=1;
rc =1;
do while (rc > 0) ;

attrname="";
attrvalue="";
rc=metasec_getnacta("", act_uri, n, attrname, attrvalue);
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

else do;
put "Attribute #" n "Name=" attrname "Value=" attrvalue;
n=n+1;
end;

DATA Step Functions for Metadata Security Administration � Example: Working with ACTs 205

end;

run;

If you issue the METABROWSE command to open the Metadata Browser window,
you can see the new ACT, "My Demo ACT for METASEC." It is associated with the new
table, "My Demo Table 2 for METASEC."

The following code shows how to remove the ACT from the object. The calls in the
code are submitted without a transaction context, so the changes are made immediately.

With METASEC_REMACT, you must specify the ID instance form of URI for the
ACT. Use the METADATA_RESOLVE function to find the ID. You can specify the
search form for the object from which you remove the ACT.

data _null_;
length type $60

id $17;
type=’’;
id=’’;
rc=metadata_resolve("omsobj:AccessControlTemplate?@Name=’Grant SASUSERS ACT’",

type,id);
rc2 = METASEC_REMACT("",

"omsobj:PhysicalTable?@Name=’Demo Table 2 for METASEC’",
"omsobj:AccessControlTemplate/"||id,
"0");

if (rc < 0) then do;
sysmsg = sysmsg();
put sysmsg;
end;

run;

If you look at the Metadata Browser window again, you can see that the ACT has
been removed from the table.

The following code deletes the table, the ACT, and the person by name, with the
search form of URI. The calls in the code are submitted without a transaction context,
so the changes are made immediately.

data _null_;
rc=metadata_delobj("omsobj:PhysicalTable?@Name=’Demo Table 2 for METASEC’");
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

rc=metadata_delobj("omsobj:AccessControlTemplate?@Name=’Grant SASUSERS ACT’");
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

rc=metadata_delobj("omsobj:Person?@Name=’Demo User for METASEC’");
if (rc < 0) then do;

sysmsg = sysmsg();
put sysmsg;
end;

run;

206

207

A P P E N D I X

1
Recommended Reading

Recommended Reading 207

Recommended Reading
Here is the recommended reading list for this title:
� SAS Intelligence Platform: Data Administration Guide
� SAS Intelligence Platform: Overview

� SAS Intelligence Platform: Security Administration Guide
� SAS Intelligence Platform: System Administration Guide
� SAS Language Reference: Concepts

� SAS Metadata Model: Reference
� SAS Open Metadata Interface: Reference
� SAS XML LIBNAME Engine: User’s Guide

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

208

209

Glossary

access control template
a reusable named authorization pattern that you can apply to multiple resources. An
access control template consists of a list of users and groups and indicates, for each
user or group, whether permissions are granted or denied. Short form: ACT.

ACT
See access control template.

ARM (Application Response Measurement)
an application programming interface that was developed by an industry partnership
and which is used to monitor the availability and performance of software
applications. ARM monitors the application tasks that are important to a particular
business.

attribute
a characteristic that is part of the standard metadata for an object. Examples of
attributes include the object’s name, creation date, and modification date.

authentication
the process of verifying the identity of a person or process within the guidelines of a
specific authorization policy.

authorization
the process of determining which users have which permissions for which resources.
The outcome of the authorization process is an authorization decision that either
permits or denies a specific action on a specific resource, based on the requesting
user’s identity and group memberships.

batch mode
a method of running SAS programs in which you prepare a file that contains SAS
statements plus any necessary operating system control statements and submit the
file to the operating system. Execution is completely separate from other operations
at your terminal. Batch mode is sometimes referred to as running in the background.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

database management system

210 Glossary

a software application that enables you to create and manipulate data that is stored
in the form of databases. Short form: DBMS.

DBMS
See database management system.

encryption
the act or process of converting data to a form that only the intended recipient can
read or use.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format.

job
a metadata object that specifies processes that create output.

libref
a short name for the full physical name of a SAS library. In the context of the SAS
Metadata Repository, a libref is associated with a SAS library when the library is
defined in the metadata repository.

localhost
a keyword that is used to specify the machine on which a program is executing. If a
client specifies localhost as the server address, the client connects to a server that
runs on the same machine.

metadata
data about data. For example, metadata typically describes resources that are shared
by multiple applications within an organization. These resources can include
software, servers, data sources, network connections, and so on. Metadata can also
be used to define application users and to manage users’ access to resources.
Maintaining metadata in a central location is more efficient than specifying and
maintaining the same information separately for each application.

metadata LIBNAME engine
the SAS engine that processes and augments data that is identified by metadata.
The metadata engine retrieves information about a target SAS library from metadata
objects in a specified metadata repository.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a
network. The specific attributes that a metadata object includes vary depending on
which metadata model is being used.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application. A SAS Metadata Repository is an
example.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains either one
data value or a missing-value indicator for each variable.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

Glossary 211

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set and SAS data view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files that are
stored in other software vendors’ file formats.

SAS data set option
an option that appears in parentheses after a SAS data set name. Data set options
specify actions that apply only to the processing of that SAS data set.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the SAS DATA step and by the SAS SQL
procedure.

SAS library
a collection of one or more files that are recognized by SAS and that are referenced
and stored as a unit. SAS libraries can be defined in a SAS Metadata Repository to
provide centralized definitions for SAS applications.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Model
a collection of metadata types that are used for saving information about application
elements.

SAS Metadata Repository
one or more files that store metadata about application elements. Users connect to a
SAS Metadata Server and use the SAS Open Metadata Interface to read metadata
from or write metadata to one or more SAS Metadata Repositories. The metadata
types in a SAS Metadata Repository are defined by the SAS Metadata Model.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to
one or more SAS Metadata Repositories. The SAS Metadata Server uses the
Integrated Object Model (IOM), which is provided with SAS Integration Technologies,
to communicate with clients and with other servers.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS table
another term for SAS data set. See also SAS data set.

SAS/ACCESS software

212 Glossary

a group of software interfaces, each of which makes data from a particular external
database management system (DBMS) directly available to SAS, as well as making
SAS data directly available to the DBMS.

statement option
a word that you specify in a particular SAS statement and which affects only the
processing that that statement performs.

transformation
in SAS Data Integration Studio, a metadata object that specifies how to extract data,
transform data, or load data into data stores. Each transformation that you specify
in a process flow diagram generates or retrieves SAS code. You can specify
user-written code in the metadata for any transformation in a process flow diagram.

variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations.

213

Index

A
access controls

applying ACT to 173
removing ACT from 191

accessibility features 4
ACT

applying to access controls on an object 173
attributes 178, 182, 192
creating 189
deleting from metadata server 176
removing from object’s access controls 191
returning nth ACT 180
working with 198

ACTION= argument
METAOPERATE procedure 120

action arguments
METAOPERATE procedure 120

ACTION= EMPTY argument
METAOPERATE procedure 127

ACTION=PAUSE argument
METAOPERATE procedure 125

ACTION=REFRESH argument
METAOPERATE procedure 126

ACTION=RESUME argument
METAOPERATE procedure 127

ACTION=STATUS argument
METAOPERATE procedure 124

add actions
overriding 108

address
of metadata server 39

administration tasks
pausing metadata server for 7

ARM logging 126
array parameters 132
association lists 162
attributes

ACT 178, 182, 192
nth attribute of specified object 145
setting 165
value of 140

AuthenticationDomain metadata type 66
authorization

metadata engine and 47
nth authorization for an object 183
setting for objects 194

B
Base SAS engine

LIBNAME statement constructed for 63
best practices 131

C
code testing 92
Column metadata type 67
columns 3
configuration files

invoking connection profile 25
specifying connection options in 24

connection options 24
specifying directly 24
specifying in configuration file 24
specifying stored connection profiles 25
specifying with OPTIONS statement 25

connection parameters
specifying 101

connection profiles
for connecting to metadata server 29
invoking 25
specifying stored profiles 25
XML document containing 36

CONOPTSET= argument
constructing a LIBNAME statement 48
LIBNAME statement, metadata engine 55
obtaining option values from metadata objects 48

D
data access

Oracle engine versus metadata engine 75
data set options 4, 55

METAOUT= 55
OPTSET= 50, 56

data sources 3
accessing tables in 55
output processing of tables in 54
specifying 101
synchronizing metadata with 111

DATA step
creating reports with 14

DATA step functions 4, 131
array parameters 132
best practices 131
compared with metadata procedures 137

214 Index

for reading and writing metadata 135
for security administration 171
for security administration, examples 196

DatabaseSchema metadata type 67
DBMS

Relational DBMS Model 60
Remote Relational DBMS Model 60

DBMS data 99
DBMS SAS/ACCESS engine

LIBNAME statement constructed for 64
delete actions 108
DELETE argument

UPDATE_RULE statement (METALIB) 108
Directory metadata type 68

E
EMPTY action 127
encryption 30

level of 32
encryption options 25
engines

See also metadata engine
DBMS SAS/ACCESS engine 64
Oracle engine versus metadata engine 75
REMOTE 65
underlying 45

examples
creating property set object for LIBOPTSET= 8
creating reports with DATA step 14
creating reports with METADATA procedure and XML

engine 9
data access with Oracle versus metadata engine 75
functions for security administration 196
METADATA procedure 90
METALIB procedure 111
METAOPERATE procedure 124
pausing metadata server for administration tasks 7
submitting LIBNAME statement 75

EXCLUDE statement
METALIB procedure 104

F
filerefs

to temporary file with IN= argument 92
with IN= and OUT= arguments 91

folder objects
Id and Type attributes 155

FOLDER statement
METALIB procedure 105

FOLDERID statement
METALIB procedure 105

folders
storing metadata in 105

functions
See DATA step functions

H
HEADER= argument

PROC METADATA statement 86, 93
host name or address 39

I
Id attribute

of folder objects 155
identifiers 5

See also URI
obtaining 5

impact analysis 107, 113
IMPACT_LIMIT statement

METALIB procedure 106
IN= argument

fileref to temporary file 92
filerefs with 91
METADATA procedure 86

Index metadata type 68
information maps 99
input argument

METADATA procedure 86
input XML string 87

J
Job objects

maximum number for table definition updates 106
journaling 126

L
language elements 3

metadata objects listed by 63
when to use 3

LIBID= argument
OMR statement (METALIB) 101

LIBNAME statement, metadata engine 3, 51
CONOPTSET= argument 55
constructed for Base SAS engine 63
constructed for DBMS SAS/ACCESS engine 64
constructed for REMOTE engine 65
constructing 47, 48
LIBOPTSET= argument 55
METAOUT= argument 54
overview 45
required arguments 52
server connection arguments 53
submitting 75
syntax 51

LIBOPTSET= argument
constructing a LIBNAME statement 48
creating PropertySet object for 8
LIBNAME statement, metadata engine 55
obtaining option values from metadata objects 48

libraries 3
librefs 45
logging, ARM 126
Login metadata type 69

M
MATCHING argument

REPORT statement (METALIB) 108
%MDSECCON() macro 173
METAAUTORESOURCES system option 27
METABROWSE command 3
METACON command 3
METACONNECT= system option 29

Index 215

metadata
adding prefix to names 114
adding prefixes to names 107
DATA step functions for reading and writing 135
report summarizing changes in 107
requesting, for one object 95
requesting, for one type of object 96
setting defaults for 3
storing in folders 105
suppressing changes 106
synchronizing with data source 111
updating 109

metadata associations
deleting all objects 137
modifying association list 162
nth associated object 143
nth association for specified object 142
represented as XML element 89

metadata definitions 66
metadata engine 45

See also LIBNAME statement, metadata engine
advantages of 46
authorization and 47
constructing a LIBNAME statement 47
constructing options 47
data set options for 55
librefs 45
metadata types and 66
output processing of tables 54
process 45
requirements for 59
SAS Metadata Model 59
supported features 46
versus Oracle engine 75

metadata identifiers 5
obtaining 5

metadata language elements 3
metadata objects listed by 63
when to use 3

metadata LIBNAME statement
See LIBNAME statement, metadata engine

metadata modeling 59
metadata names 5
metadata objects 63

adding prefix to names 107
applying ACT to access controls 173
creating 153
deleting first object matching the URI 139
deleting objects making up an association 137
listed by language element 63
listed by type 66
nth associated object 143
nth association for specified object 142
nth attribute 145
nth authorization for 183
nth identity for 187
nth object matching specified URI 147
nth object type on metadata server 151
nth property of 149
obtaining option values from 48
referencing with URI 136
removing ACT from access controls 191
represented as XML element 88
requesting metadata for one 95
requesting metadata for one type of 96
resolving URI into 160

setting attributes 165
setting authorization for 194
setting properties 166
URI of specified property for 152
value of specified attribute 140

METADATA procedure 83, 84
changing a repository’s state 90
compared with METAOPERATE procedure 81
concepts 87
creating reports with 9
examples 90
filerefs 91
filerefs to temporary files 92
input argument 86
input XML string 87
metadata association represented as XML element 89
metadata object represented as XML element 88
method parameter represented as XML element 88
method represented as XML element 88
output arguments 86
requesting metadata for one object 95
requesting metadata for one type of object 96
results 89
server connection arguments 85
server status request 91
syntax 84
task tables 84

metadata resources
assigned at startup 27

metadata server
connection options for 24
connection profile for connecting to 29
deleting ACT from 176
determining if paused 81, 157
encryption level 32
encryption type 30
host name or address 39
model version number 167
network protocol for connecting to 37
nth object type 151
password for 33
pausing and resuming 126, 127
pausing for administration tasks 7
resolving URI into objects 160
SAS Metadata Repository for 38
sending XML strings to 83
specifying connection parameters 101
specifying data source 101
SPN for 40
status request 91, 124
TCP port for 35
user ID for 42
XML document containing connection profiles for 36

metadata types 66
metadata engine and 66

METADATA_DELASSN function 137
METADATA_DELOBJ function 139
METADATA_GETATTR function 140
METADATA_GETNASL function 142
METADATA_GETNASN function 143
METADATA_GETNATR function 145
METADATA_GETNOBJ function 147
METADATA_GETNPRP function 149
METADATA_GETNTYP function 151
METADATA_GETPROP function 152
METADATA_NEWOBJ function 153

216 Index

METADATA_PATHOBJ function 155
METADATA_PAUSED function 157
METADATA_PURGE function 158
METADATA_RESOLVE function 160
METADATA_SETASSN function 162
METADATA_SETATTR function 165
METADATA_SETPROP function 166
METADATA_VERSION function 167
METAENCRYPTALG system option 30
METAENCRYPTLEVEL system option 32
METAFIND command 3
METALIB procedure 99, 100

adding prefix to metadata names 114
concepts 108
examples 111
EXCLUDE statement 104
FOLDER statement 105
FOLDERID statement 105
how it works 108
impact analysis 107, 113
IMPACT_LIMIT statement 106
NOEXEC statement 106
ODS reports 110
OMR statement 101
PREFIX statement 107
PROC METALIB statement 101
REPORT statement 107, 109
results 109
SELECT statement 104
selecting tables for processing 104, 112
server connection arguments 103
synchronizing metadata with data source 111
syntax 100
task tables 100, 101
UPDATE_RULE statement 108
updating metadata 109

METAOPERATE procedure 117
action arguments 120
ACTION=EMPTY 127
ACTION=PAUSE with pause comment 125
ACTION=REFRESH to pause and resume metadata

server 126
ACTION=REFRESH with ARM logging 126
ACTION=REFRESH with journaling 126
ACTION=RESUME 127
actions and repositories 123
ACTION=STATUS 124
compared with METADATA procedure 81
concepts 123
examples 124
how it works 123
server connection arguments 118
syntax 118
task tables 118

METAOUT= argument
LIBNAME statement, metadata engine 54

METAOUT= data set option 55
METAPASS= system option 33
METAPORT= system option 35
METAPROFILE system option 36
METAPROTOCOL= system option 37
METAREPOSITORY= system option 38
METASEC_APPLYACT function 173
METASEC_BEGTRAN function 174
METASEC_DELACT function 176
METASEC_ENDTRAN function 177

METASEC_GETACTA function 178
METASEC_GETNACT function 180
METASEC_GETNACTA function 182
METASEC_GETNAUTH function 183
METASEC_GETNID function 187
METASEC_NEWACT function 189
METASEC_REMACT function 191
METASEC_SETACTA function 192
METASEC_SETAUTH function 194
METASERVER= system option 157, 39
METASPN= system option 40
METAUSER= system option 42
methods

parameter represented as XML element 88
represented as XML element 88

model version number
metadata server 167

modeling 59

N
names 5

adding prefix to metadata names 114
host name of metadata server 39

network protocol
for connecting to metadata server 37

NOADD argument
UPDATE_RULE statement (METALIB) 108

NOAUTOPAUSE argument
METAOPERATE procedure 121

NODELDUP argument
UPDATE_RULE statement (METALIB) 108

NOEXEC statement
METALIB procedure 106

NOUPDATE argument
UPDATE_RULE statement (METALIB) 108

O
objects

See also metadata objects
folder objects 155
Job objects 106
maximum number for updates 106
PropertySet 8
Transformation 106

observations 3
ODS reports 110
OMR statement

METALIB procedure 101
options

constructed by metadata engine 47
obtaining values from metadata objects 48
OPTSET= data set option 50

OPTIONS= argument
METAOPERATE procedure 121

OPTIONS statement
specifying connection options with 25

OPTSET= data set option 50, 56
Oracle engine

versus metadata engine 75
OUT= argument

filerefs with 91
METADATA procedure 86
METAOPERATE procedure 123

Index 217

output arguments
METADATA procedure 86

output processing
of tables in data source 54

overriding
add actions 108
update actions 108

P
PASSWORD= argument

METADATA procedure 85
METAOPERATE procedure 118
OMR statement (METALIB) 103

passwords
for metadata server 33

PAUSE action 123, 125
pause comments 125
pausing and resuming metadata server 126, 157
pausing metadata server 7, 81
PhysicalTable metadata type 69
port

TCP port for metadata server 35
PORT= argument

METADATA procedure 85
METAOPERATE procedure 119
OMR statement (METALIB) 103

PREFIX statement
METALIB procedure 107

prefixes
adding to metadata names 107, 114

PROC METADATA statement 84
input argument 86
output arguments 86
server connection arguments 85

PROC METALIB statement 101
PROC METAOPERATE statement 118

action arguments 120
server connection arguments 118

procedures 4, 81
See also METADATA procedure
compared with DATA step functions 137

properties
nth property of specified object 149
setting 166
URI of specified property 152

Property metadata type 70
PropertySet metadata type 71
PropertySet object

creating for LIBOPTSET= argument 8
PROTOCOL= argument

METADATA procedure 85
METAOPERATE procedure 119
OMR statement (METALIB) 103

purging URIs 158

R
reading metadata 135
REFRESH action 123

pausing and resuming metadata server 126
with ARM logging 126
with journaling 126

Relational DBMS Model 60
REMOTE engine

LIBNAME statement constructed for 65

Remote Relational DBMS Model 60
Remote SAS Data Set Model 60
REPID= argument

OMR statement (METALIB) 103
REPORT statement

METALIB procedure 107, 109
reports

creating with DATA step 14
creating with METADATA procedure and XML engine 9
details in 110
ODS 110
summarizing metadata changes 107

repository
changing state of 90
effect of PAUSE, REFRESH, and RESUME actions 123
SAS Metadata Repository for metadata server 38

REPOSITORY= argument
METADATA procedure 85
METAOPERATE procedure 119

resolving URIs 160
resource option 26
RESUME action 123, 127
resuming metadata server 126, 127
rows 3

S
SAS/ACCESS Interface to Oracle engine

versus metadata engine 75
SAS Data Set Model 60
SAS Metadata Model 59
SAS Metadata Repository

for metadata server 38
SASClientConnection metadata type 72
SASLibrary metadata type 73
Section 508 4
security administration

DATA step functions for 171
DATA step functions for, examples 196

SELECT statement
METALIB procedure 104

SERVER= argument
METADATA procedure 85
METAOPERATE procedure 119
OMR statement (METALIB) 104

server connection arguments
LIBNAME statement, metadata engine 53
METADATA procedure 85
METALIB procedure 103
METAOPERATE procedure 118

SPN (service principal name) 40
state of repository 90
STATUS action 124
status of metadata server 91
status request for metadata server 124
stored connection profiles 25
synchronizing metadata 111
system options 3

by category 23
connection options 24
encryption options 25
overview 23
resource option 26
viewing settings 23

218 Index

T
table definitions 99

maximum number of objects for updates 106
tables 3, 99

accessing in data source 55
excluding for processing 104
output processing of 54
selecting for processing 104, 112

TCP port
for metadata server 35

temporary files
fileref to, with IN= argument 92

terminology 3
testing code 92
transaction contexts 172

beginning and ending 174, 177, 197
Transformation objects

maximum number for table definition updates 106
TYPE= argument

REPORT statement (METALIB) 107
Type attribute

of folder objects 155

U
underlying engine 45
Uniform Resource Identifier

See URI
update actions

overriding 108
UPDATE_RULE statement

METALIB procedure 108
updates

maximum number of objects for 106
updating metadata 109
URI 6

DATA step functions for security administration 172
deleting first object that matches 139

formats 6

nth object matching 147

of specified property for specified object 152

purging 158

referencing metadata objects with 136

resolving into metadata objects 160

USER= argument

METADATA procedure 86

METAOPERATE procedure 119

OMR statement (METALIB) 104

user ID

for metadata server 42

V
variables 3

VERBOSE argument

METADATA procedure 87, 94

W
writing metadata 135

X
XML documents

containing connection profiles 36

XML elements

metadata association represented as 89

metadata object represented as 88

method parameter represented as 88

methods represented as 88

XML engine

creating reports with 9

XML strings

input XML string 87

sending to SAS Metadata Server 83

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

	Contents
	What’s New
	Overview
	System Options
	Metadata LIBNAME Engine
	Procedures
	DATA Step Functions
	Documentation Enhancements

	Introduction
	What Are the Metadata Language Elements?
	Overview of Metadata Language Elements
	When to Use Metadata Language Elements
	Accessibility Features of SAS Language Interfaces to Metadata

	Metadata Object Identifiers and URIs
	What Is a Metadata Identifier?
	Obtaining Metadata Names and Identifiers
	What Is a URI?

	Examples: Using Metadata Language Elements
	Overview of the Examples
	Example: Pausing the Server for an Administration Task
	Example: Creating a PropertySet Object for Use with LIBOPTSET=
	Example: Creating a Report with the METADATA Procedure and the XML Engine
	Example: Creating a Report with the DATA Step

	System Options
	Introduction to System Options for Metadata
	Overview of System Options for Metadata
	Connection Options
	Introduction to Connection Options
	Specifying Connection Properties Directly
	Specifying a Stored Connection Profile

	Encryption Options
	Resource Option

	System Options for Metadata
	Metadata LIBNAME Engine
	Introduction to the Metadata LIBNAME Engine
	Overview of the Metadata LIBNAME Engine
	What Is Supported?
	Advantages of Using the Metadata Engine
	The Metadata Engine and Authorization
	How the Metadata Engine Constructs a LIBNAME Statement
	How the Metadata Engine Constructs Options
	Examples: CONOPTSET= or LIBOPTSET= Argument
	Examples: OPTSET= Data Set Option

	Reference for the Metadata Engine
	LIBNAME Statement for the Metadata Engine
	Overview: Metadata LIBNAME Statement
	Syntax: Metadata LIBNAME Statement

	SAS Data Set Options for the Metadata Engine
	METAOUT= Data Set Option
	OPTSET= Data Set Option

	Reference to Metadata Objects for the Metadata Engine
	Overview of Metadata Requirements
	Diagrams of the SAS Metadata Model
	Metadata Objects, Listed by Language Element
	The Constructed LIBNAME Statement for a Base SAS Engine
	The Constructed LIBNAME Statement for a DBMS SAS/ACCESS Engine
	The Constructed LIBNAME Statement for the REMOTE Engine

	Metadata Objects, Listed by Type
	What Is a Metadata Type?
	How the Metadata Engine Uses SAS Metadata Types

	Examples for the Metadata Engine
	Example: Submitting the LIBNAME Statement
	Example: Before and After the Metadata Engine
	Overview
	Using the SAS/ACCESS Interface to Oracle Engine Directly
	Using the Metadata Engine

	Procedures
	Introduction to Procedures for Metadata
	Overview of Procedures for Metadata
	Comparison of the METADATA Procedure and the METAOPERATE Procedure

	METADATA Procedure
	Overview: METADATA Procedure
	Syntax: METADATA Procedure
	Concepts: METADATA Procedure
	Introduction to the Input XML String
	The Entire Method Is an XML Element
	A Method’s Parameter Is an XML Element
	A Metadata Object Is an XML Element
	A Metadata Association Is an XML Element
	See Also

	Results: METADATA Procedure
	Examples: METADATA Procedure

	METALIB Procedure
	Overview: METALIB Procedure
	Syntax: METALIB Procedure
	Concepts: METALIB Procedure
	How PROC METALIB Works
	What Metadata Is Updated?

	Results: METALIB Procedure with the REPORT Statement
	Introduction
	Output Delivery System (ODS) Reports
	Details in the Report

	Examples: METALIB Procedure

	METAOPERATE Procedure
	Overview: METAOPERATE Procedure
	Syntax: METAOPERATE Procedure
	Concepts: METAOPERATE Procedure
	How PROC METAOPERATE Works
	How PAUSE, REFRESH, and RESUME Affect Repositories

	Examples: METAOPERATE Procedure

	DATA Step Functions
	Introduction to DATA Step Functions for Metadata
	Overview of DATA Step Functions for Metadata
	Best Practices
	Array Parameters

	DATA Step Functions for Reading and Writing Metadata
	Introduction to DATA Step Functions for Reading and Writing Metadata
	What Are the DATA Step Functions for Reading and Writing Metadata?
	Referencing a Metadata Object with a URI
	Comparison of DATA Step Functions to Metadata Procedures

	METADATA_DELASSN Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_DELOBJ Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_GETATTR Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_GETNASL Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_GETNASN Function
	Syntax
	Arguments
	Return Values
	Example

	METADATA_GETNATR Function
	Syntax
	Arguments
	Return Values
	Examples
	Related Functions

	METADATA_GETNOBJ Function
	Syntax
	Arguments
	Return Values
	Examples
	Related Functions

	METADATA_GETNPRP Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_GETNTYP Function
	Syntax
	Arguments
	Return Values
	Example

	METADATA_GETPROP Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_NEWOBJ Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METADATA_PATHOBJ Function
	Syntax
	Arguments
	Return Values
	Examples

	METADATA_PAUSED Function
	Syntax
	Return Values
	Example

	METADATA_PURGE Function
	Syntax
	Arguments
	Return Values
	Details
	Example

	METADATA_RESOLVE Function
	Syntax
	Arguments
	Return Values
	Examples

	METADATA_SETASSN Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_SETATTR Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_SETPROP Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_VERSION Function
	Syntax
	Return Values
	Example

	DATA Step Functions for Metadata Security Administration
	Introduction to DATA Step Functions for Metadata Security Administration
	What Are the DATA Step Functions for Metadata Security Administration?
	Transaction Contexts and URIs
	Using the %MDSECCON() Macro

	METASEC_APPLYACT Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_BEGTRAN Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_DELACT Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_ENDTRAN Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_GETACTA Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_GETNACT Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_GETNACTA Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_GETNAUTH Function
	Syntax
	Arguments
	Authorizations and the %MDSECCON() Macro
	About the in/out Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_GETNID Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_NEWACT Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_REMACT Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_SETACTA Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	METASEC_SETAUTH Function
	Syntax
	Arguments
	Return Values
	Details
	Example
	Related Functions

	Examples: DATA Step Functions for Metadata Security Administration
	Overview
	Example: Begin and End Transaction Context
	Example: Working with ACTs

	Recommended Reading
	Recommended Reading

	Glossary
	Index

