
SAS® 9.3 Statements
Reference

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. SAS® 9.3 Statements: Reference. Cary, NC: SAS Institute
Inc.

SAS® 9.3 Statements: Reference

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-60764-902-1 (electronic book)

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, July 2011
2nd printing, August 2012

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

About This Book . v
What's New in SAS 9.3 Statements . ix
Recommended Reading . xiii

Chapter 1 • SAS Statements . 1
Definition of Statements . 1
DATA Step Statements . 2
Global Statements . 3

Chapter 2 • Dictionary of SAS Statements . 5
SAS Statements Documented in Other SAS Publications . 7
DATA Step Statements by Category . 7
Global Statements by Category . 13
Dictionary . 19

Index . 401

iv Contents

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

• syntax components

• style conventions

• special characters

• references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=).

keyword
specifies the name of the SAS language element that you use when you write your
program. Keyword is a literal that is usually the first word in the syntax. In a CALL
routine, the first two words are keywords.

In the following examples of SAS syntax, the keywords are the first words in the
syntax:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In the following example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without arguments:

DO;
... SAS code ...

v

END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

argument
specifies a numeric or character constant, variable, or expression. Arguments follow
the keyword or an equal sign after the keyword. The arguments are used by SAS to
process the language element. Arguments can be required or optional. In the syntax,
optional arguments are enclosed between angle brackets.

In the following example, string and position follow the keyword CHAR. These
arguments are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In the following example of SAS code, the argument
string has a value of 'summer', and the argument position has a value of
4:x=char('summer', 4);

In the following example, string and substring are required arguments, while
modifiers and startpos are optional.

FIND(string, substring <,modifiers> <,startpos>

Note: In most cases, example code in SAS documentation is written in lowercase with a
monospace font. You can use uppercase, lowercase, or mixed case in the code that
you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase bold,
uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In the
following example, the keyword ERROR is written in uppercase bold:

ERROR<message>;

UPPERCASE
identifies arguments that are literals.

In the following example of the CMPMODEL= system option, the literals include
BOTH, CATALOG, and XML:

CMPMODEL = BOTH | CATALOG | XML

italics
identifies arguments or values that you supply. Items in italics represent user-
supplied values that are either one of the following:

• nonliteral arguments In the following example of the LINK statement, the
argument label is a user-supplied value and is therefore written in italics:

LINK label;

• nonliteral values that are assigned to an argument

In the following example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT = variable-1 <, ..., variable-nformat><DEFAULT = default-format>;

vi About This Book

Items in italics can also be the generic name for a list of arguments from which you
can choose (for example, attribute-list). If more than one of an item in italics can be
used, the items are expressed as item-1, ..., item-n.

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In the following example of the MAPS system option, the equal sign sets the value
of MAPS:

MAPS = location-of-maps

< >
angle brackets identify optional arguments. Any argument that is not enclosed in
angle brackets is required.

In the following example of the CAT function, at least one item is required:

CAT (item-1 <, ..., item-n>)

|
a vertical bar indicates that you can choose one value from a group of values. Values
that are separated by the vertical bar are mutually exclusive.

In the following example of the CMPMODEL= system option, you can choose only
one of the arguments:

CMPMODEL = BOTH | CATALOG | XML

...
an ellipsis indicates that the argument or group of arguments following the ellipsis
can be repeated. If the ellipsis and the following argument are enclosed in angle
brackets, then the argument is optional.

In the following example of the CAT function, the ellipsis indicates that you can
have multiple optional items:

CAT (item-1 <, ..., item-n>)

'value' or “value”
indicates that an argument enclosed in single or double quotation marks must have a
value that is also enclosed in single or double quotation marks.

In the following example of the FOOTNOTE statement, the argument text is
enclosed in quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | “text”>;

;
a semicolon indicates the end of a statement or CALL routine.

In the following example each statement ends with a semicolon: data namegame;
length color name $8; color = 'black'; name = 'jack'; game =
trim(color) || name; run;

Syntax Conventions for the SAS Language vii

References to SAS Libraries and External Files
Many SAS statements and other language elements refer to SAS libraries and external
files. You can choose whether to make the reference through a logical name (a libref or
fileref) or use the physical filename enclosed in quotation marks. If you use a logical
name, you usually have a choice of using a SAS statement (LIBNAME or FILENAME)
or the operating environment's control language to make the association. Several
methods of referring to SAS libraries and external files are available, and some of these
methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library. Note that SAS-library is enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

viii About This Book

What's New in SAS 9.3
Statements

Overview

The SAS statements documentation is no longer part of SAS Language Reference:
Dictionary. See “Changes to SAS Language Reference: Dictionary” on page x. The
SAS statements that were previously documented in SAS Language Reference:
Dictionary are now documented here, in SAS Statements: Reference.

The following enhancements are made for the second maintenance release of SAS 9.3.

• A new FILENAME statement that enables you to access files on a Hadoop
Distributed File System (HDFS).

• A new LIBNAME option that specifies whether an administrator can access a
metadata-bound library for which corresponding metadata is corrupted,
misconfigured, or missing.

New SAS Statements

The following SAS statements are new:

FILENAME, Hadoop Access Method (p. 128)
enables you to access files on a Hadoop Distributed File System (HDFS) whose
location is specified.

LIBNAME JMP (p. 251)
associates a libref with a JMP data table and enables you to read and write JMP data
tables.

RESETLINE (p. 335)
restarts the program line numbering in the SAS log to 1.

Enhanced SAS Statements

The following SAS statements have been enhanced:

ix

ABORT (p. 19)
If you do not specify a value for n, the error code that is returned by SAS is ERROR.
The value of ERROR depends on the operating system. The condition code n is
returned to the operating system as the final SAS system exit code.

FILE (p. 76)
A new device type, JMS, has been added. This device type is supported on all host
operating systems.

FILENAME (p. 93)
A new device type, JMS, has been added. This device type is supported on all host
operating systems.

FILENAME, EMAIL Access Method (p. 106)
• E-mail addresses can be separated with a comma as well as a space.

• Two new e-mail options enable you to specify an expiration date for the e-mail
message and specify that a notification be sent when the e-mail message is
delivered to the recipient.

FILENAME, FTP Access Method (p. 117)
A new FTP option has been added that specifies that an attempt is made for passive
mode FTP.

FILENAME, WebDAV Access Method (p. 147)
A new option has been added that enables you to prompt for a login password if
necessary.

INFILE (p. 171)
A new device type, JMS, has been added. This device type is supported on all host
operating systems.

LIBNAME (p. 239)
• The new option EXTENDOBSCOUNTER= enables you to extend the maximum

observation count in all output SAS data files in the SAS library.

• In the second maintenance release of 9.3, the new option AUTHADMIN=
specifies whether an administrator can access a metadata-bound library for which
corresponding metadata is corrupted, misconfigured, or missing.

Changes to SAS Language Reference: Dictionary

Prior to SAS 9.3, this document was part of SAS Language Reference: Dictionary.
Starting with SAS 9.3, SAS Language Reference: Dictionary has been divided into seven
documents:

• SAS Data Set Options: Reference

• SAS Formats and Informats: Reference

• SAS Functions and CALL Routines: Reference

• SAS Statements: Reference

• SAS System Options: Reference

• SAS Component Objects: Reference (contains the documentation for the hash, hash
iterator, and Java objects)

x SAS Statements

• Base SAS Utilities: Reference (contains the documentation for the SAS DATA step
debugger and the SAS Utility macro %DS2CSV)

Changes to SAS Language Reference: Dictionary xi

xii SAS Statements

Recommended Reading

Here is the recommended reading list for this title:

• Base SAS Procedures Guide

• Base SAS Utilities: Reference

• SAS Companion for UNIX Environments

• SAS Companion for Windows

• SAS Companion for z/OS

• SAS Component Objects: Reference

• SAS Data Set Options: Reference

• SAS Formats and Informats: Reference

• SAS Functions and CALL Routines: Reference

• SAS Language Interfaces to Metadata

• SAS Language Reference: Concepts

• SAS National Language Support (NLS): Reference Guide

• SAS Output Delivery System: User's Guide

• SAS Scalable Performance Data Engine: Reference

• SAS System Options: Reference

• SAS XML LIBNAME Engine: User's Guide

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Publishing Sales
Representative:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

xiii

mailto:sasbook@sas.com
http://support.sas.com/bookstore

xiv Recommended Reading

Chapter 1

SAS Statements

Definition of Statements . 1

DATA Step Statements . 2
Executable and Declarative Statements . 2

Global Statements . 3

Definition of Statements
A SAS statement is a string of SAS keywords, SAS names, special characters, and
operators that instructs SAS to perform an operation or that gives information to SAS.
Each SAS statement ends with a semicolon.

This documentation covers two types of SAS statements:

• statements that are used in DATA step programming

• statements that are global in scope and can be used anywhere in a SAS program.

In addition to the statements documented in SAS Statements: Reference, statements are
also documented in the following publications:

• Base SAS Procedures Guide

• SAS Companion for Windows

• SAS Companion for UNIX Environments

• SAS Companion for z/OS

• SAS Language Interfaces to Metadata

• SAS Macro Language: Reference

• SAS Output Delivery System: User's Guide

• SAS Scalable Performance Data Engine: Reference

• SAS XML LIBNAME Engine: User's Guide

• SAS/ACCESS for Relational Databases: Reference

• SAS/CONNECT User's Guide

• SAS/SHARE User's Guide

1

DATA Step Statements

Executable and Declarative Statements
DATA step statements are executable or declarative statements that can appear in the
DATA step. Executable statements result in some action during individual iterations of
the DATA step; declarative statements supply information to SAS and take effect
when the system compiles program statements.

The following tables show the SAS executable and declarative statements that you can
use in the DATA step.

Table 1.1 Executable Statements in the DATA Step

Executable Statements

ABORT IF, Subsetting PUT, Column

Array Reference IF-THEN/ELSE PUT, Formatted

Assignment INFILE PUT, List

CALL INPUT PUT, Named

CONTINUE GO TO PUT

DECLARE INPUT, Column PUT, ODS

DELETE INPUT, Formatted PUTLOG

DESCRIBE INPUT, List REDIRECT

DISPLAY INPUT, Named REMOVE

DO LEAVE REPLACE

DO, Iterative LINK RESETLINE

DO UNTIL LIST RETURN

DO WHILE LOSTCARD SELECT

ERROR MERGE SET

EXECUTE MODIFY STOP

FILE Null Sum

FILE, ODS OUTPUT UPDATE

2 Chapter 1 • SAS Statements

Table 1.2 Declarative Statements in the DATA Step

Declarative Statements

ARRAY DATALINES4 Labels, Statement

ATTRIB DROP LENGTH

BY END RENAME

CARDS FORMAT RETAIN

CARDS4 INFORMAT WHERE

DATA KEEP WINDOW

DATALINES LABEL

DATA step statements can be grouped into six functional categories. For a list of DATA
step statements by category, see “DATA Step Statements by Category” on page 7.

Global Statements
Global statements generally provide information to SAS, request information or data,
move between different modes of execution, or set values for system options. Other
global statements (ODS statements) deliver output in a variety of formats, such as in
Hypertext Markup Language (HTML). You can use global statements anywhere in a
SAS program. Global statements are not executable; they take effect as soon as SAS
compiles program statements.

Global statements can be divided into eight functional categories. For a list of global
statements by category, see “Global Statements by Category” on page 13.

Other SAS software products have additional global statements that are used with those
products. For information, see the SAS documentation for those products.

Global Statements 3

4 Chapter 1 • SAS Statements

Chapter 2

Dictionary of SAS Statements

SAS Statements Documented in Other SAS Publications . 7

DATA Step Statements by Category . 7

Global Statements by Category . 13

Dictionary . 19
ABORT Statement . 19
ARRAY Statement . 23
Array Reference Statement . 27
Assignment Statement . 30
ATTRIB Statement . 31
BY Statement . 35
CALL Statement . 40
CARDS Statement . 41
CARDS4 Statement . 41
CATNAME Statement . 41
CHECKPOINT EXECUTE_ALWAYS Statement . 44
Comment Statement . 45
CONTINUE Statement . 47
DATA Statement . 48
DATALINES Statement . 56
DATALINES4 Statement . 58
DELETE Statement . 59
DESCRIBE Statement . 60
DISPLAY Statement . 61
DM Statement . 62
DO Statement . 64
DO Statement, Iterative . 65
DO UNTIL Statement . 69
DO WHILE Statement . 70
DROP Statement . 71
END Statement . 73
ENDSAS Statement . 74
ERROR Statement . 74
EXECUTE Statement . 75
FILE Statement . 76
FILENAME Statement . 93
FILENAME Statement, CATALOG Access Method . 100
FILENAME, CLIPBOARD Access Method . 104
FILENAME Statement, EMAIL (SMTP) Access Method 106
FILENAME Statement, FTP Access Method . 117
FILENAME Statement, Hadoop Access Method . 128

5

FILENAME Statement, SFTP Access Method . 133
FILENAME Statement, SOCKET Access Method . 138
FILENAME Statement, URL Access Method . 142
FILENAME Statement, WebDAV Access Method . 147
FOOTNOTE Statement . 152
FORMAT Statement . 156
GO TO Statement . 159
IF Statement, Subsetting . 161
IF-THEN/ELSE Statement . 163
%INCLUDE Statement . 164
INFILE Statement . 171
INFORMAT Statement . 196
INPUT Statement . 199
INPUT Statement, Column . 214
INPUT Statement, Formatted . 217
INPUT Statement, List . 221
INPUT Statement, Named . 228
KEEP Statement . 231
LABEL Statement . 233
label: Statement . 234
LEAVE Statement . 235
LENGTH Statement . 237
LIBNAME Statement . 239
LIBNAME Statement for the JMP Engine . 251
LIBNAME Statement for WebDAV Server Access . 252
LINK Statement . 256
LIST Statement . 258
%LIST Statement . 260
LOCK Statement . 261
LOSTCARD Statement . 264
MERGE Statement . 266
MISSING Statement . 270
MODIFY Statement . 271
Null Statement . 290
OPTIONS Statement . 292
OUTPUT Statement . 293
PAGE Statement . 296
PUT Statement . 296
PUT Statement, Column . 314
PUT Statement, Formatted . 316
PUT Statement, List . 319
PUT Statement, Named . 324
PUTLOG Statement . 326
REDIRECT Statement . 328
REMOVE Statement . 330
RENAME Statement . 331
REPLACE Statement . 333
RESETLINE Statement . 335
RETAIN Statement . 337
RETURN Statement . 341
RUN Statement . 342
%RUN Statement . 343
SASFILE Statement . 344
SELECT Statement . 350
SET Statement . 353
SKIP Statement . 365

6 Chapter 2 • Dictionary of SAS Statements

STOP Statement . 365
Sum Statement . 367
SYSECHO Statement . 368
TITLE Statement . 368
UPDATE Statement . 377
WHERE Statement . 382
WINDOW Statement . 389
X Statement . 399

SAS Statements Documented in Other SAS
Publications

Some statements are documented with related subject matter in other SAS publications.

• Application Messaging with SAS

• SAS Companion for Windows

• SAS Companion for UNIX Environments

• SAS Companion for z/OS

• SAS Language Interfaces to Metadata

• SAS Macro Language: Reference

• SAS Output Delivery System: User's Guide

• SAS Scalable Performance Data Engine: Reference

• SAS XML LIBNAME Engine: User's Guide

• SAS/ACCESS for Relational Databases: Reference

• SAS/CONNECT User’s Guide

• SAS/SHARE User’s Guide

DATA Step Statements by Category
In addition to being either executable or declarative, SAS DATA step statements can be
grouped into five functional categories:

Table 2.1 Categories of DATA Step Statements

Statements Category Functionality

Action • create and modify variables

• select only certain observations to process in the
DATA step

• look for errors in the input data

• work with observations as they are being created

DATA Step Statements by Category 7

Statements Category Functionality

Control • skip statements for certain observations

• change the order that statements are executed

• transfer control from one part of a program to
another

File-handling • work with files used as input to the data set

• work with files to be written by the DATA step

Information • give SAS additional information about the program
data vector

• give SAS additional information about the data set or
data sets that are being created.

Window Display • display and customize windows.

The following table lists and briefly describes the DATA step statements by category.

Category Language Elements Description

Action ABORT Statement (p. 19) Stops executing the current DATA step, SAS job, or SAS session.

Assignment Statement (p. 30) Evaluates an expression and stores the result in a variable.

CALL Statement (p. 40) Invokes a SAS CALL routine.

DELETE Statement (p. 59) Stops processing the current observation.

DESCRIBE Statement (p. 60) Retrieves source code from a stored compiled DATA step
program or a DATA step view.

ERROR Statement (p. 74) Sets _ERROR_ to 1. A message written to the SAS log is optional.

EXECUTE Statement (p. 75) Executes a stored compiled DATA step program.

IF Statement, Subsetting (p.
161)

Continues processing only those observations that meet the
condition of the specified expression.

LIST Statement (p. 258) Writes to the SAS log the input data record for the observation
that is being processed.

LOSTCARD Statement (p.
264)

Resynchronizes the input data when SAS encounters a missing or
invalid record in data that has multiple records per observation.

Null Statement (p. 290) Signals the end of data lines or acts as a placeholder.

OUTPUT Statement (p. 293) Writes the current observation to a SAS data set.

PUTLOG Statement (p. 326) Writes a message to the SAS log.

8 Chapter 2 • Dictionary of SAS Statements

Category Language Elements Description

REDIRECT Statement (p. 328) Points to different input or output SAS data sets when you execute
a stored program.

REMOVE Statement (p. 330) Deletes an observation from a SAS data set.

REPLACE Statement (p. 333) Replaces an observation in the same location.

STOP Statement (p. 365) Stops execution of the current DATA step.

Sum Statement (p. 367) Adds the result of an expression to an accumulator variable.

WHERE Statement (p. 382) Selects observations from SAS data sets that meet a particular
condition.

Control CONTINUE Statement (p.
47)

Stops processing the current DO-loop iteration and resumes
processing the next iteration.

DO Statement (p. 64) Specifies a group of statements to be executed as a unit.

DO Statement, Iterative (p.
65)

Executes statements between the DO and END statements
repetitively, based on the value of an index variable.

DO UNTIL Statement (p. 69) Executes statements in a DO loop repetitively until a condition is
true.

DO WHILE Statement (p. 70) Executes statements in a DO-loop repetitively while a condition is
true.

END Statement (p. 73) Ends a DO group or SELECT group processing.

GO TO Statement (p. 159) Directs program execution immediately to the statement label that
is specified and, if followed by a RETURN statement, returns
execution to the beginning of the DATA step.

IF-THEN/ELSE Statement (p.
163)

Executes a SAS statement for observations that meet specific
conditions.

label: Statement (p. 234) Identifies a statement that is referred to by another statement.

LEAVE Statement (p. 235) Stops processing the current loop and resumes with the next
statement in the sequence.

LINK Statement (p. 256) Directs program execution immediately to the statement label that
is specified and, if followed by a RETURN statement, returns
execution to the statement that follows the LINK statement.

RETURN Statement (p. 341) Stops executing statements at the current point in the DATA step
and returns to a predetermined point in the step.

SELECT Statement (p. 350) Executes one of several statements or groups of statements.

Data Access CATNAME Statement (p. 41) Logically combines two or more catalogs into one by associating
them with a catref (a shortcut name); clears one or all catrefs; lists

DATA Step Statements by Category 9

Category Language Elements Description

the concatenated catalogs in one concatenation or in all
concatenations.

FILENAME Statement (p. 93) Associates a SAS fileref with an external file or an output device,
disassociates a fileref and external file, or lists attributes of
external files.

FILENAME Statement,
CATALOG Access Method (p.
100)

Enables you to reference a SAS catalog as an external file.

FILENAME, CLIPBOARD
Access Method (p. 104)

Enables you to read text data from and write text data to the
clipboard on the host computer.

FILENAME Statement, EMAIL
(SMTP) Access Method (p.
106)

Enables you to send electronic mail programmatically from SAS
using the SMTP (Simple Mail Transfer Protocol) e-mail interface.

FILENAME Statement, FTP
Access Method (p. 117)

Enables you to access remote files by using the FTP protocol.

FILENAME Statement, Hadoop
Access Method (p. 128)

Enables you to access files on a Hadoop Distributed File System
(HDFS) whose location is specified in a configuration file.

FILENAME Statement, SFTP
Access Method (p. 133)

Enables you to access remote files by using the SFTP protocol.

FILENAME Statement,
SOCKET Access Method (p.
138)

Enables you to read from or write to a TCP/IP socket.

FILENAME Statement, URL
Access Method (p. 142)

Enables you to access remote files by using the URL access
method.

FILENAME Statement,
WebDAV Access Method (p.
147)

Enables you to access remote files by using the WebDAV
protocol.

LIBNAME Statement (p. 239) Associates or disassociates a SAS library with a libref (a shortcut
name), clears one or all librefs, lists the characteristics of a SAS
library, concatenates SAS libraries, or concatenates SAS catalogs.

LIBNAME Statement for the
JMP Engine (p. 251)

Associates a libref with a JMP data table and enables you to read
and write JMP data tables.

LIBNAME Statement for
WebDAV Server Access (p.
252)

Associates a libref with a SAS library and enables access to a
WebDAV (Web-based Distributed Authoring And Versioning)
server.

File-handling BY Statement (p. 35) Controls the operation of a SET, MERGE, MODIFY, or UPDATE
statement in the DATA step and sets up special grouping
variables.

CARDS Statement (p. 41) Specifies that data lines follow.

10 Chapter 2 • Dictionary of SAS Statements

Category Language Elements Description

CARDS4 Statement (p. 41) Specifies that data lines that contain semicolons follow.

DATA Statement (p. 48) Begins a DATA step and provides names for any output SAS data
sets, views, or programs.

DATALINES Statement (p.
56)

Specifies that data lines follow.

DATALINES4 Statement (p.
58)

Indicates that data lines that contain semicolons follow.

FILE Statement (p. 76) Specifies the current output file for PUT statements.

INFILE Statement (p. 171) Specifies an external file to read with an INPUT statement.

INPUT Statement (p. 199) Describes the arrangement of values in the input data record and
assigns input values to the corresponding SAS variables.

INPUT Statement, Column (p.
214)

Reads input values from specified columns and assigns them to
the corresponding SAS variables.

INPUT Statement, Formatted
(p. 217)

Reads input values with specified informats and assigns them to
the corresponding SAS variables.

INPUT Statement, List (p. 221) Scans the input data record for input values and assigns them to
the corresponding SAS variables.

INPUT Statement, Named (p.
228)

Reads data values that appear after a variable name that is
followed by an equal sign and assigns them to corresponding SAS
variables.

MERGE Statement (p. 266) Joins observations from two or more SAS data sets into a single
observation.

MODIFY Statement (p. 271) Replaces, deletes, and appends observations in an existing SAS
data set in place but does not create an additional copy.

PUT Statement (p. 296) Writes lines to the SAS log, to the SAS output window, or to an
external location that is specified in the most recent FILE
statement.

PUT Statement, Column (p.
314)

Writes variable values in the specified columns in the output line.

PUT Statement, Formatted (p.
316)

Writes variable values with the specified format in the output line.

PUT Statement, List (p. 319) Writes variable values and the specified character strings in the
output line.

PUT Statement, Named (p.
324)

Writes variable values after the variable name and an equal sign.

SET Statement (p. 353) Reads an observation from one or more SAS data sets.

DATA Step Statements by Category 11

Category Language Elements Description

UPDATE Statement (p. 377) Updates a master file by applying transactions.

Information ARRAY Statement (p. 23) Defines the elements of an array.

Array Reference Statement (p.
27)

Describes the elements in an array to be processed.

ATTRIB Statement (p. 31) Associates a format, informat, label, and length with one or more
variables.

DROP Statement (p. 71) Excludes variables from output SAS data sets.

FORMAT Statement (p. 156) Associates formats with variables.

INFORMAT Statement (p.
196)

Associates informats with variables.

KEEP Statement (p. 231) Specifies the variables to include in output SAS data sets.

LABEL Statement (p. 233) Assigns descriptive labels to variables.

LENGTH Statement (p. 237) Specifies the number of bytes for storing variables.

MISSING Statement (p. 270) Assigns characters in your input data to represent special missing
values for numeric data.

RENAME Statement (p. 331) Specifies new names for variables in output SAS data sets.

RETAIN Statement (p. 337) Causes a variable that is created by an INPUT or assignment
statement to retain its value from one iteration of the DATA step
to the next.

Log Control Comment Statement (p. 45) Specifies the purpose of the statement or program.

PAGE Statement (p. 296) Skips to a new page in the SAS log.

RESETLINE Statement (p.
335)

Restarts the program line numbers in the SAS log to 1.

SKIP Statement (p. 365) Creates a blank line in the SAS log.

Operating
Environment

X Statement (p. 399) Issues an operating-environment command from within a SAS
session.

Output Control FOOTNOTE Statement (p.
152)

Writes up to 10 lines of text at the bottom of the procedure or
DATA step output.

TITLE Statement (p. 368) Specifies title lines for SAS output.

Program Control CHECKPOINT
EXECUTE_ALWAYS
Statement (p. 44)

Indicates to execute the DATA step or PROC step that
immediately follows without considering the checkpoint-restart
data.

12 Chapter 2 • Dictionary of SAS Statements

Category Language Elements Description

DM Statement (p. 62) Submits SAS Program Editor, Log, Procedure Output or text
editor commands as SAS statements.

ENDSAS Statement (p. 74) Terminates a SAS job or session after the current DATA or PROC
step executes.

%INCLUDE Statement (p.
164)

Brings a SAS programming statement, data lines, or both, into a
current SAS program.

%LIST Statement (p. 260) Displays lines that are entered in the current session.

LOCK Statement (p. 261) Acquires and releases an exclusive lock on an existing SAS file.

OPTIONS Statement (p. 292) Specifies or changes the value of one or more SAS system
options.

RUN Statement (p. 342) Executes the previously entered SAS statements.

%RUN Statement (p. 343) Ends source statements following a %INCLUDE * statement.

SASFILE Statement (p. 344) Opens a SAS data set and allocates enough buffers to hold the
entire file in memory.

SYSECHO Statement (p. 368) Fires a global statement complete event and passes a text string
back to the IOM client.

Window Display DISPLAY Statement (p. 61) Displays a window that is created with the WINDOW statement.

WINDOW Statement (p. 389) Creates customized windows for your applications.

Global Statements by Category
The following table lists and describes SAS global statements, organized by function
into eight categories:

Table 2.2 Global Statements by Category

Statements Category Functionality

Data Access associate reference names with SAS libraries, SAS
catalogs, external files and output devices, and access
remote files.

Log Control alter the appearance of the SAS log.

ODS: Output Control choose objects to send to output destinations; edit the
output format.

Global Statements by Category 13

Statements Category Functionality

ODS: SAS Formatted apply default styles to SAS specific entities such as a
SAS data set, SAS output listing, or a SAS document.

ODS: Third-Party Formatted apply styles to the output objects that are used by
applications outside of SAS.

Operating Environment access the operating environment directly.

Output Control add titles and footnotes to your SAS output; deliver
output in a variety of formats.

Program Control govern the way SAS processes your SAS program.

The following table provides brief descriptions of SAS global statements. For more
detailed information, see the individual statements.

Category Language Elements Description

Action ABORT Statement (p. 19) Stops executing the current DATA step, SAS job, or SAS session.

Assignment Statement (p. 30) Evaluates an expression and stores the result in a variable.

CALL Statement (p. 40) Invokes a SAS CALL routine.

DELETE Statement (p. 59) Stops processing the current observation.

DESCRIBE Statement (p. 60) Retrieves source code from a stored compiled DATA step
program or a DATA step view.

ERROR Statement (p. 74) Sets _ERROR_ to 1. A message written to the SAS log is optional.

EXECUTE Statement (p. 75) Executes a stored compiled DATA step program.

IF Statement, Subsetting (p.
161)

Continues processing only those observations that meet the
condition of the specified expression.

LIST Statement (p. 258) Writes to the SAS log the input data record for the observation
that is being processed.

LOSTCARD Statement (p.
264)

Resynchronizes the input data when SAS encounters a missing or
invalid record in data that has multiple records per observation.

Null Statement (p. 290) Signals the end of data lines or acts as a placeholder.

OUTPUT Statement (p. 293) Writes the current observation to a SAS data set.

PUTLOG Statement (p. 326) Writes a message to the SAS log.

REDIRECT Statement (p. 328) Points to different input or output SAS data sets when you execute
a stored program.

REMOVE Statement (p. 330) Deletes an observation from a SAS data set.

14 Chapter 2 • Dictionary of SAS Statements

Category Language Elements Description

REPLACE Statement (p. 333) Replaces an observation in the same location.

STOP Statement (p. 365) Stops execution of the current DATA step.

Sum Statement (p. 367) Adds the result of an expression to an accumulator variable.

WHERE Statement (p. 382) Selects observations from SAS data sets that meet a particular
condition.

Control CONTINUE Statement (p.
47)

Stops processing the current DO-loop iteration and resumes
processing the next iteration.

DO Statement (p. 64) Specifies a group of statements to be executed as a unit.

DO Statement, Iterative (p.
65)

Executes statements between the DO and END statements
repetitively, based on the value of an index variable.

DO UNTIL Statement (p. 69) Executes statements in a DO loop repetitively until a condition is
true.

DO WHILE Statement (p. 70) Executes statements in a DO-loop repetitively while a condition is
true.

END Statement (p. 73) Ends a DO group or SELECT group processing.

GO TO Statement (p. 159) Directs program execution immediately to the statement label that
is specified and, if followed by a RETURN statement, returns
execution to the beginning of the DATA step.

IF-THEN/ELSE Statement (p.
163)

Executes a SAS statement for observations that meet specific
conditions.

label: Statement (p. 234) Identifies a statement that is referred to by another statement.

LEAVE Statement (p. 235) Stops processing the current loop and resumes with the next
statement in the sequence.

LINK Statement (p. 256) Directs program execution immediately to the statement label that
is specified and, if followed by a RETURN statement, returns
execution to the statement that follows the LINK statement.

RETURN Statement (p. 341) Stops executing statements at the current point in the DATA step
and returns to a predetermined point in the step.

SELECT Statement (p. 350) Executes one of several statements or groups of statements.

Data Access CATNAME Statement (p. 41) Logically combines two or more catalogs into one by associating
them with a catref (a shortcut name); clears one or all catrefs; lists
the concatenated catalogs in one concatenation or in all
concatenations.

FILENAME Statement (p. 93) Associates a SAS fileref with an external file or an output device,
disassociates a fileref and external file, or lists attributes of
external files.

Global Statements by Category 15

Category Language Elements Description

FILENAME Statement,
CATALOG Access Method (p.
100)

Enables you to reference a SAS catalog as an external file.

FILENAME, CLIPBOARD
Access Method (p. 104)

Enables you to read text data from and write text data to the
clipboard on the host computer.

FILENAME Statement, EMAIL
(SMTP) Access Method (p.
106)

Enables you to send electronic mail programmatically from SAS
using the SMTP (Simple Mail Transfer Protocol) e-mail interface.

FILENAME Statement, FTP
Access Method (p. 117)

Enables you to access remote files by using the FTP protocol.

FILENAME Statement, Hadoop
Access Method (p. 128)

Enables you to access files on a Hadoop Distributed File System
(HDFS) whose location is specified in a configuration file.

FILENAME Statement, SFTP
Access Method (p. 133)

Enables you to access remote files by using the SFTP protocol.

FILENAME Statement,
SOCKET Access Method (p.
138)

Enables you to read from or write to a TCP/IP socket.

FILENAME Statement, URL
Access Method (p. 142)

Enables you to access remote files by using the URL access
method.

FILENAME Statement,
WebDAV Access Method (p.
147)

Enables you to access remote files by using the WebDAV
protocol.

LIBNAME Statement (p. 239) Associates or disassociates a SAS library with a libref (a shortcut
name), clears one or all librefs, lists the characteristics of a SAS
library, concatenates SAS libraries, or concatenates SAS catalogs.

LIBNAME Statement for the
JMP Engine (p. 251)

Associates a libref with a JMP data table and enables you to read
and write JMP data tables.

LIBNAME Statement for
WebDAV Server Access (p.
252)

Associates a libref with a SAS library and enables access to a
WebDAV (Web-based Distributed Authoring And Versioning)
server.

File-handling BY Statement (p. 35) Controls the operation of a SET, MERGE, MODIFY, or UPDATE
statement in the DATA step and sets up special grouping
variables.

CARDS Statement (p. 41) Specifies that data lines follow.

CARDS4 Statement (p. 41) Specifies that data lines that contain semicolons follow.

DATA Statement (p. 48) Begins a DATA step and provides names for any output SAS data
sets, views, or programs.

16 Chapter 2 • Dictionary of SAS Statements

Category Language Elements Description

DATALINES Statement (p.
56)

Specifies that data lines follow.

DATALINES4 Statement (p.
58)

Indicates that data lines that contain semicolons follow.

FILE Statement (p. 76) Specifies the current output file for PUT statements.

INFILE Statement (p. 171) Specifies an external file to read with an INPUT statement.

INPUT Statement (p. 199) Describes the arrangement of values in the input data record and
assigns input values to the corresponding SAS variables.

INPUT Statement, Column (p.
214)

Reads input values from specified columns and assigns them to
the corresponding SAS variables.

INPUT Statement, Formatted
(p. 217)

Reads input values with specified informats and assigns them to
the corresponding SAS variables.

INPUT Statement, List (p. 221) Scans the input data record for input values and assigns them to
the corresponding SAS variables.

INPUT Statement, Named (p.
228)

Reads data values that appear after a variable name that is
followed by an equal sign and assigns them to corresponding SAS
variables.

MERGE Statement (p. 266) Joins observations from two or more SAS data sets into a single
observation.

MODIFY Statement (p. 271) Replaces, deletes, and appends observations in an existing SAS
data set in place but does not create an additional copy.

PUT Statement (p. 296) Writes lines to the SAS log, to the SAS output window, or to an
external location that is specified in the most recent FILE
statement.

PUT Statement, Column (p.
314)

Writes variable values in the specified columns in the output line.

PUT Statement, Formatted (p.
316)

Writes variable values with the specified format in the output line.

PUT Statement, List (p. 319) Writes variable values and the specified character strings in the
output line.

PUT Statement, Named (p.
324)

Writes variable values after the variable name and an equal sign.

SET Statement (p. 353) Reads an observation from one or more SAS data sets.

UPDATE Statement (p. 377) Updates a master file by applying transactions.

Information ARRAY Statement (p. 23) Defines the elements of an array.

Global Statements by Category 17

Category Language Elements Description

Array Reference Statement (p.
27)

Describes the elements in an array to be processed.

ATTRIB Statement (p. 31) Associates a format, informat, label, and length with one or more
variables.

DROP Statement (p. 71) Excludes variables from output SAS data sets.

FORMAT Statement (p. 156) Associates formats with variables.

INFORMAT Statement (p.
196)

Associates informats with variables.

KEEP Statement (p. 231) Specifies the variables to include in output SAS data sets.

LABEL Statement (p. 233) Assigns descriptive labels to variables.

LENGTH Statement (p. 237) Specifies the number of bytes for storing variables.

MISSING Statement (p. 270) Assigns characters in your input data to represent special missing
values for numeric data.

RENAME Statement (p. 331) Specifies new names for variables in output SAS data sets.

RETAIN Statement (p. 337) Causes a variable that is created by an INPUT or assignment
statement to retain its value from one iteration of the DATA step
to the next.

Log Control Comment Statement (p. 45) Specifies the purpose of the statement or program.

PAGE Statement (p. 296) Skips to a new page in the SAS log.

RESETLINE Statement (p.
335)

Restarts the program line numbers in the SAS log to 1.

SKIP Statement (p. 365) Creates a blank line in the SAS log.

Operating
Environment

X Statement (p. 399) Issues an operating-environment command from within a SAS
session.

Output Control FOOTNOTE Statement (p.
152)

Writes up to 10 lines of text at the bottom of the procedure or
DATA step output.

TITLE Statement (p. 368) Specifies title lines for SAS output.

Program Control CHECKPOINT
EXECUTE_ALWAYS
Statement (p. 44)

Indicates to execute the DATA step or PROC step that
immediately follows without considering the checkpoint-restart
data.

DM Statement (p. 62) Submits SAS Program Editor, Log, Procedure Output or text
editor commands as SAS statements.

18 Chapter 2 • Dictionary of SAS Statements

Category Language Elements Description

ENDSAS Statement (p. 74) Terminates a SAS job or session after the current DATA or PROC
step executes.

%INCLUDE Statement (p.
164)

Brings a SAS programming statement, data lines, or both, into a
current SAS program.

%LIST Statement (p. 260) Displays lines that are entered in the current session.

LOCK Statement (p. 261) Acquires and releases an exclusive lock on an existing SAS file.

OPTIONS Statement (p. 292) Specifies or changes the value of one or more SAS system
options.

RUN Statement (p. 342) Executes the previously entered SAS statements.

%RUN Statement (p. 343) Ends source statements following a %INCLUDE * statement.

SASFILE Statement (p. 344) Opens a SAS data set and allocates enough buffers to hold the
entire file in memory.

SYSECHO Statement (p. 368) Fires a global statement complete event and passes a text string
back to the IOM client.

Window Display DISPLAY Statement (p. 61) Displays a window that is created with the WINDOW statement.

WINDOW Statement (p. 389) Creates customized windows for your applications.

Dictionary

ABORT Statement
Stops executing the current DATA step, SAS job, or SAS session.

Valid in: DATA step

Category: Action

Type: Executable

See: ABORT Statement in the SAS Companion for Windows, SAS Companion for z/OS,
and SAS Companion for UNIX Environments

Syntax
ABORT <ABEND | CANCEL <FILE> | RETURN> <n> <NOLIST>;

ABORT Statement 19

Without Arguments
If you specify no argument, the ABORT statement produces these results under the
following methods of operation:

batch mode and noninteractive mode

• stops processing the current DATA step and writes an error message to the SAS
log. Data sets can contain an incomplete number of observations or no
observations, depending on when SAS encountered the ABORT statement.

• sets the OBS= system option to 0.

• continues limited processing of the remainder of the SAS job, including
executing macro statements, executing system options statements, and syntax
checking of program statements.

• creates output data sets for subsequent DATA and PROC steps with no
observations.

windowing environment
• stops processing the current DATA step

• creates a data set that contains the observations that are processed before the
ABORT statement is encountered

• prints a message to the log that an ABORT statement terminated the DATA step

• continues processing any DATA or PROC steps that follow the ABORT
statement

interactive line mode
stops processing the current DATA step. Any further DATA steps or procedures
execute normally.

Arguments
ABEND

causes abnormal termination of the current SAS job or session. Results depend on
the method of operation:

• batch mode and noninteractive mode.

• stops processing immediately.

• sends an error message to the SAS log that states that execution was
terminated by the ABEND option of the ABORT statement.

• does not execute any subsequent statements or check syntax.

• returns control to the operating environment; further action is based on how
your operating environment and your site treat jobs that end abnormally.

• windowing environment and interactive line mode.

• causes your windowing environment and interactive line mode to stop
processing immediately and return you to your operating environment.

CANCEL <FILE>
causes the execution of the submitted statements to be canceled. Results depend on
the method of operation:

• batch mode and noninteractive mode.

• the entire SAS program and SAS system are terminated.

• an error message is written to the SAS log.

20 Chapter 2 • Dictionary of SAS Statements

• windowing environment and interactive line mode.

• clears only the current submitted program.

• other subsequent submitted programs are not affected.

• an error message is written to the SAS log.

• workspace server and stored process server.

• clears only the currently submitted program.

• other subsequent submit calls are not affected.

• an error message is written to the SAS log.

• SAS IntrNet application server.

• creates a separate execution for each request and submits the request code. A
CANCEL argument in the request code clears the current submitted code but
does not terminate the execution or the SAS session.

FILE
when coded as an option to the CANCEL argument in an autoexec file or in a
%INCLUDE file, causes only the contents of the autoexec file or %INCLUDE
file to be cleared by the ABORT statement. Other submitted source statements
will be executed after the autoexec or %INCLUDE file.

Restriction: The CANCEL argument cannot be submitted using
SAS/SHARE,SAS/CONNECT, or SAS/AF.

Note: When the ABORT CANCEL FILE option is executed within a %INCLUDE
file, all open macros are closed and execution resumes at the next source line of
code.

RETURN
causes the immediate normal termination of the current SAS job or session. Results
depend on the method of operation:

• batch mode and noninteractive mode

• stops processing immediately

• sends an error message to the SAS log stating that execution was terminated
by the RETURN option in the ABORT statement

• does not execute any subsequent statements or check syntax

• returns control to your operating environment with a condition code
indicating an error

• windowing environment

• causes your windowing environment and interactive line mode to stop
processing immediately and return you to your operating environment.

n
is an integer value that enables you to specify a condition code:

• when used with the CANCEL argument, the value is placed in the SYSINFO
automatic macro variable

• when not used with the CANCEL argument, the error code that is returned by
SAS is ERROR. The value of ERROR depends on the operating system. The
condition code n is returned to the operating system as the final SAS system exit
code.

ABORT Statement 21

NOLIST
suppresses the output of all variables to the SAS log.
Requirement: NOLIST must be the last option in the ABORT statement.

Details
The ABORT statement causes SAS to stop processing the current DATA step. What
happens next depends on

• the method that you use to submit your SAS statements

• the arguments that you use with ABORT

• your operating environment.

The ABORT statement usually appears in a clause of an IF-THEN statement or a
SELECT statement that is designed to stop processing when an error condition occurs.

Note: The return code generated by the ABORT statement is ignored by SAS if the
system option ERRORABEND is in effect.

Note: When you execute an ABORT statement in a DATA step, SAS does not use data
sets that were created in the step to replace existing data sets with the same name.

Operating Environment Information
The only difference between the ABEND and RETURN options is that with ABEND
further action is based on how your operating environment and site treat jobs that
end abnormally. RETURN simply returns a condition code that indicates an error.

Comparisons
• When you use the SAS windowing environment or interactive line mode, the

ABORT statement and the STOP statement both stop processing. The ABORT
statement sets the value of the automatic variable _ERROR_ to 1, and the STOP
statement does not.

• In batch or noninteractive mode, the ABORT and STOP statements also have
different effects. Both stop processing, but only ABORT sets the value of the
automatic variable _ERROR_ to 1. Use the STOP statement, therefore, when you
want to stop only the current DATA step and continue processing with the next step.

Example: Stopping Execution of SAS
This example uses the ABORT statement as part of an IF-THEN statement to stop
execution of SAS when it encounters a data value that would otherwise cause a division-
by-zero condition.

if volume=0 then abort 255;
 density=mass/volume;

The n value causes SAS to return the condition code 255 to the operating environment
when the ABORT statement executes.

See Also

Statements:

• “STOP Statement” on page 365

22 Chapter 2 • Dictionary of SAS Statements

ARRAY Statement
Defines the elements of an array.

Valid in: DATA step

Category: Information

Type: Declarative

Syntax
ARRAY array-name { subscript } <$> <length>
<array-elements> <(initial-value-list)> ;

Arguments
array-name

specifies the name of the array.
Restriction: Array-name must be a SAS name that is not the name of a SAS

variable in the same DATA step.
CAUTION: Using the name of a SAS function as an array name can cause

unpredictable results. If you inadvertently use a function name as the name of
the array, SAS treats parenthetical references that involve the name as array
references, not function references, for the duration of the DATA step. A
warning message is written to the SAS log.

{subscript}
describes the number and arrangement of elements in the array by using an asterisk,
a number, or a range of numbers. Subscript has one of these forms:

{dimension-size(s)}
specifies the number of elements in each dimension of the array. Dimension-size
is a numeric representation of either the number of elements in a one-
dimensional array or the number of elements in each dimension of a
multidimensional array.
Tip: You can enclose the subscript in braces ({}), brackets ([]) or parentheses

(()).
Examples:

This ARRAY statement defines a one dimensional array that is named
SIMPLE. The SIMPLE array groups together three variables that are named
RED, GREEN, and YELLOW:

array simple{3} red green yellow;

An array with more than one dimension is known as a multidimensional
array. You can have any number of dimensions in a multidimensional array.
For example, a two-dimensional array provides row and column arrangement
of array elements. SAS places variables into a two-dimensional array by
filling all rows in order, beginning at the upper left corner of the array
(known as row-major order). This statement defines a two-dimensional array
with five rows and three columns:

array x{5,3} score1-score15;

ARRAY Statement 23

{<lower :>upper<, ...<lower :> upper>}
are the bounds of each dimension of an array, where lower is the lower bound of
that dimension and upper is the upper bound.
Range: In most explicit arrays, the subscript in each dimension of the array

ranges from 1 to n, where n is the number of elements in that dimension.
Tips:

For most arrays, 1 is a convenient lower bound. Thus, you do not need to
specify the lower and upper bounds. However, specifying both bounds is
useful when the array dimensions have a convenient beginning point other
than 1.
To reduce the computational time that is needed for subscript evaluation,
specify a lower bound of 0.

Examples:
In the following example, the value of each dimension is by default the upper
bound of that dimension.

array x{5,3} score1-score15;

As an alternative, the following ARRAY statement is a longhand version of
the previous example:

array x{1:5,1:3} score1-score15;

{*}
specifies that SAS is to determine the subscript by counting the variables in the
array. When you specify the asterisk, also include array-elements.
Restriction: You cannot use the asterisk with _TEMPORARY_ arrays or when

you define a multidimensional array.

$
specifies that the elements in the array are character elements.
Tip: The dollar sign is not necessary if the elements have been previously defined as

character elements.

length
specifies the length of elements in the array that have not been previously assigned a
length.

array-elements
specifies the names of the elements that make up the array. Array-elements must be
either all numeric or all character, and they can be listed in any order. The elements
can be

variables
lists variable names.
Range: The names must be either variables that you define in the ARRAY

statement or variables that SAS creates by concatenating the array name and
a number. For example, when the subscript is a number (not the asterisk), you
do not need to name each variable in the array. Instead, SAS creates variable
names by concatenating the array name and the numbers 1, 2, 3, …n.

Restriction: If you use _ALL_, all the previously defined variables must be of
the same type.

Tips:
These SAS variable lists enable you to reference variables that have been
previously defined in the same DATA step:
NUMERIC specifies all numeric variables.
CHARACTER specifies all character variables.
ALL specifies all variables.

24 Chapter 2 • Dictionary of SAS Statements

Example: “Example 1: Defining Arrays” on page 26

TEMPORARY
creates a list of temporary data elements.
Range: Temporary data elements can be numeric or character.
Tips:

Temporary data elements behave like DATA step variables with these
exceptions:
They do not have names. Refer to temporary data elements by the array name
and dimension.
They do not appear in the output data set.
You cannot use the special subscript asterisk (*) to refer to all the elements.
Temporary data element values are always automatically retained, rather than
being reset to missing at the beginning of the next iteration of the DATA
step.
Arrays of temporary elements are useful when the only purpose for creating
an array is to perform a calculation. To preserve the result of the calculation,
assign it to a variable. You can improve performance time by using
temporary data elements.

(initial-value-list)
gives initial values for the corresponding elements in the array. The values for
elements can be numbers or character strings. You must enclose all character strings
in quotation marks. To specify one or more initial values directly, use the following
format:

(initial-value(s))

To specify an iteration factor and nested sublists for the initial values, use the
following format:

<constant-iter-value*> <(>constant value | constant-sublist<)>
Restriction: If you specify both an initial-value-list and array-elements, then array-

elements must be listed before initial-value-list in the ARRAY statement.
Tips:

You can assign initial values to both variables and temporary data elements.
Elements and values are matched by position. If there are more array elements
than initial values, the remaining array elements receive missing values and SAS
issues a warning.
You can separate the values in the initial value list with either a comma or a
blank space.
You can also use a shorthand notation for specifying a range of sequential
integers. The increment is always +1.
If you have not previously specified the attributes of the array elements (such as
length or type), the attributes of any initial values that you specify are
automatically assigned to the corresponding array element. Initial values are
retained until a new value is assigned to the array element.
When any (or all) elements are assigned initial values, all elements behave as if
they were named on a RETAIN statement.

Example: The following examples show how to use the iteration factor and nested
sublists. All of these ARRAY statements contain the same initial value list:
ARRAY x{10} x1-x10 (10*5);

ARRAY x{10} x1-x10 (5*(5 5));

ARRAY x{10} x1-x10 (5 5 3*(5 5) 5 5);

ARRAY Statement 25

ARRAY x{10} x1-x10 (2*(5 5) 5 5 2*(5 5));

ARRAY x{10} x1-x10 (2*(5 2*(5 5)));

Examples:
“Example 2: Assigning Initial Numeric Values” on page 26
“Example 3: Defining Initial Character Values” on page 26

Details
The ARRAY statement defines a set of elements that you plan to process as a group.
You refer to elements of the array by the array name and subscript. Because you usually
want to process more than one element in an array, arrays are often referenced within
DO groups.

Comparisons
• Arrays in the SAS language are different from arrays in many other languages. A

SAS array is simply a convenient way of temporarily identifying a group of
variables. It is not a data structure, and array-name is not a variable.

• An ARRAY statement defines an array. An array reference uses an array element in
a program statement.

Examples

Example 1: Defining Arrays
• array rain {5} janr febr marr aprr mayr;

• array days{7} d1-d7;

• array month{*} jan feb jul oct nov;

• array x{*} _NUMERIC_;

• array qbx{10};

• array meal{3};

Example 2: Assigning Initial Numeric Values
• array test{4} t1 t2 t3 t4 (90 80 70 70);

• array test{4} t1-t4 (90 80 2*70);

• array test{4} _TEMPORARY_ (90 80 70 70);

Example 3: Defining Initial Character Values
• array test2{*} $ a1 a2 a3 ('a','b','c');

Example 4: Defining More Advanced Arrays
• array new{2:5} green jacobs denato fetzer;

• array x{5,3} score1-score15;

• array test{3:4,3:7} test1-test10;

• array temp{0:999} _TEMPORARY_;

• array x{10} (2*1:5);

26 Chapter 2 • Dictionary of SAS Statements

Example 5: Creating a Range of Variable Names That Have Leading
Zeros
The following example shows that you can create a range of variable names that have
leading zeros. Each variable name has a length of three characters, and the names sort
correctly (A01, A02, … A10). Without leading zeros, the variable names would sort in
the following order: A1, A10, A2, … A9.

data test (drop=i);
 array a{10} A01-A10;
 do i=1 to 10;
 a{i}=i;
 end;
run;
proc print noobs data=test;
run;

Output 2.1 Array Names That Have Leading Zeros

See Also
• Chapter 23, “Array Processing,” in SAS Language Reference: Concepts

Statements:

• “Array Reference Statement” on page 27

Array Reference Statement
Describes the elements in an array to be processed.

Valid in: DATA step

Category: Information

Type: Declarative

Syntax
array-name { subscript }

Arguments
array-name

is the name of an array that was previously defined with an ARRAY statement in the
same DATA step.

Array Reference Statement 27

{subscript}
specifies the subscript. Any of these forms can be used:

{variable-1< , …variable-n>}
specifies a variable, or variable list that is usually used with DO-loop processing.
For each execution of the DO loop, the current value of this variable becomes the
subscript of the array element being processed.
Tip: You can enclose a subscript in braces ({ }), brackets ([]), or parentheses

(()).
Example: “Example 1: Using Iterative DO-Loop Processing” on page 29

{*}
forces SAS to treat the elements in the array as a variable list.
Restriction: When you define an array that contains temporary array elements,

you cannot reference the array elements with an asterisk.
Tips:

The asterisk can be used with the INPUT and PUT statements, and with some
SAS functions.
This syntax is provided for convenience and is an exception to usual array
processing.

Example: “Example 4: Using the Asterisk References as a Variable List” on
page 30

expression-1< , …expression-n>
specifies a SAS expression.
Range: The expression must evaluate to a subscript value when the statement

that contains the array reference executes. The expression can also be an
integer with a value between the lower and upper bounds of the array,
inclusive.

Example: “Example 3: Specifying the Subscript” on page 29

Details
• To refer to an array in a program statement, use an array reference. The ARRAY

statement that defines the array must appear in the DATA step before any references
to that array. An array definition is only in effect for the duration of the DATA step.
If you want to use the same array in several DATA steps, redefine the array in each
step.

CAUTION:
Using the name of a SAS function as an array name can cause
unpredictable results. If you inadvertently use a function name as the name of
the array, SAS treats parenthetical references that involve the name as array
references, not function references, for the duration of the DATA step. A
warning message is written to the SAS log.

• You can use an array reference anywhere that you can write a SAS expression,
including SAS functions and these SAS statements:

• assignment statement

• sum statement

• DO UNTIL(expression)

• DO WHILE(expression)

• IF

28 Chapter 2 • Dictionary of SAS Statements

• INPUT

• PUT

• SELECT

• WINDOW.

• The DIM function is often used with the iterative DO statement to return the number
of elements in a dimension of an array, when the lower bound of the dimension is 1.
If you use DIM, you can change the number of array elements without changing the
upper bound of the DO statement. For example, because DIM(NEW) returns a value
of 4, the following statements process all the elements in the array:

array new{*} score1-score4;
 do i=1 to dim(new);
 new{i}=new{i}+10;
 end;

Comparisons
An ARRAY statement defines an array, whereas an array reference defines the members
of the array to process.

Examples

Example 1: Using Iterative DO-Loop Processing
In this example, the statements process each element of the array, using the value of
variable I as the subscript on the array references for each iteration of the DO loop. If an
array element has a value of 99, the IF-THEN statement changes that value to 100.

array days{7} d1-d7;
 do i=1 to 7;
 if days{i}=99 then days{i}=100;
 end;

Example 2: Referencing Many Arrays in One Statement
You can refer to more than one array in a single SAS statement. In this example, you
create two arrays, DAYS and HOURS. The statements inside the DO loop substitute the
current value of variable I to reference each array element in both arrays.

array days{7} d1-d7;
 array hours{7} h1-h7;
 do i=1 to 7;
 if days{i}=99 then days{i}=100;
 hours{i}=days{i}*24;
 end;

Example 3: Specifying the Subscript
In this example, the INPUT statement reads in variables A1, A2, and the third element
(A3) of the array named ARR1:

array arr1{*} a1-a3;
x=1;
input a1 a2 arr1{x+2};

Array Reference Statement 29

Example 4: Using the Asterisk References as a Variable List
• array cost{10} cost1-cost10;

totcost=sum(of cost {*});

• array days{7} d1-d7;
input days {*};

• array hours{7} h1-h7;
put hours {*};

See Also
• Chapter 23, “Array Processing,” in SAS Language Reference: Concepts

Functions:

• “DIM Function” in SAS Functions and CALL Routines: Reference

Statements:

• “ARRAY Statement” on page 23

• “DO Statement, Iterative” on page 65

Assignment Statement
Evaluates an expression and stores the result in a variable.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
variable=expression;

Arguments
variable

names a new or existing variable.
Range: variable can be a variable name, array reference, or SUBSTR function.
Tip: Variables that are created by the Assignment statement are not automatically

retained.

expression
is any SAS expression.
Tip: expression can contain the variable that is used on the left side of the equal

sign. When a variable appears on both sides of a statement, the original value on
the right side is used to evaluate the expression, and the result is stored in the
variable on the left side of the equal sign. For more information, see Chapter 6,
“Expressions,” in SAS Language Reference: Concepts.

30 Chapter 2 • Dictionary of SAS Statements

Details
Assignment statements evaluate the expression on the right side of the equal sign and
store the result in the variable that is specified on the left side of the equal sign.

Example: Various Expressions in Assignment Statements
These assignment statements use different types of expressions:

• name='Amanda Jones';

• WholeName='Ms. '||name;

• a=a+b;

See Also

Statements:

• “Sum Statement” on page 367

ATTRIB Statement
Associates a format, informat, label, and length with one or more variables.

Valid in: DATA step

Category: Information

Type: Declarative

See: ATTRIB Statement under Windows, UNIX, and z/OS

Syntax
ATTRIB variable-list(s) attribute-list(s) ;

Arguments
variable-list(s)

names the variables that you want to associate with the attributes.
Tip: List the variables in any form that SAS allows.

attribute-list(s)
specifies one or more attributes to assign to variable-list. Specify one or more of
these attributes in the ATTRIB statement:

FORMAT=format
associates a format with variables in variable-list.
Tip: The format can be either a standard SAS format or a format that is defined

with the FORMAT procedure.

INFORMAT=informat
associates an informat with variables in variable-list.
Tip: The informat can be either a standard SAS informat or an informat that is

defined with the FORMAT procedure.

ATTRIB Statement 31

LABEL='label'
associates a label with variables in variable-list.

LENGTH=<$>length
specifies the length of variables in variable-list.
Range: For character variables, the range is 1 to 32,767 bytes for all operating

environments.
Restriction: You cannot change the length of a variable using LENGTH= from

PROC DATASETS.
Requirement: Put a dollar sign ($) in front of the length of character variables.
Operating environment: For numeric variables, the minimum length that you

can specify with the LENGTH= specification is 2 bytes in some operating
environments and 3 bytes in others.

Tip: Use the ATTRIB statement before the SET statement to change the length
of variables in an output data set when you use an existing data set as input.

TRANSCODE=YES | NO
specifies whether character variables can be transcoded. Use TRANSCODE=NO
to suppress transcoding.
Default: YES
Restrictions:

The TRANSCODE=NO attribute is not supported by some SAS Workspace
Server clients. In SAS 9.2, if the attribute is not supported, variable values
with TRANSCODE=NO are replaced (masked) with asterisks (*). Prior to
SAS 9.2, variables with TRANSCODE=NO were transcoded.
Prior releases of SAS cannot access a SAS 9.1 data set that contains a
variable with a TRANSCODE=NO attribute.
Transcode suppression is not supported by the V6TAPE engine.

Interactions:
You can use the “VTRANSCODE Function” in SAS National Language
Support (NLS): Reference Guide and “VTRANSCODEX Function” in SAS
National Language Support (NLS): Reference Guide to return a value that
indicates whether transcoding is on or off for a character variable.
If the TRANSCODE= attribute is set to NO for any character variable in a
data set, then PROC CONTENTS prints a transcode column that contains the
TRANSCODE= value for each variable in the data set. If all variables in the
data set are set to the default TRANSCODE= value (YES), then no transcode
column prints.

See: Chapter 4, “Transcoding for NLS,” in SAS National Language Support
(NLS): Reference Guide

Details

The Basics
Using the ATTRIB statement in the DATA step permanently associates attributes with
variables by changing the descriptor information of the SAS data set that contains the
variables.

You can use ATTRIB in a PROC step, but the rules are different.

32 Chapter 2 • Dictionary of SAS Statements

How SAS Treats Variables When You Assign Informats with the
INFORMAT= Option in the ATTRIB Statement
Informats that are associated with variables by using the INFORMAT= option in the
ATTRIB statement behave like informats that are used with modified list input. SAS
reads the variables by using the scanning feature of list input, but applies the informat. In
modified list input, SAS does the following:

• does not use the value of w in an informat to specify column positions or input field
widths in an external file

• uses the value of w in an informat to specify the length of previously undefined
character variables

• ignores the value of w in numeric informats

• uses the value of d in an informat in the same way it usually does for numeric
informats

• treats blanks that are embedded as input data as delimiters unless you change their
status with the DLM= or DLMSTR= option specification in an INFILE statement

If you have coded the INPUT statement to use another style of input, such as formatted
input or column input, that style of input is not used when you use the INFORMAT=
option in the ATTRIB statement.

How SAS Treats Transcoded Variables When You Use the SET and
MERGE Statements
When you use the SET or MERGE statement to create a data set from several data sets,
SAS makes the TRANSCODE= attribute of the variable in the output data set equal to
the TRANSCODE= value of the variable in the first data set. See “Example 2: Using the
SET Statement with Transcoded Variables” on page 34 and “Example 3: Using the
MERGE Statement with Transcoded Variables” on page 34.

Note: The TRANSCODE= attribute is set when the variable is first seen on an input
data set or in an ATTRIB TRANSCODE= statement. If a SET or MERGE statement
comes before an ATTRIB TRANSCODE= statement and the TRANSCODE=
attribute contradicts the SET statement, a warning will occur.

Comparisons
You can use either an ATTRIB statement or an individual attribute statement such as
FORMAT, INFORMAT, LABEL, and LENGTH to change an attribute that is
associated with a variable.

Examples

Example 1: Examples of ATTRIB Statements with Varying Numbers
of Variables and Attributes
Here are examples of ATTRIB statements that contain different numbers of variables
and attributes:

• single variable and single attribute:

attrib cost length=4;

• single variable with multiple attributes:

attrib saleday informat=mmddyy.
format=worddate.;

ATTRIB Statement 33

• multiple variables with the same multiple attributes:

attrib x y length=$4 label='TEST VARIABLE';

• multiple variables with different multiple attributes:

attrib x length=$4 label='TEST VARIABLE'
 y length=$2 label='RESPONSE';

• variable list with single attribute:

attrib month1-month12
 label='MONTHLY SALES';

Example 2: Using the SET Statement with Transcoded Variables
In this example, which uses the SET statement, the variable Z's TRANSCODE= attribute
in data set A is NO because B is the first data set and Z's TRANSCODE= attribute in
data set B is NO.

data b;
 length z $4;
 z = 'ice';
 attrib z transcode = no;
data c;
 length z $4;
 z = 'snow';
 attrib z transcode = yes;
data a;
 set b;
 set c;
 /* Check transcode setting for variable Z */
 rc1 = vtranscode(z);
 put rc1=;
run;

Example 3: Using the MERGE Statement with Transcoded Variables
In this example, which uses the MERGE statement, the variable Z's TRANSCODE=
attribute in data set A is YES because C is the first data set and Z's TRANSCODE=
attribute in data set C is YES.

data b;
 length z $4;
 z = 'ice';
 attrib z transcode = no;
data c;
 length z $4;
 z = 'snow';
 attrib z transcode = yes;
data a;
 merge c b;
 /* Check transcode setting for variable Z */
 rc1 = vtranscode(z);
 put rc1=;
run;

See Also
• “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”

in Chapter 3 of SAS Language Reference: Concepts

34 Chapter 2 • Dictionary of SAS Statements

Functions:

• “VTRANSCODE Function” in SAS National Language Support (NLS): Reference
Guide

• “VTRANSCODEX Function” in SAS National Language Support (NLS): Reference
Guide

Statements:

• “FORMAT Statement” on page 156

• “INFORMAT Statement” on page 196

• “LABEL Statement” on page 233

• “LENGTH Statement” on page 237

BY Statement
Controls the operation of a SET, MERGE, MODIFY, or UPDATE statement in the DATA step and sets up
special grouping variables.

Valid in: DATA step or PROC step

Category: File-handling

Type: Declarative

Syntax
BY <DESCENDING> variable-1
<…<DESCENDING>variable-n> <NOTSORTED> <GROUPFORMAT> ;

Arguments
DESCENDING

specifies that the data sets are sorted in descending order by the variable that is
specified. DESCENDING means largest to smallest numerically, or reverse
alphabetical for character variables.
Restriction: You cannot use the DESCENDING option with data sets that are

indexed because indexes are always stored in ascending order.
Example: “Example 2: Specifying Sort Order” on page 38

GROUPFORMAT
uses the formatted values, instead of the internal values, of the BY variables to
determine where BY groups begin and end, and therefore how FIRST.variable and
LAST.variable are assigned. Although the GROUPFORMAT option can appear
anywhere in the BY statement, the option applies to all variables in the BY
statement.
Restrictions:

You must sort the observations in a data set based on the value of the BY
variables before using the GROUPFORMAT option in the BY statement.
You can use the GROUPFORMAT option in a BY statement only in a DATA
step.

BY Statement 35

Interaction: If you also use the NOTSORTED option, you can group the
observations in a data set by the formatted value of the BY variables without
requiring that the data set be sorted or indexed.

Note: BY-group processing in the DATA step using the GROUPFORMAT option is
the same as BY-group processing with formatted values in SAS procedures.

Tips:
Using the GROUPFORMAT option is useful when you define your own formats
to display data that is grouped.
Using the GROUPFORMAT option in the DATA step ensures that BY groups
that you use to create a data set match the BY groups in PROC steps that report
grouped, formatted data.

See: Chapter 20, “BY-Group Processing in the DATA Step,” in SAS Language
Reference: Concepts

Example: “Example 4: Grouping Observations by Using Formatted Values” on
page 38

variable
names each variable by which the data set is sorted or indexed. These variables are
referred to as BY variables for the current DATA or PROC step.
Requirement: If you designate a name literal as the BY variable in BY-group

processing and you want to refer to the corresponding FIRST. or LAST.
temporary variables, you must include the FIRST. or LAST. portion of the two-
level variable name within single quotation marks. For example:

data sedanTypes;
 set cars;
 by 'Sedan Types'n;
 if 'first.Sedan Types'n then type=1;
run;

Tip: The data set can be sorted or indexed by more than one variable.
Examples:

“Example 1: Specifying One or More BY Variables” on page 38
“Example 2: Specifying Sort Order” on page 38
“Example 3: BY-Group Processing with Nonsorted Data” on page 38
“Example 4: Grouping Observations by Using Formatted Values” on page 38

NOTSORTED
specifies that observations with the same BY value are grouped together but are not
necessarily sorted in alphabetical or numeric order.
Restriction: You cannot use the NOTSORTED option with the MERGE and

UPDATE statements.
Tips:

The NOTSORTED option can appear anywhere in the BY statement.
Using the NOTSORTED option is useful if you have data that falls into other
logical groupings such as chronological order or categories.

Example: “Example 3: BY-Group Processing with Nonsorted Data” on page 38

Details

How SAS Identifies the Beginning and End of a BY Group
SAS identifies the beginning and end of a BY group by creating two temporary variables
for each BY variable: FIRST.variable and LAST.variable. The value of these variables
is either 0 or 1. SAS sets the value of FIRST.variable to 1 when it reads the first

36 Chapter 2 • Dictionary of SAS Statements

observation in a BY group, and sets the value of LAST.variable to 1 when it reads the
last observation in a BY group. These temporary variables are available for DATA step
programming but are not added to the output data set.

For a complete explanation of how SAS processes grouped data and of how to prepare
your data, see Chapter 20, “BY-Group Processing in the DATA Step,” in SAS Language
Reference: Concepts.

In a DATA Step
The BY statement applies only to the SET, MERGE, MODIFY, or UPDATE statement
that precedes it in the DATA step, and only one BY statement can accompany each of
these statements in a DATA step.

The data sets that are listed in the SET, MERGE, or UPDATE statements must be sorted
by the values of the variables that are listed in the BY statement or have an appropriate
index. As a default, SAS expects the data sets to be arranged in ascending numeric order
or in alphabetical order. The observations can be arranged by one of the following
methods:

• sort the data set

• create an index for the variables

• input the observations in order.

Note: MODIFY does not require sorted data, but sorting can improve performance.

Note: The BY statement honors the linguistic collation of data that is sorted by using the
SORT procedure with the SORTSEQ=LINGUISTIC option.

For more information, see “How to Prepare Your Data Sets” in Chapter 21 of SAS
Language Reference: Concepts.

In a PROC Step
You can specify the BY statement with some SAS procedures to modify their action.
Refer to the individual procedure in the Base SAS Procedures Guide for a discussion of
how the BY statement affects processing for SAS procedures.

With SAS Views
If you create a DATA step view by reading from a DBMS and the SET, MERGE,
UPDATE, or MODIFY statement is followed by a BY statement, the BY statement
might cause the DBMS to sort the data in order to return the data in sorted order. Sorting
the data could increase execution time.

Processing BY Groups
SAS assigns the following values to FIRST.variable and LAST.variable:

• FIRST.variable has a value of 1 under the following conditions:

• when the current observation is the first observation that is read from the data set.

• when you do not use the GROUPFORMAT option and the internal value of the
variable in the current observation differs from the internal value in the previous
observation.

If you use the GROUPFORMAT option, FIRST.variable has a value of 1 when
the formatted value of the variable in the current observation differs from the
formatted value in the previous observation.

• FIRST.variable has a value of 1 for any preceding variable in the BY statement.

BY Statement 37

In all other cases, FIRST.variable has a value of 0.

• LAST.variable has a value of 1 under the following conditions:

• when the current observation is the last observation that is read from the data set.

• when you use the GROUPFORMAT option and the internal value of the variable
in the current observation differs from the internal value in the next observation.

If you use the GROUPFORMAT option, LAST.variable has a value of 1 when
the formatted value of the variable in the current observation differs from the
formatted value in the next observation.

• LAST.variable has a value of 1 for any preceding variable in the BY statement.

In all other cases, LAST.variable has a value of 0.

Examples

Example 1: Specifying One or More BY Variables
• Observations are in ascending order of the variable DEPT:

by dept;

• Observations are in alphabetical (ascending) order by CITY and, within each value
of CITY, in ascending order by ZIPCODE:

by city zipcode;

Example 2: Specifying Sort Order
• Observations are in ascending order of SALESREP and, within each SALESREP

value, in descending order of the values of JANSALES:

by salesrep descending jansales;

• Observations are in descending order of BEDROOMS, and, within each value of
BEDROOMS, in descending order of PRICE:

by descending bedrooms descending price;

Example 3: BY-Group Processing with Nonsorted Data
Observations are ordered by the name of the month in which the expenses were accrued:

by month notsorted;

Example 4: Grouping Observations by Using Formatted Values
The following example illustrates the use of the GROUPFORMAT option.

proc format;
 value range
 low -55 = 'Under 55'
 55-60 = '55 to 60'
 60-65 = '60 to 65'
 65-70 = '65 to 70'
 other = 'Over 70';
run;
proc sort data=sashelp.class out=sorted_class;
 by height;
run;

38 Chapter 2 • Dictionary of SAS Statements

data _null_;
 format height range.;
 set sorted_class;
 by height groupformat;
 if first.height then
 put 'Shortest in ' height 'measures ' height:best12.;
run;

SAS writes the following output to the log:

Shortest in Under 55 measures 51.3
Shortest in 55 to 60 measures 56.3
Shortest in 60 to 65 measures 62.5
Shortest in 65 to 70 measures 65.3
Shortest in Over 70 measures 72

Example 5: Combining Multiple Observations and Grouping Them
Based on One BY Value
The following example shows how to use FIRST.variable and LAST.variable with BY-
group processing.

data Inventory;
 length RecordID 8 Invoice $ 30 ItemLine $ 50;
 infile datalines;
 input RecordID Invoice ItemLine &;
 drop RecordID;
 datalines;
A74 A5296 Highlighters
A75 A5296 Lot # 7603
A76 A5296 Yellow Blue Green
A77 A5296 24 per box
A78 A5297 Paper Clips
A79 A5297 Lot # 7423
A80 A5297 Small Medium Large
A81 A5298 Gluestick
A82 A5298 Lot # 4422
A83 A5298 New item
A84 A5299 Rubber bands
A85 A5299 Lot # 7892
A86 A5299 Wide width, Narrow width
A87 A5299 1000 per box
;
data combined;
 array Line{4} $ 60 ;
 retain Line1-Line4;
 keep Invoice Line1-Line4;
 set Inventory;
 by Invoice;

 if first.Invoice then do;
 call missing(of Line1-Line4);
 records = 0;
 end;

 records + 1;
 Line[records]=ItemLine;

BY Statement 39

 if last.Invoice then output;
run;
proc print data=combined;
 title 'Office Supply Inventory';
run;

Output 2.2 Output from Combining Multiple Observations

See Also

Statements:

• “MERGE Statement” on page 266

• “MODIFY Statement” on page 271

• “SET Statement” on page 353

• “UPDATE Statement” on page 377

CALL Statement
Invokes a SAS CALL routine.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
CALL routine(parameter-1 <, …parameter-n>);

Arguments
routine

specifies the name of the SAS CALL routine that you want to invoke.
See: For information about available routines, see SAS Functions and CALL

Routines: Reference

(parameter)
is a piece of information to be passed to or returned from the routine.

40 Chapter 2 • Dictionary of SAS Statements

Requirement: Enclose this information, which depends on the specific routine, in
parentheses.

Tip: You can specify additional parameters, separated by commas.

Details
SAS CALL routines can assign variable values and perform other system functions.

See Also
SAS Functions and CALL Routines: Reference

CARDS Statement
Specifies that data lines follow.

Valid in: DATA step

Category: File-handling

Type: Declarative

Alias: DATALINES, LINES

See: “DATALINES Statement” on page 56
CARDS statement in the SAS Companion for UNIX Environments

CARDS4 Statement
Specifies that data lines that contain semicolons follow.

Valid in: DATA step

Category: File-handling

Type: Declarative

Alias: DATALINES4, LINES4

See: “DATALINES4 Statement” on page 58

CATNAME Statement
Logically combines two or more catalogs into one by associating them with a catref (a shortcut name);
clears one or all catrefs; lists the concatenated catalogs in one concatenation or in all concatenations.

Valid in: Anywhere

Category: Data Access

Syntax
CATNAME <libref.> catref

< (libref-1.catalog-1 <(ACCESS=READONLY)>
<…libref-n.catalog–n <(ACCESS=READONLY)>>)>;

CATNAME Statement 41

CATNAME <libref.> catref CLEAR | _ALL_ CLEAR;

CATNAME <libref.> catref LIST | _ALL_ LIST;

Arguments
libref

is any previously assigned SAS libref. If you do not specify a libref, SAS
concatenates the catalog in the Work library, using the catref that you specify.
Restriction: The libref must have been previously assigned.

catref
is a unique catalog reference name for a catalog or a catalog concatenation that is
specified in the statement. Separate the catref from the libref with a period, as in
libref.catref. Any SAS name can be used for this catref.

catalog
is the name of a catalog that is available for use in the catalog concatenation.

Options
CLEAR

disassociates a currently assigned catref or libref.catref.
Tip: Specify a specific catref or libref.catref to disassociate it from a single

concatenation. Specify _ALL_ CLEAR to disassociate all currently assigned
catref or libref.catref concatenations.

ALL CLEAR
disassociates all currently assigned catref or libref.catref concatenations.

LIST
writes the catalog names that are included in the specified concatenation to the SAS
log.
Tip: Specify catref or libref.catref to list the attributes of a single concatenation.

Specify _ALL_ to list the attributes of all catalog concatenations in your current
session.

ALL LIST
writes all catalog names that are included in any current catalog concatenation to the
SAS log.

ACCESS=READONLY
assigns a read-only attribute to the catalog. SAS, therefore, will allow users to read
from the catalog entries but not to update information or to write new information.

Details

Why Use CATNAME?
CATNAME is useful because it enables you to access entries in multiple catalogs by
specifying a single catalog reference name (libref.catref or catref). After you create a
catalog concatenation, you can specify the catref in any context that accepts a simple
(non-concatenated) catref.

Rules for Catalog Concatenation
To use catalog concatenation effectively, you must understand the rules that determine
how catalog entries are located among the concatenated catalogs:

42 Chapter 2 • Dictionary of SAS Statements

• When a catalog entry is opened for input or update, the concatenated catalogs are
searched and the first occurrence of the specified entry is used.

• When a catalog entry is opened for output, it will be created in the first catalog that is
listed in the concatenation.

Note: A new catalog entry is created in the first catalog even if there is an entry with
the same name in another part of the concatenation.

Note: If the first catalog in a concatenation that is opened for update does not exist,
the item will be written to the next catalog that exists in the concatenation.

• When you want to delete or rename a catalog entry, only the first occurrence of the
entry is affected.

• Any time a list of catalog entries is displayed, only one occurrence of a catalog entry
name is shown.

Note: Even if the name occurs multiple times in the concatenation, only the first
occurrence is shown.

Comparisons
• The CATNAME statement is like a LIBNAME statement for catalogs. The

LIBNAME statement enables you to assign a shortcut name to a SAS library so that
you can use the shortcut name to find the files and use the data that they contain.
CATNAME enables you to assign a short name <libref.>catref (libref is optional) to
one or more catalogs so that SAS can find the catalogs and use all or some of the
entries in each catalog.

• The CATNAME statement explicitly concatenates SAS catalogs. You can use the
LIBNAME statement to implicitly concatenate SAS catalogs.

Examples

Example 1: Assigning and Using a Catalog Concatenation
You might need to access entries in several SAS catalogs. The most efficient way to
access the information is to logically concatenate the catalogs. Catalog concatenation
enables access to the information without actually creating a new, separate, and possibly
very large catalog.

Assign librefs to the SAS libraries that contain the catalogs that you want to concatenate:

libname mylib1 'data-library-1';
libname mylib2 'data-library-2';

Assign a catref, which can be any valid SAS name, to the list of catalogs that you want
to logically concatenate:

 catname allcats (mylib1.catalog1 mylib2.catalog2);

The SAS log displays this message:

Log 2.1 Log Output from CATNAME Statement

NOTE: Catalog concatenation WORK.ALLCATS has been created.

Because no libref is specified, the libref is WORK by default. When you want to access
a catalog entry in either of these catalogs, use the libref WORK and the catalog reference

CATNAME Statement 43

name ALLCATS instead of the original librefs and catalog names. For example, to
access a catalog entry named APPKEYS.KEYS in the catalog MYLIB1.CATALOG1,
specify

work.allcats.appkeys.keys

Example 2: Creating a Nested Catalog Concatenation
After you create a concatenated catalog, you can use CATNAME to combine your
concatenation with other single catalogs or other concatenated catalogs. Nested catalog
concatenation is useful, because you can use a single catref to access many different
catalog combinations.

libname local 'my_dir';
libname main 'public_dir';
catname private_catalog (local.my_application_code
 local.my_frames
 local.my_formats);
catname combined_catalogs (private_catalog
 main.public_catalog);

In the above example, you could work on private copies of your application entries by
using PRIVATE_CATALOG. If you want to see how your entries function when they
are combined with the public version of the application, you can use
COMBINED_CATALOGS.

See Also

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

• “LIBNAME Statement” on page 239 for a discussion of implicitly concatenating
SAS catalogs

CHECKPOINT EXECUTE_ALWAYS Statement
Indicates to execute the DATA step or PROC step that immediately follows without considering the
checkpoint-restart data.

Valid in: Anywhere

Category: Program Control

Syntax
CHECKPOINT EXECUTE_ALWAYS;

Without Arguments
The CHECKPOINT EXECUTE_ALWAYS statement indicates to SAS that the DATA
step or PROC step that immediately follows is to be executed without considering the
checkpoint data.

44 Chapter 2 • Dictionary of SAS Statements

Details
If checkpoint-restart mode is enabled and a batch program terminates without
completing, the program can be rerun beginning with the DATA step or PROC step that
was executing when it terminated. DATA or PROC steps that completed before the
batch program terminated are not reexecuted. If a DATA step or a PROC step must be
reexecuted, you can add the CHECKPOINT EXECUTE_ALWAYS statement before the
step. Using the CHECKPOINT EXECUTE_ALWAYS statement ensures that SAS
always executes the step without regard to the checkpoint-restart data.

See Also
• “Checkpoint Mode and Restart Mode” in Chapter 8 of SAS Language Reference:

Concepts

System Options:

• “STEPCHKPT System Option” in SAS System Options: Reference

• “STEPCHKPTLIB= System Option” in SAS System Options: Reference

• “STEPRESTART System Option” in SAS System Options: Reference

Comment Statement
Specifies the purpose of the statement or program.

Valid in: Anywhere

Category: Log Control

Syntax
*message;

or

/*message*/

Arguments
*message;

specifies the text that explains or documents the statement or program.
Range: These comments can be any length and are terminated with a semicolon.
Restrictions:

These comments must be written as separate statements.
These comments cannot contain internal semicolons.
A macro statement or macro variable reference that is contained inside this form
of comment is processed by the SAS macro facility. This form of comment
cannot be used to hide text from the SAS macro facility.

Tip: When using comments within a macro definition or to hide text from the SAS
macro facility, use this style comment:
 /* message */

/*message*/
specifies the text that explains or documents the statement or program.

Comment Statement 45

Range: These comments can be any length.
Restriction: This type of comment cannot be nested.
Windows specifics: If you use the Enhanced Editor, you can comment out a block

of code by highlighting the block and then pressing CTRL-/ (forward slash). To
uncomment a block of code, highlight the block and press CTRL-SHIFT-/
(forward slash).

Tips:
These comments can contain semicolons and unmatched quotation marks.
You can write these comments within statements or anywhere a single blank can
appear in your SAS code.

Details
You can use the comment statement anywhere in a SAS program to document the
purpose of the program, explain unusual segments of the program, or describe steps in a
complex program or calculation. SAS ignores text in comment statements during
processing.

CAUTION:
Avoid placing the /* comment symbols in columns 1 and 2. In some operating
environments, SAS might interpret a /* in columns 1 and 2 as a request to end the
SAS program or session.

Note: You can add these lines to your code to fix unmatched comment tags, unmatched
quotation marks, and missing semicolons.

/* '; * "; */;
quit;
run;

Example: Using the Comment Statement
These examples illustrate the two types of comments:

• This example uses the *message; format:

*This code finds the number in the BY group;

• This example uses the *message; format:

 | This uses one comment statement |
 | to draw a box. |
 ---------------------------------------;

• This example uses the /*message*/ format:

 input @1 name $20. /* last name */
 @200 test 8. /* score test */
 @50 age 3.; /* customer age */

• This example uses the /*message*/ format:

 /* For example 1 use: x=abc;
 for example 2 use: y=ghi; */

46 Chapter 2 • Dictionary of SAS Statements

CONTINUE Statement
Stops processing the current DO-loop iteration and resumes processing the next iteration.

Valid in: DATA step

Category: Control

Type: Executable

Restriction: Can be used only in a DO loop

Syntax
CONTINUE;

Without Arguments
The CONTINUE statement has no arguments. It stops processing statements within the
current DO-loop iteration based on a condition. Processing resumes with the next
iteration of the DO loop.

Comparisons
• The CONTINUE statement stops the processing of the current iteration of a loop and

resumes with the next iteration; the LEAVE statement causes processing of the
current loop to end.

• You can use the CONTINUE statement only in a DO loop; you can use the LEAVE
statement in a DO loop or a SELECT group.

Example: Preventing Other Statements from Executing
This DATA step creates a report of benefits for new full-time employees. If an
employee's status is PT (part-time), the CONTINUE statement prevents the second
INPUT statement and the OUTPUT statement from executing.

data new_emp;
 drop i;
 do i=1 to 5;
 input name $ idno status $;
 /* return to top of loop */
 /* when condition is true */
 if status='PT' then continue;
 input benefits $10.;
 output;
 end;
 datalines;
Jones 9011 PT
Thomas 876 PT
Richards 1002 FT
Eye/Dental
Kelly 85111 PT
Smith 433 FT
HMO
;

CONTINUE Statement 47

See Also

Statements:

• “DO Statement, Iterative” on page 65

• “LEAVE Statement” on page 235

DATA Statement
Begins a DATA step and provides names for any output SAS data sets, views, or programs.

Valid in: DATA step

Category: File-handling

Type: Declarative

Syntax
Form 1: DATA <data-set-name-1<(data-set-options-1)>>

<…data-set-name-n<(data-set-options-n)>>
</ <DEBUG><NESTING><STACK = stack-size>> <NOLIST>;

Form 2: DATA _NULL_ </ <DEBUG><NESTING><STACK = stack-size>> <NOLIST>;

Form 3: DATA view-name <data-set-name-1<(data-set-options-1)>>
<…data-set-name-n<(data-set-options-n)>> /
VIEW=view-name <(<password-option><SOURCE=source-option>)>
<NESTING> <NOLIST>;

Form 4: DATA data-set-name / PGM=program-name <(<password-option><SOURCE=source-option>)>
<NESTING> <NOLIST>;

Form 5: DATA VIEW=view-name <(password-option)> <NOLIST>;
DESCRIBE;

Form 6: DATA PGM=program-name <(password-option)> <NOLIST>;
<DESCRIBE;>
<REDIRECT INPUT | OUTPUT old-name-1 = new-name-1<… old-name-n = new-name-n> ;>
<EXECUTE;>

Without Arguments
If you omit the arguments, the DATA step automatically names each successive data set
that you create as DATAn, where n is the smallest integer that makes the name unique.

Arguments
data-set-name

names the SAS data file or DATA step view that the DATA step creates. To create a
DATA step view, you must specify at least one data-set-name and that data-set-
name must match view-name.
Restriction: data-set-name must conform to the rules for SAS names, and

additional restrictions might be imposed by your operating environment.
Tips:

48 Chapter 2 • Dictionary of SAS Statements

Instead of using a data set name, you can specify the physical pathname to the
file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.
You can execute a DATA step without creating a SAS data set. See “Example 5:
Creating a Custom Report” on page 54. For more information, see “When Not
Creating a Data Set (Form 2) ” on page 52.

See: For more information about the types of SAS data set names and when to use
each type, see “Names in the SAS Language” in Chapter 3 of SAS Language
Reference: Concepts.

(data-set-options)
specifies optional arguments that the DATA step applies when it writes observations
to the output data set.
See: SAS Data Set Options: Reference for a definition and list of data set options.
Example: “Example 1: Creating Multiple Data Files and Using Data Set Options”

on page 53

/ DEBUG
enables you to debug your program interactively by helping identify logic errors, and
sometimes data errors.

/ NESTING
specifies that a note will be printed to the SAS log for the beginning and end of each
DO-END and SELECT-END nesting level. This option enables you to debug
mismatched DO-END and SELECT-END statements and is particularly useful in
large programs where the nesting level is not obvious.

/ STACK=stack-size
specifies the maximum number of nested LINK statements.

NULL
specifies that SAS does not create a data set when it executes the DATA step.

VIEW=view-name
names a view that the DATA step uses to store the input DATA step view.
Restrictions:

view-name must match one of the data set names.
SAS creates only one view in a DATA step.

Tips:
If you specify additional data sets in the DATA statement, SAS creates these data
sets when the view is processed in a subsequent DATA or PROC step. Views
have the capability of generating other data sets at the time the view is executed.
SAS macro variables resolve when the view is created. Use the SYMGET
function to delay macro variable resolution until the view is processed.

Examples:
“Example 2: Creating Input DATA Step Views” on page 53
“Example 3: Creating a View and a Data File” on page 54

password-option
assigns a password to a stored compiled DATA step program or a DATA step view.

Note: To DESCRIBE a password-protected DATA step program, you must specify
its password. If the program has more than one password, you must specify the
most restrictive password. ALTER is the most restrictive, and READ is the least
restrictive. For more information, see “DESCRIBE Statement” on page 60.

The following password options are available:

DATA Statement 49

ALTER=alter-password
assigns an ALTER password to a SAS data file. The password enables you to
protect or replace a stored compiled DATA step program or a DATA step view.
Alias: PROTECT=
Requirements:

If you use an ALTER password in creating a stored compiled DATA step
program or a DATA step view, an ALTER password is required to replace
the program or view.
If you use an ALTER password in creating a stored compiled DATA step
program or a DATA step view, an ALTER password is required to execute a
DESCRIBE statement.

READ=read-password
assigns a READ password to a SAS data file. The password enables you to read
or execute a stored compiled DATA step program or a DATA step view.
Alias: EXECUTE=
Requirements:

If you use a READ password in creating a stored compiled DATA step
program or a DATA step view, a READ password is required to execute the
program or view.
If you use a READ password in creating a stored compiled DATA step
program or a DATA step view, a READ password is required to execute
DESCRIBE and EXECUTE statements. If you use an invalid password, SAS
will execute the DESCRIBE statement.

Tip: If you use a READ password in creating a stored compiled DATA step
program or a DATA step view, no password is required to replace the
program or view.

PW=password
assigns a READ and ALTER password, both having the same value.

SOURCE=source-option
specifies one of the following source options:

SAVE
saves the source code that created a stored compiled DATA step program or a
DATA step view.

ENCRYPT
encrypts and saves the source code that created a stored compiled DATA step
program or a DATA step view.
Tip: If you encrypt source code, use the ALTER password option as well. SAS

issues a warning message if you do not use ALTER.

NOSAVE
does not save the source code.

CAUTION:
If you use the NOSAVE option for a DATA step view, the view cannot be
migrated or copied from one version of SAS to another version.

Default: SAVE

PGM=program-name
names the stored compiled program that SAS creates or executes in the DATA step.
To create a stored compiled program, specify a slash (/) before the PGM= option. To
execute a stored compiled program, specify the PGM= option without a slash (/).

50 Chapter 2 • Dictionary of SAS Statements

Tip: SAS macro variables resolve when the stored program is created. Use the
SYMGET function to delay macro variable resolution until the view is
processed.

Example: “Example 4: Storing and Executing a Compiled Program” on page 54

NOLIST
suppresses the output of all variables to the SAS log when the value of _ERROR_ is
1.
Restriction: NOLIST must be the last option in the DATA statement.

Details

Using the DATA Statement
The DATA step begins with the DATA statement. You use the DATA statement to
create the following types of output: SAS data sets, data views, and stored programs.
You can specify more than one output in a DATA statement. However, only one of the
outputs can be a data view. You create a view by specifying the VIEW= option on page
49 and a stored program by specifying the PGM= option on page 50.

Using Both a READ and an ALTER Password
If you use both a READ and an ALTER password in creating a stored compiled DATA
step program or a DATA step view, the following items apply:

• A READ or ALTER password is required to execute the stored compiled DATA step
program or DATA step view.

• A READ or ALTER password is required if the stored compiled DATA step
program or DATA step view contains both DESCRIBE and EXECUTE statements.

• If you use an ALTER password with the DESCRIBE and EXECUTE statements,
the following items apply:

• SAS executes both the DESCRIBE and the EXECUTE statements.

• If you execute a stored compiled DATA step program or DATA step view
with an invalid ALTER password:

The DESCRIBE statement does not execute.
In batch mode, the EXECUTE statement has no effect.
In interactive mode, SAS prompts you for a READ password. If the
READ password is valid, SAS processes the EXECUTE statement. If it is
invalid, SAS does not process the EXECUTE statement.

• If you use a READ password with the DESCRIBE and EXECUTE statements,
the following items apply:

• In interactive mode, SAS prompts you for the ALTER password:

If you enter a valid ALTER password, SAS executes both the
DESCRIBE and the EXECUTE statements.
If you enter an invalid ALTER password, SAS processes the EXECUTE
statement but not the DESCRIBE statement.

• In batch mode, SAS processes the EXECUTE statement but not the
DESCRIBE statement.

• In both interactive and batch modes, if you specify an invalid READ
password SAS does not process the EXECUTE statement.

DATA Statement 51

• An ALTER password is required if the stored compiled DATA step program or
DATA step view contains a DESCRIBE statement.

• An ALTER password is required to replace the stored compiled DATA step program
or DATA step view.

Creating an Output Data Set (Form 1)
Use the DATA statement to create one or more output data sets. You can use data set
options to customize the output data set. The following DATA step creates two output
data sets, EXAMPLE1 and EXAMPLE2. It uses the data set option DROP to prevent the
variable IDNUMBER from being written to the EXAMPLE2 data set.

data example1 example2 (drop=IDnumber);
 set sample;
 . . .more SAS statements. . .
run;

When Not Creating a Data Set (Form 2)
Usually, the DATA statement specifies at least one data set name that SAS uses to create
an output data set. However, when the purpose of a DATA step is to write a report or to
write data to an external file, you might not want to create an output data set. Using the
keyword _NULL_ as the data set name causes SAS to execute the DATA step without
writing observations to a data set. This example writes to the SAS log the value of Name
for each observation. SAS does not create an output data set.

data _NULL_;
 set sample;
 put Name ID;
run;

Creating a DATA Step View (Form 3)
You can create DATA step views and execute them at a later time. The following DATA
step example creates a DATA step view. It uses the SOURCE=ENCRYPT option to
both save and encrypt the source code.

data phone_list / view=phone_list (source=encrypt);
 set customer_list;
 . . .more SAS statements. . .
run;

For more information, see “DATA Step Views” in Chapter 27 of SAS Language
Reference: Concepts.

Creating a Stored Compiled DATA Step Program (Form 4)
The ability to compile and store DATA step programs enables you to execute the stored
programs later. Stored compiled DATA step programs can reduce processing costs by
eliminating the need to compile DATA step programs repeatedly. The following DATA
step example compiles and stores a DATA step program. It uses the ALTER password
option, which allows the user to replace an existing stored program, and to protect the
stored compiled program from being replaced.

data testfile / pgm=stored.test_program (alter=sales);
 set sales_data;
 . . .more SAS statements. . .
run;

52 Chapter 2 • Dictionary of SAS Statements

For more information, see Chapter 28, “Stored Compiled DATA Step Programs,” in SAS
Language Reference: Concepts.

Describing a DATA Step View (Form 5)
The following example uses the DESCRIBE statement in a DATA step view to write a
copy of the source code to the SAS log.

data view=inventory;
 describe;
run;

For more information, see the “DESCRIBE Statement” on page 60.

Executing a Stored Compiled DATA Step Program (Form 6)
The following example executes a stored compiled DATA step program. It uses the
DESCRIBE statement to write a copy of the source code to the SAS log.

libname stored 'SAS library';
data pgm=stored.employee_list;
 describe;
 execute;
run;

libname stored 'SAS library';
data pgm=stored.test_program;
 describe;
 execute;
 . . .more SAS statements. . .
run;

For information , see the “DESCRIBE Statement” on page 60 and the “EXECUTE
Statement” on page 75.

Examples

Example 1: Creating Multiple Data Files and Using Data Set Options
This DATA statement creates more than one data set, and it changes the contents of the
output data sets:

data error (keep=subject date weight)
 fitness(label='Exercise Study'
 rename=(weight=pounds));

The ERROR data set contains three variables. SAS assigns a label to the FITNESS data
set and renames the variable weight to pounds.

Example 2: Creating Input DATA Step Views
This DATA step creates an input DATA step view instead of a SAS data file:

libname ourlib 'SAS-library';
data ourlib.test / view=ourlib.test;
 set ourlib.fittest;
 tot=sum(of score1-score10);
run;

DATA Statement 53

Example 3: Creating a View and a Data File
This DATA step creates an input DATA step view named THEIRLIB.TEST and an
additional temporary SAS data set named SCORETOT:

libname ourlib 'SAS-library-1';
libname theirlib 'SAS-library-2';
data theirlib.test scoretot
 / view=theirlib.test;
 set ourlib.fittest;
 tot=sum(of score1-score10);
run;

SAS does not create the data file SCORETOT until a subsequent DATA or PROC step
processes the view THEIRLIB.TEST.

Example 4: Storing and Executing a Compiled Program
The first DATA step produces a stored compiled program named STORED.SALESFIG:

libname in 'SAS-library-1 ';
libname stored 'SAS-library-2 ';
data salesdata / pgm=stored.salesfig;
 set in.sales;
 qtr1tot=jan+feb+mar;
run;

SAS creates the data set SALESDATA when it executes the stored compiled program
STORED.SALESFIG.

data pgm=stored.salesfig;
run;

Example 5: Creating a Custom Report
The second DATA step in this program produces a custom report and uses the _NULL_
keyword to execute the DATA step without creating a SAS data set:

data sales;
 input dept : $10. jan feb mar;
 datalines;
shoes 4344 3555 2666
housewares 3777 4888 7999
appliances 53111 7122 41333
;
data _null_;
 set sales;
 qtr1tot=jan+feb+mar;
 put 'Total Quarterly Sales: '
 qtr1tot dollar12.;
run;

Example 6: Using a Password with a Stored Compiled DATA Step
Program
The first DATA step creates a stored compiled DATA step program called
STORED.ITEMS. This program includes the ALTER password, which limits access to
the program.

data sample;
 input Name $ TotalItems $;
 datalines;

54 Chapter 2 • Dictionary of SAS Statements

Lin 328
Susan 433
Ken 156
Pat 340
;
proc print data=sample;
run;

libname stored 'SAS-library';

data employees / pgm=stored.items (alter=klondike);
 set sample;
 if TotalItems > 200 then output;
 run;

This DATA step executes the stored compiled DATA step program STORED.ITEMS. It
uses the DESCRIBE statement to print the source code to the SAS log. Because the
program was created with the ALTER password, you must use the password if you use
the DESCRIBE statement. If you do not enter the password, SAS will prompt you for it.

data pgm=stored.items (alter=klondike);
 describe;
 execute;
run;

Example 7: Displaying Nesting Levels
The following program has two nesting levels. SAS will generate four log messages, one
begin and end message for each nesting level.

data _null_ /nesting;
 do i = 1 to 10;
 do j = 1 to 5;
 put i= j=;
 end;
 end;
run;

Log 2.2 Nesting Level Debug (partial SAS log)

6 data _null_ /nesting;
7 do i = 1 to 10;
 -
 719
NOTE 719-185: *** DO begin level 1 ***.
8 do j = 1 to 5;
 -
 719
NOTE 719-185: *** DO begin level 2 ***.
9 put i= j=;
10 end;

 720
NOTE 720-185: *** DO end level 2 ***.
11 end;

 720
NOTE 720-185: *** DO end level 1 ***.
12 run;

DATA Statement 55

See Also
• “Definition of Data Set Options” in Chapter 1 of SAS Data Set Options: Reference

Statements:

• “DESCRIBE Statement” on page 60

• “EXECUTE Statement” on page 75

• “LINK Statement” on page 256

DATALINES Statement
Specifies that data lines follow.

Valid in: DATA step

Category: File-handling

Type: Declarative

Alias: CARDS, LINES

See: Data lines cannot contain semicolons. Use the “DATALINES4 Statement” on page
58 when your data contain semicolons.

Syntax
DATALINES;

Without Arguments
Use the DATALINES statement with an INPUT statement to read data that you enter
directly in the program, rather than data stored in an external file.

Details

Using the DATALINES Statement
The DATALINES statement is the last statement in the DATA step and immediately
precedes the first data line. Use a null statement (a single semicolon) to indicate the end
of the input data.

You can use only one DATALINES statement in a DATA step. Use separate DATA
steps to enter multiple sets of data.

Note: If you insert tabs while entering data in the DATALINES statement, you might
get unexpected results when using columnar input. This issue exists when you use
the SAS Enhanced Editor or SAS Program Editor. To avoid the issue, do one of the
following:

• Replace all tabs in the data with single spaces.

• Use the %INCLUDE statement from the SAS editor to submit your code.

• If you are using the SAS Enhanced Editor, select Tools ->Options->Enhanced
Editor to change the tab size from 4 to 1.

56 Chapter 2 • Dictionary of SAS Statements

Reading Long Data Lines
SAS handles data line length with the CARDIMAGE system option. If you use
CARDIMAGE, SAS processes data lines exactly like 80–byte punched card images
padded with blanks. If you use NOCARDIMAGE, SAS processes data lines longer than
80 columns in their entirety.

Using Input Options with In-stream Data
The DATALINES statement does not provide input options for reading data. However,
you can access some options by using the DATALINES statement in conjunction with
an INFILE statement. Specify DATALINES in the INFILE statement to indicate the
source of the data and then use the options that you need. For more information, see
“Example 2: Reading In-stream Data with Options” on page 57.

Comparisons
• Use the DATALINES statement whenever data do not contain semicolons. If your

data contain semicolons, use the DATALINES4 statement.

• The following SAS statements also read data or point to a location where data are
stored:

• The INFILE statement points to raw data lines stored in another file. The INPUT
statement reads those data lines.

• The %INCLUDE statement brings SAS program statements or data lines stored
in SAS files or external files into the current program.

• The SET, MERGE, MODIFY, and UPDATE statements read observations from
existing SAS data sets.

Examples

Example 1: Using the DATALINES Statement
In this example, SAS reads a data line and assigns values to two character variables,
NAME and DEPT, for each observation in the DATA step:

data person;
 input name $ dept $;
 datalines;
John Sales
Mary Acctng
;

Example 2: Reading In-stream Data with Options
This example takes advantage of options available with the INFILE statement to read in-
stream data lines. With the DELIMITER= option, you can use list input to read data
values that are delimited by commas instead of blanks.

data person;
 infile datalines delimiter=',';
 input name $ dept $;
 datalines;
John,Sales
Mary,Acctng
;

DATALINES Statement 57

See Also

Statements:

• “DATALINES4 Statement” on page 58

• “INFILE Statement” on page 171

System Options:

• “CARDIMAGE System Option” in SAS System Options: Reference

DATALINES4 Statement
Indicates that data lines that contain semicolons follow.

Valid in: DATA step

Category: File-handling

Type: Declarative

Alias: CARDS4, LINES4

Syntax
DATALINES4;

Without Arguments
Use the DATALINES4 statement together with an INPUT statement to read data that
contain semicolons that you enter directly in the program.

Details
The DATALINES4 statement is the last statement in the DATA step and immediately
precedes the first data line. Follow the data lines with four consecutive semicolons that
are located in columns 1 through 4.

Comparisons
Use the DATALINES4 statement when data contain semicolons. If your data do not
contain semicolons, use the DATALINES statement.

Example: Reading Data Lines That Contain Semicolons
In this example, SAS reads data lines that contain internal semicolons until it encounters
a line of four semicolons. Execution continues with the rest of the program.

data biblio;
 input number citation $50.;
 datalines4;
 KIRK, 1988
2 LIN ET AL., 1995; BRADY, 1993
3 BERG, 1990; ROA, 1994; WILLIAMS, 1992
;;;;

58 Chapter 2 • Dictionary of SAS Statements

See Also

Statements:

• “DATALINES Statement” on page 56

DELETE Statement
Stops processing the current observation.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
DELETE;

Without Arguments
When DELETE executes, the current observation is not written to a data set, and SAS
returns immediately to the beginning of the DATA step for the next iteration.

Details
The DELETE statement is often used in a THEN clause of an IF-THEN statement or as
part of a conditionally executed DO group.

Comparisons
• Use the DELETE statement when it is easier to specify a condition that excludes

observations from the data set or when there is no need to continue processing the
DATA step statements for the current observation.

• Use the subsetting IF statement when it is easier to specify a condition for including
observations.

• Do not confuse the DROP statement with the DELETE statement. The DROP
statement excludes variables from an output data set; the DELETE statement
excludes observations.

Examples

Example 1: Using the DELETE Statement as Part of an IF-THEN
Statement
When the value of LEAFWT is missing, the current observation is deleted:

if leafwt=. then delete;

Example 2: Using the DELETE Statement to Subset Raw Data
data topsales;
 infile file-specification;
 input region office product yrsales;

DELETE Statement 59

 if yrsales<100000 then delete;
run;

See Also

Statements:

• “DO Statement” on page 64

• “DROP Statement” on page 71

• “IF Statement, Subsetting” on page 161

• “IF-THEN/ELSE Statement” on page 163

DESCRIBE Statement
Retrieves source code from a stored compiled DATA step program or a DATA step view.

Valid in: DATA step

Category: Action

Type: Executable

Restriction: Use DESCRIBE only with stored compiled DATA step programs and DATA step
views.

Requirement: You must specify the PGM= or the VIEW= option in the DATA statement.

Syntax
DESCRIBE;

Without Arguments
Use the DESCRIBE statement to retrieve program source code from a stored compiled
DATA step program or a DATA step view. SAS writes the source statements to the SAS
log.

Details
Use the DESCRIBE statement without the EXECUTE statement to retrieve source code
from a stored compiled DATA step program or a DATA step view. Use the DESCRIBE
statement with the EXECUTE statement to retrieve source code and execute a stored
compiled DATA step program. For information about how to use these statements with
the DATA statement, see “DATA Statement” on page 48.

Note: To DESCRIBE a password-protected view or DATA step program, you must
specify its password. If the view or program was created with more than one
password, you must specify the most restrictive password. As with other SAS files,
the ALTER password is the most restrictive, and the READ password is the least
restrictive. For more information, see “Executing a Stored Compiled DATA Step
Program” in Chapter 28 of SAS Language Reference: Concepts and “Using
Passwords with Views” in Chapter 34 of SAS Language Reference: Concepts.

60 Chapter 2 • Dictionary of SAS Statements

See Also

Statements:

• “DATA Statement” on page 48

• “EXECUTE Statement” on page 75

DISPLAY Statement
Displays a window that is created with the WINDOW statement.

Valid in: DATA step

Category: Window Display

Type: Executable

Syntax
DISPLAY window<.group> <NOINPUT> <BLANK> <BELL > <DELETE>;

Arguments
window< .group>

names the window and group of fields to be displayed. This field is preceded by a
period (.).
Tip: If the window has more than one group of fields, give the complete

window.group specification. If a window contains a single unnamed group, use
only window.

NOINPUT
specifies that you cannot input values into fields that are displayed in the window.
Default: If you omit NOINPUT, you can input values into unprotected fields that

are displayed in the window.
Restriction: If you use NOINPUT in all DISPLAY statements in a DATA step, you

must include a STOP statement to stop processing the DATA step.
Tip: The NOINPUT option is useful when you want to allow values to be entered

into a window at some times but not others. For example, you can display a
window once for entering values and a second time for verifying them.

BLANK
clears the window.
Tip: Use the BLANK option when you want to display different groups of fields in a

window and you do not want text from the previous group to appear in the
current display.

BELL
produces an audible alarm, beep, or bell sound when the window is displayed if your
personal computer is equipped with a speaker device that provides sound.

DELETE
deletes the display of the window after processing passes from the DISPLAY
statement on which the option appears.

DISPLAY Statement 61

Details
You must create a window in the same DATA step that you use to display it. Once you
display a window, the window remains visible until you display another window over it
or until the end of the DATA step. When you display a window that contains fields
where you enter values, either enter a value or press ENTER at each unprotected field to
cause SAS to proceed to the next display. You cannot skip any fields.

While a window is being displayed, use commands and function keys to view other
windows, to change the size of the current window, and so on.

A DATA step that contains a DISPLAY statement continues execution until the last
observation that is read by a SET, MERGE, UPDATE, MODIFY, or INPUT statement
has been processed or until a STOP or ABORT statement is executed. You can also
issue the END command on the command line of the window to stop the execution of
the DATA step.

You must create a window before you can display it. See the “WINDOW Statement” on
page 389 for a description of how to create windows. A window that is displayed with
the DISPLAY statement does not become part of the SAS log or output file.

Example
This DATA step creates and displays a window named START. The START window
fills the entire screen. Both lines of text are centered.

data _null_;
 window start
 #5 @28 'WELCOME TO THE SAS SYSTEM'
 #12 @30 'PRESS ENTER TO CONTINUE';
 display start;
 stop;
run;

Although the START window in this example does not require you to input any values,
you must press ENTER to cause the execution to proceed to the STOP statement. If you
omit the STOP statement, the DATA step executes endlessly unless you enter END on
the command line of the window.

Note: Because this DATA step does not read any observations, SAS cannot detect an
end-of-file to cause DATA step execution to cease. If you add the NOINPUT option
to the DISPLAY statement, the window displays quickly and is removed.

See Also

Statements:

• “WINDOW Statement” on page 389

DM Statement
Submits SAS Program Editor, Log, Procedure Output or text editor commands as SAS statements.

Valid in: Anywhere

Category: Program Control

62 Chapter 2 • Dictionary of SAS Statements

Syntax
DM <window> 'command(s)' <window> <CONTINUE> ;

Arguments
window

specifies the active window.
Default: If you omit the window name, SAS uses the Program Editor window as the

default.

'command(s)'
can be any windowing command or text editor command and must be enclosed in
single quotation marks. If you want to issue several commands, separate them with
semicolons.

CONTINUE
causes SAS to execute any SAS statements that follow the DM statement in the
Program Editor window and, if a windowing command in the DM statement called a
window, makes that window active.
Note: For example, if you specify Log as the active window and have other SAS

statements that follow the DM statement (for example, in an autoexec file), those
statements are not submitted to SAS until control returns to the SAS interface.

Tip: Any windows that are activated by the SAS statements (such as the Output
window) appear before the window that is to be made active.

Details
Execution occurs when the DM statement is submitted to SAS. You can use this
statement to modify the windowing environment:

• Change SAS interface features during a SAS session.

• Change SAS interface features at the beginning of each SAS session by placing the
DM statement in an autoexec file.

• Perform utility functions in windowing applications, such as saving a file with the
FILE command or clearing a window with the CLEAR command.

Window placement affects the outcome of the statement:

• If you name a window before the commands, those commands apply to that window.

• If you name a window after the commands, SAS executes the commands and then
makes that window the active window. The active window is opened and contains
the cursor.

Examples

Example 1: Using the DM Statement
• dm 'color text cyan; color command red';

• dm log 'clear; pgm; color numbers green'
 output;

• dm 'caps on';

• dm log 'clear' output;

DM Statement 63

Example 2: Using the CONTINUE Option with SAS Statements That
Do Not Activate a Window
This example causes SAS to display the first window of the SAS/AF application,
executes the DATA step, moves the cursor to the first field of the SAS/AF application
window, and makes that window active.

dm 'af c=your-program' continue;
data temp;
 . . . more SAS statements . . .
run;

Example 3: Using the CONTINUE Option with SAS Statements That
Activate a Window
This example displays the first window of the SAS/AF application and executes the
PROC PRINT step, which activates the OUTPUT window. Closing the OUTPUT
window moves the cursor to the last active window..

dm 'af c=your-program' continue;
proc print data=temp;
run;

DO Statement
Specifies a group of statements to be executed as a unit.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
DO;
…more SAS statements…

END;

Without Arguments
Use the DO statement for simple DO group processing.

Details
The DO statement is the simplest form of DO group processing. The statements between
the DO and END statements are called a DO group. You can nest DO statements within
DO groups.

Note: The memory capabilities of your system can limit the number of nested DO
statements that you can use. For details, see the SAS documentation about how many
levels of nested DO statements your system's memory can support.

A simple DO statement is often used within IF-THEN/ELSE statements to designate a
group of statements to be executed depending on whether the IF condition is true or
false.

64 Chapter 2 • Dictionary of SAS Statements

Comparisons
There are three other forms of the DO statement:

• The iterative DO statement executes statements between DO and END statements
repetitively based on the value of an index variable. The iterative DO statement can
contain a WHILE or UNTIL clause.

• The DO UNTIL statement executes statements in a DO loop repetitively until a
condition is true, checking the condition after each iteration of the DO loop.

• The DO WHILE statement executes statements in a DO loop repetitively while a
condition is true, checking the condition before each iteration of the DO loop.

Example: Using the DO Statement
In this simple DO group, the statements between DO and END are performed only when
YEARS is greater than 5. If YEARS is less than or equal to 5, statements in the DO
group do not execute, and the program continues with the assignment statement that
follows the ELSE statement.

if years>5 then
 do;
 months=years*12;
 put years= months=;
 end;
 else yrsleft=5-years;

See Also

Statements:

• “DO Statement, Iterative” on page 65

• “DO UNTIL Statement” on page 69

• “DO WHILE Statement” on page 70

DO Statement, Iterative
Executes statements between the DO and END statements repetitively, based on the value of an index
variable.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
DO index-variable=specification-1 <, …specification-n> ;
…more SAS statements…

END;

DO Statement, Iterative 65

Arguments
index-variable

names a variable whose value governs execution of the DO group.
Tip: Unless you specify to drop it, the index variable is included in the data set that

is being created.
CAUTION: Avoid changing the index variable within the DO group. If you

modify the index variable within the iterative DO group, you might cause infinite
looping.

specification
denotes an expression or a series of expressions in this form

start <TO stop> <BY increment> <WHILE(expression) | UNTIL(expression)>

The DO group is executed first with index-variable equal to start. The value of start
is evaluated before the first execution of the loop.

start
specifies the initial value of the index variable.

When it is used without TO stop or BY increment, the value of start can be a
series of items expressed in this form:

item-1 <, ...item-n>;

The items can be either all numeric or all character constants, or they can be
variables. Enclose character constants in quotation marks. The DO group is
executed once for each value in the list. If a WHILE condition is added, it applies
only to the item that it immediately follows.
Requirement: When it is used with TO stop or BY increment, start must be a

number or an expression that yields a number.
Example: “Example 1: Using Various Forms of the Iterative DO Statement” on

page 67

TO stop
specifies the ending value of the index variable.

When both start and stop are present, execution continues (based on the value of
increment) until the value of index-variable passes the value of stop. When only
start and increment are present, execution continues (based on the value of
increment) until a statement directs execution out of the loop, or until a WHILE
or UNTIL expression that is specified in the DO statement is satisfied. If neither
stop nor increment is specified, the group executes according to the value of
start. The value of stop is evaluated before the first execution of the loop.
Requirement: Stop must be a number or an expression that yields a number.
Tip: Any changes to stop made within the DO group do not affect the number of

iterations. To stop iteration of a loop before it finishes processing, change the
value of index-variable so that it passes the value of stop, or use a LEAVE
statement to go to a statement outside the loop.

Example: “Example 1: Using Various Forms of the Iterative DO Statement” on
page 67

BY increment
specifies a positive or negative number (or an expression that yields a number) to
control the incrementing of index-variable.

The value of increment is evaluated before the execution of the loop. Any
changes to the increment that are made within the DO group do not affect the
number of iterations. If no increment is specified, the index variable is increased

66 Chapter 2 • Dictionary of SAS Statements

by 1. When increment is positive, start must be the lower bound and stop, if
present, must be the upper bound for the loop. If increment is negative, start must
be the upper bound and stop, if present, must be the lower bound for the loop
Example: “Example 1: Using Various Forms of the Iterative DO Statement” on

page 67

WHILE(expression) | UNTIL(expression)
evaluates, either before or after execution of the DO group, any SAS expression
that you specify. Enclose the expression in parentheses.

A WHILE expression is evaluated before each execution of the loop, so that the
statements inside the group are executed repetitively while the expression is true.
An UNTIL expression is evaluated after each execution of the loop, so that the
statements inside the group are executed repetitively until the expression is true.
Restriction: A WHILE or UNTIL specification affects only the last item in the

clause in which it is located.
See: “DO WHILE Statement” on page 70 and “DO UNTIL Statement” on

page 69
Example: “Example 1: Using Various Forms of the Iterative DO Statement” on

page 67

Requirement: The iterative DO statement requires at least one specification
argument.

Tips:
The order of the optional TO and BY clauses can be reversed.
When you use more than one specification, each one is evaluated before its
execution.

Comparisons
There are three other forms of the DO statement:

• The DO statement, the simplest form of DO-group processing, designates a group of
statements to be executed as a unit, usually as a part of IF-THEN/ELSE statements.

• The DO UNTIL statement executes statements in a DO loop repetitively until a
condition is true, checking the condition after each iteration of the DO loop.

• The DO WHILE statement executes statements in a DO loop repetitively while a
condition is true, checking the condition before each iteration of the DO loop.

Examples

Example 1: Using Various Forms of the Iterative DO Statement
• These iterative DO statements use a list of items for the value of start:

• do month='JAN','FEB','MAR';

• do count=2,3,5,7,11,13,17;

• do i=5;

• do i=var1, var2, var3;

• do i='01JAN2001'd,'25FEB2001'd,'18APR2001'd;

• These iterative DO statements use the start TO stop syntax:

• do i=1 to 10;

DO Statement, Iterative 67

• do i=1 to exit;

• do i=1 to x-5;

• do i=1 to k-1, k+1 to n;

• do i=k+1 to n-1;

• These iterative DO statements use the BY increment syntax:

• do i=n to 1 by -1;

• do i=.1 to .9 by .1, 1 to 10 by 1,
 20 to 100 by 10;

• do count=2 to 8 by 2;

• These iterative DO statements use WHILE and UNTIL clauses:

• do i=1 to 10 while(x<y);

• do i=2 to 20 by 2 until((x/3)>y);

• do i=10 to 0 by -1 while(month='JAN');

• In this example, the DO loop is executed when I=1 and I=2; the WHILE condition is
evaluated when I=3, and the DO loop is executed if the WHILE condition is true.

DO I=1,2,3 WHILE (condition);

Example 2: Using the Iterative DO Statement without Infinite
Looping
In each of the following examples, the DO group executes ten times. The first example
demonstrates the preferred approach.

 /* correct coding */
do i=1 to 10;
 ...more SAS statements...
end;

The next example uses the TO and BY arguments.

do i=1 to n by m;
 ...more SAS statements...
 if i=10 then leave;
end;
if i=10 then put 'EXITED LOOP';

Example 3: Stopping the Execution of the DO Loop
In this example, setting the value of the index variable to the current value of EXIT
causes the loop to terminate.

data iterate1;
 input x;
 exit=10;
 do i=1 to exit;
 y=x*normal(0);
 /* if y>25, */
 /* changing i's value */
 /* stops execution */
 if y>25 then i=exit;
 output;
 end;

68 Chapter 2 • Dictionary of SAS Statements

 datalines;
5
000
2500
;

See Also

Statements:

• “ARRAY Statement” on page 23

• “Array Reference Statement” on page 27

• “DO Statement” on page 64

• “DO UNTIL Statement” on page 69

• “DO WHILE Statement” on page 70

• “GO TO Statement” on page 159

DO UNTIL Statement
Executes statements in a DO loop repetitively until a condition is true.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
DO UNTIL (expression);
…more SAS statements…

END;

Arguments
(expression)

is any SAS expression, enclosed in parentheses. You must specify at least one
expression.

Details
The expression is evaluated at the bottom of the loop after the statements in the DO loop
have been executed. If the expression is true, the DO loop does not iterate again.

Note: The DO loop always iterates at least once.

Comparisons
There are three other forms of the DO statement:

• The DO statement, the simplest form of DO-group processing, designates a group of
statements to be executed as a unit, usually as a part of IF-THEN/ELSE statements.

DO UNTIL Statement 69

• The iterative DO statement executes statements between DO and END statements
repetitively based on the value of an index variable.

• The DO WHILE statement executes statements in a DO loop repetitively while a
condition is true, checking the condition before each iteration of the DO loop. The
DO UNTIL statement evaluates the condition at the bottom of the loop; the DO
WHILE statement evaluates the condition at the top of the loop.

Note: The statements in a DO UNTIL loop always execute at least one time,
whereas the statements in a DO WHILE loop do not iterate even once if the
condition is false.

Example: Using a DO UNTIL Statement to Repeat a Loop
These statements repeat the loop until N is greater than or equal to 5. The expression
N>=5 is evaluated at the bottom of the loop. There are five iterations in all (0, 1, 2, 3, 4).

n=0;
 do until(n>=5);
 put n=;
 n+1;
 end;

See Also

Statements:

• “DO Statement” on page 64

• “DO Statement, Iterative” on page 65

• “DO WHILE Statement” on page 70

DO WHILE Statement
Executes statements in a DO-loop repetitively while a condition is true.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
DO WHILE (expression);
…more SAS statements…

END;

Arguments
(expression)

is any SAS expression, enclosed in parentheses. You must specify at least one
expression.

70 Chapter 2 • Dictionary of SAS Statements

Details
The expression is evaluated at the top of the loop before the statements in the DO loop
are executed. If the expression is true, the DO loop iterates. If the expression is false the
first time it is evaluated, the DO loop does not iterate even once.

Comparisons
There are three other forms of the DO statement:

• The DO statement, the simplest form of DO-group processing, designates a group of
statements to be executed as a unit, usually as a part of IF-THEN/ELSE statements.

• The iterative DO statement executes statements between DO and END statements
repetitively based on the value of an index variable.

• The DO UNTIL statement executes statements in a DO loop repetitively until a
condition is true, checking the condition after each iteration of the DO loop. The DO
WHILE statement evaluates the condition at the top of the loop; the DO UNTIL
statement evaluates the condition at the bottom of the loop.

Note: If the expression is false, the statements in a DO WHILE loop do not execute.
However, because the DO UNTIL expression is evaluated at the bottom of the
loop, the statements in the DO UNTIL loop always execute at least once.

Example: Using a DO WHILE Statement
These statements repeat the loop while N is less than 5. The expression N<5 is evaluated
at the top of the loop. There are five iterations in all (0, 1, 2, 3, 4).

n=0;
 do while(n<5);
 put n=;
 n+1;
 end;

See Also

Statements:

• “DO Statement” on page 64

• “DO Statement, Iterative” on page 65

• “DO UNTIL Statement” on page 69

DROP Statement
Excludes variables from output SAS data sets.

Valid in: DATA step

Category: Information

Type: Declarative

DROP Statement 71

Syntax
DROP variable-list;

Arguments
variable-list

specifies the names of the variables to omit from the output data set.
Tip: You can list the variables in any form that SAS allows.

Details
The DROP statement applies to all the SAS data sets that are created within the same
DATA step and can appear anywhere in the step. The variables in the DROP statement
are available for processing in the DATA step. If no DROP or KEEP statement appears,
all data sets that are created in the DATA step contain all variables. Do not use both
DROP and KEEP statements within the same DATA step.

Comparisons
• The DROP statement differs from the DROP= data set option in the following ways:

• You cannot use the DROP statement in SAS procedure steps.

• The DROP statement applies to all output data sets that are named in the DATA
statement. To exclude variables from some data sets but not from others, use the
DROP= data set option in the DATA statement.

• The KEEP statement is a parallel statement that specifies a list of variables to write
to output data sets. Use the KEEP statement instead of the DROP statement if the
number of variables to include is significantly smaller than the number to omit.

• Do not confuse the DROP statement with the DELETE statement. The DROP
statement excludes variables from output data sets; the DELETE statement excludes
observations.

Examples

Example 1: Basic DROP Statement Usage
These examples show the correct syntax for listing variables with the DROP statement:

• drop time shift batchnum;

• drop grade1-grade20;

Example 2: Dropping Variables from the Output Data Set
In this example, the variables PURCHASE and REPAIR are used in processing but are
not written to the output data set INVENTRY:

data inventry;
 drop purchase repair;
 infile file-specification;
 input unit part purchase repair;
 totcost=sum(purchase,repair);
run;

72 Chapter 2 • Dictionary of SAS Statements

See Also

Data Set Options:

• “DROP= Data Set Option” in SAS Data Set Options: Reference

Statements:

• “DELETE Statement” on page 59

• “KEEP Statement” on page 231

END Statement
Ends a DO group or SELECT group processing.

Valid in: DATA step

Category: Control

Type: Declarative

Syntax
END;

Without Arguments
Use the END statement to end DO group or SELECT group processing.

Details
The END statement must be the last statement in a DO group or a SELECT group.

Example: Using the END Statement
This example shows a simple DO group and a simple SELECT group:

• do;
 ...more SAS statements...
end;

• select(expression);
 when(expression) SAS statement;
 otherwise SAS statement;
end;

See Also

Statements:

• “DO Statement” on page 64

• “SELECT Statement” on page 350

END Statement 73

ENDSAS Statement
Terminates a SAS job or session after the current DATA or PROC step executes.

Valid in: Anywhere

Category: Program Control

Syntax
ENDSAS;

Without Arguments
The ENDSAS statement terminates a SAS job or session.

Details
ENDSAS is most useful in interactive or windowing sessions.

Note: ENDSAS statements are always executed at the point that they are encountered in
a DATA step. Use the ABORT RETURN statement to stop processing when an error
condition occurs (for example, in the clause of an IF-THEN statement or a SELECT
statement).

Comparisons
You can also terminate a SAS job or session by using the BYE or the ENDSAS
command from any SAS window command line. For details, refer to the online Help for
SAS windows.

See Also
“SYSSTARTID Automatic Macro Variable” in SAS Macro Language: Reference

ERROR Statement
Sets _ERROR_ to 1. A message written to the SAS log is optional.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
ERROR <message>;

Without Arguments
Using ERROR without an argument sets the automatic variable _ERROR_ to 1 writes a
blank message to the log.

74 Chapter 2 • Dictionary of SAS Statements

Arguments
message

writes a message to the log.
Tip: message can include character literals (enclosed in quotation marks), variable

names, formats, and pointer controls.

Details
The ERROR statement sets the automatic variable _ERROR_ to 1. Writing a message
that you specify to the SAS log is optional. When _ERROR_ = 1, SAS writes the data
lines that correspond to the current observation in the SAS log.

Using ERROR is equivalent to using these statements in combination:

• an assignment statement setting _ERROR_ to 1

• a FILE LOG statement

• a PUT statement (if you specify a message)

• a PUT; statement (if you do not specify a message)

• another FILE statement resetting FILE to any previously specified setting.

Example: Writing Error Messages
In the following examples, SAS writes the error message and the variable name and
value to the log for each observation that satisfies the condition in the IF-THEN
statement.

• In this example, the ERROR statement automatically resets the FILE statement
specification to the previously specified setting.

file file-specification;
 if type='teen' & age > 19 then
 error 'type and age don"t match ' age=;

• This example uses a series of statements to produce the same results.

file file-specification;
 if type='teen' & age > 19 then
 do;
 file log;
 put 'type and age don"t match ' age=;
 error=1;
 file file-specification;
 end;

See Also

Statements:

• “PUT Statement” on page 296

EXECUTE Statement
Executes a stored compiled DATA step program.

EXECUTE Statement 75

Valid in: DATA step

Category: Action

Type: Executable

Restriction: Use EXECUTE with stored compiled DATA step programs only.

Requirement: You must specify the PGM= option in the DATA step.

Syntax
EXECUTE;

Without Arguments
The EXECUTE statement executes a stored compiled DATA step program.

Details
Use the DESCRIBE statement with the EXECUTE statement in the same DATA step to
retrieve the source code and execute a stored compiled DATA step program. If you do
not specify either statement, EXECUTE is assumed. The order in which you use the
statements is interchangeable. The DATA step program executes when it reaches a step
boundary. For information about how to use these statements with the DATA statement,
see the “DATA Statement” on page 48.

See Also

Statements:

• “DATA Statement” on page 48

• “DESCRIBE Statement” on page 60

FILE Statement
Specifies the current output file for PUT statements.

Valid in: DATA step

Category: File-handling

Type: Executable

See: FILE Statement under Windows , UNIX , and z/OS

Syntax
FILE file-specification <device-type> <options> <operating-environment-options>;

Arguments
file-specification

identifies an external file that the DATA step uses to write output from a PUT
statement. File-specification can have these forms:

76 Chapter 2 • Dictionary of SAS Statements

'external-file'
specifies the physical name of an external file, which is enclosed in quotation
marks. The physical name is the name by which the operating environment
recognizes the file.

fileref
specifies the fileref of an external file.
Requirement: You must have associated fileref with an external file in a

FILENAME statement or function in a previous step or in an appropriate
operating environment command. The only way to assign the fileref at run
time is to use the FILEVAR= option in the FILE statement.

See: “FILENAME Statement” on page 93

fileref(file)
specifies a fileref that is previously assigned to an external file that is an
aggregate grouping of files. Follow the fileref with the name of a file or member,
which is enclosed in parentheses.
Requirement: You must previously associate fileref with an external file in a

FILENAME statement or function, or in an appropriate operating
environment command.

Operating environment: Different operating environments call an aggregate
grouping of files by different names, such as a directory, a MACLIB, or a
partitioned data set. For details, see the SAS documentation for your
operating environment.

Note: A file that is located in an aggregate storage location and has a name that
is not a valid SAS name must have its name enclosed in quotation marks.

See: “FILENAME Statement” on page 93

LOG
is a reserved fileref that directs the output that is produced by any PUT
statements to the SAS log.

At the beginning of each execution of a DATA step, the fileref that indicates
where the PUT statements write is automatically set to LOG. Therefore, the first
PUT statement in a DATA step always writes to the SAS log, unless it is
preceded by a FILE statement that specifies otherwise.
Tip: Because output lines are by default written to the SAS log, use a FILE LOG

statement to restore the default action or to specify additional FILE statement
options.

PRINT
is a reserved fileref that directs the output that is produced by any PUT
statements to the same file as the output that is produced by SAS procedures.
Interaction: When you write to a file, the value of the N= option must be either

1 or PAGESIZE.
Operating environment: The carriage-control characters that are written to a

file can be specific to the operating environment. For details, see the SAS
documentation for your operating environment.

Tip: When PRINT is the fileref, SAS uses carriage-control characters and writes
the output with the characteristics of a print file.

See: A complete discussion of print files in SAS Language Reference: Concepts

Tip: If the file does not exist in the directory that you specify for file-specification,
SAS creates the file. If the directory specified in file-specification does not exist,
SAS sets the SYSERR macro variable, which can be checked if the
ERRORCHECK option is set to STRICT.

FILE Statement 77

device-type
specifies the type of device or the access method that is used if the fileref points to an
input or output device or a location that is not a physical file:

CATALOG
specifies the CATALOG access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the CATALOG access

method, see the “FILENAME Statement, CATALOG Access Method” on
page 100.

CLIPBOARD
specifies the CLIPBOARD access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the CLIPBOARD

access method, see the “FILENAME, CLIPBOARD Access Method” on
page 104.

DISK
specifies that the device is a disk drive.
Tip: When you assign a fileref to a file on disk, you are not required to specify

DISK.

DUMMY
specifies that the output to the file is discarded.
Tip: Specifying DUMMY can be useful for testing.

FTP
specifies the FTP access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the FTP access

method, see the “FILENAME Statement, FTP Access Method” on page 117.
Example:

infile dummy ftp user='myuid' pass='xxxx' filevar=file_to_read;

GTERM
indicates that the output device type is a graphics device that will receive
graphics data.

JMS
specifies a Java Message Service (JMS) destination.

PIPE
specifies an unnamed pipe.
Operating environment: Some operating environments do not support pipes.

PLOTTER
specifies an unbuffered graphics output device.

PRINTER
specifies a printer or printer spool file.

SFTP
specifies the SFTP access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.

78 Chapter 2 • Dictionary of SAS Statements

See: For a complete list of options that are available with the SFTP access
method, see the “FILENAME Statement, SFTP Access Method” on page
133.

SOCKET
specifies the SOCKET access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the SOCKET access

method, see the “FILENAME Statement, SOCKET Access Method” on page
138.

TAPE
specifies a tape drive.

TEMP
creates a temporary file that exists only as long as the filename is assigned. The
temporary file can be accessed only through the logical name and is available
only while the logical name exists.
Restriction: Do not specify a physical pathname. If you do, SAS returns an

error.
Tip: Files manipulated by the TEMP device can have the same attributes and

behave identically to DISK files.

TERMINAL
specifies the user's terminal.

UPRINTER
specifies a Universal Printing printer definition name.
Tip: If you do not specify the printer name in the FILENAME statement, the

PRINTERPATH options control which Universal Printer is used and the
destination of the output.

URL
specifies the URL access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the URL access

method, see the “FILENAME Statement, URL Access Method” on page
142.

WEBDAV
specifies the WEBDAV access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the WEBDAV access

method, see the “FILENAME Statement, WebDAV Access Method” on page
147.

Alias: DEVICE=device-type
Default: DISK
Requirement: device-type or DEVICE=device-type must immediately follow file-

specification in the statement.
Operating environment: Additional specifications might be required when you

specify some devices. See the SAS documentation for your operating
environment before specifying a value other than DISK. Values in addition to the
ones listed here might be available in some operating environments.

FILE Statement 79

Options
BLKSIZE=block-size

specifies the block size of the output file.
Default: Dependent on your operating environment. For details, see the FILE

Statement in the SAS documentation for your operating environment.

COLUMN=variable
specifies a variable that SAS automatically sets to the current column location of the
pointer. This variable, like automatic variables, is not written to the data set.
Alias: COL=
See: LINE= on page 83

DELIMITER= delimiter(s)
specifies an alternate delimiter (other than blank) to be used for LIST output where
delimiter is

'list-of-delimiting-characters'
specifies one or more characters to write as delimiters.
Requirement: Enclose the list of characters in quotation marks.

character-variable
specifies a character variable whose value becomes the delimiter.

Alias: DLM=
Default: blank space
Restriction: Even though a character string or character variable is accepted, only

the first character of the string or variable is used as the output delimiter. The
FILE DLM= processing differs from INFILE DELIMITER= processing.

Interaction: Output that contains embedded delimiters requires the delimiter
sensitive data (DSD) option.

Tips:
DELIMITER= can be used with the colon (:) modifier (modified LIST output).
The delimiter is case sensitive.

See: “DLMSTR= delimiter” on page 80 and “DSD (delimiter sensitive data)” on
page 81

DLMSOPT= 'T' |'t'
specifies a parsing option for the DLMSTR= T option that removes trailing blanks of
the string delimiter.
Requirement: The DLMSOPT=T option has an effect only when used with the

DLMSTR= option.
Tip: The DLMSOPT=T option is useful when you use a variable as the delimiter

string
See: DLMSTR= on page 80

DLMSTR= delimiter
specifies a character string as an alternate delimiter (other than a blank) to be used
for LIST output, where delimiter is

'delimiting-string'
specifies a character string to write as a delimiter.
Requirement: Enclose the string in quotation marks.

character-variable
specifies a character variable whose value becomes the delimiter.

Default: blank space

80 Chapter 2 • Dictionary of SAS Statements

Interactions:
If you specify more than one DLMSTR= option in the FILE statement, the
DLMSTR= option that is specified last will be used. If you specify both the
DELIMITER= and DLMSTR= options, the option that is specified last will be
used.
If you specify RECFM=N, make sure that the LRECL is large enough to hold the
largest input item. Otherwise, it might be possible for the delimiter to be split
across the record boundary.

See: DELIMITER= on page 80, DLMSOPT= on page 80, and DSD on page 81

DROPOVER
discards data items that exceed the output line length (as specified by the
LINESIZE= or LRECL= options in the FILE statement).

By default, data that exceeds the current line length is written on a new line. When
you specify DROPOVER, SAS drops (or ignores) an entire item when there is not
enough space in the current line to write it. When an entire item is dropped, the
column pointer remains positioned after the last value that is written in the current
line. Thus, the PUT statement might write other items in the current output line if
they fit in the space that remains or if the column pointer is repositioned. When a
data item is dropped, the DATA step continues normal execution (_ERROR_=0). At
the end of the DATA step, a message is printed for each file from which data was
lost.
Default: FLOWOVER
Tip: Use DROPOVER when you want the DATA step to continue executing if the

PUT statement attempts to write past the current line length, but you do not want
the data item that exceeds the line length to be written on a new line.

See: “FLOWOVER” on page 83 and “STOPOVER” on page 86

DSD (delimiter sensitive data)
specifies that data values that contain embedded delimiters, such as tabs or commas,
be enclosed in quotation marks. The DSD option enables you to write data values
that contain embedded delimiters to LIST output. This option is ignored for other
types of output (for example, formatted, column, and named). Any double quotation
marks that are included in the data value are repeated. When a variable value
contains the delimiter and DSD is used in the FILE statement, the variable value will
be enclosed in double quotation marks when the output is generated. For example,
the following code

DATA _NULL_;
 FILE log dsd;
 x='"lions, tigers, and bears"';
 put x ' "Oh, my!"';
run;

will result in the following output:

"""lions, tigers, and bears""", "Oh, my!"

If a quoted (text) string contains the delimiter and DSD is used in the FILE
statement, then the quoted string will not be enclosed in double quotation marks
when used in a PUT statement. For example, the following code

DATA _NULL_;
 FILE log dsd;
 PUT 'lions, tigers, and bears';
run;

will result in the following output:

FILE Statement 81

lions, tigers, and bears

Interaction: If you specify DSD, the default delimiter is assumed to be the comma
(,). Specify the DELIMITER= or DLMSTR= option if you want to use a
different delimiter.

Tip: By default, data values that do not contain the delimiter that you specify are not
enclosed in quotation marks. However, you can use the tilde (~) modifier to force
any data value, including missing values, to be enclosed in quotation marks, even
if it contains no embedded delimiter.

See: DELIMITER= on page 80 and DLMSTR= on page 80

ENCODING= 'encoding-value'
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the current
session encoding.

When you write data to the output file, SAS transcodes the data from the session
encoding to the specified encoding.
Default: SAS uses the current session encoding.
See: “Encoding Values in SAS Language Elements” in Chapter 20 of SAS National

Language Support (NLS): Reference Guide
Example: “Example 8: Specifying an Encoding When Writing to an Output File” on

page 92

FILENAME=variable
defines a character variable, whose name you supply, that SAS sets to the value of
the physical name of the file currently open for PUT statement output. The physical
name is the name by which the operating environment recognizes the file.
Tips:

This variable, like automatic variables, is not written to the data set.
Use a LENGTH statement to make the variable length long enough to contain the
value of the physical filename if the variable length is longer than eight bytes
(the default length of a character variable).

See: FILEVAR= on page 82
Example: “Example 4: Identifying the Current Output File” on page 91

FILEVAR=variable
defines a variable whose change in value causes the FILE statement to close the
current output file and open a new one the next time the FILE statement executes.
The next PUT statement that executes writes to the new file that is specified as the
value of the FILEVAR= variable.
Restriction: The value of a FILEVAR= variable is expressed as a character string

that contains a physical filename.
Interaction: When you use the FILEVAR= option, the file-specification is just a

placeholder, not an actual filename or a fileref that has been previously assigned
to a file. SAS uses this placeholder for reporting processing information to the
SAS log. It must conform to the same rules as a fileref.

Tips:
This variable, like automatic variables, is not written to the data set.
If any of the physical filenames is longer than eight bytes (the default length of a
character variable), assign the FILEVAR= variable a longer length with another
statement, such as a LENGTH statement or an INPUT statement.

See: FILENAME= on page 82
Example: “Example 5: Dynamically Changing the Current Output File” on page

91

82 Chapter 2 • Dictionary of SAS Statements

FLOWOVER
causes data that exceeds the current line length to be written on a new line. When a
PUT statement attempts to write beyond the maximum allowed line length (as
specified by the LINESIZE= option in the FILE statement), the current output line is
written to the file and the data item that exceeds the current line length is written to a
new line.
Default: FLOWOVER
Interaction: If the PUT statement contains a trailing @, the pointer is positioned

after the data item on the new line, and the next PUT statement writes to that
line. This process continues until the end of the input data is reached or until a
PUT statement without a trailing @ causes the current line to be written to the
file.

See: “DROPOVER” on page 81 and “STOPOVER” on page 86

FOOTNOTES | NOFOOTNOTES
controls whether currently defined footnotes are printed.
Alias: FOOTNOTE | NOFOOTNOTE
Default: NOFOOTNOTES
Requirement: In order to print footnotes in a DATA step report, you must set the

FOOTNOTE option in the FILE statement.

HEADER=label
defines a statement label that identifies a group of SAS statements that you want to
execute each time SAS begins a new output page.
Restrictions:

The first statement after the label must be an executable statement. Thereafter
you can use any SAS statement.
Use the HEADER= option only when you write to print files.

Tip: To prevent the statements in this group from executing with each iteration of
the DATA step, use two RETURN statements: one precedes the label and the
other appears as the last statement in the group.

Example: “Example 1: Executing Statements When Beginning a New Page” on
page 89

LINE=variable
defines a variable whose value is the current relative line number within the group of
lines available to the output pointer. You supply the variable name; SAS
automatically assigns the value.
Range: 1 to the value that is specified by the N= option or with the #n line pointer

control. If neither is specified, the LINE= variable has a value of 1.
Tips:

This variable, like automatic variables, is not written to the data set.
The value of the LINE= variable is set at the end of PUT statement execution to
the number of the next available line.

LINESIZE=line-size
sets the maximum number of columns per line for reports and the maximum record
length for data files.
Alias: LS=
Default: The default LINESIZE= value is determined by one of two options: 1) the

LINESIZE= system option when you write to file that contains carriage-control
characters or to the SAS log or 2) the LRECL= option in the FILE statement
when you write to a file.

FILE Statement 83

Range: From 64 to the maximum logical record length that is allowed in your
operating environment.

Interaction: If a PUT statement tries to write a line that is longer than the value that
is specified by the LINESIZE= option, the action that is taken is determined by
whether FLOWOVER, DROPOVER, or STOPOVER is in effect. By default
(FLOWOVER), SAS writes the line as two or more separate records.

Operating environment: The highest value allowed for LINESIZE= is dependent
on your operating environment. For details, see the SAS documentation for your
operating environment.

Note: LINESIZE= tells SAS how much of the line to use. LRECL= specifies the
physical record length of the file.

See: LRECL= on page 84, “DROPOVER” on page 81, “FLOWOVER” on page
83, and “STOPOVER” on page 86

Example: “Example 6: When the Output Line Exceeds the Line Length of the
Output File” on page 92

LINESLEFT=variable
defines a variable whose value is the number of lines left on the current page. You
supply the variable name; SAS assigns the value of the number of lines left on the
current page to that variable. The value of the LINESLEFT= variable is set at the end
of PUT statement execution.
Alias: LL=
Tip: This variable, like automatic variables, is not written to the data set.
Example: “Example 2: Determining New Page by Lines Left on the Current Page”

on page 90

LRECL=logical-record-length
specifies the logical record length of the output file.
Default: If you omit the LRECL= option, SAS chooses a value based on the

operating environment's file characteristics.
Interaction: Alternatively, you can specify a global logical record length by using

the LRECL system option .
Operating environment: Values for logical-record-length are dependent on the

operating environment. For details, see the SAS documentation for your
operating environment.

Note: LINESIZE= tells SAS how much of the line to use; LRECL= specifies the
physical line length of the file.

See: LINESIZE= on page 83, PAD on page 86, and PAGESIZE= on page 86

MOD
writes the output lines after any existing lines in the file.
Default: OLD
Restrictions:

MOD is not accepted under all operating environments. For more information,
see the SAS documentation for your operating environment.
Do not use the MOD option with any ODS destination other than the Listing
destination. Otherwise, you might receive unexpected output.

See: “OLD” on page 85

N=available-lines
specifies the number of lines that you want available to the output pointer in the
current iteration of the DATA step. Available-lines can be expressed as a number (n)
or as the keyword PAGESIZE or PS.

84 Chapter 2 • Dictionary of SAS Statements

n
specifies the number of lines that are available to the output pointer. The system
can move back and forth between the number of lines that are specified while
composing them before moving on to the next set.

PAGESIZE
specifies that the entire page is available to the output pointer.
Alias: PS
Restrictions:

N=PAGESIZE is valid only when output is printed.
If the current output file is a file that is to be printed, available-lines must
have a value of either 1 or PAGESIZE.

Interactions:
In addition to use in the N= option to control the number of lines available to
the output pointer, you can also use the #n line pointer control in a PUT
statement.
If you omit the N= option and no # pointer controls are used, one line is
available; that is, by default, N=1. If N= is not used but there are # pointer
controls, N= is assigned the highest value that is specified for a # pointer
control in any PUT statement in the current DATA step.

Tip: Setting N=PAGESIZE enables you to compose a page of multiple columns
one column at a time.

Example: “Example 3: Arranging the Contents of an Entire Page” on page 90

ODS < = (ODS-suboptions) >
specifies to use the Output Delivery System to format the output from a DATA step.
It defines the structure of the data component and holds the results of the DATA step
and binds that component to a table definition to produce an output object. ODS
sends this object to all open ODS destinations, each of which formats the output
appropriately. For information about the ODS-suboptions and the Output Delivery
System, see the “FILE Statement for ODS” in SAS Output Delivery System: User's
Guide.
Default: If you omit the ODS suboptions, the DATA step uses a default table

definition (base.datastep.table) that is stored in the SASHELP.TMPLMST
template store. This definition defines two generic columns: one for character
variables, and one for numeric variables. ODS associates each variable in the
DATA step with one of these columns and displays the variables in the order in
which they are defined in the DATA step.
Without suboptions, the default table definition uses the variable's label as its
column heading. If no label exists, the definition uses the variable's name as the
column heading.

Restriction: You cannot use _FILE_=, FILEVAR=, HEADER=, and PAD with the
ODS option.

Requirement: The ODS option is valid only when you use the fileref PRINT in the
FILE statement.

Interaction: The DELIMITER= and DSD options have no effect on the ODS
option. The FOOTNOTES|NOFOOTNOTES, LINESIZE, PAGESIZE, and
TITLES | NOTITLES options have an effect only on the LISTING destination.

OLD
replaces the previous contents of the file.
Default: OLD
Restriction: OLD is not accepted under all operating environments. For details, see

the SAS documentation for your operating environment.

FILE Statement 85

See: “MOD” on page 84

PAD | NOPAD
controls whether records written to an external file are padded with blanks to the
length that is specified in the LRECL= option.
Default: NOPAD is the default when writing to a variable-length file; PAD is the

default when writing to a fixed-length file.
Tip: PAD provides a quick way to create fixed-length records in a variable-length

file.
See: LRECL= on page 84

PAGESIZE=value
sets the number of lines per page for your reports.
Alias: PS=
Default: the value of the PAGESIZE= system option.
Range: The value can range from 15 to 32767.
Interaction: If any TITLE statements are currently defined, the lines that they

occupy are included in counting the number of lines for each page.
Tips:

After the value of the PAGESIZE= option is reached, the output pointer advances
to line 1 of a new page.
If you specify FILE LOG, the number of lines that are output on the first page is
reduced by the number of lines in the SAS start-up notes. For example, if
PAGESIZE=20 and there are nine lines of SAS start-up notes, only 11 lines are
available for output on the first page.

See: “PAGESIZE= System Option” in SAS System Options: Reference

PRINT | NOPRINT
controls whether carriage-control characters are placed in the output lines.
Restriction: When you write to a file, the value of the N= option must be either 1 or

PAGESIZE.
Operating environment: The carriage-control characters that are written to a file

can be specific to the operating environment. For details, see the SAS
documentation for your operating environment.

Tips:
The PRINT option is not necessary if you are using fileref PRINT.
If you specify FILE PRINT in an interactive SAS session, then the Output
window interprets the form-feed control characters as page breaks, and blank
lines that are output before the form feed are removed from the output. Writing
the results from the Output window to a flat file produces a file without page
break characters. If a file needs to contain the form-feed characters, then the
FILE statement should include a physical file location and the PRINT option.

RECFM=record-format
specifies the record format of the output file.
Range: Values are dependent on the operating environment. For details, see the

SAS documentation for your operating environment.

STOPOVER
stops processing the DATA step immediately if a PUT statement attempts to write a
data item that exceeds the current line length. In such a case, SAS discards the data
item that exceeds the current line length, writes the portion of the line that was built
before the error occurred, and issues an error message.
Default: FLOWOVER

86 Chapter 2 • Dictionary of SAS Statements

See: “FLOWOVER” on page 83 and “DROPOVER” on page 81

TITLES | NOTITLES
controls the printing of the current title lines on the pages of files. When NOTITLES
is omitted, or when TITLES is specified, SAS prints any titles that are currently
defined.
Alias: TITLE | NOTITLE
Default: TITLES

FILE=variable
names a character variable that references the current output buffer of this FILE
statement. You can use the variable in the same way as any other variable, even as
the target of an assignment. The variable is automatically retained and initialized to
blanks. Like automatic variables, the _FILE_= variable is not written to the data set.
Restriction: variable cannot be a previously defined variable. Make sure that the

FILE= specification is the first occurrence of this variable in the DATA step.
Do not set or change the length of _FILE_= variable with the LENGTH or
ATTRIB statements. However, you can attach a format to this variable with the
ATTRIB or FORMAT statement.

Interaction: The maximum length of this character variable is the logical record
length (LRECL) for the specified FILE statement. However, SAS does not open
the file to know the LRECL until before the execution phase. Therefore, the
designated size for this variable during the compilation phase is 32,767 bytes.

Tips:
Modification of this variable directly modifies the FILE statement's current
output buffer. Any subsequent PUT statement for this FILE statement outputs the
contents of the modified buffer. The _FILE_= variable accesses only the current
output buffer of the specified FILE statement even if you use the N= option to
specify multiple output buffers.
To access the contents of the output buffer in another statement without using the
FILE= option, use the automatic variable _FILE_.

See: “Updating the _FILE_ Variable” on page 88

Operating Environment Options
For descriptions of operating-environment-specific options in the FILE statement, see
the SAS documentation for your operating environment.

Details

Overview
By default, PUT statement output is written to the SAS log. Use the FILE statement to
route this output to either the same external file to which procedure output is written or
to a different external file. You can indicate whether carriage-control characters should
be added to the file. See the PRINT | NOPRINT option on page 86.

You can use the FILE statement in conditional (IF-THEN) processing because it is
executable. You can also use multiple FILE statements to write to more than one
external file in a single DATA step.

Operating Environment Information
Using the FILE statement requires operating-environment-specific information. See
the SAS documentation for your operating environment before you use this
statement.

FILE Statement 87

You can use the Output Delivery System with the FILE statement to write DATA step
results. For details, see the “FILE Statement for ODS” in SAS Output Delivery System:
User's Guide.

Updating an External File in Place
You can use the FILE statement with the INFILE and PUT statements to update an
external file in place, updating either an entire record or only selected fields within a
record. Follow these guidelines:

• Always place the INFILE statement first.

• Specify the same fileref or physical filename in the INFILE and FILE statements.

• Use options that are common to both the INFILE and FILE statements in the INFILE
statement. (Any such options that are used in the FILE statement are ignored.)

• Use the SHAREBUFFERS option in the INFILE statement to allow the INFILE and
FILE statements to use the same buffer, which saves CPU time and enables you to
update individual fields instead of entire records.

Accessing the Contents of the Output Buffer
In addition to the _FILE_= variable, you can use the automatic _FILE_ variable to
reference the contents of the current output buffer for the most recent execution of the
FILE statement. This character variable is automatically retained and initialized to
blanks. Like other automatic variables, _FILE_ is not written to the data set.

When you specify the _FILE_= option in a FILE statement, this variable is also
indirectly referenced by the automatic _FILE_ variable. If the automatic _FILE_
variable is present and you omit _FILE_= in a particular FILE statement, then SAS
creates an internal _FILE_= variable for that FILE statement. Otherwise, SAS does not
create the _FILE_= variable for a particular FILE.

During execution and at the point of reference, the maximum length of this character
variable is the maximum length of the current _FILE_ variable. However, because
FILE only references other variables whose lengths are not known until before the
execution phase, the designated length is 32,767 bytes during the compilation phase. For
example, if you assign _FILE_ to a new variable whose length is undefined, the default
length of the new variable is 32,767 bytes. You cannot use the LENGTH statement and
the ATTRIB statement to set or override the length of _FILE_. You can use the
FORMAT statement and the ATTRIB statement to assign a format to _FILE_.

Updating the _FILE_ Variable
Like other SAS variables, you can update the _FILE_ variable. The following two
methods are available:

• Use _FILE_ in an assignment statement.

• Use a PUT statement.

You can update the _FILE_ variable by using an assignment statement that has the
following form.

FILE = <'string-in-quotation-marks' | character-expression>

The assignment statement updates the contents of the current output buffer and sets the
buffer length to the length of 'string-in-quotation-marks' or character-expression.
However, using an assignment statement does not affect the current column pointer of
the PUT statement. The next PUT statement for this FILE statement begins to update the
buffer at column 1 or at the last known location when you use the trailing @ in the PUT
statement.

88 Chapter 2 • Dictionary of SAS Statements

In the following example, the assignment statement updates the contents of the current
output buffer. The column pointer of the PUT statement is not affected:

 file print;
 file = '_FILE_';
 put 'This is PUT';

SAS creates the following output: This is PUT

In this example,

 file print;
 file = 'This is from FILE, sir.';
 put @14 'both';

SAS creates the following output: This is from both, sir.

You can also update the _FILE_ variable by using a PUT statement. The PUT statement
updates the _FILE_ variable because the PUT statement formats data in the output buffer
and _FILE_ points to that buffer. However, by default SAS clears the output buffers
after a PUT statement executes and outputs the current record (or N= block of records).
Therefore, if you want to examine or further modify the contents of _FILE_ before it is
output, include a trailing @ or @@ in any PUT statement (when N=1). For other values
of N=, use a trailing @ or @@ in any PUT statement where the last line pointer location
is on the last record of the record block. In the following example, when N=1

 file ABC;
 put 'Something' @;
 Y = _file_||' is here';
 file ABC;
 put 'Nothing' ;
 Y = _file_||' is here';

Y is first assigned Something is here then Y is assigned is here.

Any modification of _FILE_ directly modifies the current output buffer for the current
FILE statement. The execution of any subsequent PUT statements for this FILE
statement will output the contents of the modified buffer.

FILE only accesses the contents of the current output buffer for a FILE statement,
even when you use the N= option to specify multiple buffers. You can access all the N=
buffers, but you must use a PUT statement with the # line pointer control to make the
desired buffer the current output buffer.

Comparisons
• The FILE statement specifies the output file for PUT statements. The INFILE

statement specifies the input file for INPUT statements.

• Both the FILE and INFILE statements enable you to use options that provide SAS
with additional information about the external file being used.

• In the Program Editor, Log, and Output windows, the FILE command specifies an
external file and writes the contents of the window to the file.

Examples

Example 1: Executing Statements When Beginning a New Page
This DATA step illustrates how to use the HEADER= option:

FILE Statement 89

• Write a report. Use DATA _NULL_ to write a report rather than create a data set.

data _null_;
 set sprint;
 by dept;

• Route output to the SAS output window. Point to the header information. The PRINT
fileref routes output to the same location as procedure output. HEADER= points to
the label that precedes the statements that create the header for each page:

 file print header=newpage;

• Start a new page for each department:

 if first.dept then put _page_;
 put @22 salesrep @34 salesamt;

• Write a header on each page. These statements execute each time a new page is
begun. RETURN is necessary before the label and as the final statement in a labeled
group:

 return;
 newpage:
 put @20 'Sales for 1989' /
 @20 dept=;
 return;
 run;

Example 2: Determining New Page by Lines Left on the Current
Page
This DATA step demonstrates using the LINESLEFT= option to determine where the
page break should occur, according to the number of lines left on the current page.

• Write a report. Use DATA _NULL_ to write a report rather than create a data set:

data _null_;
 set info;

• Route output to the standard SAS output window. The PRINT fileref routes output to
the same location as procedure output. LINESLEFT indicates that the variable
REMAIN contains the number of lines left on the current page:

 file print linesleft=remain pagesize=20;
 put @5 name @30 phone
 @35 bldg @37 room;

• Begin a new page when there are fewer than seven lines left on the current page.
Under this condition, PUT _PAGE_ begins a new page and positions the pointer at
line 1:

 if remain<7 then put _page_ ;
 run;

Example 3: Arranging the Contents of an Entire Page
This example shows how to use N=PAGESIZE in a DATA step to produce a two-
column telephone book listing, each column containing a name and a phone number:

• Create a report and write it to a SAS output window. Use DATA _NULL_ to write a
report rather than create a data set. PRINT is the fileref. SAS uses carriage-control
characters to write the output with the characteristics of a print file. N=PAGESIZE
makes the entire page available to the output pointer:

90 Chapter 2 • Dictionary of SAS Statements

data _null_;
 file 'external-file' print n=pagesize;

• Specify the columns for the report. This DO loop iterates twice on each DATA step
iteration. The COL value is 1 on the first iteration and 40 on the second:

 do col=1, 40;

• Write 20 lines of data. This DO loop iterates 20 times to write 20 lines in column 1.
When finished, the outer loop sets COL equal to 40, and this DO loop iterates 20
times again, writing 20 lines of data in the second column. The values of LINE and
COL, which are set and incremented by the DO statements, control where the PUT
statement writes the values of NAME and PHONE on the page:

 do line=1 to 20;
 set info;
 put #line @col name $20. +1 phone 4.;
 end;

• After composing two columns of data, write the page. This END statement ends the
outer DO loop. The PUT _PAGE_ writes the current page and moves the pointer to
the top of a new page:

 end;
 put _page_;
 run;

Example 4: Identifying the Current Output File
This DATA step causes a file identification message to print in the log and assigns the
value of the current output file to the variable MYOUT. The PUT statement,
demonstrating the assignment of the proper value to MYOUT, writes the value of that
variable to the output file:

data _null_;
 length myout $ 200;
 file file-specification filename=myout;
 put myout=;
 stop;
run;

The PUT statement writes a line to the current output file that contains the physical name
of the file:

MYOUT=your-output-file

Example 5: Dynamically Changing the Current Output File
This DATA step uses the FILEVAR= option to dynamically change the currently
opened output file to a new physical file.

• Write a report. Create a long character variable. Use DATA _NULL_ to write a
report rather than create a data set. The LENGTH statement creates a variable with
length long enough to contain the name of an external file:

data _null_;
 length name $ 200;

• Read an in-stream data line and assign a value to the NAME variable:

 input name $;

• Close the current output file and open a new one when the NAME variable changes.
The file-specification is just a place holder; it can be any valid SAS name:

FILE Statement 91

 file file-specification filevar=name mod;
 date = date();

• Append a log record to currently open output file:

 put 'records updated ' date date.;

• Supply the names of the external files:

datalines;
external-file-1
external-file-2
external-file-3
;

Example 6: When the Output Line Exceeds the Line Length of the
Output File
Because the combined lengths of the variables are longer than the output line (80
characters), this PUT statement automatically writes three separate records:

file file-specification linesize=80;
 put name $ 1-50 city $ 71-90 state $ 91-104;

The value of NAME appears in the first record, CITY begins in the first column of the
second record, and STATE in the first column of the third record.

Example 7: Reading Data and Writing Text through a TCP/IP Socket
This example shows reading raw data from a file through a TCP/IP socket. The
NBYTE= option is used in the INFILE statement:

/* Start this first as the server */
filename serve socket ':5205' server
 recfm=s
 lrecl=25 blocksize=2500;
data _null_;
 nb=25;
 infile serve nbyte=nb;
 input text $char25.;
 put _all_;
run;

This example shows writing text to a file through a TCP/IP socket:

/* While the server test is running,*/
/*continue with this as the client. */
filename client socket "&hstname:5205"
 recfm=s
 lrecl=25 blocksize=2500;
data _null_;
 file client;
 put 'Some text to length 25...';
run;

Example 8: Specifying an Encoding When Writing to an Output File
This example creates an external file from a SAS data set. The current session encoding
is Wlatin1, but the external file's encoding needs to be UTF-8. By default, SAS writes
the external file using the current session encoding.

92 Chapter 2 • Dictionary of SAS Statements

To tell SAS what encoding to use when writing data to the external file, specify the
ENCODING= option. When you tell SAS that the external file is to be in UTF-8
encoding, SAS then transcodes the data from Wlatin1 to the specified UTF-8 encoding
when writing to the external file.

libname myfiles 'SAS-library';
filename outfile 'external-file';
data _null_;
 set myfiles.cars;
 file outfile encoding="utf-8";
 put Make Model Year;
run;

Example 9: Using the FTP Access Method to Write Data to an Excel
Spreadsheet
The example uses the FTP access method and the FILEVAR option to write data to
several Microsoft Excel worksheets.

data _null_;
 do i = 1 to 3;
 sheet = cats('excel|[test-sheet.xlsx]Sheet', i, '!r1c1:r10c2');
 file area ftp filevar=sheet;
 do x = 1 to 10;
 y = 2*x;
 put x y;
 end;
 end;
run;

See Also
• “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”

in Chapter 3 of SAS Language Reference: Concepts

Statements:

• “FILENAME Statement” on page 93

• “INFILE Statement” on page 171

• “LABEL Statement” on page 233

• “PUT Statement” on page 296

• “RETURN Statement” on page 341

• “TITLE Statement” on page 368

• “FILE Statement for ODS” in SAS Output Delivery System: User's Guide

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

FILENAME Statement
Associates a SAS fileref with an external file or an output device, disassociates a fileref and external file, or
lists attributes of external files.

Valid in: Anywhere

FILENAME Statement 93

Category: Data Access

See: FILENAME Statement under Windows, UNIX, and z/OS

Syntax
Form 1: FILENAME fileref <device-type> 'external-file' <ENCODING='encoding-value'>

<options> <operating-environment-options>;

Form 2: FILENAME fileref <device-type> <options> <operating-environment-options>;

Form 3: FILENAME fileref CLEAR | _ALL_ CLEAR;

Form 4: FILENAME fileref LIST | _ALL_ LIST ;

Arguments
fileref

is any SAS name that you use when you assign a new fileref. When you disassociate
a currently assigned fileref or when you list file attributes with the FILENAME
statement, specify a fileref that was previously assigned with a FILENAME
statement or an operating environment-level command.
Tip: The association between a fileref and an external file lasts only for the duration

of the SAS session or until you change it or discontinue it by using another
FILENAME statement. Change the fileref for a file as often as you want.

device-type
specifies the type of device or the access method that is used if the fileref points to an
input or output device or location that is not a physical file:

DISK
specifies that the device is a disk drive.
Tip: When you assign a fileref to a file on disk, you are not required to specify

DISK.

DUMMY
specifies that the output to the file is discarded.
Tip: Specifying DUMMY can be useful for testing.

GTERM
indicates that the output device type is a graphics device that will receive
graphics data.

JMS
specifies a Java Message Service (JMS) destination.

PIPE
specifies an unnamed pipe.
Note: Some operating environments do not support pipes.

PLOTTER
specifies an unbuffered graphics output device.

PRINTER
specifies a printer or printer spool file.

TAPE
specifies a tape drive.

94 Chapter 2 • Dictionary of SAS Statements

TEMP
creates a temporary file that exists only as long as the filename is assigned. The
temporary file can be accessed only through the logical name and is available
only while the logical name exists.
Restriction: Do not specify a physical pathname. If you do, SAS returns an

error.
Tip: Files manipulated by the TEMP device can have the same attributes and

behave identically to DISK files.

TERMINAL
specifies the user's terminal.

UPRINTER
specifies a Universal Printing printer definition name.
Tip: If you do not specify the printer name in the FILENAME statement, the

PRINTERPATH options control which Universal Printer is used and the
destination of the output.

Requirement: device-type must immediately follow fileref in the statement.
Operating environment: Additional specifications might be required when you

specify some devices. See the SAS documentation for your operating
environment before specifying a value other than DISK. Values in addition to the
ones listed here might be available in some operating environments.

'external-file'
is the physical name of an external file. The physical name is the name that is
recognized by the operating environment.
Operating environment: For details about specifying the physical names of

external files, see the SAS documentation for your operating environment.
Tips:

Specify external-file when you assign a fileref to an external file.
You can associate a fileref with a single file or with an aggregate file storage
location.

ENCODING= 'encoding-value'
specifies the encoding to use when SAS is reading from or writing to an external file.
The value for ENCODING= indicates that the external file has a different encoding
from the current session encoding.

When you read data from an external file, SAS transcodes the data from the specified
encoding to the session encoding. When you write data to an external file, SAS
transcodes the data from the session encoding to the specified encoding.
Default: SAS assumes that an external file is in the same encoding as the session

encoding.
Restriction: Not all device types support the encoding option. For more

information, see the documentation for your operating system.
See: For valid encoding values, see “Encoding Values in SAS Language Elements”

in Chapter 20 of SAS National Language Support (NLS): Reference Guide .
Examples:

“Example 5: Specifying an Encoding When Reading an External File” on page
99
“Example 6: Specifying an Encoding When Writing to an External File” on page
100

CLEAR
disassociates one or more currently assigned filerefs.

FILENAME Statement 95

Tip: Specify fileref to disassociate a single fileref. Specify _ALL_ to disassociate all
currently assigned filerefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned filerefs.

LIST
writes the attributes of one or more files to the SAS log.
Interaction: Specify fileref to list the attributes of a single file. Specify _ALL_ to

list the attributes of all files that have filerefs in your current session.

Options
RECFM=record-format

specifies the record format of the external file.
Operating environment: Values for record-format are dependent on the operating

environment. For details, see the SAS documentation for your operating
environment.

Operating Environment Options
Operating environment options specify details, such as file attributes and processing
attributes, that are specific to your operating environment.

Operating Environment Information
For a list of valid specifications, see the SAS documentation for your operating
environment.

Details

Operating Environment Information
Operating Environment Information

Using the FILENAME statement requires operating environment-specific
information. See the SAS documentation for your operating environment before
using this statement. Note also that commands are available in some operating
environments that associate a fileref with a file and that break that association.

Definitions
external file

is a file that is created and maintained in the operating environment from which you
need to read data, SAS programming statements, or autocall macros, or to which you
want to write output. An external file can be a single file or an aggregate storage
location that contains many individual external files. See “Example 3: Associating a
Fileref with an Aggregate Storage Location” on page 98.

Operating Environment Information
Different operating environments call an aggregate grouping of files by different
names, such as a directory, a MACLIB, or a partitioned data set. For details
about specifying external files, see the SAS documentation for your operating
environment.

fileref
(a file reference name) is a shorthand reference to an external file. After you
associate a fileref with an external file, you can use it as a shorthand reference for
that file in SAS programming statements (such as INFILE, FILE, and %INCLUDE)
and in other commands and statements in SAS software that access external files.

96 Chapter 2 • Dictionary of SAS Statements

Reading Delimited Data from an External File
Any time a text file originates from anywhere other than the local encoding
environment, it might be necessary to specify the ENCODING= option in either
EBCDIC or ASCII environments.

For example, when you read an EBCDIC text file on an ASCII platform, it is
recommended that you specify the ENCODING= option in the FILENAME statement.
However, if you use the DSD and DLM options in the FILENAME statement, the
ENCODING= option is a requirement because these options require certain characters in
the session encoding (such as quotation marks, commas, and blanks).

The use of encoding-specific informats should be reserved for use with true binary files.
That is, they contain both character and non-character fields.

Associating a Fileref with an External File (Form 1)
Use this form of the FILENAME statement to associate a fileref with an external file on
disk:

FILENAME fileref 'external-file' <operating-environment-options>;

To associate a fileref with a file other than a disk file, you might need to specify a device
type, depending on your operating environment, as shown in this form:

FILENAME fileref <device-type> <operating-environment-options>;

The association between a fileref and an external file lasts only for the duration of the
SAS session or until you change it or discontinue it with another FILENAME statement.
Change the fileref for a file as often as you want.

To specify a character-set encoding, use the following form:

FILENAME fileref <device-type> <operating-environment-options>;

Associating a Fileref with a Terminal, Printer, Universal Printer, or
Plotter (Form 2)
To associate a fileref with an output device, use this form:

FILENAME fileref device-type <operating-environment-options>;

Disassociating a Fileref from an External File (Form 3)
To disassociate a fileref from a file, use a FILENAME statement, specifying the fileref
and the CLEAR option.

FILENAME fileref CLEAR | _ALL_ CLEAR;

Writing File Attributes to the SAS Log (Form 4)
Use a FILENAME statement to write the attributes of one or more external files to the
SAS log. Specify fileref to list the attributes of one file; use _ALL_ to list the attributes
of all the files that have been assigned filerefs in your current SAS session.

FILENAME fileref LIST | _ALL_ LIST;

Comparisons
The FILENAME statement assigns a fileref to an external file. The LIBNAME statement
assigns a libref to a SAS data set or to a DBMS file that can be accessed like a SAS data
set.

FILENAME Statement 97

Examples

Example 1: Specifying a Fileref or a Physical Filename
You can specify an external file either by associating a fileref with the file and then
specifying the fileref or by specifying the physical filename in quotation marks:

 filename sales 'your-input-file';
 data jansales;
 /* specifying a fileref */
 infile sales;
 input salesrep $20. +6 jansales febsales
 marsales;
 run;
 data jansales;
 /* physical filename in quotation marks */
 infile 'your-input-file';
 input salesrep $20. +6 jansales febsales
 marsales;
 run;

Example 2: Using a FILENAME and a LIBNAME Statement
This example reads data from a file that has been associated with the fileref GREEN and
creates a permanent SAS data set stored in a SAS library that has been associated with
the libref SAVE.

 filename green 'your-input-file';
 libname save 'SAS-library';
 data save.vegetable;
 infile green;
 input lettuce cabbage broccoli;
 run;

Example 3: Associating a Fileref with an Aggregate Storage
Location
If you associate a fileref with an aggregate storage location, use the fileref, followed in
parentheses by an individual filename, to read from or write to any of the individual
external files that are stored there.

Operating Environment Information
Some operating environments enable you to read from but not write to members of
aggregate storage locations. For details, see the SAS documentation for your
operating environment.

In this example, each DATA step reads from an external file (REGION1 and REGION2,
respectively) that is stored in the same aggregate storage location and that is referenced
by the fileref SALES.

 filename sales 'aggregate-storage-location';
 data total1;
 infile sales(region1);
 input machine $ jansales febsales marsales;
 totsale=jansales+febsales+marsales;
 run;
 data total2;
 infile sales(region2);
 input machine $ jansales febsales marsales;

98 Chapter 2 • Dictionary of SAS Statements

 totsale=jansales+febsales+marsales;
 run;

Example 4: Routing PUT Statement Output
In this example, the FILENAME statement associates the fileref OUT with a printer that
is specified with an operating environment-dependent option. The FILE statement
directs PUT statement output to that printer.

 filename out printer operating-environment-option;
 data sales;
 file out print;
 input salesrep $20. +6 jansales
 febsales marsales;
 put _infile_;
 datalines;
 Jones, E. A. 124357 155321 167895
 Lee, C. R. 111245 127564 143255
 Desmond, R. T. 97631 101345 117865
 ;

You can use the FILENAME and FILE statements to route PUT statement output to
several devices during the same session. To route PUT statement output to your display
monitor, use the TERMINAL option in the FILENAME statement, as shown here:

 filename show terminal;
 data sales;
 file show;
 input salesrep $20. +6 jansales
 febsales marsales;
 put _infile_;
 datalines;
 Jones, E. A. 124357 155321 167895
 Lee, C. R. 111245 127564 143255
 Desmond, R. T. 97631 101345 117865
 ;

Example 5: Specifying an Encoding When Reading an External File
This example creates a SAS data set from an external file. The external file is in UTF-8
character-set encoding, and the current SAS session is in the Wlatin1 encoding. By
default, SAS assumes that an external file is in the same encoding as the session
encoding, which causes the character data to be written to the new SAS data set
incorrectly.

To tell SAS what encoding to use when reading the external file, specify the
ENCODING= option. When you tell SAS that the external file is in UTF-8, SAS then
transcodes the external file from UTF-8 to the current session encoding when writing to
the new SAS data set. Therefore, the data is written to the new data set correctly in
Wlatin1.

libname myfiles 'SAS-library';

filename extfile 'external-file' encoding="utf-8";
data myfiles.unicode;
 infile extfile;
 input Make $ Model $ Year;
run;

FILENAME Statement 99

Example 6: Specifying an Encoding When Writing to an External
File
This example creates an external file from a SAS data set. The current session encoding
is Wlatin1, but the external file's encoding needs to be UTF-8. By default, SAS writes
the external file using the current session encoding.

To tell SAS what encoding to use when writing data to the external file, specify the
ENCODING= option. When you tell SAS that the external file is to be in UTF-8
encoding, SAS then transcodes the data from Wlatin1 to the specified UTF-8 encoding
when writing to the external file.

libname myfiles 'SAS-library';
filename outfile 'external-file' encoding="utf-8";

data _null_;
 set myfiles.cars;
 file outfile;
 put Make Model Year;
run;

See Also

Statements:

• “FILE Statement” on page 76

• “%INCLUDE Statement” on page 164

• “INFILE Statement” on page 171

• “FILENAME Statement, CATALOG Access Method” on page 100

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

• “FILENAME Statement, SFTP Access Method” on page 133

• “FILENAME Statement, URL Access Method” on page 142

• “LIBNAME Statement” on page 239

SAS Windowing Interface Commands:

• See the FILE and INCLUDE commands in the Base SAS Help and Documentation

FILENAME Statement, CATALOG Access Method
Enables you to reference a SAS catalog as an external file.

Valid in: Anywhere

Category: Data Access

100 Chapter 2 • Dictionary of SAS Statements

Syntax
FILENAME fileref CATALOG 'catalog' <catalog-options>;

Arguments
fileref

is a valid fileref.

CATALOG
specifies the access method that enables you to reference a SAS catalog as an
external file. You can then use any SAS commands, statements, or procedures that
can access external files to access a SAS catalog.
Alias: LIBRARY
Tips:

This access method makes it possible for you to invoke an autocall macro
directly from a SAS catalog.
With this access method, you can read any type of catalog entry, but you can
write only to entries of type LOG, OUTPUT, SOURCE, and CATAMS.
If you want to access an entire catalog (instead of a single entry), you must
specify its two-level name in the catalog parameter.

'catalog'
is a valid two-, three-, or four-part SAS catalog name, where the parts represent
library.catalog.entry.entrytype.
Default: The default entry type is CATAMS.
Restriction: The CATAMS entry type is used only by the CATALOG access

method. The CPORT and CIMPORT procedures do not support this entry type.

Catalog Options
catalog-options can be any of the following:

LRECL=lrecl
where lrecl is the maximum record length for the data in bytes.
Default: For input, the actual LRECL value of the file is the default. For output, the

default is 132.
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.

RECFM=recfm
where recfm is one of four record formats:

F
is fixed-record format. Data is transferred in image (binary) mode.

P
is print format.

S
is stream-record format. Data is transferred in image (binary) mode.
Interaction: The amount of data that is read is controlled by the value of the

NBYTE= variable in the INFILE statement. The NBYTE= option specifies a
variable that is equal to the amount of data to be read. This amount must be
less than or equal to LRECL.

See: The NBYTE= option on page 179 in the INFILE statement.

FILENAME Statement, CATALOG Access Method 101

V
is variable-record format (the default). In this format, records have varying
lengths, and they are separated by newlines. Data is transferred in image (binary)
mode.

Default: V

DESC=description
where description is a text description of the catalog.

MOD
specifies to append to the file.
Default: If you omit MOD, the file is replaced.

Details
The CATALOG access method in the FILENAME statement enables you to reference a
SAS catalog as an external file. You can then use any SAS commands, statements, or
procedures that can access external files to access a SAS catalog. For example, the
catalog access method makes it possible for you to invoke an autocall macro directly
from a SAS catalog. See “Example 5: Executing an Autocall Macro from a SAS
Catalog” on page 103.

With the CATALOG access method, you can read any type of catalog entry, but you can
write to only entries of type LOG, OUTPUT, SOURCE, and CATAMS. If you want to
access an entire catalog (instead of a single entry), you must specify its two-level name
in the catalog argument.

Examples

Example 1: Using %INCLUDE with a Catalog Entry
This example submits the source program that is contained in
SASUSER.PROFILE.SASINP.SOURCE:

filename fileref1
 catalog 'sasuser.profile.sasinp.source';
%include fileref1;

Example 2: Using %INCLUDE with Several Entries in a Single
Catalog
This example submits the source code from three entries in the catalog
MYLIB.INCLUDE. When no entry type is specified, the default is CATAMS.

filename dir catalog 'mylib.include';
%include dir(mem1);
%include dir(mem2);
%include dir(mem3);

Example 3: Reading and Writing a CATAMS Entry
This example uses a DATA step to write data to a CATAMS entry, and another DATA
step to read it back in:

filename mydata
 catalog 'sasuser.data.update.catams';
 /* write data to catalog entry update.catams */
data _null_;
 file mydata;

102 Chapter 2 • Dictionary of SAS Statements

 do i=1 to 10;
 put i;
 end;
run;
 /* read data from catalog entry update.catams */
data _null_;
 infile mydata;
 input;
 put _INFILE_;
run;

Example 4: Writing to a SOURCE Entry
This example writes code to a catalog SOURCE entry and then submits it for processing:

filename incit
 catalog 'sasuser.profile.sasinp.source';
data _null_;
 file incit;
 put 'proc options; run;';
run;
%include incit;

Example 5: Executing an Autocall Macro from a SAS Catalog
If you store an autocall macro in a SOURCE entry in a SAS catalog, you can point to
that entry and invoke the macro in a SAS job. Use these steps:

1. Store the source code for the macro in a SOURCE entry in a SAS catalog. The name
of the entry is the macro name.

2. Use a LIBNAME statement to assign a libref to that SAS library.

3. Use a FILENAME statement with the CATALOG specification to assign a fileref to
the catalog: libref.catalog.

4. Use the SASAUTOS= option and specify the fileref so that the system knows where
to locate the macro. Also set MAUTOSOURCE to activate the autocall facility.

This example points to a SAS catalog named MYSAS.MYCAT. It then invokes a macro
named REPORTS, which is stored as a SAS catalog entry named
MYSAS.MYCAT.REPORTS.SOURCE:

libname mysas 'SAS-library';
filename mymacros catalog 'mysas.mycat';
options sasautos=mymacros mautosource;
%reports

See Also

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

FILENAME Statement, CATALOG Access Method 103

• “FILENAME Statement, SFTP Access Method” on page 133

• “FILENAME Statement, URL Access Method” on page 142

FILENAME, CLIPBOARD Access Method
Enables you to read text data from and write text data to the clipboard on the host computer.

Valid in: Anywhere

Category: Data Access

Syntax
FILENAME fileref CLIPBRD <BUFFER=paste-buffer-name>;

Arguments
fileref

is a valid fileref.

CLIPBRD
specifies the access method that enables you to read data from or write data to the
clipboard on the host computer.

BUFFER=paste-buffer-name
creates and names the paste buffer. You can create any number of paste buffers by
naming them with the BUFFER= argument in the STORE command.

Details
The FILENAME statement, CLIPBOARD Access Method enables you to share data
within SAS and between SAS and applications other than SAS.

Comparisons
The STORE command copies marked text in the current window and stores the copy in a
paste buffer.

You can also copy data to the clipboard by using the Explorer pop-up menu item Copy
Contents to Clipboard .

Examples

Example 1: Using ODS to Write a Data Set as HTML to the Clipboard
This example uses the Sashelp.Air data set as the input file. The ODS is used to write the
data set in HTML format to the clipboard.

filename _temp_ clipbrd;
 ods noresults;
 ods html file=_temp_ rs=none style=minimal;
 proc print data=Sashelp.'Air'N noobs;
run;
ods results;
filename _temp_;

104 Chapter 2 • Dictionary of SAS Statements

Example 2: Using the DATA Step to Write a Data Set as Comma-
separated Values to the Clipboard
This example uses the Sashelp.Air data set as the input file. The data is written in the
DATA step as comma-separated values to the clipboard.

filename _temp1_ temp;
filename _temp2_ clipbrd;
proc contents data=Sashelp."Air"N out=info noprint;
proc sort data=info;
 by npos;
run;
data _null_;
 set info end=eof;
 ;
 file _temp1_ dsd;
 put name @@;
 if _n_=1 then do;
 call execute("data _null_;
 set Sashelp.""Air""N;
 file _temp1_ dsd mod;
 put");
 end;
 call execute(trim(name));
 if eof then call execute('; run;');
run;
data _null_;
 infile _temp1_;
 file _temp2_;
 input;
 put _infile_;
run;
filename _temp1_ clear;
filename _temp2_ clear;

Example 3: Using the DATA Step to Write Text to the Clipboard
This example writes three lines to the clipboard.

filename clippy clipbrd;
data _null_;
 file clippy;
 put 'Line 1';
 put 'Line 2';
 put 'Line 3';
run;

Example 4: Using the DATA Step to Retrieve Text from the
Clipboard
This example writes three lines to the clipboard and then retrieves them.

filename clippy clipbrd;
data _null_;
 file clippy;
 put 'Line 1';
 put 'Line 2';
 put 'Line 3';
run;

FILENAME, CLIPBOARD Access Method 105

data _null_;
 infile clippy;
 input;
 put _infile_;
run;

See Also

Commands:

• The STORE command in the Base SAS Help and Documentation

FILENAME Statement, EMAIL (SMTP) Access Method
Enables you to send electronic mail programmatically from SAS using the SMTP (Simple Mail Transfer
Protocol) e-mail interface.

Valid in: Anywhere

Category: Data Access

Syntax
FILENAME fileref EMAIL <'address' > <email-options>;

Arguments
fileref

is a valid file reference. The fileref is a name that is temporarily assigned to an
external file or to a device type. Note that the fileref cannot exceed eight bytes.

EMAIL
specifies the EMAIL device type, which provides the access method that enables you
to send electronic mail programmatically from SAS. In order to use SAS to send a
message to an SMTP server, you must enable SMTP e-mail. For more information,
see Chapter 38, “The SMTP E-Mail Interface,” in SAS Language Reference:
Concepts.

'address'
is the e-mail address to which you want to send the message. You must enclose the
address in single or double quotation marks. To specify more than one address, you
must enclose the group of addresses in parentheses, enclose each address in single or
double quotation marks, and separate each address with either a comma or a space.
To specify a real name along with an address, enclose the address in angle brackets
(< >). Specifying an address as a FILENAME statement argument is optional if you
specify the TO= e-mail option or the PUT statement !EM_TO! directive, which will
override an address specification.

E–Mail Options
You can use any of the following e-mail options in the FILENAME statement to specify
attributes for the electronic message. You can also specify these options in the FILE

106 Chapter 2 • Dictionary of SAS Statements

statement. E-mail options that you specify in the FILE statement override any
corresponding e-mail options that you specified in the FILENAME statement.

ATTACH='filename.ext' | ATTACH= ('filename.ext' attachment-options)
specifies the physical name of the file or files to be attached to the message and any
options to modify attachment specifications. The physical name is the name that is
recognized by the operating environment. Enclose the physical name in quotation
marks. To attach more than one file, enclose the group of files in parentheses,
enclose each file in quotation marks, and separate each with a space. Here are
examples:

attach="/u/userid/opinion.txt"
attach=('C:\Status\June2001.txt' 'C:\Status\July2001.txt')
attach="user.misc.pds(member)"

The attachment-options include the following:

CONTENT_TYPE='content/type'
specifies the content type for the attached file. You must enclose the value in
quotation marks. If you do not specify a content type, SAS tries to determine the
correct content type based on the filename. For example, if you do not specify a
content type, a filename of home.html is sent with a content type of text/html.
Alias: CT= and TYPE=
Default: If SAS cannot determine a content type based on the filename and

extension, the default value is text/plain.

ENCODING='encoding-value'
specifies the text encoding of the attachment that is read into SAS. You must
enclose the value in quotation marks.
See: “Encoding Values in SAS Language Elements” in Chapter 20 of SAS

National Language Support (NLS): Reference Guide

EXTENSION='extension'
specifies a different file extension to be used for the specified attachment. You
must enclose the value in quotation marks. This extension is used by the
recipient's e-mail program for selecting the appropriate utility to use for
displaying the attachment. The following example results in the attachment
home.html being received as index.htm.

attach=("home.html" name="index" ext="htm")

Alias: EXT=
Note: If you specify extension="", the specified attachment will have no file

extension.

NAME='filename'
specifies a different name to be used for the specified attachment. You must
enclose the value in quotation marks. The following example results in the
attachment home.html being received as index.html.

attach=("home.html" name="index")

OUTENCODING='encoding-value'
specifies the resulting text encoding for the attachment to be sent. You must
enclose the value in quotation marks.
Restriction: Do not specify EBCDIC encoding values, because the SMTP e-

mail interface does not support EBCDIC.
See: “Encoding Values in SAS Language Elements” in Chapter 20 of SAS

National Language Support (NLS): Reference Guide

FILENAME Statement, EMAIL (SMTP) Access Method 107

BCC='bcc-address'
specifies the recipient or recipients that you want to receive a blind carbon copy of
the e-mail. Individuals that are listed in the bcc field will receive a copy of the e-
mail. The BCC field does not appear in the e-mail header, so that these e-mail
addresses cannot be viewed by other recipients.

If a BCC address contains more than one word, then enclose the address in single or
double quotation marks. To specify more than one address, you must enclose the
group of addresses in parentheses, enclose each address in single or double quotation
marks, and separate each address with either a comma or a space. To specify a real
name as well as an address, enclose the address in angle brackets (< >). Here are
examples:

bcc="joe@site.com"
bcc=("joe@site.com" "jane@home.net")
bcc="Joe Smith <joe@site.com>"

CC='cc-address'
specifies the recipient or recipients to receive a carbon copy of the e-mail message.
You must enclose the address in single or double quotation marks. To specify more
than one address, enclose the group of addresses in parentheses, enclose each address
in single or double quotation marks, and separate each address with either a comma
or a space. To specify a real name as well as an address, enclose the address in angle
brackets (< >). Here are examples:

cc='joe@site.com'
cc=("joe@site.com" "jane@home.net")
cc="Joe Smith <joe@site.com>"

CONTENT_TYPE='content/type'
specifies the content type for the message body. If you do not specify a content type,
SAS tries to determine the correct content type. You must enclose the value in
quotation marks.
Alias: CT= and TYPE=
Default: text/plain

DELIVERYRECEIPT
specifies that a notification be sent when the e-mail message is delivered to the
recipient.
Note: If the recipient’s e-mail client does not support or if the recipient does not

allow “delivery receipt” requests, the sender will not get a “delivery receipt”
notification when the e-mail is delivered.

ENCODING='encoding-value'
specifies the text encoding to use for the message body. For valid encoding values,
see “Encoding Values in SAS Language Elements” in Chapter 20 of SAS National
Language Support (NLS): Reference Guide.

EXPIRES='dd mon yyyy hh:mm'
specifies the expiration date for the e-mail message.

The format dd mon hh:mm parameters are defined as follows:

dd
is an integer from 01 to 31 that represents the day of the month.

mon
are the first three letters of the month name in English.

yyyy
is a four-digit integer that represents the year.

108 Chapter 2 • Dictionary of SAS Statements

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

Tip: If the date and time have passed the current date and time, an error message
occurs and no e-mail is sent.

FROM='from-address'
specifies the e-mail address of the author of the message that is being sent. The
default value for FROM= is the e-mail address of the user who is running SAS. For
example, specify this option when the person who is sending the message from SAS
is not the author. You must enclose an address in quotation marks. You can specify
only one e-mail address. To specify the author's real name along with the address,
enclose the address in angle brackets (< >). Here are examples:

from='martin@home.com'
from="Brad Martin <martin@home.com>"

Requirement: The FROM option is required if the EMAILFROM system option is
set. For more information, see the “EMAILFROM System Option” in SAS
System Options: Reference.

IMPORTANCE='LOW' | 'NORMAL' | 'HIGH'
specifies the priority of the e-mail message. You must enclose the value in quotation
marks. You can specify the priority in the language that matches your session
encoding. However, SAS will translate the priority into English because the actual
message header must contain English in accordance with the RFC-2076 specification
(Common Internet Message Headers). Here are examples:

filename inventory email 'name@mycompany.com' importance='high';
filename inventory email 'name@mycompany.com' importance='hoch';

Default: NORMAL

LRECL=lrecl
where lrecl is the logical record length of the data.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.

READRECEIPT
specifies that a notification be sent when the e-mail message is read by the recipient.
Note: If the recipient’s e-mail client does not support or if the recipient does not

allow return “read receipt” requests, the sender will not get a “read receipt”
notification when the recipient reads the e-mail.

REPLYTO='replyto-address'
specifies the e-mail address or addresses of who will receive replies. You must
enclose the address in single or double quotation marks. To specify more than one
address, enclose the group of addresses in parentheses, enclose each address in single
or double quotation marks, and separate each address with either a comma or a
space. To specify a real name along with an address, enclose the address in angle
brackets (< >). Here are examples:

replyto='hiroshi@home.com'
replyto=('hiroshi@home.com' 'akiko@site.com')
replyto="Hiroshi Mori <mori@site.com>"

FILENAME Statement, EMAIL (SMTP) Access Method 109

SUBJECT=subject
specifies the subject of the message. If the subject contains special characters or
more than one word (that is, it contains at least one blank space), you must enclose
the text in quotation marks. Here are examples:

subject=Sales
subject="June Sales Report"

Note: If you do not enclose a one-word subject in quotation marks, it is converted to
uppercase.

TO='to-address'
specifies the primary recipient or recipients of the e-mail message. You must enclose
the address in single or double quotation marks. To specify more than one address,
enclose the group of addresses in parentheses, enclose each address in single or
double quotation marks, and separate each address with either a comma or a space.
To specify a real name as well as an address, enclose the address in angle brackets (<
>). Here are examples:

to='joe@site.com'
to=("joe@site.com" "jane@home.net")
to="Joe Smith <joe@site.com>"

Tip: Specifying TO= overrides the '' argument.

PUT Statement E-Mail Directives
The directives that you can specify in a PUT statement to change the attributes of a
message are as follows:

'!EM_ABORT!'
abnormally end the current message. You can use this directive to stop SAS from
automatically sending the message at the end of the DATA step. By default, SAS
sends a message for each FILE statement.

'!EM_ATTACH! 'filename.ext' | ATTACH=('filename.ext' attachment-options)'
replaces the physical name of the file or files to be attached to the message and any
options to modify attachment specifications. The physical name is the name that is
recognized by the operating environment. The directive must be enclosed in
quotation marks, and the physical name must be enclosed in quotation marks. To
attach more than one file, enclose the group of files in parentheses, enclose each file
in quotation marks, and separate each with a space. Here are examples:

put '!em_attach! /u/userid/opinion.txt';
put '!em_attach! ("C:\Status\June2001.txt" "C:\Status\July2001.txt")';
put '!em_attach! user.misc.pds(member)';

The attachment-options include the following:

CONTENT_TYPE='content/type'
specifies the content type for the attached file. You must enclose the value in
quotation marks. If you do not specify a content type, SAS tries to determine the
correct content type based on the filename. For example, if you do not specify a
content type, a filename of home.html is sent with a content type of text/html.
Alias: CT= and TYPE=
Default: If SAS cannot determine a content type based on the filename and

extension, the default value is text/plain.

ENCODING='encoding-value'
specifies the text encoding to use for the attachment as it is read into SAS. You
must enclose the value in quotation marks. For valid encoding values, see

110 Chapter 2 • Dictionary of SAS Statements

“Encoding Values in SAS Language Elements” in Chapter 20 of SAS National
Language Support (NLS): Reference Guide.

EXTENSION='extension'
specifies a different file extension to be used for the specified attachment. You
must enclose the value in quotation marks. This extension is used by the
recipient's e-mail program for selecting the appropriate utility to use for
displaying the attachment. The following example results in the attachment
home.html being received as index.htm.

put '!em_attach! ("home.html" name="index" ext="htm")';

Alias: EXT=
Default: TXT

NAME='filename'
specifies a different name to be used for the specified attachment. You must
enclose the value in quotation marks. The following example results in the
attachment home.html being received as index.html.

put '!em_attach! ("home.html" name="index")';

OUTENCODING='encoding-value'
specifies the resulting text encoding for the attachment to be sent. You must
enclose the value in quotation marks.
Restriction: Do not specify EBCDIC encoding values, because the SMTP e-

mail interface does not support EBCDIC.
See: “Encoding Values in SAS Language Elements” in Chapter 20 of SAS

National Language Support (NLS): Reference Guide

'!EM_BCC! bcc-address'
specifies the recipient or recipients that you want to receive a blind carbon copy of
the e-mail. Individuals that are listed in the bcc field will receive a copy of the e-
mail. The BCC field does not appear in the e-mail header, so that these e-mail
addresses cannot be viewed by other recipients.

If a BCC address contains more than one word, then enclose the address in single or
double quotation marks. To specify more than one address, you must enclose the
group of addresses in parentheses, enclose each address in single or double quotation
marks, and separate each address with either a comma or a space. To specify a real
name as well as an address, enclose the address in angle brackets (< >).

put '!em_bcc! joe@site.com';
put '!em_bcc! ("joe@site.com" "jane@home.net")';
put '!em_bcc! Joe Smith <joe@site.com>';

'!EM_CC! cc-address'
specifies the recipient or recipients to receive a carbon copy of the e-mail message.
You must enclose the address in single or double quotation marks. To specify more
than one address, enclose the group of addresses in parentheses, enclose each address
in single or double quotation marks, and separate each address with either a comma
or a space. To specify a real name as well as an address, enclose the address in angle
brackets (< >). Here are examples:

put '!em_cc! joe@site.com';
put '!em_cc! ("joe@site.com" "jane@home.com")';
put '!em_cc! Joe Smith <joe@site.com>';

'!EM_DELIVERYRECEIPT!'
specifies that a notification be sent when the e-mail message is delivered to the
recipient.

FILENAME Statement, EMAIL (SMTP) Access Method 111

Note: If the recipient’s e-mail client does not support or if the recipient does not
allow “delivery receipt” requests, the sender will not get a “delivery receipt”
notification when the e-mail is delivered.

'!EM_EXPIRES! dd mon yyyy hh:mm'
replaces the current expiration date for the e-mail message. Here are examples:

put '!em_expires! 15 Aug 2010 08:00';
put '!em_expires! 28 Feb 2011 23:00';

The format dd mon hh:mm parameters are defined as follows:

dd
is an integer from 01 to 31 that represents the day of the month.

mon
are the first three letters of the month name in English.

yyyy
is a four-digit integer that represents the year.

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

Tip: If the date and time have passed the current date and time, an error message
occurs and no e-mail is sent.

'!EM_FROM! from-address'
replaces the current address of the author of the message being sent, which could be
either the default or the one specified by the FROM= e-mail option. The directive
must be enclosed in quotation marks. You can specify only one e-mail address. To
specify the author's real name along with the address, enclose the address in angle
brackets (< >). Here are examples:

put '!em_from! martin@home.com';
put '!em_from! Brad Martin <martin@home.com>';

'!EM_IMPORTANCE! LOW | NORMAL | HIGH'
specifies the priority of the e-mail message. The directive must be enclosed in
quotation marks. You can specify the priority in the language that matches your
session encoding. However, SAS will translate the priority into English because the
actual message header must contain English in accordance with the RFC-2076
specification (Common Internet Message Headers). Here are examples:

put '!em_importance! high';
put '!em_importance! haut';

Default: NORMAL

'!EM_NEWMSG!'
clears all attributes of the current message that were set using PUT statement
directives.

'!EM_READRECEIPT!'
specifies that a notification be sent when the e-mail message is read by the recipient.
Note: If the recipient’s e-mail client does not support or if the recipient does not

allow “read receipt” requests, the sender will not get a “read receipt” notification
when the recipient reads the e-mail.

112 Chapter 2 • Dictionary of SAS Statements

'!EM_REPLYTO! replyto-address'
specifies the e-mail address or addresses of who will receive replies. You must
enclose the address in single or double quotation marks. To specify more than one
address, enclose the group of addresses in parentheses, enclose each address in single
or double quotation marks, and separate each address with either a comma or a
space. To specify a real name along with an address, enclose the address in angle
brackets (< >). Here are examples:

put '!em_replyto! hiroshi@home.com';
put '!em_replyto! ("hiroshi@home.com" "akiko@site.com")';
put '!em_replyto! Hiroshi Mori <mori@site.com>';

'!EM_SEND!'
sends the message with the current attributes. By default, SAS sends a message when
the fileref is closed. The fileref closes when the next FILE statement is encountered
or the DATA step ends. If you use this directive, SAS sends the message when it
encounters the directive, and again at the end of the DATA step. This directive is
useful for writing DATA step programs that conditionally send messages or use a
loop to send multiple messages.

'!EM_SUBJECT! subject'
replaces the current subject of the message. The directive must be enclosed in
quotation marks. If the subject contains special characters or more than one word
(that is, it contains at least one blank space), you must enclose the text in quotation
marks. Here are examples:

put '!em_subject! Sales';
put '!em_subject! "June Sales Report"';

'!EM_TO! to-address'
specifies the primary recipient or recipients of the e-mail message. You must enclose
the address in single or double quotation marks. To specify more than one address,
enclose the group of addresses in parentheses, enclose each address in single or
double quotation marks, and separate each address with either a comma or a space.
To specify a real name as well as an address, enclose the address in angle brackets (<
>). Here are examples:

put '!em_to! joe@site.com';
put '!em_to! ("joe@site.com" "jane@home.net")';
put '!em_to! Joe Smith <joe@site.com>';

Tip: Specifying !EM_TO! overrides the 'address' argument and the TO= e-mail
option.

Details

The Basics
You can send electronic mail programmatically from SAS using the EMAIL (SMTP)
access method. To send e-mail to an SMTP server, you first specify the SMTP e-mail
interface with the EMAILSYS system option, use the FILENAME statement to specify
the EMAIL device type, and then submit SAS statements in a DATA step or in SCL
code. The e-mail access method has several advantages:

• You can use the logic of the DATA step or SCL to subset e-mail distribution based
on a large data set of e-mail addresses.

• You can automatically send e-mail upon completion of a SAS program that you
submitted for batch processing.

• You can direct output through e-mail based on the results of processing.

FILENAME Statement, EMAIL (SMTP) Access Method 113

In general, DATA step or SCL code that sends e-mail has the following components:

• a FILENAME statement with the EMAIL device-type keyword

• e-mail options specified in the FILENAME or FILE statement that indicate e-mail
recipients, subject, attached file or files, and so on

• PUT statements that define the body of the message

• PUT statements that specify e-mail directives (of the form !EM_directive!) that
override the e-mail options (for example, TO=, CC=, SUBJECT=, ATTACH=) or
perform actions such as send, end abnormally, or start a new message.

You can use encoded e-mail passwords. When a password is encoded with PROC
PWENCODE, the output string includes a tag that identifies the string as having been
encoded. An example of a tag is {sas001}. The tag indicates the encoding method.
Encoding a password enables you to avoid e-mail access authentication with a password
in plaintext. Passwords that start with "{sas" trigger an attempt to be decoded. If the
decoding succeeds, then that decoded password is used. If the decoding fails, then the
password is used as is. For more information, see PROC PWENCODE in the Base SAS
Procedures Guide.

For e-mail messages that you send to another time zone, you can use the
EMAILUTCOFFSET= system option to ensure that the e-mail message has the UTC
offset that represents your local time. You might use this option this if the time on your
computer is not set to a time that uses a UTC offset or your computer does not account
for daylight savings time. The UTC offset specified in the EMAILUTCOFFSET=
system option adds or replaces a UTC offset to the time in the e-mail's Date: header
field. For more information, see the “EMAILUTCOFFSET= System Option” in SAS
System Options: Reference.

PUT Statement Syntax for EMAIL (SMTP) Access Method
In the DATA step, after using the FILE statement to define your e-mail fileref as the
output destination, use PUT statements to define the body of the message. Here is an
example.

filename mymail email 'martin@site.com' subject='Sending Email';

data _null_;
 file mymail;
 put 'Hi';
 put 'This message is sent from SAS...';
run;

You can also use PUT statements to specify e-mail directives that override the attributes
of your message (the e-mail options like TO=, CC=, SUBJECT=, CONTENT_TYPE=,
ATTACH=), or to perform actions such as send, end abnormally, or start a new message.
Specify only one directive in each PUT statement; each PUT statement can contain only
the text that is associated with the directive that it specifies.

For a list of e-mail directives, see “PUT Statement E-Mail Directives” on page 110.

Examples

Example 1: Sending E-mail with an Attachment Using a DATA Step
In order to share a copy of your SAS configuration file with another user, you could send
it by submitting the following program. The e-mail options are specified in the
FILENAME statement:

114 Chapter 2 • Dictionary of SAS Statements

filename mymail email "JBrown@site.com"
 subject="My SAS Configuration File"
 attach="/u/sas/sasv8.cfg";
data _null_;
 file mymail;
 put 'Jim,';
 put 'This is my SAS configuration file.';
 put 'I think you might like the';
 put 'new options I added.';
run;

The following program sends a message and two file attachments to multiple recipients.
For this example, the e-mail options are specified in the FILE statement instead of the
FILENAME statement.

filename outbox email "ron@acme.com";
data _null_;
 file outbox
 to=("ron@acme.com" "humberto@acme.com")
 /* Overrides value in */
 /* filename statement */
 cc=("miguel@acme.com" "loren@acme.com")
 subject="My SAS Output"
 attach=("C:\sas\results.out" "C:\sas\code.sas")
 ;
 put 'Folks,';
 put 'Attached is my output from the SAS';
 put 'program I ran last night.';
 put 'It worked great!';
run;

Example 2: Using Conditional Logic in a DATA Step
You can use conditional logic in a DATA step in order to send multiple messages and
control which recipients get which message. For example, in order to send customized
reports to members of two different departments, the following program produces an e-
mail message and attachments that are dependent on the department to which the
recipient belongs. In the program, the following occurs:

• In the first PUT statement, the !EM_TO! directive assigns the TO attribute.

• The second PUT statement assigns the SUBJECT attribute using
the !EM_SUBJECT! directive.

• The !EM_SEND! directive sends the message.

• The !EM_NEWMSG! directive clears the message attributes, which must be used to
clear message attributes between recipients.

• The !EM_ABORT! directive abnormally ends the message before the RUN
statement causes it to be sent again. The !EM_ABORT! directive prevents the
message from being automatically sent at the end of the DATA step.

filename reports email "Jim.Smith@work.com";
data _null_;
 file reports;
 length name dept $ 21;
 input name dept;
 put '!EM_TO! ' name;
 put '!EM_SUBJECT! Report for ' dept;

FILENAME Statement, EMAIL (SMTP) Access Method 115

 put name ',';
 put 'Here is the latest report for ' dept '.' ;
 if dept='marketing' then
 put '!EM_ATTACH! c:\mktrept.txt';
 else /* ATTACH the appropriate report */
 put '!EM_ATTACH! c:\devrept.txt';
 put '!EM_SEND!';
 put '!EM_NEWMSG!';
 put '!EM_ABORT!';
 datalines;
Susan marketing
Peter marketing
Alma development
Andre development
;
run;

Example 3: Sending Procedure Output in E-mail
You can use e-mail to send procedure output. This example illustrates how to send ODS
HTML in the body of an e-mail message. Note that ODS HTML procedure output must
be sent with the RECORD_SEPARATOR (RS) option set to NONE.

filename outbox email
 to='susan@site.com'
 type='text/html'
 subject='Temperature Conversions';
data temperatures;
 do centigrade = -40 to 100 by 10;
 fahrenheit = centigrade*9/5+32;
 output;
 end;
run;
ods html
 body=outbox /* Mail it! */
 rs=none;
title 'Centigrade to Fahrenheit Conversion Table';
proc print;
 id centigrade;
 var fahrenheit;
run;

Example 4: Creating and E-mailing an Image
The following example illustrates how to create a GIF image and send it from SAS as an
attachment to an e-mail message.

filename gsasfile email
 to='Jim@acme.com'
 type='image/gif'
 subject="SAS/GRAPH Output";
goptions dev=gif gsfname=gsasfile;
proc gtestit pic=1;
run;

116 Chapter 2 • Dictionary of SAS Statements

See Also
• “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”

in Chapter 3 of SAS Language Reference: Concepts

• Chapter 38, “The SMTP E-Mail Interface,” in SAS Language Reference: Concepts

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

• “FILENAME Statement, SFTP Access Method” on page 133

• “FILENAME Statement, URL Access Method” on page 142

FILENAME Statement, FTP Access Method
Enables you to access remote files by using the FTP protocol.

Valid in: Anywhere

Category: Data Access

Syntax
FILENAME fileref FTP 'external-file' <ftp-options>;

Arguments
fileref

is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the duration

of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

FTP
specifies the access method that enables you to use File Transfer Protocol (FTP) to
read from or write to a file from any host computer that you can connect to on a
network with an FTP server running.
Tip: Use FILENAME with FTP when you want to connect to the host computer, to

log in to the FTP server, to make records in the specified file available for
reading or writing, and to disconnect from the host computer.

'external-file'
specifies the physical name of an external file that you want to read from or write to.
The physical name is the name that is recognized by the operating environment.

If the file has an IBM 370 format and a record format of FB or FBA, and if the
ENCODING= option is specified, then you must also specify the LRECL= option. If

FILENAME Statement, FTP Access Method 117

the length of a record is shorter than the value of LRECL, then SAS pads the record
with blanks until the record length is equal to the value of LRECL.
Operating environment: For details about specifying the physical names of

external files, see the SAS documentation for your operating environment.
Tips:

If you are not transferring a file but performing a task such as retrieving a
directory listing, then you do not need to specify a filename. Instead, put empty
quotation marks in the statement. See “Example 1: Retrieving a Directory
Listing” on page 124.
You can associate a fileref with a single file or with an aggregate file storage
location.
If you use the DIR option, specify the directory in this argument.

ftp-options
specifies details that are specific to your operating environment such as file attributes
and processing attributes.
Operating environment: For more information about some of these FTP options,

see the SAS documentation for your operating environment.
See: “FTP Options” on page 118

FTP Options
AUTHDOMAIN="auth-domain"

specifies the name of an authentication domain metadata object in order to connect to
the FTP server. The authentication domain references credentials (user ID and
password) without your having to explicitly specify the credentials. The auth-domain
name is case sensitive, and it must be enclosed in double quotation marks.

An administrator creates authentication domain definitions while creating a user
definition with the User Manager in SAS Management Console. The authentication
domain is associated with one or more login metadata objects that provide access to
the FTP server and is resolved by the BASE engine calling the SAS Metadata Server
and returning the authentication credentials.
Requirement: The authentication domain and the associated login definition must

be stored in a metadata repository, and the metadata server must be running in
order to resolve the metadata object specification.

Interaction: If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASS=.

See: For more information about creating and using authentication domains, see the
discussion on credential management in the SAS Intelligence Platform: Security
Administration Guide.

BINARY
is fixed-record format. Thus, all records are of size LRECL with no line delimiters.
Data is transferred in image (binary) mode.

The BINARY option overrides the value of RECFM= in the FILENAME FTP
statement, if specified, and forces a binary transfer.
Alias: RECFM=F
Interaction: If you specify the BINARY option and the S370V or S370VS option,

then SAS ignores the BINARY option.

BLOCKSIZE=blocksize
where blocksize is the size of the data buffer in bytes.
Default: 32768

118 Chapter 2 • Dictionary of SAS Statements

CD='directory'
issues a command that changes the working directory for the file transfer to the
directory that you specify.
Interaction: The CD and DIR options are mutually exclusive. If both are specified,

FTP ignores the CD option and SAS writes an informational note to the log.

DEBUG
writes to the SAS log informational messages that are sent to and received from the
FTP server.

DIR
enables you to access directory files or PDS/PDSE members. Specify the directory
name in the external-file argument. You must use valid directory syntax for the
specified host.
Interaction: The CD and DIR options are mutually exclusive. If both are specified,

FTP ignores the CD option and SAS writes an informational note to the log.
Tips:

If you want FTP to append a file extension of DATA to the member name that is
specified in the FILE or INFILE statement, then use the FILEEXT option in
conjunction with the DIR option. The FILEEXT option is ignored if you specify
a file extension in the FILE or INFILE statement.
If you want FTP to create the directory, then use the NEW option in conjunction
with the DIR option. The NEW option will be ignored if the directory exists.
If the NEW option is omitted and you specify an invalid directory, then a new
directory will not be created and you will receive an error message.
The maximum number of directory or z/OS PDSE members that can be open
simultaneously is limited by the number of sockets that can be open
simultaneously on an FTP server. The number of sockets that can be open
simultaneously is proportional to the number of connections that are set up
during the installation of the FTP server. You might want to limit the number of
sockets that are open simultaneously to avoid performance degradation.

Example: “Example 10: Reading and Writing from Directories” on page 127

ENCODING=encoding-value
specifies the encoding to use when reading from or writing to the external file. The
value for ENCODING= indicates that the external file has a different encoding from
the current session encoding.

When you read data from an external file, SAS transcodes the data from the specified
encoding to the session encoding. When you write data to an external file, SAS
transcodes the data from the session encoding to the specified encoding.
Default: SAS assumes that an external file is in the same encoding as the session

encoding.
Tip: The data is transferred in image or binary format and is in local data format.

Thus, you must use appropriate SAS informats to read the data correctly.
See: “Encoding Values in SAS Language Elements” in Chapter 20 of SAS National

Language Support (NLS): Reference Guide

FILEEXT
specifies that the member type of DATA is automatically appended to the member
name in the FILE or INFILE statement when you use the DIR option.
Tip: The FILEEXT option is ignored if you specify a file extension in the FILE or

INFILE statement.
See: LOWCASE_MEMNAME option on page 120
Example: “Example 10: Reading and Writing from Directories” on page 127

FILENAME Statement, FTP Access Method 119

HOST='host'
where host is the network name of the remote host with the FTP server running.

You can specify either the name of the host (for example,
server.pc.mydomain.com) or the IP address of the computer (for example,
2001:db8::).

HOSTRESPONSELEN='size'
where size is the length of the FTP server response message.
Default: 2048 bytes
Range: 2048 to 16384 bytes
Restriction: If you specify a size that is less than 2048 or is greater than 16384, the

size will be set to 2048.

LIST
issues the LIST command to the FTP server. LIST returns the contents of the
working directory as records that contain all of the file attributes that are listed for
each file.
Tip: The file attributes that are returned will vary, depending on the FTP server that

is being accessed.

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from FTP
servers.
Restriction: SAS autocall macro retrieval always searches for uppercase directory

member names. Mixed case directory or member names are not supported.
Interaction: If you access files off FTP servers by using the %INCLUDE, FILE,

INFILE, or other DATA step I/O statements, case sensitivity will be preserved.
See: FILEEXT option on page 119

LRECL=lrecl
where lrecl is the logical record length of the data.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.

LS
issues the LS command to the FTP server. LS returns the contents of the working
directory as records with no file attributes.
Tips:

The file attributes that are returned will vary, depending on the FTP server that is
being accessed.
To return a listing of a subset of files, use the LSFILE= option in addition to LS.

LSFILE='character-string'
in combination with the LS option, specifies a character string that enables you to
request a listing of a subset of files from the working directory. Enclose the character
string in quotation marks.
Restriction: LSFILE= can be used only if LS is specified.
Tips:

You can specify a wildcard as part of 'character-string '.
The file attributes that are returned will vary, depending on the FTP server that is
being accessed.

Example: This statement lists all of the files that start with sales and end with sas:
filename myfile ftp '' ls lsfile='sales*.sas'

 other-ftp-options;

120 Chapter 2 • Dictionary of SAS Statements

MGET
transfers multiple files, similar to the FTP command MGET.
Tips:

The whole transfer is treated as one file. However, as the transfer of each new
file is started, the EOV= variable is set to 1.
Specify MPROMPT to prompt the user before each file is sent.

MPROMPT
specifies whether to prompt for confirmation that a file is to be read, if necessary,
when the user executes the MGET option.
Restriction: The MPROMPT option is not available on z/OS for batch processing.

NEW
specifies that you want FTP to create the directory when you use the DIR option.
Restriction: The NEW option is not available under z/OS.
Tip: The NEW option will be ignored if the directory exists.

PASS='password'
where password is the password to use with the user name specified in the USER=
option.
Tips:

You can specify the PROMPT option instead of the PASS option, which tells the
system to prompt you for the password.
If the user name is anonymous, then the remote host might require that you
specify your e-mail address as the password.
To use an encoded password, use the PWENCODE procedure in order to
disguise the text string, and then enter the encoded password for the PASS=
option. For more information, see the Chapter 3, “PWENCODE Procedure” in
Encryption in SAS.

Example: “Example 6: Using an Encoded Password” on page 126

PASSIVE
specifies that an attempt is made for passive mode FTP.

In passive mode FTP, the client initiates the control and data connections to the
server. This action solves the problem of firewalls filtering the incoming data port
connection to the client from the server.
Note: Not all FTP servers support the passive mode. If an attempt is made by the

FILENAME statement FTP access method to issue the PASV command and the
command fails or the server does not accept the command, then active mode FTP
is used for the connection.

PORT=portno
where portno is the port that the FTP daemon monitors on the respective host.

The portno can be any number between 0 and 65535 that uniquely identifies a
service.
Tip: In the Internet community, there is a list of predefined port numbers for specific

services. For example, the default port for FTP is 21. A partial list of port
numbers is usually available in the /etc/services file on any UNIX computer.

PROMPT
specifies to prompt for the user login password, if necessary.
Restriction: The PROMPT option is not available for batch processing under z/OS.
Interaction: If PROMPT is specified without USER=, then the user is prompted for

an ID, as well as a password.

FILENAME Statement, FTP Access Method 121

Tip: You can use the SAVEUSER option on page 123 to save the user ID and
password after the user ID and password prompt is successfully executed.

RCMD= 'command '
where command is the FTP 'SITE' or 'service' command to send to the FTP server.

FTP servers use SITE commands to provide services that are specific to a system and
are essential to file transfer but not common enough to be included in the protocol.

For example, rcmd='site rdw' preserves the record descriptor word (RDW) of a
z/OS variable blocked data set as a part of the data. See S370V and S370VS below.
Interaction: Some FTP service commands might not run at a particular client site

depending on the security permissions and the availability of the commands.
Tips:

If you transfer a file with the FTP access method and then cannot read the file,
you might need to change the FTP server's UMASK setting.
If the FTP server supports a SITE UMASK setting, you can change the
permissions of the file as shown in the following example:
filename in ftp '/mydir/accounting/file2.dat'
 host="xxx.fyi.xxx.com"
 user="john"
 rcmd='site umask 022'
 prompt;
data _null;
file in;
put a $80;
run;

You can specify multiple FTP service commands if you separate them by
semicolons. Some examples are as follows:
rcmd='ascii;site umask 002'
rcmd='stat;site chmod 0400 ~mydir/abc.txt'

RECFM=recfm
where recfm is one of three record formats:

F
is fixed-record format. Thus, all records are of size LRECL with no line
delimiters. Data is transferred in image (binary) mode.
Aliases:

BINARY
The BINARY option overrides the value of RECFM= in the FILENAME
FTP statement, if specified, and forces a binary transfer.

S
is stream-record format. Data is transferred in image (binary) mode.
Interaction: The amount of data that is read is controlled by the current LRECL

value or by the value of the NBYTE= variable in the INFILE statement. The
NBYTE= option specifies a variable that is equal to the amount of data to be
read. This amount must be less than or equal to LRECL.

See: The NBYTE= option on page 179 in the INFILE statement.

V
is variable-record format (the default). In this format, records have varying
lengths, and they are transferred in text (stream) mode.
Interaction: Any record larger than LRECL is truncated.

122 Chapter 2 • Dictionary of SAS Statements

Tip: If you are using files with the IBM 370 Variable format or the IBM 370
Spanned Variable format, then you might want to use the S370V or S370VS
options instead of the RECFM= option. See S370V and S370VS below.

Default: V
Interaction: If you specify the RECFM= option and the S370V or S370VS option,

then SAS ignores the RECFM= option.

RHELP
issues the HELP command to the FTP server. The results of this command are
returned as records.

RSTAT
issues the RSTAT command to the FTP server. The results of this command are
returned as records.

SAVEUSER
saves the user ID and password after the user ID and password prompt are
successfully executed.
Interaction: The user ID and password are saved only for the duration of the SAS

session or until you change the association between the fileref and the external
file, or discontinue it with another FILENAME statement.

S370V
indicates that the file being read is in IBM 370 variable format.
Interaction: If you specify this option and the RECFM= option, then SAS ignores

the RECFM= option.
Tips:

The data is transferred in image or binary format and is in local data format.
Thus, you must use appropriate SAS informats to read the data correctly on non-
EBCDIC hosts.
Use the rcmd='site rdw' option when you transfer a z/OS data set with a variable-
record format to another z/OS data set with a variable-record format to preserve
the record descriptor word (rdw) of each record. By default, most FTP servers
remove the rdw that exists in each record before it is transferred.
Typically, the 'SITE RDW' command is not necessary when you transfer a data
set with a z/OS variable-record format to ASCII, or when you transfer an ASCII
file to a z/OS variable-record format.

S370VS
indicates that the file that is being read is in IBM 370 variable-spanned format.
Interaction: If you specify this option and the RECFM= option, then SAS ignores

the RECFM= option.
Tips:

The data is transferred in image or binary format and is in local data format.
Thus, you must use appropriate SAS informats to read the data correctly on non-
EBCDIC hosts.
Use the rcmd='site rdw' option when you transfer a z/OS data set with a variable-
record format to another z/OS data set with a variable-record format to preserve
the record descriptor word (rdw) of each record. By default, most FTP servers
remove the rdw that exists in each record before it is transferred.
Typically, the 'SITE RDW' command is not necessary when you transfer a data
set with a z/OS variable-record format to ASCII, or when you transfer an ASCII
file to a z/OS variable-record format.

FILENAME Statement, FTP Access Method 123

TERMSTR='eol-char'
where eol-char is the line delimiter to use when RECFM=V. There are three valid
values:

CRLF carriage return (CR) followed by line feed (LF).

LF line feed only (the default).

NULL NULL character (0x00).

Default: LF
Restriction: Use this option only when RECFM=V.

USER='username'
where username is used to log in to the FTP server.
Restriction: The FTP access method does not support FTP proxy servers that

require user ID authentication.
Interaction: If PROMPT is specified, but USER= is not, then the user is prompted

for an ID.
Tip: You can specify a proxy server and credentials for an FTP server when using

the FTP access method. The user ID and password that you need to log in to the
FTP server is sent via the proxy server by using the
user="userid@ftpservername" pass="password"
host="proxy.server.xxx.com" syntax. Both anonymous and user ID
validation are supported.

Example: “Example 1: Retrieving a Directory Listing” on page 124

WAIT_MILLISECONDS=milliseconds
specifies the FTP response time in milliseconds.
Default: 1,000 milliseconds
Tip: If you receive a “connection closed; transfer aborted” or “network name is no

longer available” message in the log, use the WAIT_MILLISECONDS option to
increase the response time.

Comparisons
As with the FTP get and put commands, the FTP access method lets you download
and upload files. However, this method directly reads files into your SAS session
without first storing them on your system.

Examples

Example 1: Retrieving a Directory Listing
This example retrieves a directory listing from a host named mvshost1 for user
smythe, and prompts smythe for a password:

filename dir ftp '' ls user='smythe'
 host='mvshost1.mvs.sas.com' prompt;
data _null_;
 infile dir;
 input;
 put _INFILE_;
run;

Note: The quotation marks are empty because no file is being transferred. Because
quotation marks are required by the syntax, however, you must include them.

124 Chapter 2 • Dictionary of SAS Statements

Example 2: Reading a File from a Remote Host
This example reads a file called sales in the directory /u/kudzu/mydata from the
remote UNIX host hp720:

filename myfile ftp 'sales' cd='/u/kudzu/mydata'
 user='guest' host='hp720.hp.sas.com'
 recfm=v prompt;
data mydata / view=mydata; /* Create a view */
 infile myfile;
 input x $10. y 4.;
run;
proc print data=mydata; /* Print the data */
run;

Example 3: Creating a File on a Remote Host
This example creates a file called test.dat in a directory called c:\remote for the
user bbailey on the host winnt.pc:

filename create ftp 'c:\remote\test.dat'
 host='winnt.pc'
 user='bbailey' prompt recfm=v;
data _null_;
 file create;
 do i=1 to 10;
 put i=;
 end;
run;

Example 4: Reading an S370V-Format File on z/OS
This example reads an S370V-format file from a z/OS system. See RCMD= option on
page 122 for more information about RCMD='site rdw'.

filename viewdata ftp 'sluggo.stat.data'
 user='sluggo' host='zoshost1'
 s370v prompt rcmd='site rdw';
data mydata / view=mydata; /* Create a view */
 infile viewdata;
 input x $ebcdic8.;
run;
proc print data=mydata; /* Print the data */
run;

Example 5: Anonymously Logging In to FTP
This example shows how to log in to FTP anonymously, if the host accepts anonymous
logins.

Note: Some anonymous FTP servers require a password. If required, your e-mail
address is usually used. See PASS= option on page 121 under “FTP Options.”

filename anon ftp '' ls host='130.96.6.1'
 user='anonymous';
data _null_;
 infile anon;
 input;
 list;
run;

FILENAME Statement, FTP Access Method 125

Note: The quotation marks following the argument FTP are empty. A filename is
needed only when transferring a file, not when routing a command. The quotation
marks, however, are required.

Example 6: Using an Encoded Password
This example shows you how to use an encoded password in the FILENAME statement.

In a separate SAS session, use the PWENCODE procedure to encode your password and
make note of the output.

proc pwencode in= "MyPass1";
run;

The following output appears in the SAS log:

(sas001)TX1QYXNzMQ==

You can now use the entire encoded password string in your batch program.

filename myfile ftp 'sales' cd='/u/kudzu/mydata'
 user='tjbarry' host='hp720.hp.mycompany.com'
 pass="(sas001)TX1QYXMZ==";

Example 7: Importing a Transport Data Set
This example uses the CIMPORT procedure to import a transport data set from a host
named myshost1 for user calvin. The new data set will reside locally in the
SASUSER library. Note that user and password can be SAS macro variables. If you
specify a fully qualified data set name, then use double quotation marks and single
quotation marks. Otherwise, the system will append the profile prefix to the name that
you specify.

%let user=calvin;
%let pw=xxxxx;
filename inp ftp "'calvin.mat1.cpo'" user="&user"
 pass="&pw" rcmd='binary'
 host='mvshost1';
proc cimport library=sasuser infile=inp;
run;

Example 8: Transporting a SAS Library
This example uses the CPORT procedure to transport a SAS library to a host named
mvshost1 for user calvin. It will create a new sequential file on the host called
userid.mat64.cpo with the recfm of fb, lrecl of 80, and blocksize of 8000.

filename inp ftp 'mat64.cpo' user='calvin'
 pass="xxxx" host='mvshost1'
 lrecl=80 recfm=f blocksize=8000
 rcmd='site blocksize=800 recfm=fb lrecl=80';
proc cport library=mylib file=inp;
run;

Example 9: Creating a Transport Library with Transport Engine
This example creates a new SAS library on host mvshost1. The FILENAME statement
assigns a fileref to the new data set. Note the use of the RCMD= option to specify
important file attributes. The LIBNAME statement uses a libref that is the same as the
fileref and assigns it to the XPORT engine. The PROC COPY step copies all data sets
from the SAS library that are referenced by MYLIB to the XPORT engine. Output from
the PROC CONTENTS step confirms that the copy was successful:

126 Chapter 2 • Dictionary of SAS Statements

filename inp ftp 'mat65.cpo' user='calvin'
 pass="xxxx" host='mvshost1'
 lrecl=80 recfm=f blocksize=8000
 rcmd='site blocksize=8000 recfm=fb lrecl=80';
libname mylib 'SAS-library';
libname inp xport;
proc copy in=mylib out=inp mt=data;
run;
proc contents data=inp._all_;
run;

Note: For more information about the XPORT engine, see “Transport Engine” in
Chapter 35 of SAS Language Reference: Concepts and “XPORT Engine
Limitations” in Chapter 4 of Moving and Accessing SAS Files.

Example 10: Reading and Writing from Directories
This example reads the file ftpmem1 from a directory on a UNIX host, and writes the
file ftpout1 to a different directory on another UNIX host.

filename indir ftp '/usr/proj2/dir1' DIR
 host="host1.mycompany.com"
 user="xxxx" prompt;
filename outdir ftp '/usr/proj2/dir2' DIR FILEEXT
 host="host2.mycompany.com"
 user="xxxx" prompt;
data _null_;
 infile indir(ftpmem1) truncover;
 input;
 file outdir(ftpout1);
 put _infile_;
run;

The file ftpout1 is written to /usr/proj2/dir2/ftpout1.DATA. Note that a
member type of DATA is appended to the ftpout1 file because the FILEEXT option
was specified in the output file's FILENAME statement. For more information, see the
FILEEXT option on page 119 .

Note: The DIR option is not needed for some ODS destinations.

The following example writes an output file and transfers it to an ODS-specified
destination. The DIR option is not needed.

filename output ftp "~user/ftpdir/" host="host.fyi.company.com" user="userid"
pass="userpass" recfm=s debug;
ods html body='body.html' path=output;
proc print data=sashelp.class;run;

To export multiple graph files to a remote directory location, the DIR option must be
specified in the FILENAME statement. Accordingly, when creating external graph files
with the ODS HTML destination, two FILENAME statements are needed: one for the
HTML files, and one for the graph files. The following example illustrates the need for
two FILENAME statements.

filename output1 ftp "~user/dir" fileext host="host.unx.company.com"
 user="userid" pass="userpass" recfm=s debug;
filename output2 ftp "~user/dir" dir fileext host="host.unx.company.com"
 user="userid" pass="userpass" recfm=s debug;
ods html body='body.html' path=output1 gpath=output2
 frame='frames.html' contents='contents.html';

FILENAME Statement, FTP Access Method 127

proc gtestit;
run;
quit;
;

Example 11: Using a Proxy Server
This example uses a proxy server with the FTP access method. The user ID and
password are sent via the proxy server.

filename test ftp ' ' ls
 host='proxy.server.xxx.com'
 user='userid@ftpservername'
 pass='xxxxxx'
 cd='pubsdir/';
data _null_;
 infile test truncover;
 input a $256.;
 put a=;
run;

See Also

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

• “FILENAME Statement, SFTP Access Method” on page 133

• “FILENAME Statement, URL Access Method” on page 142

• “LIBNAME Statement” on page 239

FILENAME Statement, Hadoop Access Method
Enables you to access files on a Hadoop Distributed File System (HDFS) whose location is specified in a
configuration file.

Valid in: Anywhere

Category: Data Access

Restriction: Access to Hadoop configurations on systems based on UNIX

Syntax
FILENAME fileref HADOOP 'external-file' <hadoop-options>;

128 Chapter 2 • Dictionary of SAS Statements

Required Arguments
fileref

is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the duration

of the SAS session or until you change it or discontinue it with another
FILENAME statement.

HADOOP
specifies the access method that enables you to use Hadoop to read from or write to a
file from any host machine that you can connect to on a Hadoop configuration.

'external-file'
specifies the physical name of the file that you want to read from or write in an
HDFS system. The physical name is the name that is recognized by the operating
environment.
Operating environment: For details about specifying the physical names of

external files, see the SAS documentation for your operating environment.
Tip: Specify external-file when you assign a fileref to an external file. You can

associate a fileref with a single file or with an aggregate file storage location.

Hadoop Options
hadoop-options can be any of the following values:

BUFFERLEN=bufferlen
specifies the maximum buffer length of the data that is passed to Hadoop for its I/O
operations.
Default: 503808
Restriction: The maximum buffer length is 1000000.
Tip: Specifying a buffer length that is larger than the default could result in

performance improvements.

CFG="physical-pathname-of-hadoop-configuration-file" | fileref-that-references-a-
hadoop-configuration-file

specifies the configuration file that contains the connections settings for a specific
Hadoop cluster.

CONCAT
specifies that the HDFS directory name that is specified on the FILENAME
HADOOP statement is considered a wildcard specification. The concatenation of all
the files in the directory is treated as a single logical file and read as one file.
Restriction: This works for input only.
Tip: For best results, do not concatenate text and binary files.

DIR
enables you to access files in an HDFS directory.
Requirement: You must use valid directory syntax for the specified host.
Interaction: Specify the HDFS directory name in the external-file argument.
See: “FILEEXT” on page 130

ENCODING='encoding-value'
specifies the encoding to use when SAS is reading from or writing to an external file.
The value for ENCODING= indicates that the external file has a different encoding
from the current session encoding.
Default: SAS assumes that an external file is in the same encoding as the session

encoding.

FILENAME Statement, Hadoop Access Method 129

Note: When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified
encoding.

See: “Encoding Values in SAS Language Elements” in the SAS National Language
Support (NLS): Reference Guide

FILEEXT
specifies that a file extension is automatically appended to the filename when you
use the DIR option
Interaction: The autocall macro facility always passes the extension .SAS to the file

access method as the extension to use when opening files in the autocall library.
The DATA step always passes the extension .DATA. If you define a fileref for
an autocall macro library and the files in that library have a file extension
of .SAS, use the FILEEXT option. If the files in that library do not have an
extension, do not use the FILEEXT option. For example, if you define a fileref
for an input file in the DATA step and the file X has an extension of .DATA, you
would use the FILEEXT option to read the file X.DATA. If you use the INFILE
or FILE statement, enclose the member name and extension in quotation marks
to preserve case.

Tip: The FILEEXT option is ignored if you specify a file extension on the FILE or
INFILE statement.

See: “LOWCASE_MEMNAME” on page 130

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
HDFS systems.
Restriction: SAS autocall macro retrieval always searches for uppercase directory

member names. Mixed-case directory or member names are not supported.
See: “FILEEXT” on page 130

LRECL=logical-record-length
specifies the logical record length of the data.
Default: 65536
Interaction: Alternatively, you can specify a global logical record length by using

the LRECL= system option. For more information, see SAS System Options:
Reference

MOD
places the file in Update mode and appends updates to the bottom of the file.

PASS='password'
specifies the password to use with the user name that is specified in the USER
option.
Requirement: The password is case sensitive and it must be enclosed in single or

double quotation marks.
Tip: To use an encoded password, use the PWENCODE procedure in order to

disguise the text string, and then enter the encoded password for the PASS=
option. For more information see the PWENCODE procedure in the Base SAS
Procedures Guide.

PROMPT
specifies to prompt for the user login, the password, or both, if necessary.
Interaction: The USER= and PASS= options override the PROMPT option if all

three options are specified. If you specify the PROMPT option and do not

130 Chapter 2 • Dictionary of SAS Statements

specify the USER= or PASS= option, you are prompted for a user ID and
password.

RECFM=record-format
where record-format is one of three record formats:

S
is stream-record format. Data is read in binary mode.
Tip: The amount of data that is read is controlled by the current LRECL value or

the value of the NBYTE= variable in the INFILE statement. The NBYTE=
option specifies a variable that is equal to the amount of data to be read. This
amount must be less than or equal to LRECL. To avoid problems when you
read large binary files like PDF or GIF, set NBYTE=1 to read one byte at a
time.

See: The NBYTE= option in the INFILE statement in the SAS Statements:
Reference

F
is fixed-record format. In this format, records have fixed lengths, and they are
read in binary mode.

V
is variable-record format (the default). In this format, records have varying
lengths, and they are read in text (stream) mode.
Tip: Any record larger than LRECL is truncated.

Default: V

USER='username'
where username is used to log on to the Hadoop system.
Requirement: The user name is case sensitive and it must be enclosed in single or

double quotation marks.

Details
An HDFS system has defined levels of permissions at both the directory and file level.
The Hadoop access method honors those permissions. For example, if a file is available
as read-only, you cannot modify it.

Operating Environment Information
Using the FILENAME statement requires information that is specific to your
operating environment. The Hadoop access method is fully documented here. For
more information about how to specify filenames, see the SAS documentation for
your operating environment.

Examples

Example 1: Writing to a New Member of a Directory
This example writes the file shoes to the directory testing.

filename out hadoop '/user/testing/' cfg=”/path/cfg.xml” user='xxxx'
 pass='xxxx' recfm=v lrecl=32167 dir ;

data _null_;
 file out(shoes) ;
 put 'write data to shoes file';
run;

FILENAME Statement, Hadoop Access Method 131

Example 2: Creating and Using a Configuration File
This example accesses the file acctdata.dat at site xxx.unx.sas.com. The
configuration file is accessed from the “cfg” fileref assignment.

filename cfg 'U:/test.cfg';

data _null_;
 file cfg;
 input;
 put _infile_;
 datalines4;
<configuration>
<property>
 <name>fs.default.name</name>
 <value>hdfs://xxx.unx.sas.com:8020</value>
</property>
</property>
 <name>mapred.job.tracker</name>
 <value>xxx.unx.sas.com:8021</value>
</property>
</configuration>

;;;;

filename foo hadoop '/user/xxxx/acctdata.dat' cfg=cfg user='xxxx'
 pass='xxxx' debug recfm=s lrecl=65536 bufferlen=65536;

data _null_;
 infile foo truncover;
 input a $1024.;
 put a;
run;

Example 3: Buffering 1MB of Data during a File Read
This example uses the BUFFERLEN option to buffer 1MB of data at time during the file
read. The records of length 1024 are read from this buffer.

filename foo hadoop 'file1.dat' cfg='U=/hadoopcfg.xml'
 user='user' pass='apass' recfm=s
 lrecl=1024 bufferlen=1000000;

data _null_;
 infile foo truncover;
input a $1024.;
put a;
run;

Example 4: Using the CONCAT Option
This example uses the CONCAT option to read all members of DIRECTORY1 as if they
are one file.

filename foo hadoop '/directory1/' cfg='U=/hadoopcfg.xml'
 user='user' pass='apass' recfm=s lrecl=1024 concat;

data _null_;
 infile foo truncover;

132 Chapter 2 • Dictionary of SAS Statements

input a $1024.;
put a;
run;

See Also

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

• “FILENAME Statement, SFTP Access Method” on page 133

• “FILENAME Statement, URL Access Method” on page 142

FILENAME Statement, SFTP Access Method
Enables you to access remote files by using the SFTP protocol.

Valid in: Anywhere

Category: Data Access

Syntax
FILENAME fileref SFTP 'external-file' <sftp-options>;

Arguments
fileref

is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the duration

of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

SFTP
specifies the access method that enables you to use Secure File Transfer Protocol
(SFTP) to read from or write to a file from any host computer that you can connect to
on a network with an OpenSSH SSHD server running.

'external-file'
specifies the physical name of an external file that you want to read from or write to.
The physical name is the name that is recognized by the operating environment.
Operating environment: For details about specifying the physical names of

external files, see the SAS documentation for your operating environment.
Tips:

If you are not transferring a file but performing a task such as retrieving a
directory listing, then you do not need to specify an external filename. Instead,
put empty quotation marks in the statement.

FILENAME Statement, SFTP Access Method 133

You can associate a fileref with a single file or with an aggregate file storage
location.

sftp-options
specifies details that are specific to your operating environment such as file attributes
and processing attributes.
Operating environment: For more information about some of these SFTP options,

see the SAS documentation for your operating environment.
See: “SFTP Options” on page 134

SFTP Options
sftp-options can be any of the following values:

BATCHFILE='path'
specifies the fully qualified pathname and the filename of the batch file that contains
the SFTP commands. These commands are submitted when the SFTP access method
is executed. After the batch file processing ends, the SFTP connection is closed.
Requirement: The path must be enclosed in quotation marks.
Tip: After the batch file processing ends, the SFTP connection is closed and the

filename assignment is no longer available. If subsequent DATA step processing
requires the FILENAME SFTP statement, then another FILENAME SFTP
statement is required.

Example: “Example 5: Using a Batch File” on page 138

CD='directory'
issues a command that changes the working directory for the file transfer to the
directory that you specify.

DEBUG
writes informational messages to the SAS log.

DIR
enables you to access directory files. Specify the directory name in the external-file
argument. You must use valid directory syntax for the specified host.
Interaction: The CD and DIR options are mutually exclusive. If both are specified,

SFTP ignores the CD option and SAS writes an informational note to the log.
Tips:

If you want SFTP to create the directory, then use the NEW option in
conjunction with the DIR option. The NEW option will be ignored if the
directory exists.
If the NEW option is omitted and you specify an invalid directory, then a new
directory will not be created and you will receive an error message.

HOST='host'
where host is the network name of the remote host with the OpenSSH SSHD server
running.

You can specify either the name of the host (for example,
server.pc.mydomain.com) or the IP address of the computer (for example,
2001:db8::).

LRECL=lrecl
where lrecl is the logical record length of the data.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.

134 Chapter 2 • Dictionary of SAS Statements

LS
issues the LS command to the SFTP server. LS returns the contents of the working
directory as records with no file attributes.
Restriction: The LS option will not display files with leading periods, for

example .xAuthority.
Interaction: The LS and LSA options are mutually exclusive. If you specify both

options, the LSA option takes precedence.
Tip: To return a listing of a subset of files, use the LSFILE= option in addition to

LS.

LSA
issues the LS command to the SFTP server. LSA returns all the contents of the
working directory as records with no file attributes.
Interactions:

The LS and LSA options are mutually exclusive. If you specify both options, the
LSA option takes precedence.
To display files without leading periods, for example .xAuthority, use the LS=
option.

Tip: To return a listing of a subset of files, use the LSFILE= option in addition to
LSA.

LSFILE='character-string'
in combination with the LS option, specifies a character string that enables you to
request a listing of a subset of files from the working directory. Enclose the character
string in quotation marks.
Restriction: LSFILE= can be used only if LS or LSA is specified.
Tip: You can specify a wildcard as part of 'character-string '.
Example: This statement lists all of the files that start with sales and end with sas:

filename myfile sftp '' ls lsfile='sales*.sas'
 other-sftp-options;

MGET
transfers multiple files, similar to the SFTP command MGET.
Tip: The whole transfer is treated as one file. However, as the transfer of each new

file is started, the EOV= variable is set to 1.

NEW
specifies that you want SFTP to create the directory when you use the DIR option.
Restriction: The NEW option is not available under z/OS.
Tip: The NEW option will be ignored if the directory exists.

OPTIONS=
specifies SFTP configuration options such as port numbers.

PATH
specifies the location of the SFTP executable if it is not installed in the PATH or
$PATH search path.
Tip: It is recommended that the OpenSSH “SFTP” executable or PUTTY “PSFTP”

executable be installed in a directory that is accessible via the PATH or $PATH
search path.

RECFM=recfm
where recfm is one of two record formats:

F
is fixed-record format. Thus, all records are of size LRECL with no line
delimiters.

FILENAME Statement, SFTP Access Method 135

V
is variable-record format (the default). In this format, records have varying
lengths, and they are separated by newlines. Data is transferred in image (binary)
mode.

Default: V

USER='username'
specifies the user name.
Requirement: The username is required by the PUTTY client on the Windows host.
Tips:

The username is not typically required on LINUX or UNIX hosts when using
public key authentication.
Public key authentication using an SSH agent is the recommended way to
connect to a remote SSHD server.

WAIT_MILLISECONDS=milliseconds
specifies the SFTP response time in milliseconds.
Default: 1,500 milliseconds
Tip: If you receive a time-out message in the log, use the WAIT_MILLISECONDS

option to increase the response time.

Details

The Basics
The Secure File Transfer Protocol (SFTP) provides a secure connection and file transfers
between two hosts (client and server) over a network. Both commands and data are
encrypted. The client machine initiates a connection with the remote host (OpenSSH
SSHD server).

With the SFTP access method, you can read from or write to any host computer that you
can connect to on a network with an OpenSSH SSHD server running. The client and
server applications can reside on the same computer or on different computers that are
connected by a network.

Specific implementation details are dependent on the OpenSSH SSHD server version
and how that site is configured.

The SFTP access method relies on default send and reply messages to OpenSSH
commands. Custom installs of OpenSSH that modify these messages will disable the
SFTP access method.

You must have the applicable client software installed to use the SFTP access method.
The SFTP access method supports only the following SSH clients.

• OpenSSH – UNIX

• PUTTY – Windows

Note: Password validation is not supported for the SFTP access method.

Note: Public key authentication using an SSH agent is the recommended way to connect
to a remote SSHD server.

Note: If you have trouble running the SFTP access method try to manually validate
SFTP client access to an OpenSSH SSHD server without involving the SAS system.
Manually validating SFTP client access without involving the SAS system will
ensure that your SSH/SSHD configuration and key authentication is setup correctly.

136 Chapter 2 • Dictionary of SAS Statements

SFTP Access Methods and SFTP Prompts
The SFTP access method supports only the following prompts. Changing the prompt
will disable the SFTP access method.

• For OpenSSH:

sftp>
"ýP‡˚K�¾ÜÁYHôŁ

• For PUTTY:

psftp>

Comparisons
As with the SFTP get and put commands, the SFTP access method lets you download
and upload files. However, this method directly reads files into your SAS session
without first storing them on your system.

Examples

Example 1: Connecting to an SSHD Server at a Standard Port
This example reads a file called test.dat using the SFTP access method after
connecting to the SSHD server a standard port:

filename myfile sftp '/users/xxxx/test.dat' host="unixhost1";
data _null_;
 infile myfile truncover;
 input a $25.;
run;

Example 2: Connecting to an SSHD Server at a Nonstandard Port
This example reads a file called test.dat using the SFTP access method after
connecting to the SSHD server at port 4117:

filename myfile sftp '/users/xxxx/test.dat' host="unixhost1" options="-oPort=4117";
data _null_;
 infile myfile truncover;
 input a $25.;;
run;

Example 3: Connecting a Windows PUTTY Client to an SSHD Server
This example writes a file called test.dat using the SFTP access method after
connecting a Windows PUTTY client to the SSHD server with a user ID of userid:

filename outfile sftp '/users/xxxx/test.dat' host="unixhost1" user="userid";
data _null_;
 file outfile;
 do i=1 to 10;
 put i=;
 end;
run;

FILENAME Statement, SFTP Access Method 137

Example 4: Reading Files from a Directory on the Remote Host
This example reads the files test.dat and test2.dat from a directory on the remote
host.

filename infile sftp '/users/xxxx/' host="unixhost1" dir;
data _null_;
 infile infile(test.dat) truncover;
 input a $25.;
 infile infile(test2.dat) truncover;
 input b $25.;
run;

Example 5: Using a Batch File
In this example, when the INFILE statement is processed, the batch file associated with
the FILENAME SFTP statement, sftpcmds, is executed.

filename process sftp ' ' host="unixhost1" user="userid"
 batchfile="c:/stfpdir/sftpcmds.bat";
data _null_;
 infile process;
run;

See Also
• Barrett, Daniel J., Richard E. Silverman, and Robert G. Byrnes. 2005. “SSH, The

Secure Shell: The Definitive Guide.” Sebastopol, CA: O'Reilly

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

• “FILENAME Statement, URL Access Method” on page 142

• “LIBNAME Statement” on page 239

FILENAME Statement, SOCKET Access Method
Enables you to read from or write to a TCP/IP socket.

Valid in: Anywhere

Category: Data Access

Syntax
Form 1: FILENAME fileref SOCKET 'hostname:portno'

<tcpip-options>;

138 Chapter 2 • Dictionary of SAS Statements

Form 2: FILENAME fileref SOCKET ':portno' SERVER
<tcpip-options>;

Arguments
fileref

is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the duration

of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

SOCKET
specifies the access method that enables you to read from or write to a Transmission
Control Protocol/Internet Protocol (TCP/IP) socket.

'hostname:portno'
is the name or IP address of the host and the TCP/IP port number to connect to.
Tip: Use this specification for client access to the socket.

':portno'
is the port number to create for listening.
Tips:

Use this specification for server mode.
If you specify :0, the system will choose a number.

SERVER
sets the TCP/IP socket to be a listening socket, thereby enabling the system to act as
a server that is waiting for a connection.
Tip: The system accepts all connections serially; only one connection is active at

any one time.
See: The RECONN= option on page 140 under TCPIP Options.

tcpip-options
specifies details that are specific to your operating system such as the number of
connections that the server will accept.

Operating Environment Information
For more information about some of these TCP/IP options, see the SAS
documentation for your operating environment

See: “TCP/IP Options” on page 139

TCP/IP Options
tcpip-options can be any of the following values:

BLOCKSIZE=blocksize
where blocksize is the size of the socket data buffer in bytes.
Default: 8192

ENCODING=encoding-value
specifies the encoding to use when reading from or writing to the socket. The value
for ENCODING= indicates that the socket has a different encoding from the current
session encoding.

When you read data from a socket, SAS transcodes the data from the specified
encoding to the session encoding. When you write data to a socket, SAS transcodes
the data from the session encoding to the specified encoding.

FILENAME Statement, SOCKET Access Method 139

For valid encoding values, see “Encoding Values in SAS Language Elements” in
Chapter 20 of SAS National Language Support (NLS): Reference Guide.

LRECL=lrecl
where lrecl is the logical record length.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.

RECFM=recfm
where recfm is one of three record formats:

F
is fixed record format. Thus, all records are of size LRECL with no line
delimiters. Data are transferred in image (binary) mode.

S
is stream record format.
Interaction: The amount of data that is read is controlled by the current LRECL

value or the value of the NBYTE= variable in the INFILE statement. The
NBYTE= option specifies a variable equal to the amount of data to be read.
This amount must be less than or equal to LRECL.

Tip: Data are transferred in image (binary) mode.
See: The NBYTE= option on page 179 in the INFILE statement.

V
is variable record format (the default).
Tips:

In this format, records have varying lengths, and they are transferred in text
(stream) mode.
Any record larger than LRECL is truncated.

Default: V

RECONN=conn-limit
where conn-limit is the maximum number of connections that the server will accept.
Note: Because only one connection can be active at a time, a connection must be

disconnected before the server can accept another connection. When a new
connection is accepted, the EOV= variable is set to 1. The server will continue to
accept connections, one at a time, until conn-limit has been reached.

TERMSTR='eol-char'
where eol-char is the line delimiter to use when RECFM=V. There are three valid
values:

CRLF
carriage return (CR) followed by line feed (LF).

LF
line feed only (the default).

NULL
NULL character (0x00).

Default: LF
Restriction: Use this option only when RECFM=V.

140 Chapter 2 • Dictionary of SAS Statements

Details

The Basics
A TCP/IP socket is a communication link between two applications. The server
application creates the socket and waits for a connection. The client application connects
to the socket. With the SOCKET access method, you can use SAS to communicate with
another application over a socket in either client or server mode. The client and server
applications can reside on the same computer or on different computers that are
connected by a network.

For example, you can develop an application using Microsoft Visual Basic that
communicates with a SAS session that uses the TCP/IP sockets. Note that Visual Basic
does not provide inherent TCP/IP support. You can obtain a custom control (VBX) from
SAS Technical Support (free of charge) that allows a Visual Basic application to
communicate through the sockets.

Using the SOCKET Access Method in Client Mode (Form 1)
In client mode, a local SAS application can use the SOCKET access method to
communicate with a remote application that acts as a server (and waits for a connection).
Before you can connect to a server, you must know:

• the network name or IP address of the host computer running the server.

• the port number that the remote application is listening to for new connections.

The remote application can be another SAS application, but it does not need to be. When
the local SAS application connects to the remote application through the TCP/IP socket,
the two applications can communicate by reading from and writing to the socket as if it
were an external file. If at any time the remote side of the socket is disconnected, the
local side will also automatically terminate.

Using the SOCKET Access Method in Server Mode (Form 2)
When the local SAS application is in server mode, it remains in a wait state until a
remote application connects to it. To use the SOCKET access method in server mode,
you need to know only the port number that you want the server to listen to for a
connection. Typically, servers use well-known ports to listen for connections. These port
numbers are reserved by the system for specific server applications. For more
information about how well-known ports are defined on your system, refer to the
documentation for your TCP/IP software or ask your system administrator.

If the server application does not use a well-known port, then the system assigns a port
number when it establishes the socket from the local application. However, because any
client application that waits to connect to the server must know the port number, you
should try to use a well-known port.

While a local SAS server application is waiting for a connection, SAS is in a wait state.
Each time a new connection is established, the EOV= variable in the DATA step is set to
1. Because the server accepts only one connection at a time, no new connections can be
established until the current connection is closed. The connection closes automatically
when the remote client application disconnects. The SOCKET access method continues
to accept new connections until it reaches the limit set in the RECONN option.

FILENAME Statement, SOCKET Access Method 141

Example: Communicating between Two SAS Applications
over a TCP/IP Socket
This example shows how two SAS applications can talk over a TCP/IP socket. The local
application is in server mode; the remote application is the client that connects to the
server. This example assumes that the server host name is hp720.unx.sas.com, that
the well-known port number is 5000, and that the server allows a maximum of three
connections before closing the socket.

Here is the program for the server application:

filename local socket ':5000' server reconn=3;
 /*The server is using a reserved */
 /*port number of 5000. */
data tcpip;
 infile local eov=v;
 input x $10;
 if v=1 then
 do; /* new connection when v=1 */
 put 'new connection received';
 end;
 output;
run;

Here is the program for the remote client application:

filename remote socket 'hp720.unx.sas.com:5000';
data _null_;
 file remote;
 do i=1 to 10;
 put i;
 end;
run;

See Also

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, URL Access Method” on page 142

FILENAME Statement, URL Access Method
Enables you to access remote files by using the URL access method.

Valid in: Anywhere

Category: Data Access

142 Chapter 2 • Dictionary of SAS Statements

Syntax
FILENAME fileref URL 'external-file' <url-options>;

Arguments
fileref

is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the duration

of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

URL
specifies the access method that enables you to read a file from any host computer
that you can connect to on a network with a URL server running.
Alias: HTTP

'external-file'
specifies the name of the file that you want to read from on a URL server. The
Secure Socket Layer (SSL) protocol, https, can also be used to access the files. The
file must be specified in one of these formats:

• http://hostname/file

• https://hostname/file

• http://hostname:portno/file

• https://hostname:portno/file

Operating environment: For details about specifying the physical names of
external files, see the SAS documentation for your operating environment.

URL Options
url-options can be any of the following values:

AUTHDOMAIN="auth-domain"
specifies the name of an authentication domain metadata object in order to connect to
the proxy or Web server. The authentication domain references credentials (user ID
and password) without your having to explicitly specify the credentials. The auth-
domain name is case sensitive, and it must be enclosed in double quotation marks.

An administrator creates authentication domain definitions while creating a user
definition with the User Manager in SAS Management Console. The authentication
domain is associated with one or more login metadata objects that provide access to
the proxy or Web server and is resolved by the BASE engine calling the SAS
Metadata Server and returning the authentication credentials.
Requirement: The authentication domain and the associated login definition must

be stored in a metadata repository, and the metadata server must be running in
order to resolve the metadata object specification.

Interaction: If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASS=.

See: For more information about creating and using authentication domains, see the
discussion on credential management in the SAS Intelligence Platform: Security
Administration Guide.

BLOCKSIZE=blocksize
where blocksize is the size of the URL data buffer in bytes.
Default: 8K

FILENAME Statement, URL Access Method 143

DEBUG
writes debugging information to the SAS log.
Tip: The result of the HELP command is returned as records.

HEADERS=fileref
specifies the fileref to which the header information is written when a file is opened
by using the URL access method. The header information is the same information
that is written to the SAS log.
Requirement: The fileref must be defined in a previous FILENAME statement.
Interactions:

If you specify the HEADERS= option without specifying the DEBUG option, the
DEBUG option is automatically turned on.
By default, log information is overwritten. To append the log information, you
must specify the MOD option in the FILENAME statement that creates the
fileref.

LRECL=lrecl
where lrecl is the logical record length of the data.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.

PASS='password'
where password is the password to use with the user name that is specified in the
USER option.
Tips:

You can specify the PROMPT option instead of the PASS option, which tells the
system to prompt you for the password.
To use an encoded password, use the PWENCODE procedure in order to
disguise the text string, and then enter the encoded password for the PASS=
option. For more information, see Chapter 3, “PWENCODE Procedure” in
Encryption in SAS.

PPASS='password'
where password is the password to use with the user name that is specified in the
PUSER option. The PPASS option is used to access the proxy server.
Tips:

You can specify the PROMPT option instead of the PPASS option, which tells
the system to prompt you for the password.
To use an encoded password, use the PWENCODE procedure to disguise the text
string, and then enter the encoded password for the PASS= option. For more
information, see Chapter 3, “PWENCODE Procedure” in Encryption in SAS.

PROMPT
specifies to prompt for the user login password if necessary.
Tip: If you specify PROMPT, you do not need to specify PASS= or PPASS=.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of these
forms:

http://hostname/
http://hostname:portno/

PUSER='username'
where username is used to log on to the URL proxy server.

144 Chapter 2 • Dictionary of SAS Statements

Interactions:
If you specify the PUSER option, the USER option goes to the Web server
regardless of whether you specify a proxy server.
If PROMPT is specified, but PUSER is not, the user is prompted for an ID as
well as a password.

Tip: If you specify puser='*', then the user is prompted for an ID.

RECFM=recfm
where recfm is one of three record formats:

F
is fixed-record format. Thus, all records are of size LRECL with no line
delimiters. Data is transferred in image (binary) mode.

S
is stream-record format. Data is transferred in image (binary) mode.
Alias: N
Tip: The amount of data that is read is controlled by the current LRECL value or

the value of the NBYTE= variable in the INFILE statement. The NBYTE=
option specifies a variable that is equal to the amount of data to be read. This
amount must be less than or equal to LRECL.

See: The NBYTE= option on page 179 in the INFILE statement.

V
is variable-record format (the default). In this format, records have varying
lengths, and they are transferred in text (stream) mode.
Tip: Any record larger than LRECL is truncated.

Default: V

TERMSTR='eol-char'
where eol-char is the line delimiter to use when RECFM=V. There are four valid
values:

CR carriage return (CR).

CRLF carriage return (CR) followed by line feed (LF).

LF line feed only (the default).

NULL NULL character (0x00).

Default: LF
Restriction: Use this option only when RECFM=V.

USER='username'
where username is used to log on to the URL server.
Interactions:

If you specify the USER option but do not specify the PUSER option, where the
USER option goes depends on whether you specify a proxy server. If you do not
specify a proxy server, USER goes to the Web server. If you do specify a proxy
server, USER will go to the proxy server.
If you specify the PUSER option, the USER option goes to the Web server
regardless of whether you specify a proxy server.
If PROMPT is specified, but USER or PUSER is not, the user is prompted for an
ID as well as a password.

Tip: If you specify user='*', then the user is prompted for an ID.

FILENAME Statement, URL Access Method 145

Details
The Secure Sockets Layer (SSL) protocol is used when the URL begins with “https”
instead of “http”. The SSL protocol provides network security and privacy. Developed
by Netscape Communications, SSL uses encryption algorithms that include RC2, RC4,
DES, tripleDES, IDEA, and MD5. Not limited to providing only encryption services,
SSL can also perform client and server authentication and use message authentication
codes. SSL is supported by both Netscape Navigator and Internet Explorer. Many Web
sites use the protocol to provide confidential user information such as credit card
numbers. The SSL protocol is application independent, enabling protocols such as
HTTP, FTP, and Telnet to be layered transparently above it. SSL is optimized for HTTP.

Operating Environment Information
Using the FILENAME statement requires information that is specific to your
operating environment. The URL access method is fully documented here, but for
more information about how to specify filenames, see the SAS documentation for
your operating environment.

Examples

Example 1: Accessing a File at a Web Site
This example accesses document test.dat at site www.a.com:

filename foo url 'http://www.a.com/test.dat'
 proxy='http://www.gt.sas.com';

Example 2: Specifying a User ID and a Password
This example accesses document file1.html at site www.b.com using the SSL
protocol and requires a user ID and password:

filename foo url 'https://www.b.com/file1.html'
 user='jones' prompt;

Example 3: Reading the First 15 Records from a URL File
This example reads the first 15 records from a URL file and writes them to the SAS log
with a PUT statement:

filename foo url
 'http://support.sas.com/techsup/service_intro.html';

data _null_;
 infile foo length=len;
 input record $varying200. len;
 put record $varying200. len;
 if _n_=15 then stop;
run;

See Also
• “Secure Sockets Layer (SSL) ” in Chapter 1 of Encryption in SAS

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

146 Chapter 2 • Dictionary of SAS Statements

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

• “FILENAME Statement, SFTP Access Method” on page 133

FILENAME Statement, WebDAV Access Method
Enables you to access remote files by using the WebDAV protocol.

Valid in: Anywhere

Category: Data Access

Restriction: Access to WebDAV servers is not supported on Open VMS.

Syntax
FILENAME filref WEBDAV 'external-file' <webdav-options>;

Arguments
fileref

is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the duration

of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

WEBDAV
specifies the access method that enables you to use WebDAV (Web Distributed
Authoring and Versioning) to read from or write to a file from any host machine that
you can connect to on a network with a WebDAV server running.

'external-file'
specifies the name of the file that you want to read from or write to a WebDAV
server. The external file must be in one of these forms:

http://hostname/path-to-the-file
https://hostname/path-to-the-file
http://hostname:port/path-to-the-file
https://hostname:port/path-to-the-file

Requirement: When using the HTTPS communication protocol, you must use the
SSL (Secure Sockets Layer) protocol that provides secure network
communications. For more information, see Encryption in SAS.

Operating environment: For details about specifying the physical names of
external files, see the SAS documentation for your operating environment.

FILENAME Statement, WebDAV Access Method 147

WebDAV Options
webdav-options can be any of the following:

DEBUG
writes debugging information to the SAS log.

DIR
enables you to access directory files. Specify the directory name in the external-file
argument. You must use valid directory syntax for the specified host.
Tip: See the FILEEXT option on page 148 for information about specifying

filename extensions.

ENCODING='encoding-value'
specifies the encoding to use when SAS is reading from or writing to an external file.
The value for ENCODING= indicates that the external file has a different encoding
from the current session encoding.

When you read data from an external file, SAS transcodes the data from the specified
encoding to the session encoding. When you write data to an external file, SAS
transcodes the data from the session encoding to the specified encoding.
Default: SAS assumes that an external file is in the same encoding as the session

encoding.
See: “Encoding Values in SAS Language Elements” in Chapter 20 of SAS National

Language Support (NLS): Reference Guide

FILEEXT
specifies that a file extension is automatically appended to the filename when you
use the DIR option.
Interaction: The autocall macro facility always passes the extension .SAS to the

file access method as the extension to use when opening files in the autocall
library. The DATA step always passes the extension .DATA. If you define a
fileref for an autocall macro library and the files in that library have a file
extension of .SAS, use the FILEEXT option. If the files in that library do not
have an extension, do not use the FILEEXT option. For example, if you define a
fileref for an input file in the DATA step and the file X has an extension
of .DATA, you would use the FILEEXT option to read the file X.DATA. If you
use the INFILE or FILE statement, enclose the member name and extension in
quotation marks to preserve case.

Tip: The FILEEXT option will be ignored if you specify a file extension in the FILE
or INFILE statement.

See: LOWCASE_MEMNAME option on page 148

LOCALCACHE=”directory name”
specifies a directory where a temporary subdirectory is created to hold local copies
of the server files. Each fileref has its own unique subdirectory. If a directory is not
specified, then the subdirectories are created in the SAS Work directory. SAS deletes
the temporary files when the SAS program completes.
Default: SAS Work directory

LOCKDURATION=n
specifies the number of minutes that the files that are written through the WebDAV
fileref are locked. SAS unlocks the files when the SAS program successfully finishes
executing. If the SAS program fails, then the locks expire after the time allotted.
Default: 30 minutes

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
WebDAV servers.

148 Chapter 2 • Dictionary of SAS Statements

Restriction: SAS autocall macro retrieval always searches for uppercase directory
member names. Mixed-case directory or member names are not supported.

See: FILEEXT option on page 148

LRECL=lrecl
where lrecl is the logical record length of the data.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.

MOD
Places the file in Update mode and appends updates to the bottom of the file.

PASS='password'
where password is the password to use with the user name that is specified in the
USER option. The password is case sensitive and it must be enclosed in single or
double quotation marks.
Alias: PASSWORD=, PW=, PWD=
Tip: To use an encoded password, use the PWENCODE procedure in order to

disguise the text string, and then enter the encoded password for the PASS=
option. For more information, see Chapter 3, “PWENCODE Procedure” in
Encryption in SAS .

PROMPT
specifies to prompt for the user logon password, if necessary.
Interaction: TheUSER= and PASS= options override the PROMPT option if all

three options are specified. If you specify the PROMPT option and do not
specify the USER= or PASS= option, you will be prompted for a user ID and
password.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of these
forms:

http://hostname/
http://hostname:port/

RECFM=recfm
where recfm is one of two record formats:

S
is stream-record format. Data is transferred in image (binary) mode.
Tip: The amount of data that is read is controlled by the current LRECL value or

the value of the NBYTE= variable in the INFILE statement. The NBYTE=
option specifies a variable that is equal to the amount of data to be read. This
amount must be less than or equal to the LRECL. To avoid problems when
you transfer large binary files such as PDF or GIF, set NBYTE=1 to transfer
one byte at a time.

See: The NBYTE= option on page 179 in the INFILE statement.

V
is variable-record format (the default). In this format, records have varying
lengths, and they are transferred in text (stream) mode.
Tip: Any record larger than LRECL is truncated.

Default: V

FILENAME Statement, WebDAV Access Method 149

USER='username'
where username is used to log on to the URL server. The user ID is case sensitive
and it must be enclosed in single or double quotation marks.
Alias: UID=

Details
When you access a WebDAV server to update a file, the file is pulled from the
WebDAV server to your local disk storage for processing. When this processing is
complete, the file is pushed back to the WebDAV server for storage. The file is removed
from the local disk storage when it is pushed back.

The Secure Sockets Layer (SSL) protocol is used when the URL begins with “https”
instead of “http”. The SSL protocol provides network security and privacy. Developed
by Netscape Communications, SSL uses encryption algorithms that include RC2, RC4,
DES, tripleDES, IDEA, and MD5. Not limited to providing only encryption services,
SSL can also perform client and server authentication and use message authentication
codes. SSL is supported by both Netscape Navigator and Internet Explorer. Many Web
sites use the protocol to provide confidential user information such as credit card
numbers. The SSL protocol is application independent, which enables protocols such as
HTTP, FTP, and Telnet to be layered transparently above it. SSL is optimized for HTTP.

Note: WebDAV servers have defined levels of permissions at both the directory and file
level. The WebDAV access method honors those permissions. For example, if a file
is available as read-only, the user will not be able to modify it.

Operating Environment Information
Using the FILENAME statement requires information that is specific to your
operating environment. The WebDAV access method is fully documented here, but
for more information about how to specify filenames, see the SAS documentation for
your operating environment.

Examples

Example 1: Accessing a File at a Web Site
This example accesses the file rawFile.txt at site www.mycompany.com.

filename foo webdav 'https://www.mycompany.com/production/files/rawFile.txt'
 user='wong' pass='jd75ld';
data _null_;
 infile foo;
 input a $80.;
run;

Example 2: Using a Proxy Server
This example accesses the file acctgfile.dat by using the proxy server
otherwebsvr:80.

filename foo webdav 'https://webserver.com/webdav/acctgfile.dat'
 user='sanchez' pass='239sk349exz'
 proxy='http://otherwebsvr.com:80';
data _null_;
 infile foo;
 input a $80.;
run;

150 Chapter 2 • Dictionary of SAS Statements

Example 3: Writing to a New Member of a Directory
This example writes the file SHOES to the directory TESTING.

filename writeit webdav
 "https://webserver.com:8443/webdav/testing/"
 dir user="webuser" pass=XXXXXXXXX;
 data _null_;
 file writeit(shoes);
 set sashelp.shoes;
 put region $25. product $14.;
 run;

Example 4: Reading from a Member of a Directory
This example reads the file SHOES from the directory TESTING1.

filename readit webdav
 "https://webserver.com:8443/webdav/testing1/"
 dir user="webuser" pass=XXXXXXXXX;
 data shoes;
 length region $25 product $14;
 infile readit(shoes);
 input region $25. product $14.;
 run;

Example 5: Using a WebDAV Location as an Autocall Macro Library
By default, the autocall macro facility expects uppercase filenames. This example
accesses the file MYTEST in the autocall macro library WRITEIT.

filename writeit webdav
 "https://webserver.com/webdav/macrolib"
 dir fileext user="webuser" pass=XXXXXXXXX;
options SASAUTOS=(writeit);
/* expects a file called MYTEST.SAS */
%MYTEST;

Example 6: Accessing a Lowercased Autocall Macro Member
The following example accesses the file testmem.sas in the autocall macro library
LIST. The LOWCASE_MEMNAME option is used to access the file, which is in
lowercase.

filename list webdav "https://t1234.na.fyi.com:8443/accounting/"
 dir fileext user="xxxxx" pass="xxxxx" LOWCASE_MEMNAME;
options sasautos=(list);
%testmem;

Example 7: Using a %INCLUDE Statement and Macro Invocation to
Access a Lowercased Autocall Macro Member
The following example accesses the file testmem.sas in the autocall macro library
MYTEST. Because the file is accessed by using the %INCLUDE statement, case
sensitivity is preserved.

filename mytest webdav "https://t1234.na.fyi.com:8443/payroll/"
 dir user="xxxxxx" pass="xxxxx";
%include mytest(testmem.sas) /source2;
%testmem;

FILENAME Statement, WebDAV Access Method 151

If the filename was in uppercase, the reference to the filename in the %INCLUDE
statement and macro call needs to be uppercase.

%include mytest(TESTMEM.SAS) /source2;
%TESTMEM;

Example 8: Accessing a File with a Mixed-Case Name
The following example accesses the file fileNOext from the production directory.
Because the file is quoted in the INFILE statement, case sensitivity is preserved and the
file extension is ignored.

filename test webdav "https://t1234.na.fyi.com:8443/production"
 dir user="xxxxxx" pass="xxxxx";
data _null_;
 infile test('fileNOext');
 input;
 list;
run;

Example 9: Using the FILEEXT Option to Automatically Attach a File
Extension
The following example accesses the file testmem.sas from the sales directory. The
FILEEXT option automatically adds .DATA as the file extension. The member name
that is read is testmem.DATA.

filename listing webdav "https://t1234.na.fyi.com:8443/sales"
 dir fileext user="xxxxxx" pass="xxxxx";
data _null_;
 infile listing(testmem);
 input;
 list;
run;

See Also

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, CATALOG Access Method” on page 100

• “FILENAME Statement, EMAIL (SMTP) Access Method” on page 106

• “FILENAME Statement, FTP Access Method” on page 117

• “FILENAME Statement, Hadoop Access Method” on page 128

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “FILENAME Statement, SOCKET Access Method” on page 138

• “FILENAME Statement, URL Access Method” on page 142

• “LIBNAME Statement for WebDAV Server Access” on page 252

FOOTNOTE Statement
Writes up to 10 lines of text at the bottom of the procedure or DATA step output.

152 Chapter 2 • Dictionary of SAS Statements

Valid in: Anywhere

Category: Output Control

Requirement: You must specify the FOOTNOTE option if you use a FILE statement.

See: FOOTNOTE Statement under Windows, UNIX, and z/OS

Syntax
FOOTNOTE<n> <ods-format-options> <'text' | “text” >;

Without Arguments
Using FOOTNOTE without arguments cancels all existing footnotes.

Arguments
n

specifies the relative line to be occupied by the footnote.
Default: If you omit n, SAS assumes a value of 1.
Range: n can range from 1 to 10.
Tip: For footnotes, lines are pushed up from the bottom. The FOOTNOTE statement

with the highest number appears on the bottom line.

ods-format-options
specifies formatting options for the ODS HTML, RTF, and PRINTER(PDF)
destinations.

BOLD
specifies that the footnote text is bold font weight.
ODS destination: HTML, RTF, PRINTER

COLOR=color
specifies the footnote text color.
Alias: C
ODS destination: HTML, RTF, PRINTER
Example: “Example 3: Customizing Titles and Footnotes by Using the Output

Delivery System” on page 373

BCOLOR=color
specifies the background color of the footnote block.
ODS destination: HTML, RTF, PRINTER

FONT=font-face
specifies the font to use. If you supply multiple fonts, then the destination device
uses the first one that is installed on your system.
Alias: F
ODS destination: HTML, RTF, PRINTER

HEIGHT=size
specifies the point size.
Alias: H
ODS destination: HTML, RTF, PRINTER
Example: “Example 3: Customizing Titles and Footnotes by Using the Output

Delivery System” on page 373

FOOTNOTE Statement 153

ITALIC
specifies that the footnote text is in italic style.
ODS destination: HTML, RTF, PRINTER

JUSTIFY= CENTER | LEFT | RIGHT
specifies justification.

CENTER
specifies center justification.
Alias: C

LEFT
specifies left justification.
Alias: L

RIGHT
specifies right justification.
Alias: R

Alias: J
ODS destination: HTML, RTF, PRINTER
Example: “Example 3: Customizing Titles and Footnotes by Using the Output

Delivery System” on page 373

LINK='url'
specifies a hyperlink.
ODS destination: HTML, RTF, PRINTER
Tip: The visual properties for LINK= always come from the current style.

UNDERLIN= 0 | 1 | 2 | 3
specifies whether the subsequent text is underlined. 0 indicates no underlining. 1,
2, and 3 indicates underlining.
Alias: U
ODS destination: HTML, RTF, PRINTER
Tip: ODS generates the same type of underline for values 1, 2, and 3. However,

SAS/GRAPH uses values 1, 2, and 3 to generate increasingly thicker
underlines.

Note: The defaults for how ODS renders the FOOTNOTE statement come from
style elements that relate to system footnotes in the current style. The
FOOTNOTE statement syntax with ods-format-options is a way to override the
settings that are provided by the current style. The current style varies according
to the ODS destination. For more information about how to determine the current
style, see “Understanding Styles, Style Elements, and Style Attributes” in
Chapter 3 of SAS Output Delivery System: User's Guide and “Concepts: Styles
and the TEMPLATE Procedure ” in Chapter 13 of SAS Output Delivery System:
User's Guide.

Tip: You can specify these options by letter, word, or words by preceding each letter
or word of the text by the option. For example, this code will make the footnote
“Red, White, and Blue” appear in different colors.
footnote color=red "Red," color=white "White, and" color=blue "Blue";

'text' | “text”
specifies the text of the footnote in single or double quotation marks
Tips:

154 Chapter 2 • Dictionary of SAS Statements

For compatibility with previous releases, SAS accepts some text without
quotation marks. When you write new programs or update existing programs,
always enclose text in quotation marks.
If you use an automatic macro variable in the title text, you must enclose the title
text in double quotation marks. The SAS macro facility will resolve the macro
variable only if the text is in double quotation marks.
If you use single quotation marks (") or double quotation marks ("") together
(with no space in between them) as the string of text, SAS will output a single
quotation mark (') or double quotation mark ("), respectively.

Details
A FOOTNOTE statement takes effect when the step or RUN group with which it is
associated executes. After you specify a footnote for a line, SAS repeats the same
footnote on all pages until you cancel or redefine the footnote for that line. When a
FOOTNOTE statement is specified for a given line, it cancels the previous FOOTNOTE
statement for that line and for all footnote lines with higher numbers.

Operating Environment Information
The maximum footnote length that is allowed depends on the operating environment
and the value of the LINESIZE= system option. Refer to the SAS documentation for
your operating environment for more information.

Comparisons
You can also create footnotes with the FOOTNOTES window. For more information,
refer to the online Help for the window.

You can modify footnotes with the Output Delivery System. See “Example 3:
Customizing Titles and Footnotes by Using the Output Delivery System” on page 373.

Example: Using the FOOTNOTE Statement
These examples of a FOOTNOTE statement result in the same footnote:

• footnote8 "Managers' Meeting";

• footnote8 'Managers'' Meeting';

These are examples of FOOTNOTE statements that use some of the formatting options
for the ODS HTML, RTF, and PRINTER(PDF) destinations. For the complete example,
see “Example 3: Customizing Titles and Footnotes by Using the Output Delivery
System” on page 373 .

footnote j=left height=20pt
 color=red "Prepared "
 c='#FF9900' "on";
footnote2 j=center color=blue
 height=24pt "&SYSDATE9";
footnote3 link='http://support.sas.com' "SAS";

See Also
• “TEMPLATE Procedure: Overview” in Chapter 9 of SAS Output Delivery System:

User's Guide

Statements:

• “TITLE Statement” on page 368

FOOTNOTE Statement 155

FORMAT Statement
Associates formats with variables.

Valid in: DATA step or PROC step

Category: Information

Type: Declarative

Syntax
FORMAT variable-1 <…variable-n> <format> <DEFAULT=default-format>;

FORMAT variable-1 <…variable-n> format <DEFAULT=default-format>;

FORMAT variable-1 <…variable-n> format variable-1 <…variable-n> format;

Arguments
variable

names one or more variables for SAS to associate with a format. You must specify at
least one variable.
Tip: To disassociate a format from a variable, use the variable in a FORMAT

statement without specifying a format in a DATA step or in PROC DATASETS.
In a DATA step, place this FORMAT statement after the SET statement. See
“Example 3: Removing a Format” on page 159. You can also use PROC
DATASETS.

format
specifies the format that is listed for writing the values of the variables.
Tip: Formats that are associated with variables by using a FORMAT statement

behave like formats that are used with a colon modifier in a subsequent PUT
statement. For details about using a colon modifier, see “PUT Statement, List” on
page 319.

See: SAS Formats and Informats: Reference

DEFAULT=default-format
specifies a temporary default format for displaying the values of variables that are
not listed in the FORMAT statement. These default formats apply only to the current
DATA step; they are not permanently associated with variables in the output data
set.

A DEFAULT= format specification applies to

• variables that are not named in a FORMAT or ATTRIB statement

• variables that are not permanently associated with a format within a SAS data set

• variables that are not written with the explicit use of a format.

Default: If you omit DEFAULT=, SAS uses BESTw. as the default numeric format
and $w. as the default character format.

Restriction: Use this option only in a DATA step.
Tip: A DEFAULT= specification can occur anywhere in a FORMAT statement. It

can specify either a numeric default, a character default, or both.
Example: “Example 1: Assigning Formats and Defaults” on page 157

156 Chapter 2 • Dictionary of SAS Statements

Details
The FORMAT statement can use standard SAS formats or user-written formats that have
been previously defined in PROC FORMAT. A single FORMAT statement can
associate the same format with several variables, or it can associate different formats
with different variables. If a variable appears in multiple FORMAT statements, SAS
uses the format that is assigned last.

You use a FORMAT statement in the DATA step to permanently associate a format with
a variable. SAS changes the descriptor information of the SAS data set that contains the
variable. You can use a FORMAT statement in some PROC steps, but the rules are
different. For more information, see Base SAS Procedures Guide.

Comparisons
Both the ATTRIB and FORMAT statements can associate formats with variables, and
both statements can change the format that is associated with a variable. You can use the
FORMAT statement in PROC DATASETS to change or remove the format that is
associated with a variable. You can also associate, change, or disassociate formats and
variables in existing SAS data sets through the windowing environment.

Examples

Example 1: Assigning Formats and Defaults
This example uses a FORMAT statement to assign formats and default formats for
numeric and character variables. The default formats are not associated with variables in
the data set but affect how the PUT statement writes the variables in the current DATA
step.

data tstfmt;
 format W $char3.
 Y 10.3
 default=8.2 $char8.;
 W='Good morning.';
 X=12.1;
 Y=13.2;
 Z='Howdy-doody';
 put W/X/Y/Z;
run;
proc contents data=tstfmt;
run;
proc print data=tstfmt;
run;

The following output shows a partial listing from PROC CONTENTS, as well as the
report that PROC PRINT generates.

FORMAT Statement 157

Output 2.3 Partial Listing from PROC CONTENTS and the PROC PRINT Report

Output 2.4 PROC PRINT Report

The default formats apply to variables X and Z while the assigned formats apply to the
variables W and Y.

The PUT statement produces this result:

----+----1----+----2
Goo
12.10
13.200
Howdy-do

Example 2: Associating Multiple Variables with a Single Format
This example uses the FORMAT statement to assign a single format to multiple
variables.

data report;
 input Item $ 1–6 Material $ 8–14 Investment 16–22 Profit 24–31;
 format Item Material $upcase9. Investment Profit dollar15.2;
 datalines;
shirts cotton 2256354 83952175
ties silk 498678 2349615
suits silk 9482146 69839563
belts leather 7693 14893
shoes leather 7936712 22964
;
run;
options pageno=1 nodate ls=80 ps=64;
proc print data=report;
 title 'Profit Summary: Kellam Manufacturing Company';
run;

158 Chapter 2 • Dictionary of SAS Statements

Output 2.5 Results from Associating Multiple Variables with a Single Format

Example 3: Removing a Format
This example disassociates an existing format from a variable in a SAS data set. The
order of the FORMAT and the SET statements is important.

data rtest;
 set rtest;
 format x;
run;

See Also
• Chapter 16, “DATASETS Procedure” in Base SAS Procedures Guide

Statements:

• “ATTRIB Statement” on page 31

GO TO Statement
Directs program execution immediately to the statement label that is specified and, if followed by a
RETURN statement, returns execution to the beginning of the DATA step.

Valid in: DATA step

Category: Control

Type: Executable

Alias: GOTO

Syntax
GO TO label;

GO TO Statement 159

Arguments
label

specifies a statement label that identifies the GO TO destination. The destination
must be within the same DATA step. You must specify the label argument.

Comparisons
The GO TO statement and the LINK statement are similar. However, a GO TO
statement is often used without a RETURN statement, whereas a LINK statement is
usually used with an explicit RETURN statement. The action of a subsequent RETURN
statement differs between the GO TO and LINK statements. A RETURN statement after
a LINK statement returns execution to the statement that follows the LINK statement. A
RETURN after a GO TO statement returns execution to the beginning of the DATA step
(unless a LINK statement precedes the GO TO statement. In that case, execution
continues with the first statement after the LINK statement).

GO TO statements can often be replaced by DO-END and IF-THEN/ELSE
programming logic.

Example: Using a RETURN Statement with the GO TO
Statement
Use the GO TO statement as shown here.

• In this example, if the condition is true, the GO TO statement instructs SAS to jump
to a label called ADD and to continue execution from there. If the condition is false,
SAS executes the PUT statement and the statement that is associated with the GO
TO label:

data info;
 input x;
 if 1<=x<=5 then go to add;
 put x=;
 add: sumx+x;
 datalines;
7
6
323
;

Because every DATA step contains an implied RETURN at the end of the step,
program execution returns to the top of the step after the sum statement is executed.
Therefore, an explicit RETURN statement at the bottom of the DATA step is not
necessary.

• If you do not want the Sum statement to execute for observations that do not meet
the condition, rewrite the code and include an explicit return statement.

data info;
 input x;
 if 1<=x<=5 then go to add;
 put x=;
 return;
 /* SUM statement not executed */
 /* if x<1 or x>5 */
 add: sumx+x;
 datalines;
7

160 Chapter 2 • Dictionary of SAS Statements

6
323
;

See Also

Statements:

• “DO Statement” on page 64

• “label: Statement” on page 234

• “LINK Statement” on page 256

• “RETURN Statement” on page 341

IF Statement, Subsetting
Continues processing only those observations that meet the condition of the specified expression.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
IF expression;

Arguments
expression

is any SAS expression.

Details
The subsetting IF statement causes the DATA step to continue processing only those raw
data records or those observations from a SAS data set that meet the condition of the
expression that is specified in the IF statement. That is, if the expression is true for the
observation or record (its value is neither 0 nor missing), SAS continues to execute
statements in the DATA step and includes the current observation in the data set. The
resulting SAS data set or data sets contain a subset of the original external file or SAS
data set.

If the expression is false (its value is 0 or missing), no further statements are processed
for that observation or record, the current observation is not written to the data set, and
the remaining program statements in the DATA step are not executed. SAS immediately
returns to the beginning of the DATA step because the subsetting IF statement does not
require additional statements to stop processing observations.

Comparisons
• The subsetting IF statement is equivalent to this IF-THEN statement:

if not (expression)
 then delete;

IF Statement, Subsetting 161

• When you create SAS data sets, use the subsetting IF statement when it is easier to
specify a condition for including observations. When it is easier to specify a
condition for excluding observations, use the DELETE statement.

• The subsetting IF and the WHERE statements are not equivalent. The two statements
work differently and produce different output data sets in some cases. The most
important differences are summarized as follows:

• The subsetting IF statement selects observations that have been read into the
program data vector. The WHERE statement selects observations before they are
brought into the program data vector. The subsetting IF might be less efficient
than the WHERE statement because it must read each observation from the input
data set into the program data vector.

• The subsetting IF statement and WHERE statement can produce different results
in DATA steps that interleave, merge, or update SAS data sets.

• When the subsetting IF statement is used with the MERGE statement, the SAS
System selects observations after the current observations are combined. When
the WHERE statement is used with the MERGE statement, the SAS System
applies the selection criteria to each input data set before combining the current
observations.

• The subsetting IF statement can select observations from an existing SAS data
set or from raw data that are read with the INPUT statement. The WHERE
statement can select observations only from existing SAS data sets.

• The subsetting IF statement is executable; the WHERE statement is not.

Example: Limiting Observations
• This example results in a data set that contains only those observations with the

value F for the variable SEX:

if sex='F';

• This example results in a data set that contains all observations for which the value
of the variable AGE is not missing or 0:

if age;

See Also
• Chapter 11, “WHERE-Expression Processing,” in SAS Language Reference:

Concepts

Data Set Options:

• “WHERE= Data Set Option” in SAS Data Set Options: Reference

Statements:

• “DELETE Statement” on page 59

• “IF-THEN/ELSE Statement” on page 163

• “WHERE Statement” on page 382

162 Chapter 2 • Dictionary of SAS Statements

IF-THEN/ELSE Statement
Executes a SAS statement for observations that meet specific conditions.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
IF expression THEN statement;
<ELSEstatement;>

Arguments
expression

is any SAS expression and is a required argument.

statement
can be any executable SAS statement or DO group.

Details
SAS evaluates the expression in an IF-THEN statement to produce a result that is either
nonzero, zero, or missing. A nonzero and nonmissing result causes the expression to be
true; a result of zero or missing causes the expression to be false.

If the conditions that are specified in the IF clause are met, the IF-THEN statement
executes a SAS statement for observations that are read from a SAS data set, for records
in an external file, or for computed values. An optional ELSE statement gives an
alternative action if the THEN clause is not executed. The ELSE statement, if used, must
immediately follow the IF-THEN statement.

Using IF-THEN statements without the ELSE statement causes SAS to evaluate all IF-
THEN statements. Using IF-THEN statements with the ELSE statement causes SAS to
execute IF-THEN statements until it encounters the first true statement. Subsequent IF-
THEN statements are not evaluated.

Note: For greater efficiency, construct your IF-THEN/ELSE statement with conditions
of decreasing probability.

Comparisons
• Use a SELECT group rather than a series of IF-THEN statements when you have a

long series of mutually exclusive conditions.

• Use subsetting IF statements, without a THEN clause, to continue processing only
those observations or records that meet the condition that is specified in the IF
clause.

Example: Different Ways of Specifying the IF-THEN/ELSE
Statements
These examples show different ways of specifying the IF-THEN/ELSE statement.

IF-THEN/ELSE Statement 163

• if x then delete;

• if status='OK' and type=3 then count+1;

• if age ne agecheck then delete;

• if x=0 then
 if y ne 0 then put 'X ZERO, Y NONZERO';
 else put 'X ZERO, Y ZERO';
else put 'X NONZERO';

• if answer=9 then
 do;
 answer=.;
 put 'INVALID ANSWER FOR ' id=;
 end;
else
 do;
 answer=answer10;
 valid+1;
 end;

• data region;
 input city $ 1-30;
 if city='New York City'
 or city='Miami' then
 region='ATLANTIC COAST';
 else if city='San Francisco'
 or city='Los Angeles' then
 region='PACIFIC COAST';
 datalines;
...more data lines...
;

See Also

Statements:

• “DO Statement” on page 64

• “IF Statement, Subsetting” on page 161

• “SELECT Statement” on page 350

%INCLUDE Statement
Brings a SAS programming statement, data lines, or both, into a current SAS program.

Valid in: Anywhere

Category: Program Control

Alias: %INC

See: %INCLUDE Statement under Windows , UNIX , and z/OS

164 Chapter 2 • Dictionary of SAS Statements

Syntax
%INCLUDE source(s)
</<SOURCE2><S2=length><operating-environment-options>>;

Arguments
source(s)

describes the location of the information that you want to access with the
%INCLUDE statement. There are three possible sources:

Source Definition

file-specification specifies an external file

internal-lines specifies lines that are entered earlier in the same SAS job
or session

keyboard-entry specifies statements or data lines that you enter directly
from the keyboard

file-specification
identifies an entire external file that you want to bring into your program.

File-specification can have these forms:

'external-file'
specifies the physical name of an external file that is enclosed in quotation
marks. The physical name is the name by which the operating environment
recognizes the file.

fileref
specifies a fileref that has previously been associated with an external file.
Tip: You can use a FILENAME statement or function or an operating

environment command to make the association.

fileref (filename-1 <, ”filename–2.xxx”, ... filename-n>)
specifies a fileref that has previously been associated with an aggregate
storage location. Follow the fileref with one or more filenames that reside in
that location. Enclose the filenames in one set of parentheses, and separate
each filename with a comma, space.

This example instructs SAS to include the files “testcode1.sas”,
“testcode2.sas” and “testcode3.txt.” These files are located in aggregate
storage location “mylib.” You do not need to specify the file extension for
testcode1 and testcode2 because they are the default .SAS extension. You
must enclose testcode3.txt in quotation marks with the whole filename
specified because it has an extension other than .SAS:

%include mylib(testcode1, testcode2,
 "testcode3.txt");

Operating environment: Different operating environments call an aggregate
grouping of files by different names, such as a directory, a MACLIB, a
text library, or a partitioned data set. For information about accessing files
from a storage location that contains several files, see the SAS
documentation for your operating environment.

%INCLUDE Statement 165

Note: A file that is located in an aggregate storage location and has a name
that is not a valid SAS name must have its name enclosed in quotation
marks.

Tip: You can use a FILENAME statement or function or an operating
environment command to make the association.

Restriction: You cannot selectively include lines from an external file.
Operating environment: The character length allowed for filenames is

operating environment specific. For complete details about specifying the
physical names of external files, see the SAS documentation for your
operating environment.

Tips:
You can verify the existence of file-specification by using the SYSERR
macro variable if the ERRORCHECK option is set to STRICT.
Including external sources is useful in all types of SAS processing: batch,
windowing, interactive line, and noninteractive.

internal-lines
includes lines that are entered earlier in the same SAS job or session.

To include internal lines, use any of the following:

n includes line n.

n-m or n:m includes lines n through m.

Note: The SPOOL system option controls internal access to previously
submitted lines when you run SAS in interactive line mode, noninteractive
mode, and batch mode. By default, the SPOOL system option is set to
NOSPOOL. The SPOOL system option must be in effect in order to use
%INCLUDE statements with internal line references. Use the OPTIONS
procedure to determine the current setting of the SPOOL system option on
your system.

Tips:
Including internal lines is most useful in interactive line mode processing.
Use a %LIST statement to determine the line numbers that you want to
include.
Although you can use the %INCLUDE statement to access previously
submitted lines when you run SAS in a windowing environment, it might be
more practical to recall lines in the Program Editor with the RECALL
command and then submit the lines with the SUBMIT command.

keyboard-entry
is a method for preparing a program so that you can interrupt the current
program's execution, enter statements or data lines from the keyboard, and then
resume program processing.

*
prompts you to enter data from the keyboard. Place an asterisk (*) after the
%INCLUDE statement in your code:

proc print;
 %include *;
run;

To resume processing the original source program, enter a %RUN statement
from the keyboard.

166 Chapter 2 • Dictionary of SAS Statements

Restriction: The asterisk (*) cannot be used to specify keyboard entry if you use
the Enhanced Editor in the Microsoft Windows operating environment.

Note: The fileref SASTERM must have been previously associated with an
external file in a FILENAME statement or function or an operating
environment command.

Tips:
Use this method when you run SAS in noninteractive or interactive line
mode. SAS pauses during processing and prompts you to enter statements
from the keyboard.
Use this argument to include source from the keyboard:
You can use a %INCLUDE * statement in a batch job by creating a file with
the fileref SASTERM that contains the statements that you would otherwise
enter from the keyboard. The %INCLUDE * statement causes SAS to read
from the file that is referenced by SASTERM. Insert a %RUN statement into
the file that is referenced by SASTERM where you want SAS to resume
reading from the original source.

SOURCE2
causes the SAS log to show the source statements that are being included in your
SAS program.
Tips:

The SAS log also displays the fileref and the filename of the source and the level
of nesting (1, 2, 3, and so on).
The SOURCE2 system option produces the same results. When you specify
SOURCE2 in a %INCLUDE statement, it overrides the setting of the SOURCE2
system option for the duration of the include operation.

S2=length
specifies the length of the record to be used for input. Length can have these values:

S sets S2 equal to the current setting of the S= SAS system option.

0 tells SAS to use the setting of the SEQ= system option to determine whether
the line contains a sequence field. If the line does contain a sequence field,
SAS determines line length by excluding the sequence field from the total
length.

n specifies a number greater than zero that corresponds to the length of the
line to be read, when the file contains fixed-length records. When the file
contains variable-length records, n specifies the column in which to begin
reading data.

Interaction: The S2= system option also specifies the length of secondary source
statements that are accessed by the %INCLUDE statement, and it is effective for
the duration of your SAS session. The S2= option in the %INCLUDE statement
affects only the current include operation. If you use the option in the
%INCLUDE statement, it overrides the system option setting for the duration of
the include operation.

Tips:
Text input from the %INCLUDE statement can be either fixed or variable length.
Fixed-length records are either unsequenced or sequenced at the end of each
record. For fixed-length records, the value given in S2= is the ending column of
the data.
Variable-length records are either unsequenced or sequenced at the beginning of
each record. For variable-length records, the value given in S2= is the starting
column of the data.

%INCLUDE Statement 167

See: For a detailed discussion of fixed- and variable-length input records, see “S=
System Option” in SAS System Options: Reference and “S2= System Option” in
SAS System Options: Reference.

operating-environment-options
Operating environment: Operating environments can support various options for

the %INCLUDE statement. See the documentation for your operating
environment for a list of these options and their functions.

Details

What %INCLUDE Does
When you execute a program that contains the %INCLUDE statement, SAS executes
your code, including any statements or data lines that you bring into the program with
%INCLUDE.

Operating Environment Information
Use of the %INCLUDE statement is dependent on your operating environment. See
the documentation for your operating environment for more information about
additional software features and methods of referring to and accessing your files. See
your documentation before you run the examples for this statement.

Three Sources of Data
The %INCLUDE statement accesses SAS statements and data lines from three possible
sources:

• external files

• lines entered earlier in the same job or session

• lines entered from the keyboard.

When Useful
The %INCLUDE statement is most often used when running SAS in interactive line
mode, noninteractive mode, or batch mode. Although you can use the %INCLUDE
statement when you run SAS using windows, it might be more practical to use the
INCLUDE and RECALL commands to access data lines and program statements, and
submit these lines again.

Rules for Using %INCLUDE
• You can specify any number of sources in a %INCLUDE statement, and you can

mix the types of included sources. Note, however, that although it is possible to
include information from multiple sources in one %INCLUDE statement, it might be
easier to understand a program that uses separately coded %INCLUDE statements
for each source.

• The %INCLUDE statement must begin at a statement boundary. That is, it must be
the first statement in a SAS job or must immediately follow a semicolon ending
another statement. A %INCLUDE statement cannot immediately follow a
DATALINES, DATALINES4, CARDS, or CARDS4 statement (or PARMCARDS
or PARMCARDS4 statement in procedures that use those statements). However, you
can include data lines with the %INCLUDE statement using one of these methods:

• Make the DATALINES, DATALINES4, or CARDS, CARDS4 statement the
first line in the file that contains the data.

168 Chapter 2 • Dictionary of SAS Statements

• Place the DATALINES, DATALINES4, or CARDS, CARDS4 statement in one
file, and the data lines in another file. Use both sources in a single %INCLUDE
statement.

The %INCLUDE statement can be nested within a file that has been accessed with
%INCLUDE. The maximum number of nested %INCLUDE statements that you can
use depends on system-specific limitations of your operating environment (such as
available memory or the number of files that you can have open concurrently).

• Because %INCLUDE is a global statement and global statements are not executable,
the %INCLUDE statement cannot be used in conditional logic.

• The maximum line length is 32K bytes.

Comparisons
The %INCLUDE statement executes statements immediately. The INCLUDE command
brings the included lines into the Program Editor window but does not execute them.
You must issue the SUBMIT command to execute those lines.

Examples

Example 1: Including an External File
• This example stores a portion of a program in a file and includes it in a program to

be written later. This program is stored in a file named MYFILE:

data monthly;
 input x y month $;
 datalines;
1 1 January
2 2 February
3 3 March
4 4 April
;

This program includes an external file named MYFILE and submits the DATA step
that it contains before the PROC PRINT step executes:

%include 'MYFILE';
proc print;
run;

• To reference a file by using a fileref rather than the actual filename, you can use the
FILENAME statement (or a command recognized by your operating environment) to
assign a fileref:

filename in1 'MYFILE';

You can later access MYFILE with the fileref IN1:

%inc in1;

• If you want to use many files that are stored in a directory, PDS, or MACLIB (or
whatever your operating environment calls an aggregate storage location), you can
assign the fileref to the larger storage unit and then specify the filename. For
example, this FILENAME statement assigns the fileref STORAGE to an aggregate
storage location:

filename storage
 'aggregate-storage-location';

%INCLUDE Statement 169

You can later include a file using this statement:

%inc storage(MYFILE);

• You can also access several files or members from this storage location by listing
them in parentheses after the fileref in a single %INCLUDE statement. Separate
filenames with a comma or a blank space. The following %INCLUDE statement
demonstrates this method:

%inc storage(file-1,file-2,file-3);

When the file does not have the default .SAS extension, you can access it using
quotation marks around the complete filename listed inside the parentheses.

• %inc storage("file-1.txt","file-2.dat",
 "file-3.cat");

Example 2: Including Previously Submitted Lines
This %INCLUDE statement causes SAS to process lines 1, 5, 9 through 12, and 13
through 16 as if you had entered them again from your keyboard:

%include 1 5 9-12 13:16;

Example 3: Including Input from the Keyboard
The method shown in this example is valid only when you run SAS in noninteractive
mode or interactive line mode.

Restriction: The asterisk (*) cannot be used to specify keyboard entry if you use the
Enhanced Editor in the Microsoft Windows operating environment.

This example uses %INCLUDE to add a customized TITLE statement when PROC
PRINT executes:

data report;
 infile file-specification;
 input month $ salesamt $;
run;
proc print;
 %include *;
run;

When this DATA step executes, %INCLUDE with the asterisk causes SAS to issue a
prompt for statements that are entered at the keyboard. You can enter statements such as

where month= 'January';
title 'Data for month of January';

After you enter statements, you can use %RUN to resume processing by entering
%run;.

The %RUN statement signals to SAS to leave keyboard-entry mode and resume reading
and executing the remaining SAS statements from the original program.

Example 4: Using %INCLUDE with Several Entries in a Single
Catalog
This example submits the source code from three entries in the catalog
MYLIB.INCLUDE. When no entry type is specified, the default is CATAMS.

filename dir catalog 'mylib.include';
%include dir(mem1);

170 Chapter 2 • Dictionary of SAS Statements

%include dir(mem2);
%include dir(mem3);

See Also

Statements:

• “%LIST Statement” on page 260

• “%RUN Statement” on page 343

INFILE Statement
Specifies an external file to read with an INPUT statement.

Valid in: DATA Step

Category: File-handling

Type: Executable

Operating
environment:

The INFILE statement contains operating environment-specific material. See the
SAS documentation for your operating environment before using this statement.

See: INFILE Statement under Windows, UNIX, and z/OS

Syntax
INFILE file-specification <device-type> <options> <operating-environment-options>;

INFILE DBMS-specifications;

Arguments
file-specification

identifies the source of the input data records, which is an external file or instream
data. File-specification can have these forms:

'external-file'
specifies the physical name of an external file. The physical name is the name
that the operating environment uses to access the file.

fileref
specifies the fileref of an external file.
Requirement: You must have previously associated the fileref with an external

file in a FILENAME statement, FILENAME function, or an appropriate
operating environment command.

See: “FILENAME Statement” on page 93

fileref(file)
specifies a fileref of an aggregate storage location and the name of a file or
member, enclosed in parentheses, that resides in that location.
Requirements:

A file that is located in an aggregate storage location and has a name that is
not a valid SAS name must have its name enclosed in quotation marks.

INFILE Statement 171

You must have previously associated the fileref with an external file in a
FILENAME statement, a FILENAME function, or an appropriate operating
environment command.

Operating environment: Different operating environments call an aggregate
grouping of files by different names, such as a directory, a MACLIB, or a
partitioned data set. For details about how to specify external files, see the
SAS documentation for your operating environment.

See: “FILENAME Statement” on page 93

CARDS | CARDS4
for a definition, see DATALINES on page 172 .
Alias: DATALINES | DATALINES4

DATALINES | DATALINES4
specifies that the input data immediately follows the DATALINES or
DATALINES4 statement in the DATA step. Using DATALINES enables you to
use the INFILE statement options to control how the INPUT statement reads
instream data lines.
Alias: CARDS | CARDS4
Example: “Example 1: Changing How Delimiters Are Treated” on page 187

Tip: You can verify the existence of file-specification by using the SYSERR macro
variable if the ERRORCHECK option is set to STRICT.

device-type
specifies the type of device or the access method that is used if the fileref points to an
input or output device or location that is not a physical file:

CATALOG
specifies the CATALOG access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the CATALOG access

method, see the “FILENAME Statement, CATALOG Access Method” on
page 100.

CLIPBOARD
specifies the CLIPBOARD access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the CLIPBOARD

access method, see the “FILENAME, CLIPBOARD Access Method” on
page 104.

DISK
specifies that the device is a disk drive.
Tip: When you assign a fileref to a file on disk, you are not required to specify

DISK.

DUMMY
specifies that the output to the file is discarded.
Tip: Specifying DUMMY can be useful for testing.

FTP
specifies the FTP access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.

172 Chapter 2 • Dictionary of SAS Statements

See: For a complete list of options that are available with the FTP access
method, see the “FILENAME Statement, FTP Access Method” on page 117.

Example:
infile dummy ftp user='myuid' pass='xxxx' filevar=file_to_read;

GTERM
indicates that the output device type is a graphics device that will receive
graphics data.

JMS
specifies a Java Message Service (JMS) destination.

PIPE
specifies an unnamed pipe.
Note: Some operating environments do not support pipes.

PLOTTER
specifies an unbuffered graphics output device.

PRINTER
specifies a printer or printer spool file.

SFTP
specifies the SFTP access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the SFTP access

method, see the “FILENAME Statement, SFTP Access Method” on page
133.

SOCKET
specifies the SOCKET access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the SOCKET access

method, see the “FILENAME Statement, SOCKET Access Method” on page
138.

TAPE
specifies a tape drive.

TEMP
creates a temporary file that exists only as long as the filename is assigned. The
temporary file can be accessed only through the logical name and is available
only while the logical name exists.
Restriction: Do not specify a physical pathname. If you do, SAS returns an

error.
Tip: Files that are manipulated by the TEMP device can have the same attributes

and behave identically to DISK files.

TERMINAL
specifies the user's terminal.

UPRINTER
specifies a Universal Printing printer definition name.
Tip: If you do not specify the printer name in the FILENAME statement, the

PRINTERPATH options control which Universal Printer is used and the
destination of the output.

INFILE Statement 173

URL
specifies the URL access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the URL access

method, see the “FILENAME Statement, URL Access Method” on page 142.

WEBDAV
specifies the WEBDAV access method.
Interaction: If the DATA step does not recognize the access method option, the

DATA step passes the option to the access method for handling.
See: For a complete list of options that are available with the WEBDAV access

method, see the “FILENAME Statement, WebDAV Access Method” on page
147.

Alias: DEVICE=device-type
Default: DISK
Requirement: device-type or DEVICE=device-type must immediately follow file-

specification in the statement.
Operating environment: Additional specifications might be required when you

specify some devices. See the SAS documentation for your operating
environment before specifying a value other than DISK. Values in addition to the
ones listed here might be available in some operating environments.

INFILE Options
BLKSIZE=block-size

specifies the block size of the input file.
Default: Dependent on the operating environment. For details, see the SAS

documentation for your operating environment.

COLUMN=variable
names a variable that SAS uses to assign the current column location of the input
pointer. Like automatic variables, the COLUMN= variable is not written to the data
set.
Alias: COL=
See: LINE= on page 178
Example: “Example 8: Listing the Pointer Location” on page 192

DELIMITER= delimiter(s)
specifies an alternate delimiter (other than a blank) to be used for LIST input, where
delimiter(s) is

'list-of-delimiting-characters'
specifies one or more characters to read as delimiters.
Requirement: Enclose the list of characters in quotation marks.
Example: “Example 1: Changing How Delimiters Are Treated” on page 187

character-variable
specifies a character variable whose value becomes the delimiter.

Alias: DLM=
Default: blank space
Tip: The delimiter is case sensitive.

174 Chapter 2 • Dictionary of SAS Statements

See: “Reading Delimited Data” on page 184, DLMSTR= on page 175, and “ DSD
(delimiter-sensitive data)” on page 175

Example: “Example 1: Changing How Delimiters Are Treated” on page 187

DLMSTR= delimiter
specifies a character string as an alternate delimiter (other than a blank) to be used
for LIST input, where delimiter is

'delimiting-string'
specifies a character string to read as a delimiter.
Requirement: Enclose the string in quotation marks.
Example: “Example 1: Changing How Delimiters Are Treated” on page 187

character-variable
specifies a character variable whose value becomes the delimiter.

Default: blank space
Interactions:

If you specify more than one DLMSTR= option in the INFILE statement, the
DLMSTR= option that is specified last will be used. If you specify both the
DELIMITER= and DLMSTR= options, the option that is specified last will be
used.
If you specify RECFM=N, make sure that the LRECL is large enough to hold the
largest input item. Otherwise, it might be possible for the delimiter to be split
across the record boundary.

Tip: The delimiter is case sensitive. To make the delimiter case insensitive, use the
DLMSOPT='I' option.

See: “Reading Delimited Data” on page 184, DELIMITER= on page 174,
DLMSOPT= on page 175, and DSD on page 175

Example: “Example 1: Changing How Delimiters Are Treated” on page 187

DLMSOPT= 'option(s)'
specifies parsing options for the DLMSTR= option where option(s) can be the
following:

I
specifies that case-insensitive comparisons will be done.

T
specifies that trailing blanks of the string delimiter will be removed.
Tips:

The T option is useful when you use a variable as the delimiter string.
You can specify either I, T, or both.

Requirement: The DLMSOPT= option has an effect only when used with the
DLMSTR= option.

See: DLMSTR= on page 175
Example: “Example 1: Changing How Delimiters Are Treated” on page 187

DSD (delimiter-sensitive data)
specifies that when data values are enclosed in quotation marks, delimiters within the
value are treated as character data. The DSD option changes how SAS treats
delimiters when you use LIST input and sets the default delimiter to a comma. When
you specify DSD, SAS treats two consecutive delimiters as a missing value and
removes quotation marks from character values.
Interaction: Use the DELIMITER= or DLMSTR= option to change the delimiter.

INFILE Statement 175

Tip: Use the DSD option and LIST input to read a character value that contains a
delimiter within a string that is enclosed in quotation marks. The INPUT
statement treats the delimiter as a valid character and removes the quotation
marks from the character string before the value is stored. Use the tilde (~)
format modifier to retain the quotation marks.

See: “Reading Delimited Data” on page 184, DELIMITER= on page 174, and
DLMSTR= on page 175

Examples:
“Example 1: Changing How Delimiters Are Treated” on page 187
“Example 2: Handling Missing Values and Short Records with List Input” on
page 189

ENCODING= 'encoding-value'
specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

When you read data from an external file, SAS transcodes the data from the specified
encoding to the session encoding.
Default: SAS assumes that an external file is in the same encoding as the session

encoding.
See: For valid encoding values, see “Encoding Values in SAS Language Elements”

in Chapter 20 of SAS National Language Support (NLS): Reference Guide.
Example: “Example 11: Specifying an Encoding When Reading an External File”

on page 195

END=variable
specifies a variable that SAS sets to 1 when the current input data record is the last in
the input file. Until SAS processes the last data record, the END= variable is set to 0.
Like automatic variables, this variable is not written to the data set.
Restriction: You cannot use the END= option with the UNBUFFERED option, the

DATALINES or DATALINES4 statement, or an INPUT statement that reads
multiple input data records.

Tip: Use the option EOF= on page 176 when END= is invalid.
Example: “Example 5: Reading from Multiple Input Files” on page 191

EOF=label
specifies a statement label that is the object of an implicit GO TO when the INFILE
statement reaches end of file. When an INPUT statement attempts to read from a file
that has no more records, SAS moves execution to the statement label indicated.
Interaction: Use EOF= instead of the END= option with the UNBUFFERED

option, the DATALINES or DATALINES4 statement, an INPUT statement that
reads multiple input data records.

Tip: The EOF= option is useful when you read from multiple input files
sequentially.

See: END= on page 176, EOV= on page 176, and UNBUFFERED on page 181

EOV=variable
specifies a variable that SAS sets to 1 when the first record in a file in a series of
concatenated files is read. The variable is set only after SAS encounters the next file.
Like automatic variables, the EOV= variable is not written to the data set.
Tip: Reset the EOV= variable back to 0 after SAS encounters each boundary.
See: END= on page 176 and EOF= on page 176

176 Chapter 2 • Dictionary of SAS Statements

EXPANDTABS | NOEXPANDTABS
specifies whether to expand tab characters to the standard tab setting, which is set at
8-column intervals that start at column 9.
Default: NOEXPANDTABS
Tip: EXPANDTABS is useful when you read data that contains the tab character

that is native to your operating environment.

FILENAME=variable
specifies a variable that SAS sets to the physical name of the currently opened input
file. Like automatic variables, the FILENAME= variable is not written to the data
set.
Tip: Use a LENGTH statement to make the variable length long enough to contain

the value of the filename.
See: FILEVAR= on page 177
Example: “Example 5: Reading from Multiple Input Files” on page 191

FILEVAR=variable
specifies a variable whose change in value causes the INFILE statement to close the
current input file and open a new one. When the next INPUT statement executes, it
reads from the new file that the FILEVAR= variable specifies. Like automatic
variables, this variable is not written to the data set.
Restriction: The FILEVAR= variable must contain a character string that is a

physical filename.
Interaction: When you use the FILEVAR= option, the file-specification is just a

placeholder, not an actual filename or a fileref that has been previously assigned
to a file. SAS uses this placeholder for reporting processing information to the
SAS log. It must conform to the same rules as a fileref.

Tips:
Use FILEVAR= to dynamically change the currently opened input file to a new
physical file.
When using FILEVAR=, it is not possible to know whether the input file that is
currently open is the last file or not. When the DATA step comes to an end-of-
file marker or the end of all open data sets, it performs an orderly shutdown. In
addition, if you use FILEVAR with FIRSTOBS, a file with only a header record
in a series of files will trigger a normal shutdown of the DATA step. The
shutdown occurs because SAS reads beyond the end-of-file marker and the
DATA step terminates. You can use the EOF= option to avoid the shutdown.

See: “Updating External Files in Place” on page 183
Example: “Example 5: Reading from Multiple Input Files” on page 191

FIRSTOBS=record-number
specifies a record number that SAS uses to begin reading input data records in the
input file.
Default: 1
Tip: Use FIRSTOBS= with OBS= to read a range of records from the middle of a

file.
Example: This statement processes record 50 through record 100:

infile file-specification firstobs=50 obs=100;

FLOWOVER
causes an INPUT statement to continue to read the next input data record if it does
not find values in the current input line for all the variables in the statement.
FLOWOVER is the default behavior of the INPUT statement.

INFILE Statement 177

See: “Reading Past the End of a Line” on page 185, MISSOVER on page 179,
STOPOVER on page 181, and TRUNCOVER on page 181

LENGTH=variable
specifies a variable that SAS sets to the length of the current input line. SAS does not
assign the variable a value until an INPUT statement executes. Like automatic
variables, the LENGTH= variable is not written to the data set.
Tip: This option in conjunction with the $VARYING informat is useful when the

field width varies.
Examples:

“Example 4: Reading Files That Contain Variable-Length Records” on page 190
“Example 7: Truncating Copied Records” on page 192

LINE=variable
specifies a variable that SAS sets to the line location of the input pointer in the input
buffer. Like automatic variables, the LINE= variable is not written to the data set.
Range: 1 to the value of the N= option
Interaction: The value of the LINE= variable is the current relative line number

within the group of lines that is specified by the N= option or by the #n line
pointer control in the INPUT statement.

See: COLUMN= on page 174 and N= on page 179
Example: “Example 8: Listing the Pointer Location” on page 192

LINESIZE=line-size
specifies the record length that is available to the INPUT statement.
Alias: LS=
Range: up to 32767
Interaction: If an INPUT statement attempts to read past the column that is

specified by the LINESIZE= option, then the action that is taken depends on
whether the FLOWOVER, MISSOVER, SCANOVER, STOPOVER, or
TRUNCOVER option is in effect. FLOWOVER is the default.

Operating environment: Values for line-size are dependent on the operating
environment record size. For details, see the SAS documentation for your
operating environment.

Tip: Use LINESIZE= to limit the record length when you do not want to read the
entire record.

Example: If your data lines contain a sequence number in columns 73 through 80,
then use this INFILE statement to restrict the INPUT statement to the first 72
columns:
infile file-specification linesize=72;

LRECL=logical-record-length
specifies the logical record length.
Default: Dependent on the file characteristics of your operating environment
Restriction: LRECL is not valid when you use the DATALINES file specification.
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” in SAS System Options: Reference.
Operating environment: Values for logical-record-length are dependent on the

operating environment. For details, see the SAS documentation for your
operating environment.

Tip: LRECL= specifies the physical line length of the file. LINESIZE= tells the
INPUT statement how much of the line to read.

178 Chapter 2 • Dictionary of SAS Statements

MISSOVER
prevents an INPUT statement from reading a new input data record if it does not find
values in the current input line for all the variables in the statement. When an INPUT
statement reaches the end of the current input data record, variables without any
values assigned are set to missing.
Tip: Use MISSOVER if the last field or fields might be missing and you want SAS

to assign missing values to the corresponding variable.
See: “Reading Past the End of a Line” on page 185, FLOWOVER on page 177,

SCANOVER on page 180, STOPOVER on page 181, and TRUNCOVER on
page 181

Example: “Example 2: Handling Missing Values and Short Records with List
Input” on page 189

N=available-lines
specifies the number of lines that are available to the input pointer at one time.
Default: The highest value following a # pointer control in any INPUT statement in

the DATA step. If you omit a # pointer control, then the default value is 1.
Interaction: This option affects only the number of lines that the pointer can access

at a time; it has no effect on the number of lines an INPUT statement reads.
Tips:

When you use # pointer controls in an INPUT statement that are less than the
value of N=, you might get unexpected results. To prevent unexpected results,
include a # pointer control that equals the value of the N= option. Here is an
example:
infile 'external file' n=5;
input #2 name : $25. #3 job : $25. #5;

The INPUT statement includes a #5 pointer control, even though no data is read
from that record.

Example: “Example 8: Listing the Pointer Location” on page 192

NBYTE=variable
specifies the name of a variable that contains the number of bytes to read from a file
when you are reading data in stream record format (RECFM=S in the FILENAME
statement).
Default: The LRECL value of the file
Interaction: If the number of bytes to read is set to -1, then the FTP and SOCKET

access methods return the number of bytes that are currently available in the
input buffer.

See: The RECFM= option on page 140 in the FILENAME statement, SOCKET
access method, and the RECFM= option on page 122 in the FILENAME
statement, FTP access method

OBS=record-number | MAX

record-
number

specifies the record number of the last record to read in an input
file that is read sequentially.

MAX specifies the maximum number of observations to process, which
will be at least as large as the largest signed, 32–bit integer. The
absolute maximum depends on your host operating environment.

Default: MAX
Tip: Use OBS= with FIRSTOBS= to read a range of records from the middle of a

file.
Example: This statement processes only the first 100 records in the file:

INFILE Statement 179

infile file-specification obs=100;

PAD | NOPAD
controls whether SAS pads the records that are read from an external file with blanks
to the length that is specified in the LRECL= option.
Default: NOPAD
See: LRECL= option on page 178

PRINT | NOPRINT
specifies whether the input file contains carriage-control characters.
Tip: To read a file in a DATA step without having to remove the carriage-control

characters, specify PRINT. To read the carriage-control characters as data values,
specify NOPRINT.

RECFM=record-format
specifies the record format of the input file.
Operating environment: Values for record-format are dependent on the operating

environment. For details, see the SAS documentation for your operating
environment.

SCANOVER
causes the INPUT statement to scan the input data records until the character string
that is specified in the @'character-string' expression is found.
Interaction: The MISSOVER, TRUNCOVER, and STOPOVER options change

how the INPUT statement behaves when it scans for the @'character-string'
expression and reaches the end of the record. By default (FLOWOVER option),
the INPUT statement scans the next record while these other options cause
scanning to stop.

Tip: It is redundant to specify both SCANOVER and FLOWOVER.
See: “Reading Past the End of a Line” on page 185, FLOWOVER on page 177 ,

MISSOVER on page 179 , STOPOVER on page 181 , and TRUNCOVER on
page 181

Example: “Example 3: Scanning Variable-Length Records for a Specific Character
String” on page 189

SHAREBUFFERS
specifies that the FILE statement and the INFILE statement share the same buffer.
Alias: SHAREBUFS
Tips:

Use SHAREBUFFERS with the INFILE, FILE, and PUT statements to update an
external file in place. Updating an external file in place saves CPU time because
the PUT statement output is written straight from the input buffer instead of the
output buffer.
Use SHAREBUFFERS to update specific fields in an external file instead of an
entire record.

Example: “Example 6: Updating an External File” on page 192
CAUTION: When using SHAREBUFFERS, RECFM=V, and _INFILE_, use caution

if you read a record with one length and update the file with a record of a
different length. The length of the record can change by modifying _INFILE_.
One option to avoid this potential problem is to pad or truncate _INFILE_ so that
the original record length is maintained.

180 Chapter 2 • Dictionary of SAS Statements

START=variable
specifies a variable whose value SAS uses as the first column number of the record
that the PUT _INFILE_ statement writes. Like automatic variables, the START
variable is not written to the data set.
See: _INFILE_ option on page 298 in the PUT statement

STOPOVER
causes the DATA step to stop processing if an INPUT statement reaches the end of
the current record without finding values for all variables in the statement. When an
input line does not contain the expected number of values, SAS sets _ERROR_ to 1,
stops building the data set as if a STOP statement has executed, and prints the
incomplete data line.
Tip: Use FLOWOVER to reset the default behavior.
See: “Reading Past the End of a Line” on page 185, FLOWOVER on page 177 ,

MISSOVER on page 179 , SCANOVER on page 180 , and TRUNCOVER on
page 181

Example: “Example 2: Handling Missing Values and Short Records with List
Input” on page 189

TRUNCOVER
overrides the default behavior of the INPUT statement when an input data record is
shorter than the INPUT statement expects. By default, the INPUT statement
automatically reads the next input data record. TRUNCOVER enables you to read
variable-length records when some records are shorter than the INPUT statement
expects. Variables without any values assigned are set to missing.
Tip: Use TRUNCOVER to assign the contents of the input buffer to a variable when

the field is shorter than expected.
See: “Reading Past the End of a Line” on page 185, FLOWOVER on page 177 ,

MISSOVER on page 179 , SCANOVER on page 180 , and STOPOVER on page
181

Example: “Example 3: Scanning Variable-Length Records for a Specific Character
String” on page 189

UNBUFFERED
tells SAS not to perform a buffered (“look ahead”) read.
Alias: UNBUF
Interaction: When you use UNBUFFERED, SAS never sets the END= variable to

1.
Tip: When you read instream data with a DATALINES statement, UNBUFFERED

is in effect.

INFILE=variable
specifies a character variable that references the contents of the current input buffer
for this INFILE statement. You can use the variable in the same way as any other
variable, even as the target of an assignment. The variable is automatically retained
and initialized to blanks. Like automatic variables, the _INFILE_= variable is not
written to the data set.
Restriction: variable cannot be a previously defined variable. Ensure that the

INFILE= specification is the first occurrence of this variable in the DATA
step. Do not set or change the length of _INFILE_= variable with the LENGTH
or ATTRIB statements. However, you can attach a format to this variable with
the ATTRIB or FORMAT statement.

Interaction: The maximum length of this character variable is the logical record
length (LRECL= on page 178) for the specified INFILE statement. However,
SAS does not open the file to know the LRECL= until before the execution

INFILE Statement 181

phase. Therefore, the designated size for this variable during the compilation
phase is 32,767 bytes.

Tips:
Modification of this variable directly modifies the INFILE statement's current
input buffer. Any PUT _INFILE_ (when this INFILE is current) that follows the
buffer modification reflects the modified buffer contents. The _INFILE_=
variable accesses only the current input buffer of the specified INFILE statement
even if you use the N= option to specify multiple buffers.
To access the contents of the input buffer in another statement without using the
INFILE= option, use the automatic variable _INFILE_.
The _INFILE_ variable does not have a fixed width. When you assign a value to
the _INFILE_ variable, the length of the variable changes to the length of the
value that is assigned.

See: “Accessing the Contents of the Input Buffer” on page 183
Examples:

“Example 9: Working with Data in the Input Buffer” on page 193
“Example 10: Accessing the Input Buffers of Multiple Files” on page 194

Operating Environment Options
options | host-options

Operating Environment Information
For descriptions of operating environment-specific options in the INFILE
statement, see the SAS documentation for your operating environment.

See: INFILE Statement under Windows, UNIX, and z/OS

DBMS Specifications
DBMS-Specifications

enable you to read records from some DBMS files. You must license SAS/ACCESS
software to be able to read from DBMS files. See the SAS/ACCESS documentation
for the DBMS that you use.

Details

How to Use the INFILE Statement
Because the INFILE statement identifies the file to read, it must execute before the
INPUT statement that reads the input data records. You can use the INFILE statement in
conditional processing, such as an IF-THEN statement, because it is executable. The
INFILE statement enables you to control the source of the input data records.

Usually, you use an INFILE statement to read data from an external file. When data is
read from the job stream, you must use a DATALINES statement. However, to take
advantage of certain data-reading options that are available only in the INFILE
statement, you can use an INFILE statement with the file-specification DATALINES
and a DATALINES statement in the same DATA step. See “Reading Long Instream
Data Records” on page 185 for more information.

When you use more than one INFILE statement for the same file specification and you
use options in each INFILE statement, the effect is additive. To avoid confusion, use all
the options in the first INFILE statement for a given external file.

182 Chapter 2 • Dictionary of SAS Statements

Reading Multiple Input Files
You can read from multiple input files in a single iteration of the DATA step in one of
two ways:

• to keep multiple files open and change which file is read, use multiple INFILE
statements.

• to dynamically change the current input file within a single DATA step, use the
FILEVAR= option in an INFILE statement. The FILEVAR= option enables you to
read from one file, close it, and then open another. See “Example 5: Reading from
Multiple Input Files” on page 191.

Updating External Files in Place
You can use the INFILE statement in combination with the FILE statement to update
records in an external file. Follow these steps:

1. Specify the INFILE statement before the FILE statement.

2. Specify the same fileref or physical filename in each statement.

3. Use options that are common to both the INFILE and FILE statements in the INFILE
statement instead of the FILE statement. (Any such options that are used in the FILE
statement are ignored.)

See “Example 6: Updating an External File” on page 192.

To update individual fields within a record instead of the entire record, see the
SHAREBUFFERS option on page 180.

Accessing the Contents of the Input Buffer
In addition to the _INFILE_ variable, you can use the automatic _INFILE_ variable to
reference the contents of the current input buffer for the most recent execution of the
INFILE statement. This character variable is automatically retained and initialized to
blanks. Like other automatic variables, _INFILE_ is not written to the data set.

When you specify the _INFILE_= option in an INFILE statement, this variable is also
indirectly referenced by the automatic _INFILE_ variable. If the automatic _INFILE_
variable is present and you omit _INFILE_ in a particular INFILE statement, then SAS
creates an internal _INFILE_ variable for that INFILE statement. Otherwise, SAS does
not create the _INFILE_ variable for a particular FILE.

During execution and at the point of reference, the maximum length of this character
variable is the maximum length of the current _INFILE_ variable. However, because
INFILE only references other variables whose lengths are not known until before the
execution phase, the designated length is 32,767 bytes during the compilation phase. For
example, if you assign _INFILE_ to a new variable whose length is undefined, then the
default length of the new variable is 32,767 bytes. You cannot use the LENGTH
statement and the ATTRIB statement to set or override the length of _INFILE_. You can
use the FORMAT statement and the ATTRIB statement to assign a format to _INFILE_.

Like other SAS variables, you can update the _INFILE_ variable in an assignment
statement. You can also use a format with _INFILE_ in a PUT statement. For example,
the following PUT statement writes the contents of the input buffer by using a
hexadecimal format.

put _infile_ $hex100.;

Any modification of the _INFILE_ directly modifies the current input buffer for the
current INFILE statement. The execution of any PUT _INFILE_ statement that follows
this buffer modification will reflect the contents of the modified buffer.

INFILE Statement 183

INFILE only accesses the contents of the current input buffer for an INFILE
statement, even when you use the N= option to specify multiple buffers. You can access
all the N= buffers, but you must use an INPUT statement with the # line pointer control
to make the desired buffer the current input buffer.

Reading Delimited Data
By default, the delimiter that is used to read input data records with list input is a blank
space. The delimiter-sensitive data (DSD) option, the DELIMITER= option, the
DLMSTR= option, and the DLMSOPT= option affect how list input handles delimiters.
The DELIMITER= or DLMSTR= option specifies that the INPUT statement use a
character other than a blank as a delimiter for data values that are read with list input.
When the DSD option is in effect, the INPUT statement uses a comma as the default
delimiter.

To read a value as missing between two consecutive delimiters, use the DSD option. By
default, the INPUT statement treats consecutive delimiters as a unit. When you use
DSD, the INPUT statement treats consecutive delimiters separately. Therefore, a value
that is missing between consecutive delimiters is read as a missing value. To change the
delimiter from a comma to another value, use the DELIMITER= or DLMSTR= option.

For example, this DATA step program uses list input to read data that is separated with
commas. The second data line contains a missing value. Because SAS allows
consecutive delimiters with list input, the INPUT statement cannot detect the missing
value.

data scores;
 infile datalines delimiter=',';
 input test1 test2 test3;
 datalines;
91,87,95
97,,92
,1,1
;

With the FLOWOVER option in effect, the data set SCORES contains two, not three,
observations. The second observation is built incorrectly:

OBS TEST1 TEST2 TEST3

1 91 87 95

2 97 92 1

To correct the problem, use the DSD option in the INFILE statement.

data scores;
 input test1 test2 test3;
 datalines;
91,87,95
97,,92
,1,1
;

 infile datalines dsd;

Now the INPUT statement detects the two consecutive delimiters and therefore assigns a
missing value to variable TEST2 in the second observation.

184 Chapter 2 • Dictionary of SAS Statements

OBS TEST1 TEST2 TEST3

1 91 87 95

2 97 . 92

3 . 1 1

The DSD option also enables list input to read a character value that contains a delimiter
within a quoted string. For example, if data is separated with commas, DSD enables you
to place the character string in quotation marks and read a comma as a valid character.
SAS does not store the quotation marks as part of the character value. To retain the
quotation marks as part of the value, use the tilde (~) format modifier in an INPUT
statement. See “Example 1: Changing How Delimiters Are Treated” on page 187.

Note: Any time a text file originates from anywhere other than the local encoding
environment, it might be necessary to specify the ENCODING= option on either
EBCDIC or ASCII environments. For example, when you read an EBCDIC text file
on an ASCII platform, it is recommended that you specify the ENCODING= option
in the INFILE statement. However, if you use the DSD and DLM options in the
INFILE statement, the ENCODING= option is a requirement because these options
require certain characters in the session encoding (such as quotation marks, commas,
and blanks).The use of encoding-specific informats should be reserved for use with
true binary files. That is, files that contain both character and noncharacter fields.

Reading Long Instream Data Records
You can use the INFILE statement with the DATALINES file specification to process
instream data. An INPUT statement reads the data records that follow the DATALINES
statement. If you use the CARDIMAGE system option, or if this option is the default for
your system, then SAS processes the data lines exactly like 80-byte punched card images
that are padded with blanks. The default FLOWOVER option in the INFILE statement
causes the INPUT statement to read the next record if it does not find values in the
current record for all of the variables in the statement. To ensure that your data is
processed correctly, use an external file for input when record lengths are greater than 80
bytes.

Note: The NOCARDIMAGE system option (see the “CARDIMAGE System Option” in
SAS System Options: Reference) specifies that data lines not be treated as if they
were 80-byte card images. The end of a data line is always treated as the end of the
last token, except for strings that are enclosed in quotation marks.

Reading Past the End of a Line
By default, if the INPUT statement tries to read past the end of the current input data
record, then it moves the input pointer to column 1 of the next record to read the
remaining values. This default behavior is specified by the FLOWOVER option. A
message is written to the SAS log:

NOTE: SAS went to a new line when INPUT
statement reached past the end of a line.

Several options are available to change the INPUT statement behavior when an end of
line is reached. The STOPOVER option treats this condition as an error and stops
building the data set. The MISSOVERand TRUNCOVER options do not allow the input
pointer to go to the next record when the current INPUT statement is not satisfied. The
SCANOVER option, used with @'character-string' scans the input record until it finds
the specified character-string. The FLOWOVER option restores the default behavior.

INFILE Statement 185

The TRUNCOVER and MISSOVER options are similar. The MISSOVER option causes
the INPUT statement to set a value to missing if the statement is unable to read an entire
field because the value is shorter than the field length that is specified in the INPUT
statement. The TRUNCOVER option writes whatever characters are read to the
appropriate variable.

For example, an external file with variable-length records contains these records:

----+----1----+----2
1
22
333
4444
55555

The following DATA step reads this data to create a SAS data set. Only one of the input
records is as long as the informatted length of the variable TESTNUM.

data numbers;
 infile 'external-file';
 input testnum 5.;
run;

This DATA step creates the three observations from the five input records because by
default the FLOWOVER option is used to read the input records.

If you use the MISSOVER option in the INFILE statement, then the DATA step creates
five observations. All the values that were read from records that were too short are set
to missing. Use the TRUNCOVER option in the INFILE statement if you prefer to see
what values were present in records that were too short to satisfy the current INPUT
statement.

infile 'external-file' truncover;

The DATA step now reads the same input records and creates five observations. See the
following table to compare the SAS data sets.

Table 2.3 The Value of TESTNUM Using Different INFILE Statement Options

OBS FLOWOVER MISSOVER TRUNCOVER

1 22 . 1

2 4444 . 22

3 55555 . 333

4 . 4444

5 55555 55555

Comparisons
• The INFILE statement specifies the input file for any INPUT statements in the

DATA step. The FILE statement specifies the output file for any PUT statements in
the DATA step.

• An INFILE statement usually identifies data from an external file. A DATALINES
statement indicates that data follows in the job stream. You can use the INFILE

186 Chapter 2 • Dictionary of SAS Statements

statement with the file specification DATALINES to take advantage of certain data-
reading options that affect how the INPUT statement reads instream data.

Examples

Example 1: Changing How Delimiters Are Treated
By default, the INPUT statement uses a blank as the delimiter. This DATA step uses a
comma as the delimiter:

data num;
 infile datalines dsd;
 input x y z;
 datalines;
,2,3
4,5,6
7,8,9
;

The argument DATALINES in the INFILE statement enables you to use an INFILE
statement option to read instream data lines. The DSD option sets the comma as the
default delimiter. Because a comma precedes the first value in the first data line, a
missing value is assigned to variable X in the first observation, and the value 2 is
assigned to variable Y.

If the data uses multiple delimiters or a single delimiter other than a comma, then simply
specify the delimiter values with the DELIMITER= option. In this example, the
characters a and b function as delimiters:

data nums;
 infile datalines dsd delimiter='ab';
 input X Y Z;
 datalines;
1aa2ab3
4b5bab6
7a8b9
;

proc print; run;

The output that PROC PRINT generates shows the resulting NUM data set. Values are
missing for variables in the first and second observations because DSD causes list input
to detect two consecutive delimiters. If you omit DSD, the characters a, b, aa, ab, ba, or
bb function as the delimiter and no variables are assigned missing values.

Output 2.6 The NUM Data Set

INFILE Statement 187

If you want to use a string as the delimiter, specify the delimiter values with the
DLMSTR= option. In this example, the string PRD is used as the delimiter. Note that the
string contains uppercase characters. By using the DLMSOPT= option, PRD, Prd, PRd,
PrD, pRd, pRD, prD, and prd are all valid delimiters.

data test;
 infile datalines dsd dlmstr='PRD' dlmsopt='i';
 input X Y Z;
 datalines;
1PRD2PRd3
4PrD5Prd6
7pRd8pRD9
;
 proc print data=test; run;

The output from PROC PRINT shows all the observations in the TEST data set.

Output 2.7 The TEST Data Set

This DATA step uses modified list input and the DSD option to read data that is
separated by commas and that might contain commas as part of a character value:

data scores;
 infile datalines dsd;
 input Name : $9. Score
 Team : $25. Div $;
 datalines;
Joseph,76,"Red Racers, Washington",AAA
Mitchel,82,"Blue Bunnies, Richmond",AAA
Sue Ellen,74,"Green Gazelles, Atlanta",AA
;

proc print; run;

The output that PROC PRINT generates shows the resulting SCORES data set. The
delimiter (comma) is stored as part of the value of TEAM while the quotation marks are
not.

188 Chapter 2 • Dictionary of SAS Statements

Output 2.8 The SCORES Data Set

Example 2: Handling Missing Values and Short Records with List
Input
This example demonstrates how to prevent missing values from causing problems when
you read the data with list input. Some data lines in this example contain fewer than five
temperature values. Use the MISSOVER option so that these values are set to missing.

data weather;
 infile datalines missover;
 input temp1-temp5;
 datalines;
97.9 98.1 98.3
98.6 99.2 99.1 98.5 97.5
96.2 97.3 98.3 97.6 96.5
;

SAS reads the three values on the first data line as the values of TEMP1, TEMP2, and
TEMP3. The MISSOVER option causes SAS to set the values of TEMP4 and TEMP5 to
missing for the first observation because no values for those variables are in the current
input data record.

When you omit the MISSOVER option or use FLOWOVER, SAS moves the input
pointer to line 2 and reads values for TEMP4 and TEMP5. The next time the DATA step
executes, SAS reads a new line which, in this case, is line 3. This message appears in the
SAS log:

NOTE: SAS went to a new line when INPUT statement
 reached past the end of a line.

You can also use the STOPOVER option in the INFILE statement. Using the
STOPOVER option causes the DATA step to halt execution when an INPUT statement
does not find enough values in a record of raw data:

 infile datalines stopover;

Because SAS does not find a TEMP4 value in the first data record, it sets _ERROR_ to
1, stops building the data set, and prints data line 1.

Example 3: Scanning Variable-Length Records for a Specific
Character String
This example shows how to use TRUNCOVER in combination with SCANOVER to
pull phone numbers from a phone book. The phone number is always preceded by the
word “phone:”. Because the phone numbers include international numbers, the
maximum length is 32 characters.

INFILE Statement 189

filename phonebk host-specific-path;
data _null_;
 file phonebk;
 input line $80.;
 put line;
 datalines;
 Jenny's Phone Book
 Jim Johanson phone: 619-555-9340
 Jim wants a scarf for the holidays.
 Jane Jovalley phone: (213) 555-4820
 Jane started growing cabbage in her garden.
 Her dog's name is Juniper.
 J.R. Hauptman phone: (49)12 34-56 78-90
 J.R. is my brother.
 ;
run;

Use @'phone:' to scan the lines of the file for a phone number and position the file
pointer where the phone number begins. Use TRUNCOVER in combination with
SCANOVER to skip the lines that do not contain 'phone:' and write only the phone
numbers to the log.

data _null_;
 infile phonebk truncover scanover;
 input @'phone:' phone $32.;
 put phone=;
run;

The program writes the following lines to the SAS log:

phone=619-555-9340
phone=(213) 555-4820
phone=(49)12 34-56 78-90

Example 4: Reading Files That Contain Variable-Length Records
This example shows how to use LENGTH=, in combination with the $VARYING.
informat, to read a file that contains variable-length records:

data a;
 infile file-specification length=linelen lrecl=510 pad;
 input firstvar 1-10 @; /* assign LINELEN */
 varlen=linelen-10; /* Calculate VARLEN */
 input @11 secondvar $varying500. varlen;
run;

The following occurs in this DATA step:

• The INFILE statement creates the variable LINELEN but does not assign it a value.

• When the first INPUT statement executes, SAS determines the line length of the
record and assigns that value to the variable LINELEN. The single trailing @ holds
the record in the input buffer for the next INPUT statement.

• The assignment statement uses the two known lengths (the length of FIRSTVAR and
the length of the entire record) to determine the length of VARLEN.

• The second INPUT statement uses the VARLEN value with the informat
$VARYING500. to read the variable SECONDVAR.

190 Chapter 2 • Dictionary of SAS Statements

See the “$VARYINGw. Informat” in SAS Formats and Informats: Reference for more
information.

Example 5: Reading from Multiple Input Files
The following DATA step reads from two input files during each iteration of the DATA
step. As SAS switches from one file to the next, each file remains open. The input
pointer remains in place to begin reading from that location the next time an INPUT
statement reads from that file.

data qtrtot(drop=jansale febsale marsale aprsale maysale junsale);
 /* identify location of 1st file */
 infile file-specification-1;
 /* read values from 1st file */
 input name $ jansale febsale marsale;
 qtr1tot=sum(jansale,febsale,marsale);
 /* identify location of 2nd file */
 infile file-specification-2;
 /* read values from 2nd file */
 input @7 aprsale maysale junsale;
 qtr2tot=sum(aprsale,maysale,junsale);
run;

The DATA step terminates when SAS reaches an end of file on the shortest input file.

This DATA step uses FILEVAR= to read from a different file during each iteration of
the DATA step:

data allsales;
 length fileloc myinfile $ 300;
 input fileloc $; /* read instream data */
 /* The INFILE statement closes the current file
 and opens a new one if FILELOC changes value
 when INFILE executes */
 infile file-specification filevar=fileloc
 filename=myinfile end=done;
 /* DONE set to 1 when last input record read */
 do while(not done);
 /* Read all input records from the currently */
 /* opened input file, write to ALLSALES */
 input name $ jansale febsale marsale;
 output;
 end;
 put 'Finished reading ' myinfile=;
 datalines;
external-file-1
external-file-2
external-file-3
;

The FILENAME= option assigns the name of the current input file to the variable
MYINFILE. The LENGTH statement ensures that the FILENAME= variable and
FILEVAR= variable have a length that is long enough to contain the value of the
filename. The PUT statement prints the physical name of the currently open input file to
the SAS log.

INFILE Statement 191

Example 6: Updating an External File
This example shows how to use the INFILE statement with the SHAREBUFFERS
option and the INPUT, FILE, and PUT statements to update an external file in place:

data _null_;
 /* The INFILE and FILE statements */
 /* must specify the same file. */
 infile file-specification-1 sharebuffers;
 file file-specification-1;
 input state $ 1-2 phone $ 5-16;
 /* Replace area code for NC exchanges */
 if state= 'NC' and substr(phone,5,3)='333' then
 phone='910-'||substr(phone,5,8);
 put phone 5-16;
run;

Example 7: Truncating Copied Records
The LENGTH= option is useful when you copy the input file to another file with the
PUT _INFILE_ statement. Use LENGTH= to truncate the copied records. For example,
these statements truncate the last 20 columns from each input data record before the
input data record is written to the output file:

data _null_;
 infile file-specification-1 length=a;
 input;
 a=a-20;
 file file-specification-2;
 put _infile_;
run;

The START= option is also useful when you want to truncate what the PUT _INFILE_
statement copies. For example, if you do not want to copy the first 10 columns of each
record, these statements copy from column 11 to the end of each record in the input
buffer:

data _null_;
 infile file-specification start=s;
 input;
 s=11;
 file file-specification-2;
 put _infile_;
run;

Example 8: Listing the Pointer Location
This DATA step assigns the value of the current pointer location in the input buffer to
the variables LINEPT and COLUMNPT:

data _null_;
 infile datalines n=2 line=Linept col=Columnpt;
 input name $ 1-15 #2 @3 id;
 put linept= columnpt=;
 datalines;
J. Brooks
 40974
T. R. Ansen
 4032
;

192 Chapter 2 • Dictionary of SAS Statements

These statements produce the following line for each execution of the DATA step
because the input pointer is on the second line in the input buffer when the PUT
statement executes:

Linept=2 Columnpt=9
Linept=2 Columnpt=8

Example 9: Working with Data in the Input Buffer
The _INFILE_ variable always contains the most recent record that is read from an
INPUT statement. This example illustrates the use of the _INFILE_ variable to

• read an entire record that you want to parse without using the INPUT statement.

• read an entire record that you want to write to the SAS log.

• modify the contents of the input record before parsing the line with an INPUT
statement.

The example file contains phone bill information. The numeric data, minutes, and charge
are enclosed in angle brackets (< >).

filename phonbill host-specific-filename;
data _null_;
 file phonbill;
 input line $80.;
 put line;
 datalines;
 City Number Minutes Charge
 Jackson 415-555-2384 <25> <2.45>
 Jefferson 813-555-2356 <15> <1.62>
 Joliet 913-555-3223 <65> <10.32>
 ;
run;

The following code reads each record and parses the record to extract the minute and
charge values.

data _null_;
 infile phonbill firstobs=2;
 input;
 city = scan(_infile_, 1, ' ');
 char_min = scan(_infile_, 3, ' ');
 char_min = substr(char_min, 2, length(char_min)-2);
 minutes = input(char_min, BEST12.);
 put city= minutes=;
run;

The program writes the following lines to the SAS log:

city=Jackson minutes=25
city=Jefferson minutes=15
city=Joliet minutes=65

The INPUT statement in the following code reads a record from the file. The automatic
INFILE variable is used in the PUT statement to write the record to the log.

data _null_;
 infile phonbill;
 input;

INFILE Statement 193

 put _infile_;
run;

The program writes the following lines to the SAS log:

City Number Minutes Charge
Jackson 415-555-2384 <25> <2.45>
Jefferson 813-555-2356 <15> <1.62>
Joliet 913-555-3223 <65> <10.32>

In the following code, the first INPUT statement reads and holds the record in the input
buffer. The _INFILE_= option removes the angle brackets (< >) from the numeric data.
The second INPUT statement parses the value in the buffer.

data _null_;
 length city number $16. minutes charge 8;
 infile phonbill firstobs=2;
 input @;
 infile = compress(_infile_, '<>');
 input city number minutes charge;
 put city= number= minutes= charge=;
run;

The program writes the following lines to the SAS log:

city=Jackson number=415-555-2384 minutes=25 charge=2.45
city=Jefferson number=813-555-2356 minutes=15 charge=1.62
city=Joliet number=913-555-3223 minutes=65 charge=10.32

Example 10: Accessing the Input Buffers of Multiple Files
This example uses both the _INFILE_ automatic variable and the _INFILE_= option to
read multiple files and access the input buffers for each of them. The following code
creates four files: three data files and one file that contains the names of all the data files.
The second DATA step reads the filenames file, opens each data file, and writes the
contents to the log. Because the PUT statement needs _INFILE_ for the filenames file
and the data file, one of the _INFILE_ variables is referenced with fname.

data _null_;
 do i = 1 to 3;
 fname= 'external-data-file' || put(i,1.) || '.dat';
 file datfiles filevar=fname;
 do j = 1 to 5;
 put i j;
 end;
 file 'external-filenames-file';
 put fname;
 end;
run;
data _null_;
 infile 'external-filenames-file' _infile_=fname;
 input;
 infile datfiles filevar=fname end=eof;
 do while(^eof);
 input;
 put fname _infile_;
 end;
run;

194 Chapter 2 • Dictionary of SAS Statements

The program writes the following lines to the SAS log:

NOTE: The infile 'external-filenames-file' is:
 File Name=external-filenames-file,
 RECFM=V, LRECL=256
NOTE: The infile DATFILES is:
 File Name=external-data-file1.dat,
 RECFM=V, LRECL=256
external-data-file1.dat 1 1
external-data-file1.dat 1 2
external-data-file1.dat 1 3
external-data-file1.dat 1 4
external-data-file1.dat 1 5
NOTE: The infile DATFILES is
 File Name=external-data-file2.dat,
 RECFM=V, LRECL=256
external-data-file2.dat 2 1
external-data-file2.dat 2 2
external-data-file2.dat 2 3
external-data-file2.dat 2 4
external-data-file2.dat 2 5
NOTE: The infile DATFILES is
 File Name=external-data-file3.dat,
 RECFM=V, LRECL=256
external-data-file3.dat 3 1
external-data-file3.dat 3 2
external-data-file3.dat 3 3
external-data-file3.dat 3 4
external-data-file3.dat 3 5

Example 11: Specifying an Encoding When Reading an External File
This example creates a SAS data set from an external file. The external file's encoding is
in UTF-8, and the current SAS session encoding is Wlatin1. By default, SAS assumes
that the external file is in the same encoding as the session encoding, which causes the
character data to be written to the new SAS data set incorrectly.

To tell SAS what encoding to use when reading the external file, specify the
ENCODING= option. When you tell SAS that the external file is in UTF-8, SAS then
transcodes the external file from UTF-8 to the current session encoding when writing to
the new SAS data set. Therefore, the data is written to the new data set correctly in
Wlatin1.

libname myfiles 'SAS-library';
filename extfile 'external-file';
data myfiles.unicode;
 infile extfile encoding="utf-8";
 input Make $ Model $ Year;
run;

See Also
• “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”

in Chapter 3 of SAS Language Reference: Concepts

Statements:

• “FILENAME Statement” on page 93

• “FILENAME Statement, JMS Access Method” in Application Messaging with SAS

• “INPUT Statement” on page 199

INFILE Statement 195

• “PUT Statement” on page 296

INFORMAT Statement
Associates informats with variables.

Valid in: DATA step or PROC step

Category: Information

Type: Declarative

Syntax
INFORMAT variable-1 <…variable-n> <informat>;

INFORMAT <variable-1> <… variable-n> <DEFAULT=default-informat>;

INFORMAT variable-1 <…variable-n> informat <DEFAULT=default-informat>;

Arguments
variable

specifies one or more variables to associate with an informat. You must specify at
least one variable when specifying an informat or when including no other
arguments. Specifying a variable is optional when using a DEFAULT= informat
specification.
Tip: To disassociate an informat from a variable, use the variable's name in an

INFORMAT statement without specifying an informat. Place the INFORMAT
statement after the SET statement. See “Example 3: Removing an Informat” on
page 199.

informat
specifies the informat for reading the values of the variables that are listed in the
INFORMAT statement.
Tip: If an informat is associated with a variable by using the INFORMAT statement,

and that same informat is not associated with that same variable in the INPUT
statement, then that informat will behave like informats that you specify with a
colon (:) modifier in an INPUT statement. SAS reads the variables by using list
input with an informat. For example, you can use the : modifier with an informat
to read character values that are longer than eight bytes, or numeric values that
contain nonstandard values. For details, see “INPUT Statement, List” on page
221.

See: SAS Formats and Informats: Reference
Example: “Example 2: Specifying Numeric and Character Informats” on page 198

DEFAULT= default-informat
specifies a temporary default informat for reading values of the variables that are
listed in the INFORMAT statement. If no variable is specified, then the DEFAULT=
informat specification applies a temporary default informat for reading values of all
the variables of that type included in the DATA step. Numeric informats are applied
to numeric variables, and character informats are applied to character variables.
These default informats apply only to the current DATA step.

A DEFAULT= informat specification applies to

• variables that are not named in an INFORMAT or ATTRIB statement

196 Chapter 2 • Dictionary of SAS Statements

• variables that are not permanently associated with an informat within a SAS data
set

• variables that are not read with an explicit informat in the current DATA step.

Default: If you omit DEFAULT=, SAS uses w.d as the default numeric informat and
$w. as the default character informat.

Restriction: Use this argument only in a DATA step.
Tip: A DEFAULT= specification can occur anywhere in an INFORMAT statement.

It can specify either a numeric default, a character default, or both.
Example: “Example 1: Specifying Default Informats” on page 198

Details

The Basics
An INFORMAT statement in a DATA step permanently associates an informat with a
variable. You can specify standard SAS informats or user-written informats, previously
defined in PROC FORMAT. A single INFORMAT statement can associate the same
informat with several variables, or it can associate different informats with different
variables. If a variable appears in multiple INFORMAT statements, SAS uses the
informat that is assigned last.

CAUTION:
Because an INFORMAT statement defines the length of previously undefined
character variables, you can truncate the values of character variables in a
DATA step if an INFORMAT statement precedes a SET statement.

How SAS Treats Variables When You Assign Informats with the
INFORMAT Statement
Informats that are associated with variables by using the INFORMAT statement behave
like informats that are used with modified list input. SAS reads the variables by using
the scanning feature of list input, but applies the informat. In modified list input, SAS

• does not use the value of w in an informat to specify column positions or input field
widths in an external file

• uses the value of w in an informat to specify the length of previously undefined
character variables

• ignores the value of w in numeric informats

• uses the value of d in an informat in the same way it usually does for numeric
informats

• treats blanks that are embedded as input data as delimiters unless you change their
status with a DLM= or DLMSTR= option specification in an INFILE statement.

If you have coded the INPUT statement to use another style of input, such as formatted
input or column input, that style of input is not used when you use the INFORMAT
statement.

Comparisons
• Both the ATTRIB and INFORMAT statements can associate informats with

variables, and both statements can change the informat that is associated with a
variable. You can also use the INFORMAT statement in PROC DATASETS to
change or remove the informat that is associated with a variable. The SAS

INFORMAT Statement 197

windowing environment enables you to associate, change, or disassociate informats
and variables in existing SAS data sets.

• SAS changes the descriptor information of the SAS data set that contains the
variable. You can use an INFORMAT statement in some PROC steps, but the rules
are different. For more information, see Chapter 23, “FORMAT Procedure,” in Base
SAS Procedures Guide.

Examples

Example 1: Specifying Default Informats
This example uses an INFORMAT statement to associate a default numeric informat:

data tstinfmt;
 informat default=3.1;
 input x;
 put x;
 datalines;
111
222
333
;

The PUT statement produces these results:

11.1
22.2
33.3

Example 2: Specifying Numeric and Character Informats
This example associates a character informat and a numeric informat with SAS
variables. Although the character variables do not fully occupy 15 column positions, the
INPUT statement reads the data records correctly by using modified list input:

data name;
 informat FirstName LastName $15. n1 6.2 n2 7.3;
 input firstname lastname n1 n2;
 datalines;
Alexander Robinson 35 11
;
proc contents data=name;
run;
proc print data=name;
run;

The following output shows a partial listing from PROC CONTENTS, as well as the
report PROC PRINT generates.

198 Chapter 2 • Dictionary of SAS Statements

Output 2.9 Associating Numeric and Character Informats with SAS Variables

Output 2.10 PROC PRINT Report

Example 3: Removing an Informat
This example disassociates an existing informat. The order of the INFORMAT and SET
statements is important.

data rtest;
 set rtest;
 informat x;
run;

See Also

Statements:

• “ATTRIB Statement” on page 31

• “INPUT Statement” on page 199

• “INPUT Statement, List” on page 221

INPUT Statement
Describes the arrangement of values in the input data record and assigns input values to the
corresponding SAS variables.

Valid in: DATA step

Category: File-handling

Type: Executable

INPUT Statement 199

Syntax
INPUT <specification(s)> <@ | @@>;

Without Arguments
The INPUT statement with no arguments is called a null INPUT statement. The null
INPUT statement

• brings an input data record into the input buffer without creating any SAS variables

• releases an input data record that is held by a trailing @ or a double trailing @.

For an example, see “Example 2: Using a Null INPUT Statement” on page 211.

Arguments
specification(s)

can include

variable
names a variable that is assigned input values.

(variable-list)
specifies a list of variables that are assigned input values.
Requirement: The (variable-list) is followed by an (informat-list).
See: “How to Group Variables and Informats” on page 219

$
specifies to store the variable value as a character value rather than as a numeric
value.
Tip: If the variable is previously defined as character, $ is not required.
Example: “Example 1: Using Multiple Styles of Input in One INPUT

Statement” on page 210

pointer-control
moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 201 and “Line Pointer Controls” on

page 203

column-specifications
specifies the columns of the input record that contain the value to read.
Tip: Informats are ignored. Only standard character and numeric data can be

read correctly with this method.
See: “Column Input” on page 204
Example: “Example 1: Using Multiple Styles of Input in One INPUT

Statement” on page 210

format-modifier
allows modified list input or controls the amount of information that is reported
in the SAS log when an error in an input value occurs.
Tip: Use modified list input to read data that cannot be read with simple list

input.
See: “When to Use List Input” on page 223 and “Format Modifiers for Error

Reporting” on page 203
Example: “Example 6: Positioning the Pointer with a Character Variable” on

page 213

200 Chapter 2 • Dictionary of SAS Statements

informat.
specifies an informat to use to read the variable value.
Tip: You can use modified list input to read data with informats. Modified list

input is useful when the data require informats but cannot be read with
formatted input because the values are not aligned in columns.

See: “Formatted Input” on page 205 and “List Input” on page 205
Example: “Example 2: Using Informat Lists” on page 221

(informat-list)
specifies a list of informats to use to read the values for the preceding list of
variables.
Restriction: The (informat-list) must follow the (variable-list).
See: “How to Group Variables and Informats” on page 219

@
holds an input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.
Tip: The trailing @ prevents the next INPUT statement from automatically releasing

the current input record and reading the next record into the input buffer. It is
useful when you need to read from a record multiple times.

See: “Using Line-Hold Specifiers” on page 207
Example: “Example 3: Holding a Record in the Input Buffer” on page 211

@@
holds the input record for the execution of the next INPUT statement across
iterations of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations, or when a record needs to be reread on the next iteration of the
DATA step.

See: “Using Line-Hold Specifiers” on page 207
Example: “Example 4: Holding a Record across Iterations of the DATA Step” on

page 212

Column Pointer Controls
@n

moves the pointer to column n.
Range: a positive integer
Tip: If n is not an integer, SAS truncates the decimal value and uses only the integer

value. If n is zero or negative, the pointer moves to column 1.
Example: @15 moves the pointer to column 15:

input @15 name $10.;

Example: “Example 7: Moving the Pointer Backward” on page 214

@numeric-variable
moves the pointer to the column given by the value of numeric-variable.
Range: a positive integer
Tip: If numeric-variable is not an integer, SAS truncates the decimal value and only

uses the integer value. If numeric-variable is zero or negative, the pointer moves
to column 1.

Example: The value of the variable A moves the pointer to column 15:

INPUT Statement 201

a=15;
input @a name $10.;

Example: “Example 5: Positioning the Pointer with a Numeric Variable” on page
212

@(expression)
moves the pointer to the column that is given by the value of expression.
Restriction: Expression must result in a positive integer.
Tip: If the value of expression is not an integer, SAS truncates the decimal value and

only uses the integer value. If it is zero or negative, the pointer moves to column
1.

Example: The result of the expression moves the pointer to column 15:
b=5;

input @(b*3) name $10.;

@'character-string'
locates the specified series of characters in the input record and moves the pointer to
the first column after character-string.

@character-variable
locates the series of characters in the input record that is given by the value of
character-variable and moves the pointer to the first column after that series of
characters.
Example: The following statement reads in the WEEKDAY character variable. The

second @1 moves the pointer to the beginning of the input line. The value for
SALES is read from the next non-blank column after the value of WEEKDAY:
input @1 day 1. @5 weekday $10.

 @1 @weekday sales 8.2;

Example: “Example 6: Positioning the Pointer with a Character Variable” on page
213

@(character-expression)
locates the series of characters in the input record that is given by the value of
character-expression and moves the pointer to the first column after the series.
Example: “Example 6: Positioning the Pointer with a Character Variable” on page

213

+n
moves the pointer n columns.
Range: a positive integer or zero
Tip: If n is not an integer, SAS truncates the decimal value and uses only the integer

value. If the value is greater than the length of the input buffer, the pointer moves
to column 1 of the next record.

Example: This statement moves the pointer to column 23, reads a value for
LENGTH from columns 23 through 26, advances the pointer five columns, and
reads a value for WIDTH from columns 32 through 35:
input @23 length 4. +5 width 4.;

Example: “Example 7: Moving the Pointer Backward” on page 214

+numeric-variable
moves the pointer the number of columns that is given by the value of numeric-
variable.
Range: a positive or negative integer or zero
Tip: If numeric-variable is not an integer, SAS truncates the decimal value and uses

only the integer value. If numeric-variable is negative, the pointer moves
backward. If the current column position becomes less than 1, the pointer moves

202 Chapter 2 • Dictionary of SAS Statements

to column 1. If the value is zero, the pointer does not move. If the value is greater
than the length of the input buffer, the pointer moves to column 1 of the next
record.

Example: “Example 7: Moving the Pointer Backward” on page 214

+(expression)
moves the pointer the number of columns given by expression.
Range: expression must result in a positive or negative integer or zero.
Tip: If expression is not an integer, SAS truncates the decimal value and uses only

the integer value. If expression is negative, the pointer moves backward. If the
current column position becomes less than 1, the pointer moves to column 1. If
the value is zero, the pointer does not move. If the value is greater than the length
of the input buffer, the pointer moves to column 1 of the next record.

Line Pointer Controls
#n

moves the pointer to record n.
Range: a positive integer
Interaction: The N= option in the INFILE statement can affect the number of

records the INPUT statement reads and the placement of the input pointer after
each iteration of the DATA step. See the option N= on page 179.

Example: The #2 moves the pointer to the second record to read the value for ID
from columns 3 and 4:
input name $10. #2 id 3-4;

#numeric-variable
moves the pointer to the record that is given by the value of numeric-variable.
Range: a positive integer
Tip: If the value of numeric-variable is not an integer, SAS truncates the decimal

value and uses only the integer value.

#(expression)
moves the pointer to the record that is given by the value of expression.
Range: expression must result in a positive integer.
Tip: If the value of expression is not an integer, SAS truncates the decimal value and

uses only the integer value.

/
advances the pointer to column 1 of the next input record.
Example: The values for NAME and AGE are read from the first input record

before the pointer moves to the second record to read the value of ID from
columns 3 and 4:
input name age / id 3-4;

Format Modifiers for Error Reporting
?

suppresses printing the invalid data note when SAS encounters invalid data values.
See: “How Invalid Data Is Handled” on page 209

??
suppresses printing the messages and the input lines when SAS encounters invalid
data values. The automatic variable _ERROR_ is not set to 1 for the invalid
observation.

INPUT Statement 203

See: “How Invalid Data Is Handled” on page 209

Details

When to Use INPUT
Use the INPUT statement to read raw data from an external file or in-stream data. If your
data are stored in an external file, you can specify the file in an INFILE statement. The
INFILE statement must execute before the INPUT statement that reads the data records.
If your data are in-stream, a DATALINES statement must precede the data lines in the
job stream. If your data contain semicolons, use a DATALINES4 statement before the
data lines. A DATA step that reads raw data can include multiple INPUT statements.

You can also use the INFILE statement to read in-stream data by specifying a filename
of DATALINES in the INFILE statement before the INPUT statement. Using
DATALINES in the INFILE statement enables you to use most of the options available
in the INFILE statement with in-stream data.

To read data that are already stored in a SAS data set, use a SET statement. To read
database or PC file-format data that are created by other software, use the SET statement
after you access the data with the LIBNAME statement. See the SAS/ACCESS
documentation for more information.

z/OS Specifics
LOG files that are generated under z/OS and captured with PROC PRINTTO contain
an ASA control character in column 1. If you are using the INPUT statement to read
a LOG file that was generated under z/OS, you must account for this character if you
use column input or column pointer controls.

Input Styles

Overview of Input Styles
There are four ways to describe a record's values in the INPUT statement:

• column

• list (simple and modified)

• formatted

• named.

Each variable value is read by using one of these input styles. An INPUT statement can
contain any or all of the available input styles, depending on the arrangement of data
values in the input records. However, once named input is used in an INPUT statement,
you cannot use another input style.

Column Input
With column input, the column numbers follow the variable name in the INPUT
statement. These numbers indicate where the variable values are found in the input data
records:

input name $ 1-8 age 11-12;

This INPUT statement can read the following data records:

----+----1----+----2----+
Peterson 21
Morgan 17

Because NAME is a character variable, a $ appears between the variable name and
column numbers. For more information, see “INPUT Statement, Column” on page 214.

204 Chapter 2 • Dictionary of SAS Statements

List Input
With list input, the variable names are simply listed in the INPUT statement. A $ follows
the name of each character variable:

input name $ age;

This INPUT statement can read data values that are separated by blanks or aligned in
columns (with at least one blank between):

----+----1----+----2----+
Peterson 21
Morgan 17

For more information, see “INPUT Statement, List” on page 221.

Formatted Input
With formatted input, an informat follows the variable name in the INPUT statement.
The informat gives the data type and the field width of an input value. Informats also
enable you to read data that are stored in nonstandard form, such as packed decimal, or
numbers that contain special characters such as commas.

input name $char8. +2 income comma6.;

This INPUT statement reads these data records correctly:

----+----1----+----2----+
Peterson 21,000
Morgan 17,132

The pointer control of +2 moves the input pointer to the field that contains the value for
the variable INCOME. For more information, see “INPUT Statement, Formatted” on
page 217.

Named Input
With named input, you specify the name of the variable followed by an equal sign. SAS
looks for a variable name and an equal sign in the input record:

input name= $ age=;

This INPUT statement reads the following data records correctly:

----+----1----+----2----+
name=Peterson age=21
name=Morgan age=17

For more information, see “INPUT Statement, Named” on page 228.

Multiple Styles in a Single INPUT Statement
An INPUT statement can contain any or all of the different input styles:

input idno name $18. team $ 25-30 startwght endwght;

This INPUT statement reads the following data records correctly:

----+----1----+----2----+----3----+----
023 David Shaw red 189 165
049 Amelia Serrano yellow 189 165

The value of IDNO, STARTWGHT, and ENDWGHT are read with list input, the value
of NAME with formatted input, and the value of TEAM with column input.

Note: Once named input is used in an INPUT statement, you cannot change input styles.

INPUT Statement 205

Pointer Controls

Overview of Pointers
As SAS reads values from the input data records into the input buffer, it keeps track of
its position with a pointer. The INPUT statement provides three ways to control the
movement of the pointer:

column pointer controls
reset the pointer's column position when the data values in the data records are read.

line pointer controls
reset the pointer's line position when the data values in the data records are read.

line-hold specifiers
hold an input record in the input buffer so that another INPUT statement can process
it. By default, the INPUT statement releases the previous record and reads another
record.

With column and line pointer controls, you can specify an absolute line number or
column number to move the pointer or you can specify a column or line location relative
to the current pointer position. The following table lists the pointer controls that are
available with the INPUT statement.

Table 2.4 Pointer Controls Available in the INPUT Statement

Pointer Controls Relative Absolute

column pointer controls +n @n

+numeric-variable @numeric-variable

+(expression) @(expression)

@'character-string'

@character-variable

@(character-expression)

line pointer controls / #n

#numeric-variable

#(expression)

line-hold specifiers @ (not applicable)

@@ (not applicable)

Note: Always specify pointer controls before the variable to which they apply.

You can use the COLUMN= and LINE= options in the INFILE statement to determine
the pointer's current column and line location.

Using Column and Line Pointer Controls
Column pointer controls indicate the column in which an input value starts.

206 Chapter 2 • Dictionary of SAS Statements

Use line pointer controls within the INPUT statement to move to the next input record or
to define the number of input records per observation. Line pointer controls specify
which input record to read. To read multiple data records into the input buffer, use the
N= option in the INFILE statement to specify the number of records. If you omit N=,
you need to take special precautions. For more information, see “Reading More than
One Record per Observation” on page 208.

Using Line-Hold Specifiers
Line-hold specifiers keep the pointer on the current input record when

• a data record is read by more than one INPUT statement (trailing @)

• one input line has values for more than one observation (double trailing @)

• a record needs to be reread on the next iteration of the DATA step (double trailing
@).

Use a single trailing @ to allow the next INPUT statement to read from the same record.
Use a double trailing @ to hold a record for the next INPUT statement across iterations
of the DATA step.

Normally, each INPUT statement in a DATA step reads a new data record into the input
buffer. When you use a trailing @, the following occurs:

• The pointer position does not change.

• No new record is read into the input buffer.

• The next INPUT statement for the same iteration of the DATA step continues to read
the same record rather than a new one.

SAS releases a record held by a trailing @ when

• a null INPUT statement executes:

input;

• an INPUT statement without a trailing @ executes

• the next iteration of the DATA step begins.

Normally, when you use a double trailing @ (@@), the INPUT statement for the next
iteration of the DATA step continues to read the same record. SAS releases the record
that is held by a double trailing @

• immediately if the pointer moves past the end of the input record

• immediately if a null INPUT statement executes:

input;

• when the next iteration of the DATA step begins if an INPUT statement with a single
trailing @ executes later in the DATA step:

input @;

Pointer Location After Reading
Understanding the location of the input pointer after a value is read is important,
especially if you combine input styles in a single INPUT statement. With column and
formatted input, the pointer reads the columns that are indicated in the INPUT statement
and stops in the next column. With list input, however, the pointer scans data records to
locate data values and reads a blank to indicate that a value has ended. After reading a
value with list input, the pointer stops in the second column after the value.

For example, you can read these data records with list, column, and formatted input:

INPUT Statement 207

----+----1----+----2----+----3
REGION1 49670
REGION2 97540
REGION3 86342

This INPUT statement uses list input to read the data records:

input region $ jansales;

After reading a value for REGION, the pointer stops in column 9.

----+----1----+----2----+----3
REGION1 49670
 ↑

These INPUT statements use column and formatted input to read the data records:

• column input

input region $ 1-7 jansales 12-16;

• formatted input

input region $7. +4 jansales 5.;
input region $7. @12 jansales 5.;

To read a value for the variable REGION, the INPUT statements instruct the pointer to
read seven columns and stop in column 8.

----+----1----+----2----+----3
REGION1 49670
 ↑

Reading More than One Record per Observation

Using the # Pointer Control
The highest number that follows the # pointer control in the INPUT statement
determines how many input data records are read into the input buffer. Use the N=
option in the INFILE statement to change the number of records. For example, in this
statement, the highest value after the # is 3:

input @31 age 3. #3 id 3-4 #2 @6 name $20.;

Unless you use N= in the associated INFILE statement, the INPUT statement reads three
input records each time the DATA step executes.

When each observation has multiple input records but values from the last record are not
read, you must use a # pointer control in the INPUT statement or N= in the INFILE
statement to specify the last input record. For example, if there are four records per
observation, but only values from the first two input records are read, use this INPUT
statement:

input name $ 1-10 #2 age 13-14 #4;

When you have advanced to the next record with the / pointer control, use the # pointer
control in the INPUT statement or the N= option in the INFILE statement to set the
number of records that are read into the input buffer. To move the pointer back to an
earlier record, use a # pointer control. For example, this statement requires the #2 pointer
control, unless the INFILE statement uses the N= option, to read two records:

input a / b #1 @52 c #2;

The INPUT statement assigns A a value from the first record. The pointer advances to
the next input record to assign B a value. Then the pointer returns from the second

208 Chapter 2 • Dictionary of SAS Statements

record to column 1 of the first record and moves to column 52 to assign C a value. The
#2 pointer control identifies two input records for each observation so that the pointer
can return to the first record for the value of C.

If the number of input records per observation varies, use the N= option in the INFILE
statement to give the maximum number of records per observation. For more
information, see the N= option on page 179.

Reading Past the End of a Line
When you use @ or + pointer controls with a value that moves the pointer to or past the
end of the current record and the next value is to be read from the current column, SAS
goes to column 1 of the next record to read it. It also writes this message to the SAS log:

NOTE: SAS went to a new line when INPUT statement
 reached past the end of a line.

You can alter the default behavior (the FLOWOVER option) in the INFILE statement.

Use the STOPOVER option in the INFILE statement to treat this condition as an error
and to stop building the data set.

Use the MISSOVER option in the INFILE statement to set the remaining INPUT
statement variables to missing values if the pointer reaches the end of a record.

Use the TRUNCOVER option in the INFILE statement to read column input or
formatted input when the last variable that is read by the INPUT statement contains
varying-length data.

Positioning the Pointer before the Record
When a column pointer control tries to move the pointer to a position before the
beginning of the record, the pointer is positioned in column 1. For example, this INPUT
statement specifies that the pointer is located in column −2 after the first value is read:

data test;
 input a @(a-3) b;
 datalines;
 2
;

Therefore, SAS moves the pointer to column 1 after the value of A is read. Both
variables A and B contain the same value.

How Invalid Data Is Handled
When SAS encounters an invalid character in an input value for the variable indicated, it

• sets the value of the variable that is being read to missing or the value that is
specified with the INVALIDDATA= system option. For more information see the
“INVALIDDATA= System Option” in SAS System Options: Reference.

• prints an invalid data note in the SAS log.

• prints the input line and column number that contains the invalid value in the SAS
log. Unprintable characters appear in hexadecimal. To help determine column
numbers, SAS prints a rule line above the input line.

• sets the automatic variable _ERROR_ to 1 for the current observation.

The format modifiers for error reporting control the amount of information that is printed
in the SAS log. Both the ? and ?? modifier suppress the invalid data message. However,
the ?? modifier also resets the automatic variable _ERROR_ to 0. For example, these
two sets of statements are equivalent:

INPUT Statement 209

• input x ?? 10-12;

• input x ? 10-12;
error=0;

In either case, SAS sets invalid values of X to missing values. For information about the
causes of invalid data, see SAS Language Reference: Concepts.

End-of-File
End-of-file occurs when an INPUT statement reaches the end of the data. If a DATA
step tries to read another record after it reaches an end-of-file, then execution stops. If
you want the DATA step to continue to execute, use the END= or EOF= option in the
INFILE statement. Then you can write SAS program statements to detect the end-of-file,
and to stop the execution of the INPUT statement but continue with the DATA step. For
more information, see the “INFILE Statement” on page 171.

Arrays
The INPUT statement can use array references to read input data values. You can use an
array reference in a pointer control if it is enclosed in parentheses. See “Example 6:
Positioning the Pointer with a Character Variable” on page 213.

Use the array subscript asterisk (*) to input all elements of a previously defined explicit
array. SAS allows single or multidimensional arrays. Enclose the subscript in braces,
brackets, or parentheses. The form of this statement is

INPUT array-name{*};

You can use arrays with list, column, or formatted input. However, you cannot input
values to an array that is defined with _TEMPORARY_ and that uses the asterisk
subscript. For example, these statements create variables X1 through X100 and assign
data values to the variables using the 2. informat:

array x{100};
input x{*} 2.;

Comparisons
• The INPUT statement reads raw data in external files or data lines that are entered

in-stream (following the DATALINES statement) that need to be described to SAS.
The SET statement reads a SAS data set, which already contains descriptive
information about the data values.

• The INPUT statement reads data while the PUT statement writes data values, text
strings, or both to the SAS log or to an external file.

• The INPUT statement can read data from external files; the INFILE statement points
to that file and has options that control how that file is read.

Examples

Example 1: Using Multiple Styles of Input in One INPUT Statement
This example uses several input styles in a single INPUT statement:

data club1;
 input Idno Name $18.
 Team $ 25-30 Startwght Endwght;
 datalines;
023 David Shaw red 189 165

210 Chapter 2 • Dictionary of SAS Statements

049 Amelia Serrano yellow 189 165
... more data lines ...
;

Variable Type of Input

Idno, Startwght, Endwght list input

Name formatted input

Team column input

Example 2: Using a Null INPUT Statement
This example uses an INPUT statement with no arguments. The DATA step copies
records from the input file to the output file without creating any SAS variables:

data _null_;
 infile file-specification-1;
 file file-specification-2;
 input;
 put _infile_;
run;

Example 3: Holding a Record in the Input Buffer
This example reads a file that contains two types of input data records and creates a SAS
data set from these records. One type of data record contains information about a
particular college course. The second type of record contains information about the
students enrolled in the course. You need two INPUT statements to read the two records
and to assign the values to different variables that use different formats. Records that
contain class information have a C in column 1; records that contain student information
have an S in column 1, as shown here:

----+----1----+----2----+
C HIST101 Watson
S Williams 0459
S Flores 5423
C MATH202 Sen
S Lee 7085

To know which INPUT statement to use, check each record as it is read. Use an INPUT
statement that reads only the variable that tells whether the record contains class or
student.

data schedule(drop=type);
 retain Course Professor;
 input type $1. @;
 if type='C' then
 input course $ professor $;
 else if type='S' then
 do;
 input Name $10. Id;
 output schedule;
 end;
datalines;
C HIST101 Watson
S Williams 0459

INPUT Statement 211

S Flores 5423
C MATH202 Sen
S Lee 7085
;
run;

proc print;
run;

The first INPUT statement reads the TYPE value from column 1 of every line. Because
this INPUT statement ends with a trailing @, the next INPUT statement in the DATA
step reads the same line. The IF-THEN statements that follow check whether the record
is a class or student line before another INPUT statement reads the rest of the line. The
INPUT statements without a trailing @ release the held line. The RETAIN statement
saves the values about the particular college course. The DATA step writes an
observation to the SCHEDULE data set after a student record is read.

The following output that PROC PRINT generates shows the resulting data set
SCHEDULE.

Output 2.11 Data Set Schedule

Example 4: Holding a Record across Iterations of the DATA Step
This example shows how to create multiple observations for each input data record.
Each record contains several NAME and AGE values. The DATA step reads a NAME
value and an AGE value, outputs an observation, and then reads another set of NAME
and AGE values to output, and so on, until all the input values in the record are
processed.

data test;
 input name $ age @@;
 datalines;
John 13 Monica 12 Sue 15 Stephen 10
Marc 22 Lily 17
;

The INPUT statement uses the double trailing @ to control the input pointer across
iterations of the DATA step. The SAS data set contains six observations.

Example 5: Positioning the Pointer with a Numeric Variable
This example uses a numeric variable to position the pointer. A raw data file contains
records with the employment figures for several offices of a multinational company. The
input data records are

----+----1----+----2----+----3----+
8 New York 1 USA 14

212 Chapter 2 • Dictionary of SAS Statements

5 Cary 1 USA 2274
3 Chicago 1 USA 37
22 Tokyo 5 ASIA 80
5 Vancouver 2 CANADA 6
9 Milano 4 EUROPE 123

The first column has the column position for the office location. The next numeric
column is the region category. The geographic region occurs before the number of
employees in that office.

You determine the office location by combining the @numeric-variable pointer control
with a trailing @. To read the records, use two INPUT statements. The first INPUT
statement obtains the value for the @ numeric-variable pointer control. The second
INPUT statement uses this value to determine the column that the pointer moves to.

data office (drop=x);
 infile file-specification;
 input x @;
 if 1<=x<=10 then
 input @x City $9.;
 else do;
 put 'Invalid input at line ' _n_;
 delete;
 end;
run;

The DATA step writes only five observations to the OFFICE data set. The fourth input
data record is invalid because the value of X is greater than 10. Therefore, the second
INPUT statement does not execute. Instead, the PUT statement writes a message to the
SAS log and the DELETE statement stops processing the observation.

Example 6: Positioning the Pointer with a Character Variable
This example uses character variables to position the pointer. The OFFICE data set,
created in “Example 5: Positioning the Pointer with a Numeric Variable” on page 212,
contains a character variable CITY whose values are the office locations. Suppose you
discover that you need to read additional values from the raw data file. By using another
DATA step, you can combine the @character-variable pointer control with a trailing @
and the @character-expression pointer control to locate the values.

If the observations in OFFICE are still in the order of the original input data records, you
can use this DATA step:

data office2;
 set office;
 infile file-specification;
 array region {5} $ _temporary_
 ('USA' 'CANADA' 'SA' 'EUROPE' 'ASIA');
 input @city Location : 2. @;
 input @(trim(region{location})) Population : 4.;
run;

The ARRAY statement assigns initial values to the temporary array elements. These
elements correspond to the geographic regions of the office locations. The first INPUT
statement uses an @character-variable pointer control. Each record is scanned for the
series of characters in the value of CITY for that observation. Then the value of
LOCATION is read from the next non-blank column. LOCATION is a numeric category
for the geographic region of an office. The second INPUT statement uses an array
reference in the @character-expression pointer control to determine the location
POPULATION in the input records. The expression also uses the TRIM function to trim

INPUT Statement 213

trailing blanks from the character value. This way an exact match is found between the
character string in the input data and the value of the array element.

The following output that PROC PRINT generates shows the resulting data set
OFFICE2.

Output 2.12 Data Set OFFICE2

Example 7: Moving the Pointer Backward
This example shows several ways to move the pointer backward.

• This INPUT statement uses the @ pointer control to read a value for BOOK starting
at column 26. Then the pointer moves back to column 1 on the same line to read a
value for COMPANY:

input @26 book $ @1 company;

• These INPUT statements use +numeric-variable or +(expression) to move the
pointer backward one column. These two sets of statements are equivalent.

• m=-1;
input x 1-10 +m y 2.;

• input x 1-10 +(-1) y 2.;

See Also

Statements:

• “ARRAY Statement” on page 23

• “INPUT Statement, Column” on page 214

• “INPUT Statement, Formatted” on page 217

• “INPUT Statement, List” on page 221

• “INPUT Statement, Named” on page 228

INPUT Statement, Column
Reads input values from specified columns and assigns them to the corresponding SAS variables.

214 Chapter 2 • Dictionary of SAS Statements

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
INPUT variable <$> start-column <- end-column>
<.decimals> <@ | @@> ;

Arguments
variable

specifies a variable that is assigned input values.

$
indicates that the variable has character values rather than numeric values.
Tip: If the variable is previously defined as character, $ is not required.

start-column
specifies the first column of the input record that contains the value to read.

–end-column
specifies the last column of the input record that contains the value to read.
Tip: If the variable value occupies only one column, omit end-column.
Example: Because end-column is omitted, the values for the character variable

GENDER occupy only column 16:
input name $ 1-10 pulse 11-13 waist 14-15 gender $ 16;

.decimals
specifies the number of digits to the right of the decimal if the input value does not
contain an explicit decimal point.
Tip: An explicit decimal point in the input value overrides a decimal specification in

the INPUT statement.
Example: “Example 2: Read Input Data Using Decimals” on page 217

@
holds the input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.
Tip: The trailing @ prevents the next INPUT statement from automatically releasing

the current input record and reading the next record into the input buffer. It is
useful when you need to read from a record multiple times.

See: “Pointer Controls” on page 206

@@
holds the input record for the execution of the next INPUT statement across
iterations of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations.
See: “Using Line-Hold Specifiers” on page 207

INPUT Statement, Column 215

Details

When to Use Column Input
With column input, the column numbers that contain the value follow a variable name in
the INPUT statement. To read with column input, data values must be in

• the same columns in all the input data records

• standard numeric form or character form.1

Useful features of column input are that

• Character values can contain embedded blanks.

• Character values can be from 1 to 32,767 characters long.

• Input values can be read in any order, regardless of their position in the record.

• Values or parts of values can be read multiple times. For example, this INPUT
statement reads an ID value in columns 10 through 15 and then reads a GROUP
value from column 13:

input id 10-15 group 13;

• Both leading and trailing blanks within the field are ignored. Therefore, if numeric
values contain blanks that represent zeros or if you want to retain leading and trailing
blanks in character values, read the value with an informat. See the “INPUT
Statement, Formatted” on page 217.

Missing Values
Missing data do not require a place-holder. The INPUT statement interprets a blank field
as missing and reads other values correctly. If a numeric or character field contains a
single period, the variable value is set to missing.

Reading Data Lines
SAS always pads the data records that follow the DATALINES statement (in-stream
data) to a fixed length in multiples of 80. The CARDIMAGE system option determines
whether to read or to truncate data past the 80th column.

Reading Variable-Length Records
By default, SAS uses the FLOWOVER option to read varying-length data records. If the
record contains fewer values than expected, the INPUT statement reads the values from
the next data record. To read varying-length data, you might need to use the
TRUNCOVER option in the INFILE statement. The TRUNCOVER option is more
efficient than the PAD option, which pads the records to a fixed length. For more
information, see “Reading Past the End of a Line” on page 185.

Examples

Example 1: Read Input Records with Column Input
This DATA step demonstrates how to read input data records with column input:

data scores;
 input name $ 1-18 score1 25-27 score2 30-32
 score3 35-37;

1 See SAS Language Reference: Concepts for the definition of standard and nonstandard data values.

216 Chapter 2 • Dictionary of SAS Statements

 datalines;
Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

Example 2: Read Input Data Using Decimals
This INPUT statement reads the input data for a numeric variable using two decimal
places:

Input Data Statement Results

----+---1

2314 input number 1-5 .2; 23.14

2 .02

400 4.00

-140 -1.40

12.234 12.234*

12.2 12.2*

* The decimal specification in the INPUT statement is overridden by the input data value.

See Also

Statements:

• “INPUT Statement” on page 199

INPUT Statement, Formatted
Reads input values with specified informats and assigns them to the corresponding SAS variables.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
INPUT <pointer-control> variable informat. <@ | @@>;

INPUT<pointer-control> (variable-list) (informat-list)
<@ | @@>;

INPUT <pointer-control> (variable-list) (<n*> informat.)
<@ | @@>;

INPUT Statement, Formatted 217

Arguments
pointer-control

moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 201 and “Line Pointer Controls” on page

203

variable
specifies a variable that is assigned input values.
Requirement: The (variable-list) is followed by an (informat-list).
Example: “Example 1: Formatted Input with Pointer Controls” on page 220

(variable-list)
specifies a list of variables that are assigned input values.
See: “How to Group Variables and Informats” on page 219
Example: “Example 2: Using Informat Lists” on page 221

informat.
specifies a SAS informat to use to read the variable values.
Tip: Decimal points in the actual input values override decimal specifications in a

numeric informat.
See: SAS Informats in SAS Formats and Informats: Reference
Example: “Example 1: Formatted Input with Pointer Controls” on page 220

(informat-list)
specifies a list of informats to use to read the values for the preceding list of
variables

In the INPUT statement, (informat-list) can include

informat.
specifies an informat to use to read the variable values.

pointer-control
specifies one of these pointer controls to use to position a value: @, #, /, or +.

n*
specifies to repeat n times the next informat in an informat list.
Example: This statement uses the 7.2 informat to read GRADES1, GRADES2,

and GRADES3 and the 5.2 informat to read GRADES4 and GRADES5:
input (grades1-grades5)(3*7.2, 2*5.2);

Restriction: The (informat-list) must follow the (variable-list).
See: “How to Group Variables and Informats” on page 219
Example: “Example 2: Using Informat Lists” on page 221

@
holds an input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.
Tip: The trailing @ prevents the next INPUT statement from automatically releasing

the current input record and reading the next record into the input buffer. It is
useful when you need to read from a record multiple times.

See: “Using Line-Hold Specifiers” on page 207

@@
holds an input record for the execution of the next INPUT statement across iterations
of the DATA step. This line-hold specifier is called double trailing @.

218 Chapter 2 • Dictionary of SAS Statements

Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations.
See: “Using Line-Hold Specifiers” on page 207

Details

When to Use Formatted Input
With formatted input, an informat follows a variable name and defines how SAS reads
the values of this variable. An informat gives the data type and the field width of an
input value. Informats also read data that are stored in nonstandard form, such as packed
decimal, or numbers that contain special characters such as commas.1 See “Definition of
Informats” in Chapter 3 of SAS Formats and Informats: Reference for descriptions of
SAS informats.

Simple formatted input requires that the variables be in the same order as their
corresponding values in the input data. You can use pointer controls to read variables in
any order. For more information, see the “INPUT Statement” on page 199.

Missing Values
Generally, SAS represents missing values in formatted input with a single period for a
numeric value and with blanks for a character value. The informat that you use with
formatted input determines how SAS interprets a blank. For example, $CHAR.w reads
the blanks as part of the value, whereas BZ.w converts a blank to zero.

Reading Variable-Length Records
By default, SAS uses the FLOWOVER option to read varying-length data records. If the
record contains fewer values than expected, the INPUT statement reads the values from
the next data record. To read varying-length data. you might need to use the
TRUNCOVER option in the INFILE statement. For more information, see “Reading
Past the End of a Line” on page 185.

How to Group Variables and Informats
When the input values are arranged in a pattern, you can group the informat list. A
grouped informat list consists of two lists:

• the names of the variables to read enclosed in parentheses

• the corresponding informats separated by either blanks or commas and enclosed in
parentheses.

Informat lists can make an INPUT statement shorter because the informat list is recycled
until all variables are read and the numbered variable names can be used in abbreviated
form. Using informat lists avoids listing the individual variables.

For example, if the values for the five variables SCORE1 through SCORE5 are stored as
four columns per value without intervening blanks, this INPUT statement reads the
values:

input (score1-score5) (4. 4. 4. 4. 4.);

However, if you specify more variables than informats, the INPUT statement reuses the
informat list to read the remaining variables. A shorter version of the previous statement
is

1 See SAS Language Reference: Concepts for information about standard and nonstandard data values.

INPUT Statement, Formatted 219

input (score1-score5) (4.);

You can use as many informat lists as necessary in an INPUT statement, but do not nest
the informat lists. After all the values in the variable list are read, the INPUT statement
ignores any directions that remain in the informat list. For an example, see “Example 3:
Including More Informat Specifications than Necessary” on page 221.

The n* modifier in an informat list specifies to repeat the next informat n times. Here is
an example.

input (name score1-score5) ($10. 5*4.);

How to Store Informats
The informats that you specify in the INPUT statement are not stored with the SAS data
set. Informats that you specify with the INFORMAT or ATTRIB statement are
permanently stored. Therefore, you can read a data value with a permanently stored
informat in a later DATA step without having to specify the informat or use PROC
FSEDIT to enter data in the correct format.

Comparisons
When a variable is read with formatted input, the pointer movement is similar to the
pointer movement of column input. The pointer moves the length that the informat
specifies and stops at the next column. To read data with informats that are not aligned
in columns, use modified list input. Using modified list input enables you to take
advantage of the scanning feature in list input. See “When to Use List Input” on page
223.

Examples

Example 1: Formatted Input with Pointer Controls
This INPUT statement uses informats and pointer controls:

data sales;
 infile file-specification;
 input item $10. +5 jan comma5. +5 feb comma5.
 +5 mar comma5.;
run;

It can read these input data records:

----+----1----+----2----+----3----+----4
trucks 1,382 2,789 3,556
vans 1,265 2,543 3,987
sedans 2,391 3,011 3,658

The value for ITEM is read from the first 10 columns in a record. The pointer stops in
column 11. The trailing blanks are discarded and the value of ITEM is written to the
program data vector. Next, the pointer moves five columns to the right before the
INPUT statement uses the COMMA5. informat to read the value of JAN. This informat
uses five as the field width to read numeric values that contain a comma. Once again, the
pointer moves five columns to the right before the INPUT statement uses the COMMA5.
informat to read the values of FEB and MAR.

220 Chapter 2 • Dictionary of SAS Statements

Example 2: Using Informat Lists
This INPUT statement uses the character informat $10. to read the values of the variable
NAME and uses the numeric informat 4. to read the values of the five variables
SCORE1 through SCORE5:

data scores;
 input (name score1-score5) ($10. 5*4.);
 datalines;
Whittaker 121 114 137 156 142
Smythe 111 97 122 143 127
;

Example 3: Including More Informat Specifications than Necessary
This informat list includes more specifications than are necessary when the INPUT
statement executes:

data test;
 input (x y z) (2.,+1);
 datalines;
2 24 36
0 20 30
 ;

The INPUT statement reads the value of X with the 2. informat. Then, the +1 column
pointer control moves the pointer forward one column. Next, the value of Y is read with
the 2. informat. Again, the +1 column pointer moves the pointer forward one column.
Then, the value of Z is read with the 2. informat. For the third iteration, the INPUT
statement ignores the +1 pointer control.

See Also

Statements:

• “INPUT Statement” on page 199

• “INPUT Statement, List” on page 221

INPUT Statement, List
Scans the input data record for input values and assigns them to the corresponding SAS variables.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
INPUT <pointer-control> variable <$> <&> <@ | @@>;

INPUT <pointer-control> variable <: | & | ~>
<informat.> <@ | @@>;

INPUT Statement, List 221

Arguments
pointer-control

moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 201 and “Line Pointer Controls” on page

203
Example: “Example 2: Reading Character Data That Contains Embedded Blanks”

on page 225

variable
specifies a variable that is assigned input values.

$
indicates to store a variable value as a character value rather than as a numeric value.
Tip: If the variable is previously defined as character, $ is not required.
Example: “Example 1: Reading Unaligned Data with Simple List Input” on page

225

&
indicates that a character value can have one or more single embedded blanks. This
format modifier reads the value from the next non-blank column until the pointer
reaches two consecutive blanks, the defined length of the variable, or the end of the
input line, whichever comes first.
Restriction: The & modifier must follow the variable name and $ sign that it

affects.
Tip: If you specify an informat after the & modifier, the terminating condition for

the format modifier remains two blanks.
See: “Modified List Input ” on page 224
Example: “Example 2: Reading Character Data That Contains Embedded Blanks”

on page 225

:
enables you to specify an informat that the INPUT statement uses to read the
variable value. For a character variable, this format modifier reads the value from the
next non-blank column until the pointer reaches the next blank column, the defined
length of the variable, or the end of the data line, whichever comes first. For a
numeric variable, this format modifier reads the value from the next non-blank
column until the pointer reaches the next blank column or the end of the data line,
whichever comes first.
Tips:

If the length of the variable has not been previously defined, then its value is read
and stored with the informat length.
The pointer continues to read until the next blank column is reached. However, if
the field is longer than the formatted length, then the value is truncated to the
length of variable.

See: “Modified List Input ” on page 224
Examples:

“Example 3: Reading Unaligned Data with Informats” on page 226
“Example 5: Reading Delimited Data with Modified List Input” on page 227

~
indicates to treat single quotation marks, double quotation marks, and delimiters in
character values in a special way. This format modifier reads delimiters within
quoted character values as characters instead of as delimiters and retains the
quotation marks when the value is written to a variable.

222 Chapter 2 • Dictionary of SAS Statements

Restriction: You must use the DSD option in an INFILE statement. Otherwise, the
INPUT statement ignores this option.

See: “Modified List Input ” on page 224
Example: “Example 5: Reading Delimited Data with Modified List Input” on page

227

informat.
specifies an informat to use to read the variable values.
Tip: Decimal points in the actual input values always override decimal

specifications in a numeric informat.
See: SAS Informats in SAS Formats and Informats: Reference
Examples:

“Example 3: Reading Unaligned Data with Informats” on page 226
“Example 5: Reading Delimited Data with Modified List Input” on page 227

@
holds an input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.
Tip: The trailing @ prevents the next INPUT statement from automatically releasing

the current input record and reading the next record into the input buffer. It is
useful when you need to read from a record multiple times.

See: “Using Line-Hold Specifiers” on page 207

@@
holds an input record for the execution of the next INPUT statement across iterations
of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations.
See: “Using Line-Hold Specifiers” on page 207

Details

When to Use List Input
List input requires that you specify the variable names in the INPUT statement in the
same order that the fields appear in the input data records. SAS scans the data line to
locate the next value but ignores additional intervening blanks. List input does not
require that the data are located in specific columns. However, you must separate each
value from the next by at least one blank unless the delimiter between values is changed.
By default, the delimiter for data values is one blank space or the end of the input record.
List input will not skip over any data values to read subsequent values, but it can ignore
all values after a given point in the data record. However, pointer controls enable you to
change the order that the data values are read.

There are two types of list input:

• simple list input

• modified list input.

Modified list input makes the INPUT statement more versatile because you can use a
format modifier to overcome several of the restrictions of simple list input. See
“Modified List Input ” on page 224.

INPUT Statement, List 223

Simple List Input
Simple list input places several restrictions on the type of data that the INPUT statement
can read:

• By default, at least one blank must separate the input values. Use the DLM= or
DLMSTR= option or the DSD option in the INFILE statement to specify a delimiter
other than a blank.

• Represent each missing value with a period, not a blank, or two adjacent delimiters.

• Character input values cannot be longer than 8 bytes unless the variable is given a
longer length in an earlier LENGTH, ATTRIB, or INFORMAT statement.

• Character values cannot contain embedded blanks unless you change the delimiter.

• Data must be in standard numeric or character format. 1

Modified List Input
List input is more versatile when you use format modifiers. The format modifiers are as
follows:

Format Modifier Purpose

& reads character values that contain embedded blanks.

: reads data values that need the additional instructions that informats can
provide but that are not aligned in columns.*

~ reads delimiters within quoted character values as characters and retains the
quotation marks.

* Use formatted input and pointer controls to quickly read data values that are aligned in columns.

For example, use the : modifier with an informat to read character values that are longer
than 8 bytes or numeric values that contain nonstandard values.

Because list input interprets a blank as a delimiter, use modified list input to read values
that contain blanks. The & modifier reads character values that contain single embedded
blanks. However, the data values must be separated by two or more blanks. To read
values that contain leading, trailing, or embedded blanks with list input, use the DLM=
or DLMSTR= option in the INFILE statement to specify another character as the
delimiter. See “Example 5: Reading Delimited Data with Modified List Input” on page
227. If your input data use blanks as delimiters and they contain leading, trailing, or
embedded blanks, you might need to use either column input or formatted input. If
quotation marks surround the delimited values, you can use list input with the DSD
option in the INFILE statement.

Comparisons
How Modified List Input and Formatted Input Differ

Modified list input has a scanning feature that can use informats to read data which
are not aligned in columns. Formatted input causes the pointer to move like that of
column input to read a variable value. The pointer moves the length that is specified
in the informat and stops at the next column.

This DATA step uses modified list input to read the first data value and formatted
input to read the second:

1 See SAS Language Reference: Concepts for the information about standard and nonstandard data values.

224 Chapter 2 • Dictionary of SAS Statements

data jansales;
 input item : $10. amount comma5.;
datalines;
trucks 1,382
vans 1,235
sedans 2,391
;

The value of ITEM is read with modified list input. The INPUT statement stops
reading when the pointer finds a blank space. The pointer then moves to the second
column after the end of the field, which is the correct position to read the AMOUNT
value with formatted input.

Formatted input, on the other hand, continues to read the entire width of the field.
This INPUT statement uses formatted input to read both data values:

input item $10. +1 amount comma5.;

To read this data correctly with formatted input, the second data value must occur
after the 10th column of the first value, as shown here:

----+----1----+----2
trucks 1,382
vans 1,235
sedans 2,391

Also, after the value of ITEM is read with formatted input, you must use the pointer
control +1 to move the pointer to the column where the value AMOUNT begins.

When Data Contains Quotation Marks
When you use the DSD option in an INFILE statement, which sets the delimiter to a
comma, the INPUT statement removes quotation marks before a value is written to a
variable. When you also use the tilde (~) modifier in an INPUT statement, the
INPUT statement maintains quotation marks as part of the value.

Examples

Example 1: Reading Unaligned Data with Simple List Input
The INPUT statement in this DATA step uses simple list input to read the input data
records:

data scores;
 input name $ score1 score2 score3 team $;
 datalines;
Joe 11 32 76 red
Mitchel 13 29 82 blue
Susan 14 27 74 green
;

The next INPUT statement reads only the first four fields in the previous data lines,
which demonstrates that you are not required to read all the fields in the record:

input name $ score1 score2 score3;

Example 2: Reading Character Data That Contains Embedded
Blanks
The INPUT statement in this DATA step uses the & format modifier with list input to
read character values that contain embedded blanks.

INPUT Statement, List 225

data list;
 infile file-specification;
 input name $ & score;
run;

It can read these input data records:

----+----1----+----2----+----3----+
Joseph 11 Joergensen red
Mitchel 13 Mc Allister blue
Su Ellen 14 Fischer-Simon green

The & modifier follows the variable that it affects in the INPUT statement. Because this
format modifier follows NAME, at least two blanks must separate the NAME field from
the SCORE field in the input data records.

You can also specify an informat with a format modifier, as shown here:

 input name $ & +3 lastname & $15. team $;

In addition, this INPUT statement reads the same data to demonstrate that you are not
required to read all the values in an input record. The +3 column pointer control moves
the pointer past the score value in order to read the value for LASTNAME and TEAM.

Example 3: Reading Unaligned Data with Informats
This DATA step uses modified list input to read data values with an informat:

data jansales;
 input item : $10. amount;
 datalines;
trucks 1382
vans 1235
sedans 2391
;

The $10. informat allows a character variable of up to ten characters to be read.

Example 4: Reading Comma-Delimited Data with List Input and an
Informat
This DATA step uses the DELIMITER= option in the INFILE statement to read list
input values that are separated by commas instead of blanks. The example uses an
informat to read the date, and a format to write the date.

data scores2;
 length Team $ 14;
 infile datalines delimiter=',';
 input Name $ Score1-Score3 Team $ Final_Date:MMDDYY10.;
 format final_date weekdate17.;
 datalines;
Joe,11,32,76,Red Racers,2/3/2007
Mitchell,13,29,82,Blue Bunnies,4/5/2007
Susan,14,27,74,Green Gazelles,11/13/2007
;
proc print data=scores2;
 var Name Team Score1-Score3 Final_Date;
 title 'Soccer Player Scores';
run;

226 Chapter 2 • Dictionary of SAS Statements

Output 2.13 Output from Comma-Delimited Data

Example 5: Reading Delimited Data with Modified List Input
This DATA step uses the DSD option in an INFILE statement and the tilde (~) format
modifier in an INPUT statement to retain the quotation marks in character data and to
read a character in a string that is enclosed in quotation marks as a character instead of as
a delimiter.

data scores;
 infile datalines dsd;
 input Name : $9. Score1-Score3
 Team ~ $25. Div $;
 datalines;
Joseph,11,32,76,"Red Racers, Washington",AAA
Mitchel,13,29,82,"Blue Bunnies, Richmond",AAA
Sue Ellen,14,27,74,"Green Gazelles, Atlanta",AA
;

proc print; run;

The output that PROC PRINT generates shows the resulting SCORES data set. The
values for TEAM contain the quotation marks.

Output 2.14 SCORES Data Set

See Also

Statements:

• “INFILE Statement” on page 171

• “INPUT Statement” on page 199

• “INPUT Statement, Formatted” on page 217

INPUT Statement, List 227

INPUT Statement, Named
Reads data values that appear after a variable name that is followed by an equal sign and assigns them to
corresponding SAS variables.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
INPUT <pointer-control> variable= <$> <@ | @@>;

INPUT <pointer-control> variable= informat. <@ | @@>;

INPUT variable= <$> start-column <-end-column>
<.decimals> <@ | @@>;

Arguments
pointer-control

moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 201 and “Line Pointer Controls” on page

203

variable=
specifies a variable whose value is read by the INPUT statement. In the input data
record, the field has the form

variable=value

Example: “Example 3: Using Named Input with Another Input Style” on page 230

$
indicates to store a variable value as a character value rather than as a numeric value.
Tip: If the variable is previously defined as character, $ is not required.
Example: “Example 3: Using Named Input with Another Input Style” on page 230

informat.
specifies an informat that indicates the data type of the input values, but not how the
values are read.
Tip: Use the INFORMAT statement to associate an informat with a variable.
See: SAS Informats in SAS Formats and Informats: Reference
Example: “Example 3: Using Named Input with Another Input Style” on page 230

start-column
specifies the column that the INPUT statement uses to begin scanning in the input
data records for the variable. The variable name does not have to begin here.

-end-column
determines the default length of the variable.

.decimals
specifies the number of digits to the right of the decimal if the input value does not
contain an explicit decimal point.

228 Chapter 2 • Dictionary of SAS Statements

Tip: An explicit decimal point in the input value overrides a decimal specification in
the INPUT statement.

@
holds an input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.
Tip: The trailing @ prevents the next INPUT statement from automatically releasing

the current input record and reading the next record into the input buffer. It is
useful when you need to read from a record multiple times.

See: “Using Line-Hold Specifiers” on page 207

@@
holds an input record for the execution of the next INPUT statement across iterations
of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations.
See: “Using Line-Hold Specifiers” on page 207

Details

When to Use Named Input
Named input reads the input data records that contain a variable name followed by an
equal sign and a value for the variable. The INPUT statement reads the input data record
at the current location of the input pointer. If the input data records contain data values at
the start of the record that the INPUT statement cannot read with named input, use
another input style to read them. However, once the INPUT statement starts to read
named input, SAS expects that all the remaining values are in this form. See “Example
3: Using Named Input with Another Input Style” on page 230.

You do not have to specify the variables in the INPUT statement in the same order that
they occur in the data records. Also, you do not have to specify a variable for each field
in the record. However, if you do not specify a variable in the INPUT statement that
another statement uses (for example, ATTRIB, FORMAT, INFORMAT, LENGTH
statement) and it occurs in the input data record, the INPUT statement automatically
reads the value. SAS writes a note to the log that the variable is uninitialized.

When you do not specify a variable for all the named input data values, SAS sets
ERROR to 1 and writes a note to the log. Here is an example.

data list;
 input name=$ age=;
 datalines;
name=John age=34 gender=M
;

The note that SAS writes to the log states that GENDER is not defined and _ERROR_ is
set to 1.

Restrictions
• After you start to read with named input, you cannot switch to another input style or

use pointer controls. All the remaining values in the input data record must be in the
form variable=value. SAS treats the values that are not in named input form as
invalid data.

INPUT Statement, Named 229

• If named input values continue after the end of the current input line, use a slash (/)
at the end of the input line. The slash tells SAS to move the pointer to the next line
and to continue to read with named input. For example,

input name=$ age=;

can read this input data record:

name=John /
 age=34

• If you use named input to read character values that contain embedded blanks, put
two blanks before and after the data value, as you would with list input. See
“Example 4: Reading Character Variables with Embedded Blanks” on page 231.

• You cannot reference an array with an asterisk or an expression subscript.

Examples

Example 1: Using List and Named Input
This DATA step uses list input with named input to read input data records.

data list;
 length name $ 20 gender $ 1;
 informat dob ddmmyy8.;
 input id name= gender= age= dob=;
 datalines;
4798 name=COLIN gender=m age=23 dob=16/02/75
2653 name=MICHELE gender=f age=46 dob=17/02/73
;
proc print data=list; run;

The INPUT statement uses list input to read the ID variable. The remaining variables
NAME, GENDER, AGE, and DOB are read with named input. The LENGTH statement
prevents the INPUT statement from truncating the character values for the variable name
to a length of eight.

Example 2: Using Named Input with Variables in Random Order
Using the same data as in the previous example, this DATA step also uses list input and
named input to read input data records. However, in this example, the order of the values
in the data is different for the two rows, except for the ID value, which must come first.

data list;
 length name $ 20 gender $ 1;
 informat dob ddmmyy8.;
 input id dob= name= age= gender=;
 datalines;
4798 gender=m name=COLIN age=23 dob=16/02/75
2653 name=MICHELE dob=17/02/73 age=46 gender=f
;
proc print data=list; run;

Example 3: Using Named Input with Another Input Style
This DATA step uses list input and named input to read input data records:

data list;
 input id name=$20. gender=$;
 informat dob ddmmyy8.;

230 Chapter 2 • Dictionary of SAS Statements

 datalines;
4798 gender=m name=COLIN age=23 dob=16/02/75
2653 name=MICHELE age=46 gender=f
;
proc print data=list; run;

The INPUT statement uses list input to read the first variable, ID. The remaining
variables NAME, GENDER, and DOB are read with named input. These variables are
not read in order. The $20. informat with NAME= prevents the INPUT statement from
truncating the character value to a length of eight. The INPUT statement reads the
DOB= field because the INFORMAT statement refers to this variable. It skips the AGE=
field altogether. SAS writes notes to the log that DOB is uninitialized, AGE is not
defined, and _ERROR_ is set to 1.

Example 4: Reading Character Variables with Embedded Blanks
This DATA step reads character variables that contain embedded blanks with named
input:

data list2;
 informat header $30. name $15.;
 input header= name=;
 datalines;
header= age=60 AND UP name=PHILIP
;

Two spaces precede and follow the value of the variable HEADER, which is AGE=60
AND UP. The field also contains an equal sign.

See Also

Statements:

• “INPUT Statement” on page 199

KEEP Statement
Specifies the variables to include in output SAS data sets.

Valid in: DATA step

Category: Information

Type: Declarative

Syntax
KEEP variable-list;

Arguments
variable-list

specifies the names of the variables to write to the output data set.
Tip: List the variables in any form that SAS allows.

KEEP Statement 231

Details
The KEEP statement causes a DATA step to write only the variables that you specify to
one or more SAS data sets. The KEEP statement applies to all SAS data sets that are
created within the same DATA step and can appear anywhere in the step. If no KEEP or
DROP statement appears, all data sets that are created in the DATA step contain all
variables.

Note: Do not use both the KEEP and DROP statements within the same DATA step.

Comparisons
• The KEEP statement cannot be used in SAS PROC steps. The KEEP= data set

option can.

• The KEEP statement applies to all output data sets that are named in the DATA
statement. To write different variables to different data sets, you must use the
KEEP= data set option.

• The DROP statement is a parallel statement that specifies variables to omit from the
output data set.

• The KEEP and DROP statements select variables to include in or exclude from
output data sets. The subsetting IF statement selects observations.

• Do not confuse the KEEP statement with the RETAIN statement. The RETAIN
statement causes SAS to hold the value of a variable from one iteration of the DATA
step to the next iteration. The KEEP statement does not affect the value of variables
but only specifies which variables to include in any output data sets.

Examples

Example 1: KEEP Statement Basic Usage
These examples show the correct syntax for listing variables in the KEEP statement:

keep name address city state zip phone;

keep rep1-rep5;

Example 2: Keeping Variables in the Data Set
This example uses the KEEP statement to include only the variables NAME and AVG in
the output data set. The variables SCORE1 through SCORE20, from which AVG is
calculated, are not written to the data set AVERAGE.

data average;
 keep name avg;
 infile file-specification;
 input name $ score1-score20;
 avg=mean(of score1-score20);
run;

See Also

Data Set Options:

• “KEEP= Data Set Option” in SAS Data Set Options: Reference

Statements:

232 Chapter 2 • Dictionary of SAS Statements

• “DROP Statement” on page 71

• “IF Statement, Subsetting” on page 161

• “RETAIN Statement” on page 337

LABEL Statement
Assigns descriptive labels to variables.

Valid in: DATA step

Category: Information

Type: Declarative

Syntax
LABEL variable-1=label-1…<variable-n=label-n>;

LABEL variable-1=' ' …<variable-n=' '>;

Arguments
variable

specifies the variable that you want to label.
Tip: You can specify additional pairs of labels and variables.

label
specifies a label of up to 256 characters, including blanks.
Restrictions:

If the label includes a semicolon (;) or an equal sign (=), you must enclose the
label in either single or double quotation marks.
If the label includes single quotation marks ('), then you must enclose the label in
double quotation marks.

Tips:
You can specify additional pairs of labels and variables.
For more information about including quotation marks as part of the label, see
“Character Constants” in Chapter 6 of SAS Language Reference: Concepts.

' '
removes a label from a variable. Enclose a single blank space in quotation marks to
remove an existing label.

Details
Using a LABEL statement in a DATA step permanently associates labels with variables
by affecting the descriptor information of the SAS data set that contains the variables.
You can associate any number of variables with labels in a single LABEL statement.

You can use a LABEL statement in a PROC step, but the rules are different. See the
Base SAS Procedures Guide for more information.

Comparisons
Both the ATTRIB and LABEL statements can associate labels with variables and change
a label that is associated with a variable.

LABEL Statement 233

Examples

Example 1: Specifying Labels
Here are several LABEL statements:

• label compound=Type of Drug;

• label date="Today's Date";

• label n='Mark''s Experiment Number';

• label score1="Grade on April 1 Test"
 score2="Grade on May 1 Test";

Example 2: Removing a Label
This example removes an existing label:

data rtest;
 set rtest;
 label x=' ';
run;

See Also

Statements:

• “ATTRIB Statement” on page 31

label: Statement
Identifies a statement that is referred to by another statement.

Valid in: DATA step

Category: Control

Type: Declarative

Syntax
label: statement;

Arguments
label

specifies any SAS name, which is followed by a colon (:). You must specify the
label argument.

statement
specifies any executable statement, including a null statement (;). You must specify
the statement argument.
Restrictions:

No two statements in a DATA step can have the same label.
If a statement in a DATA step is labeled, it should be referenced by a statement
or option in the same step.

234 Chapter 2 • Dictionary of SAS Statements

Tip: A null statement can have a label:
ABC:;

Details
The statement label identifies the destination of either a GO TO statement, a LINK
statement, the HEADER= option in a FILE statement, or the EOF= option in an INFILE
statement.

Comparisons
The LABEL statement assigns a descriptive label to a variable. A statement label
identifies a statement or group of statements that are referred to in the same DATA step
by another statement, such as a GO TO statement.

Example: Jumping to Another Statement
In this example, if Stock=0, the GO TO statement causes SAS to jump to the statement
that is labeled reorder. When Stock is not 0, execution continues to the RETURN
statement and then returns to the beginning of the DATA step for the next observation.

data Inventory Order;
 input Item $ Stock @;
 /* go to label reorder: */
 if Stock=0 then go to reorder;
 output Inventory;
 return;
 /* destination of GO TO statement */
 reorder: input Supplier $;
 put 'ORDER ITEM ' Item 'FROM ' Supplier;
 output Order;
 datalines;
milk 0 A
bread 3 B
;

See Also

Statements:

• “GO TO Statement” on page 159

• “LINK Statement” on page 256

Statement Options:

• “HEADER=label” on page 83 option in the FILE statement

• “EOF=label” on page 176 in the INFILE statement

LEAVE Statement
Stops processing the current loop and resumes with the next statement in the sequence.

Valid in: DATA step

LEAVE Statement 235

Category: Control

Type: Executable

Syntax
LEAVE;

Without Arguments
The LEAVE statement stops the processing of the current DO loop or SELECT group
and continues DATA step processing with the next statement following the DO loop or
SELECT group.

Details
You can use the LEAVE statement to exit a DO loop or SELECT group prematurely
based on a condition.

Comparisons
• The LEAVE statement causes processing of the current loop to end. The

CONTINUE statement stops the processing of the current iteration of a loop and
resumes with the next iteration.

• You can use the LEAVE statement in a DO loop or in a SELECT group. You can
use the CONTINUE statement only in a DO loop.

Example: Stop Processing a DO Loop under a Given
Condition
This DATA step demonstrates using the LEAVE statement to stop the processing of a
DO loop under a given condition. In this example, the IF/THEN statement checks the
value of BONUS. When the value of BONUS reaches 500, the maximum amount
allowed, the LEAVE statement stops the processing of the DO loop.

data week;
 input name $ idno start_yr status $ dept $;
 bonus=0;
 do year= start_yr to 1991;
 if bonus ge 500 then leave;
 bonus+50;
 end;
 datalines;
Jones 9011 1990 PT PUB
Thomas 876 1976 PT HR
Barnes 7899 1991 FT TECH
Harrell 1250 1975 FT HR
Richards 1002 1990 FT DEV
Kelly 85 1981 PT PUB
Stone 091 1990 PT MAIT
;

See Also

Statements:

236 Chapter 2 • Dictionary of SAS Statements

• “DO Statement” on page 64

• “SELECT Statement” on page 350

LENGTH Statement
Specifies the number of bytes for storing variables.

Valid in: DATA step

Category: Information

Type: Declarative

See: LENGTH Statement under Windows, UNIX, and z/OS

CAUTION: Avoid shortening numeric variables that contain fractions. The precision of a
numeric variable is closely tied to its length, especially when the variable contains
fractional values. You can safely shorten variables that contain integers according to the
rules that are given in the SAS documentation for your operating environment, but
shortening variables that contain fractions might eliminate important precision.

Syntax
LENGTH variable-specification(s)<DEFAULT=n>;

Arguments
variable-specification

is a required argument and has the form

variable(s)<$>length

variable
specifies one or more variables that are to be assigned a length. This includes any
variables in the DATA step, including those dropped from the output data set.
Restriction: Array references are not allowed.
Tip: If the variable is character, the length applies to the program data vector and

the output data set. If the variable is numeric, the length applies only to the
output data set.

$
specifies that the preceding variables are character variables.
Default: SAS assumes that the variables are numeric.

length
specifies a numeric constant that is the number of bytes used for storing variable
values.
Range: For numeric variables, 2 to 8 or 3 to 8, depending on your operating

environment. For character variables, 1 to 32,767 under all operating
environments.

DEFAULT=n
changes the default number of bytes that SAS uses to store the values of any newly
created numeric variables.
Default: 8
Range: 2 to 8 or 3 to 8, depending on your operating environment.

LENGTH Statement 237

Details
In general, the length of a variable depends on the following:

• whether the variable is numeric or character

• how the variable was created

• whether a LENGTH or ATTRIB statement is present.

Subject to the rules for assigning lengths, lengths that are assigned with the LENGTH
statement can be changed in the ATTRIB statement and vice versa. See Chapter 4, “SAS
Variables,” in SAS Language Reference: Concepts for information about assigning
lengths to variables.

Operating Environment Information
Valid variable lengths depend on your operating environment. For details, see the
SAS documentation for your operating environment.

Comparisons
The ATTRIB statement can assign the length as well as other attributes of variables.

Example
This example uses a LENGTH statement to set the length of the character variable
NAME to 25 bytes. The LENGTH statement also changes the default number of bytes
that SAS uses to store the values of newly created numeric variables from 8 to 4 bytes.
The TRIM function removes trailing blanks from LASTNAME before it is concatenated
with these items:

• a comma (,)

• a blank space

• the value of FIRSTNAME

If you omit the LENGTH statement, SAS sets the length of NAME to 32 bytes.

data testlength;
 informat FirstName LastName $15. n1 6.2;
 input firstname lastname n1 n2;
 length name $25 default=4;
 name=trim(lastname)||', '||firstname;
 datalines;
Alexander Robinson 35 11
;
proc contents data=testlength;
run;
proc print data=testlength;
run;

The following output shows a partial listing from PROC CONTENTS, as well as the
report that PROC PRINT generates.

238 Chapter 2 • Dictionary of SAS Statements

Output 2.15 Partial PROC CONTENTS for TESTLENGTH

Output 2.16 Setting the Length of a Variable

See Also
• For information about the use of the LENGTH statement in PROC steps, see the

Base SAS Procedures Guide.

• “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”
in Chapter 3 of SAS Language Reference: Concepts

Statements:

• “ATTRIB Statement” on page 31

LIBNAME Statement
Associates or disassociates a SAS library with a libref (a shortcut name), clears one or all librefs, lists the
characteristics of a SAS library, concatenates SAS libraries, or concatenates SAS catalogs.

Valid in: Anywhere

Category: Data Access

See: LIBNAME Statement under Windows, UNIX, and z/OS

Syntax
Form 1: LIBNAME libref <engine> 'SAS-library'

<options> <engine/host-options>;

Form 2: LIBNAME libref CLEAR | _ALL_ CLEAR ;

LIBNAME Statement 239

Form 3: LIBNAME libref LIST | _ALL_ LIST;

Form 4: LIBNAME libref <engine> (library-specification-1 <…library-specification-n>)
<options>;

Arguments
libref

is a shortcut name or a “nickname” for the aggregate storage location where your
SAS files are stored. It is any SAS name when you are assigning a new libref. When
you are disassociating a libref from a SAS library or when you are listing attributes,
specify a libref that was previously assigned.
Range: 1 to 8 bytes
Tip: The association between a libref and a SAS library lasts only for the duration of

the SAS session or until you change it or discontinue it with another LIBNAME
statement.

'SAS-library'
must be the physical name for the SAS library. The physical name is the name that is
recognized by the operating environment. Enclose the physical name in single or
double quotation marks.
Operating environment: For details about specifying the physical names of files,

see the SAS documentation for your operating environment.

library-specification
is two or more SAS libraries that are specified by physical names, previously
assigned librefs, or a combination of the two. Separate each specification with either
a blank or a comma and enclose the entire list in parentheses.

'SAS-library'
is the physical name of a SAS library, enclosed in quotation marks.

libref
is the name of a previously assigned libref.

Restriction: When concatenating libraries, you cannot specify options that are
specific to an engine or an operating environment.

See: “Rules for Library Concatenation” on page 248
Example: “Example 2: Logically Concatenating SAS Libraries” on page 249

engine
is an engine name.
Tip: Usually, SAS automatically determines the appropriate engine to use for

accessing the files in the library. If you want to create a new library with an
engine other than the default engine, then you can override the automatic
selection.

See: For a list of valid engines, see the SAS documentation for your operating
environment. For more background information, see Chapter 35, “SAS Engines,”
in SAS Language Reference: Concepts.

CLEAR
disassociates one or more currently assigned librefs.
Tip: Specify libref to disassociate a single libref. Specify _ALL_ to disassociate all

currently assigned librefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned librefs.

240 Chapter 2 • Dictionary of SAS Statements

LIST
writes the attributes of one or more SAS libraries to the SAS log.
Tip: Specify libref to list the attributes of a single SAS library. Specify _ALL_ to

list the attributes of all SAS libraries that have librefs in your current session.

LIBNAME Options
ACCESS=READONLY|TEMP

READONLY
assigns a read-only attribute to an entire SAS library. SAS will not allow you to
open a data set in the library in order to update information or write new
information.

TEMP
specifies that the SAS library be treated as a scratch library. That is, the system
will not consume CPU cycles to ensure that the files in a TEMP library do not
become corrupted.
Tip: Use ACCESS=TEMP to save resources only when the data is recoverable.

Operating environment: Some operating environments support LIBNAME
statement options that have similar functions to the ACCESS= option. See the
SAS documentation for your operating environment.

AUTHADMIN= YES | NO
specifies whether an administrator can access a metadata-bound library for which
corresponding metadata is corrupted, misconfigured, or missing.
Default: NO
Restriction: This LIBNAME option can be used only by administrators of

metadata-bound libraries.
Interactions:

If the administrator specifies AUTHADMIN=YES in a LIBNAME statement and
knows the password (or passwords) for the target data, the administrator can
access that data by explicitly supplying the password (or passwords).
An administrator can choose to specify the AUTHPW= option on the LIBNAME
statement as an additional method for making the metadata-bound library
password available to later requests.

Note: The use of AUTHADMIN=YES is intended for the administrator to correct
misaligned location and metadata information. To ensure that the user who is
issuing the LIBNAME statement has administrator rights to correct the
misalignments, the user must have the same permissions that are needed to run
the AUTHLIB procedure statements and must supply the metadata-bound data
passwords when accessing the data sets.

Tip: The AUTHLIB REPAIR statement is preproduction. It is recommended that
you use AUTHADMIN=YES when performing any AUTHLIB REPAIR action..
As a best practice, do not use AUTHADMIN=YES in any other circumstance.

See:
“AUTHPW=password”
“Metadata-Bound Libraries” on page 249
SAS Guide to Metadata-Bound Libraries
PROC AUTHLIB in Base SAS Procedures Guide

AUTHALTER=alter-password
Specifies an ALTER password to use only in data access requests where both of
these conditions exist:

LIBNAME Statement 241

• AUTHADMIN=YES is specified in the LIBNAME statement that is referenced
in the request.

• The correct password for the target metadata-bound data set or library is not
otherwise available or is invalid.

Requirement: The AUTHADMIN option must be set to YES for this option to have
an effect.

Interaction: You can use the AUTHALTER= option in the same way as the
AUTHPW= option if all three of the passwords (ALTER, READ, and WRITE)
are the same.

See: SAS Guide to Metadata-Bound Libraries

AUTHPW=password
Specifies a password to use only in data access requests where both of these
conditions exist:

• AUTHADMIN=YES is specified in the LIBNAME statement that is referenced
in the request or is invalid.

• The correct password for the target metadata-bound library is not otherwise
available.

Requirement: The AUTHADMIN option must be set to YES for this option to have
an effect. However, the use of AUTHAMDIN=YES does not require that you use
AUTHPW. You are not required to specify metadata-bound library passwords in
a LIBNAME statement.

Interactions:
If the metadata-bound library has two or three distinct passwords, you must
specify each individual password with the AUTHALTER=, AUTHREAD=, and
AUTHWRITE= options as appropriate instead of using the AUTHPW= option
on its own.
You can use the AUTHALTER= option in the same way as the AUTHPW=
option if all three of the passwords (ALTER, READ, and WRITE) are the same
and you are in a SAS language context where ALTER= can be used.

Tip: An error occurs if the AUTHPW password does not match the password that is
within the referenced secured library object.

See: SAS Guide to Metadata-Bound Libraries

AUTHREAD=read-password
Specifies a READ password to use only in data access requests where both of these
conditions exist:

• AUTHADMIN=YES is specified in the LIBNAME statement that is referenced
in the request.

• The correct password for the target metadata-bound library is not otherwise
available or is invalid.

Requirement: The AUTHADMIN option must be set to YES for this option to have
an effect.

See: SAS Guide to Metadata-Bound Libraries

AUTHWRITE=write-password
Assigns a WRITE password to a metadata-bound library that prevents users from
writing to a library, unless they enter the password.
Requirement: The AUTHADMIN option must be set to YES for this option to have

an effect.
See: SAS Guide to Metadata-Bound Libraries

242 Chapter 2 • Dictionary of SAS Statements

COMPRESS=NO | YES | CHAR | BINARY
controls the compression of observations in output SAS data sets for a SAS library.

NO
specifies that the observations in a newly created SAS data set be uncompressed
(fixed-length records).

YES | CHAR
specifies that the observations in a newly created SAS data set be compressed
(variable-length records) by SAS using RLE (Run Length Encoding). RLE
compresses observations by reducing repeated consecutive characters (including
blanks) to two-byte or three-byte representations.
Tip: Use this compression algorithm for character data.

BINARY
specifies that the observations in a newly created SAS data set be compressed
(variable-length records) by SAS using RDC (Ross Data Compression). RDC
combines run-length encoding and sliding-window compression to compress the
file.
Tip: This method is highly effective for compressing medium to large (several

hundred bytes or larger) blocks of binary data (numeric variables). Because
the compression function operates on a single record at a time, the record
length needs to be several hundred bytes or larger for effective compression.

Interaction: For the COPY procedure, the default value CLONE uses the
compression attribute from the input data set for the output data set instead of the
value specified in the COMPRESS= option. For more information about CLONE
and NOCLONE, see the COPY Statement in the DATASETS procedure. This
interaction does not apply when using SAS/SHARE or SAS/CONNECT.

CVPBYTES=bytes
specifies the number of bytes to expand character variable lengths when processing a
SAS data file that requires transcoding.
See: Chapter 35, “SAS Engines,” in SAS Language Reference: Concepts

CVPENGINE|CVPENG=engine
specifies the engine to use in order to process a SAS data file that requires
transcoding.
See: Chapter 35, “SAS Engines,” in SAS Language Reference: Concepts

CVPMULTIPLIER|CVPMULT=multiplier
specifies a multiplier value in order to expand character variable lengths when
processing a SAS data file that requires transcoding.
See: Chapter 35, “SAS Engines,” in SAS Language Reference: Concepts

EXTENDOBSCOUNTER=NO | YES
specifies whether to extend the maximum observation count in output SAS data files
for a SAS library.

NO
specifies that the maximum observation count in a newly created SAS data file is
determined by the long integer size for the operating environment. In operating
environments with a 32-bit-long integer, the maximum number is 231–1 or
approximately two billion observations (2,147,483,647). In operating
environments with a 64-bit-long integer, the number is 263–1 or approximately
9.2 quintillion observations.

YES
requests an enhanced file format in newly created SAS data files that counts
observations beyond the 32-bit-long limitation. For a SAS data file that is created

LIBNAME Statement 243

for an operating environment that stores the number of observations with a 32-
bit-long integer, the file behaves like a 64-bit file with respect to counters.
Restrictions:

A SAS data file that is created with EXTENDOBSCOUNTER=YES is
incompatible with releases prior to SAS 9.3.
Use with the BASE engine only.
Specify EXTENDOBSCOUNTER=YES only for an output SAS data file
whose internal data representation stores the observation count as a 32-bit-
long integer. For a table that lists the operating environments and OUTREP=
values that are appropriate with EXTENDOBSCOUNTER=YES, see “When
to Use the EXTENDOBSCOUNTER=YES Option” in Chapter 26 of SAS
Language Reference: Concepts.
The extended observation count attribute cannot be inherited by a new file. If
you want to create a file with an extended observation count from a file that
contains the extended observation count attribute, you must specify the
EXTENDOBSCOUNTER= option for the new file. For more information,
see “Extended Observation Count Behavior Considerations” in Chapter 26 of
SAS Language Reference: Concepts.

Tip: Specifying the EXTENDOBSCOUNTER= option in a LIBNAME
statement is also useful to migrate a library with the MIGRATE procedure,
which does not support SAS data set options.

See: “Extending the Observation Count in a SAS Data File” in Chapter 26 of
SAS Language Reference: Concepts

Alias: EOC=
Default: NO

INENCODING=ANY | ASCIIANY | EBCDICANY | encoding-value
overrides the encoding when you are reading (input processing) SAS data sets in the
SAS library.
See: “INENCODING= and OUTENCODING= Options” in SAS National

Language Support (NLS): Reference Guide

OUTENCODING=
OUTENCODING=ANY | ASCIIANY | EBCDICANY | encoding-value

overrides the encoding when you are creating (output processing) SAS data sets in
the SAS library.
See: “INENCODING= and OUTENCODING= Options” in SAS National

Language Support (NLS): Reference Guide

OUTREP=format
specifies the data representation for the SAS library, which is the form in which data
is stored in a particular operating environment. Different operating environments use
different standards or conventions for storing floating-point numbers (for example,
IEEE or IBM mainframe); for character encoding (for example, ASCII or EBCDIC);
for the ordering of bytes in memory (for example, big Endian or little Endian); for
word alignment (for example, 4-byte boundaries or 8-byte boundaries); for integer
data-type length (for example, 16-bit, 32-bit, or 64-bit); and for doubles (for
example, byte-swapped or not).

By default, SAS creates a new SAS data set by using the data representation of the
CPU that is running SAS. Specifying the OUTREP= option enables you to create a
SAS data set with a different data representation. For example, in a UNIX
environment, you can create a SAS data set that uses a Windows data representation.
For more information about compatibility and data representation, see Chapter 32,

244 Chapter 2 • Dictionary of SAS Statements

“Processing Data Using Cross-Environment Data Access (CEDA),” in SAS
Language Reference: Concepts.

Table 2.5 Data Representation Values for OUTREP= Option

OUTREP= Value Alias* Environment

ALPHA_TRU64 ALPHA_OSF Tru64 UNIX

ALPHA_VMS_32 ALPHA_VMS OpenVMS Alpha

ALPHA_VMS_64 OpenVMS Alpha

HP_IA64 HP_ITANIUM HP-UX for the Itanium Processor
Family Architecture

HP_UX_32 HP_UX HP-UX for PA-RISC

HP_UX_64 HP-UX for PA-RISC, 64-bit

INTEL_ABI ABI for Intel architecture

LINUX_32 LINUX Linux for Intel architecture

LINUX_IA64 Linux for Itanium-based systems

LINUX_X86_64 Linux for x64

MIPS_ABI MIPS ABI

MVS_32 MVS 31-bit SAS on z/OS

MVS_64_BFP 64-bit SAS on z/OS

OS2 OS/2 for Intel

RS_6000_AIX_32 RS_6000_AIX AIX

RS_6000_AIX_64 AIX

SOLARIS_32 SOLARIS Solaris for SPARC

SOLARIS_64 Solaris for SPARC

SOLARIS_X86_64 Solaris for x64

VAX_VMS OpenVMS VAX

VMS_IA64 OpenVMS on HP Integrity

WINDOWS_32 WINDOWS 32-bit SAS on Microsoft Windows

LIBNAME Statement 245

OUTREP= Value Alias* Environment

WINDOWS_64 64-bit SAS on Microsoft Windows
(for both Itanium-based systems and
x64)

* It is recommended that you use the current values. The aliases are available for compatibility only.

Interactions:
By default, PROC COPY uses the data representation of the file from the source
library. If, instead, you want to use the data representation of the current SAS
session, specify the NOCLONE option. If you want to use a different data
representation, specify the NOCLONE option and the OUTREP= option. When
you use PROC COPY with SAS/SHARE or SAS/CONNECT, the default
behavior is to use the data representation of the current SAS session. For more
information about CLONE and NOCLONE, see the COPY Statement in the Base
SAS Procedures Guide.
The COPY procedure (with NOCLONE) and the MIGRATE procedure can use
the LIBNAME option OUTREP= for DATA, VIEW, ACCESS, MDDB, and
DMDB member types. Otherwise, only DATA member types are affected by the
OUTREP= LIBNAME option.
Transcoding could result in character data loss when encodings are incompatible.
For more information, see the SAS National Language Support (NLS): Reference
Guide.

REPEMPTY=YES|NO
controls replacement of like-named temporary or permanent SAS data sets when the
new one is empty.

YES
specifies that a new empty data set with a given name replace an existing data set
with the same name. This is the default.
Interaction: If REPEMPTY=YES and REPLACE=NO, then the data set is not

replaced.

NO
specifies that a new empty data set with a given name not replace an existing data
set with the same name.
Tips:

Use REPEMPTY=NO to prevent the following syntax error from replacing
the existing data set MYLIB.B with the new empty data set MYLIB.B that is
created by mistake:

libname libref SAS-library REPEMPTY=NO;
data mylib.a set mylib.b;

For both the convenience of replacing existing data sets with new ones that
contain data and the protection of not overwriting existing data sets with new
empty ones that are created by mistake, set REPLACE=YES and
REPEMPTY=NO.

Note: For an individual data set, the REPEMPTY= data set option overrides the
setting of the REPEMPTY= option in the LIBNAME statement.

See: “REPEMPTY= Data Set Option” in SAS Data Set Options: Reference

246 Chapter 2 • Dictionary of SAS Statements

Engine Host Options
engine-host-options

are one or more options that are listed in the general form keyword=value.
Restriction: When concatenating libraries, you cannot specify options that are

specific to an engine or an operating environment.
Operating environment: For a list of valid specifications, see the SAS

documentation for your operating environment.

Details

Associating a Libref with a SAS Library (Form 1)
The association between a libref and a SAS library lasts only for the duration of the SAS
session or until you change the libref or discontinue it with another LIBNAME
statement. The simplest form of the LIBNAME statement specifies only a libref and the
physical name of a SAS library:

LIBNAME libref 'SAS-library';

See “Example 1: Assigning and Using a Libref” on page 249.

An engine specification is usually not necessary. If the situation is ambiguous, SAS uses
the setting of the ENGINE= system option to determine the default engine. If all data
sets in the library are associated with a single engine, then SAS uses that engine as the
default. In either situation, you can override the default by specifying another engine
with the ENGINE= system option:

LIBNAME libref engine 'SAS-library'
<options> <engine/host-options>;

Operating Environment Information
Using the LIBNAME statement requires host-specific information. See the SAS
documentation for your operating environment before using this statement.

Disassociating a Libref from a SAS Library (Form 2)
To disassociate a libref from a SAS library, use a LIBNAME statement by specifying the
libref and the CLEAR option. You can clear a single, specified libref or all current
librefs.

LIBNAME libref CLEAR | _ALL_ CLEAR;

Writing SAS Library Attributes to the SAS Log (Form 3)
Use a LIBNAME statement to write the attributes of one or more SAS libraries to the
SAS log. Specify libref to list the attributes of one SAS library; use _ALL_ to list the
attributes of all SAS libraries that have been assigned librefs in your current SAS
session.

LIBNAME libref LIST | _ALL_ LIST;

Concatenating SAS Libraries (Form 4)
When you logically concatenate two or more SAS libraries, you can reference them all
with one libref. You can specify a library with its physical filename or its previously
assigned libref.

LIBNAME libref <engine> (library–specification–1 <…library-specification-n>)
<options>;

LIBNAME Statement 247

In the same LIBNAME statement, you can use any combination of specifications:
librefs, physical filenames, or a combination of librefs and physical filenames. See
“Example 2: Logically Concatenating SAS Libraries” on page 249.

Concatenating SAS Catalogs (Form 4)
When you logically concatenate two or more SAS libraries, you also concatenate the
SAS catalogs that have the same name. For example, if three SAS libraries each contain
a catalog named CATALOG1, then when you concatenate them, you create a catalog
concatenation for the catalogs that have the same name. See “Example 3: Concatenating
SAS Catalogs” on page 250.

LIBNAME libref <engine> (library–specification–1 <...library-specification-n>)
<options>;

Rules for Library Concatenation
After you create a library concatenation, you can specify the libref in any context that
accepts a simple (non-concatenated) libref. These rules determine how SAS files (that is,
members of SAS libraries) are located among the concatenated libraries:

• When a SAS file is opened for input or update, the concatenated libraries are
searched and the first occurrence of the specified file is used.

• When a SAS file is opened for output, it is created in the first library that is listed in
the concatenation.

Note: A new SAS file is created in the first library even if there is a file with the
same name in another part of the concatenation.

• When you delete or rename a SAS file, only the first occurrence of the file is
affected.

• Anytime a list of SAS files is displayed, only one occurrence of a filename is shown.

Note: Even if the name occurs multiple times in the concatenation, only the first
occurrence is shown.

• A SAS file that is logically connected to another file (such as an index to a data set)
is listed only if the parent file resides in that same library. For example, if library
ONE contains A.DATA, and library TWO contains A.DATA and A.INDEX, only
A.DATA from library ONE is listed. (See the previous rule.)

• If any library in the concatenation is sequential, then all of the libraries are treated as
sequential.

• The attributes of the first library that is specified determine the attributes of the
concatenation. For example, if the first SAS library that is listed is “read only,” then
the entire concatenated library is “read only.”

• If you specify any options or engines, they apply only to the libraries that you
specified with the complete physical name, not to any library that you specified with
a libref.

• If you alter a libref after it has been assigned in a concatenation, it will not affect the
concatenation.

Automatically Creating the Library Directory
You can set the DLCREATEDIR system option to create the directory for the SAS
library that is specified in the LIBNAME statement if that directory does not exist. For
more information, see the “DLCREATEDIR System Option” in SAS System Options:
Reference.

248 Chapter 2 • Dictionary of SAS Statements

z/OS Specifics
For more information, see the “DLCREATEDIR System Option: z/OS” in SAS
Companion for z/OS.

Metadata-Bound Libraries
In the second maintenance release of SAS 9.3, the Base SAS LIBNAME engine can
enforce permissions on a user and group basis to SAS data sets that are bound to secured
table objects in the metadata server. Metadata-bound libraries provide enhanced
protection for Base SAS data (SAS data sets and SAS views). A connection to the
metadata server is required in order to access metadata-bound data.

For more information, see the SAS Guide to Metadata-Bound Libraries and the
AUTHLIB procedure in Base SAS Procedures Guide.

If you have questions or need assistance accessing your data, contact your local SAS
Administrator.

Comparisons
• Use the LIBNAME statement to reference a SAS library. Use the FILENAME

statement to reference an external file. Use the LIBNAME, SAS/ACCESS statement
to access DBMS tables.

• Use the CATNAME statement to concatenate SAS catalogs. Use the LIBNAME
statement to concatenate SAS catalogs. The CATNAME statement enables you to
specify the names of the catalogs that you want to concatenate. The LIBNAME
statement concatenates all like-named catalogs in the specified SAS libraries.

Examples

Example 1: Assigning and Using a Libref
This example assigns the libref SALES to an aggregate storage location that is specified
in quotation marks as a physical filename. The DATA step creates SALES.QUARTER1
and stores it in that location. The PROC PRINT step references it by its two-level name,
SALES.QUARTER1.

libname sales 'SAS-library';
data sales.quarter1;
infile 'your-input-file';
input salesrep $20. +6 jansales febsales
 marsales;
run;
proc print data=sales.quarter1;
run;

Example 2: Logically Concatenating SAS Libraries
• This example concatenates three SAS libraries by specifying the physical filename of

each:

libname allmine ('file-1' 'file-2' 'file-3');

• This example assigns librefs to two SAS libraries, one that contains SAS 6 files and
one that contains SAS 9 files. This technique is useful for updating your files and
applications from SAS 6 to SAS 9 and enables you to have convenient access to both
sets of files:

LIBNAME Statement 249

libname v6 'v6–SAS-library';
libname v9 'v9–SAS-library';
libname allmine (v9 v6);

• This example shows that you can specify both librefs and physical filenames in the
same concatenation specification:

libname allmine (v9 v6 'some-filename');

Example 3: Concatenating SAS Catalogs
This example concatenates three SAS libraries by specifying the physical filename of
each and assigns the libref ALLMINE to the concatenated libraries:

libname allmine ('file-1' 'file-2' 'file-3');

If each library contains a SAS catalog named MYCAT, then using ALLMINE.MYCAT
as a libref.catref provides access to the catalog entries that are stored in all three catalogs
named MYCAT. To logically concatenate SAS catalogs with different names, see the
“CATNAME Statement” on page 41.

Example 4: Permanently Storing Data Sets with One-Level Names
If you want the convenience of specifying only a one-level name for permanent, not
temporary, SAS files, then use the USER= system option. This example stores the data
set QUARTER1 permanently without using a LIBNAME statement first to assign a
libref to a storage location:

options user='SAS-library';
data quarter1;
infile 'your-input-file';
input salesrep $20. +6 jansales febsales
 marsales;
run;
proc print data=quarter1;
run;

See Also
• “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”

in Chapter 3 of SAS Language Reference: Concepts

Data Set Options:

• “ENCODING= Data Set Option” in SAS National Language Support (NLS):
Reference Guide

Statements:

• “CATNAME Statement” on page 41 for a discussion of concatenating SAS catalogs

• “FILENAME Statement” on page 93

• LIBNAME option character variable attributes used to transcode SAS files

• “LIBNAME Statement, SASEDOC” in SAS Output Delivery System: User's Guide

• LIBNAME Statement for SAS metadata

• LIBNAME Statement for Scalable Performance Data (SPD)

250 Chapter 2 • Dictionary of SAS Statements

• LIBNAME statement for XML documents

• LIBNAME Statement for SAS/ACCESS

• LIBNAME Statement for SAS/CONNECT

• “LIBNAME Statement, SASESOCK Engine” in SAS/CONNECT User's Guide

• LIBNAME Statement for SAS/SHARE

System Options:

• “DLCREATEDIR System Option” in SAS System Options: Reference

• “USER= System Option” in SAS System Options: Reference

LIBNAME Statement for the JMP Engine
Associates a libref with a JMP data table and enables you to read and write JMP data tables.

Valid in: Anywhere

Category: Data Access

See: Base SAS LIBNAME Statement

Syntax
LIBNAME libref JMP ‘path’ <FMTLIB=libref.format-catalog>;

Arguments
libref

is a character constant, variable, or expression that specifies the libref that is assigned
to a SAS library.
Range: 1 to 8 bytes

path
is the physical name for the SAS library. The physical name is the name that is
recognized by the operating environment. Enclose the physical name in single or
double quotation marks.

FMTLIB=libref.format-catalog
specifies where the formats are stored when a JMP data table is read and where the
formats come from when a JMP data table is created.
Requirement: The library that is specified in the FMTLIB argument must be a SAS

data set LIBNAME statement.
Example:

libname inv jmp "." fmtlib=seform.formats;
libname seform '.';
 data work.mine;
 set inv.suri2011;
run;

LIBNAME Statement for the JMP Engine 251

Details
A JMP file is a file format that the JMP software program creates. JMP is an interactive
statistics package that is available for Microsoft Windows and Macintosh. For more
information, see the JMP documentation that is packaged with your system.

A JMP file contains data that is organized in a tabular format of fields and records. Each
field can contain one type of data, and each record can hold one data value for each field.

Base SAS supports access to JMP files. You can access JMP files by either of these two
methods:

• the IMPORT and EXPORT procedures and the Import and Export Wizard without a
license for SAS/ACCESS Interface to PC Files

For more information, see SAS/ACCESS Interface to PC Files: Reference.

• the LIBNAME statement for the JMP engine

Examples

Example 1: Using the LIBNAME Statement to Read a JMP Data
Table
This example reads and prints five observations from the bank JMP data table.

libname b jmp 'c:/temp/national';
proc contents data=b.bank(drop=edlevel id age);
run;
proc print data=b.bank(obs=5 drop=edlevel id age);
run;

Example 2: Reading and Sorting a JMP Data Table
This example reads a JMP data table, sorts it, and stores it in a SAS data set. The formats
stored on the JMP data set are put in a.formats.

libname a 'c:/temp/field';
libname b jmp '.' fmtlib=a.formats;

proc sort data=b.cars out=a.sorted;
 by category_ic;
run;

LIBNAME Statement for WebDAV Server Access
Associates a libref with a SAS library and enables access to a WebDAV (Web-based Distributed Authoring
And Versioning) server.

Valid in: Anywhere

Category: Data Access

Restriction: Access to WebDAV servers is not supported on OpenVMS or z/OS.

252 Chapter 2 • Dictionary of SAS Statements

Syntax
LIBNAME libref <engine> 'SAS-library' <options> WEBDAV USER="user-ID"
PASSWORD="user-password" WEBDAV options;

LIBNAME libref CLEAR | _ALL_ CLEAR ;

LIBNAME libref LIST | _ALL_ LIST ;

Arguments
libref

specifies a shortcut name for the aggregate storage location where your SAS files are
stored.
Tip: The association between a libref and a SAS library lasts only for the duration of

the SAS session or until you change it or discontinue it with another LIBNAME
statement.

'SAS-library'
specifies the URL location (path) on a WebDAV server. The URL specifies either
HTTP or HTTPS communication protocols.
Restriction: Only one data library is supported when using the WebDAV extension

to the LIBNAME statement.
Requirement: When using the HTTPS communication protocol, you must use the

SSL (Secure Sockets Layer) protocol that provides secure network
communications. For more information, see Encryption in SAS.

engine
specifies the name of a valid SAS engine.
Restriction: REMOTE engines are not supported with the WebDAV options.
See: For a list of valid engines, see the SAS documentation for your operating

environment.

CLEAR
disassociates one or more currently assigned librefs. When a libref using a WebDAV
server is cleared, the cached files stored locally are deleted also.
Tip: Specify libref to disassociate a single libref. Specify _ALL_ to disassociate all

currently assigned librefs.

LIST
writes the attributes of one or more SAS libraries to the SAS log.
Tip: Specify libref to list the attributes of a single SAS library. Specify _ALL_ to

list the attributes of all SAS libraries that have librefs in your current session.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned librefs.

LIBNAME Options
For valid LIBNAME statement options, see the “LIBNAME Statement” on page 239.

WebDAV Specific Options
WEBDAV

specifies that the libref access a WebDAV server.

USER="user-ID"
specifies the user name for access to the WebDAV server. The user ID is case
sensitive and it must be enclosed in single or double quotation marks.

LIBNAME Statement for WebDAV Server Access 253

Alias: UID
Tip: If PROMPT is specified, but USER= is not, then the user is prompted for an ID

as well as a password.

PASSWORD="user-password"
specifies a password for the user to access the WebDAV server. The password is
case sensitive and it must be enclosed in single or double quotation marks.
Alias: PWD=, PW=, PASS=
Tip: You can specify the PROMPT option instead of the PASSWORD= option.

PROMPT
specifies to prompt for the user login password, if necessary.
Interaction: If PROMPT is specified without USER=, then the user is prompted for

an ID, as well as a password.
Tip: If you specify the PROMPT option, you do not need to specify the

PASSWORD= option.

AUTHDOMAIN="auth-domain"
specifies the name of an authentication domain metadata object in order to connect to
the WebDAV server. The authentication domain references credentials (user ID and
password) without your having to explicitly specify the credentials. The auth-domain
name is case sensitive, and it must be enclosed in double quotation marks.

An administrator creates authentication domain definitions while creating a user
definition with the User Manager in SAS Management Console. The authentication
domain is associated with one or more login metadata objects that provide access to
the WebDAV server and is resolved by the BASE engine calling the SAS Metadata
Server and returning the authentication credentials.
Requirement: The authentication domain and the associated login definition must

be stored in a metadata repository, and the metadata server must be running in
order to resolve the metadata object specification.

Interaction: If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASSWORD=.

See: For complete information about creating and using authentication domains, see
the discussion on credential management in the SAS Intelligence Platform:
Security Administration Guide.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of these
forms:

• "http://hostname"

• "http://hostname:port"

LOCALCACHE="directory name"
specifies a directory where a temporary subdirectory is created to hold local copies
of the server files. Each libref has its own unique subdirectory. If a directory is not
specified, then the subdirectories are created in the SAS WORK directory. SAS
deletes the temporary files when the SAS program completes.
Default: SAS WORK directory

LOCKDURATION=n
specifies the number of minutes that the files written through the WebDAV libref are
locked. SAS unlocks the files when the SAS program successfully completes. If the
SAS program fails, then the locks expire after the time allotted.
Default: 30

254 Chapter 2 • Dictionary of SAS Statements

Details

Data Set Options That Function Differently with a WebDAV Server
The following table lists the data set options that have different functionality when using
a WebDAV server. All other data set options will function as described in the SAS Data
Set Options: Reference.

Table 2.6 Data Set Option Functionality with a WebDAV Server

Data Set Option WebDAV Storage Functionality

CNTLLEV= LIB locks all data sets in the library before writing the
data into the local cache. All members are unlocked after
the DATA step has completed and the data set has been
written back to the WebDAV server.

MEM locks the member before writing the data into the
local cache. Member is unlocked after the DATA step
has completed and the data has been written back to the
WebDAV server.

REC is not supported. WebDAV allows updates to the
entire data set only.

FILECLOSE The VxTAPE engine is not supported. Therefore, this
option is ignored.

GENMAX= This functionality is not supported because the
maximum number of revisions to keep cannot be
specified in the WebDAV server.

GENNUM= This functionality is not supported in WebDAV.

IDXNAME= Users can specify an index to use if one exists.

INDEX= Indexes can be created in the local cache and saved on
the WebDAV server.

TOBSNO= Remote engines are not supported. Therefore, this option
is ignored.

WebDAV File Processing
When accessing a WebDAV server, the file is pulled from the WebDAV server to your
local disk storage for processing. When you complete the updating, the file is pushed
back to the WebDAV server for storage. The file is removed from the local disk storage
when it is pushed back.

Multiple Librefs to a WebDAV Library
When you assign a libref to a file on a WebDAV server, the path (URL location), user
ID, and password are associated with that libref. After the first libref has been assigned,
the user ID and password will be validated on subsequent attempts to assign another
libref to the same library.

LIBNAME Statement for WebDAV Server Access 255

Note: Lock errors that you typically would not see might occur if either a different user
ID or the password, or both, are used in the subsequent attempt to assign a libref to
the same library.

Locked Files on a WebDAV Server
In local libraries, SAS locks a file when you open it to prevent other users from altering
the file while it is being read. WebDAV locks require Write access to a library, and there
is no concept of a read lock. In addition, WebDAV servers can go down, come back up,
or go offline at any time. Consequently, SAS honors a lock request on a file on a
WebDAV server only if the file is already locked by another user.

Example: Associating a Libref with a WebDAV Directory
The following example associates the libref davdata with the WebDAV directory /
users/mydir/datadir on the WebDAV server www.webserver.com:

libname davdata v9 "https://www.webserver.com/users/mydir/datadir"
 webdav user="mydir" pw="12345";

See Also

Statements:

• “FILENAME Statement, WebDAV Access Method” on page 147

• “LIBNAME Statement” on page 239

LINK Statement
Directs program execution immediately to the statement label that is specified and, if followed by a
RETURN statement, returns execution to the statement that follows the LINK statement.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
LINK label;

Arguments
label

specifies a statement label that identifies the LINK destination. You must specify the
label argument.

Details
The LINK statement tells SAS to jump immediately to the statement label that is
indicated in the LINK statement and to continue executing statements from that point
until a RETURN statement is executed. The RETURN statement sends program control
to the statement immediately following the LINK statement.

256 Chapter 2 • Dictionary of SAS Statements

The LINK statement and the destination must be in the same DATA step. The
destination is identified by a statement label in the LINK statement.

The LINK statement can branch to a group of statements that contain another LINK
statement. This arrangement is known as nesting. To avoid infinite looping, SAS has set
a default number of nested LINK statements. You can have up to 10 LINK statements
with no intervening RETURN statements. When more than one LINK statement has
been executed, a RETURN statement tells SAS to return to the statement that follows the
last LINK statement that was executed. However, you can use the /STACK option in the
DATA statement to increase the number of nested LINK statements.

Comparisons
The difference between the LINK statement and the GO TO statement is in the action of
a subsequent RETURN statement. A RETURN statement after a LINK statement returns
execution to the statement that follows LINK. A RETURN statement after a GO TO
statement returns execution to the beginning of the DATA step, unless a LINK statement
precedes GO TO. In that case, execution continues with the first statement after LINK.
In addition, a LINK statement is usually used with an explicit RETURN statement,
whereas a GO TO statement is often used without a RETURN statement.

When your program executes a group of statements at several points in the program,
using the LINK statement simplifies coding and makes program logic easier to follow. If
your program executes a group of statements at only one point in the program, using
DO-group logic rather than LINK-RETURN logic is simpler.

Example: Diverting Program Execution
In this example, when the value of variable TYPE is aluv, the LINK statement diverts
program execution to the statements that are associated with the label CALCU. The
program executes until it encounters the RETURN statement, which sends program
execution back to the first statement that follows LINK. SAS executes the assignment
statement, writes the observation, and then returns to the top of the DATA step to read
the next record. When the value of TYPE is not aluv, SAS executes the assignment
statement, writes the observation, and returns to the top of the DATA step.

data hydro;
 input type $ depth station $;
 /* link to label calcu: */
 if type ='aluv' then link calcu;
 date=today();
 /* return to top of step */
 return;
 calcu: if station='site_1'
 then elevatn=6650-depth;
 else if station='site_2'
 then elevatn=5500-depth;
 /* return to date=today(); */
 return;
 datalines;
aluv 523 site_1
uppa 234 site_2
aluv 666 site_2
...more data lines...
;

LINK Statement 257

See Also

Statements:

• “DATA Statement” on page 48

• “DO Statement” on page 64

• “GO TO Statement” on page 159

• “label: Statement” on page 234

• “RETURN Statement” on page 341

LIST Statement
Writes to the SAS log the input data record for the observation that is being processed.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
LIST;

Without Arguments
The LIST statement causes the input data record for the observation being processed to
be written to the SAS log.

Details
The LIST statement operates only on data that is read with an INPUT statement; it has
no effect on data that is read with a SET, MERGE, MODIFY, or UPDATE statement.

In the SAS log, a ruler that indicates column positions appears before the first record
listed.

For variable-length records (RECFM=V), SAS writes the record length at the end of the
input line. SAS does not write the length for fixed-length records (RECFM=F), unless
the amount of data read does not equal the record length (LRECL).

Comparisons

Action LIST Statement PUT Statement

Writes when at the end of each iteration of the DATA
step

immediately

Writes what the input data records exactly as they
appear

the variables or literals
specified

258 Chapter 2 • Dictionary of SAS Statements

Action LIST Statement PUT Statement

Writes where only to the SAS log to the SAS log, the SAS
output destination, or to
any external file

Works with INPUT statement only any data-reading statement

Handles hexadecimal
values

automatically prints a hexadecimal value
if it encounters an unprintable character

represents characters in
hexadecimal only when a
hexadecimal format is
given

Examples

Example 1: Listing Records That Contain Missing Data
This example uses the LIST statement to write to the SAS log any input records that
contain missing data. Because of the #3 line pointer control in the INPUT statement,
SAS reads three input records to create a single observation. Therefore, the LIST
statement writes the three current input records to the SAS log each time a value for
W2AMT is missing.

data employee;
 input ssn 1-9 #3 w2amt 1-6;
 if w2amt=. then list;
 datalines;
23456789
JAMES SMITH
356.79
345671234
Jeffrey Thomas
.
;

Output 2.17 Log Listing of Missing Data

RULE:----+----1----+----2----+----3----+----4----+----5----+----
9 345671234
10 Jeffrey Thomas
11 .

The numbers 9, 10, and 11 are line numbers in the SAS log.

Example 2: Listing the Record Length of Variable-Length Records
This example uses as input an external file that contains variable-length ID numbers.
The RECFM=V option is specified in the INFILE statement, and the LIST statement
writes the records to the SAS log. When the file has variable-length records, as indicated
by the RECFM=V option in this example, SAS writes the record length at the end of
each record that is listed in the SAS log.

data employee;
 infile 'your-external-file' recfm=v;
 input id $;

LIST Statement 259

 list;
run;

Output 2.18 Log Listing of Variable-Length Records and Record Lengths

RULE: ----+----1----+----2----+----3----+----4----+----5---
1 23456789 8
2 123456789 9
3 5555555555 10
4 345671234 9
5 2345678910 10
6 2345678 7

See Also

Statements:

• “PUT Statement” on page 296

%LIST Statement
Displays lines that are entered in the current session.

Valid in: Anywhere

Category: Program Control

Syntax
%LIST<n<:m | − m>>;

Without Arguments
In interactive line mode processing, if you use the %LIST statement without arguments,
it displays all previously entered program lines.

Arguments
n

displays line n.

n–m
displays lines n through m.
Alias: n:m

Details

Where and When to Use
The %LIST statement can be used anywhere in a SAS job except between a
DATALINES or DATALINES4 statement and the matching semicolon (;) or semicolons
(;;;;). This statement is useful mainly in interactive line mode sessions to display SAS
program code on the monitor. It is also useful to determine lines to include when you use
the %INCLUDE statement.

260 Chapter 2 • Dictionary of SAS Statements

Interactions
CAUTION:

In all modes of execution, the SPOOL system option controls whether SAS
statements are saved. When the SPOOL system option is in effect in interactive
line mode, all SAS statements and data lines are saved automatically when they are
submitted. You can display them by using the %LIST statement. When NOSPOOL
is in effect, %LIST cannot display previous lines.

Example: Displaying Lines That Are Entered in the
Current Session
This %LIST statement displays lines 10 through 20:

 %list 10-20;

See Also

Statements:

• “%INCLUDE Statement” on page 164

System Options:

• “SPOOL System Option” in SAS System Options: Reference

LOCK Statement
Acquires and releases an exclusive lock on an existing SAS file.

Valid in: Anywhere

Category: Program Control

Restrictions: You cannot lock a SAS file that another SAS session is currently accessing (either
from an exclusive lock or because the file is open).
The LOCK statement syntax is the same whether you issue the statement in a
single-user environment or in a client/server environment. However, some LOCK
statement functionality applies only to a client/server environment.

Syntax
LOCK libref<.member-name<.member-type | .entry-name.entry-type>>
<LIST | QUERY | SHOW | CLEAR>;

Arguments
libref

is a name that is associated with a SAS library. The libref (library reference) must be
a valid SAS name. If the libref is SASUSER or WORK, you must specify it.
Tip: In a single-user environment, you typically would not issue the LOCK

statement to exclusively lock a library. To lock a library that is accessed via a
multiuser SAS/SHARE server, see the LOCK statement in the SAS/SHARE
User's Guide.

LOCK Statement 261

member-name
is a valid SAS name that specifies a member of the SAS library that is associated
with the libref.
Restriction: The SAS file must be created before you can request a lock. For

information about locking a member of a SAS library when the member does not
exist, see the SAS/SHARE User's Guide.

member-type
is the type of SAS file to be locked. For example, valid values are DATA, VIEW,
CATALOG, MDDB, and so on. The default is DATA.

entry-name
is the name of the catalog entry to be locked.
Tip: In a single-user environment, if you issue the LOCK statement to lock an

individual catalog entry, the entire catalog is locked; you typically would not
issue the LOCK statement to exclusively lock a catalog entry. To lock a catalog
entry in a library that is accessed via a multiuser SAS/SHARE server, see the
LOCK statement in the SAS/SHARE User's Guide.

entry-type
is the type of the catalog entry to be locked.
Tip: In a single-user environment, if you issue the LOCK statement to lock an

individual catalog entry, the entire catalog is locked; you typically would not
issue the LOCK statement to exclusively lock a catalog entry. To lock a catalog
entry in a library that is accessed via a multiuser SAS/SHARE server, see the
LOCK statement in the SAS/SHARE User's Guide.

LIST | QUERY | SHOW
writes to the SAS log whether you have an exclusive lock on the specified SAS file.
Tip: This option provides more information in a client/server environment. To use

this option in a client/server environment, see the LOCK statement in the
SAS/SHARE User's Guide.

CLEAR
releases a lock on the specified SAS file that was acquired by using the LOCK
statement in your SAS session.

Details

General Information
The LOCK statement enables you to acquire and release an exclusive lock on an existing
SAS file. Once an exclusive lock is obtained, no other SAS session can read or write to
the file until the lock is released.

To release an exclusive lock, use the CLEAR option. In addition, an exclusive lock on a
data set is released when you use the DATASETS procedure DELETE statement to
delete the data set.

Acquiring Exclusive Access to a SAS File in a Single-User
Environment
Each time you issue a SAS statement or a procedure to process a SAS file, the file is
opened for input, update, or output processing. At the end of the step, the file is closed.
In a program with multiple tasks, a file could be opened and closed multiple times.
Because multiple SAS sessions in a single-user environment can access the same SAS
file, issuing the LOCK statement to acquire an exclusive lock on the file protects data
while it is being updated in a multistep program.

262 Chapter 2 • Dictionary of SAS Statements

For example, consider a nightly update process that consists of a DATA step to remove
observations that are no longer useful, a SORT procedure to sort the file, and a
DATASETS procedure to rebuild the file's indexes. If another SAS session accesses the
file between any of the steps, the SORT and DATASETS procedures would fail, because
they require member-level locking (exclusive) access to the file.

Including the LOCK statement before the DATA step provides the needed protection by
acquiring exclusive access to the file. If the LOCK statement is successful, a SAS
session that attempts to access the file between steps will be denied access, and the
nightly update process runs uninterrupted. See “Example: Locking a SAS File” on page
263.

Return Codes for the LOCK Statement
The SAS macro variable SYSLCKRC contains the return code from the LOCK
statement. The following actions result in a nonzero value in SYSLCKRC:

• You try to lock a file but cannot obtain the lock (for example, the file was in use or is
locked by another SAS session).

• You use a LOCK statement with the LIST option to list a lock.

• You use a LOCK statement with the CLEAR option to release a lock that you do not
have.

For more information about the SYSLCKRC SAS macro variable, see SAS Macro
Language: Reference.

Comparisons
• With SAS/SHARE software, you can also use the LOCK statement. Some LOCK

statement functionality applies only to a client/server environment.

• The CNTLLEV= data set option specifies the level at which shared Update access to
a SAS data set is denied.

Example: Locking a SAS File
The following SAS program illustrates the process of locking a SAS data set. Including
the LOCK statement provides protection for the multistep program by acquiring
exclusive access to the file. Any SAS session that attempts to access the file between
steps will be denied access, which ensures that the program runs uninterrupted.

libname mydata 'SAS-library';
lock mydata.census; 1

data mydata.census; 2

 modify mydata.census;
 (statements to remove obsolete observations)
run;
proc sort force data=mydata.census; 3

 by CrimeRate;
run;
proc datasets library=mydata; 4

 modify census;
 index create CrimeRate;
quit;
lock mydata.census clear; 5

1 Acquires exclusive access to the SAS data set MYDATA.CENSUS.

LOCK Statement 263

2 Opens MYDATA.CENSUS to remove observations that are no longer useful. At the
end of the DATA step, the file is closed. However, because of the exclusive lock,
any other SAS session that attempts to access the file is denied access.

3 Opens MYDATA.CENSUS to sort the file. At the end of the procedure, the file is
closed but not available to another SAS session.

4 Opens MYDATA.CENSUS to rebuild the file's index. At the end of the procedure,
the file is closed but still not available to another SAS session.

5 Releases the exclusive lock on MYDATA.CENSUS. The data set is now available to
other SAS sessions.

See Also
• For information about locking a data object in a library that is accessed via a

multiuser SAS/SHARE server, see the “LOCK Statement” in SAS/SHARE User's
Guide.

Data Set Options:

• “CNTLLEV= Data Set Option” in SAS Data Set Options: Reference

LOSTCARD Statement
Resynchronizes the input data when SAS encounters a missing or invalid record in data that has multiple
records per observation.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
LOSTCARD;

Without Arguments
The LOSTCARD statement prevents SAS from reading a record from the next group
when the current group has a missing record.

Details

When to Use LOSTCARD
When SAS reads multiple records to create a single observation, it does not discover that
a record is missing until it reaches the end of the data. If there is a missing record in your
data, the values for subsequent observations in the SAS data set might be incorrect.
Using LOSTCARD prevents SAS from reading a record from the next group when the
current group has fewer records than SAS expected.

LOSTCARD is most useful when the input data have a fixed number of records per
observation and when each record for an observation contains an identification variable
that has the same value. LOSTCARD usually appears in conditional processing such as
in the THEN clause of an IF-THEN statement, or in a statement in a SELECT group.

264 Chapter 2 • Dictionary of SAS Statements

When LOSTCARD Executes
When LOSTCARD executes, SAS takes several steps:

1. Writes three items to the SAS log: a lost card message, a ruler, and all the records
that it read in its attempt to build the current observation.

2. Discards the first record in the group of records being read, does not write an
observation, and returns processing to the beginning of the DATA step.

3. Does not increment the automatic variable _N_ by 1. (Normally, SAS increments
N by 1 at the beginning of each DATA step iteration.)

4. Attempts to build an observation by beginning with the second record in the group,
and reads the number of records that the INPUT statement specifies.

5. Repeats steps 1 through 4 when the IF condition for a lost card is still true. To make
the log more readable, SAS prints the message and ruler only once for a given group
of records. In addition, SAS prints each record only once, even if a record is used in
successive attempts to build an observation.

6. Builds an observation and writes it to the SAS data set when the IF condition for a
lost card is no longer true.

Example: Resynchronizing Input Data
This example uses the LOSTCARD statement in a conditional construct to identify
missing data records and to resynchronize the input data:

data inspect;
 input id 1-3 age 8-9 #2 id2 1-3 loc
 #3 id3 1-3 wt;
 if id ne id2 or id ne id3 then
 do;
 put 'DATA RECORD ERROR: ' id= id2= id3=;
 lostcard;
 end;
 datalines;
301 32
301 61432
301 127
302 61
302 83171
400 46
409 23145
400 197
411 53
411 99551
411 139
;

The DATA step reads three input records before writing an observation. If the
identification number in record 1 (variable ID) does not match the identification number
in the second record (ID2) or third record (ID3), a record is incorrectly entered or
omitted. The IF-THEN DO statement specifies that if an identification number is invalid,
SAS prints the message that is specified in the PUT statement message and executes the
LOSTCARD statement.

In this example, the third record for the second observation (ID3=400) is missing. The
second record for the third observation is incorrectly entered (ID=400 while ID2=409).
Therefore, the data set contains two observations with ID values 301 and 411. There are

LOSTCARD Statement 265

no observations for ID=302 or ID=400. The PUT and LOSTCARD statements write
these statements to the SAS log when the DATA step executes:

DATA RECORD ERROR: id=302 id2=302 id3=400
NOTE: LOST CARD.
RULE:----+----1----+----2----+----3----+----4----+----5----+----
14 302 61
15 302 83171
16 400 46
DATA RECORD ERROR: id=302 id2=400 id3=409
NOTE: LOST CARD.
17 409 23145
DATA RECORD ERROR: id=400 id2=409 id3=400
NOTE: LOST CARD.
18 400 197
DATA RECORD ERROR: id=409 id2=400 id3=411
NOTE: LOST CARD.
19 411 53
DATA RECORD ERROR: id=400 id2=411 id3=411
NOTE: LOST CARD.
20 411 99551

The numbers 14, 15, 16, 17, 18, 19, and 20 are line numbers in the SAS log.

See Also

Statements:

• “IF-THEN/ELSE Statement” on page 163

MERGE Statement
Joins observations from two or more SAS data sets into a single observation.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
MERGE SAS-data-set-1 <(data-set-options)>
SAS-data-set-2 <(data-set-options) >
<…SAS-data-set-n<(data-set-options)>>
<END=variable>;

Arguments
SAS-data-set

specifies at least two existing SAS data sets from which observations are read. You
can specify individual data sets, data set lists, or a combination of both.
Tips:

Instead of using a data set name, you can specify the physical pathname to the
file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

266 Chapter 2 • Dictionary of SAS Statements

You can specify additional SAS data sets.
See: “Using Data Set Lists with MERGE” on page 267

(data-set-options)
specifies one or more SAS data set options in parentheses after a SAS data set name.
Note: The data set options specify actions that SAS is to take when it reads

observations into the DATA step for processing. For a list of data set options, see
the SAS Data Set Options: Reference

Tip: Data set options that apply to a data set list apply to all of the data sets in the
list.

END=variable
names and creates a temporary variable that contains an end-of-file indicator.
Note: The variable, which is initialized to 0, is set to 1 when the MERGE statement

processes the last observation. If the input data sets have different numbers of
observations, the END= variable is set to 1 when MERGE processes the last
observation from all data sets.

Tip: The END= variable is not added to any SAS data set that is being created.

Details

Overview
The MERGE statement is flexible and has a variety of uses in SAS programming. This
section describes basic uses of MERGE. Other applications include using more than one
BY variable, merging more than two data sets, and merging a few observations with all
observations in another data set.

For more information, see “How to Prepare Your Data Sets” in Chapter 21 of SAS
Language Reference: Concepts.

Using Data Set Lists with MERGE
You can use data set lists with the MERGE statement. Data set lists provide a quick way
to reference existing groups of data sets. These data set lists must be either name prefix
lists or numbered range lists.

Name prefix lists refer to all data sets that begin with a specified character string. For
example, merge SALES1:; tells SAS to merge all data sets starting with "SALES1"
such as SALES1, SALES10, SALES11, and SALES12.

Numbered range lists require you to have a series of data sets with the same name,
except for the last character or characters, which are consecutive numbers. In a
numbered range list, you can begin with any number and end with any number. For
example, these lists refer to the same data sets:

sales1 sales2 sales3 sales4
sales1-sales4

Note: If the numeric suffix of the first data set name contains leading zeros, the number
of digits in the numeric suffix of the last data set name must be greater than or equal
to the number of digits in the first data set name. Otherwise, an error will occur. For
example, the data set lists sales001–sales99 and sales01–sales9 will cause an error.
The data set list sales001–sales999 is valid. If the numeric suffix of the first data set
name does not contain leading zeros, the number of digits in the numeric suffix of
the first and last data set names do not have to be equal. For example, the data set list
sales1–sales999 is valid.

Some other rules to consider when using numbered data set lists are as follows:

MERGE Statement 267

• You can specify groups of ranges.

merge cost1-cost4 cost11-cost14 cost21-cost24;

• You can mix numbered range lists with name prefix lists.

merge cost1-cost4 cost2: cost33-37;

• You can mix single data sets with data set lists.

merge cost1 cost10-cost20 cost30;

• Quotation marks around data set lists are ignored.

/* these two lines are the same */
merge sales1-sales4;
merge 'sales1'n-'sales4'n;

• Spaces in data set names are invalid. If quotation marks are used, trailing blanks are
ignored.

/* blanks in these statements will cause errors */
merge sales 1-sales 4;
merge 'sales 1'n - 'sales 4'n;
/* trailing blanks in this statement will be ignored */
merge 'sales1'n - 'sales4'n;

• The maximum numeric suffix is 2147483647.

/* this suffix will cause an error */
merge prod2000000000-prod2934850239;

• Physical pathnames are not allowed.

/* physical pathnames will cause an error */
%let work_path = %sysfunc(pathname(WORK));
merge "&work_path\dept.sas7bdat"-"&work_path\emp.sas7bdat" ;

One-to-One Merging
One-to-one merging combines observations from two or more SAS data sets into a
single observation in a new data set. To perform a one-to-one merge, use the MERGE
statement without a BY statement. SAS combines the first observation from all data sets
that are named in the MERGE statement into the first observation in the new data set, the
second observation from all data sets into the second observation in the new data set, and
so on. In a one-to-one merge, the number of observations in the new data set is equal to
the number of observations in the largest data set named in the MERGE statement. See
Example 1 for an example of a one-to-one merge. For more information, see Chapter 21,
“Reading, Combining, and Modifying SAS Data Sets,” in SAS Language Reference:
Concepts.

CAUTION:
Use care when you combine data sets with a one-to-one merge. One-to-one
merges can sometimes produce undesirable results. Test your program on
representative samples of the data sets before you use this method.

Match-Merging
Match-merging combines observations from two or more SAS data sets into a single
observation in a new data set according to the values of a common variable. The number
of observations in the new data set is the sum of the largest number of observations in
each BY group in all data sets. To perform a match-merge, use a BY statement
immediately after the MERGE statement. The variables in the BY statement must be
common to all data sets. Only one BY statement can accompany each MERGE

268 Chapter 2 • Dictionary of SAS Statements

statement in a DATA step. The data sets that are listed in the MERGE statement must be
sorted in order of the values of the variables that are listed in the BY statement, or they
must have an appropriate index. See Example 2 for an example of a match-merge. For
more information, see Chapter 21, “Reading, Combining, and Modifying SAS Data
Sets,” in SAS Language Reference: Concepts.

Note: The MERGE statement does not produce a Cartesian product on a many-to-many
match-merge. Instead, it performs a one-to-one merge while there are observations in
the BY group in at least one data set. When all observations in the BY group have
been read from one data set and there are still more observations in another data set,
SAS performs a one-to-many merge until all observations have been read for the BY
group.

Comparisons
• MERGE combines observations from two or more SAS data sets. UPDATE

combines observations from exactly two SAS data sets. UPDATE changes or
updates the values of selected observations in a master data set as well. UPDATE
also might add observations.

• Like UPDATE, MODIFY combines observations from two SAS data sets by
changing or updating values of selected observations in a master data set.

• The results that are obtained by reading observations using two or more SET
statements are similar to the results that are obtained by using the MERGE statement
with no BY statement. However, with the SET statements, SAS stops processing
before all observations are read from all data sets if the number of observations are
not equal. In contrast, SAS continues processing all observations in all data sets
named in the MERGE statement.

Examples

Example 1: One-to-One Merging
This example shows how to combine observations from two data sets into a single
observation in a new data set:

data benefits.qtr1;
 merge benefits.jan benefits.feb;
run;

Example 2: Match-Merging
This example shows how to combine observations from two data sets into a single
observation in a new data set according to the values of a variable that is specified in the
BY statement:

data inventry;
 merge stock orders;
 by partnum;
run;

Example 3: Merging with a Data Set List
This example uses a data list to define the data sets that are merged.

data d008; job=3; emp=19; run;
data d009; job=3; sal=50; run;
data d010; job=4; emp=97; run;
data d011; job=4; sal=15; run;

MERGE Statement 269

data comb;
 merge d008-d011;
 by job;
run;
proc print data=comb;
run;

See Also
• Chapter 21, “Reading, Combining, and Modifying SAS Data Sets,” in SAS Language

Reference: Concepts

Statements:

• “BY Statement” on page 35

• “MODIFY Statement” on page 271

• “SET Statement” on page 353

• “UPDATE Statement” on page 377

MISSING Statement
Assigns characters in your input data to represent special missing values for numeric data.

Valid in: Anywhere

Category: Information

Syntax
MISSING character(s);

Arguments
character

is the value in your input data that represents a special missing value.
Range: Special missing values can be any of the 26 letters of the alphabet

(uppercase or lowercase) or the underscore (_).
Tip: You can specify more than one character.

Details
The MISSING statement usually appears within a DATA step, but it is global in scope.

Comparisons
The MISSING= system option enables you to specify a character to be printed when
numeric variables contain ordinary missing values (.). If your data contain characters
that represent special missing values, such as a or z, do not use the MISSING= option to
define them; simply define these values in a MISSING statement.

270 Chapter 2 • Dictionary of SAS Statements

Example: Identifying Certain Types of Missing Data
With survey data, you might want to identify certain types of missing data. For example,
in the data, an A can mean that the respondent is not at home at the time of the survey; an
R can mean that the respondent refused to answer. Use the MISSING statement to
identify to SAS that the values A and R in the input data lines are to be considered
special missing values rather than invalid numeric data values:

data survey;
 missing a r;
 input id answer;
 datalines;
001 2
002 R
003 1
004 A
005 2
;

The resulting data set SURVEY contains exactly the values that are coded in the input
data.

See Also

Statements:

• “UPDATE Statement” on page 377

System Options:

• “MISSING= System Option” in SAS System Options: Reference

MODIFY Statement
Replaces, deletes, and appends observations in an existing SAS data set in place but does not create an
additional copy.

Valid in: DATA step

Category: File-handling

Type: Executable

Restriction: Cannot modify the descriptor portion of a SAS data set, such as adding a variable

Note: If you modify a password-protected data set, specify the password with the
appropriate data set option (ALTER= or PW=) within the MODIFY statement, and not
in the DATA statement.

CAUTION: Damage to the SAS data set can occur if the system terminates abnormally
during a DATA step that contains the MODIFY statement. Observations in native
SAS data files might have incorrect data values, or the data file might become
unreadable. DBMS tables that are referenced by views are not affected.

MODIFY Statement 271

Syntax
Form 1: MODIFY master-data-set <(data-set-options)> transaction-data-set <(data-set-options)>

<NOBS=variable> <END=variable>
<UPDATEMODE=MISSINGCHECK | NOMISSINGCHECK>;
BY by-variable;

Form 2: MODIFY master-data-set <(data-set-options)> KEY=index </ UNIQUE> <NOBS=variable>
<END=variable>;

Form 3: MODIFY master-data-set <(data-set-options)> <NOBS=variable> POINT=variable;

Form 4: MODIFY master-data-set <(data-set-options)> <NOBS=variable> <END=variable>;

Arguments
master-data-set

specifies the SAS data set that you want to modify.
Restrictions:

This data set must also appear in the DATA statement.
For sequential and matching access, the master data set can be a SAS data file, a
SAS/ACCESS view, an SQL view, or a DBMS engine for the LIBNAME
statement. It cannot be a DATA step view or a pass-through view.
For random access using POINT=, the master data set must be a SAS data file or
an SQL view that references a SAS data file.
For direct access using KEY=, the master data set can be a SAS data file or the
DBMS engine for the LIBNAME statement. If it is a SAS file, it must be indexed
and the index name must be specified on the KEY= option.
For a DBMS, the KEY= is set to the keyword DBKEY and the column names to
use as an index must be specified on the DBKEY= data set option. These column
names are used in constructing a WHERE expression that is passed to the
DBMS.

Tip: Instead of using a data set name, you can specify the physical pathname to the
file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

(data-set-options)
specifies one or more SAS data set options in parentheses after a SAS data set name.
Note: The data set options specify actions that SAS is to take when it reads

observations into the DATA step for processing. For a list of data set options, see
the SAS Data Set Options: Reference

Tip: Data set options that apply to a data set list apply to all of the data sets in the
list.

transaction-data-set
specifies the SAS data set that provides the values for matching access. These values
are the values that you want to use to update the master data set.
Restriction: Specify this data set only when the DATA step contains a BY

statement.
Tip: Instead of using a data set name, you can specify the physical pathname to the

file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

by-variable
specifies one or more variables by which you identify corresponding observations.

272 Chapter 2 • Dictionary of SAS Statements

END=variable
creates and names a temporary variable that contains an end-of-file indicator.
Restriction: Do not use this argument in the same MODIFY statement with the

POINT= argument. POINT= indicates that MODIFY uses random access. The
value of the END= variable is never set to 1 for random access.

Notes:
The variable, which is initialized to zero, is set to 1 when the MODIFY statement
reads the last observation of the data set being modified (for sequential access)
or the last observation of the transaction data set (for matching access). It is also
set to 1 when MODIFY cannot find a match for a KEY= value (random access).
This variable is not added to any data set.

KEY=index
specifies a simple or composite index of the SAS data file that is being modified.
The KEY= argument retrieves observations from that SAS data file based on index
values that are supplied by like-named variables in another source of information.
Default: If the KEY= value is not found, the automatic variable _ERROR_ is set to

1, and the automatic variable _IORC_ receives the value corresponding to the
SYSRC autocall macro's mnemonic _DSENOM.See “Automatic Variable
IORC and the SYSRC Autocall Macro” on page 277.

Restriction: KEY= processing is different for SAS/ACCESS engines. See the
SAS/ACCESS documentation for more information.

Tips:
Examples of sources for index values include a separate SAS data set named in a
SET statement and an external file that is read by an INPUT statement.
If duplicates exist in the master file, only the first occurrence is updated unless
you use a DO-LOOP to execute a SET statement for the data set that is listed on
the KEY=option for all duplicates in the master data set.
If duplicates exist in the transaction data set, and they are consecutive, use the
UNIQUE option to force the search for a match in the master data set to begin at
the top of the index. Write an accumulation statement to add each duplicate
transaction to the observation in master. Without the UNIQUE option, only the
first duplicate transaction observation updates the master.
If the duplicates in the transaction data set are not consecutive, the search begins
at the beginning of the index each time, so that each duplicate is applied to the
master. Write an accumulation statement to add each duplicate to the master.

See: UNIQUE on page 274
Examples:

“Example 5: Modifying Observations Located by an Index” on page 284
“Example 6: Handling Duplicate Index Values” on page 285
“Example 7: Controlling I/O” on page 287

NOBS=variable
creates and names a temporary variable whose value is usually the total number of
observations in the input data set. For certain SAS views, SAS cannot determine the
number of observations. In these cases, SAS sets the value of the NOBS= variable to
the largest positive integer value available in the operating environment.
Note: At compilation time, SAS reads the descriptor portion of the data set and

assigns the value of the NOBS= variable automatically. Thus, you can refer to
the NOBS= variable before the MODIFY statement. The variable is available in
the DATA step but is not added to the new data set.

Tip: The NOBS= and POINT= options are independent of each other.

MODIFY Statement 273

Example: “Example 4: Modifying Observations Located by Observation Number”
on page 283

POINT=variable
reads SAS data sets using random (direct) access by observation number. variable
names a variable whose value is the number of the observation to read. The POINT=
variable is available anywhere in the DATA step, but it is not added to any SAS data
set.
Restrictions:

You cannot use the POINT= option with any of the following:
• BY statement
• WHERE statement
• WHERE= data set option
• transport format data sets
• sequential data sets (on tape or disk)
• a table from another vendor's relational database management system.
You can use POINT= with compressed data sets only if the data set was created
with the POINTOBS= data set option set to YES, the default value.
You can use the random access method on compressed files only with SAS
version 7 and beyond.

Requirements:
When using the POINT= argument, include one or both of the following
programming constructs:
• a STOP statement
• programming logic that checks for an invalid value of the POINT= variable
Because POINT= reads only the specified observations, SAS cannot detect an
end-of-file condition as it would if the file were being read sequentially. Because
detecting an end-of-file condition terminates a DATA step automatically, failure
to substitute another means of terminating the DATA step when you use
POINT= can cause the DATA step to go into a continuous loop.

Tip: If the POINT= value does not match an observation number, SAS sets the
automatic variable _ERROR_ to 1.

Example: “Example 4: Modifying Observations Located by Observation Number”
on page 283

UNIQUE
causes a KEY= search always to begin at the top of the index for the data file being
modified.
Restriction: UNIQUE can appear only with the KEY= option.
Tip: Use UNIQUE when there are consecutive duplicate KEY= values in the

transaction data set, so that the search for a match in the master data set begins at
the top of the index file for each duplicate transaction. You must include an
accumulation statement or the duplicate values overwrite each other causing only
the last transaction value to be the result in the master observation.

Example: “Example 6: Handling Duplicate Index Values” on page 285

UPDATEMODE=MISSINGCHECK | NOMISSINGCHECK
specifies whether missing variable values in a transaction data set are to be allowed
to replace existing variable values in a master data set.

MISSINGCHECK
prevents missing variable values in a transaction data set from replacing values in
a master data set.

274 Chapter 2 • Dictionary of SAS Statements

NOMISSINGCHECK
allows missing variable values in a transaction data set to replace values in a
master data set by preventing the check from being performed.

Default: MISSINGCHECK
Requirement: The UPDATEMODE argument must be accompanied by a BY

statement that specifies the variables by which observations are matched.
Tip: However, special missing values are the exception and they replace values in

the master data set even when MISSINGCHECK is in effect.

Details

Matching Access (Form 1)
The matching access method uses the BY statement to match observations from the
transaction data set with observations in the master data set. The BY statement specifies
a variable that is in the transaction data set and the master data set.

When the MODIFY statement reads an observation from the transaction data set, it uses
dynamic WHERE processing to locate the matching observation in the master data set.
The observation in the master data set can be either

• replaced in the master data set with the value from the transaction data set

• deleted from the master data set

• appended to the master data set.

“Example 3: Modifying Observations Using a Transaction Data Set” on page 281 shows
the matching access method.

Duplicate BY Values (Form 1)
Duplicates in the master and transaction data sets affect processing.

• If duplicates exist in the master data set, only the first occurrence is updated because
the generated WHERE statement always finds the first occurrence in the master.

• If duplicates exist in the transaction data set, the duplicates are applied one on top of
another unless you write an accumulation statement to add all of them to the master
observation. Without the accumulation statement, the values in the duplicates
overwrite each other so that only the value in the last transaction is the result in the
master observation.

Direct Access by Indexed Values (Form 2)
This method requires that you use the KEY= option in the MODIFY statement to name
an indexed variable from the data set that is being modified. Use another data source
(typically a SAS data set named in a SET statement or an external file read by an INPUT
statement) to provide a like-named variable whose values are supplied to the index.
MODIFY uses the index to locate observations in the data set that is being modified.

“Example 5: Modifying Observations Located by an Index” on page 284 shows the
direct-access-by-indexed-values method.

Duplicate Index Values (Form 2)
• If there are duplicate values of the indexed variable in the master data set, only the

first occurrence is retrieved, modified, or replaced. Use a DO LOOP to execute a
SET statement with the KEY= option multiple times to update all duplicates with the
transaction value.

MODIFY Statement 275

• If there are duplicate, nonconsecutive values in the like-named variable in the data
source, MODIFY applies each transaction cumulatively to the first observation in the
master data set whose index value matches the values from the data source.
Therefore, only the value in the last duplicate transaction is the result in the master
observation unless you write an accumulation statement to accumulate each
duplicate transaction value in the master observation.

• If there are duplicate, consecutive values in the variable in the data source, the values
from the first observation in the data source are applied to the master data set, but the
DATA step terminates with an error when it tries to locate an observation in the
master data set for the second duplicate from the data source. To avoid this error, use
the UNIQUE option in the MODIFY statement. The UNIQUE option causes SAS to
return to the top of the master data set before retrieving a match for the index value.
You must write an accumulation statement to accumulate the values from all the
duplicates. If you do not, only the last one applied is the result in the master
observation.

“Example 6: Handling Duplicate Index Values” on page 285 shows how to handle
duplicate index values.

• If there are duplicate index values in both data sets, you can use SQL to apply the
duplicates in the transaction data set to the duplicates in the master data set in a one-
to-one correspondence.

Direct (Random) Access by Observation Number (Form 3)
You can use the POINT= option in the MODIFY statement to name a variable from
another data source (not the master data set), whose value is the number of an
observation that you want to modify in the master data set. MODIFY uses the values of
the POINT= variable to retrieve observations in the data set that you are modifying.
(You can use POINT= on a compressed data set only if the data set was created with the
POINTOBS= data set option.)

It is good programming practice to validate the value of the POINT= variable and to
check the status of the automatic variable _ERROR_.

“Example 4: Modifying Observations Located by Observation Number” on page 283
shows the direct (random) access by observation number method.

CAUTION:
POINT= can result in infinite looping. Be careful when you use POINT=, as failure
to terminate the DATA step can cause the DATA step to go into a continuous loop.
Use a STOP statement, programming logic that checks for an invalid value of the
POINT= variable, or both.

Sequential Access (Form 4)
The sequential access method is the simplest form of the MODIFY statement, but it
provides less control than the direct access methods. With the sequential access method,
you can use the NOBS= and END= options to modify a data set; you do not use the
POINT= or KEY= options.

Preparing Your Data Sets Before Using MODIFY
There are a number of things that you can do to improve performance and get the results
that you want when using the MODIFY statement. For more information, see
“Combining SAS Data Sets: Basic Concepts” in Chapter 21 of SAS Language
Reference: Concepts.

276 Chapter 2 • Dictionary of SAS Statements

Automatic Variable _IORC_ and the SYSRC Autocall Macro
The automatic variable _IORC_ contains the return code for each I/O operation that the
MODIFY statement attempts to perform. The best way to test for values of _IORC_ is
with the mnemonic codes that are provided by the SYSRC autocall macro. Each
mnemonic code describes one condition. The mnemonics provide an easy method for
testing problems in a DATA step program. These codes are useful:

_DSENMR
specifies that the transaction data set observation does not exist on the master data
set (used only with MODIFY and BY statements). If consecutive observations with
different BY values do not find a match in the master data set, both of them return
_DSENMR.

_DSEMTR
specifies that multiple transaction data set observations with a given BY value do not
exist on the master data set (used only with MODIFY and BY statements). If
consecutive observations with the same BY values do not find a match in the master
data set, the first observation returns _DSENMR and the subsequent observations
return _DSEMTR.

_DSENOM
specifies that the data set being modified does not contain the observation that is
requested by the KEY= option or the POINT= option.

_SENOCHN
specifies that SAS is attempting to execute an OUTPUT or REPLACE statement on
an observation that contains a key value which duplicates one already existing on an
indexed data set that requires unique key values.

_SOK
specifies that the observation was located.

Note: The IORCMSG function returns a formatted error message associated with the
current value of _IORC_.

“Example 7: Controlling I/O” on page 287 shows how to use the automatic variable
IORC and the SYSRC autocall macro.

Writing Observations When MODIFY Is Used in a DATA Step
The way SAS writes observations to a SAS data set when the DATA step contains a
MODIFY statement depends on whether certain other statements are present. The
possibilities are

no explicit statement
writes the current observation to its original place in the SAS data set. The action
occurs as the last action in the step (as if a REPLACE statement were the last
statement in the step).

OUTPUT statement
if no data set is specified in the OUTPUT statement, writes the current observation to
the end of all data sets that are specified in the DATA step. If a data set is specified,
the statement writes the current observation to the end of the data set that is
indicated. The action occurs at the point in the DATA step where the OUTPUT
statement appears.

REPLACE <data-set-name> statement
rewrites the current observation in the specified data set or data sets, or, if no
argument is specified, rewrites the current observation in each data set specified in
the DATA statement. The action occurs at the point of the REPLACE statement.

MODIFY Statement 277

REMOVE <data-set-name> statement
deletes the current observation in the specified data set or data sets, or, if no
argument is specified, deletes the current observation in each data set specified in the
DATA statement. The deletion can be a physical one or a logical one, depending on
the characteristics of the engine that maintains the data set.

Remember the following as you work with these statements:

• When no OUTPUT, REPLACE, or REMOVE statement is specified, the default
action is REPLACE.

• The OUTPUT, REPLACE, and REMOVE statements are independent of each other.
You can code multiple OUTPUT, REPLACE, and REMOVE statements to apply to
one observation. However, once an OUTPUT, REPLACE, or REMOVE statement
executes, the MODIFY statement must execute again before the next REPLACE or
REMOVE statement executes.

You can use OUTPUT and REPLACE in the following example of conditional logic
because only one of the REPLACE or OUTPUT statements executes per
observation:

data master;
 modify master trans; by key;
 if _iorc_=0 then replace;
 else
 output;
run;

But you should not use multiple REPLACE operations on the same observation as in
this example:

data master;
 modify master;
 x=1;
 replace;
 replace;
run;

You can code multiple OUTPUT statements per observation. However, be careful
when you use multiple OUTPUT statements. It is possible to go into an infinite loop
with just one OUTPUT statement.

data master;
 modify master;
 output;
run;

• Using OUTPUT, REPLACE, or REMOVE in a DATA step overrides the default
replacement of observations. If you use any one of these statements in a DATA step,
you must explicitly program each action that you want to take.

• If both an OUTPUT statement and a REPLACE or REMOVE statement execute on a
given observation, perform the OUTPUT action last to keep the position of the
observation pointer correct.

“Example 8: Replacing and Removing Observations and Writing Observations to
Different SAS Data Sets” on page 289 shows how to use the OUTPUT, REMOVE, and
REPLACE statements to write observations.

278 Chapter 2 • Dictionary of SAS Statements

Missing Values and the MODIFY Statement
By default, the UPDATEMODE=MISSINGCHECK option is in effect, so missing
values in the transaction data set do not replace existing values in the master data set.
Therefore, if you want to update some but not all variables and if the variables that you
want to update differ from one observation to the next, set to missing those variables that
are not changing. If you want missing values in the transaction data set to replace
existing values in the master data set, use UPDATEMODE=NOMISSINGCHECK.

Even when UPDATEMODE=MISSINGCHECK is in effect, you can replace existing
values with missing values by using special missing value characters in the transaction
data set. To create the transaction data set, use the MISSING statement in the DATA
step. If you define one of the special missing values A through Z for the transaction data
set, SAS updates numeric variables in the master data set to that value.

If you want the resulting value in the master data set to be a regular missing value, use a
single underscore (_) to represent missing values in the transaction data set. The
resulting value in the master data set will be a period (.) for missing numeric values and
a blank for missing character values.

For more information about defining and using special missing value characters, see the
“MISSING Statement” on page 270.

Using MODIFY with Data Set Options
If you use data set options (such as KEEP=) in your program, then use the options in the
MODIFY statement for the master data set. Using data set options in the DATA
statement might produce unexpected results.

Using MODIFY in a SAS/SHARE Environment
In a SAS/SHARE environment, the MODIFY statement accesses an observation in
Update mode. That is, the observation is locked from the time MODIFY reads it until a
REPLACE or REMOVE statement executes. At that point the observation is unlocked. It
cannot be accessed until it is re-read with the MODIFY statement. The MODIFY
statement opens the data set in Update mode, but the control level is based on the
statement used. For example, KEY= and POINT= are member-level locking. See the
SAS/SHARE User's Guide for more information.

Comparisons
• When you use a MERGE, SET, or UPDATE statement in a DATA step, SAS creates

a new SAS data set. The data set descriptor of the new copy can be different from the
old one (variables added or deleted, labels changed, and so on). When you use a
MODIFY statement in a DATA step, however, SAS does not create a new copy of
the data set. As a result, the data set descriptor cannot change.

For information about DBMS replacement rules, see the SAS/ACCESS
documentation.

• If you use a BY statement with a MODIFY statement, MODIFY works much like
the UPDATE statement, except that

• neither the master data set nor the transaction data set needs to be sorted or
indexed. (The BY statement that is used with MODIFY triggers dynamic
WHERE processing.)

Note: Dynamic WHERE processing can be costly if the MODIFY statement
modifies a SAS data set that is not in sorted order or has not been indexed.
Having the master data set in sorted order or indexed and having the

MODIFY Statement 279

transaction data set in sorted order reduces processing overhead, especially
for large files.

• both the master data set and the transaction data set can have observations with
duplicate values of the BY variables. MODIFY treats the duplicates as described
in “Duplicate BY Values (Form 1)” on page 275.

• MODIFY cannot make any changes to the descriptor information of the data set
as UPDATE can. Thus, it cannot add or delete variables, change variable labels,
and so on.

Examples

Example 1: Input Data Set for Examples
The examples modify the INVTY.STOCK data set. INVTY.STOCK contains these
variables:

PARTNO
is a character variable with a unique value identifying each tool number.

DESC
is a character variable with the text description of each tool.

INSTOCK
is a numeric variable with a value describing how many units of each tool the
company has in stock.

RECDATE
is a numeric variable containing the SAS date value that is the day for which
INSTOCK values are current.

PRICE
is a numeric variable with a value that describes the unit price for each tool.

In addition, INVTY.STOCK contains a simple index on PARTNO. This DATA step
creates INVTY.STOCK:

libname invty 'SAS-library';

data invty.stock(index=(partno));
 input PARTNO $ DESC $ INSTOCK @17
 RECDATE date7. @25 PRICE;
 format recdate date7.;
 datalines;
K89R seal 34 27jul95 245.00
M4J7 sander 98 20jun95 45.88
LK43 filter 121 19may96 10.99
MN21 brace 43 10aug96 27.87
BC85 clamp 80 16aug96 9.55
NCF3 valve 198 20mar96 24.50
KJ66 cutter 6 18jun96 19.77
UYN7 rod 211 09sep96 11.55
JD03 switch 383 09jan97 13.99
BV1E timer 26 03jan97 34.50
;

280 Chapter 2 • Dictionary of SAS Statements

Example 2: Modifying All Observations
This example replaces the date on all of the records in the data set INVTY.STOCK with
the current date. It also replaces the value of the variable RECDATE with the current
date for all observations in INVTY.STOCK:

data invty.stock;
 modify invty.stock;
 recdate=today();
run;
proc print data=invty.stock noobs;
 title 'INVTY.STOCK';
run;

Output 2.19 Results of Updating the RECDATE Field

The MODIFY statement opens INVTY.STOCK for update processing. SAS reads one
observation of INVTY.STOCK for each iteration of the DATA step and performs any
operations that the code specifies. In this case, the code replaces the value of RECDATE
with the result of the TODAY function for every iteration of the DATA step. An implicit
REPLACE statement at the end of the step writes each observation to its previous
location in INVTY.STOCK.

Example 3: Modifying Observations Using a Transaction Data Set
This example adds the quantity of newly received stock to its data set INVTY.STOCK
as well as updating the date on which stock was received. The transaction data set
ADDINV in the WORK library contains the new data.

The ADDINV data set is the data set that contains the updated information. ADDINV
contains these variables:

PARTNO
is a character variable that corresponds to the indexed variable PARTNO in
INVTY.STOCK.

MODIFY Statement 281

NWSTOCK
is a numeric variable that represents quantities of newly received stock for each tool.

ADDINV is the second data set in the MODIFY statement. SAS uses it as the
transaction data set and reads each observation from ADDINV sequentially. Because the
BY statement specifies the common variable PARTNO, MODIFY finds the first
occurrence of the value of PARTNO in INVTY.STOCK that matches the value of
PARTNO in ADDINV. For each observation with a matching value, the DATA step
changes the value of RECDATE to today's date and replaces the value of INSTOCK
with the sum of INSTOCK and NWSTOCK (from ADDINV). MODIFY does not add
NWSTOCK to the INVTY.STOCK data set because that would modify the data set
descriptor. Thus, it is not necessary to put NWSTOCK in a DROP statement.

This example specifies ADDINV as the transaction data set that contains information to
modify INVTY.STOCK. A BY statement specifies the shared variable whose values
locate the observations in INVTY.STOCK.

This DATA step creates ADDINV:

data addinv;
 input PARTNO $ NWSTOCK;
 datalines;
K89R 55
M4J7 21
LK43 43
MN21 73
BC85 57
NCF3 90
KJ66 2
UYN7 108
JD03 55
BV1E 27
;

This DATA step uses values from ADDINV to update INVTY.STOCK.

libname invty 'SAS-library';

data invty.stock;
 modify invty.stock addinv;
 by partno;
 RECDATE=today();
 INSTOCK=instock+nwstock;
 if _iorc_=0 then replace;
run;

proc print data=invty.stock noobs;
 title 'INVTY.STOCK';
run;

282 Chapter 2 • Dictionary of SAS Statements

Output 2.20 Results of Updating the INSTOCK and RECDATE Fields

Example 4: Modifying Observations Located by Observation
Number
This example reads the data set NEWP, determines which observation number in
INVTY.STOCK to update based on the value of TOOL_OBS, and performs the update.
This example explicitly specifies the update activity by using an assignment statement to
replace the value of PRICE with the value of NEWP.

The data set NEWP contains two variables:

TOOL_OBS
contains the observation number of each tool in the tool company's master data set,
INVTY.STOCK.

NEWP
contains the new price for each tool.

This DATA step creates NEWP:

data newp;
 input TOOL_OBS NEWP;
 datalines;
 1 251.00
 2 49.33
 3 12.32
 4 30.00
 5 15.00
 6 25.75
 7 22.00
 8 14.00
 9 14.32
10 35.00
;

MODIFY Statement 283

This DATA step updates INVTY.STOCK:

libname invty 'SAS-library';

data invty.stock;
 set newp;
 modify invty.stock point=tool_obs
 nobs=max_obs;
 if _error_=1 then
 do;
 put 'ERROR occurred for TOOL_OBS=' tool_obs /
 'during DATA step iteration' _n_ /
 'TOOL_OBS value might be out of range.';
 error=0;
 stop;
 end;
 PRICE=newp;
 RECDATE=today();
run;

proc print data=invty.stock noobs;
 title 'INVTY.STOCK';
run;

Output 2.21 Results of Updating the RECDATE and PRICE Fields

Example 5: Modifying Observations Located by an Index
This example uses the KEY= option to identify observations to retrieve by matching the
values of PARTNO from ADDINV with the indexed values of PARTNO in
INVTY.STOCK. ADDINV is created in “Example 3: Modifying Observations Using a
Transaction Data Set” on page 281.

KEY= supplies index values that allow MODIFY to access directly the observations to
update. No dynamic WHERE processing occurs. In this example, you specify that the

284 Chapter 2 • Dictionary of SAS Statements

value of INSTOCK in the master data set INVTY.STOCK increases by the value of the
variable NWSTOCK from the transaction data set ADDINV.

libname invty 'SAS-library';

data invty.stock;
 set addinv;
 modify invty.stock key=partno;
 INSTOCK=instock+nwstock;
 RECDATE=today();
 if _iorc_=0 then replace;
run;

proc print data=invty.stock noobs;
 title 'INVTY.STOCK';
run;

Output 2.22 Results of Updating the INSTOCK and RECDATE Fields by Using an Index

Example 6: Handling Duplicate Index Values
This example shows how MODIFY handles duplicate values of the variable in the SET
data set that is supplying values to the index on the master data set.

The NEWINV data set is the data set that contains the updated information. NEWINV
contains these variables:

PARTNO
is a character variable that corresponds to the indexed variable PARTNO in
INVTY.STOCK. The NEWINV data set contains duplicate values for PARTNO;
M4J7 appears twice.

NWSTOCK
is a numeric variable that represents quantities of newly received stock for each tool.

This DATA step creates NEWINV:

MODIFY Statement 285

data newinv;
 input PARTNO $ NWSTOCK;
 datalines;
K89R 55
M4J7 21
M4J7 26
LK43 43
MN21 73
BC85 57
NCF3 90
KJ66 2
UYN7 108
JD03 55
BV1E 27
;

This DATA step terminates with an error when it tries to locate an observation in
INVTY.STOCK to match with the second occurrence of M4J7 in NEWINV:

libname invty 'SAS-library';

 /* This DATA step terminates with an error! */
data invty.stock;
 set newinv;
 modify invty.stock key=partno;
 INSTOCK=instock+nwstock;
 RECDATE=today();
run;

This message appears in the SAS log:

ERROR: No matching observation was found in MASTER data set.
PARTNO=M4J7 NWSTOCK=26 DESC=sander INSTOCK=166 RECDATE=08DEC10 PRICE=45.88
ERROR=1_IORC_=1230015_N_=3
NOTE: The SAS System stopped processing this step because of errors.
NOTE: There were 3 observations read from the data set WORK.NEWINV.
NOTE: The data set INVTY.STOCK has been updated. There were 2 observations
rewritten, 0
 observations added and 0 observations deleted.

Adding the UNIQUE option to the MODIFY statement avoids the error in the previous
DATA step. The UNIQUE option causes the DATA step to return to the top of the index
each time it looks for a match for the value from the SET data set. Thus, it finds the
M4J7 in the MASTER data set for each occurrence of M4J7 in the SET data set. The
updated result for M4J7 in the output shows that both values of NWSTOCK from
NEWINV for M4J7 are added to the value of INSTOCK for M4J7 in INVTY.STOCK.
An accumulation statement sums the values; without it, only the value of the last
instance of M4J7 would be the result in INVTY.STOCK.

data invty.stock;
 set newinv;
 modify invty.stock key=partno / unique;
 INSTOCK=instock+nwstock;
 RECDATE=today();
 if _iorc_=0 then replace;
run;
proc print data=invty.stock noobs;
 title 'Results of Using the UNIQUE Option';
run;

286 Chapter 2 • Dictionary of SAS Statements

Output 2.23 Results of Updating the INSTOCK and RECDATE Fields by Using the UNIQUE
Option

Example 7: Controlling I/O
This example uses the SYSRC autocall macro and the _IORC_ automatic variable to
control I/O condition. This technique helps prevent unexpected results that could go
undetected. This example uses the direct access method with an index to update
INVTY.STOCK. The data in the NEWSHIP data set updates INVTY.STOCK.

This DATA step creates NEWSHIP:

data newship;
 input PARTNO $ DESC $ NWSTOCK @17
 SHPDATE date7. @25 NWPRICE;
 datalines;
K89R seal 14 14nov96 245.00
M4J7 sander 24 23aug96 47.98
LK43 filter 11 29jan97 14.99
MN21 brace 9 09jan97 27.87
BC85 clamp 12 09dec96 10.00
ME34 cutter 8 14nov96 14.50
;

Each WHEN clause in the SELECT statement specifies actions for each input/output
return code that is returned by the SYSRC autocall macro:

• _SOK indicates that the MODIFY statement executed successfully.

• _DSENOM indicates that no matching observation was found in INVTY.STOCK.
The OUTPUT statement specifies that the observation be appended to
INVTY.STOCK. See the last observation in the output.

• If any other code is returned by SYSRC, the DATA step terminates and the PUT
statement writes the message to the log.

libname invty 'SAS-library';

MODIFY Statement 287

data invty.stock;
 set newship;
 modify invty.stock key=partno;
 select (_iorc_);
 when (%sysrc(_sok)) do;
 INSTOCK=instock+nwstock;
 RECDATE=shpdate;
 PRICE=nwprice;
 replace;
 end;
 when (%sysrc(_dsenom)) do;
 INSTOCK=nwstock;
 RECDATE=shpdate;
 PRICE=nwprice;
 output;
 error=0;
 end;
 otherwise do;
 put
 'An unexpected I/O error has occurred.'/
 'Check your data and your program';
 error=0;
 stop;
 end;
 end;
run;

proc print data=invty.stock noobs;
 title 'INVTY.STOCK Data Set';
run;

288 Chapter 2 • Dictionary of SAS Statements

Output 2.24 The Updated INVTY.STOCK Data Set

Example 8: Replacing and Removing Observations and Writing
Observations to Different SAS Data Sets
This example shows that you can replace and remove (delete) observations and write
observations to different data sets. Further, this example shows that if an OUTPUT,
REPLACE, or REMOVE statement is present, you must specify explicitly what action to
take because no default statement is generated.

The parts that were received in 1997 are output to INVTY.STOCK97 and are removed
from INVTY.STOCK. Likewise, the parts that were received in 1995 are output to
INVTY.STOCK95 and are removed from INVTY.STOCK. Only the parts that were
received in 1996 remain in INVTY.STOCK, and the PRICE is updated only in
INVTY.STOCK.

libname invty 'SAS-library';

data invty.stock invty.stock95 invty.stock97;
 modify invty.stock;
 if recdate>'01jan97'd then do;
 output invty.stock97;
 remove invty.stock;
 end;
 else if recdate<'01jan96'd then do;
 output invty.stock95;
 remove invty.stock;
 end;
 else do;
 price=price*1.1;
 replace invty.stock;

MODIFY Statement 289

 end;
run;

proc print data=invty.stock noobs;
 title 'New Prices for Stock Received in 1996';
run;

Output 2.25 Output from Writing Observations to a SpecificSAS Data Set

See Also
• Chapter 7, “SQL Procedure” in SAS SQL Procedure User's Guide

• Chapter 21, “Reading, Combining, and Modifying SAS Data Sets,” in SAS Language
Reference: Concepts

Statements:

• “MISSING Statement” on page 270

• “OUTPUT Statement” on page 293

• “REMOVE Statement” on page 330

• “REPLACE Statement” on page 333

• “UPDATE Statement” on page 377

Null Statement
Signals the end of data lines or acts as a placeholder.

Valid in: Anywhere

Category: Action

Type: Executable

Syntax
;

290 Chapter 2 • Dictionary of SAS Statements

or

;;;;

Without Arguments
The Null statement signals the end of the data lines that occur in your program.

Details
The primary use of the Null statement is to signal the end of data lines that follow a
DATALINES or CARDS statement. In this case, the Null statement functions as a step
boundary. When your data lines contain semicolons, use the DATALINES4 or CARDS4
statement and a Null statement of four semicolons.

Although the Null statement performs no action, it is an executable statement. Therefore,
a label can precede the Null statement, or you can use it in conditional processing.

Example: Marking the End of Data Lines
• The Null statement in this program marks the end of data lines and functions as a

step boundary.

data test;
 input score1 score2 score3;
 datalines;
55 135 177
44 132 169
;

• The input data records in this example contain semicolons. Use the Null statement
following the DATALINES4 statement to signal the end of the data lines.

data test2;
 input code1 $ code2 $ code3 $;
 datalines4;
55;39;1 135;32;4 177;27;3
78;29;1 149;22;4 179;37;3
;;;;

• The Null statement is useful while you are developing a program. For example, use it
after a statement label to test your program before you code the statements that
follow the label.

data _null_;
 set dsn;
 file print header=header;
 put 'report text';
 ...more statements...
 return;
 header:;
run;

See Also

Statements:

• “DATALINES Statement” on page 56

• “DATALINES4 Statement” on page 58

Null Statement 291

• “GO TO Statement” on page 159

• “LABEL Statement” on page 233

OPTIONS Statement
Specifies or changes the value of one or more SAS system options.

Valid in: Anywhere

Category: Program Control

See: OPTIONS Statement under z/OS

Syntax
OPTIONS option(s);

Arguments
option

specifies one or more SAS system options to be changed.

Details
The change that is made by the OPTIONS statement remains in effect for the rest of the
job, session, SAS process, or until you issue another OPTIONS statement to change the
options again. You can specify SAS system options through the OPTIONS statement,
through the OPTIONS window, at SAS invocation, and at the initiation of a SAS
process.

Note: If you want a particular group of options to be in effect for all your SAS jobs or
sessions, store an OPTIONS statement in an autoexec file or list the system options
in a configuration file or custom_option_set.

Note: For a system option with a null value, the GETOPTION function returns a value
of ' ' (single quotation marks with a blank space between them), for example
EMAILID=' '. This GETOPTION value can then be used in the OPTIONS
statement.

An OPTIONS statement can appear at any place in a SAS program, except within data
lines.

Operating Environment Information
The system options that are available depend on your operating environment. Also,
the syntax that is used to specify a system option in the OPTIONS statement might
be different from the syntax that is used at SAS invocation. For details, see the SAS
documentation for your operating environment.

Comparisons
The OPTIONS statement requires you to enter the complete statement including system
option name and value, if necessary. The SAS OPTIONS window displays the options'
names and settings in columns. To change a setting, type over the value that is displayed
and press ENTER or RETURN.

292 Chapter 2 • Dictionary of SAS Statements

Example: Changing the Value of a System Option
This example suppresses the date that is normally written to SAS LISTING output and
sets a line size of 72:

options nodate linesize=72;

See Also
“Definition of System Options” in Chapter 1 of SAS System Options: Reference

OUTPUT Statement
Writes the current observation to a SAS data set.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
OUTPUT<data-set-name(s)>;

Without Arguments
Using OUTPUT without arguments causes the current observation to be written to all
data sets that are named in the DATA statement.

If a MODIFY statement is present, OUTPUT with no arguments writes the current
observation to the end of the data set that is specified in the MODIFY statement.

Arguments
data-set-name

specifies the name of a data set to which SAS writes the observation.
Restriction: All names specified in the OUTPUT statement must also appear in the

DATA statement.
Tips:

Instead of using a data set name, you can specify the physical pathname to the
file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.
You can specify up to as many data sets in the OUTPUT statement as you
specified in the DATA statement for that DATA step.

Details

When and Where the OUTPUT Statement Writes Observations
The OUTPUT statement tells SAS to write the current observation to a SAS data set
immediately, not at the end of the DATA step. If no data set name is specified in the
OUTPUT statement, the observation is written to the data set or data sets that are listed
in the DATA statement.

OUTPUT Statement 293

Implicit versus Explicit Output
By default, every DATA step contains an implicit OUTPUT statement at the end of each
iteration that tells SAS to write observations to the data set or data sets that are being
created. Placing an explicit OUTPUT statement in a DATA step overrides the automatic
output, and SAS adds an observation to a data set only when an explicit OUTPUT
statement is executed. Once you use an OUTPUT statement to write an observation to
any one data set, however, there is no implicit OUTPUT statement at the end of the
DATA step. In this situation, a DATA step writes an observation to a data set only when
an explicit OUTPUT executes. You can use the OUTPUT statement alone or as part of
an IF-THEN or SELECT statement or in DO-loop processing.

When Using the MODIFY Statement
When you use the MODIFY statement with the OUTPUT statement, the REMOVE and
REPLACE statements override the implicit write action at the end of each DATA step
iteration. See “Comparisons ” on page 294 for more information. If both the OUTPUT
statement and a REPLACE or REMOVE statement execute on a given observation,
perform the output action last to keep the position of the observation pointer correct.

Comparisons
• OUTPUT writes observations to a SAS data set; PUT writes variable values or text

strings to an external file or the SAS log.

• To control when an observation is written to a specified output data set, use the
OUTPUT statement. To control which variables are written to a specified output data
set, use the KEEP= or DROP= data set option in the DATA statement, or use the
KEEP or DROP statement.

• When you use the OUTPUT statement with the MODIFY statement, the following
items apply.

• Using an OUTPUT, REPLACE, or REMOVE statement overrides the default
write action at the end of a DATA step. (OUTPUT is the default action;
REPLACE becomes the default action when a MODIFY statement is used.) If
you use any of these statements in a DATA step, you must explicitly program
output for the new observations that are added to the data set.

• The OUTPUT, REPLACE, and REMOVE statements are independent of each
other. More than one statement can apply to the same observation, as long as the
sequence is logical.

• If both an OUTPUT and a REPLACE or REMOVE statement execute on a given
observation, perform the OUTPUT action last to keep the position of the
observation pointer correct.

Examples

Example 1: Sample Uses of OUTPUT
These examples show how you can use an OUTPUT statement:

• This line of code writes the current observation to a SAS data set.

 output;

• This line of code writes the current observation to a SAS data set when a specified
condition is true.

 if deptcode gt 2000 then output;

294 Chapter 2 • Dictionary of SAS Statements

• This line of code writes an observation to the data set MARKUP when the PHONE
value is missing.

 if phone=. then output markup;

Example 2: Creating Multiple Observations from Each Line of Input
You can create two or more observations from each line of input data. This SAS
program creates three observations in the data set RESPONSE for each observation in
the data set SULFA:

data response(drop=time1-time3);
 set sulfa;
 time=time1;
 output;
 time=time2;
 output;
 time=time3;
 output;
run;

Example 3: Creating Multiple Data Sets from a Single Input File
You can create more than one SAS data set from one input file. In this example,
OUTPUT writes observations to two data sets, OZONE and OXIDES:

data ozone oxides;
 infile file-specification;
 input city $ 1-15 date date9.
 chemical $ 26-27 ppm 29-30;
 if chemical='O3' then output ozone;
 else output oxides;
run;

Example 4: Creating One Observation from Several Lines of Input
You can combine several input observations into one observation. In this example,
OUTPUT creates one observation that totals the values of DEFECTS in the first ten
observations of the input data set:

data discards;
 set gadgets;
 drop defects;
 reps+1;
 if reps=1 then total=0;
 total+defects;
 if reps=10 then do;
 output;
 stop;
 end;
run;

See Also

Statements:

• “DATA Statement” on page 48

• “MODIFY Statement” on page 271

OUTPUT Statement 295

• “PUT Statement” on page 296

• “REMOVE Statement” on page 330

• “REPLACE Statement” on page 333

PAGE Statement
Skips to a new page in the SAS log.

Valid in: Anywhere

Category: Log Control

Syntax
PAGE;

Without Arguments
The PAGE statement skips to a new page in the SAS log.

Details
You can use the PAGE statement when you run SAS in a windowing environment,
batch, or noninteractive mode. The PAGE statement itself does not appear in the log.
When you run SAS in interactive line mode, PAGE might print blank lines to the display
monitor (or to the alternate log file).

See Also

Statements:

• “LIST Statement” on page 258

System Options:

• “LINESIZE= System Option” in SAS System Options: Reference

• “PAGESIZE= System Option” in SAS System Options: Reference

PUT Statement
Writes lines to the SAS log, to the SAS output window, or to an external location that is specified in the
most recent FILE statement.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
PUT <specification(s)> <_ODS_> <@ | @@>;

296 Chapter 2 • Dictionary of SAS Statements

Without Arguments
The PUT statement without arguments is called a null PUT statement. The null PUT
statement

• writes the current output line to the current location, even if the current output line is
blank

• releases an output line that is being held with a trailing @ by a previous PUT
statement.

For an example, see “Example 5: Holding and Releasing Output Lines” on page 311.
For more information, see “Using Line-Hold Specifiers” on page 305.

Arguments
specification(s)

specifies what is written, how it is written, and where it is written. The specification
can include

variable
specifies the variable whose value is written.

Note: Beginning with Version 7, you can specify column-mapped Output
Delivery System variables in the PUT statement. This functionality is
described briefly here in _ODS_ on page 298. It is documented more
completely in the “PUT Statement for ODS ” in SAS Output Delivery System:
User's Guide.

(variable-list)
specifies a list of variables whose values are written.
Requirement: The (format-list) must follow the (variable-list).
See: “PUT Statement, Formatted” on page 316

'character-string'
specifies a string of text, enclosed in quotation marks, to write.
Tips:

To write a hexadecimal string in EBCDIC or ASCII, follow the ending
quotation mark with an x.
If you use single quotation marks ('') or double quotation marks ("") together
(with no space in between them) as the string of text, SAS will output a
´ÿ[Èï�_pî]„m*‹2|KBŸ�fÀ2ýApP�˚¢�A½ï
Ø9º�%¢»²½js9ıÕÉEG˝r¼ÍÔìöéûËA¢Årãsg%ú¢ÂyP¢³�‡0ž¥¿��ýZc}êV>Þ�½Õ⁄˚…,’!;fl�ë%ÅûNÒÛ3‹êÚá�‹�1ç_qj¡”ºi6¡˜ÙàŁóÜOýUÈ
Éº

See: “List Output” on page 302
Example: This statement writes HELLO when the hexadecimal string is

converted to ASCII characters:
put '68656C6C6F'x;

n*
specifies to repeat n times the subsequent character string.
Example: This statement writes a line of 132 underscores.

put 132*'_';

Example: “Example 4: Underlining Text” on page 310

pointer-control
moves the output pointer to a specified line or column in the output buffer.
See:

“Column Pointer Controls ” on page 299
“Line Pointer Controls ” on page 300

PUT Statement 297

column-specifications
specifies which columns of the output line the values are written.
See: “Column Output” on page 302
Example: “Example 2: Moving the Pointer within a Page” on page 307

format.
specifies a format to use when the variable values are written.
See: “Formatted Output” on page 302
Example: “Example 1: Using Multiple Output Styles in One PUT Statement” on

page 307

(format-list)
specifies a list of formats to use when the values of the preceding list of variables
are written.
Restriction: The (format-list) must follow the (variable-list).
See: “PUT Statement, Formatted” on page 316

INFILE
writes the last input data record that is read either from the current input file or
from the data lines that follow a DATELINES statement.
Tips:

INFILE is an automatic variable that references the current INPUT buffer.
You can use this automatic variable in other SAS statements.
If the most recent INPUT statement uses line-pointer controls to read
multiple input data records, PUT _INFILE_ writes only the record that the
input pointer is positioned on.

Example: This PUT statement writes all the values of the first input data record:
input #3 score #1 name $ 6-23;

put _infile_;

Example: “Example 6: Writing the Current Input Record to the Log” on page
311

ALL
writes the values of all variables, which includes automatic variables, that are
defined in the current DATA step by using named output.
See: “Named Output” on page 303

ODS
moves data values for all columns (as defined by the ODS option in the FILE
statement) into a special buffer, from which it is eventually written to the data
component. The ODS option in the FILE statement defines the structure of the data
component that holds the results of the DATA step.
Restriction: Use _ODS_ only if you have previously specified the ODS option in

the FILE statement.
Interaction: _ODS_ writes data to a specific column only if a PUT statement has

not already specified a variable for that column with a column pointer. That is, a
variable specification for a column overrides the _ODS_ option.

Tip: You can use the _ODS_ specification in conjunction with variable
specifications and column pointers, and it can appear anywhere in a PUT
statement.

See: “PUT Statement for ODS ” in SAS Output Delivery System: User's Guide

298 Chapter 2 • Dictionary of SAS Statements

@|@@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.
Restriction: The trailing @ or double trailing @ must be the last item in the PUT

statement.
Tip: Use an @ or @@ to hold the pointer at its current location. The next PUT

statement that executes writes to the same output line rather than to a new output
line.

See: “Using Line-Hold Specifiers” on page 305
Example: “Example 5: Holding and Releasing Output Lines” on page 311

Column Pointer Controls
@n

moves the pointer to column n.
Range: a positive integer
Example: @15 moves the pointer to column 15 before the value of NAME is

written:
put @15 name $10.;

Examples:
“Example 2: Moving the Pointer within a Page” on page 307 and
“Example 4: Underlining Text” on page 310

@numeric-variable
moves the pointer to the column given by the value of numeric-variable.
Range: a positive integer
Tip: If n is not an integer, SAS truncates the decimal portion and uses only the

integer value. If n is zero or negative, the pointer moves to column 1.
Example: The value of the variable A moves the pointer to column 15 before the

value of NAME is written:
a=15;

put @a name $10.;

Example: “Example 2: Moving the Pointer within a Page” on page 307

@(expression)
moves the pointer to the column that is given by the value of expression.
Range: a positive integer
Tip: If the value of expression is not an integer, SAS truncates the decimal value and

uses only the integer value. If it is zero, the pointer moves to column 1.
Example: The result of the expression moves the pointer to column 15 before the

value of NAME is written:
b=5;

put @(b*3) name $10.;

+n
moves the pointer n columns.
Range: a positive integer or zero
Tip: If n is not an integer, SAS truncates the decimal portion and uses only the

integer value.
Example: This statement moves the pointer to column 23, writes a value of

LENGTH in columns 23 through 26, advances the pointer five columns, and
writes the value of WIDTH in columns 32 through 35:

PUT Statement 299

put @23 length 4. +5 width 4.;

+numeric-variable
moves the pointer the number of columns given by the value of numeric-variable.
Range: a positive or negative integer or zero
Tip: If numeric-variable is not an integer, SAS truncates the decimal value and uses

only the integer value. If numeric-variable is negative, the pointer moves
backward. If the current column position becomes less than 1, the pointer moves
to column 1. If the value is zero, the pointer does not move. If the value is greater
than the length of the output buffer, the current line is written out and the pointer
moves to column 1 on the next line.

+(expression)
moves the pointer the number of columns given by expression.
Range: expression must result in an integer
Tip: If expression is not an integer, SAS truncates the decimal value and uses only

the integer value. If expression is negative, the pointer moves backward. If the
current column position becomes less than 1, the pointer moves to column 1. If
the value is zero, the pointer does not move. If the value is greater than the length
of the output buffer, the current line is written out and the pointer moves to
column 1 on the next line.

Example: “Example 2: Moving the Pointer within a Page” on page 307

Line Pointer Controls
#n

moves the pointer to line n and column 1.
Range: a positive integer
Example: The #2 moves the pointer to the second line before the value of ID is

written in columns 3 and 4:
put @12 name $10. #2 id 3-4;

#numeric-variable
moves the pointer to the line given by the value of numeric-variable and to column
1.
Range: a positive integer
Tip: If the value of numeric-variable is not an integer, SAS truncates the decimal

value and uses only the integer value.

#(expression)
moves the pointer to the line that is given by the value of expression and to column
1.
Range: Expression must result in a positive integer.
Tip: If the value of expression is not an integer, SAS truncates the decimal value and

uses only the integer value.

/
advances the pointer to column 1 of the next line.
Example: The values for NAME and AGE are written on one line, and then the

pointer moves to the second line to write the value of ID in columns 3 and 4:
put name age / id 3-4;

Example: “Example 3: Moving the Pointer to a New Page” on page 309

OVERPRINT
causes the values that follow the keyword OVERPRINT to print on the most recently
written output line.

300 Chapter 2 • Dictionary of SAS Statements

Requirement: You must direct the output to a file. Set the N= option in the FILE
statement to 1 and direct the PUT statements to a file.

Tips:
OVERPRINT has no effect on lines that are written to a display.
Use OVERPRINT in combination with column pointer and line pointer controls
to overprint text.

Example: This statement overprints underscores, starting in column 15, which
underlines the title:
put @15 'Report Title' overprint

 @15 '____________';

Example: “Example 4: Underlining Text” on page 310

BLANKPAGE
advances the pointer to the first line of a new page, even when the pointer is
positioned on the first line and the first column of a new page.
Tip: If the current output file contains carriage-control characters, _BLANKPAGE_

produces output lines that contain the appropriate carriage-control character.
Example: “Example 3: Moving the Pointer to a New Page” on page 309

PAGE
advances the pointer to the first line of a new page. SAS automatically begins a new
page when a line exceeds the current PAGESIZE= value.
Tips:

If the current output file is printed, _PAGE_ produces an output line that contains
the appropriate carriage-control character. _PAGE_ has no effect on a file that is
not printed.
If you specify FILE PRINT in an interactive SAS session, then the Output
window interprets the form-feed control characters as page breaks, and they are
removed from the output. The resulting file is a flat file without page break
characters. If a file needs to contain the form-feed characters, then the FILE
statement should include a physical file location and the PRINT option.

Example: “Example 3: Moving the Pointer to a New Page” on page 309

Details

When to Use PUT
Use the PUT statement to write lines to the SAS log, to the SAS output window, or to an
external location. If you do not execute a FILE statement before the PUT statement in
the current iteration of a DATA step, SAS writes the lines to the SAS log. If you specify
the PRINT option in the FILE statement, SAS writes the lines to the SAS output
window.

The PUT statement can write lines that contain variable values, character strings, and
hexadecimal character constants. With specifications in the PUT statement, you specify
what to write, where to write it, and how to format it.

Output Styles

Overview of Output Styles
There are four ways to write variable values with the PUT statement:

• column

• list (simple and modified)

PUT Statement 301

• formatted

• named

A single PUT statement might contain any or all of the available output styles,
depending on how you want to write lines.

Column Output
With column output, the column numbers follow the variable in the PUT statement.
These numbers indicate where in the line to write the following value:

put name 6-15 age 17-19;

These lines are written to the SAS log.

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

----+----1----+----2----+
 Peterson 21
 Morgan 17

The PUT statement writes values for NAME and AGE in the specified columns.See
“PUT Statement, Column” on page 314 for more information.

List Output
With list output, list the variables and character strings in the PUT statement in the order
in which you want to write them. For example, this PUT statement writes the values for
NAME and AGE to the SAS log.

put name age;

Here is the SAS log.

----+----1----+----2----+
Peterson 21
Morgan 17

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

See “PUT Statement, List” on page 319 for more information.

Formatted Output
With formatted output, specify a SAS format or a user-written format after the variable
name. The format gives instructions on how to write the variable value. Formats enable
you to write in a nonstandard form, such as packed decimal, or numbers that contain
special characters such as commas. You can also override the default alignment of the
formatted output by using -L, -C, or -R.

For example, this PUT statement writes the values for NAME, AGE, and DATE to the
SAS log.

put name $char10. age 2. +1 date mmddyy10.;

Here is the SAS log.

----+----1----+----2----+
Peterson 21 07/18/1999
Morgan 17 11/12/1999

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

302 Chapter 2 • Dictionary of SAS Statements

Using a pointer control of +1 inserts a blank space between the values of AGE and
DATE. For more information, see “PUT Statement, Formatted” on page 316.

Named Output
With named output, list the variable name followed by an equal sign. For example, this
PUT statement writes the values for NAME and AGE to the SAS log.

put name= age=;

Here is the SAS log.

----+----1----+----2----+
name=Peterson age=21
name=Morgan age=17

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

See “PUT Statement, Named” on page 324 for more information.

Using Multiple Output Styles in a Single PUT Statement
A PUT statement can combine any or all of the different output styles. Here is an
example.

put name 'on ' date mmddyy8. ' weighs '
 startwght +(-1) '.' idno= 40-45;

See “Example 1: Using Multiple Output Styles in One PUT Statement” on page 307 for
an explanation of the lines written to the SAS log.

When you combine different output styles, it is important to understand the location of
the output pointer after each value is written. For more information about the pointer
location, see “Pointer Location After a Value Is Written” on page 305.

Avoiding a Common Error When Writing Both a Character Constant
and a Variable
When using a PUT statement to write a character constant that is followed by a variable
name, always put a blank space between the closing quotation mark and the variable
name:

put 'Player:' name1 'Player:' name2 'Player:' name3;

Otherwise, SAS might interpret a character constant that is followed by a variable name
as a special SAS constant as illustrated in this table.

Table 2.7 Characters That Cause Misinterpretation When They Follow a Character Constant

Starting Letter of Variable Represents Examples

b bit testing constant '00100000'b

d date constant '01jan04'd

dt datetime constant '18jan2003:9:27:05am'dt

n name literal 'My Table'n

t time constant '9:25:19pm't

PUT Statement 303

Starting Letter of Variable Represents Examples

x hexadecimal notation '534153'x

“Example 7: Avoiding a Common Error When Writing a Character Constant Followed
by a Variable” on page 312 shows how to use character constants followed by variables.
For more information about SAS name literals and SAS constants in expressions, see
SAS Language Reference: Concepts.

Pointer Controls
As SAS writes values with the PUT statement, it keeps track of its position with a
pointer. The PUT statement provides three ways to control the movement of the pointer:

column pointer controls
reset the pointer's column position when the PUT statement starts to write the value
to the output line.

line pointer controls
reset the pointer's line position when the PUT statement writes the value to the
output line.

line-hold specifiers
hold a line in the output buffer so that another PUT statement can write to it. By
default, the PUT statement releases the previous line and writes to a new line.

With column and line pointer controls, you can specify an absolute line number or
column number to move the pointer or you can specify a column or line location that is
relative to the current pointer position. The following table lists all pointer controls that
are available in the PUT statement.

Table 2.8 Pointer Controls Available in the PUT Statement

Pointer Controls Relative Absolute

column pointer
controls

+n @n

+numeric-variable @numeric-variable

+(expression) @(expression)

line pointer controls / , _PAGE_ ,

BLANKPAGE

#n

#numeric-variable

#(expression)

OVERPRINT none

line-hold specifiers @ (not applicable)

@@ (not applicable)

Note: Always specify pointer controls before the variable for which they apply.

See “Pointer Location After a Value Is Written” on page 305 for more information
about how SAS determines the pointer position.

304 Chapter 2 • Dictionary of SAS Statements

Using Line-Hold Specifiers
Line-hold specifiers keep the pointer on the current output line when

• more than one PUT statement writes to the same output line

• a PUT statement writes values from more than one observation to the same output
line.

Without line-hold specifiers, each PUT statement in a DATA step writes a new output
line.

In the PUT statement, trailing @ and double trailing @@ produce the same effect.
Unlike the INPUT statement, the PUT statement does not automatically release a line
that is held by a trailing @ when the DATA step begins a new iteration. SAS releases the
current output line that is held by a trailing @ or double trailing @ when it encounters

• a PUT statement without a trailing @

• a PUT statement that uses _BLANKPAGE_ or _PAGE_

• the end of the current line (determined by the current value of the LRECL= or
LINESIZE= option in the FILE statement, if specified, or the LINESIZE= system
option)

• the end of the last iteration of the DATA step.

Using a trailing @ or double trailing @ can cause SAS to attempt to write past the
current line length because the pointer value is unchanged when the next PUT statement
executes. See “When the Pointer Goes Past the End of a Line” on page 305.

Pointer Location After a Value Is Written
Understanding the location of the output pointer after a value is written is important,
especially if you combine output styles in a single PUT statement. The pointer location
after a value is written depends on which output style you use and whether a character
string or a variable is written. With column or formatted output, the pointer is located in
the first column after the end of the field that is specified in the PUT statement. These
two styles write only variable values.

With list output or named output, the pointer is located in the second column after a
variable value because PUT skips a column automatically after each value is written.
However, when a PUT statement uses list output to write a character string, the pointer is
located in the first column after the string. If you do not use a line pointer control or
column output after a character string is written, add a blank space to the end of the
character string to separate it from the next value.

After an _INFILE_ specification, the pointer is located in the first column after the
record is written from the current input file.

When the output pointer is in the upper left corner of a page,

• PUT _BLANKPAGE_ writes a blank page and moves the pointer to the top of the
next page.

• PUT _PAGE_ leaves the pointer in the same location.

You can determine the current location of the pointer by examining the variables that are
specified with the COLUMN= option and the LINE= option in the FILE statement.

When the Pointer Goes Past the End of a Line
SAS does not write an output line that is longer than the current output line length. The
line length of the current output file is determined by

• the value of the LINESIZE= option in the current FILE statement

PUT Statement 305

• the value of the LINESIZE= system option (for the SAS output window)

• the LRECL= option in the current FILE statement (for external files).

You can inadvertently position the pointer beyond the current line length with one or
more of these specifications:

• a + pointer control with a value that moves the pointer to a column beyond the
current line length

• a column range that exceeds the current line length (for example, PUT X 90 – 100
when the current line length is 80)

• a variable value or character string that does not fit in the space that remains on the
current output line.

By default, when PUT attempts to write past the end of the current line, SAS withholds
the entire item that overflows the current line, writes the current line, and then writes the
overflow item on a new line, starting in column 1. See the FLOWOVER, DROPOVER,
and STOPOVER options in the “FILE Statement” on page 76.

Arrays
You can use the PUT statement to write an array element. The subscript is any SAS
expression that results in an integer when the PUT statement executes. You can use an
array reference in a numeric-variable construction with a pointer control if you enclose
the reference in parentheses, as shown here:

• @(array-name{i})

• +(array-name{i})

• #(array-name{i})

Use the array subscript asterisk (*) to write all elements of a previously defined array to
an external location. SAS allows one-dimensional or multidimensional arrays, but it does
not allow a _TEMPORARY_ array. Enclose the subscript in braces, brackets, or
parentheses, and print the array using list, formatted, column, or named output. With list
output, the form of this statement is

PUT array-name{*};

With formatted output, the form of this statement is

PUT array-name{*}(format|format.list)

The format in parentheses follows the array reference.

Comparisons
• The PUT statement writes variable values and character strings to the SAS log or to

an external location while the INPUT statement reads raw data in external files or
data lines entered instream.

• Both the INPUT and the PUT statements use the trailing @ and double trailing @
line-hold specifiers to hold the current line in the input or output buffer, respectively.
In an INPUT statement, a double trailing @ holds a line in the input buffer from one
iteration of the DATA step to the next. In a PUT statement, however, a trailing @
has the same effect as a double trailing @; both hold a line across iterations of the
DATA step.

• Both the PUT and OUTPUT statements create output in a DATA step. The PUT
statement uses an output buffer and writes output lines to an external location, the
SAS log, or your monitor. The OUTPUT statement uses the program data vector and
writes observations to a SAS data set.

306 Chapter 2 • Dictionary of SAS Statements

Examples

Example 1: Using Multiple Output Styles in One PUT Statement
This example uses several output styles in a single PUT statement:

data club1;
 input idno name $ startwght date : date7.;
 put name 'on ' date mmddyy8. ' weighs '
 startwght +(-1) '.' idno= 32-40;
 datalines;
032 David 180 25nov99
049 Amelia 145 25nov99
219 Alan 210 12nov99
;

The following table shows the output style used for each variable in the example:

Variables Output Style

NAME, STARTWGHT list output

DATE formatted output

IDNO named output

The PUT statement also uses pointer controls and specifies both character strings and
variable names.

The program writes the following lines to the SAS log:

----+----1----+----2----+----3----+----4
David on 11/25/99 weighs 180. idno=1032
Amelia on 11/25/99 weighs 145. idno=1049
Alan on 11/12/99 weighs 210. idno=1219

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

Blank spaces are inserted at the beginning and the end of the character strings to change
the pointer position. These spaces separate the value of a variable from the character
string. The +(-1) pointer control moves the pointer backward to remove the unwanted
blank that occurs between the value of STARTWGHT and the period. For more
information about how to position the pointer, see “Pointer Location After a Value Is
Written” on page 305.

Example 2: Moving the Pointer within a Page
These PUT statements show how to use column and line pointer controls to position the
output pointer.

• To move the pointer to a specific column, use @ followed by the column number,
variable, or expression whose value is that column number. For example, this
statement moves the pointer to column 15 and writes the value of TOTAL SALES
using list output:

put @15 totalsales;

This PUT statement moves the pointer to the value that is specified in COLUMN and
writes the value of TOTALSALES with the COMMA6 format:

PUT Statement 307

data _null_;
 set carsales;
 column=15;
 put @column totalsales comma6.;
run;

• This program shows two techniques to move the pointer backward:

data carsales;
 input item $10. jan : comma5.
 feb : comma5. mar : comma5.;
 saleqtr1=sum(jan,feb,mar);
/* an expression moves pointer backward */
 put '1st qtr sales for ' item
 'is ' saleqtr1 : comma6. +(-1) '.';
/* a numeric variable with a negative
 value moves pointer backward. */
 x=-1;
 put '1st qtr sales for ' item
 'is ' saleqtr1 : comma5. +x '.';
 datalines;
trucks 1,382 2,789 3,556
vans 1,265 2,543 3,987
sedans 2,391 3,011 3,658
;

Because the value of SALEQTR1 is written with modified list output, the pointer
moves automatically two spaces. For more information, see “How Modified List
Output and Formatted Output Differ” on page 322. To remove the unwanted blank
that occurs between the value and the period, move the pointer backward by one
space.

The program writes the following lines to the SAS log:

----+----1----+----2----+----3----+----4
st qtr sales for trucks is 7,727.
st qtr sales for trucks is 7,727.
st qtr sales for vans is 7,795.
st qtr sales for vans is 7,795.
st qtr sales for sedans is 9,060.
st qtr sales for sedans is 9,060.

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

• This program uses a PUT statement with the / line pointer control to advance to the
next output line:

data _null_;
 set carsales end=lastrec;
 totalsales+saleqtr1;
 if lastrec then
 put @2 'Total Sales for 1st Qtr'
 / totalsales 10-15;
run;

After the DATA step calculates TOTALSALES using all the observations in the
CARSALES data set, the PUT statement executes. It writes a character string
beginning in column 2 and moves to the next line to write the value of
TOTALSALES in columns 10 through 15:

308 Chapter 2 • Dictionary of SAS Statements

----+----1----+----2----+----3
 Total Sales for 1st Qtr
 24582

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

Example 3: Moving the Pointer to a New Page
This example creates a data set called STATEPOP, which contains information from the
1990 U.S. census about the population of metropolitan and non-metropolitan areas. It
executes the FORMAT procedure to group the 50 states and the District of Columbia
into four regions. It then uses the IF and PUT statements to control the printed output.

title1;
data statepop;
 input state $ cityp90 ncityp90 region @@;
 label cityp90= '1990 metropolitan population
 (million)'
 ncityp90='1990 nonmetropolitan population
 (million)'
 region= 'Geographic region';
 datalines;
ME .443 .785 1 NH .659 .450 1
VT .152 .411 1 MA 5.788 .229 1
RI .938 .065 1 CT 3.148 .140 1
NY 16.515 1.475 1 NJ 7.730 .A 1
PA 10.083 1.799 1 DE .553 .113 2
MD 4.439 .343 2 DC .607 . 2
VA 4.773 1.414 2 WV .748 1.045 2
NC 4.376 2.253 2 SC 2.423 1.064 2
GA 4.352 2.127 2 FL 12.023 .915 2
KY 1.780 1.906 2 TN 3.298 1.579 2
AL 2.710 1.331 2 MS .776 1.798 2
AR 1.040 1.311 2 LA 3.160 1.060 2
OK 1.870 1.276 2 TX 14.166 2.821 2
OH 8.826 2.021 3 IN 3.962 1.582 3
IL 9.574 1.857 3 MI 7.698 1.598 3
WI 3.331 1.561 3 MN 3.011 1.364 3
IA 1.200 1.577 3 MO 3.491 1.626 3
ND .257 .381 3 SD .221 .475 3
NE .787 .791 3 KS 1.333 1.145 3
MT .191 .608 4 ID .296 .711 4
WY .134 .319 4 CO 2.686 .608 4
NM .842 .673 4 AZ 3.106 .559 4
UT 1.336 .387 4 NV 1.014 .183 4
WA 4.036 .830 4 OR 1.985 .858 4
CA 28.799 .961 4 AK .226 .324 4
HI .836 .272 4
;
proc format;
 value regfmt 1='Northeast'
 2='South'
 3='Midwest'
 4='West';
run;
data _null_;

PUT Statement 309

 set statepop;
 by region;
 pop90=sum(cityp90,ncityp90);
 file print;
 put state 1-2 @5 pop90 7.3 ' million';
 if first.region then
 regioncitypop=0; /* new region */
 regioncitypop+cityp90;
 if last.region then
 do;
 put // '1990 US CENSUS for ' region regfmt.
 / 'Total Urban Population: '
 regioncitypop' million' _page_;
 end;
run;

Output 2.26 PUT Statement Output for the Northeast Region

 1
ME 1.228 million
NH 1.109 million
VT 0.563 million
MA 6.017 million
RI 1.003 million
CT 3.288 million
NY 17.990 million
NJ 7.730 million
PA 11.882 million
1990 US CENSUS for Northeast
Total Urban Population: 45.456 million

PUT _PAGE_ advances the pointer to line 1 of the new page when the value of
LAST.REGION is 1. The example prints a footer message before exiting the page.

Example 4: Underlining Text
This example uses OVERPRINT to underscore a value written by a previous PUT
statement:

data _null_;
 input idno name $ startwght;
 file file-specification print;
 put name 1-10 @15 startwght 3.;
 if startwght > 200 then
 put overprint @15 '___';
 datalines;
032 David 180
049 Amelia 145
219 Alan 210
;

The second PUT statement underlines weights above 200 on the output line the first
PUT statement prints.

This PUT statement uses OVERPRINT with both a column pointer control and a line
pointer control:

 put @5 name $8. overprint @5 8*'_'
 / @20 address;

310 Chapter 2 • Dictionary of SAS Statements

The PUT statement writes a NAME value, underlines it by overprinting eight
underscores, and moves the output pointer to the next line to write an ADDRESS value.

Example 5: Holding and Releasing Output Lines
This DATA step demonstrates how to hold and release an output line with a PUT
statement:

data _null_;
 input idno name $ startwght 3.;
 put name @;
 if startwght ne . then
 put @15 startwght;
 else put;
 datalines;
032 David 180
049 Amelia 145
126 Monica
219 Alan 210
;

In this example,

• the trailing @ in the first PUT statement holds the current output line after the value
of NAME is written

• if the condition is met in the IF-THEN statement, the second PUT statement writes
the value of STARTWGHT and releases the current output line

• if the condition is not met, the second PUT never executes. Instead, the ELSE PUT
statement executes. The ELSE PUT statement releases the output line and positions
the output pointer at column 1 in the output buffer.

The program writes the following lines to the SAS log:

----+----1----+----2
David 180
Amelia 145
Monica
Alan 210

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

Example 6: Writing the Current Input Record to the Log
When a value for ID is less than 1000, PUT _INFILE_ executes and writes the current
input record to the SAS log. The DELETE statement prevents the DATA step from
writing the observation to the TEAM data set.

data team;
 input id team $ score1 score2;
 if id le 1000 then
 do;
 put _infile_;
 delete;
 end;
 datalines;
032 red 180 165
049 yellow 145 124

PUT Statement 311

219 red 210 192
;

The program writes the following line to the SAS log:

----+----1----+----2
219 red 210 192

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

Example 7: Avoiding a Common Error When Writing a Character
Constant Followed by a Variable
This example illustrates how to use a PUT statement to write character constants and
variable values without causing them to be misinterpreted as SAS name literals. A SAS
name literal is a name token that is expressed as a string within quotation marks,
followed by the letter n. For more information about SAS name literals, see SAS
Language Reference: Concepts.

In the program below, the PUT statement writes the constant 'n' followed by the value of
the variable NVAR1, and then writes another constant 'n':

data _null_;
 n=5;
 nvar1=1;
 var1=7;
 put @1 'n' nvar1 'n';
run;

This program writes the following line to the SAS log:

----+----1----+----2
n1 n

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

If all the spaces between the constants and the variables are removed from the previous
PUT statement, SAS interprets 'n' as a name literal instead of reading 'n' as a constant.
The next variable is read as VAR1 instead of NVAR1. The final 'n' constant is
interpreted correctly.

put @1 'n'nvar1'n';

This PUT statement writes the following line to the SAS log:

----+----1----+----2
5 7 n

To print character constants and variable values without intervening spaces, and without
potential misinterpretation, you can add spaces between them and use pointer controls
where necessary. For example, the following PUT statement uses a pointer control to
write the correct character constants and variable values but does not insert blank spaces.
Note that +(-1) moves the PUT statement pointer backwards by one space.

put @1 'n' nvar1 +(-1) 'n';

This PUT statement writes the following line to the SAS log:

----+----1----+----2
n1n

312 Chapter 2 • Dictionary of SAS Statements

Example 8: Creating Multi-Column Output
This example uses the #n and @n column and pointer controls to create multi-column
output.

/*
 * Use #i and @j to position name and weight information into
 * four columns in column-major order. That is print down column 1
 * first, then print down column 2, etc.
 * This example highlights the need to specify # before @ because
 * # sets the column pointer to 1.
 */
data _null_;
 file print n=ps notitles header=hd;

 do i = 1 to 80 by 20;
 do j = 1 to ceil(num_students/4);
 set sashelp.class nobs=num_students;
 put #(j+3) @i name $8. '-' +1 weight 5.1;
 end;
 end;
 stop;

hd:
 put @26 'Student Weight in Pounds' / @26 24*'-';
 return;
run;

The program creates the following output:

 Student Weight in Pounds

Alfred - 112.5 James - 83.0 Joyce - 50.5 Robert - 128.0
Alice - 84.0 Jane - 84.5 Judy - 90.0 Ronald - 133.0
Barbara - 98.0 Janet - 112.5 Louise - 77.0 Thomas - 85.0
Carol - 102.5 Jeffrey - 84.0 Mary - 112.0 William - 112.0
Henry - 102.5 John - 99.5 Philip - 150.0

See Also

Statements:

• “FILE Statement” on page 76

• “PUT Statement, Column” on page 314

• “PUT Statement, Formatted” on page 316

• “PUT Statement, List” on page 319

• “PUT Statement, Named” on page 324

• “PUT Statement for ODS ” in SAS Output Delivery System: User's Guide

System Options:

• “LINESIZE= System Option” in SAS System Options: Reference

• “PAGESIZE= System Option” in SAS System Options: Reference

PUT Statement 313

PUT Statement, Column
Writes variable values in the specified columns in the output line.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
PUT variable start-column <– end-column>
<.decimal–places> <@ | @@>;

Arguments
variable

specifies the variable whose value is written.

start-column
specifies the first column of the field where the value is written in the output line.

–end-column
specifies the last column of the field for the value.
Tip: If the value occupies only one column in the output line, omit end-column.
Example: Because end-column is omitted, the values for the character variable

GENDER occupy only column 16:
put name 1-10 gender 16;

.decimal-places
specifies the number of digits to the right of the decimal point in a numeric value.
Range: positive integer
Tip: If you specify 0 for d or omit d, the value is written without a decimal point.
Example: “Example: Using Column Output in the PUT Statement” on page 315

@| @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.
Requirement: The trailing @ or double trailing @ must be the last item in the PUT

statement.
See: “Using Line-Hold Specifiers” on page 305

Details
With column output, the column numbers indicate the position that each variable value
will occupy in the output line. If a value requires fewer columns than specified, a
character variable is left-aligned in the specified columns, and a numeric variable is
right-aligned in the specified columns.

There is no limit to the number of column specifications that you can make in a single
PUT statement. You can write anywhere in the output line, even if a value overwrites
columns that were written earlier in the same statement. You can combine column
output with any of the other output styles in a single PUT statement. For more

314 Chapter 2 • Dictionary of SAS Statements

information, see “Using Multiple Output Styles in a Single PUT Statement” on page
303.

Example: Using Column Output in the PUT Statement
Use column output in the PUT statement as shown here.

• This PUT statement uses column output:

data _null_;
 input name $ 1-18 score1 score2 score3;
 put name 1-20 score1 23-25 score2 28-30
 score3 33-35;
 datalines;
Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

The program writes the following lines to the SAS log:

----+----1----+----2----+----3----+----4
Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74

Note: The ruled line is for illustrative purposes only; the PUT statement does not
generate it.

The values for the character variable NAME begin in column 1, the left boundary of
the specified field (columns 1 through 20). The values for the numeric variables
SCORE1 through SCORE3 appear flush with the right boundary of their field.

• This statement produces the same output lines, but writes the SCORE1 value first
and the NAME value last:

put score1 23-25 score2 28-30
 score3 33-35 name $ 1-20;

• This DATA step specifies decimal points with column output:

data _null_;
 x=11;
 y=15;
 put x 10-18 .1 y 20-28 .1;
run;

This program writes the following line to the SAS log:

----+----1----+----2----+----3----+----4
 11.0 15.0

See Also

Statements:

• “PUT Statement” on page 296

PUT Statement, Column 315

PUT Statement, Formatted
Writes variable values with the specified format in the output line.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
PUT <pointer-control> variable format. <@ | @@>;

PUT <pointer-control> (variable-list) (format-list)
<@ | @@>;

Arguments
pointer-control

moves the output pointer to a specified line or column.
See:

“Column Pointer Controls ” on page 299
“Line Pointer Controls ” on page 300

Example: “Example 1: Writing a Character between Formatted Values” on page
318

variable
specifies the variable whose value is written.

(variable-list)
specifies a list of variables whose values are written.
Requirement: The (format-list) must follow the (variable-list).
See: “How to Group Variables and Formats” on page 318
Example: “Example 1: Writing a Character between Formatted Values” on page

318

format.
specifies a format to use when the variable values are written. To override the default
alignment, you can add an alignment specification to a format:

-L left aligns the value.

-C centers the value.

-R right aligns the value.

Tip: Ensure that the format width provides enough space to write the value and any
commas, dollar signs, decimal points, or other special characters that the format
includes.

Examples:
This PUT statement uses the format dollar7.2 to write the value of X:

put x dollar7.2;

When X is 100, the formatted value uses seven columns:
$100.00

316 Chapter 2 • Dictionary of SAS Statements

Example: “Example 2: Overriding the Default Alignment of Formatted Values” on
page 318

(format-list)
specifies a list of formats to use when the values of the preceding list of variables are
written. In a PUT statement, a format-list can include

format.
specifies the format to use to write the variable values.
Tip: You can specify either a SAS format or a user-written format.
See: SAS Formats and Informats: Reference

pointer-control
specifies one of these pointer controls to use to position a value: @, #, /, +, and
OVERPRINT.
Example: “Example 1: Writing a Character between Formatted Values” on page

318

character-string
specifies one or more characters to place between formatted values.
Example: This statement places a hyphen between the formatted values of

CODE1, CODE2, and CODE3:
put bldg $ (code1 code2 code3) (3. '-');

Example: “Example 1: Writing a Character between Formatted Values” on page
318

n*
specifies to repeat n times the next format in a format list.
Restriction: The (format-list) must follow (variable-list).
See: “How to Group Variables and Formats” on page 318
Example: This statement uses the 7.2 format to write GRADES1, GRADES2,

and GRADES3 and the 5.2 format to write GRADES4 and GRADES5:
put (grades1-grades5) (3*7.2, 2*5.2);

@| @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.
Restriction: The trailing @ or double trailing @ must be the last item in the PUT

statement.
See: “Using Line-Hold Specifiers” on page 305

Details

Using Formatted Output
The Formatted output describes the output lines by listing the variable names and the
formats to use to write the values. You can use a SAS format or a user-written format to
control how SAS prints the variable values. For a complete description of the SAS
formats, see “Definition of Formats” in Chapter 1 of SAS Formats and Informats:
Reference.

With formatted output, the PUT statement uses the format that follows the variable name
to write each value. SAS does not automatically add blanks between values. If the value
uses fewer columns than specified, character values are left-aligned and numeric values
are right-aligned in the field that is specified by the format width.

PUT Statement, Formatted 317

Formatted output, combined with pointer controls, makes it possible to specify the exact
line and column location to write each variable. For example, this PUT statement uses
the dollar7.2 format and centers the value of X starting at column 12:

put @12 x dollar7.2-c;

How to Group Variables and Formats
When you want to write values in a pattern on the output lines, use format lists to
shorten your coding time. A format list consists of the corresponding formats separated
by either blanks or commas and enclosed in parentheses. It must follow the names of the
variables enclosed in parentheses.

For example, this statement uses a format list to write the five variables SCORE1
through SCORE5, one after another, using four columns for each value with no blanks in
between:

put (score1-score5) (4. 4. 4. 4. 4.);

A shorter version of the previous statement is

put (score1-score5) (4.);

You can include any of the pointer controls (@, #, /, +, and OVERPRINT) in the list of
formats, as well as n*, and a character string. You can use as many format lists as
necessary in a PUT statement, but do not nest the format lists. After all the values in the
variable list are written, the PUT statement ignores any directions that remain in the
format list. For an example, see “Example 3: Including More Format Specifications than
Necessary” on page 319.

You can also specify a reference to all elements in an array as (array-name {*}),
followed by a list of formats. You cannot, however, specify the elements in a
TEMPORARY array in this way. This PUT statement specifies an array name and a
format list:

put (array1{*}) (4.);

For more information about how to reference an array, see “Arrays” on page 306.

Examples

Example 1: Writing a Character between Formatted Values
This example formats some values and writes a - (hyphen) between the values of
variables BLDG and ROOM:

data _null_;
 input name & $15. bldg $ room;
 put name @20 (bldg room) ($1. "-" 3.);
 datalines;
Bill Perkins J 126
Sydney Riley C 219
;

These lines are written to the SAS log:

Bill Perkins J-126
Sydney Riley C-219

Example 2: Overriding the Default Alignment of Formatted Values
This example includes an alignment specification in the format:

318 Chapter 2 • Dictionary of SAS Statements

data _null_;
 input name $ 1-12 score1 score2 score3;
 put name $12.-r +3 score1 3. score2 3.
 score3 4.;
 datalines;
Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

These lines are written to the SAS log:1

----+----1----+----2----+----3----+----4
 Joseph 11 32 76
 Mitchel 13 29 82
 Sue Ellen 14 27 74

The value of the character variable NAME is right-aligned in the formatted field. (Left
alignment is the default for character variables.)

Example 3: Including More Format Specifications than Necessary
This format list includes more specifications than are necessary when the PUT statement
executes:

data _null_;
 input x y z;
 put (x y z) (2.,+1);
 datalines;
2 24 36
0 20 30
;

The PUT statement writes the value of X using the 2. format. Then, the +1 column
pointer control moves the pointer forward one column. Next, the value of Y is written
with the 2. format. Again, the +1 column pointer moves the pointer forward one column.
Then, the value of Z is written with the 2. format. For the third iteration, the PUT
statement ignores the +1 pointer control.

These lines are written to the SAS log: 2

----+----1----+
2 24 36
0 20 30

See Also

Statements:

• “PUT Statement” on page 296

PUT Statement, List
Writes variable values and the specified character strings in the output line.

1 The ruled line is for illustrative purposes only; the PUT statement does not generate it.
2 The ruled line is for illustrative purposes only; the PUT statement does not generate it.

PUT Statement, List 319

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
PUT <pointer-control> variable <@ | @@>;

PUT <pointer-control> <n*> 'character-string'
<@ | @@>;

PUT <pointer-control> variable < : | ~> format.<@ | @@>;

Arguments
pointer-control

moves the output pointer to a specified line or column.
See:

“Column Pointer Controls ” on page 299
“Line Pointer Controls ” on page 300

Example: “Example 2: Writing Character Strings and Variable Values” on page
323

variable
specifies the variable whose value is written.
Example: “Example 1: Writing Values with List Output” on page 322

n*
specifies to repeat n times the subsequent character string.
Example: This statement writes a line of 132 underscores:

put 132*'_';

'character-string'
specifies a string of text, enclosed in quotation marks, to write.
Interaction: When insufficient space remains on the current line to write the entire

text string, SAS withholds the entire string and writes the current line. Then it
writes the text string on a new line, starting in column 1. For more information,
see “When the Pointer Goes Past the End of a Line” on page 305.

Tips:
To avoid misinterpretation, always put a space after a closing quotation mark in a
PUT statement.
If you follow a quotation mark with X, SAS interprets the text string as a
hexadecimal constant.
If you use single quotation (`) or double quotation marks (“) together (with no
space in between them) as the string of text, SAS will output a single quotation
mark (') or double quotation mark (“), respectively.

See: “How List Output Is Spaced” on page 321
Example: “Example 2: Writing Character Strings and Variable Values” on page

323

:
enables you to specify a format that the PUT statement uses to write the variable
value. All leading and trailing blanks are deleted, and each value is followed by a
single blank.

320 Chapter 2 • Dictionary of SAS Statements

Requirement: You must specify a format.
See: “How Modified List Output and Formatted Output Differ” on page 322
Example: “Example 3: Writing Values with Modified List Output (:)” on page 323

~
enables you to specify a format that the PUT statement uses to write the variable
value. SAS displays the formatted value in quotation marks even if the formatted
value does not contain the delimiter. SAS deletes all leading and trailing blanks, and
each value is followed by a single blank. Missing values for character variables are
written as a blank (" ") and, by default, missing values for numeric variables are
written as a period (".").
Requirement: You must specify the DSD option in the FILE statement.
Example: “Example 4: Writing Values with Modified List Output and ~” on page

323

format.
specifies a format to use when the data values are written.
Tip: You can specify either a SAS format or a user-written format. See SAS Formats

and Informats: Reference
Example: “Example 3: Writing Values with Modified List Output (:)” on page 323

@ | @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.
Restriction: The trailing @ or double-trailing @ must be the last item in the PUT

statement.
See: “Using Line-Hold Specifiers” on page 305

Details

Using List Output
With list output, you list the names of the variables whose values you want written, or
you specify a character string in quotation marks. The PUT statement writes a variable
value, inserts a single blank, and then writes the next value. Missing values for numeric
variables are written as a single period. Character values are left-aligned in the field;
leading and trailing blanks are removed. To include blanks (in addition to the blank
inserted after each value), use formatted or column output instead of list output.

There are two types of list output:

• simple list output

• modified list output.

Modified list output increases the versatility of the PUT statement because you can
specify a format to control how the variable values are written. See “Example 3: Writing
Values with Modified List Output (:)” on page 323.

How List Output Is Spaced
List output uses different spacing methods when it writes variable values and character
strings. When a variable is written with list output, SAS automatically inserts a blank
space. The output pointer stops at the second column that follows the variable value.
However, when a character string is written, SAS does not automatically insert a blank
space. The output pointer stops at the column that immediately follows the last character
in the string.

PUT Statement, List 321

To avoid spacing problems when both character strings and variable values are written,
you might want to use a blank space as the last character in a character string. When a
character string that provides punctuation follows a variable value, you need to move the
output pointer backward. Moving the output pointer backward prevents an unwanted
space from appearing in the output line. See “Example 2: Writing Character Strings and
Variable Values” on page 323.

How Modified List Output and Formatted Output Differ
List output and formatted output use different methods to determine how far to move the
pointer after a variable value is written. Therefore, modified list output, which uses
formats, and formatted output produce different results in the output lines. Modified list
output writes the value, inserts a blank space, and moves the pointer to the next column.
Formatted output moves the pointer the length of the format, even if the value does not
fill that length. The pointer moves to the next column; an intervening blank is not
inserted.

The following DATA step uses modified list output to write each output line:

data _null_;
 input x y;
 put x : comma10.2 y : 7.2;
 datalines;
2353.20 7.10
6231 121
;

These lines are written to the SAS log:

----+----1----+----2
2,353.20 7.10
6,231.00 121.00

In comparison, the following example uses formatted output:

put x comma10.2 y 7.2;

These lines are written to the SAS log, with the values aligned in columns:

----+----1----+----2
 2,353.20 7.10
 6,231.00 121.00

Examples

Example 1: Writing Values with List Output
This DATA step uses a PUT statement with list output to write variable values to the
SAS log:

data _null_;
 input name $ 1-10 sex $ 12 age 15-16;
 put name sex age;
 datalines;
Joseph M 13
Mitchel M 14
Sue Ellen F 11
;

These lines are written to the SAS log:

322 Chapter 2 • Dictionary of SAS Statements

----+----1----+----2----+----3----+----4
Joseph M 13
Mitchel M 14
Sue Ellen F 11

By default, the values of the character variable NAME are left-aligned in the field.

Example 2: Writing Character Strings and Variable Values
This PUT statement adds a space to the end of a character string and moves the output
pointer backward to prevent an unwanted space from appearing in the output line after
the variable STARTWGHT:

data _null_;
 input idno name $ startwght;
 put name 'weighs ' startwght +(-1) '.';
 datalines;
032 David 180
049 Amelia 145
219 Alan 210
;

These lines are written to the SAS log:

David weighs 180.
Amelia weighs 145.
Alan weighs 210.

The blank space at the end of the character string changes the pointer position. This
space separates the character string from the value of the variable that follows. The +(-1)
pointer control moves the pointer backward to remove the unwanted blank that occurs
between the value of STARTWGHT and the period.

Example 3: Writing Values with Modified List Output (:)
This DATA step uses modified list output to write several variable values in the output
line using the : argument:

data _null_;
 input salesrep : $10. tot : comma6. date : date9.;
 put 'Week of ' date : worddate15.
 salesrep : $12. 'sales were '
 tot : dollar9. + (-1) '.';
 datalines;
Wong 15,300 12OCT2004
Hoffman 9,600 12OCT2004
;

These lines are written to the SAS log:

Week of Oct 12, 2004 Wong sales were $15,300.
Week of Oct 12, 2004 Hoffman sales were $9,600.

Example 4: Writing Values with Modified List Output and ~
This DATA step uses modified list output to write several variable values in the output
line using the ~ argument:

data _null_;
 input salesrep : $10. tot : comma6. date : date9.;
 file log delimiter=" " dsd;
 put 'Week of ' date ~ worddate15.

PUT Statement, List 323

 salesrep ~ $12. 'sales were '
 tot ~ dollar9. + (-1) '.';
 datalines;
Wong 15,300 12OCT2004
Hoffman 9,600 12OCT2004
;

These lines are written to the SAS log:

Week of "Oct 12, 2004" "Wong" sales were "$15,300".
Week of "Oct 12, 2004" "Hoffman" sales were "$9,600".

See Also

Statements:

• “PUT Statement” on page 296

• “PUT Statement, Formatted” on page 316

PUT Statement, Named
Writes variable values after the variable name and an equal sign.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
PUT <pointer-control> variable= <format.> <@ | @@>;

PUT variable= start-column <-end-column>
<.decimal-places> <@ | @@>;

Arguments
pointer-control

moves the output pointer to a specified line or column in the output buffer.
See:

“Column Pointer Controls ” on page 299
“Line Pointer Controls ” on page 300

variable=
specifies the variable whose value is written by the PUT statement in the form

variable=value

format.
specifies a format to use when the variable values are written.
Tip: Ensure that the format width provides enough space to write the value and any

commas, dollar signs, decimal points, or other special characters that the format
includes.

See: “Formatting Named Output” on page 325
Examples:

324 Chapter 2 • Dictionary of SAS Statements

This PUT statement uses the format DOLLAR7.2 to write the value of X:
put x= dollar7.2;

When X=100, the formatted value uses seven columns:
X=$100.00

start-column
specifies the first column of the field where the variable name, equal sign, and value
are to be written in the output line.

– end-column
determines the last column of the field for the value.
Tip: If the variable name, equal sign, and value require more space than the columns

specified, PUT will write past the end column rather than truncate the value. You
must leave enough space before beginning the next value.

.decimal-places
specifies the number of digits to the right of the decimal point in a numeric value. If
you specify 0 for d or omit d, the value is written without a decimal point.
Range: positive integer

@ | @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.
Restriction: The trailing @ or double trailing @ must be the last item in the PUT

statement.
See: “Using Line-Hold Specifiers” on page 305

Details

Using Named Output
With named output, follow the variable name with an equal sign in the PUT statement.
You can use either list output, column output, or formatted output specifications to
indicate how to position the variable name and values. To insert a blank space between
each variable value automatically, use list output. To align the output in columns, use
pointer controls or column specifications.

Formatting Named Output
You can specify either a SAS format or a user-written format to control how SAS prints
the variable values. The width of the format does not include the columns required by
the variable name and equal sign. To align a formatted value, SAS deletes leading blanks
and writes the variable value immediately after the equal sign. SAS does not align on the
right side of the formatted length, as in unnamed formatted output.

For a complete description of the SAS formats, see “Definition of Formats” in Chapter 1
of SAS Formats and Informats: Reference.

Example: Using Named Output in the PUT Statement
Use named output in the PUT statement as shown here.

• This PUT combines named output with column pointer controls to align the output:

data _null_;
 input name $ 1-18 score1 score2 score3;
 put name = @20 score1= score3= ;

PUT Statement, Named 325

 datalines;
Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

The program writes the following lines to the SAS log:

----+----1----+----2----+----3----+----4
NAME=Joseph SCORE1=11 SCORE3=76
NAME=Mitchel SCORE1=13 SCORE3=82
NAME=Sue Ellen SCORE1=14 SCORE3=74

• This example specifies an output format for the variable AMOUNT:

put item= @25 amount= dollar12.2;

When the value of ITEM is binders and the value of AMOUNT is 153.25, this output
line is produced:

----+----1----+----2----+----3----+----4
ITEM=binders AMOUNT=$153.25

See Also

Statements:

• “PUT Statement” on page 296

PUTLOG Statement
Writes a message to the SAS log.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
PUTLOG 'message';

Arguments
message

specifies the message that you want to write to the SAS log. Message can include
character literals (enclosed in quotation marks), variable names, formats, and pointer
controls.
Tip: You can precede your message text with WARNING, MESSAGE, or NOTE to

better identify the output in the log.

Details
The PUTLOG statement writes a message that you specify to the SAS log. The
PUTLOG statement is also helpful when you use macro-generated code because you can
send output to the SAS log without affecting the current file destination.

326 Chapter 2 • Dictionary of SAS Statements

Comparisons
The PUTLOG statement is similar to the ERROR statement except that PUTLOG does
not set _ERROR_ to 1.

Example: Writing Messages to the SAS Log Using the
PUTLOG Statement
The following program creates the computeAverage92 macro, which computes the
average score, validates input data, and uses the PUTLOG statement to write error
messages to the SAS log. The DATA step uses the PUTLOG statement to write a
warning message to the log.

data ExamScores;
 input Name $ 1-16 Score1 Score2 Score3;
 datalines;
Sullivan, James 86 92 88
Martinez, Maria 95 91 92
Guzik, Eugene 99 98 .
Schultz, John 90 87 93
van Dyke, Sylvia 98 . 91
Tan, Carol 93 85 85
;

filename outfile 'path-to-your-output-file';
 /* Create a macro that computes the average score, validates */
 /* input data, and uses PUTLOG to write error messages to the */
 /* SAS log. */
%macro computeAverage92(s1, s2, s3, avg);
 if &s1 < 0 or &s2 < 0 or &s3 < 0 then
 do;
 putlog 'ERROR: Invalid score data ' &s1= &s2= &s3=;
 &avg = .;
 end;
 else
 &avg = mean(&s1, &s2, &s3);
%mend;
data _null_;
set ExamScores;
 file outfile;
 %computeAverage92(Score1, Score2, Score3, AverageScore);
 put name Score1 Score2 Score3 AverageScore;
 /* Use PUTLOG to write a warning message to the SAS log. */
 if AverageScore < 92 then
 putlog 'WARNING: Score below the minimum ' name= AverageScore= 5.2;
run;

proc print;
run;

The following lines are written to the SAS log.

PUTLOG Statement 327

WARNING: Score below the minimum Name=Sullivan, James AverageScore=88.67
ERROR: Invalid score data Score1=99 Score2=98 Score3=.
WARNING: Score below the minimum Name=Guzik, Eugene AverageScore=.
WARNING: Score below the minimum Name=Schultz, John AverageScore=90.00
ERROR: Invalid score data Score1=98 Score2=. Score3=91
WARNING: Score below the minimum Name=van Dyke, Sylvia AverageScore=.
WARNING: Score below the minimum Name=Tan, Carol AverageScore=87.67

SAS creates the following output file.

Output 2.27 Individual Examination Scores

See Also

Statements:

• “ERROR Statement” on page 74

REDIRECT Statement
Points to different input or output SAS data sets when you execute a stored program.

Valid in: DATA step

Category: Action

Type: Executable

Requirement: You must specify the PGM= option in the DATA statement.

Syntax
REDIRECT INPUT | OUTPUT old-name-1 = new-name-1<…old-name-n = new-name-n>;

Arguments
INPUT | OUTPUT

specifies whether to redirect input or output data sets. When you specify INPUT, the
REDIRECT statement associates the name of the input data set in the source

328 Chapter 2 • Dictionary of SAS Statements

program with the name of another SAS data set. When you specify OUTPUT, the
REDIRECT statement associates the name of the output data set with the name of
another SAS data set.

old-name
specifies the name of the input or output data set in the source program.

new-name
specifies the name of the input or output data set that you want SAS to process for
the current execution.

Details
The REDIRECT statement is available only when you execute a stored program. For
more information about stored programs, see “Stored Compiled DATA Step Programs”
in Chapter 28 of SAS Language Reference: Concepts.

CAUTION:
Use care when you redirect input data sets. The number and attributes of
variables in the input data sets that you read with the REDIRECT statement should
match the number and attributes of variables in the input data sets in the MERGE,
SET, MODIFY, or UPDATE statements of the source code. If the variable type
attributes differ, the stored program stops processing and an appropriate error
message is written to the SAS log. If the variable length attributes differ, the length
of the variable in the source code data set determines the length of the variable in the
redirected data set. Extra variables in the redirected data sets cause the stored
program to stop processing and an error message is written to the SAS log.

T I P The DROP or KEEP data set options can be added in the stored program if the
input data set that you read with the REDIRECT statement has more variables than
are in the data set used to compile the program.

Comparisons
The REDIRECT statement applies only to SAS data sets. To redirect input and output
stored in external files, include a FILENAME statement to associate the fileref in the
source program with different external files.

Example: Executing a Stored Program
This example executes the stored program called STORED.SAMPLE. The REDIRECT
statement specifies the source of the input data as BASE.SAMPLE. The output data set
from this execution of the program is redirected and stored in a data set named
SUMS.SAMPLE.

libname stored 'SAS-library';
libname base 'SAS-library';
libname sums 'SAS-library';
data pgm=stored.sample;
 redirect input in.sample=base.sample;
 redirect output out.sample=sums.sample;
run;

See Also
• “Stored Compiled DATA Step Programs” in Chapter 28 of SAS Language

Reference: Concepts

REDIRECT Statement 329

Statements:

• “DATA Statement” on page 48

REMOVE Statement
Deletes an observation from a SAS data set.

Valid in: DATA step

Category: Action

Type: Executable

Restriction: Use only with a MODIFY statement.

Syntax
REMOVE <data-set-name(s)>;

Without Arguments
If you specify no argument, the REMOVE statement deletes the current observation
from all data sets that are named in the DATA statement.

Arguments
data-set-name

specifies the data set in which the observation is deleted.
Restriction: The data set name must also appear in the DATA statement and in one

or more MODIFY statements.
Tip: Instead of using a data set name, you can specify the physical pathname to the

file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

Details
The deletion of an observation can be physical or logical, depending on the engine that
maintains the data set. Using REMOVE overrides the default replacement of
observations. If a DATA step contains a REMOVE statement, you must explicitly
program all output for the step.

Comparisons
• Using an OUTPUT, REPLACE, or REMOVE statement overrides the default write

action at the end of a DATA step. (OUTPUT is the default action; REPLACE
becomes the default action when a MODIFY statement is used.) If you use any of
these statements in a DATA step, you must explicitly program all output for new
observations.

• The OUTPUT, REPLACE, and REMOVE statements are independent of each other.
More than one statement can apply to the same observation, as long as the sequence
is logical.

• If both an OUTPUT and a REPLACE or REMOVE statement execute on a given
observation, perform the OUTPUT action last to keep the position of the observation
pointer correct.

330 Chapter 2 • Dictionary of SAS Statements

• Because the REMOVE statement can perform a physical or a logical deletion,
REMOVE is available with the MODIFY statement for all SAS data set engines.
Both the DELETE and subsetting IF statements perform only physical deletions.
Therefore, they are not available with the MODIFY statement for certain engines.

Example: Removing an Observation from a Data Set
This example removes one observation from a SAS data set.

libname perm 'SAS-library';

data perm.accounts;
 input AcctNumber Credit;
 datalines;
1001 1500
1002 4900
1003 3000
;
data perm.accounts;
 modify perm.accounts;
 if AcctNumber=1002 then remove;
run;
proc print data=perm.accounts;
 title 'Edited Data Set';
run;

Here are the results of the PROC PRINT statement:

Output 2.28 Edited Data Set

See Also

Statements:

• “DELETE Statement” on page 59

• “IF Statement, Subsetting” on page 161

• “MODIFY Statement” on page 271

• “OUTPUT Statement” on page 293

• “REPLACE Statement” on page 333

RENAME Statement
Specifies new names for variables in output SAS data sets.

RENAME Statement 331

Valid in: DATA step

Category: Information

Type: Declarative

Syntax
RENAME old-name-1=new-name-1…<old-name-n=new-name-n>;

Arguments
old-name

specifies the name of a variable or variable list as it appears in the input data set, or
in the current DATA step for newly created variables.

new-name
specifies the name or list to use in the output data set.

Details
The RENAME statement enables you to change the names of one or more variables,
variables in a list, or a combination of variables and variable lists. The new variable
names are written to the output data set only. Use the old variable names in
programming statements for the current DATA step. RENAME applies to all output data
sets.

Note: The RENAME statement has an effect on data sets opened in output mode only.

Comparisons
• RENAME cannot be used in PROC steps, but the RENAME= data set option can.

• The RENAME= data set option enables you to specify the variables that you want to
rename for each input or output data set. Use it in input data sets to rename variables
before processing.

• If you use the RENAME= data set option in an output data set, you must continue to
use the old variable names in programming statements for the current DATA step.
After your output data is created, you can use the new variable names.

• The RENAME= data set option in the SET statement renames variables in the input
data set. You can use the new names in programming statements for the current
DATA step.

• To rename variables as a file management task, use the DATASETS procedure or
access the variables through the SAS windowing interface. These methods are
simpler and do not require DATA step processing.

Example: Renaming Data Set Variables
• These examples show the correct syntax for renaming variables using the RENAME

statement:

rename street=address;
rename time1=temp1 time2=temp2 time3=temp3;
rename name=Firstname score1-score3=Newscore1-Newscore3;

332 Chapter 2 • Dictionary of SAS Statements

• This example uses the old name of the variable in program statements. The variable
Olddept is named Newdept in the output data set, and the variable Oldaccount is
named Newaccount.

rename Olddept=Newdept Oldaccount=Newaccount;
if Oldaccount>5000;
keep Olddept Oldaccount items volume;

• This example uses the old name OLDACCNT in the program statements. However,
the new name NEWACCNT is used in the DATA statement because SAS applies the
RENAME statement before it applies the KEEP= data set option.

data market(keep=newdept newaccnt items volume);
 rename olddept=newdept oldaccnt=newaccnt;
 set sales;
 if oldaccnt>5000;
run;

• The following example uses both a variable and a variable list to rename variables.
New variable names appear in the output data set.

data temp;
 input (score1-score3) (2.,+1) name $;
 rename name=Firstname
 score1-score3=Newscore1-Newscore3;
 datalines;
12 24 36 Lisa
22 44 66 Fran
;

See Also

Data Set Options:

• “RENAME= Data Set Option” in SAS Data Set Options: Reference

REPLACE Statement
Replaces an observation in the same location.

Valid in: DATA step

Category: Action

Type: Executable

Restriction: Use only with a MODIFY statement.

Syntax
REPLACE <data-set-name-1> <…data-set-name-n>;

Without Arguments
If you specify no argument, the REPLACE statement writes the current observation to
the same physical location from which it was read in all data sets that are named in the
DATA statement.

REPLACE Statement 333

Arguments
data-set-name

specifies the data set to which the observation is written.
Requirement: The data set name must also appear in the DATA statement and in

one or more MODIFY statements.
Tip: Instead of using a data set name, you can specify the physical pathname to the

file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

Details
Using an explicit REPLACE statement overrides the default replacement of
observations. If a DATA step contains a REPLACE statement, explicitly program all
output for the step.

Comparisons
• Using an OUTPUT, REPLACE, or REMOVE statement overrides the default write

action at the end of a DATA step. (OUTPUT is the default action; REPLACE
becomes the default action when a MODIFY statement is used.) If you use any of
these statements in a DATA step, you must explicitly program output of a new
observation for the step.

• The OUTPUT, REPLACE, and REMOVE statements are independent of each other.
More than one statement can apply to the same observation, as long as the sequence
is logical.

• If both an OUTPUT and a REPLACE or REMOVE statement execute on a given
observation, perform the OUTPUT action last to keep the position of the observation
pointer correct.

• REPLACE writes the observation to the same physical location. OUTPUT writes a
new observation to the end of the data set.

• REPLACE can appear only in a DATA step that contains a MODIFY statement. You
can use OUTPUT with or without MODIFY.

Example: Replacing Observations
This example updates phone numbers in data set MASTER with values in data set
TRANS. It also adds one new observation at the end of data set MASTER. The SYSRC
autocall macro tests the value of _IORC_ for each attempted retrieval from MASTER.
(SYSRC is part of the SAS autocall macro library.) The resulting SAS data set appears
after the code:

data master;
 input FirstName $ id $ PhoneNumber;
 datalines;
Kevin ABCjkh 904
Sandi defsns 905
Terry ghitDP 951
Jason jklJWM 962
;
data trans;
 input FirstName $ id $ PhoneNumber;
 datalines;
. ABCjkh 2904

334 Chapter 2 • Dictionary of SAS Statements

. defsns 2905
Madeline mnombt 2983
;
data master;
 modify master trans;
 by id;
 /* obs found in master */
 /* change info, replace */
 if _iorc_ = %sysrc(_sok) then replace;
 /* obs not in master */
 else if _iorc_ = %sysrc(_dsenmr) then
 do;
 /* reset _error_ */
 error=0;
 /* reset _iorc_ */
 iorc=0;
 /* output obs to master */
 output;
 end;
run;
proc print data=master;
 title 'MASTER with New Phone Numbers';
run;

Output 2.29 Data Set with Replaced Observations

See Also

Statements:

• “MODIFY Statement” on page 271

• “OUTPUT Statement” on page 293

• “REMOVE Statement” on page 330

RESETLINE Statement
Restarts the program line numbers in the SAS log to 1.

Valid in: Anywhere

RESETLINE Statement 335

Category: Log Control

Type: Executable

Syntax
RESETLINE;

Without Arguments
Use the RESETLINE statement to reset the program line numbers in the SAS log to 1.

Details
Program statements are identified by line numbers in the SAS log. The line numbers
start with 1 and continue with the sequence of line numbering until the end of the SAS
session or batch program.

You use the RESETLINE statement in your program to restart the program line
numbering at 1.

Note: If you use the SPOOL system option, you can use only the %INCLUDE
statement to resubmit lines of code that were submitted after the most recent
RESETLINE statement.

Example: Resetting Line Numbers in the SAS Log
The following example resets the program line numbers between DATA steps.

data a;
 a=1;
run;
resetline;
data b;
 b=2;
run;

The following lines are written to the SAS log:

1 data a;
2 a=1;
3 run;

NOTE: The data set WORK.A has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 4.79 seconds
 cpu time 0.28 seconds

4
5 resetline;
1
2 data b;
3 b=2;
4 run;

NOTE: The data set WORK.B has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

336 Chapter 2 • Dictionary of SAS Statements

RETAIN Statement
Causes a variable that is created by an INPUT or assignment statement to retain its value from one
iteration of the DATA step to the next.

Valid in: DATA step

Category: Information

Type: Declarative

Syntax
RETAIN <element-list(s) <initial-value(s) | (initial-value-1) | (initial-value-list-1) >
<…element-list-n<initial-value-n | (initial-value-n) | (initial-value-list-n)>>> ;

Without Arguments
If you do not specify an argument, the RETAIN statement causes the values of all
variables that are created with INPUT or assignment statements to be retained from one
iteration of the DATA step to the next.

Arguments
element-list

specifies variable names, variable lists, or array names whose values you want
retained.
Tips:

If you specify _ALL_,_CHAR_, or _NUMERIC_, only the variables that are
defined before the RETAIN statement are affected.
If a variable name is specified only in the RETAIN statement and you do not
specify an initial value, the variable is not written to the data set, and a note
stating that the variable is uninitialized is written to the SAS log. If you specify
an initial value, the variable is written to the data set.

initial-value
specifies an initial value, numeric or character, for one or more of the preceding
elements.
Tip: If you omit initial-value, the initial value is missing. Initial-value is assigned to

all the elements that precede it in the list. All members of a variable list,
therefore, are given the same initial value.

See: (initial-value) and (initial-value-list)

(initial-value)
specifies an initial value, numeric or character, for a single preceding element or for
the first in a list of preceding elements.

(initial-value-list)
specifies an initial value, numeric or character, for individual elements in the
preceding list. SAS matches the first value in the list with the first variable in the list
of elements, the second value with the second variable, and so on.

Element values are enclosed in quotation marks. To specify one or more initial
values directly, use the following format:

(initial-value(s))

RETAIN Statement 337

To specify an iteration factor and nested sublists for the initial values, use the
following format:

<constant-iter-value*> <(>constant value | constant-sublist<)>
Restriction: If you specify both an initial-value-list and an element-list, then

element-list must be listed before initial-value-list in the RETAIN statement.
Tips:

You can separate initial values by blank spaces or commas.
You can also use a shorthand notation for specifying a range of sequential
integers. The increment is always +1.
You can assign initial values to both variables and temporary data elements.
If there are more variables than initial values, the remaining variables are
assigned an initial value of missing and SAS issues a warning message.

Details

Default DATA Step Behavior
Without a RETAIN statement, SAS automatically sets variables that are assigned values
by an INPUT or assignment statement to missing before each iteration of the DATA
step.

Assigning Initial Values
Use a RETAIN statement to specify initial values for individual variables, a list of
variables, or members of an array. If a value appears in a RETAIN statement, variables
that appear before it in the list are set to that value initially. (If you assign different initial
values to the same variable by naming it more than once in a RETAIN statement, SAS
uses the last value.) You can also use RETAIN to assign an initial value other than the
default value of 0 to a variable whose value is assigned by a sum statement.

Redundancy
It is redundant to name any of these items in a RETAIN statement, because their values
are automatically retained from one iteration of the DATA step to the next:

• variables that are read with a SET, MERGE, MODIFY or UPDATE statement

• a variable whose value is assigned in a sum statement

• the automatic variables _N_, _ERROR_, _I_, _CMD_, and _MSG_

• variables that are created by the END= or IN= option in the SET, MERGE,
MODIFY, or UPDATE statement or by options that create variables in the FILE and
INFILE statements

• data elements that are specified in a temporary array

• array elements that are initialized in the ARRAY statement

• elements of an array that have assigned initial values to any or all of the elements in
the ARRAY statement.

You can, however, use a RETAIN statement to assign an initial value to any of the
previous items, with the exception of _N_ and _ERROR_.

Comparisons
The RETAIN statement specifies variables whose values are not set to missing at the
beginning of each iteration of the DATA step. The KEEP statement specifies variables
that are to be included in any data set that is being created.

338 Chapter 2 • Dictionary of SAS Statements

Examples

Example 1: Basic Usage
• This RETAIN statement retains the values of variables MONTH1 through MONTH5

from one iteration of the DATA step to the next:

retain month1-month5;

• This RETAIN statement retains the values of nine variables and sets their initial
values:

retain month1-month5 1 year 0 a b c 'XYZ';

The values of MONTH1 through MONTH5 are set initially to 1; YEAR is set to 0;
variables A, B, and C are each set to the character value XYZ.

• This RETAIN statement assigns the initial value 1 to the variable MONTH1 only:

retain month1-month5 (1);

Variables MONTH2 through MONTH5 are set to missing initially.

• This RETAIN statement retains the values of all variables that are defined earlier in
the DATA step but not the values that are defined afterwards:

retain _all_;

• All of these statements assign initial values of 1 through 4 to VAR1 through VAR4:

• retain var1-var4 (1 2 3 4);

• retain var1-var4 (1,2,3,4);

• retain var1-var4(1:4);

Example 2: Overview of the RETAIN Operation
This example shows how to use variable names and array names as elements in the
RETAIN statement and shows assignment of initial values with and without parentheses:

data _null_;
 array City{3} $ City1-City3;
 array cp{3} Citypop1-Citypop3;
 retain Year Taxyear 1999 City ' '
 cp (10000,50000,100000);
 file file-specification print;
 put 'Values at beginning of DATA step:'
 / @3 _all_ /;
 input Gain;
 do i=1 to 3;
 cp{i}=cp{i}+Gain;
 end;
 put 'Values after adding Gain to city populations:'
 / @3 _all_;
 datalines;
5000
10000
;

Here are the initial values assigned by RETAIN:

• Year and Taxyear are assigned the initial value 1999.

• City1, City2, and City3 are assigned missing values.

RETAIN Statement 339

• Citypop1 is assigned the value 10000.

• Citypop2 is assigned 50000.

• Citypop3 is assigned 100000.

Here are the lines written by the PUT statements:

Values at beginning of DATA step:
 City1= City2= City3= Citypop1=10000
 Citypop2=50000 Citypop3=100000
Year=1999 Taxyear=1999 Gain=. i=.
ERROR=0_N_=1
Values after adding GAIN to city populations:
 City1= City2= City3= Citypop1=15000
 Citypop2=55000 Citypop3=105000
Year=1999 Taxyear=1999 Gain=5000 i=4
ERROR=0_N_=1
Values at beginning of DATA step:
 City1= City2= City3= Citypop1=15000
 Citypop2=55000 Citypop3=105000
Year=1999 Taxyear=1999 Gain=. i=.
ERROR=0_N_=2
Values after adding GAIN to city populations:
 City1= City2= City3= Citypop1=25000
 Citypop2=65000 Citypop3=115000
Year=1999 Taxyear=1999 Gain=10000 i=4
ERROR=0_N_=2
Values at beginning of DATA step:
 City1= City2= City3= Citypop1=25000
 Citypop2=65000 Citypop3=115000
Year=1999 Taxyear=1999 Gain=. i=.
ERROR=0_N_=3

The first PUT statement is executed three times, whereas the second PUT statement is
executed only twice. The DATA step ceases execution when the INPUT statement
executes for the third time and reaches the end of the file.

Example 3: Selecting One Value from a Series of Observations
In this example, the data set ALLSCORES contains several observations for each
identification number and variable ID. Different observations for a particular ID value
might have different values of the variable GRADE. This example creates a new data
set, CLASS.BESTSCORES, which contains one observation for each ID value. The
observation must have the highest GRADE value of all observations for that ID in
BESTSCORES.

libname class 'SAS-library';
proc sort data=class.allscores;
 by id;
run;
data class.bestscores;
 drop grade;
 set class.allscores;
 by id;
 /* Prevents HIGHEST from being reset*/
 /* to missing for each iteration. */
 retain highest;
 /* Sets HIGHEST to missing for each */
 /* different ID value. */
 if first.id then highest=.;
 /* Compares HIGHEST to GRADE in */

340 Chapter 2 • Dictionary of SAS Statements

 /* current iteration and resets */
 /* value if GRADE is higher. */
 highest=max(highest,grade);
 if last.id then output;
run;

See Also

Statements:

• “Assignment Statement” on page 30

• “BY Statement” on page 35

• “INPUT Statement” on page 199

RETURN Statement
Stops executing statements at the current point in the DATA step and returns to a predetermined point in
the step.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
RETURN;

Without Arguments
The RETURN statement causes execution to stop at the current point in the DATA step,
and returns control to a previous DATA step statement.

Details
The point to which SAS returns depends on the order in which statements are executed
in the DATA step.

The RETURN statement is often used with the

• GO TO statement

• HEADER= option in the FILE statement

• LINK statement.

When RETURN causes a return to the beginning of the DATA step, an implicit
OUTPUT statement writes the current observation to any new data sets (unless the
DATA step contains an explicit OUTPUT statement, or REMOVE or REPLACE
statements with MODIFY statements). Every DATA step has an implied RETURN as its
last executable statement.

RETURN Statement 341

Example: Basic Usage
In this example, when the values of X and Y are the same, SAS executes the RETURN
statement and adds the observation to the data set. When the values of X and Y are not
equal, SAS executes the remaining statements and then adds the observation to the data
set.

data survey;
 input x y;
 if x=y then return;
 put x= y=;
 datalines;
21 25
20 20
7 17
;

See Also

Statements:

• “FILE Statement” on page 76

• “GO TO Statement” on page 159

• “LINK Statement” on page 256

RUN Statement
Executes the previously entered SAS statements.

Valid in: Anywhere

Category: Program Control

Syntax
RUN <CANCEL>;

Without Arguments
Without arguments, the RUN statement executes the previously entered SAS statements.

Arguments
CANCEL

terminates the current step without executing it. SAS prints a message that indicates
that the step was not executed.

CAUTION:
The CANCEL option does not prevent execution of a DATA step that
contains a DATALINES or DATALINES4 statement.

CAUTION:
The CANCEL option has no effect when you use the KILL option with PROC
DATASETS.

342 Chapter 2 • Dictionary of SAS Statements

Details
Although the RUN statement is not required between steps in a SAS program, using it
creates a step boundary and can make the SAS log easier to read.

Examples

Example 1: Executing SAS Statements
This RUN statement marks a step boundary and executes this PROC PRINT step:

proc print data=report;
 title 'Status Report';
run;

Example 2: Using the CANCEL Option
This example shows the usefulness of the CANCEL option in a line prompt mode
session. The fourth statement in the DATA step contains an invalid value for PI (4.13
instead of 3.14). RUN with CANCEL ends the DATA step and prevents it from
executing.

data circle;
 infile file-specification;
 input radius;
 c=2*4.13*radius;
run cancel;

The following message is written to the SAS log:

WARNING: DATA step not executed at user's request.

%RUN Statement
Ends source statements following a %INCLUDE * statement.

Valid in: Anywhere

Category: Program Control

Syntax
%RUN;

Without Arguments
The %RUN statement causes SAS to stop reading input from the keyboard (including
subsequent SAS statements on the same line as %RUN) and resume reading from the
previous input source.

Details
Using the %INCLUDE statement with an asterisk specifies that you enter source lines
from the keyboard.

Note: The asterisk (*) cannot be used to specify keyboard entry if you use the Enhanced
Editor in the Microsoft Windows operating environment.

%RUN Statement 343

Comparisons
The RUN statement executes previously entered DATA or PROC steps. The %RUN
statement ends the prompting for source statements and returns program control to the
original source program, when you use the %INCLUDE statement to allow data to be
entered from the keyboard.

The type of prompt that you use depends on how you run the SAS session. The include
operation is most useful in interactive line and noninteractive modes, but it can also be
used in windowing and batch mode. When you are running SAS in batch mode, include
the %RUN statement in the external file that is referenced by the SASTERM fileref.

Example: Entering Source Lines from the Keyboard
To request keyboard-entry source on a %INCLUDE statement, follow the statement with
an asterisk:

%include *;

Note: The asterisk (*) cannot be used to specify keyboard entry if you use the Enhanced
Editor in the Microsoft Windows operating environment.

When it executes this statement, SAS prompts you to enter source lines from the
keyboard. When you finish entering code from the keyboard, type the following
statement to return processing to the program that contains the %INCLUDE statement.

%run;

See Also

Statements:

• “%INCLUDE Statement” on page 164

• “RUN Statement” on page 342

SASFILE Statement
Opens a SAS data set and allocates enough buffers to hold the entire file in memory.

Valid in: Anywhere

Category: Program Control

Restriction: A SAS data set opened by the SASFILE statement can be used for subsequent input
(read) or update processing but not for output or utility processing.

See: “SASFILE Statement: z/OS” in SAS Companion for z/OS in SAS Companion for
z/OS

Syntax
SASFILE <libref.> member-name<.member-type> <(password-option(s))>
OPEN | LOAD | CLOSE;

344 Chapter 2 • Dictionary of SAS Statements

Arguments
libref

a name that is associated with a SAS library. The libref (library reference) must be a
valid SAS name. The default libref is either USER (if assigned) or WORK (if USER
not assigned).
Restriction: The libref cannot represent a concatenation of SAS libraries that

contain a library in sequential format.

member-name
a valid SAS name that is a SAS data file (a SAS data set with the member type
DATA) that is a member of the SAS library associated with the libref.
Restriction: The SAS data set must have been created with the V7, V8, or V9 Base

SAS engine.

member-type
the type of SAS file to be opened. Valid value is DATA, which is the default.

password-option(s)
specifies one or more of the following password options:

READ=password
enables the SASFILE statement to open a read-protected file. The password must
be a valid SAS name.

WRITE=password
enables the SASFILE statement to use the WRITE password to open a file that is
both read-protected and write-protected. The password must be a valid SAS
name.

ALTER=password
enables the SASFILE statement to use the ALTER password to open a file that is
both read-protected and alter-protected. The password must be a valid SAS
name.

PW=password
enables the SASFILE statement to use the password to open a file that is
assigned for all levels of protection. The password must be a valid SAS name.

Tip: When SASFILE is executed, SAS checks whether the file is read-protected.
Therefore, if the file is read-protected, you must include the READ= password in
the SASFILE statement. If the file is either write-protected or alter-protected, you
can use a WRITE=, ALTER=, or PW= password. However, the file is opened
only in input (read) mode. For subsequent processing, you must specify the
necessary password or passwords. See “Example 2: Specifying Passwords with
the SASFILE Statement” on page 349.

OPEN
opens the file, allocates the buffers, but defers reading the data into memory until a
procedure, statement, or application is executed.

LOAD
opens the file, allocates the buffers, and reads the data into memory.

Note: If the total number of allowed buffers is less than the number of buffers
required for the file based on the number of data set pages and index file pages,
SAS issues a warning to tell you how many pages are read into memory.

CLOSE
frees the buffers and closes the file.

SASFILE Statement 345

Details

General Information
The SASFILE statement opens a SAS data set and allocates enough buffers to hold the
entire file in memory. Once it is read, data is held in memory, available to subsequent
DATA and PROC steps or applications, until either a second SASFILE statement closes
the file and frees the buffers or the program ends, which automatically closes the file and
frees the buffers.

Using the SASFILE statement can improve performance by

• reducing multiple open or close operations (including allocation and freeing of
memory for buffers) to process a SAS data set to one open or close operation

• reducing I/O processing by holding the data in memory.

If your SAS program consists of steps that read a SAS data set multiple times and you
have an adequate amount of memory so that the entire file can be held in real memory,
the program should benefit from using the SASFILE statement. Also, SASFILE is
especially useful as part of a program that starts a SAS server such as a SAS/SHARE
server. However, as with most performance-improvement features, it is suggested that
you set up a test in your environment to measure performance with and without the
SASFILE statement.

Processing a SAS Data Set Opened with SASFILE
When the SASFILE statement executes, SAS opens the specified file. Then when
subsequent DATA and PROC steps execute, SAS does not have to open the file for each
request; the file remains open until a second SASFILE statement closes it or the program
or session ends.

When a SAS data set is opened by the SASFILE statement, the file is opened for input
processing and can be used for subsequent input or update processing. However, the file
cannot be used for subsequent utility or output processing, because utility and output
processing requires exclusive access to the file (member-level locking). For example,
you cannot replace the file or rename its variables.

The following table provides a list of some SAS procedures and statements and specifies
whether they are allowed if the file is opened by the SASFILE statement:

Table 2.9 Processing Requests for a File Opened by SASFILE

Processing Request Open Mode Allowed

APPEND procedure update Yes

DATA step that creates or
replaces the file

output No

DATASETS procedure to
rename or add a variable, add
or change a label, or add or
remove integrity constraints or
indexes

utility No

DATASETS procedure with
AGE, CHANGE, or DELETE
statements

does not open the file but
requires exclusive access

No

346 Chapter 2 • Dictionary of SAS Statements

Processing Request Open Mode Allowed

FSEDIT procedure update Yes

PRINT procedure input Yes

SORT procedure that replaces
original data set with sorted
one

output No

SQL procedure to modify,
add, or delete observations

update Yes

SQL procedure with CREATE
TABLE or CREATE VIEW
statement

output No

SQL procedure to create or
remove integrity constraints or
indexes

utility No

Buffer Allocation
A buffer is a reserved area of memory that holds a segment of data while it is processed.
The number of allocated buffers determines how much data can be held in memory at
one time.

The number of buffers is not a permanent attribute of a SAS file. That is, it is valid only
for the current SAS session or job. When a SAS file is opened, a default number of
buffers for processing the file is set. The default depends on the operating environment
but typically is a small number such as one buffer. To specify a different number of
buffers, you can use the BUFNO= data set option or system option.

When the SASFILE statement is executed, SAS automatically allocates the number of
buffers based on the number of data set pages and index file pages (if an index file
exists). For example:

• If the number of data set pages is five and there is not an index file, SAS allocates
five buffers.

• If the number of data set pages is 500 and the number of index file pages is 200, SAS
allocates 700 buffers.

If a file that is held in memory increases in size during processing, the number of
allocated buffers increases to accommodate the file. Note that if SASFILE is executed
for a SAS data set, the BUFNO= option is ignored.

I/O Processing
An I/O (input/output) request reads a segment of data from a storage device (such as
disk) and transfers the data to memory, or conversely transfers the data from memory
and writes it to the storage device. When a SAS data set is opened by the SASFILE
statement, data is read once and held in memory, which should reduce the number of I/O
requests.

CAUTION:
I/O processing can be reduced only if there is sufficient real memory. If the SAS
data set is very large, you might not have sufficient real memory to hold the entire
file. If insufficient memory exists, your operating environment can simulate more

SASFILE Statement 347

memory than actually exists, which is virtual memory. If virtual memory occurs, data
access I/O requests are replaced with swapping I/O requests, which could result in no
performance improvement. In addition, both SAS and your operating environment
have a maximum amount of memory that can be allocated, which could be exceeded
by the needs of your program. If your program needs exceed the memory that is
available, the number of allocated buffers might be decreased to the default
allocation in order to free memory.

T I P To determine how much memory a SAS data set requires, execute the
CONTENTS procedure for the file to list its page size, the number of data set pages,
the index file size, and the number of index file pages.

Using the SASFILE Statement in a SAS/SHARE Environment
The following are considerations for using the SASFILE statement with SAS/SHARE
software:

• You must execute the SASFILE statement before you execute the PROC SERVER
statement.

• If the client (the computer on which you use a SAS session to access a SAS/SHARE
server) executes the SASFILE statement, it is rejected.

• Once the SASFILE statement is executed, all users who subsequently open the file
will access the data held in memory instead of data that is stored on the disk.

• Once the SASFILE statement is executed, you cannot close the file and free the
buffers until the SAS/SHARE server is terminated.

• You can use the ALLOCATE SASFILE command for the PROC SERVER
statement as an alternative that brings part of the file into memory (controlled by the
BUFNO= option).

• If the SASFILE statement is executed and you execute ALLOCATE SASFILE
specifying a value for BUFNO= that is a larger number of buffers than allocated by
SASFILE, performance will not be improved.

Comparisons
• Use the BUFNO= system option or data set option to specify a specific number of

buffers.

• With SAS/SHARE software, you can use the ALLOCATE SASFILE command for
the PROC SERVER statement to bring part of the file into memory (controlled by
the BUFNO= option).

Examples

Example 1: Using SASFILE in a Program with Multiple Steps
The following SAS program illustrates the process of opening a SAS data set,
transferring its data to memory, and reading that data held in memory for multiple tasks.
The program is consists of steps that read the file multiple times.

libname mydata 'SAS-library';
sasfile mydata.census.data open; 1
data test1;
 set mydata.census; 2
run;
data test2;

348 Chapter 2 • Dictionary of SAS Statements

 set mydata.census; 3
run;
proc summary data=mydata.census print; 4
run;
data mydata.census; 5
 modify mydata.census;
 .
 . (statements to modify data)
 .
run;
sasfile mydata.census close; 6

1 Opens SAS data set MYDATA.CENSUS, and allocates the number of buffers based
on the number of data set pages and index file pages.

2 Reads all pages of MYDATA.CENSUS, and transfers all data from disk to memory.

3 Reads MYDATA.CENSUS a second time, but this time from memory without
additional I/O requests.

4 Reads MYDATA.CENSUS a third time, again from memory without additional I/O
requests.

5 Reads MYDATA.CENSUS a fourth time, again from memory without additional I/O
requests. If the MODIFY statement successfully changes data in memory, the
changed data is transferred from memory to disk at the end of the DATA step.

6 Closes MYDATA.CENSUS, and frees allocated buffers.

Example 2: Specifying Passwords with the SASFILE Statement
The following SAS program illustrates using the SASFILE statement and specifying
passwords for a SAS data set that is both read-protected and alter-protected:

libname mydata 'SAS-data-data-library';
sasfile mydata.census (read=gizmo) open; 1
proc print data=mydata.census (read=gizmo); 2
run;
data mydata.census;
 modify mydata.census (alter=luke); 3
 .
 . (statements to modify data)
 .
run;

1 The SASFILE statement specifies the READ password, which is sufficient to open
the file.

2 In the PRINT procedure, the READ password must be specified again.

3 The ALTER password is used in the MODIFY statement, because the data set is
being updated.

Note: It is acceptable to use the higher-level ALTER password instead of the READ
password in the above example.

See Also
• For information about using the SASFILE statement in a SAS/SHARE environment,

see “The SERVER Procedure” in Chapter 9 of SAS/SHARE User's Guide.

Data Set Options:

SASFILE Statement 349

• “BUFNO= Data Set Option” in SAS Data Set Options: Reference

System Options:

• “BUFNO= System Option” in SAS System Options: Reference

SELECT Statement
Executes one of several statements or groups of statements.

Valid in: DATA step

Category: Control

Type: Executable

Syntax
SELECT <(select-expression)> ;

WHEN-1 (when-expression-1 <…, when-expression-n>) statement;
<…WHEN-n (when-expression-1<…,when-expression-n>) statement;>

<OTHERWISE statement;>

END;

Arguments
(select-expression)

specifies any SAS expression that evaluates to a single value.
See: “Evaluating the when-expression When a select-expression Is Included” on

page 351

(when-expression)
specifies any SAS expression, including a compound expression. SELECT requires
you to specify at least one when-expression.
Tips:

Separating multiple when-expressions with a comma is equivalent to separating
them with the logical operator OR.
The way a when-expression is used depends on whether a select-expression is
present.

See: “Evaluating the when-expression When a select-expression Is Not Included”
on page 351

statement
can be any executable SAS statement, including DO, SELECT, and null statements.
You must specify the statement argument.

Details

Using WHEN Statements in a SELECT Group
The SELECT statement begins a SELECT group. SELECT groups contain WHEN
statements that identify SAS statements that are executed when a particular condition is
true. Use at least one WHEN statement in a SELECT group. An optional OTHERWISE

350 Chapter 2 • Dictionary of SAS Statements

statement specifies a statement to be executed if no WHEN condition is met. An END
statement ends a SELECT group.

Null statements that are used in WHEN statements cause SAS to recognize a condition
as true without taking further action. Null statements that are used in OTHERWISE
statements prevent SAS from issuing an error message when all WHEN conditions are
false.

Evaluating the when-expression When a select-expression Is
Included
If the select-expression is present, SAS evaluates the select-expression and when-
expression. SAS compares the two for equality and returns a value of true or false. If the
comparison is true, statement is executed. If the comparison is false, execution proceeds
either to the next when-expression in the current WHEN statement, or to the next WHEN
statement if no more expressions are present. If no WHEN statements remain, execution
proceeds to the OTHERWISE statement, if one is present. If the result of all SELECT-
WHEN comparisons is false and no OTHERWISE statement is present, SAS issues an
error message and stops executing the DATA step.

Evaluating the when-expression When a select-expression Is Not
Included
If no select-expression is present, the when-expression is evaluated to produce a result of
true or false. If the result is true, statement is executed. If the result is false, SAS
proceeds to the next when-expression in the current WHEN statement, or to the next
WHEN statement if no more expressions are present, or to the OTHERWISE statement
if one is present. (That is, SAS performs the action that is indicated in the first true
WHEN statement.) If the result of all when-expressions is false and no OTHERWISE
statement is present, SAS issues an error message. If more than one WHEN statement
has a true when-expression, only the first WHEN statement is used. Once a when-
expression is true, no other when-expressions are evaluated.

Processing Large Amounts of Data with %INCLUDE Files
One way to process large amounts of data is to use %INCLUDE statements in your
DATA step. Using %INCLUDE statements enables you to perform complex processing
while keeping your main program manageable. The %INCLUDE files that you use in
your main program can contain WHEN statements and other SAS statements to process
your data. See “Example 5: Processing Large Amounts of Data” on page 352 for an
example.

Comparisons
Use IF-THEN/ELSE statements for programs with few statements. Use subsetting IF
statements without a THEN clause to continue processing only those observations or
records that meet the condition that is specified in the IF clause.

Examples

Example 1: Using Statements
select (a);
 when (1) x=x*10;
 when (2);
 when (3,4,5) x=x*100;

SELECT Statement 351

 otherwise;
end;

Example 2: Using DO Groups
select (payclass);
 when ('monthly') amt=salary;
 when ('hourly')
 do;
 amt=hrlywage*min(hrs,40);
 if hrs>40 then put 'CHECK TIMECARD';
 end; /* end of do */
 otherwise put 'PROBLEM OBSERVATION';
end; /* end of select */

Example 3: Using a Compound Expression
select;
 when (mon in ('JUN', 'JUL', 'AUG')
 and temp>70) put 'SUMMER ' mon=;
 when (mon in ('MAR', 'APR', 'MAY'))
 put 'SPRING ' mon=;
 otherwise put 'FALL OR WINTER ' mon=;
end;

Example 4: Making Comparisons for Equality
 /* INCORRECT usage to select value of 2 */
select (x);
 /* evaluates T/F and compares for */
 /* equality with x */
 when (x=2) put 'two';
end;
 /* correct usage */
select(x);
 /* compares 2 to x for equality */
 when (2) put 'two';
end;
 /* correct usage */
select;
 /* compares 2 to x for equality */
 when (x=2) put 'two';
end;

Example 5: Processing Large Amounts of Data
In the following example, the %INCLUDE statements contain code that includes WHEN
statements to process new and old items in the inventory. The main program shows the
overall logic of the DATA step.

data test (keep=ItemNumber);
 set ItemList;
 select;
 %include NewItems;
 %include OldItems;
 otherwise put 'Item ' ItemNumber ' is not in the inventory.';
 end;
run;

352 Chapter 2 • Dictionary of SAS Statements

See Also

Statements:

• “DO Statement” on page 64

• “IF Statement, Subsetting” on page 161

• “IF-THEN/ELSE Statement” on page 163

SET Statement
Reads an observation from one or more SAS data sets.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
SET<SAS-data-set(s)<(data-set-options(s))>>

<options>;

Without Arguments
When you do not specify an argument, the SET statement reads an observation from the
most recently created data set.

Arguments
SAS-data-set (s)

specifies a one-level name, a two-level name, or one of the special SAS data set
names.
Tips:

You can specify data set lists. For more information, see “Using Data Set Lists
with SET” on page 357.
Instead of using a data set name, you can specify the physical pathname to the
file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

See: See “SAS Data Sets” in Chapter 25 of SAS Language Reference: Concepts for
a description of the levels of SAS data set names and when to use each level.

Example: “Example 13: Using Data Set Lists” on page 362

(data-set-options)
specifies actions SAS is to take when it reads variables or observations into the
program data vector for processing.
Tip: Data set options that apply to a data set list apply to all of the data sets in the

list.
See: Refer to “Definition of Data Set Options” in Chapter 1 of SAS Data Set

Options: Reference for a list of the data set options to use with input data sets.

SET Statement 353

SET Options
END=variable

creates and names a temporary variable that contains an end-of-file indicator. The
variable, which is initialized to zero, is set to 1 when SET reads the last observation
of the last data set listed. This variable is not added to any new data set.
Restriction: END= cannot be used with POINT=. When random access is used, the

END= variable is never set to 1.
Interaction: If you use a BY statement, END= is set to 1 when the SET statement

reads the last observation of the interleaved data set. For more information, see
“BY-Group Processing with SET” on page 358.

Example: “Example 11: Writing an Observation Only After All Observations Have
Been Read” on page 361

KEY=index</UNIQUE>
provides nonsequential access to observations in a SAS data set, which are based on
the value of an index variable or a key.
Range: Specify the name of a simple or a composite index of the data set that is

being read.
Restriction: KEY= cannot be used with POINT=.
Tip: Using the _IORC_ automatic variable in conjunction with the SYSRC autocall

macro provides you with more error-handling information than was previously
available. When you use the SET statement with the KEY= option, the new
automatic variable _IORC_ is created. This automatic variable is set to a return
code that shows the status of the most recent I/O operation that is performed on
an observation in a SAS data set. If the KEY= value is not found, the _IORC_
variable returns a value that corresponds to the SYSRC autocall macro's
mnemonic _DSENOM and the automatic variable _ERROR_ is set to 1.

See:
For more information, see the description of the autocall macro SYSRC in SAS
Macro Language: Reference.
UNIQUE option on page 356

Examples:
“Example 7: Performing a Table Lookup” on page 360
“Example 8: Performing a Table Lookup When the Master File Contains
Duplicate Observations” on page 361

CAUTION: Continuous loops can occur when you use the KEY= option. If you
use the KEY= option without specifying the primary data set, you must include
either a STOP statement to stop DATA step processing, or programming logic
that uses the _IORC_ automatic variable in conjunction with the SYSRC autocall
macro and checks for an invalid value of the _IORC_ variable, or both.

INDSNAME=variable
creates and names a variable that stores the name of the SAS data set from which the
current observation is read. The stored name can be a data set name or a physical
name. The physical name is the name by which the operating environment
recognizes the file.
Tips:

For data set names, SAS adds the library name to the variable value (for
example, WORK.PRICE) and converts the two-level name to uppercase.
Unless previously defined, the length of the variable is set to 41 bytes. Use a
LENGTH statement to make the variable length long enough to contain the value
of the physical filename if the filename is longer than 41 bytes.

354 Chapter 2 • Dictionary of SAS Statements

If the variable is previously defined as a character variable with a specific length,
that length is not changed. If the value placed into the INDSNAME variable is
longer than that length, then the value is truncated.
If the variable is previously defined as a numeric variable, an error will occur.
The variable is available in the DATA step, but the variable is not added to any
output data set.

Example: “Example 12: Retrieving the Name of the Data Set from Which the
Current Observation Is Read” on page 362

NOBS=variable
creates and names a temporary variable whose value is usually the total number of
observations in the input data set or data sets. If more than one data set is listed in the
SET statement, NOBS= the total number of observations in the data sets that are
listed. The number of observations includes those observations that are marked for
deletion but are not yet deleted.
Restriction: For certain SAS views, SAS cannot determine the number of

observations. In these cases, SAS sets the value of the NOBS= variable to the
largest positive integer value that is available in your operating environment.

Interaction: The NOBS= and POINT= options are independent of each other.
Tip: At compilation time, SAS reads the descriptor portion of each data set and

assigns the value of the NOBS= variable automatically. Thus, you can refer to
the NOBS= variable before the SET statement. The variable is available in the
DATA step but is not added to any output data set.

Example: “Example 10: Performing a Function until the Last Observation Is
Reached” on page 361

OPEN=(IMMEDIATE | DEFER)
enables you to delay the opening of any concatenated SAS data sets until they are
ready to be processed.

IMMEDIATE
during the compilation phase, opens all data sets that are listed in the SET
statement.
Restriction: When you use the IMMEDIATE option KEY=, POINT=, and BY

statement processing are mutually exclusive.
Tip: If a variable on a subsequent data set is of a different type (character versus

numeric, for example) than the type of the same-named variable on the first
data set, the DATA step will stop processing and produce an error message.

DEFER
opens the first data set during the compilation phase, and opens subsequent data
sets during the execution phase. When the DATA step reads and processes all
observations in a data set, it closes the data set and opens the next data set in the
list.
Restriction: When you specify the DEFER option, you cannot use the KEY=

statement option, the POINT= statement option, or the BY statement. These
constructs imply either random processing or interleaving of observations
from the data sets, which is not possible unless all data sets are open.

Requirement: You can use the DROP=, KEEP=, or RENAME= data set options
to process a set of variables, but the set of variables that are processed for
each data set must be identical. In most cases, if the set of variables defined
by any subsequent data set differs from the variables defined by the first data
set, SAS prints a warning message to the log but does not stop execution.
• If a variable on a subsequent data set is of a different type (character

versus numeric, for example) than the type of the same-named variable

SET Statement 355

on the first data set, the DATA step will stop processing and produce an
error message.

• If a variable on a subsequent data set was not defined by the first data set
in the SET statement, but was defined previously in the DATA step
program, the DATA step will stop processing and produce an error
message. In this case, the value of the variable in previous iterations
might be incorrect because the semantic behavior of SET requires this
variable to be set to missing when processing the first observation of the
first data set.

Default: IMMEDIATE

POINT=variable
specifies a temporary variable whose numeric value determines which observation is
read. POINT= causes the SET statement to use random (direct) access to read a SAS
data set.
Restrictions:

You cannot use POINT= with a BY statement, a WHERE statement, or a
WHERE= data set option. In addition, you cannot use it with transport format
data sets, data sets in sequential format on tape or disk, and SAS/ACCESS views
or the SQL procedure views that read data from external files.
You cannot use POINT= with KEY=.

Requirement: a STOP statement
Tips:

You must supply the values of the POINT= variable. For example, you can use
the POINT= variable as the index variable in some form of the DO statement.
The POINT= variable is available anywhere in the DATA step, but it is not
added to any new SAS data set.

Examples:
“Example 6: Combining One Observation with Many” on page 360
“Example 9: Reading a Subset by Using Direct Access” on page 361

CAUTION: Continuous loops can occur when you use the POINT= option.
When you use the POINT= option, you must include a STOP statement to stop
DATA step processing, programming logic that checks for an invalid value of the
POINT= variable, or both. Because POINT= reads only those observations that
are specified in the DO statement, SAS cannot read an end-of-file indicator as it
would if the file were being read sequentially. Because reading an end-of-file
indicator ends a DATA step automatically, failure to substitute another means of
ending the DATA step when you use POINT= can cause the DATA step to go
into a continuous loop. If SAS reads an invalid value of the POINT= variable, it
sets the automatic variable _ERROR_ to 1. Use this information to check for
conditions that cause continuous DO-loop processing, or include a STOP
statement at the end of the DATA step, or both.

UNIQUE
causes a KEY= search always to begin at the top of the index for the data set that is
being read.
Restriction: UNIQUE can appear only with the KEY= argument and must be

preceded by a slash.
Notes:

By default, SET begins searching at the top of the index only when the KEY=
value changes.
If the KEY= value does not change on successive executions of the SET
statement, the search begins by following the most recently retrieved

356 Chapter 2 • Dictionary of SAS Statements

observation. In other words, when consecutive duplicate KEY= values appear,
the SET statement attempts a one-to-one match with duplicate indexed values in
the data set that is being read. If more consecutive duplicate KEY= values are
specified than exist in the data set that is being read, the extra duplicates are
treated as not found.
When KEY= is a unique value, only the first attempt to read an observation with
that key value succeeds; subsequent attempts to read the observation with that
value of the key will fail. The _IORC_ variable returns a value that corresponds
to the SYSRC autocall macro's mnemonic _DSENOM. If you add the /UNIQUE
option, subsequent attempts to read the observation with the unique KEY= value
will succeed. The _IORC_ variable returns a 0.

See: For extensive examples, see Combining and Modifying SAS Data Sets:
Examples

Example: “Example 8: Performing a Table Lookup When the Master File Contains
Duplicate Observations” on page 361

Details

What SET Does
Each time the SET statement is executed, SAS reads one observation into the program
data vector. SET reads all variables and all observations from the input data sets unless
you tell SAS to do otherwise. A SET statement can contain multiple data sets; a DATA
step can contain multiple SET statements. See Combining and Modifying SAS Data Sets:
Examples.

Note: When the DATA step comes to an end-of-file marker or the end of all open data
sets, it will perform an orderly shutdown. For example, if you use SET with
FIRSTOBS, a file with only a header record in a series of files will trigger a normal
shutdown of the DATA step. The shutdown occurs because SAS reads beyond the
end-of-file marker and the DATA step terminates. You can use the END= option to
avoid the shutdown.

Uses
The SET statement is flexible and has a variety of uses in SAS programming. These uses
are determined by the options and statements that you use with the SET statement:

• reading observations and variables from existing SAS data sets for further processing
in the DATA step

• concatenating and interleaving data sets, and performing one-to-one reading of data
sets

• reading SAS data sets by using direct access methods.

Using Data Set Lists with SET
You can use data set lists with the SET statement. Data set lists provide a quick way to
reference existing groups of data sets. These data set lists must be either name prefix
lists or numbered range lists.

Name prefix lists refer to all data sets that begin with a specified character string. For
example, set SALES1:; tells SAS to read all data sets starting with "SALES1" such
as SALES1, SALES10, SALES11, and SALES12.

Numbered range lists require you to have a series of data sets with the same name,
except for the last character or characters, which are consecutive numbers. In a

SET Statement 357

numbered range list, you can begin with any number and end with any number. For
example, these lists refer to the same data sets:

sales1 sales2 sales3 sales4
sales1-sales4

Note: If the numeric suffix of the first data set name contains leading zeros, the number
of digits in the numeric suffix of the last data set name must be greater than or equal
to the number of digits in the first data set name. Otherwise, an error will occur. For
example, the data set lists sales001–sales99 and sales01–sales9 will cause an error.
The data set list sales001–sales999 is valid. If the numeric suffix of the first data set
name does not contain leading zeros, the number of digits in the numeric suffix of
the first and last data set names do not have to be equal. For example, the data set list
sales1–sales999 is valid.

Some other rules to consider when using numbered data set lists are as follows:

• You can specify groups of ranges.

set cost1-cost4 cost11-cost14 cost21-cost24;

• You can mix numbered range lists with name prefix lists.

set cost1-cost4 cost2: cost33-37;

• You can mix single data sets with data set lists.

set cost1 cost10-cost20 cost30;

• Quotation marks around data set lists are ignored.

/* these two lines are the same */
set sales1 - sales4;
set 'sales1'n - 'sales4'n;

• Spaces in data set names are invalid. If quotation marks are used, trailing blanks are
ignored.

/* blanks in these statements will cause errors */
set sales 1 - sales 4;
set 'sales 1'n - 'sales 4'n;
/* trailing blanks in this statement will be ignored */
set 'sales1 'n - 'sales4 'n;

• The maximum numeric suffix is 2147483647.

/* this suffix will cause an error */
set prod2000000000-prod2934850239;

BY-Group Processing with SET
Only one BY statement can accompany each SET statement in a DATA step. The BY
statement should immediately follow the SET statement to which it applies. The data
sets that are listed in the SET statement must be sorted by the values of the variables that
are listed in the BY statement, or they must have an appropriate index. SET, when it is
used with a BY statement, interleaves data sets. The observations in the new data set are
arranged by the values of the BY variable or variables, and within each BY group, by the
order of the data sets in which they occur. See “Example 2: Interleaving SAS Data Sets”
on page 359 for an example of BY-group processing with the SET statement.

Combining SAS Data Sets
Use a single SET statement with multiple data sets to concatenate the specified data sets.
That is, the number of observations in the new data set is the sum of the number of

358 Chapter 2 • Dictionary of SAS Statements

observations in the original data sets, and the order of the observations is all the
observations from the first data set followed by all the observations from the second data
set, and so on. See “Example 1: Concatenating SAS Data Sets” on page 359 for an
example of concatenating data sets.

Use a single SET statement with a BY statement to interleave the specified data sets.
The observations in the new data set are arranged by the values of the BY variable or
variables, and within each BY group, by the order of the data sets in which they occur.
See “Example 2: Interleaving SAS Data Sets” on page 359 for an example of
interleaving data sets.

Use multiple SET statements to perform one-to-one reading (also called one-to-one
matching) of the specified data sets. The new data set contains all the variables from all
the input data sets. The number of observations in the new data set is the number of
observations in the smallest original data set. If the data sets contain common variables,
the values that are read in from the last data set replace the values that were read in from
earlier ones. For examples of one-to-one reading of data sets, see

• “Example 6: Combining One Observation with Many” on page 360

• “Example 7: Performing a Table Lookup” on page 360

• “Example 8: Performing a Table Lookup When the Master File Contains Duplicate
Observations” on page 361

For extensive examples, see Combining and Modifying SAS Data Sets: Examples.

For more information about how to prepare your data sets, see “Combining SAS Data
Sets: Basic Concepts” in Chapter 21 of SAS Language Reference: Concepts.

Comparisons
• SET reads an observation from an existing SAS data set. INPUT reads raw data from

an external file or from in-stream data lines in order to create SAS variables and
observations.

• Using the KEY= option with SET enables you to access observations
nonsequentially in a SAS data set according to a value. Using the POINT= option
with SET enables you to access observations nonsequentially in a SAS data set
according to the observation number.

Examples

Example 1: Concatenating SAS Data Sets
If more than one data set name appears in the SET statement, the resulting output data
set is a concatenation of all the data sets that are listed. SAS reads all observations from
the first data set, then all from the second data set, and so on, until all observations from
all the data sets have been read. This example concatenates the three SAS data sets into
one output data set named FITNESS:

data fitness;
 set health exercise well;
run;

Example 2: Interleaving SAS Data Sets
To interleave two or more SAS data sets, use a BY statement after the SET statement:

data april;
 set payable recvable;

SET Statement 359

 by account;
run;

Example 3: Reading a SAS Data Set
In this DATA step, each observation in the data set NC.MEMBERS is read into the
program data vector. Only those observations whose value of CITY is Raleigh are
output to the new data set RALEIGH.MEMBERS:

data raleigh.members;
 set nc.members;
 if city='Raleigh';
run;

Example 4: Merging a Single Observation with All Observations in a
SAS Data Set
An observation to be merged into an existing data set can be one that is created by a SAS
procedure or another DATA step. In this example, the data set AVGSALES has only one
observation:

data national;
 if _n_=1 then set avgsales;
 set totsales;
run;

Example 5: Reading from the Same Data Set More than Once
In this example, SAS treats each SET statement independently. That is, it reads from one
data set as if it were reading from two separate data sets:

data drugxyz;
 set trial5(keep=sample);
 if sample>2;
 set trial5;
run;

For each iteration of the DATA step, the first SET statement reads one observation. The
next time the first SET statement is executed, it reads the next observation. Each SET
statement can read different observations with the same iteration of the DATA step.

Example 6: Combining One Observation with Many
You can subset observations from one data set and combine them with observations
from another data set by using direct access methods, as follows:

data south;
 set revenue;
 if region=4;
 set expense point=_n_;
run;

Example 7: Performing a Table Lookup
This example illustrates using the KEY= option to perform a table lookup. The DATA
step reads a primary data set that is named INVTORY and a lookup data set that is
named PARTCODE. It uses the index PARTNO to read PARTCODE nonsequentially,
by looking for a match between the PARTNO value in each data set. The purpose is to
obtain the appropriate description, which is available only in the variable DESC in the
lookup data set, for each part that is listed in the primary data set:

360 Chapter 2 • Dictionary of SAS Statements

data combine;
 set invtory(keep=partno instock price);
 set partcode(keep=partno desc) key=partno;
run;

Example 8: Performing a Table Lookup When the Master File
Contains Duplicate Observations
This example uses the KEY= option to perform a table lookup. The DATA step reads a
primary data set that is named INVTORY, which is indexed on PARTNO, and a lookup
data set named PARTCODE. PARTCODE contains quantities of new stock (variable
NEW_STK). The UNIQUE option ensures that, if there are any duplicate observations
in INVTORY, values of NEW_STK are added only to the first observation of the group:

data combine;
 set partcode(keep=partno new_stk);
 set invtory(keep=partno instock price)
 key=partno/unique;
 instock=instock+new_stk;
run;

Example 9: Reading a Subset by Using Direct Access
These statements select a subset of 50 observations from the data set DRUGTEST by
using the POINT= option to access observations directly by number:

data sample;
 do obsnum=1 to 100 by 2;
 set drugtest point=obsnum;
 if _error_ then abort;
 output;
 end;
 stop;
run;

Example 10: Performing a Function until the Last Observation Is
Reached
These statements use NOBS= to set the termination value for DO-loop processing. The
value of the temporary variable LAST is the sum of the observations in SURVEY1 and
SURVEY2:

do obsnum=1 to last by 100;
 set survey1 survey2 point=obsnum nobs=last;
 output;
end;
stop;

Example 11: Writing an Observation Only After All Observations
Have Been Read
This example uses the END= variable LAST to tell SAS to assign a value to the variable
REVENUE and write an observation only after the last observation of RENTAL has
been read:

set rental end=last;
totdays + days;
if last then
 do;

SET Statement 361

 revenue=totdays*65.78;
 output;
 end;

Example 12: Retrieving the Name of the Data Set from Which the
Current Observation Is Read
This example creates three data sets and stores the data set name in a variable named
dsn. The name is split into three parts and the example prints out the results.

/* Create some data sets to read */
data gas_price_option; value=395; run;
data gas_rbid_option; value=840; run;
data gas_price_forward; value=275; run;
/* Create a data set D */
data d;
 set gas_price_option gas_rbid_option gas_price_forward indsname=dsn;
 /* split the data set names into 3 parts */
 commodity = scan (dsn, 2, "._");
 type = scan (dsn, 3, "._");
 instrument = scan (dsn, 4, "._");
 run;
proc print data=d;
run;

Output 2.30 Data Set Name Split into Three Parts

Example 13: Using Data Set Lists
This example uses a numbered range list to input the data sets.

data dept008; emp=13; run;
data dept009; emp=9; run;
data dept010; emp=4; run;
data dept011; emp=33; run;
data _null_;
 set dept008-dept010;
 put _all_;
run;

The following lines are written to the SAS log.

362 Chapter 2 • Dictionary of SAS Statements

Log 2.3 Using a Data Set List with the SET Statement

1 data dept008; emp=13; run;
NOTE: The data set WORK.DEPT008 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.06 seconds
 cpu time 0.03 seconds

2 data dept009; emp=9; run;
NOTE: The data set WORK.DEPT009 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

3 data dept010; emp=4; run;
NOTE: The data set WORK.DEPT010 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

4 data dept011; emp=33; run;
NOTE: The data set WORK.DEPT011 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

5
6 data _null_;
7 set dept008-dept010;
8 put _all_;
9 run;
emp=13 _ERROR_=0_N_=1
emp=9 _ERROR_=0_N_=2
emp=4 _ERROR_=0_N_=3
NOTE: There were 1 observations read from the data set WORK.DEPT008.
NOTE: There were 1 observations read from the data set WORK.DEPT009.
NOTE: There were 1 observations read from the data set WORK.DEPT010.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

In addition, you could use data set lists to find missing data sets. This example uses a
numbered range list to locate the missing data sets. An error occurs for each data set that
does not exist. Once you know which data sets are missing, you can correct the SET
statement to reflect the data sets that actually exist.

data dept008; emp=13; run;
data dept009; emp=9; run;
data dept011; emp=4; run;
data dept014; emp=33; run;
data _null_;
 set dept008-dept014;
 put _all_;
run;

The following lines are written to the SAS log.

SET Statement 363

Log 2.4 Finding Missing Data Sets Using the SET Statement

1 data dept008; emp=13; run;
NOTE: The data set WORK.DEPT008 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.04 seconds
 cpu time 0.04 seconds

2 data dept009; emp=9; run;
NOTE: The data set WORK.DEPT009 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

3 data dept011; emp=4; run;
NOTE: The data set WORK.DEPT011 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.01 seconds

4 data dept014; emp=33; run;
NOTE: The data set WORK.DEPT014 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

5 data _null_;
6 set dept008-dept014;
ERROR: File WORK.DEPT010.DATA does not exist.
ERROR: File WORK.DEPT012.DATA does not exist.
ERROR: File WORK.DEPT013.DATA does not exist.
7 put _all_;
8 run;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

See Also
• “Rules for Words and Names in the SAS Language” in Chapter 3 of SAS Language

Reference: Concepts

• “Reading, Combining, and Modifying SAS Data Sets” in Chapter 21 of SAS
Language Reference: Concepts

• “Definition of Data Set Options” in Chapter 1 of SAS Data Set Options: Reference

• SAS Macro Language: Reference

• Combining and Modifying SAS Data Sets: Examples

Statements:

• “BY Statement” on page 35

• “DO Statement” on page 64

• “INPUT Statement” on page 199

• “MERGE Statement” on page 266

• “STOP Statement” on page 365

• “UPDATE Statement” on page 377

364 Chapter 2 • Dictionary of SAS Statements

SKIP Statement
Creates a blank line in the SAS log.

Valid in: Anywhere

Category: Log Control

Syntax
SKIP <n>;

Without Arguments
Using SKIP without arguments causes SAS to create one blank line in the log.

Arguments
n

specifies the number of blank lines that you want to create in the log.
Tip: If the number specified is greater than the number of lines that remain on the

page, SAS goes to the top of the next page.

Details
The SKIP statement itself does not appear in the log. You can use this statement in all
methods of operation.

See Also

Statements:

• “PAGE Statement” on page 296

System Options:

• “LINESIZE= System Option” in SAS System Options: Reference

• “PAGESIZE= System Option” in SAS System Options: Reference

STOP Statement
Stops execution of the current DATA step.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
STOP;

STOP Statement 365

Without Arguments
The STOP statement causes SAS to stop processing the current DATA step immediately
and resume processing statements after the end of the current DATA step.

Details
SAS outputs a data set for the current DATA step. However, the observation being
processed when STOP executes is not added. The STOP statement can be used alone or
in an IF-THEN statement or SELECT group.

Use STOP with any features that read SAS data sets using random access methods, such
as the POINT= option in the SET statement. Because SAS does not detect an end-of-file
with this access method, you must include program statements to prevent continuous
processing of the DATA step.

Comparisons
• When you use a windowing environment or other interactive methods of operation,

the ABORT statement and the STOP statement both stop processing. The ABORT
statement sets the value of the automatic variable _ERROR_ to 1, but the STOP
statement does not.

• In batch or noninteractive mode, the two statements also have different effects. Use
the STOP statement in batch or noninteractive mode to continue processing with the
next DATA or PROC step.

Examples

Example 1: Basic Usage
• stop;

• if idcode=9999 then stop;

• select (a);
 when (0) output;
 otherwise stop;
end;

Example 2: Avoiding an Infinite Loop
This example shows how to use STOP to avoid an infinite loop within a DATA step
when you are using random access methods:

data sample;
 do sampleobs=1 to totalobs by 10;
 set master.research point=sampleobs nobs=totalobs;
 output;
 end;
 stop;
run;

See Also

Statements:

• “ABORT Statement” on page 19

• POINT= option in the SET statement on page 356

366 Chapter 2 • Dictionary of SAS Statements

Sum Statement
Adds the result of an expression to an accumulator variable.

Valid in: DATA step

Category: Action

Type: Executable

Syntax
variable+expression;

Arguments
variable

specifies the name of the accumulator variable, which contains a numeric value.
Tips:

The variable is automatically set to 0 before SAS reads the first observation. The
variable's value is retained from one iteration to the next, as if it had appeared in
a RETAIN statement.
To initialize a sum variable to a value other than 0, include it in a RETAIN
statement with an initial value.

expression
is any SAS expression.
Tips:

The expression is evaluated and the result added to the accumulator variable.
SAS treats an expression that produces a missing value as zero.

Comparisons
The sum statement is equivalent to using the SUM function and the RETAIN statement,
as shown here:

retain variable 0;
variable=sum(variable,expression);

Example: Using the Sum Statement
Here are examples of sum statements that illustrate various expressions:

• balance+(-debit);

• sumxsq+x*x;

• nx+(x ne .);

• if status='ready' then OK+1;

See Also

Functions:

• “SUM Function” in SAS Functions and CALL Routines: Reference

Sum Statement 367

Statements:

• “RETAIN Statement” on page 337

SYSECHO Statement
Fires a global statement complete event and passes a text string back to the IOM client.

Valid in: Anywhere

Category: Program Control

Restriction: Has an effect only in objectserver mode

Syntax
SYSECHO <"text"> ;

Without Arguments
Using SYSECHO without arguments sends a global statement complete event to the
IOM client.

Arguments
"text"

specifies a text string that is passed back to the IOM client.
Range: 1–64 characters
Requirement: The text string must be enclosed in double quotation marks.

Details
The SYSECHO statement enables IOM clients to manually track the progress of a
segment of a submitted SAS program.

When the SYSECHO statement is executed, a global statement complete event is
generated and, if specified, the text string is passed back to the IOM client.

TITLE Statement
Specifies title lines for SAS output.

Valid in: Anywhere

Category: Output Control

See: TITLE Statement under Windows, UNIX, or z/OS

Syntax
TITLE <n> <ods-format-options> <'text' | “text”>;

Without Arguments
Using TITLE without arguments cancels all existing titles.

368 Chapter 2 • Dictionary of SAS Statements

Arguments
n

specifies the relative line that contains the title line.
Range: 1 - 10
Tips:

The title line with the highest number appears on the bottom line. If you omit n,
SAS assumes a value of 1. Therefore, you can specify TITLE or TITLE1 for the
first title line.
You can create titles that contain blank lines between the lines of text. For
example, if you specify text with a TITLE statement and a TITLE3 statement,
there will be a blank line between the two lines of text.

ods-format-options
specifies formatting options for the ODS HTML, RTF, and PRINTER destinations.

BOLD
specifies that the title text is bold font weight.
ODS destination: HTML, RTF, PRINTER

COLOR=color
specifies the title text color.
Alias: C
ODS destination: HTML, RTF, PRINTER
Example: “Example 3: Customizing Titles and Footnotes by Using the Output

Delivery System” on page 373

BCOLOR=color
specifies the background color of the title block.
ODS destination: HTML, RTF, PRINTER

FONT=font-face
specifies the font to use. If you supply multiple fonts, then the destination device
uses the first one that is installed on your system.
Alias: F
ODS destination: HTML, RTF, PRINTER

HEIGHT=dimension | size
specifies size of the font for titles.

dimension
is a nonnegative number.

Units of Measure for Dimension

cm Centimeters

em Standard typesetting measurement unit for width

ex Standard typesetting measurement unit for height

in Inches

mm Millimeters

pt A printer’s point

Restriction: If you specify dimension, then specify a unit of measure.
Without a unit of measure, the number becomes a relative size.

TITLE Statement 369

size
The value of size is relative to all other font sizes in the HTML document.
Range: 1 to 7

Alias: H
ODS destination: HTML, RTF, PRINTER
Example: “Example 3: Customizing Titles and Footnotes by Using the Output

Delivery System” on page 373

ITALIC
specifies that the title text is in italic style.
ODS destination: HTML, RTF, PRINTER

JUSTIFY= CENTER | LEFT | RIGHT
specifies justification.

CENTER
specifies center justification.
Alias: C

LEFT
specifies left justification.
Alias: L

RIGHT
specifies right justification.
Alias: R

Alias: J
ODS destination: HTML, RTF, PRINTER
Example: “Example 3: Customizing Titles and Footnotes by Using the Output

Delivery System” on page 373

LINK='url'
specifies a hyperlink.
ODS destination: HTML, RTF, PRINTER
Tip: The visual properties for LINK= always come from the current style.

UNDERLIN= 0 | 1 | 2 | 3
specifies whether the subsequent text is underlined. 0 indicates no underlining. 1,
2, and 3 indicates underlining.
Alias: U
ODS destination: HTML, RTF, PRINTER
Tip: ODS generates the same type of underline for values 1, 2, and 3. However,

SAS/GRAPH uses values 1, 2, and 3 to generate increasingly thicker
underlines.

Note: The defaults for how ODS renders the TITLE statement come from style
elements relating to system titles in the current style. The TITLE statement
syntax with ods-format-options is a way to override the settings provided by the
current style. The current style varies according to the ODS destination. For more
information about how to determine the current style, see “Understanding Styles,
Style Elements, and Style Attributes” in Chapter 3 of SAS Output Delivery
System: User's Guide. Also see “Concepts: Styles and the TEMPLATE
Procedure ” in Chapter 13 of SAS Output Delivery System: User's Guide.

Tips:

370 Chapter 2 • Dictionary of SAS Statements

You can specify these options by letter, word, or words by preceding each letter
or word of the text by the option.
For example, this code will make the title “Red, White, and Blue” appear in
different colors.
title color=red "Red," color=white "White, and" color=blue "Blue";

'text' | “text”
specifies text that is enclosed in single or double quotation marks.

You can customize titles by inserting BY variable values (#BYVALn), BY variable
names (#BYVARn), or BY lines (#BYLINE) in titles that are specified in PROC
steps. Embed the items in the specified title text string at the position where you
want the substitution text to appear.

#BYVALn | #BYVAL(variable-name)
substitutes the current value of the specified BY variable for #BYVAL in the text
string and displays the value in the title.

Follow these rules when you use #BYVAL in the TITLE statement of a PROC
step:

• Specify the variable that is used by #BYVAL in the BY statement.

• Insert #BYVAL in the specified title text string at the position where you
want the substitution text to appear.

• Follow #BYVAL with a delimiting character, either a space or other
nonalphanumeric character (for example, a quotation mark) that ends the text
string.

• If you want the #BYVAL substitution to be followed immediately by other
text, with no delimiter, use a trailing dot (as with macro variables).

Specify the variable with one of the following:

n
specifies which variable in the BY statement #BYVAL should use. The value
of n indicates the position of the variable in the BY statement.
Example: #BYVAL2 specifies the second variable in the BY statement.

variable-name
names the BY variable.
Tip: Variable-name is not case sensitive.
Example: #BYVAL(YEAR) specifies the BY variable, YEAR.

#BYVARn | #BYVAR(variable-name)
substitutes the name of the BY variable or label that is associated with the
variable (whatever the BY line would normally display) for #BYVAR in the text
string and displays the name or label in the title.

Follow these rules when you use #BYVAR in the TITLE statement of a PROC
step:

• Specify the variable that is used by #BYVAR in the BY statement.

• Insert #BYVAR in the specified title text string at the position where you
want the substitution text to appear.

• Follow #BYVAR with a delimiting character, either a space or other
nonalphanumeric character (for example, a quotation mark) that ends the text
string.

TITLE Statement 371

• If you want the #BYVAR substitution to be followed immediately by other
text, with no delimiter, use a trailing dot (as with macro variables).

Specify the variable with one of the following:

n
specifies which variable in the BY statement #BYVAR should use. The value
of n indicates the position of the variable in the BY statement.
Example: #BYVAR2 specifies the second variable in the BY statement.

variable-name
names the BY variable.
Tip: variable-name is not case sensitive.
Example: #BYVAR(SITES) specifies the BY variable SITES.

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in
the text string and displays the BY line in the title.
Tip: #BYLINE produces output that contains a BY line at the top of the page

unless you suppress it by using NOBYLINE in an OPTIONS statement.
See: For more information about NOBYLINE, see the “BYLINE System

Option” in SAS System Options: Reference.

Tips:
For compatibility with previous releases, SAS accepts some text without
quotation marks. When writing new programs or updating existing programs,
always enclose text in quotation marks.
If you use single quotation marks ('') or double quotation marks (””) together
(with no space in between them) as the string of text, SAS will output a single
quotation mark (') or double quotation marks (””), respectively.
If you use an automatic macro variable in the title text, you must enclose the title
text in double quotation marks. The SAS macro facility will resolve the macro
variable only if the text is in double quotation marks.

See: For more information about including quotation marks as part of the title, see
“Expressions” in Chapter 6 of SAS Language Reference: Concepts .

Details
A TITLE statement takes effect when the step or RUN group with which it is associated
executes. Once you specify a title for a line, it is used for all subsequent output until you
cancel the title or define another title for that line. A TITLE statement for a given line
cancels the previous TITLE statement for that line and for all lines with larger n
numbers.

Operating Environment Information
The maximum title length that is allowed depends on your operating environment
and the value of the LINESIZE= system option. Refer to the SAS documentation for
your operating environment for more information.

Comparisons
You can also create titles with the TITLES window.

372 Chapter 2 • Dictionary of SAS Statements

Examples

Example 1: Using the TITLE Statement
The following examples show how you can use the TITLE statement:

• This statement suppresses a title on line n and all lines after it:

titlen;

• These code lines are examples of TITLE statements:

• title 'First Draft';

• title2 "Year's End Report";

• title2 'Year''s End Report';

Example 2: Customizing Titles by Using BY Variable Values
You can customize titles by inserting BY variable values in the titles that you specify in
PROC steps. The following examples show how to use #BYVALn, #BYVARn, and
#BYLINE:

• title 'Quarterly Sales for #byval(site)';

• title 'Annual Costs for #byvar2';

• title 'Data Group #byline';

Example 3: Customizing Titles and Footnotes by Using the Output
Delivery System
You can customize titles and footnotes with ODS. The following example shows you
how to use PROC TEMPLATE to change the color, justification, and size of the text for
the title and footnote.

/***
 *The following program creates the data set *
 *grain_production and the $cntry format. *
 ***/
data grain_production;
 length Country $ 3 Type $ 5;
 input Year country $ type $ Kilotons;
 datalines;
1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
2010 BRZ Wheat 3302
2010 BRZ Rice 10035

TITLE Statement 373

2010 BRZ Corn 31975
2010 CHN Wheat 109000
2010 CHN Rice 190100
2010 CHN Corn 119350
2010 IND Wheat 62620
2010 IND Rice 120012
2010 IND Corn 8660
2010 INS Wheat .
2010 INS Rice 51165
2010 INS Corn 8925
2010 USA Wheat 62099
2010 USA Rice 7771
2010 USA Corn 236064
;
run;
 proc format;
 value $cntry 'BRZ'='Brazil'
 'CHN'='China'
 'IND'='India'
 'INS'='Indonesia'
 'USA'='United States';
run;

/***
 *This PROC TEMPLATE step creates the *
 *table definition TABLE1 that is used *
 *in the DATA step. *
 ***/
proc template;
 define table table1;
 mvar sysdate9;
 dynamic colhd;
 classlevels=on;
 define column char_var;
 generic=on;
 blank_dups=on;
 header=colhd;
 style=cellcontents;
 end;

 define column num_var;
 generic=on;
 header=colhd;
 style=cellcontents;
 end;

 define footer table_footer;
 end;
 end;
run;

/***
 *The ODS HTML statement creates HTML output created with *
 *the style defintion D3D. *
 * *
 *The TITLE statement specifies the text for the first title *
 *and the attributes that ODS uses to modify it. *

374 Chapter 2 • Dictionary of SAS Statements

 *The J= style attribute left-justifies the title. *
 *The COLOR= style attributes change the color of the title text *
 *"Leading Grain" to blue and "Producers in" to green. *
 * *
 *The TITLE2 statement specifies the text for the second title *
 *and the attributes that ODS uses to modify it. *
 *The J= style attribute center justifies the title. *
 *The COLOR= attribute changes the color of the title text "2010" *
 *to red. *
 * The HEIGHT= attributes change the size of each *
 *individual number in "2010". *
 * *
 *The FOOTNOTE statement specifies the text for the first footnote *
 *and the attributes that ODS uses to modify it. *
 *The J=left style attribute left-justifies the footnote. *
 *The HEIGHT=20 style attribute changes the font size to 20pt. *
 *The COLOR= style attributes change the color of the footnote text *
 *"Prepared" to red and "on" to green. *
 * *
 *The FOOTNOTE2 statement specifies the text for the second footnote *
 *and the attributes that ODS uses to modify it. *
 *The J= style attribute centers the footnote. *
 *The COLOR= attribute changes the color of the date *
 *to blue, *
 *The HEIGHT= attribute changes the font size *
 *of the date specified by the sysdate9 macro. *
 ***/
ods html body='newstyle-body.htm'
 style=d3d;

title j=left
 font= 'Times New Roman' color=blue bcolor=red "Leading Grain "
 c=green bold italic "Producers in";
title2 j=center color=red underlin=1
 height=28pt "2"
 height=24pt "0"
 height=20pt "1"
 height=16pt "0";

footnote j=left height=20pt
 color=red "Prepared "
 c='#FF9900' "on";
footnote2 j=center color=blue
 height=24pt "&sysdate9";
footnote3 link='http://support.sas.com' "SAS";
/***
 *This step uses the DATA step and ODS to produce *
 *an HTML report. It uses the default table definition *
 *(template) for the DATA step and writes an output object *
 *to the HTML destination. *
 ***/
 data _null_;
 set grain_production;
 where type in ('Rice', 'Corn') and year=1996;
 file print ods=(
 template='table1'

TITLE Statement 375

 columns=(
 char_var=country(generic=on format=$cntry.
 dynamic=(colhd='Country'))
 char_var=type(generic dynamic=(colhd='Year'))
 num_var=kilotons(generic=on format=comma12.
 dynamic=(colhd='Kilotons'))
)
);

put _ods_;
run;

Output 2.31 Output with Customized Titles and Footnotes

376 Chapter 2 • Dictionary of SAS Statements

See Also
• “TEMPLATE Procedure: Overview” in Chapter 9 of SAS Output Delivery System:

User's Guide

Statements:

• “FOOTNOTE Statement” on page 152

System Options:

• “LINESIZE= System Option” in SAS System Options: Reference

UPDATE Statement
Updates a master file by applying transactions.

Valid in: DATA step

Category: File-handling

Type: Executable

Syntax
UPDATE master-data-set<(data-set-options)> transaction-data-set<(data-set-options)>

<END=variable>
<UPDATEMODE= MISSINGCHECK | NOMISSINGCHECK>;
BY by-variable;

Arguments
master-data-set

specifies the SAS data set used as the master file.
Range: The name can be a one-level name (for example, FITNESS), a two-level

name (for example, IN.FITNESS), or one of the special SAS data set names.
Tip: Instead of using a data set name, you can specify the physical pathname to the

file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

See: “Rules for Words and Names in the SAS Language” in Chapter 3 of SAS
Language Reference: Concepts

(data-set-options)
specifies actions SAS is to take when it reads variables into the DATA step for
processing.
Requirement: Data-set-options must appear within parentheses and follow a SAS

data set name.
Tip: Dropping, keeping, and renaming variables is often useful when you update a

data set. Renaming like-named variables prevents the second value that is read
from over-writing the first one. By renaming one variable, you make the values
of both of them available for processing, such as comparing.

See: A list of data set options to use with input data sets in SAS Data Set Options:
Reference

UPDATE Statement 377

Example: “Example 2: Updating by Renaming Variables” on page 379

transaction-data-set
specifies the SAS data set that contains the changes to be applied to the master data
set.
Range: The name can be a one-level name (for example, HEALTH), a two-level

name (for example, IN.HEALTH), or one of the special SAS data set names.
Tip: Instead of using a data set name, you can specify the physical pathname to the

file, using syntax that your operating system understands. The pathname must be
enclosed in single or double quotation marks.

END=variable
creates and names a temporary variable that contains an end-of-file indicator. This
variable is initialized to 0 and is set to 1 when UPDATE processes the last
observation. This variable is not added to any data set.

UPDATEMODE=MISSINGCHECK
UPDATEMODE=NOMISSINGCHECK

specifies whether missing variable values in a transaction data set are to be allowed
to replace existing variable values in a master data set.

MISSINGCHECK
prevents missing variable values in a transaction data set from replacing values in
a master data set.

NOMISSINGCHECK
allows missing variable values in a transaction data set to replace values in a
master data set.

Default: MISSINGCHECK
Tip: Special missing values, however, are the exception and will replace values in

the master data set even when MISSINGCHECK (the default) is in effect.

Details

Requirements
• The UPDATE statement must be accompanied by a BY statement that specifies the

variables by which observations are matched.

• The BY statement should immediately follow the UPDATE statement to which it
applies.

• The data sets listed in the UPDATE statement must be sorted by the values of the
variables listed in the BY statement, or they must have an appropriate index.

• Each observation in the master data set should have a unique value of the BY
variable or BY variables. If there are multiple values for the BY variable, only the
first observation with that value is updated. The transaction data set can contain more
than one observation with the same BY value. (Multiple transaction observations are
all applied to the master observation before it is written to the output file.)

For more information, see “How to Prepare Your Data Sets” in Chapter 21 of SAS
Language Reference: Concepts.

Transaction Data Sets
Usually, the master data set and the transaction data set contain the same variables.
However, to reduce processing time, you can create a transaction data set that contains
only those variables that are being updated. The transaction data set can also contain new
variables to be added to the output data set.

378 Chapter 2 • Dictionary of SAS Statements

The output data set contains one observation for each observation in the master data set.
If any transaction observations do not match master observations, they become new
observations in the output data set. Observations that are not to be updated can be
omitted from the transaction data set. See “Reading, Combining, and Modifying SAS
Data Sets” in Chapter 21 of SAS Language Reference: Concepts.

Missing Values
By default the UPDATEMODE=MISSINGCHECK option is in effect, so missing values
in the transaction data set do not replace existing values in the master data set. Therefore,
if you want to update some but not all variables and if the variables that you want to
update differ from one observation to the next, set to missing those variables that are not
changing. If you want missing values in the transaction data set to replace existing
values in the master data set, use UPDATEMODE=NOMISSINGCHECK.

Even when UPDATEMODE=MISSINGCHECK is in effect, you can replace existing
values with missing values by using special missing value characters in the transaction
data set. To create the transaction data set, use the MISSING statement in the DATA
step. If you define one of the special missing values A through Z for the transaction data
set, SAS updates numeric variables in the master data set to that value.

If you want the resulting value in the master data set to be a regular missing value, use a
single underscore (_) to represent missing values in the transaction data set. The
resulting value in the master data set will be a period (.) for missing numeric values and
a blank for missing character values.

For more information about defining and using special missing value characters, see the
“MISSING Statement” on page 270.

Comparisons
• Both UPDATE and MERGE can update observations in a SAS data set.

• MERGE automatically replaces existing values in the first data set with missing
values in the second data set. UPDATE, however, does not do so by default. To
cause UPDATE to overwrite existing values in the master data set with missing ones
in the transaction data set, you must use UPDATEMODE=NOMISSINGCHECK.

• UPDATE changes or updates the values of selected observations in a master file by
applying transactions. UPDATE can also add new observations.

Examples

Example 1: Basic Updating
These program statements create a new data set (OHIO.QTR1) by applying transactions
to a master data set (OHIO.JAN). The BY variable STORE must appear in both
OHIO.JAN and OHIO.WEEK4, and its values in the master data set should be unique:

data ohio.qtr1;
 update ohio.jan ohio.week4;
 by store;
run;

Example 2: Updating by Renaming Variables
This example shows renaming a variable in the FITNESS data set so that it will not
overwrite the value of the same variable in the program data vector. Also, the WEIGHT
variable is renamed in each data set and a new WEIGHT variable is calculated. The

UPDATE Statement 379

master data set and the transaction data set are listed before the code that performs the
update:

Master Data Set
 HEALTH
OBS ID NAME TEAM WEIGHT
 1 1114 sally blue 125
 2 1441 sue green 145
 3 1750 joey red 189
 4 1994 mark yellow 165
 5 2304 joe red 170

Transaction Data Set
 FITNESS
OBS ID NAME TEAM WEIGHT
 1 1114 sally blue 119
 2 1994 mark yellow 174
 3 2304 joe red 170
/***/

data health;
 input ID NAME $ TEAM $ WEIGHT;
 length team $ 6;
 cards;
1114 sally blue 125
1441 sue green 145
1750 joey red 189
1994 mark yellow 165
2304 joe red 170
;
data fitness;
 input ID NAME $ TEAM $ WEIGHT;
 length team $ 6;
 cards;
1114 sally blue 119
1994 mark yellow 174
2304 joe red 170
;

 /* Sort both data sets by ID */
proc sort data=health;
 by id;
run;
proc sort data=fitness;
 by id;
run;
 /* Update Master with Transaction */
data health2;
 length STATUS $11;
 update health(rename=(weight=ORIG) in=a)
 fitness(drop=name team in=b);
 by id ;
 if a and b then
 do;
 CHANGE=abs(orig - weight);
 if weight<orig then status='loss';
 else if weight>orig then status='gain';

380 Chapter 2 • Dictionary of SAS Statements

 else status='same';
 end;
 else status='no weigh in';
run;

proc print data=health2;
 title 'Weekly Weigh-in Report';
run;

Output 2.32 Updating by Renaming Variables

Example 3: Updating with Missing Values
This example illustrates the DATA steps used to create a master data set PAYROLL and
a transaction data set INCREASE that contains regular and special missing values. Note
the following after the update is made:

• The salary for ID 1026 remains the same.

• The salary for ID 1034 is a special missing value.

• The salary for ID 1057 is a regular missing value.

 /* Create the Master Data Set */
data payroll;
 input ID SALARY;
 datalines;
1011 245
1026 269
1028 374
1034 333
1057 582
;
 /* Create the Transaction Data Set */
data increase;
 input ID SALARY;
 missing A _;
 datalines;
1011 376
1026 .
1028 374
1034 A
1057 _
;

UPDATE Statement 381

 /* Update Master with Transaction */
data newpay;
 update payroll increase;
 by id;
run;
proc print data=newpay;
 title 'Updating with Missing Values';
run;

Output 2.33 Updating with Missing Values

See Also
• “Reading, Combining, and Modifying SAS Data Sets” in Chapter 21 of SAS

Language Reference: Concepts

• “Definition of Data Set Options” in Chapter 1 of SAS Data Set Options: Reference

Statements:

• “BY Statement” on page 35

• “MERGE Statement” on page 266

• “MISSING Statement” on page 270

• “MODIFY Statement” on page 271

• “SET Statement” on page 353

System Options:

• “MISSING= System Option” in SAS System Options: Reference

WHERE Statement
Selects observations from SAS data sets that meet a particular condition.

Valid in: DATA step and PROC step

Category: Action

Type: Declarative

382 Chapter 2 • Dictionary of SAS Statements

Syntax
WHERE where-expression-1
<logical-operator where-expression-n>;

Arguments
where-expression

is an arithmetic or logical expression that generally consists of a sequence of
operands and operators.
Tips:

The operands and operators described in the next several sections are also valid
for the WHERE= data set option.
You can specify multiple where-expressions.

logical-operator
can be AND, AND NOT, OR, or OR NOT.

Details

The Basics
Using the WHERE statement might improve the efficiency of your SAS programs
because SAS is not required to read all observations from the input data set.

The WHERE statement cannot be executed conditionally. That is, you cannot use it as
part of an IF-THEN statement.

WHERE statements can contain multiple WHERE expressions that are joined by logical
operators.

Note: Using indexed SAS data sets can significantly improve performance when you
use WHERE expressions to access a subset of the observations in a SAS data set.
See “Understanding SAS Indexes” in Chapter 26 of SAS Language Reference:
Concepts for a complete discussion of WHERE-expression processing with indexed
data sets and a list of guidelines to consider before you index your SAS data sets.

In DATA Steps
The WHERE statement applies to all data sets in the preceding SET, MERGE,
MODIFY, or UPDATE statement, and variables that are used in the WHERE statement
must appear in all of those data sets. You cannot use the WHERE statement with the
POINT= option in the SET and MODIFY statements.

You can apply OBS= and FIRSTOBS= processing to WHERE processing. For more
information, see “Processing a Segment of Data That Is Conditionally Selected” in
Chapter 11 of SAS Language Reference: Concepts.

You cannot use the WHERE statement to select records from an external file that
contains raw data, nor can you use the WHERE statement within the same DATA step in
which you read in-stream data with a DATALINES statement.

For each iteration of the DATA step, the first operation SAS performs in each execution
of a SET, MERGE, MODIFY, or UPDATE statement is to determine whether the
observation in the input data set meets the condition of the WHERE statement. The
WHERE statement takes effect immediately after the input data set options are applied
and before any other statement in the DATA step is executed. If a DATA step combines
observations using a WHERE statement with a MERGE, MODIFY, or UPDATE
statement, SAS selects observations from each input data set before it combines them.

WHERE Statement 383

WHERE and BY in a DATA Step
If a DATA step contains both a WHERE statement and a BY statement, the WHERE
statement executes before BY groups are created. Therefore, BY groups reflect groups
of observations in the subset of observations that are selected by the WHERE statement,
not the actual BY groups of observations in the original input data set.

For a complete discussion of BY-group processing, see “By-Group Processing in SAS
Programs” in Chapter 10 of SAS Language Reference: Concepts.

In PROC Steps
You can use the WHERE statement with any SAS procedure that reads a SAS data set.
The WHERE statement is useful in order to subset the original data set for processing by
the procedure. The Base SAS Procedures Guide documents the action of the WHERE
statement only in those procedures for which you can specify more than one data set. In
all other cases, the WHERE statement performs as documented here.

Use of Indexes
A DATA or PROC step attempts to use an available index to optimize the selection of
data when an indexed variable is used in combination with one of the following
operators and functions:

• the BETWEEN-AND operator

• the comparison operators, with or without the colon modifier

• the CONTAINS operator

• the IS NULL and IS NOT NULL operators

• the LIKE operator

• the TRIM function

• the SUBSTR function, in some cases.

SUBSTR requires the following arguments:

where substr(variable,position,length)
 ='character-string';

An index is used in processing when the arguments of the SUBSTR function meet all of
the following conditions:

• position is equal to 1

• length is less than or equal to the length of variable

• length is equal to the length of character-string.

Operands Used in WHERE Expressions
Operands in WHERE expressions can contain the following values:

• constants

• time and date values

• values of variables that are obtained from the SAS data sets

• values created within the WHERE expression itself.

You cannot use variables that are created within the DATA step (for example,
FIRST.variable, LAST.variable, _N_, or variables that are created in assignment
statements) in a WHERE expression because the WHERE statement is executed before

384 Chapter 2 • Dictionary of SAS Statements

the SAS System brings observations into the DATA or PROC step. When WHERE
expressions contain comparisons, the unformatted values of variables are compared.

The following are examples of using operands in WHERE expressions:

• where score>50;

• where date>='01jan1999'd and time>='9:00't;

• where state='Mississippi';

As in other SAS expressions, the names of numeric variables can stand alone. SAS treats
values of 0 or missing as false; other values are true. These examples are WHERE
expressions that contain the numeric variables EMPNUM and SSN:

• where empnum;

• where empnum and ssn;

Character literals or the names of character variables can also stand alone in WHERE
expressions. If you use the name of a character variable by itself as a WHERE
expression, SAS selects observations where the value of the character variable is not
blank.

Operators Used in the WHERE Expression
You can include both SAS operators and special WHERE-expression operators in the
WHERE statement. For a complete list of the operators, see Table 2.10 on page 385.
For the rules that SAS follows when it evaluates WHERE expressions, see “WHERE-
Expression Processing” in Chapter 11 of SAS Language Reference: Concepts.

Table 2.10 WHERE Statement Operators

Operator Type Symbol or Mnemonic Description

Arithmetic

* multiplication

/ division

+ addition

− subtraction

** exponentiation

Comparison †

= or EQ equal to

^=, ¬=, ~=, or NE* not equal to

> or GT greater than

< or LT less than

>= or GE greater than or equal to

WHERE Statement 385

Operator Type Symbol or Mnemonic Description

<= or LE less than or equal to

IN equal to one of a list

Logical (Boolean)

& or AND logical and

| or OR** logical or***

~,^ , ¬, or NOT* logical not

Other

|| concatenation of character variables

() indicate order of evaluation

+ prefix positive number

− prefix negative number

WHERE Expression
Only

BETWEEN–AND an inclusive range

? or CONTAINS a character string

IS NULL or IS MISSING missing values

LIKE match patterns

=* sounds-like

SAME-AND add clauses to an existing WHERE
statement without retyping original
one

* The caret (^), tilde (~), and the not sign (¬) all indicate a logical not. Use the character available on your
keyboard, or use the mnemonic equivalent.

** The OR symbol (|), broken vertical bar (|), and exclamation point (!) all indicate a logical or. Use the
character available on your keyboard, or use the mnemonic equivalent.

*** Two OR symbols (| |), two broken vertical bars (| |), or two exclamation points (!!) indicate
concatenation. Use the character available on your keyboard.

† You can use the colon modifier (:) with any of the comparison operators in order to compare only a
specified prefix of a character string.

Comparisons
• You can use the WHERE command in SAS/FSP software to subset data for editing

and browsing. You can use both the WHERE statement and WHERE= data set
option in windowing procedures and in conjunction with the WHERE command.

386 Chapter 2 • Dictionary of SAS Statements

• To select observations from individual data sets when a SET, MERGE, MODIFY, or
UPDATE statement specifies more than one data set, apply a WHERE= data set
option to each data set. In the DATA step, if a WHERE statement and a WHERE=
data set option apply to the same data set, SAS uses the data set option and ignores
the statement for that data set. Other data sets without a WHERE data set option use
the statement.

• The most important differences between the WHERE statement in the DATA step
and the subsetting IF statement are as follows:

• The WHERE statement selects observations before they are brought into the
program data vector, making it a more efficient programming technique. The
subsetting IF statement works on observations after they are read into the
program data vector.

• The WHERE statement can produce a different data set from the subsetting IF
when a BY statement accompanies a SET, MERGE, or UPDATE statement. The
different data set occurs because SAS creates BY groups before the subsetting IF
statement selects but after the WHERE statement selects.

• The WHERE statement cannot be executed conditionally as part of an IF
statement, but the subsetting IF statement can.

• The WHERE statement selects observations in SAS data sets only, whereas the
subsetting IF statement selects observations from an existing SAS data set or
from observations that are created with an INPUT statement.

• The subsetting IF statement cannot be used in SAS windowing procedures to
subset observations for browsing or editing.

• Do not confuse the WHERE statement with the DROP or KEEP statement. The
DROP and KEEP statements select variables for processing. The WHERE statement
selects observations.

Examples

Example 1: Basic WHERE Statement Usage
This DATA step produces a SAS data set that contains only observations from data set
CUSTOMER in which the value for NAME begins with Mac and the value for CITY is
Charleston or Atlanta.

data testmacs;
 set customer;
 where substr(name,1,3)='Mac' and
 (city='Charleston' or city='Atlanta');
run;

Example 2: Using Operators Available Only in the WHERE
Statement
• Using BETWEEN-AND:

where empnum between 500 and 1000;

• Using CONTAINS:

where company ? 'bay';
where company contains 'bay';

• Using IS NULL and IS MISSING:

WHERE Statement 387

where name is null;
where name is missing;

• Using LIKE to select all names that start with the letter D:

where name like 'D%';

• Using LIKE to match patterns from a list of the following names:

Diana
Diane
Dianna
Dianthus
Dyan

WHERE Statement Name Selected

where name like 'D_an'; Dyan

where name like 'D_an_'; Diana, Diane

where name like 'D_an__'; Dianna

where name like 'D_an%'; all names from list

• Using the Sounds-like Operator to select names that sound like “Smith”:

where lastname=*'Smith';

• Using SAME-AND:

where year>1991;
...more SAS statements...
where same and year<1999;

In this example, the second WHERE statement is equivalent to the following
WHERE statement:

where year>1991 and year<1999;

See Also
• SAS SQL Query Window User's Guide

• SAS/IML User's Guide

• Base SAS Procedures Guide

• “Understanding SAS Indexes” in Chapter 26 of SAS Language Reference: Concepts

• “WHERE-Expression Processing” in Chapter 11 of SAS Language Reference:
Concepts

• “By-Group Processing in SAS Programs” in Chapter 10 of SAS Language Reference:
Concepts

Data Set Options:

• “WHERE= Data Set Option” in SAS Data Set Options: Reference

388 Chapter 2 • Dictionary of SAS Statements

Statements:

• “IF Statement, Subsetting” on page 161

WINDOW Statement
Creates customized windows for your applications.

Valid in: DATA step

Category: Window Display

Type: Declarative

Syntax
WINDOW window <window-options> field-definition(s);

WINDOW window <window-options> group-definition(s);

Arguments
window

specifies the window name.
Restriction: Window names must conform to SAS naming conventions.

window-options
specifies characteristics of the window as a whole. Specify these window-options
before any field or GROUP= specifications:

COLOR=color
specifies the color of the window background for operating environments that
have this capability. In other operating environments, this option affects the color
of the window border. The following colors are available:

BLACK MAGENTA
BLUE ORANGE
BROWN PINK
CYAN RED
GRAY WHITE
GREEN YELLOW

Default: If you do not specify a color with the COLOR= option, the window's
background color is device-dependent instead of black, and the color of a
field is device-dependent instead of white.

Tip: The representation of colors might vary, depending on the monitor being
used. COLOR= has no effect on monochrome monitors.

COLUMNS=columns
specifies the number of columns in the window.
Default: The window fills all remaining columns on the monitor; the number of

columns that are available depends on the type of monitor that is being used.

ICOLUMN=column
specifies the initial column within the monitor at which the window is displayed.
Default: SAS displays the window at column 1.

WINDOW Statement 389

IROW=row
specifies the initial row (or line) within the monitor at which the window is
displayed.
Default: SAS displays the window at row 1.

KEYS=<<libref.>catalog.>keys-entry
specifies the name of a KEYS entry that contains the function key definitions for
the window.
Default: SAS uses the current function key settings that are defined in the KEYS

window.
Tips:

If you specify only an entry name, SAS looks in the SASUSER.PROFILE
catalog for a KEYS entry of the name that is specified. You can also specify
the three-level name of a KEYS entry, in the form

libref.catalog.keys-entry

To create a set of function key definitions for a window, use the KEYS
window. Define the keys as you want, and use the SAVE command to save
the definitions in the SASUSER.PROFILE catalog or in a SAS library and
catalog that you specify.

MENU=<<libref.>catalog.>pmenu-entry
specifies the name of a menu (pmenu) you have built with the PMENU
procedure.
Tip: If you specify only an entry name, SAS looks in the SASUSER.PROFILE

catalog for a PMENU entry of the name specified. You can also specify the
three-level name of a PMENU entry in the form
libref.catalog.pmenu-entry

ROWS=rows
specifies the number of rows (or lines) in the window.
Default: The window fills all remaining rows on the monitor.
Tip: The number of rows that are available depends on the type of monitor that

is being used.

field-definition(s)
specifies and describes a variable or character string to be displayed in a window or
within a group of related fields.
Tips:

A window or group can contain any number of fields, and you can define the
same field in several groups or windows.
You can specify multiple field-definitions.

See: “Field Definitions” on page 391

group-definition(s)
specifies a group and defines all fields within a group. A group definition consists of
two parts: the GROUP= option and one or more field definitions.

GROUP=group
specifies a group of related fields.
Default: A window contains one unnamed group of fields.
Restriction: group must be a SAS name.
Tips:

When you refer to a group in a DISPLAY statement, write the name as
window.group.

390 Chapter 2 • Dictionary of SAS Statements

A group contains all fields in a window that you want to display at the same
time. Display various groups of fields within the same window at different
times by naming each group. Choose the group to appear by specifying
window.group in the DISPLAY statement.
Specifying several groups within a window prevents repetition of window
options that do not change and helps you keep track of related displays. For
example, if you are defining a window to check data values, arrange the
display of variables and messages for most data values in the data set in a
group that is named STANDARD. Arrange the display of different messages
in a group that is named CHECKIT that appears when data values meet the
conditions that you want to check.

Details

The Basics
Operating Environment Information

The WINDOW statement has some functionality that might be specific to your
operating environment. For details, see the SAS documentation for your operating
environment.

You can use the WINDOW statement in the SAS windowing environment, in interactive
line mode, or in noninteractive mode to create customized windows for your
applications.1 Windows that you create can display text and accept input; they have
command and message lines. The window name appears at the top of the window. Use
commands and function keys with windows that you create. A window definition
remains in effect only for the DATA step that contains the WINDOW statement.

Define a window before you display it. Use the DISPLAY statement to display windows
that are created with the WINDOW statement. For more information, see the “DISPLAY
Statement” on page 61.

Field Definitions
Use a field definition to identify a variable or a character string to be displayed, its
position, and its attributes. Enclose character strings in quotation marks. The position of
an item is its beginning row (or line) and column. Attributes include color, whether you
can enter a value into the field, and characteristics such as highlighting.

You can define a field to contain a variable value or a character string, but not both. The
form of a field definition for a variable value is

<row column> variable <format> options

The form for a character string is

<row column> 'character-string' options

The elements of a field definition are described here.

row column
specifies the position of the variable or character string.

SAS keeps track of its position in the window with a pointer. For example, when you
tell SAS to write a variable's value in the third column of the second row of a
window, the pointer moves to row 2, column 3 to write the value. Use the pointer
controls that are listed here to move the pointer to the appropriate position for a field.

In a field definition, row can be one of these row pointer controls:

1 You cannot use the WINDOW statement in batch mode because no computer is connected to a batch executing process.

WINDOW Statement 391

#n
specifies row n within the window.
Range: n must be a positive integer.

#numeric-variable
specifies the row within the window that is given by the value of numeric-
variable.
Restriction: #numeric-variable must be a positive integer. If the value is not an

integer, the decimal portion is truncated and only the integer is used.

#(expression)
specifies the row within the window that is given by the value of expression.
Restrictions:

expression can contain array references and must evaluate to a positive
integer.
Enclose expression in parentheses.

/
moves the pointer to column 1 of the next row.

In a field definition, column can be one of these column pointer controls:

@n
specifies column n within the window.
Restriction: n must be a positive integer.

@numeric-variable
specifies the column within the window that is given by the value of numeric-
variable.
Restriction: numeric-variable must be a positive integer. If the value is not an

integer, the decimal portion is truncated and only the integer is used.

@(expression)
specifies the column within the window that is given by the value of expression.
Restrictions:

expression can contain array references and must evaluate to a positive
integer.
Enclose expression in parentheses.

+n
moves the pointer n columns.
Range: n must be a positive integer.

+numeric-variable
moves the pointer the number of columns that is given by the numeric-variable.
Restriction: +numeric-variable must be a positive or negative integer. If the

value is not an integer, the decimal portion is truncated and only the integer is
used.

Default: If you omit row in the first field of a window or group, SAS uses the first
row of the window. If you omit row in a later field specification, SAS continues
on the row that contains the previous field. If you omit column, SAS uses column
1 (the left border of the window).

Tip: Although you can specify either row or column first, the examples in this
documentation show the row first.

variable
specifies a variable to be displayed or to be assigned the value that you enter at that
position when the window is displayed.

392 Chapter 2 • Dictionary of SAS Statements

Tips:
variable can be the name of a variable or of an array reference.
To allow a variable value in a field to be displayed but not changed by the user,
use the PROTECT= option (described later in this section). You can also protect
an entire window or group for the current execution of the DISPLAY statement
by specifying the NOINPUT option in the DISPLAY statement.
If a field definition contains the name of a new variable, that variable is added to
the data set that is being created (unless you use a KEEP or DROP specification).

format
gives the format for the variable.
Default: If you omit format, SAS uses an informat and format that are specified

elsewhere (for example, in an ATTRIB, INFORMAT, or FORMAT statement or
permanently stored with the data set) or a SAS default informat and format.

Tips:
If a field displays a variable that cannot be changed (that is, you use the
PROTECT=YES option), format can be any SAS format or a format that you
define with the FORMAT procedure.
If a field can both display a variable and accept input, you must either specify the
informat in an INFORMAT or ATTRIB statement or use a SAS format such as
$CHAR. or TIME. that has a corresponding informat.
If a format is specified, the corresponding informat is assigned automatically to
fields that can accept input.
A format and an informat in a WINDOW statement override an informat and a
format that are specified elsewhere.

'character-string'
contains the text of a character string to be displayed.
Restrictions:

The character string must be enclosed in quotation marks.
You cannot enter a value in a field that contains a character string.

options
Specify field definition attributes:

ATTR=highlighting-attribute
controls these highlighting attributes of the field:

BLINK causes the field to blink.

HIGHLIGHT displays the field at high intensity.

REV_VIDEO displays the field in reverse video.

UNDERLINE underlines the field.

Alias: A=
Tips:

To specify more than one highlighting attribute, use the form
ATTR=(highlighting-attribute-1,...)

The highlighting attributes that are available depend on the type of monitor
that you use.

AUTOSKIP=YES | NO
controls whether the cursor moves to the next unprotected field of the current
window or group when you have entered data in all positions of a field.

WINDOW Statement 393

YES specifies that the cursor moves automatically to the next unprotected
field.

NO specifies that the cursor does not move automatically.

Alias: AUTO=
Default: NO

COLOR=color
specifies a color for the variable or character string. You can specify one of the
following colors:

BLACK MAGENTA
BLUE ORANGE
BROWN PINK
CYAN RED
GRAY WHITE
GREEN YELLOW

Alias: C=
Default: WHITE
Tips:

The representation of colors might vary, depending on the monitor that you
use.
COLOR= has no effect on monochrome monitors.

DISPLAY=YES | NO
controls whether the contents of a field are displayed.

YES specifies that SAS displays characters in a field as you type them in.

NO specifies that the entered characters are not displayed.

Default: YES

PERSIST=YES | NO
controls whether a field is displayed by all executions of a DISPLAY statement
in the same iteration of the DATA step until the DISPLAY statement contains
the BLANK option.

YES specifies that each execution of the DISPLAY statement displays all
previously displayed contents of the field as well as the contents that
are scheduled for display by the current DISPLAY statement. If the
new contents overlap persisting contents, the persisting contents are
no longer displayed.

NO specifies that each execution of a DISPLAY statement displays only
the current contents of the field.

Default: NO
Tip: PERSIST= is most useful when the position of a field changes in each

execution of a DISPLAY statement.
Example: “Example 3: Persisting and Nonpersisting Fields” on page 398

PROTECT=YES | NO
controls whether information can be entered into a field.

YES specifies that you cannot enter information.

394 Chapter 2 • Dictionary of SAS Statements

NO specifies that you can enter information.

Alias: P=
Default: No
Tip: Use PROTECT= only for fields that contain variables; fields that contain

text are automatically protected.

REQUIRED=YES | NO
controls whether a field can be left blank.

NO specifies that you can leave the field blank.

YES specifies that you must enter a value in the field.

Default: NO
Tip: If you try to leave a field blank that was defined with REQUIRED=YES,

SAS does not allow you to input values in any subsequent fields in the
window.

Automatic Variables
The WINDOW statement creates two automatic SAS variables: _CMD_ and _MSG_.

CMD
contains the last command from the window's command line that was not recognized
by the window.
Tip: _CMD_ is a character variable with a length of 80 bytes; its value is set to '

' (blank) before each execution of a DISPLAY statement.
Example: “Example 4: Sending a Message” on page 398

MSG
contains a message that you specify to be displayed in the message area of the
window.
Tip: _MSG_ is a character variable with a length of 80 bytes; its value is set to '

' (blank) after each execution of a DISPLAY statement.
Example: “Example 4: Sending a Message” on page 398

Displaying Windows
The DISPLAY statement enables you to display windows. Once you display a window,
the window remains visible until you display another window over it or until the end of
the DATA step. When you display a window that contains fields into which you can
enter values, either enter a value or press ENTER at each unprotected field to cause SAS
to proceed to the next display. While a window is being displayed, you can use
commands and function keys to view other windows, change the size of the current
window, and so on. The execution proceeds to the next display only after you have
pressed ENTER in all unprotected fields.

A DATA step that contains a DISPLAY statement continues execution until

• the last observation that is read by a SET, MERGE, MODIFY, UPDATE, or INPUT
statement has been processed

• a STOP or ABORT statement is executed

• an END command executes.

Comparisons
• The WINDOW statement creates a window, and the DISPLAY statement displays it.

WINDOW Statement 395

• The %WINDOW and %DISPLAY statements in the macro language create and
display windows that are controlled by the macro facility.

Examples

Example 1: Creating a Single Window
This DATA step creates a window with a single group of fields:

data _null_;
 window start
 #9 @26 'WELCOME TO THE SAS SYSTEM'
 color=black
 #12 @19 'THIS PROGRAM CREATES'
 #12 @40 'TWO SAS DATA SETS'
 #14 @26 'AND USES THREE PROCEDURES'
 #18 @27 'Press ENTER to continue';
 display start;
 stop;
run;

The START window fills the entire monitor. The first line of text is black. The other
three lines are the default for your operating environment. The text begins in the column
that you specified in your program. The START window does not require you to input
any values. However, to exit the window do one of the following:

• Press ENTER to cause DATA step execution to proceed to the STOP statement.

• Issue the END command.

If you omit the STOP statement from this program, the DATA step executes endlessly
until you execute END from the window, either with a function key or from the
command line. (Because this DATA step does not read any observations, SAS cannot
detect an end-of-file to end DATA step execution.)

Example 2: Displaying Two Windows Simultaneously
The following statements assign news articles to reporters. The list of article topics is
stored as variable art in SAS data set category.article. This application enables you to
assign each topic to a writer and to view the accumulating assignments. The program
creates a new SAS data set named Assignment.

396 Chapter 2 • Dictionary of SAS Statements

libname category 'SAS-library';
data Assignment;
 set category.article end=final;
 drop a b j s o;
 window Assignment irow=1 rows=12 color=white
 #3 @10 'Article:' +1 art protect=yes
 'Name:' +1 name $14.;
 window Showtotal irow=20 rows=12 color=white
 group=subtotal
 #1 @10 'Adams has' +1 a
 #2 @10 'Brown has' +1 b
 #3 @10 'Johnson has' +1 j
 #4 @10 'Smith has' +1 s
 #5 @10 'Other has' +1 o
 group=lastmessage
 #8 @10
 'ALL ARTICLES ASSIGNED.
 Press ENTER to stop processing.';
 display Assignment blank;
 if name='Adams' then a+1;
 else if name='Brown' then b+1;
 else if name='Johnson' then j+1;
 else if name='Smith' then s+1;
 else o+1;
 display Showtotal.subtotal blank noinput;
 if final then display Showtotal.lastmessage;
run;

When you execute the DATA step, the following windows appear.

In the Assignment window (located at the top of the monitor), you see the name of the
article and a field into which you enter a reporter's name. After you type a name and
press ENTER, SAS displays the Showtotal window (located at the bottom of the
monitor) which shows the number of articles that are assigned to each reporter
(including the assignment that you just made). As you continue to make assignments, the
values in the Showtotal window are updated. During the last iteration of the DATA step,
SAS displays the message that all articles are assigned, and instructs you to press
ENTER to stop processing.

WINDOW Statement 397

Example 3: Persisting and Nonpersisting Fields
This example demonstrates the PERSIST= option. You move from one window to the
other by positioning the cursor in the current window and pressing ENTER.

data _null_;
 array row{3} r1-r3;
 array col{3} c1-c3;
 input row{*} col{*};
 window One
 rows=20 columns=36
 #1 @14 'PERSIST=YES' color=black
 #(row{i}) @(col{i}) 'Hello'
 color=black persist=yes;
 window Two
 icolumn=43 rows=20 columns=36
 #1 @14 'PERSIST=NO' color=black
 #(row{i}) @(col{i}) 'Hello'
 color=black persist=no;
 do i=1 to 3;
 display One;
 display Two;
 end;
 datalines;
5 10 15 5 10 15
;

The following windows show the results of this DATA step after its third iteration.

Note that window One shows Hello in all three positions in which it was displayed.
Window Two shows only the third and final position in which Hello was displayed.

Example 4: Sending a Message
This example uses the _CMD_ and _MSG_ automatic variables to send a message when
you execute an erroneous windowing command in a window that is defined with the
WINDOW statement:

if _cmd_ ne ' ' then
 msg='CAUTION: UNRECOGNIZED COMMAND' || _cmd_;

When you enter a command that contains an error, SAS sets the value of _CMD_ to the
text of the erroneous command. Because the value of _CMD_ is no longer blank, the IF
statement is true. The THEN statement assigns to _MSG_ the value that is created by
concatenating CAUTION: UNRECOGNIZED COMMAND and the value of _CMD_

398 Chapter 2 • Dictionary of SAS Statements

(up to a total of 80 bytes). The next time a DISPLAY statement displays that window,
the message line of the window displays the following:

CAUTION: UNRECOGNIZED COMMAND command

Command is the erroneous windowing command.

Example 5: Creating a SAS Data Set
The following statements create a SAS data set by using input from the WINDOW
statement.

data new;
 length name $20;
 window start
 #3 @20 'Type the variable name'
 #4 @20 'and press the Enter key.'
 #7 'Name:' +1 name attr=underline
 #11 'When you are finished entering variable names, type "end"'
 #12 'at the command line.';
 display start;
run;
proc print;
run;

See Also
• “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”

in Chapter 3 of SAS Language Reference: Concepts

• Chapter 36, “PMENU Procedure” in Base SAS Procedures Guide

Statements:

• “DISPLAY Statement” on page 61

X Statement
Issues an operating-environment command from within a SAS session.

Valid in: Anywhere

X Statement 399

Category: Operating Environment

See: X Statement under Windows, UNIX, or z/OS

Syntax
X <'operating-environment-command'>;

Without Arguments
Using X without arguments places you in your operating environment, where you can
issue commands that are specific to your environment.

Arguments
'operating-environment-command'

specifies an operating environment command that is enclosed in quotation marks.

Details
In all operating environments, you can use the X statement when you run SAS in
windowing or interactive line mode. In some operating environments, you can use the X
statement when you run SAS in batch or noninteractive mode.

Operating Environment Information
The X statement is dependent on your operating environment. See the SAS
documentation for your operating environment to determine whether it is a valid
statement on your system. Keep in mind that the way you return from operating
environment mode to the SAS session is dependent on your operating environment
and the commands that you use with the X statement are specific to your operating
environment.

You can use the X statement with SAS macros to write a SAS program that can run in
multiple operating environments. See the SAS Macro Language: Reference for
information.

Comparisons
In a windowing session, the X command works exactly like the X statement except that
you issue the command from a command line. You submit the X statement from the
Program Editor window.

The X statement is similar to the SYSTEM function, the X command, and the CALL
SYSTEM routine. In most cases, the X statement, X command or %SYSEXEC macro
statement are preferable because they require less overhead. However, the SYSTEM
function can be executed conditionally. The X statement is a global statement and
executes as a DATA step is being compiled.

See Also

CALL Routines:

• “CALL SYSTEM Routine” in SAS Functions and CALL Routines: Reference

Functions:

• “SYSTEM Function” in SAS Functions and CALL Routines: Reference

400 Chapter 2 • Dictionary of SAS Statements

Index

Special Characters
ALL argument

FILENAME statement 96
LIBNAME statement 240

ALL CLEAR option
CATNAME statement 41

ALL LIST option
CATNAME statement 41

BLANKPAGE option, PUT statement
296

CMD 389
CMD automatic variable 395
CMD SAS variable, WINDOW

statement 395
ERROR variable 74
FILE 76
FILE variable

updating 88
FILE= option

FILE statement 76
INFILE automatic variable 171
INFILE option

PUT statement 296
INFILE= option

INFILE statement 171, 194
IORC automatic variable

MODIFY statement and 277
MSG 389, 395
MSG automatic variable 395
MSG SAS variable, WINDOW

statement 395
NULL argument

DATA statement 48
PAGE option, PUT statement 296
; (semicolon), in data lines 41, 58
: (colon) format modifier 221
: (colon) format modifier, definition 224
/DEBUG argument

DATA statement 48
/NESTING argument

DATA statement 48

/STACK argument
DATA statement 48

~ (tilde) format modifier 221
~ (tilde) format modifier, definition 224
@ (at sign) line-hold specifier, PUT

statement 305
@@ (at signs) line-hold specifier, PUT

statement 305
& (ampersand) format modifier 221
& (ampersand) format modifier, definition

224
%DISPLAY macro

compared to WINDOW statement 395
%INCLUDE statement 164

accessing lowercased autocall macro
members 151

arguments 164
catalog entries with 102
comparisons 169
data sources for 168
details 168
examples 169
including external files 169
including keyboard input 170
including previously submitted lines

170
processing large amounts of data 351
rules for using 168
when to use 168
with several entries in single catalog

170
%LIST statement 260
%RUN statement 343
%WINDOW macro, compared to

WINDOW statement 395

A
ABEND argument

ABORT statement 19
ABORT statement 19

401

arguments 19
compared to STOP statement 366
comparisons 22
details 22
examples 22
without arguments 19

ACCESS= option
LIBNAME statement 241

ACCESS=READONLY option
CATNAME statement 41

aggregate storage location
filerefs for 98

ALTER passwords 51
ampersand (&) format modifier 221, 224
anonymous FTP login 125
array reference 27
array reference, explicit 27

compared to ARRAY statement 26
array reference statement 27
ARRAY statement 23

compared to array reference, explicit 29
arrays

defining elements in 23
describing elements to process 27
writing to 306

assignment statement 30
at sign (@) argument

INPUT statement 201
INPUT statement, column input 214
INPUT statement, formatted input 217
INPUT statement, named input 228
PUT statement 296
PUT statement, column output 314
PUT statement, formatted output 316
PUT statement, named output 324

at sign (@) column pointer control
INPUT statement 201
PUT statement 296
WINDOW statement 392

at sign (@) line-hold specifier
PUT statement 305
PUT statement, column output 305

at signs (@@) argument
INPUT statement 201
INPUT statement, column input 214
INPUT statement, formatted input 217
INPUT statement, named input 228
PUT statement 296
PUT statement, column output 314
PUT statement, formatted output 316
PUT statement, named output 324

at signs (@@) line-hold specifier, PUT
statement 305

ATTACH= option
FILENAME statement, EMAIL access

method 107

attachments to e-mail 114
ATTRIB statement 31

compared to FORMAT statement 157
compared to INFORMAT statement

197
compared to LENGTH statement 238

AUTHDOMAIN= option
FILENAME statement, FTP access

method 118
FILENAME statement, URL access

method 143
autocall macro libraries

accessing lowercased members 151
WebDAV location as 151

autocall macros
executing from catalogs 103

AUTOSKIP= option, WINDOW
statement 393

B
batch processing

checkpoint-restart mode and 45
BATCHFILE option

FILENAME statement, SFTP access
method 134

BCC= option
FILENAME statement, EMAIL access

method 108
BELL argument, DISPLAY statement 61
BINARY option

FILENAME statement, FTP access
method 118

BLANK argument, DISPLAY statement
61

BLKSIZE= option
FILE statement 76
INFILE statement 174

BLOCKSIZE= option
FILENAME statement, FTP access

method 118
FILENAME statement, SOCKET

access 139
FILENAME statement, URL access

method 143
buffers, allocating

SASFILE statement 344
BY groups

identifying beginning and end of 36
processing 37

BY processing 37
with nonsorted data 38

BY statement 35
arguments 35
details 36
examples 38

402 Index

in DATA step 37
in PROC steps 37
specifying sort order 38
with SAS views 37

BY values
duplicates, MODIFY statement 275

BY variables
customizing titles with 373
specifying 38

BY-group processing
SET statement for 358

BYE command, compared to ENDSAS
statement 74

C
CALL routines

calling 40
CALL statement 40
CANCEL argument

ABORT statement 19
CARDS argument

INFILE statement 172
CARDS statement 41
CARDS4 statement 41
CATALOG access method

See FILENAME statement, CATALOG
access method

catalog entries
%INCLUDE with 102

catalogs
%INCLUDE statement with several

entries in single catalog 170
concatenating 41
concatenating, implicitly 248, 250
executing autocall macros from 103
referencing as external files 100

CATAMS entries
reading and writing 102

CATNAME statement 41
arguments 41
comparisons 43
details 42
examples 43
options 41

catrefs 41
CC= option

FILENAME statement, EMAIL access
method 108

CD= option
FILENAME statement, FTP access

method 119
FILENAME statement, SFTP access

method 134
character data

embedded blanks in 225

CHECKPOINT EXECUTE_ALWAYS
statement 44

checkpoint-restart mode 45
CLEAR argument

FILENAME statement 95, 97
LIBNAME statement 240

CLEAR option
CATNAME statement 41

CLIPBOARD access method 104
colon (:) format modifier 221, 224
COLOR= argument, WINDOW statement

389
COLOR= option, WINDOW statement

394
column input 204, 214
column output 302, 314
column pointer controls

INPUT statement 199
PUT statement 296

COLUMN= option
FILE statement 76
INFILE statement 174

columns
two-column page format 90

COLUMNS= argument, WINDOW
statement 389

comma-delimited data 225, 226
Comment statement 45
comments 45
COMPRESS= option

LIBNAME statement 243
concatenating catalogs

CATNAME statement 41
implicitly 248, 250
logically concatenated catalogs 43
nested catalog concatenation 44
rules for 42

concatenating data libraries 247
logically 249

concatenating data sets
SET statement for 358, 359

conditional logic
for sending e-mail 115

CONTENT_TYPE= option
FILENAME statement, EMAIL access

method 108
CONTINUE argument, DM statement 62
CONTINUE statement 47

compared to LEAVE statement 236
copied records

truncating 192
CVPBYTES= option

LIBNAME statement 243
CVPENGINE= option

LIBNAME statement 243
CVPMULTIPLIER= option

Index 403

LIBNAME statement 243

D
data libraries

associating librefs with 247
concatenating 247
concatenating, logically 249
disassociating librefs from 247
writing attributes to log 247

data lines
including 164
reading 41, 58

DATA naming convention 48
data set list

MERGE statement 266
SET statement 353

data set options
MODIFY statement with 279

data sets
See also DATA statement
combining 358
concatenating 358, 359
interleaving 359
one-to-one reading 359, 360
permanently storing, one-level names

250
reading observations 353, 360
reading observations, more than once

360
DATA statement 48

arguments 48
creating custom reports 54
creating DATA step views 52
creating input DATA step views 53
creating output data sets 52
creating stored compiled DATA step

programs 52
describing DATA step views 53
details 51
displaying nesting levels 55
examples 53
executing stored compiled DATA step

programs 53
when not creating data sets 52
without arguments 48

DATA step
aborting 19
BY statement in 37
MODIFY statement in 277
stopping 341, 365

DATA step programs
stored compiled, executing 75

DATA step programs, retrieving source
code from 60

DATA step statements 2

declarative 2
executable 2
global, definition 3

DATA step views
creating 52
describing 53
retrieving source code from 60

DATALINES argument
INFILE statement 172, 187

DATALINES statement 56
compared to DATALINES4 statement

58
DATALINES4 58
DATALINES4 statement 58
DEBUG option

FILENAME statement, FTP access
method 119

FILENAME statement, SFTP access
method 134

FILENAME statement, URL access
method 144

FILENAME statement, WebDAV
access method 148

declarative DATA step statements 2
declarative statements 2
DEFAULT= argument

INFORMAT statement 196
LENGTH statement 237

DELETE argument, DISPLAY statement
61

DELETE statement 59
compared to DROP statement 72
compared to IF statement, subsetting

161
delimited data 227

reading 184
reading from external file 97

delimiter sensitive data
FILE statement 76

DELIMITER= option
FILE statement 76
INFILE statement 174, 187

delimiters
INFILE statement 187

DESC= option
FILENAME statement, CATALOG

access method 100
DESCENDING argument

BY statement 35
DESCRIBE statement 60
DIR option

FILENAME statement, FTP access
method 119

FILENAME statement, SFTP access
method 134

404 Index

FILENAME statement, WebDAV
access method 148

direct access
by indexed values 275
by observation number 276

directories
reading and writing from 127
reading from member of 151
writing to new member of 151

directory listings
retrieving 124

DISPLAY statement 61
compared to WINDOW statement 395

DISPLAY= option, WINDOW statement
394

DLMSOPT= option
FILE statement 76
INFILE statement 175

DLMSTR= option
FILE statement 76
INFILE statement 175

DM statement 62
DO statement 64

compared to DO UNTIL statement 69
compared to DO WHILE statement 71

DO statement, iterative 65
compared to DO statement 65
compared to DO UNTIL statement 69
compared to DO WHILE statement 71

DO UNTIL statement 69
compared to DO statement 65
compared to DO statement, iterative 67
compared to DO WHILE statement 71

DO WHILE statement 70
compared to DO statement 65
compared to DO statement, iterative 67
compared to DO UNTIL statement 69

DO-loop processing
termination value 361

DO-loops
DO statement 64
DO statement, iterative 65
DO UNTIL statement 69
DO WHILE statement 70
ending 73
GO TO statement 159
resuming 47, 235
stopping 47, 235

dollar sign ($) argument
INPUT statement 200
INPUT statement, column input 214
INPUT statement, named input 228
LENGTH statement 237

double trailing @
INPUT statement, list 221

DROP statement 71

compared to DELETE statement 59
compared to KEEP statement 232

DROP= data set option
compared to DROP statement 72

DROPOVER option
FILE statement 76

DSD option
FILE statement 76
INFILE statement 175, 188

E
e-mail

attachments 114
creating and sending images 116
options for FILENAME statement,

EMAIL access method 106
procedure output in 116
sending from SAS with SMTP 106

EMAIL (SMTP) access method
See FILENAME statement, EMAIL

(SMTP) access method
embedded blanks

character data with 225
encoded passwords 126
encoding

for output files 92
ENCODING= option

FILE statement 76, 92
FILENAME statement 95, 99, 100
FILENAME statement, EMAIL access

method 108
FILENAME statement, FTP access

method 119
FILENAME statement, SOCKET

access 139
FILENAME statement, WebDAV

access method 148
INFILE statement 176, 195

END statement 73
END= argument

MODIFY statement 271
UPDATE statement 377

END= option
INFILE statement 176
SET statement 353, 361

ENDSAS command, compared to
ENDSAS statement 74

ENDSAS statement 74
EOF= option

INFILE statement 176
EOV= option

INFILE statement 176
error messages

writing 74
ERROR statement 74

Index 405

executable DATA step statements 2
executable statements 2
EXECUTE statement 75
EXPANDTABS option

INFILE statement 177
expressions, summing 367
EXTENDOBSCOUNTER= option

LIBNAME statement 243
external files

associating filerefs 97, 98
definition 96
disassociating filerefs 95, 97
encoding specification 95, 99, 100
identifying a file to read 171
including 169
reading delimited data from 97
referencing catalogs as 100
updating in place 88, 183, 192
writing attributes to log 96, 97

F
FILE argument

ABORT statement 19
file extensions

attaching automatically 152
FILE statement 76

arguments 76
arranging contents of entire page 90
comparisons 89
current output file 91
details 87
encoding for output file 92
examples 89
executing statements at new page 89
external files, updating in place 88
operating environment options 76
options 76
output buffer, accessing contents 88
output line too long 92
page breaks 90
TCP/IP socket and 92
updating _FILE_ variable 88

FILEEXT option
FILENAME statement, FTP access

method 119
FILENAME statement, WebDAV

access method 148, 152
FILENAME statement 93

arguments 94
compared with REDIRECT statement

329
comparisons 97
definitions 96
details 96
disassociating filerefs 95, 97

encoding specification 95, 99, 100
examples 98
filerefs for aggregate storage location

98
filerefs for external files 97, 98
filerefs for output devices 97
LIBNAME statement and 98
operating environment information 96
options 96
reading delimited data from external

files 97
routing PUT statement output 99
SOCKET access method 138
writing file attributes to log 96, 97

FILENAME statement, CATALOG
access method 100

%INCLUDE with catalog entries 102
arguments 100
catalog options 100
details 102
examples 102
executing autocall macros from catalogs

103
reading and writing CATAMS entries

102
writing to SOURCE entries 103

FILENAME statement, CLIPBOARD
access method 104

FILENAME statement, EMAIL (SMTP)
access method 106

arguments 106
attachments with e-mail 114
conditional logic in DATA step 115
creating and e-mailing images 116
details 113
e-mail options 106
examples 114
sending procedure output 116

FILENAME statement, FTP access
method 117

arguments 117
comparisons 124
creating files on remote host 125
creating transport libraries with

transport engine 126
encoded passwords 126
examples 124
FTP anonymous login 125
FTP options 117
importing transport data sets 126
proxy servers 128
reading and writing from directories

127
reading files from remote host 125
reading S370V files on z/OS 125
retrieving directory listings 124

406 Index

transporting libraries 126
FILENAME statement, Hadoop access

method 128
FILENAME statement, SFTP access

method 133
arguments 133
comparisons 137
details 136
examples 137
prompts 137
SFTP options 134

FILENAME statement, SOCKET access
method 138

client mode 141
details 141
examples 142
server mode 141
TCPIP options 138

FILENAME statement, URL access
method 142

accessing files at a Web site 146
arguments 142
details 146
examples 146
reading part of a URL file 146
URL options 142
user ID and password 146

FILENAME statement, WebDAV access
method 147

accessing files at a Web site 150
accessing files with mixed-cased names

152
accessing lowercased autocall macro

member 151
arguments 147
automatically attaching file extensions

152
details 150
examples 150
proxy servers 150
reading from directory member 151
WebDAV location as autocall macro

library 151
WebDAV options 147
writing to new directory member 151

FILENAME= option
FILE statement 76
INFILE statement 177

filerefs
associating with aggregate storage

location 98
associating with external files 97, 98
associating with output devices 97
definition 96
disassociating from external files 95, 97
FILENAME statement 93

files, master
updating 377

FILEVAR= option
FILE statement 76, 91
INFILE statement 177, 191

FIRST. variable 36
FIRSTOBS= option

INFILE statement 177
FLOWOVER option

FILE statement 76
INFILE statement 177, 189

FOOTNOTE statement 152
comparisons 155
details 155
examples 155
without arguments 152

footnotes
customizing with ODS 373

FOOTNOTES option
FILE statement 76

FORMAT statement 156
formats

associating with variables 156
formatted input 205, 217

modified list input vs. 224
formatted output 302, 316
FROM= option

FILENAME statement, EMAIL access
method 109

FTP
anonymous login 125

FTP access method
See FILENAME statement, FTP access

method

G
global DATA step statements

definition 3
GO TO statement 159
GROUP= operator, WINDOW statement

389
GROUPFORMAT argument

BY statement 35
grouping observations 39

with formatted values 38

H
HEADER= option

FILE statement 76, 89
HEADERS= option

FILENAME statement, URL access
method 144

HOST= option

Index 407

FILENAME statement, FTP access
method 120

FILENAME statement, SFTP access
method 134

HOSTRESPONSELEN= option
FILENAME statement, FTP access

method 120

I
I/O control

MODIFY statement 287
ICOLUMN= argument, WINDOW

statement 389
IF, THEN/ELSE statements 163

compared to IF statement, subsetting
161

IF statement, subsetting 161
compared to DELETE statement 59

images
sending in e-mail 116

IMPORTANCE= option
FILENAME statement, EMAIL access

method 109
importing

transfer data sets 126
including programming statements and

data lines 164
indexed values

direct access by 275
indexes

duplicate values 275, 285
INDSNAME option

SET statement 353
INENCODING= option

LIBNAME statement 244
INFILE statement 171

arguments 171
compared to INPUT statement 210
comparisons 186
DBMS specifications 171
delimited data, reading 184
delimiters 187
details 182
encoding specification 195
examples 187
input buffer, accessing contents 183
input buffer, working with data 193
missing values, list input 189
multiple input files 183, 191
operating environment options 171
options 171
pointer location 192
reading long instream data records 185
reading past the end of a line 185
short records 189

truncating copied records 192
updating external files in place 183,

192
variable-length records, reading 190
variable-length records, scanning 189

INFORMAT statement 196
informats

associating with variables 196
reading unaligned data with 226

input
assigning to variables 199
column 204, 214
describing format of 199
end-of-data indicator 290
formatted 205, 217
invalid data 209, 264
list 205
list input 221
listing for current session 258
logging 258
missing records 264
missing values 270
named 205, 228
resynchronizing 264

input buffer
accessing, for multiple files 194
accessing contents 183
working with data in 193

input column 217
input data

reading past the end of a line 185
input data sets

redirecting 328
input DATA step views

creating 53
input files

reading multiple files 183, 191
truncating copied records 192

INPUT statement 199
column 214
compared to PUT statement 306
formatted 217
identifying file to be read 171
named 228

INPUT statement, column 214
INPUT statement, formatted 217
INPUT statement, list 221

details 223
examples 225

INPUT statement, named 228
instream data

reading long records 185
interleaving data sets

SET statement for 359
IOM clients

tracking submitted SAS programs 368

408 Index

IROW= argument, WINDOW statement
389

J
JMP engine LIBNAME statement 251

K
KEEP statement 231

compared to DROP statement 72
compared to RETAIN statement 338

KEEP= data set option
compared to KEEP statement 232

KEY= argument
MODIFY statement 271

KEY= option
SET statement 353, 361

keyboard input
including 170

KEYS= argument, WINDOW statement
389

L
label: statement 234
LABEL statement 233

compared to statement labels 235
labels

statement labels 234
LAST. variable 36
LEAVE statement 47, 235

compared to CONTINUE statement 47
LENGTH statement 237
LENGTH= option

INFILE statement 178, 190
LIBNAME statement 239

arguments 239
assigning librefs 249
associating librefs with data libraries

247
comparisons 249
concatenating catalogs, implicitly 248,

250
concatenating data libraries 247
concatenating data libraries, logically

249
data library attributes, writing to log

247
details 247
disassociating librefs from data libraries

247
engine-host-options 239
examples 249
FILENAME statement and 98
library concatenation rules 248

options 239
permanently storing data sets, one-level

names 250
LIBNAME statement, for JMP Engine

251
LIBNAME statement, for WebDAV

Servers 252
libraries

transporting 126
library concatenation rules 248
librefs

assigning 249
associating with data libraries 247
disassociating from data libraries 247

line pointer controls
INPUT statement 199
PUT statement 296

line-hold specifiers
INPUT statement 207
PUT statement 305

LINE= option
FILE statement 76
INFILE statement 178

LINESIZE= option
FILE statement 76
INFILE statement 178

LINESLEFT= option
FILE statement 76, 90

LINK statement 256
compared to GO TO statement 160

LIST argument
FILENAME statement 96, 97
LIBNAME statement 241

list input 205, 221
character data with embedded blanks

225
comma-delimited data 226
data with quotation marks 225
missing values in 189
modified 224, 227
reading delimited data 227
reading unaligned data 225
reading unaligned data with informats

226
simple 224, 225
when to use 223

LIST option
CATNAME statement 41
FILENAME statement, FTP access

method 120
list output 302, 321

See also PUT statement, list
PUT statement, list 319
spacing 321
writing values with 322

LIST statement 258

Index 409

LOCALCACHE= option
FILENAME statement, WebDAV

access method 148
LOCK statement 261
LOCKDURATION= option

FILENAME statement, WebDAV
access method 148

log
writing data library attributes to 247
writing external file attributes to 96, 97
writing messages to 326

LOSTCARD statement 264
LOWCASE_MEMNAME option

FILENAME statement, FTP access
method 120

FILENAME statement, WebDAV
access method 148

LRECL= option
FILE statement 76
FILENAME statement, CATALOG

access method 100
FILENAME statement, EMAIL access

method 109
FILENAME statement, FTP access

method 120
FILENAME statement, SFTP access

method 134
FILENAME statement, SOCKET

access 140
FILENAME statement, URL access

method 144
FILENAME statement, WebDAV

access method 149
INFILE statement 178

LS option
FILENAME statement, FTP access

method 120
FILENAME statement, SFTP access

method 135
LSA option

FILENAME statement, SFTP access
method 135

LSFILE= option
FILENAME statement, FTP access

method 120
FILENAME statement, SFTP access

method 135

M
master files, updating 377
match-merge 268
matching access 275
MENU= argument, WINDOW statement

389
MERGE statement 266

compared to UPDATE statement 379
merging observations 360
messages

writing to log 326
MGET option

FILENAME statement, FTP access
method 121

FILENAME statement, SFTP access
method 135

missing records, input 264
MISSING statement 270
missing values

input 270
list input 189
MISSING statement 270
reading external files 189
substitute characters for 270

MISSING= system option
compared to MISSING statement 270

MISSOVER option
INFILE statement 179, 189

MOD option
FILE statement 76
FILENAME statement, CATALOG

access method 100
FILENAME statement, WebDAV

access method 149
modified list input 224

formatted input vs. 224
reading delimited data 227

modified list output 321
vs. formatted output 322
writing values with : 323
writing values with ~ 323

MODIFY statement 271
IORC automatic variable 277
comparisons 279
data set options with 279
details 275
direct access by indexed values 275
direct access by observation number

276
duplicate BY values 275
duplicate index values 275, 285
examples 281
I/O control 287
in DATA step 277
matching access 275
SAS/SHARE environment 279
sequential access 276
SYSRC autocall macro 277

MPROMPT option
FILENAME statement, FTP access

method 121

410 Index

N
N= option

FILE statement 76, 90
INFILE statement 179

named input 205, 228
named output 303, 324
NBYTE= option

INFILE statement 92, 179
nested catalog concatenation 44
nesting levels

displaying 55
NEW option

FILENAME statement, FTP access
method 121

FILENAME statement, SFTP access
method 135

NOBS= option
MODIFY statement 271
SET statement 353, 361

NOINPUT argument, DISPLAY
statement 61

NOLIST argument
ABORT statement 19
DATA statement 48

NOTSORTED argument
BY statement 35

Null statement 290

O
OBS= option

INFILE statement 179
observations

combining multiple 39
deleting 59, 330
dropping 71
grouping 39
grouping with formatted values 38
merging 266, 360
modifying 271, 281
modifying, located by index 284
modifying, located by number 283
modifying, with transaction data set

281
modifying, writing to different data sets

289
multiple records for 208
reading subsets 361
reading with SET statement 353
replacing 333
writing 293

observations, selecting
IF, subsetting 161
IF, THEN/ELSE statement 163
WHERE statement 382

ODS (Output Delivery System)

customizing titles and footnotes 373
ODS option

FILE statement 76
OLD option

FILE statement 76
one-to-one merge 268
one-to-one reading 359, 360
OPEN= option

SET statement 353
operating environment

FILE statement options for 76
operating system commands

issuing from SAS sessions 399
OPTIONS statement 292
OPTIONS= option

FILENAME statement, SFTP access
method 135

OUTENCODING= option
LIBNAME statement 244

output
column 302, 314
footnotes 152
formatted 302, 316
list 302
named 303, 324

output buffer
accessing contents 88

output data sets 52
creating 52
redirecting 328

output devices
associating filerefs 97

output files
dynamically changing current file 91
encoding for 92
for PUT statements 76
identifying current file 91
output line too long 92

OUTPUT statement 293
compared to REMOVE statement 330
compared to REPLACE statement 334

OUTREP= option
LIBNAME statement 244

OVERPRINT option, PUT statement 296

P
PAD option

FILE statement 76
INFILE statement 180

page breaks
determined by lines left on current page

90
executing statements at 89

page size
two-column format 90

Index 411

PAGE statement 296
PAGESIZE= option

FILE statement 76
PASS= option

FILENAME statement, FTP access
method 121

FILENAME statement, URL access
method 144

FILENAME statement, WebDAV
access method 149

passwords
ALTER 51
DATA step and 51
encoded 126
READ 51
stored compiled DATA step programs

with 54
PATH option

FILENAME statement, SFTP access
method 135

PERSIST= option, WINDOW statement
394

PGM= argument
DATA statement 48

plotters
filerefs for 97

plus sign (+) column pointer control
INPUT statement 202
PUT statement 296
WINDOW statement 392

POINT= option
MODIFY statement 271
SET statement 353, 361

pointer controls
INPUT statement 206
PUT statement 304

pointer location 192
PORT= option

FILENAME statement, FTP access
method 121

pound sign (#) line pointer control
INPUT statement 203
PUT statement 296

PPASS= option
FILENAME statement, URL access

method 144
PRINT option

FILE statement 76
INFILE statement 180

printers
filerefs for 97

PROC steps
BY statement in 37

procedure output
footnotes 152
sending in e-mail 116

submitting as SAS statements 62
Program Editor commands, submitting as

SAS statements 62
flow into main entry 62

programming statements
including 164

PROMPT option
FILENAME statement, FTP access

method 121
FILENAME statement, URL access

method 144
FILENAME statement, WebDAV

access method 149
PROTECT= option, WINDOW statement

394
proxy servers 128, 150
PROXY= option

FILENAME statement, URL access
method 144

FILENAME statement, WebDAV
access method 149

PUSER= option
FILENAME statement, URL access

method 144
PUT statement 296

compared to INPUT statement 210
compared to LIST statement 258
FILE statement and 76
output file for 76
routing output 99

PUT statement, column 314
PUT statement, formatted 316
PUT statement, list 319

arguments 319
comparisons 322
details 321
examples 322
list output 321
list output, spacing 321
list output, writing values with 322
modified list output, writing values 323
modified list output vs. formatted output

322
writing character strings 323
writing variable values 323

PUT statement, named 324
PUTLOG statement 326
PUTTY client

connecting to SSHD server 137

Q
question mark (?) format modifier

INPUT statement 203
question marks (??) format modifier

INPUT statement 203

412 Index

R
RCFM= option

FILENAME statement, FTP access
method 122

RCMD= option
FILENAME statement, FTP access

method 122
READ passwords 51
reading

from directories 127
reading past the end of a line 185
RECFM= option

FILE statement 76
FILENAME statement 96
FILENAME statement, CATALOG

access method 100
FILENAME statement, SFTP access

method 135
FILENAME statement, SOCKET

access 140
FILENAME statement, URL access

method 145
FILENAME statement, WebDAV

access method 149
INFILE statement 180

RECONN= option
FILENAME statement, SOCKET

access 140
REDIRECT statement 328

arguments 328
examples 329

redirecting data sets 328
remote files

FTP access method 117
SFTP access method 133
URL access method 142
WebDAV access method 147

remote host
creating files on 125
reading files from 125
reading files from a directory 138

REMOVE statement 330
compared to OUTPUT statement 294
compared to REPLACE statement 330,

334
RENAME statement 331
RENAME= data set option

compared to RENAME statement 332
REPEMPTY= option

LIBNAME statement 246
REPLACE statement 333

compared to OUTPUT statement 294
compared to REMOVE statement 330

REPLYTO= option
FILENAME statement, EMAIL access

method 109

reports
creating with DATA statement 54

REQUIRED= option, WINDOW
statement 395

RESETLINE statement 335
RETAIN statement 337

compared to KEEP statement 232
compared to SUM statement 367

RETURN argument
ABORT statement 19

RETURN statement 341
compared to GO TO statement 160

RHELP option
FILENAME statement, FTP access

method 123
ROWS= argument, WINDOW statement

389
RSTAT option

FILENAME statement, FTP access
method 123

RUN statement 342

S
S2= argument

%INCLUDE statement 167
S370V files

reading on z/OS 125
S370V option

FILENAME statement, FTP access
method 123

S370VS option
FILENAME statement, FTP access

method 123
SAS data sets

deleting observations 330
redirecting 328
writing to 293

SAS jobs
aborting 19

SAS jobs, terminating 74
SAS log

logging input 258
skipping to new page 296

SAS OPTIONS window, compared to
OPTIONS statement 293

SAS programs
including statements or data lines 164
tracking, for IOM clients 368

SAS sessions
aborting 19
issuing operating-system commands

399
terminating 74

SAS statements 1
SAS system options

Index 413

changing values of 292
SAS views

BY statement with 37
SAS/SHARE

MODIFY statement and 279
SASFILE statement 344
SAVEUSER option

FILENAME statement, FTP access
method 123

SCANOVER option
INFILE statement 180, 189

Secure Sockets Layer (SSL) protocol
FILENAME statement, URL access

method 146
FILENAME statement, WebDAV

access method 150
SELECT groups, compared to IF, THEN/

ELSE statement 163
SELECT statement 350

comparisons 351
examples 351
WHEN statements in SELECT groups

350
semicolon (;), in data lines 41, 58
sequential access

MODIFY statement 276
SERVER argument

FILENAME statement, SOCKET
access 139

SET statement 353
arguments 353
BY-group processing with 358
combining data sets 358
compared to INPUT statement 210
compared to MERGE statement 269
comparisons 359
concatenating data sets 358, 359
details 357
examples 359
interleaving data sets 359
merging observations 360
one-to-one reading 359, 360
options 353
reading subsets 361
table-lookup 361

SFTP access method
See FILENAME statement, SFTP

access method
SFTP argument

FILENAME statement, SFTP access
method 133

SHAREBUFFERS option
INFILE statement 180, 192

short records 189
Simple Mail Transfer Protocol

See FILENAME statement, EMAIL
(SMTP) access method

SKIP statement 365
slash (/) line pointer control

INPUT statement 203
PUT statement 296

SMTP access method
See FILENAME statement, EMAIL

(SMTP) access method
SOCKET access method

FILENAME statement 138
SOCKET argument

FILENAME statement, SOCKET
access 139

sort order
specifying with BY statement 38

SOURCE entries
writing to 103

SOURCE= argument
DATA statement 48

SOURCE2 argument
%INCLUDE statement 167

SSHD server
connecting at non-standard port 137
connecting at standard port 137
connecting Windows PUTTY client to

137
SSL protocol

FILENAME statement, URL access
method 146

FILENAME statement, WebDAV
access method 150

START= option
INFILE statement 181

statement labels 234
statement labels, jumping to 256
statements 1

DATA step statements 2
declarative 2
executable 2
executing at page break 89

STOP statement 365
STOPOVER option

FILE statement 76
INFILE statement 181, 189

stored compiled DATA step programs
creating 52
executing 53, 75
passwords with 54
retrieving source code from 60

SUBJECT= option
FILENAME statement, EMAIL access

method 110
SUM function

compared to SUM statement 367
Sum statement 367

414 Index

summing expressions 367
SYSECHO statement 368
SYSRC autocall macro

MODIFY statement and 277

T
table-lookup

duplicate observations in master file
361

TCP/IP socket
reading and writing text through 92

TCP/IP socket access
FILENAME statement 138

TCPIP-options
FILENAME statement, SOCKET

access 138
terminals

filerefs for 97
TERMSTR= option

FILENAME statement, SOCKET
access 140

FILENAME statement, URL access
method 145

text editor commands, submitting as SAS
statements 62

flow into main entry 62
tilde (~) format modifier 221, 224
TITLE statement 368
titles

customizing with BY variables 373
customizing with ODS 373

TITLES option
FILE statement 76

TO statement, compared to LINK
statement 257

TO= option
FILENAME statement, EMAIL access

method 110
trailing @

INPUT statement, list 221
transaction data sets

modifying observations 281
transport data sets

importing 126
transport engine

creating transport libraries with 126
transport libraries

creating with transport engine 126
transporting libraries 126
truncating

copied records 192
TRUNCOVER option

INFILE statement 181, 189
two-column format 90

U
unaligned data 225
UNBUFFERED option

INFILE statement 181
UNIQUE option

SET statement 353
UNIQUE= option

MODIFY statement 271
Universal Printers

filerefs for 97
UPDATE statement 377

compared to MERGE statement 269
UPDATEMODE= argument

UPDATE statement 377
UPDATEMODE= option

MODIFY statement 271
URL access method

See FILENAME statement, URL access
method

USER= option
FILENAME statement, FTP access

method 124
FILENAME statement, SFTP access

method 136
FILENAME statement, URL access

method 145
FILENAME statement, WebDAV

access method 150

V
variable-length records

reading 190
scanning for character string 189

variables
ERROR, setting 74
assigning input to 200
associating formats with 156
associating informats with 196
BY variables 38
FIRST. 36
labeling 233
LAST. 36
length, specifying 237
renaming 331
retaining values 337

VIEW= argument
DATA statement 48

W
WAIT_MILLISECONDS= option

FILENAME statement, SFTP access
method 136

Web sites
accessing files at 146, 150

Index 415

WEBDAV 252
WebDAV access method

See FILENAME statement, WebDAV
access method

WHEN statement
in SELECT groups 350

WHERE statement 382
compared to IF statement, subsetting

161
WINDOW statement 389
windows, displaying 61, 389
Windows PUTTY client

connecting to SSHD server 137

writing
from directories 127

X
X command, compared to X statement

400
X statement 399

Z
z/OS

reading S370V files 125

416 Index

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What's New in SAS 9.3 Statements
	Overview
	New SAS Statements
	Enhanced SAS Statements
	Changes to SAS Language Reference: Dictionary

	Recommended Reading
	SAS Statements
	Definition of Statements
	DATA Step Statements
	Executable and Declarative Statements

	Global Statements

	Dictionary of SAS Statements
	SAS Statements Documented in Other SAS Publications
	DATA Step Statements by Category
	Global Statements by Category
	Dictionary
	ABORT Statement
	ARRAY Statement
	Array Reference Statement
	Assignment Statement
	ATTRIB Statement
	BY Statement
	CALL Statement
	CARDS Statement
	CARDS4 Statement
	CATNAME Statement
	CHECKPOINT EXECUTE_ALWAYS Statement
	Comment Statement
	CONTINUE Statement
	DATA Statement
	DATALINES Statement
	DATALINES4 Statement
	DELETE Statement
	DESCRIBE Statement
	DISPLAY Statement
	DM Statement
	DO Statement
	DO Statement, Iterative
	DO UNTIL Statement
	DO WHILE Statement
	DROP Statement
	END Statement
	ENDSAS Statement
	ERROR Statement
	EXECUTE Statement
	FILE Statement
	FILENAME Statement
	FILENAME Statement, CATALOG Access Method
	FILENAME, CLIPBOARD Access Method
	FILENAME Statement, EMAIL (SMTP) Access Method
	FILENAME Statement, FTP Access Method
	FILENAME Statement, Hadoop Access Method
	FILENAME Statement, SFTP Access Method
	FILENAME Statement, SOCKET Access Method
	FILENAME Statement, URL Access Method
	FILENAME Statement, WebDAV Access Method
	FOOTNOTE Statement
	FORMAT Statement
	GO TO Statement
	IF Statement, Subsetting
	IF-THEN/ELSE Statement
	%INCLUDE Statement
	INFILE Statement
	INFORMAT Statement
	INPUT Statement
	INPUT Statement, Column
	INPUT Statement, Formatted
	INPUT Statement, List
	INPUT Statement, Named
	KEEP Statement
	LABEL Statement
	label: Statement
	LEAVE Statement
	LENGTH Statement
	LIBNAME Statement
	LIBNAME Statement for the JMP Engine
	LIBNAME Statement for WebDAV Server Access
	LINK Statement
	LIST Statement
	%LIST Statement
	LOCK Statement
	LOSTCARD Statement
	MERGE Statement
	MISSING Statement
	MODIFY Statement
	Null Statement
	OPTIONS Statement
	OUTPUT Statement
	PAGE Statement
	PUT Statement
	PUT Statement, Column
	PUT Statement, Formatted
	PUT Statement, List
	PUT Statement, Named
	PUTLOG Statement
	REDIRECT Statement
	REMOVE Statement
	RENAME Statement
	REPLACE Statement
	RESETLINE Statement
	RETAIN Statement
	RETURN Statement
	RUN Statement
	%RUN Statement
	SASFILE Statement
	SELECT Statement
	SET Statement
	SKIP Statement
	STOP Statement
	Sum Statement
	SYSECHO Statement
	TITLE Statement
	UPDATE Statement
	WHERE Statement
	WINDOW Statement
	X Statement

	Index

