GSas

THE POWER T BLHOA

SAS” 9.4 Component
Objects: Reference, Third
Edition

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Component Objects: Reference, Third Edition.
Cary, NC: SAS Institute Inc.

SAS® 9.4 Component Objects: Reference, Third Edition
Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P1:lecompobjref

Contents

About This Book v
Whats New in SAS 9.4 Component Objects, Xi
Chapter 1 « About SAS Component Objects 1
DATA Step Component Objects ovvutt ittt 1
The DATA Step Component Interface 1
Dot Notation and DATA Step Component Objectsc.oovvinn... 2
Tips When Using Component Objectsottt 3
Chapter 2 « Dictionary of Hash and Hash Iterator Object Language Elements 7
DICHONATY . . ottt 8
Chapter 3 * Dictionary of Java Object Language Elements 75
Java Object Methods by Categoryoo i 75
DACHONATY . o ettt e e 76
Recommended Reading i 101

Index 103

iv Contents

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

* syntax components
+ style conventions
* special characters

« references to SAS libraries and external files

Syntax Components

The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple arguments,
with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write your
program. Keyword is a literal that is usually the first word in the syntax. In a CALL
routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.

REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:
CALL RANBIN(seed, n, p, x)
The syntax of some SAS statements consists of a single keyword without arguments:

DO;

Vi

About This Book

... SAS code ...
END;

Some system options require that one of two keyword values be specified:
DUPLEX | NODUPLEX
Some procedure statements have multiple keywords throughout the statement syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, ...>)

argument

specifies a numeric or character constant, variable, or expression. Arguments follow
the keyword or an equal sign after the keyword. The arguments are used by SAS to
process the language element. Arguments can be required or optional. In the syntax,
optional arguments are enclosed in angle brackets (<>).

In this example, string and position follow the keyword CHAR. These arguments are
required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string has a
value of 'summer’, and the argument position has a value of 4:

x=char ('summer', 4);

In this example, string and substring are required arguments, whereas modifiers and
startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)

specifies that one argument is required and that multiple arguments are allowed.
Separate arguments with a space. Punctuation, such as a comma (,) is not required
between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL ARGUMENT> argument-1 <<LITERAL ARGUMENT> argument-2 ... >

specifies that one argument is required and that a literal argument can be associated
with the argument. You can specify multiple literals and argument pairs. No
punctuation is required between the literal and argument pairs. The ellipsis (...)
indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...>;

argument-1 <option(s)> <argument-2 <option(s)> ...>

specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and associated
options. No punctuation is required between the argument and the option. The
ellipsis (...) indicates that additional arguments with an associated option are
allowed.

The FORMAT procedure PICTURE statement is an example of this form of multiple
arguments:

PICTURE name <(format-option(s))>
<value-range-set-1 <(picture-1-option(s))>
<value-range-set-2 <(picture-2-option(s))> ...>>;

Syntax Conventions for the SAS Language Vii

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are allowed.
No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:
LABEL variable-1=label-1 <variable-2=label-2 ...>,

argument-1 <, argument-2, ..>
specifies that one argument is required and that you can specify multiple arguments
that are separated by a comma or other punctuation. The ellipsis (...) indicates a
continuation of the arguments, separated by a comma. Both forms are used in the
SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, ...>

INTO :macro-variable-specification-1 <, :macro-variable-specification-2, ...>

Note: In most cases, example code in SAS documentation is written in lowercase with a
monospace font. You can use uppercase, lowercase, or mixed case in the code that
you write.

Style Conventions

The style conventions that are used in documenting SAS syntax include uppercase bold,
uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |
italic
identifies arguments or values that you supply. Items in italic represent user-supplied

values that are either one of the following:

* nonliteral arguments. In this example of the LINK statement, the argument labe/
is a user-supplied value and therefore appears in italic:

LINK label,
» nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is assigned
the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters

The syntax of SAS language elements can contain the following special characters:

viii

About This Book

an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of MAPS:
MAPS=location-of-maps

angle brackets identify optional arguments. A required argument is not enclosed in
angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, ...>)

a vertical bar indicates that you can choose one value from a group of values. Values
that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of the
arguments:

CMPMODEL=BOTH | CATALOG | XML

an ellipsis indicates that the argument can be repeated. If an argument and the ellipsis
are enclosed in angle brackets, then the argument is optional. The repeated argument
must contain punctuation if it appears before or after the argument.

In this example of the CAT function, multiple item arguments are allowed, and they
must be separated by a comma:

CAT (item-1 <, item-2, ...>)

'value' or "value"

indicates that an argument that is enclosed in single or double quotation marks must
have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument fext is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

a semicolon indicates the end of a statement or CALL routine.
In this example, each statement ends with a semicolon:

data namegame;
length color name $8;

color = 'black';

name = 'jack';

game = trim(color) || name;
run;

References to SAS Libraries and External Files

Many SAS statements and other language elements refer to SAS libraries and external
files. You can choose whether to make the reference through a logical name (a libref or
fileref) or use the physical filename enclosed in quotation marks. If you use a logical
name, you typically have a choice of using a SAS statement (LIBNAME or
FILENAME) or the operating environment's control language to make the reference.

Syntax Conventions for the SAS Language ix

Several methods of referring to SAS libraries and external files are available, and some
of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

X About This Book

Xi

What's New in SAS 9.4
Component Objects

Tracking Key Summaries for Hash Objects

Use the keysum argument tag in the DECLARE statement or NEW _ operator to specify
the name of a variable that tracks the key summary for all keys.

Iterating over Multiple Keys for Hash Objects

Use the DO_OVER method in an iterative DO loop to traverse through the duplicate
keys. The DO_OVER method reads the key on the first method call and continues to
iterate over the duplicate key list until it reaches the end. If you need to switch the key in
the middle of an iteration, you can use the new RESET DUP method to reset the pointer
to the beginning of the list.

Lock-Down State Restrictions

The LOCKDOWN statement and LOCKDOWN system option are new in the first
maintenance release for SAS 9.4. With LOCKDOWN, if you are running in a client/
server environment (for example, you use SAS Enterprise Guide), the SAS server
administrator can create an environment where your SAS client has access to a set of
directories and files. All other directories and files would be inaccessible. In addition to
there being restrictions on directories and files, several language elements are not
available when SAS is in a locked-down state and the DATA step Java object is not
available.For more information, see “SAS Processing Restrictions for Servers in a
Locked-Down State” in SAS Language Reference: Concepts.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0ez235imkrngan1frvwgfsm2l45
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0ez235imkrngan1frvwgfsm2l45

xii SAS Component Objects

Chapter 1
About SAS Component Objects

DATA Step Component Objects

The DATA Step Component Interface

Dot Notation and DATA Step Component Objects
Definition

DATA Step Component Objects

SAS provides these five predefined component objects for use in a DATA step:

hash and hash iterator objects
enable you to quickly and efficiently store, search, and retrieve data based on lookup
keys. For more information, see “Using the Hash Object ” in SAS Language
Reference: Concepts and “Using the Hash Iterator Object ” in SAS Language
Reference: Concepts.

Java object
provides a mechanism that is similar to the Java Native Interface (JNI) for
instantiating Java classes and accessing fields and methods on the resultant objects.

For more information about the Java object, see “Using the Java Object” in SAS
Language Reference: Concepts .

logger and appender objects

enable you to record logging events and write these events to the appropriate
destination. For more information, see “Component Object Reference” in SAS
Logging: Configuration and Programming Reference.

The DATA Step Component Interface

The DATA step component object interface enables you to create and manipulate
predefined component objects in a DATA step.

To declare and create a component object, you use either the DECLARE statement by
itself or the DECLARE statement and NEW _ operator together.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1rj93hxgkc2ian0ztyaen6vig2u
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1rj93hxgkc2ian0ztyaen6vig2u

2 Chapter 1

About SAS Component Objects

Component objects are data elements that consist of attributes, methods, and operators.
Attributes are the properties that specify the information that is associated with an
object. Methods define the operations that an object can perform. For component
objects, operators provide special functionality.

You use the DATA step object dot notation to access the component object's attributes
and methods.

Note: The DATA step component object's statements, attributes, methods, and operators
are limited to those that are defined for these objects. You cannot use the SAS
Component Language functionality with these predefined DATA step objects.

Dot Notation and DATA Step Component Objects

Definition

Syntax

Dot notation provides a shortcut for invoking methods and for setting and querying
attribute values. Using dot notation makes your SAS programs easier to read.

To use dot notation with a DATA step component object, you must declare and
instantiate the component object by using either the DECLARE statement by itself or the
DECLARE statement and the NEW __ operator together. For more information, see
“Using DATA Step Component Objects” in SAS Language Reference: Concepts and
“Component Object Reference” in SAS Logging: Configuration and Programming
Reference.

The syntax for dot notation is as follows:

object.attribute

or

object.method (<argument_tag-1: value-1 <,... argument_tag-n: value-n>>;
The arguments are defined as follows:

object
specifies the variable name for the DATA step component object.

attribute
specifies an object attribute to assign or query.

When you set an attribute for an object, the code takes this form:
object.attribute = value;

When you query an object attribute, the code takes this form:
value = object.attribute;

method
specifies the name of the method to invoke.

argument tag
identifies the arguments that are passed to the method. Enclose the argument tag in
parentheses. The parentheses are required whether the method contains argument
tags.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1rj93hxgkc2ian0ztyaen6vig2u
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1rj93hxgkc2ian0ztyaen6vig2u

Tips When Using Component Objects 3

All DATA step component object methods take this form:

return code=object.method (<argument tag-1l:value-1
<, ...argument tag-n:value-ns>>);

The return code indicates method success or failure. A return code of zero indicates
success; a nonzero value indicates failure. If you do not supply a return code variable
for the method call and the method fails, an appropriate error message is printed to
the log.

value
specifies the argument value.

Tips When Using Component Objects

* You can assign objects in the same manner as you assign DATA step variables.
However, the object types must match. The first set of code is valid, but the second
generates an error.

declare hash h();
declare hash t();
t=h;

declare hash t();
declare javaobj j();
j=t;

* You cannot declare arrays of objects. The following code would generate an error:

declare hash hil();
declare hash h2();
array h hl-h2;

* You can store a component object in a hash object as data but not as keys.

data _null ;
declare hash hil();
declare hash h2();

length keyl key2 $20;

hl.defineKey('keyl!');
hl.defineData('keyl', 'h2');
hl.defineDone () ;

keyl = 'abc';

h2 = new_ hash();
h2.defineKey ('key2"');
h2.defineDone () ;

key2 = 'xyz';
h2.add () ;
hl.add();

keyl = 'def';
h2 = new_ hash();
h2.defineKey ('key2') ;

4 Chapter1 - About SAS Component Objects
h2.defineDone () ;

keyl = 'abc!';

rc = hl.find();

h2.output (dataset: 'work.h2');
run;

proc print data=work.h2;
run;

The data set WORK.H2 is displayed.

Figure 1.1 Data Set WORK.H2

The SAS System

Obs | key?2
1| xyz

* You cannot use component objects with comparison operators other than the equal
sign (=). If H1 and H2 are hash objects, the following code will generate an error:

if hl>h2 then

* After you declare and instantiate a component object, you cannot assign a scalar
value to it. If J is a Java object, the following code will generate an error:

j=5;

* You have to be careful to not delete object references that might still be in use or that
have already been deleted by reference. In the following code, the second DELETE
statement will generate an error because the original H1 object has already been
deleted through the reference to H2. The original H2 can no longer be referenced
directly.

declare hash hil();
declare hash h2();
declare hash t();
t=h2;

h2=hl;

h2.delete() ;
t.delete();

* You cannot use component objects in argument tag syntax. In the following example,
using the H2 hash object in the ADD methods will generate an error.

declare hash h2();
declare hash h();

h.add (key: h2);
h.add(key: 99, data: h2);

» The use of a percent character (%) in the first byte of text output by Java to the SAS
log is reserved by SAS. If you need to output a % in the first byte of a Java text line,
it must be escaped with another percent immediately next to it (%%).

* You can have a hash table of hash tables.

» A Java object represents an instantiation of a single Java class. A Java object cannot
hold anything else. But the Java instance can be arbitrarily complicated just like any

Tips When Using Component Objects 5

Java instance. A Java object can contain references to other Java entities, but they are
not considered Java objects.

When SAS is in a locked-down state, the Java object is not available. For more
information, see “SAS Processing Restrictions for Servers in a Locked-Down State”
in SAS Language Reference: Concepts.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0ez235imkrngan1frvwgfsm2l45
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0ez235imkrngan1frvwgfsm2l45

6 Chapter1 + About SAS Component Objects

Chapter 2

Dictionary of Hash and Hash
lterator Object Language

Elements
Dictionary e 8
ADD Methodo 8
CHECK Method o e 9
CLEAR Method o 11
DECLARE Statement, Hash and Hash Iterator Objects 13
DEFINEDATA Methodo 21
DEFINEDONE Methodo 23
DEFINEKEY Method e 24
DELETE Method, Hash and Hash Iterator Objects 26
DO OVERMethod e 26
EQUALS Methodo e 28
FIND Method o e 30
FIND NEXT Method e 32
FIND PREV Method e 34
FIRST Methodo e e 35
HAS NEXT Methodo e 36
HAS PREV Method e 38
ITEM SIZE Attributeo e e 39
LAST Methodo 40
NEW Operator, Hash and Hash Iterator Objects 41
NEXT Methodo o e 46
NUM _ITEMS AHributeottt ettt e e e 47
OUTPUT Methodot e 48
PREV Method 53
REF Methodo 54
REMOVE Method oo 56
REMOVEDUP Methodo e 59
REPLACE Methodo e 61
REPLACEDUP Method o e 64
RESET DUPMethod e 66
SETCUR Methodo e 67
SUM Methodo 69

SUMDUP Method oo e e e 71

8 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Dictionary

ADD Method

Adds the specified data that is associated with the given key to the hash object.
Applies to: Hash object

Syntax

rc=object. ADD (<<KEY: keyvalue-1>, ... <KEY: keyvalue-n>,
<DATA: datavalue-1 >, ... <DATA: datavalue-n>>);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method.

Details
You can use the ADD method in one of two ways to store data in a hash object.

You can define the key and data item, and then use the ADD method as shown in this
code:

data null ;
length k $8;
length d $12;
/* Declare hash object and key and data variable names */
if N =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone () ;

CHECK Method 9

end;
/* Define constant key and data values */

k = 'Joyce';
d = 'Ulysses';
/* Add key and data values to hash object */
rc = h.add();
run;

Alternatively, you can use a shortcut and specify the key and data item directly in the
ADD method call as shown in this code:

data null ;
length k $8;
length d $12;
/* Define hash object and key and data variable names */
if N =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone () ;
/* avoid uninitialized variable notes */
call missing(k, d);
end;
/* Define constant key and data values and add to hash object */
rc = h.add(key: 'Joyce', data: 'Ulysses');
run;

If you add a key that is already in the hash object, the ADD method returns a nonzero
value. Use the REPLACE method to replace the data item that is associated with the
specified key with new data.

If you do not specify the data variables with the DEFINEDATA method, the data
variables are automatically assumed to be the same as the keys.

If you use the KEY and DATA argument tags to specify the key and data directly, you
must use both argument tags.

The ADD method does not set the value of the data variable to the value of the data item.
The ADD method sets only the value in the hash object.

See Also

* “Storing and Retrieving Data” in SAS Language Reference: Concepts

Methods:

* “DEFINEDATA Method” on page 21
+ “DEFINEKEY Method” on page 24
* “REF Method” on page 54

CHECK Method

Checks whether the specified key is stored in the hash object.

Applies to: Hash object

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n1o424sjzc97dsn17j8vqw40mhxt

10 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Syntax
rc=object. CHECK (<KEY: keyvalue-1, ... KEY: keyvalue-n>);,

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

Details

You can use the CHECK method in one of two ways to find data in a hash object.

You can specify the key, and then use the CHECK method as shown in the following
code:

data _null_;
length k $8;
length d $12;
/* Declare hash object and key and data variable names */
if N_ =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone() ;

/* avoid uninitialized variable notes */
call missing(k, 4d);
end;
/* Define constant key and data values and add to hash object */
rc = h.add(key: 'Joyce', data: 'Ulysses');
/* Verify that JOYCE key is in hash object */
k = 'Joyce';
rc = h.check();
if (rc = 0) then
put 'Key is in the hash object.';

run;

Alternatively, you can use a shortcut and specify the key directly in the CHECK method
call as shown in the following code:

data null_;
length k $8;
length d $12;
/* Declare hash object and key and data variable names */
if N_ =1 then do;

CLEAR Method 11

declare hash h();

rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone() ;

/* avoid uninitialized variable notes */
call missing(k, d);
end;
/* Define constant key and data values and add to hash object */
rc = h.add(key: 'Joyce', data: 'Ulysses');
/* Verify that JOYCE key is in hash object */
rc = h.check(key: 'Joyce');
if (rc =0) then
put 'Key is in the hash object.';
run;

Comparisons

The CHECK method returns only a value that indicates whether the key is in the hash
object. The data variable that is associated with the key is not updated. The FIND
method also returns a value that indicates whether the key is in the hash object.
However, if the key is in the hash object, then the FIND method also sets the data
variable to the value of the data item so that it is available for use after the method call.

See Also

Methods:
+ “DEFINEKEY Method” on page 24
* “FIND Method” on page 30

CLEAR Method

Removes all items from the hash object without deleting the hash object instance.

Applies to: Hash object

Syntax
rc=object. CLEAR ();

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

12 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Details

The CLEAR method enables you to remove items from and reuse an existing hash object
without having to delete the object and create a new one. If you want to remove the hash
object instance completely, use the DELETE method.

Note: The CLEAR method does not change the value of the DATA step variables. It
clears only the values in the hash object.

Example: Clearing a Hash Object

The following example declares a hash object, gets the number of items in the hash
object, and then clears the hash object without deleting it.

data mydata;
doi =1 to 10000;
output;
end;
run;
data null ;
length 1 8;

/* Declares the hash object named MYHASH using the data set MyData. */
dcl hash myhash(dataset: 'mydata');

myhash.definekey('i'");

myhash.definedone () ;

call missing (i);

/* Uses the NUM ITEMS attribute, which returns the */

/* number of items in the hash object. */

n = myhash.num items;

put n=;

/* Uses the CLEAR method to delete all items within MYHASH. */
rc = myhash.clear() ;

/* Writes the number of items in the log. */

n = myhash.num items;

put n=;

run;

The first PUT statement writes the number of items in the hash table MYHASH before it
is cleared.

n=10000

The second PUT statement writes the number of items in the hash table MYHASH after
it is cleared.

n=0
See Also

Methods:
+ “DELETE Method, Hash and Hash Iterator Objects” on page 26

DECLARE Statement, Hash and Hash Iterator Objects 13

DECLARE Statement, Hash and Hash Iterator Objects

Declares a hash or hash iterator object; creates an instance of and initializes data for a hash or hash
iterator object.

Valid in: DATA step
Category: Action
Type: Executable
Alias: DCL
Applies to: Hash object, Hash iterator object

Syntax
Form 1: DECLARE object object-reference;

Form 2: DECLARE object object-reference <(argument tag-1: value-1, ...argument tag-n:
value-n)>;

Arguments

object
specifies the component object. It can be one of the following values:

hash
specifies a hash object. The hash object provides a mechanism for quick data
storage and retrieval. The hash object stores and retrieves data based on lookup
keys.

See “Using the Hash Object ” in SAS Language Reference: Concepts

hiter
specifies a hash iterator object. The hash iterator object enables you to retrieve
the hash object's data in forward or reverse key order.

See “Using the Hash Object ” in SAS Language Reference: Concepts
object-reference
specifies the object reference name for the hash or hash iterator object.

argument_tag:value
specifies the information that is used to create an instance of the hash object.

There are five valid hash object argument and value tags:

dataset: 'dataset_ name <(datasetoption)>'
Specifies the name of a SAS data set to load into the hash object.

The name of the SAS data set can be a literal or character variable. The data set
name must be enclosed in single or double quotation marks. Macro variables
must be enclosed in double quotation marks.

You can use SAS data set options when declaring a hash object in the DATASET
argument tag. Data set options specify actions that apply only to the SAS data set
with which they appear. They enable you to perform the following operations:

* renaming variables

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4

14 Chapter 2

Dictionary of Hash and Hash lIterator Object Language Elements

* selecting a subset of observations based on observation number for
processing

» selecting observations using the WHERE option

» dropping or keeping variables from a data set loaded into a hash object, or for
an output data set that is specified in an OUTPUT method call

» specifying a password for a data set.
The following syntax is used:
dcl hash h (dataset: 'x (where = (i > 10))');

For a list of SAS data set options, see the SAS Data Set Options: Reference

Note If the data set contains duplicate keys, the default is to keep the first
instance in the hash object; subsequent instances are ignored. To store the
last instance in the hash object or an error message written to the SAS log
if there is a duplicate key, use the DUPLICATE argument tag.

duplicate: 'option'
determines whether to ignore duplicate keys when loading a data set into the hash
object. The default is to store the first key and ignore all subsequent duplicates.
Option can be one of the following values:

'replace' | 'r'
stores the last duplicate key record.

‘error' | 'e'
reports an error to the log if a duplicate key is found.

The following example that uses the REPLACE option stores brown for the key
620 and blue for the key 531. If you use the default, green would be stored for
620 and yellow would be stored for 531.

data table;
input key data $;
datalines;
531 yellow
620 green
531 blue
908 orange
620 brown
143 purple

data _null_;

length key 8 data $ 8;

if (_n_ = 1) then do;
declare hash myhash(dataset: "table", duplicate: "r");
rc = myhash.definekey('key');
rc = myhash.definedata('data');
myhash.definedone () ;

end;
rc = myhash.output (dataset:"otable") ;

run;

hashexp: »
The hash object's internal table size, where the size of the hash table is 2"

DECLARE Statement, Hash and Hash Iterator Objects 15

The value of HASHEXP is used as a power-of-two exponent to create the hash
table size. For example, a value of 4 for HASHEXP equates to a hash table size
of 24, or 16. The maximum value for HASHEXP is 20.

The hash table size is not equal to the number of items that can be stored.
Imagine the hash table as an array of 'buckets.' A hash table size of 16 would
have 16 'buckets.' Each bucket can hold an infinite number of items. The
efficiency of the hash table lies in the ability of the hashing function to map items
to and retrieve items from the buckets.

You should specify the hash table size relative to the amount of data in the hash
object in order to maximize the efficiency of the hash object lookup routines. Try
different HASHEXP values until you get the best result. For example, if the hash
object contains one million items, a hash table size of 16 (HASHEXP = 4) would
work, but not very efficiently. A hash table size of 512 or 1024 (HASHEXP =9
or 10) would result in the best performance.

Default 8, which equates to a hash table size of 2% or 256

keysum:'variable-name'
specifies the name of a variable that tracks the key summary for all keys. A key
summary is a count of how many times a key has been referenced on a FIND
method call.

Note The key summary is in the output data set.

Example “Example 5: Adding the Key Summary to the Output Data Set” on
page 20

ordered: 'option’
Specifies whether or how the data is returned in key-value order if you use the
hash object with a hash iterator object or if you use the hash object OUTPUT
method.

option can be one of the following values:

'ascending' | 'a’
Data is returned in ascending key-value order. Specifying 'ascending' is the
same as specifying 'yes'.

'descending' | 'd’
Data is returned in descending key-value order.

!YES' | VY'
Data is returned in ascending key-value order. Specifying 'yes' is the same as
specifying 'ascending'.

VNOY | 'NY
Data is returned in some undefined order.

Default NO

Tip The argument can also be enclosed in double quotation marks.
multidata: 'option’

specifies whether multiple data items are allowed for each key.

option can be one of the following values:

YYES' | VYV
Multiple data items are allowed for each key.

16 Chapter 2 < Dictionary of Hash and Hash Iterator Object Language Elements

VNOV | 'NV
Only one data item is allowed for each key.

Default NO

Tip The argument value can also be enclosed in double quotation marks.

See “Non-Unique Key and Data Pairs” in SAS Language Reference:
Concepts

suminc: 'variable-name'
maintains a summary count of hash object keys. The SUMINC argument tag is
given a DATA step variable, which holds the sum increment. The sum increment
is how much to add to the key summary for each reference to the key.

See “Maintaining Key Summaries” in SAS Language Reference: Concepts

Example A key summary changes using the current value of the DATA step
variable.
dcl hash myhash(suminc: 'count');

See “Initializing Hash Object Data Using a Constructor” in SAS Language
Reference: Concepts and “Declaring and Instantiating a Hash Iterator Object”
in SAS Language Reference: Concepts

Details

The Basics

To use a DATA step component object in your SAS program, you must declare and
create (instantiate) the object. The DATA step component interface provides a
mechanism for accessing predefined component objects from within the DATA step.

For more information about the predefined DATA step component objects, see “Using
DATA Step Component Objects” in SAS Language Reference.: Concepts.

Declaring a Hash or Hash Iterator Object (Form 1)
You use the DECLARE statement to declare a hash or hash iterator object.

declare hash h;
The DECLARE statement tells SAS that the object reference H is a hash object.

After you declare the new hash or hash iterator object, use the NEW __ operator to
instantiate the object. For example, in the following line of code, the NEW _ operator
creates the hash object and assigns it to the object reference H:

h = new hash();

Using the DECLARE Statement to Instantiate a Hash or Hash

Iterator Object (Form 2)

As an alternative to the two-step process of using the DECLARE statement and the
NEW operator to declare and instantiate a hash or hash iterator object, you can use the
DECLARE statement to declare and instantiate the hash or hash iterator object in one
step. For example, in the following line of code, the DECLARE statement declares and
instantiates a hash object and assigns it to the object reference H:

declare hash h();

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1ogtv7ori3cpzn110q1iqkrntl7
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1ogtv7ori3cpzn110q1iqkrntl7
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k&anchor=n1gahf4kq9fnn1n18fe3xda27bxy
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k&anchor=n1gahf4kq9fnn1n18fe3xda27bxy
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3

DECLARE Statement, Hash and Hash Iterator Objects 17

The previous line of code is equivalent to using the following code:

declare hash h;
h = new_hash();

A constructor is a method that you can use to instantiate a hash object and initialize the
hash object data. For example, in the following line of code, the DECLARE statement
declares and instantiates a hash object and assigns it to the object reference H. In
addition, the hash table size is initialized to a value of 16 (2%) using the argument tag,
HASHEXP.

declare hash h(hashexp: 4);

Using SAS Data Set Options When Loading a Hash Object

SAS data set options can be used when declaring a hash object that uses the DATASET
argument tag. Data set options specify actions that apply only to the SAS data set with
which they appear. They enable you to perform the following operations:

* renaming variables
+ selecting a subset of observations based on observation number for processing
» selecting observations using the WHERE option

» dropping or keeping variables from a data set loaded into a hash object, or for an
output data set that is specified in an OUTPUT method call

» specifying a password for a data set.
The following syntax is used:

dcl hash h(dataset: 'x (where = (i > 10))');

For more examples of using data set options, see “Example 4: Using SAS Data Set
Options When Loading a Hash Object” on page 19. For a list of data set options, see
SAS Data Set Options: Reference.

Comparisons

You can use the DECLARE statement and the NEW _ operator, or the DECLARE
statement alone to declare and instantiate an instance of a hash or hash iterator object.

Examples

Example 1: Declaring and Instantiating a Hash Object By Using the
DECLARE Statement and _NEW _ Operator

This example uses the DECLARE statement to declare a hash object. The NEW
operator is used to instantiate the hash object.

data _null ;

length k $15;

length d $15;

if N =1 then do;
/* Declare and instantiate hash object "myhash" */
declare hash myhash;
myhash = new_ hash();
/* Define key and data variables */
rc = myhash.defineKey('k');
rc = myhash.defineData('d');
rc = myhash.defineDone();

18 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

/* avoid uninitialized variable notes */
call missing(k, d);
end;
/* Create constant key and data values */
rc = myhash.add(key: 'Labrador',6 data: 'Retriever');
rc = myhash.add(key: 'Airedale', data: 'Terrier');
rc = myhash.add (key: 'Standard',6 data: 'Poodle!');
/* Find data associated with key and write data to log */
rc = myhash.find(key: 'Airedale');
if (rc = 0) then
put d=;
else
put 'Key Airedale not found';
run;

Example 2: Declaring and Instantiating a Hash Object By Using the
DECLARE Statement

This example uses the DECLARE statement to declare and instantiate a hash object in
one step.

data _null ;
length k $15;
length d $15;
if N_ =1 then do;
/* Declare and instantiate hash object "myhash" */
declare hash myhash();
rc = myhash.defineKey('k');
myhash.defineData('d') ;
myhash.defineDone () ;

rc

rc

/* avoid uninitialized variable notes */
call missing(k, d);
end;
/* Create constant key and data values */
rc = myhash.add(key: 'Labrador', data: 'Retriever');
rc = myhash.add(key: 'Airedale', data: 'Terrier');
rc = myhash.add(key: 'Standard',6 data: 'Poodle');
/* Find data associated with key and write data to log*/
rc = myhash.find(key: 'Airedale');
if (rc = 0) then
put d=;
else
put 'Key Airedale not found';
run;

Example 3: Instantiating and Sizing a Hash Object
This example uses the DECLARE statement to declare and instantiate a hash object. The
hash table size is set to 16 (24).

data null ;

length k $15;

length d $15;

if N =1 then do;
/* Declare and instantiate hash object "myhash". */
/* Set hash table size to 16. */
declare hash myhash (hashexp: 4);
rc = myhash.defineKey('k');

DECLARE Statement, Hash and Hash lterator Objects

rc = myhash.defineData('d');

rc = myhash.defineDone() ;

/* avoid uninitialized variable notes */

call missing(k, d);
end;
/* Create constant key and data values */
rc = myhash.add(key: 'Labrador',6 data: 'Retriever');
rc = myhash.add(key: 'Airedale', data: 'Terrier');
rc = myhash.add (key: 'Standard',6 data: 'Poodle!');
rc = myhash.find(key: 'Airedale');
/* Find data associated with key and write data to log*/
if (rc = 0) then

put d=;
else

put 'Key Airedale not found';

run;

Example 4: Using SAS Data Set Options When Loading a Hash

Object

19

The following examples use various SAS data set options when declaring a hash object:

data x;
retain j 999;
do i =1 to 20;
output;
end;
run;
/* Using the WHERE option. */
data _null ;
length 1 8;
dcl hash h(dataset: 'x (where =(i > 10))', ordered: 'a');
h.definekey('i');
h.definedone () ;
h.output (dataset: 'out');

run;
/* Using the DROP option. */
data _null ;

length 1 8;

dcl hash h(dataset: 'x (drop = j)', ordered: 'a');

h.definekey(all: 'y');
h.definedone () ;

h.output (dataset: 'out (where =(1 < 8))"');
run;

/* Using the FIRSTOBS option. */

data _null ;
length 1 j 8;

dcl hash h(dataset: 'x (firstobs=5)', ordered: 'a');
h.definekey(all: 'y');
h.definedone () ;
h.output (dataset: 'out');
run;
/* Using the OBS option. */
data _null ;
length 1 j 8;
dcl hash h(dataset: 'x (obs=5)', ordered: 'd');
h.definekey(all: 'y');

20 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

h.definedone () ;
h.output (dataset: 'out (rename =(j=k))');
run;

For a list of SAS data set options, see SAS Data Set Options: Reference.

Example 5: Adding the Key Summary to the Output Data Set
The following example declares the variable, ks, to hold the key summary and adds the
variable to the output data set.

data key;
length key data 8;
input key data;

datalines;
110
2 11
3 20
55
4 6
run;
data null ;
length key data r i sum 8;
length ks 8;
i=0;

dcl hash h(dataset:'key', suminc: 'i', keysum: 'ks');
h.definekey('key');

h.definedata('key', 'data');

h.definedone() ;

i=1;

do key =1 to 5;
rc = h.find();

end;

do key = 1 to 3;
rc = h.find();
end;

rc = h.output (dataset:'out!');

run;

proc print data=out;
run;

Output 2.1 Output of Key Summary Data

The SAS System

Obs key data ks

1

2
3
4
5

2

9
1
3
4

11

5
10
20

See Also

DEFINEDATA Method 21

+ “Using DATA Step Component Objects” in SAS Language Reference: Concepts

Operators:

+ “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

DEFINEDATA Method

Defines data, associated with the specified data variables, to be stored in the hash object.

Applies to: Hash object

Syntax

rc=object. DEFINEDATA (‘datavarname-1'<, ...'datavarname-n">);

re=object DEFINEDATA (ALL: 'YES' | "YES");

Arguments

rc

specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an

appropriate error message is written to the log.

object

specifies the name of the hash object.

‘datavarname'

specifies the name of the data variable.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3

22 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

The data variable name can also be enclosed in double quotation marks.

ALL: 'YES' | “YES”
specifies all the data variables as data when the data set is loaded in the object
constructor.

If the dataset argument tag is used in the DECLARE statement or NEW __ operator
to automatically load a data set, then you can define all the data set variables as data
by using the ALL: '"YES' option.

Details

The hash object works by storing and retrieving data based on lookup keys. The keys
and data are DATA step variables, which you use to initialize the hash object by using
dot notation method calls. You define a key by passing the key variable name to the
DEFINEKEY method. You define data by passing the data variable name to the
DEFINEDATA method. When you have defined all key and data variables, you must
call the DEFINEDONE method to complete initialization of the hash object. Keys and
data consist of any number of character or numeric DATA step variables.

Note: If you use the shortcut notation for the ADD or REPLACE method (for example,
h.add (key:99, data:'apple', data:'orange'))and usethe ALL:'YES'
option on the DEFINEDATA method, then you must specify the data in the same
order as it exists in the data set.

Note: The hash object does not assign values to key variables (for example,
h.find (key: 'abc')), and the SAS compiler cannot detect the key and data
variable assignments that are performed by the hash object and the hash iterator.
Therefore, if no assignment to a key or data variable appears in the program, then
SAS will issue a note stating that the variable is uninitialized. To avoid receiving
these notes, you can perform one of the following actions:

* Set the NONOTES system option.

* Provide an initial assignment statement (typically to a missing value) for each
key and data variable.

* Use the CALL MISSING routine with all the key and data variables as
parameters. Here is an example:

length d $20;

length k $20;

if N =1 then do;
declare hash h();
rc = h.defineKey('k');
rc = h.defineData('d');
rc = h.defineDone () ;
call missing(k,d);

end;

For detailed information about how to use the DEFINEDATA method, see “Defining
Keys and Data” in SAS Language Reference: Concepts.

Example
The following example creates a hash object and defines the key and data variables:

data null_;
length d $20;
length k $20;
/* Declare the hash object and key and data variables */

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds

DEFINEDONE Method 23

if N =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone() ;
/* avoid uninitialized variable notes */
call missing(k, d);

end;

run;

See Also

* “Defining Keys and Data” in SAS Language Reference: Concepts

Methods:
* “DEFINEDONE Method” on page 23
+ “DEFINEKEY Method” on page 24

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

DEFINEDONE Method

Indicates that all key and data definitions are complete.

Applies to: Hash object

Syntax
rc = object DEFINEDONE();
rc = object DEFINEDONE (MEMRC: 'y");

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

memrec:'y'
enables recovery from memory failure when loading a data set into a hash object.

If a call fails because of insufficient memory to load a data set, a nonzero return code
is returned. The hash object frees the principal memory in the underlying array. The

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds

24 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

only allowable operation after this type of failure is deletion via the DELETE
method.

Details

When the DEFINEDONE method is called and the dafaset argument tag is used with the
constructor, the data set is loaded into the hash object.

The hash object works by storing and retrieving data based on lookup keys. The keys
and data are DATA step variables, which you use to initialize the hash object by using
dot notation method calls. You define a key by passing the key variable name to the
DEFINEKEY method. You define data by passing the data variable name to the
DEFINEDATA method. When you have defined all key and data variables, you must
call the DEFINEDONE method to complete initialization of the hash object. Keys and
data consist of any number of character or numeric DATA step variables.

For detailed information about how to use the DEFINEDONE method, see “Defining
Keys and Data” in SAS Language Reference: Concepts.
See Also

* “Defining Keys and Data” in SAS Language Reference: Concepts

Methods:
+ “DEFINEDATA Method” on page 21
+ “DEFINEKEY Method” on page 24

DEFINEKEY Method

Defines key variables for the hash object.

Applies to: Hash object

Syntax

rc=object. DEFINEKEY (‘keyvarname-1"'<, ... 'keyvarname-n">);
rc=object. DEFINEKEY(ALL: 'YES' | "YES");

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

'keyvarname'
specifies the name of the key variable.

The key variable name can also be enclosed in double quotation marks.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds

DEFINEKEY Method 25

ALL: 'YES' | ”YES”
specifies all the data variables as keys when the data set is loaded in the object
constructor.

If you use the dataset argument tag in the DECLARE statement or NEW __ operator
to automatically load a data set, then you can define all the key variables by using the
ALL: "YES' option.

Details

The hash object works by storing and retrieving data based on lookup keys. The keys
and data are DATA step variables, which you use to initialize the hash object by using
dot notation method calls. You define a key by passing the key variable name to the
DEFINEKEY method. You define data by passing the data variable name to the
DEFINEDATA method. When you have defined all key and data variables, you must
call the DEFINEDONE method to complete initialization of the hash object. Keys and
data consist of any number of character or numeric DATA step variables.

For more information about how to use the DEFINEKEY method, see “Defining Keys
and Data” in SAS Language Reference: Concepts.

Note: If you use the shortcut notation for the ADD, CHECK, FIND, REMOVE, or
REPLACE methods (for example, h.add (key:99, data:'apple',
data: 'orange')) and the ALL:'YES' option on the DEFINEKEY method, then
you must specify the keys and data in the same order as they exist in the data set.

Note: The hash object does not assign values to key variables (for example,
h.find(key: 'abc')), and the SAS compiler cannot detect the key and data
variable assignments done by the hash object and the hash iterator. Therefore, if no
assignment to a key or data variable appears in the program, SAS will issue a note
stating that the variable is uninitialized. To avoid receiving these notes, you can
perform one of the following actions:

* Set the NONOTES system option.

* Provide an initial assignment statement (typically to a missing value) for each
key and data variable.

* Use the CALL MISSING routine with all the key and data variables as
parameters. Here is an example:

length d $20;

length k $20;

if N_ =1 then do;
declare hash h{();
rc = h.defineKey('k');
rc = h.defineData('d');
rc = h.defineDone () ;
call missing(k, d);

end;

See Also
* “Defining Keys and Data” in SAS Language Reference: Concepts

Methods:
* “DEFINEDATA Method” on page 21
* “DEFINEDONE Method” on page 23

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p10iopjiei4cx4n16g0uvlvzzqds

26 Chapter2 -

Dictionary of Hash and Hash lIterator Object Language Elements

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

DELETE Method, Hash and Hash Iterator Objects

Deletes the hash or hash iterator object.

Applies to:

Hash object, Hash interator object

Syntax
rc=object. DELETE();

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is printed to the log.

object
specifies the name of the hash or hash iterator object.

Details

DATA step component objects are deleted automatically at the end of the DATA step. If
you want to reuse the object reference variable in another hash or hash iterator object
constructor, you should delete the hash or hash iterator object by using the DELETE
method.

If you attempt to use a hash or hash iterator object after you delete it, you will receive an
error in the log.

If you want to delete all the items from within a hash object and save the hash object to
use again, use the “CLEAR Method” on page 11.

DO_OVER Method

Traverses a list of duplicate keys in the hash object.

Applies to:

Hash object

Syntax
object DO_OVER (KEY:keyvalue);

DO_OVER Method 27

Arguments

object
specifies the name of the hash object.

KEY:keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

Details

When a hash object has multiple values for a single key, you can use the DO OVER
method in an iterative DO loop to traverse the duplicate keys. The DO_OVER method
reads the key on the first method call and continues to traverse the duplicate key list until
the key reaches the end.

Note: If you switch the key in the middle of an iteration, you must use the RESET DUP
method to reset the pointer to the beginning of the list. Otherwise, SAS continues to
use the first key.

Example

The following example creates a data set, dup, that contains duplicate keys. The
DO_OVER and RESET_DUP methods are used to iterate through the duplicate keys.

data dup;
length key data 8;
input key data;
datalines;

110

11

15

20

16

Ul R U W NN W RN

7

run;

data null ;

length r 8;

dcl hash h(dataset:'dup', multidata: 'y', ordered: 'y');
h.definekey('key');

h.definedata('key', 'data');

h.definedone () ;

h.reset_dup();

key = 2;

do while (h.do _over (key:key) eq 0);
put key= data=;

end;

key = 3;

28 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

do while (h.do over (key:key) eq 0);
put key= data=;
end;

key = 2;

do while (h.do over (key:key) eq 0);
put key= data=;

end;

run;

The following lines are written to the SAS log.

key=2 data=11
key=2 data=16
key=2 data=9

key=3 data=20
key=3 data=100
key=2 data=11
key=2 data=16
key=2 data=9

See Also

Methods:
+ “RESET DUP Method” on page 66

EQUALS Method

Determines whether two hash objects are equal.

Applies to: Hash object

Syntax
rc=object. EQUALS (HASH: 'object', RESULT: variable name);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of a hash object.

HASH:'object'
specifies the name of the second hash object that is compared to the first hash object.

RESULT: variable name
specifies the name of a numeric variable name to hold the result. If the hash objects
are equal, the result variable is 1. Otherwise, the result variable is zero.

EQUALS Method 29

Details

The following example compares H1 to H2 hash objects:

length eq k 8;
declare hash hi();
hl.defineKey('k');
hl.defineDone () ;

declare hash h2();
h2.defineKey('k');
h2.defineDone () ;

rc = hl.equals(hash: 'h2', result: eq);
if eq then

put 'hash objects equal';
else

put 'hash objects not equal';

The two hash objects are defined as equal when all of the following conditions occur:
* Both hash objects are the same size—that is, the HASHEXP sizes are equal.

* Both hash objects have the same number of items—that is, HI.NUM_ITEMS =
H2.NUM_ITEMS.

* Both hash objects have the same key and data structure.

* In an unordered iteration over H1 and H2 hash objects, each successive record from
HI has the same key and data fields as the corresponding record in H2—that is, each
record is in the same position in each hash object and each such record is identical to
the corresponding record in the other hash object.

Example: Comparing Two Hash Objects

In the following example, the first return call to EQUALS returns a nonzero value and
the second return call returns a zero value.

data x;
length k eq 8;
declare hash hi();
hl.defineKey('k');
hl.defineDone () ;

declare hash h2();
h2.defineKey ('k') ;
h2.defineDone () ;

k = 99;

hl.add();

h2.add();

rc = hl.equals(hash: 'h2', result: eq);
put eq=;

k = 100;

h2.replace() ;

rc = hl.equals(hash: 'h2', result: eq);
put eq=;

30 Chapter2 -+ Dictionary of Hash and Hash Iterator Object Language Elements

run;

FIND Method

Determines whether the specified key is stored in the hash object.

Applies to: Hash object

Syntax
rc=object. FIND (<KEY: keyvalue-1, ... KEY: keyvalue-n>);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

Details
You can use the FIND method in one of two ways to find data in a hash object.
You can specify the key, and then use the FIND method as shown in the following code:

data null_;
length k $8;
length d $12;
/* Declare hash object and key and data variables */
if N =1 then do;
declare hash h();
rc = h.defineKey('k');
rc = h.defineData('d');
rc = h.defineDone() ;
/* avoid uninitialized variable notes */
call missing(k, d);
end;
/* Define constant key and data values */
rc = h.add(key: 'Joyce', data: 'Ulysses');
/* Find the key JOYCE */
k = 'Joyce';
rc = h.find();
if (rc = 0) then
put 'Key is in the hash object.';

FIND Method 31

run;

Alternatively, you can use a shortcut and specify the key directly in the FIND method
call as shown in the following code:

data null ;
length k $8;
length d $12;
/* Declare hash object and key and data variables */
if N =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone() ;
/* avoid uninitialized variable notes */
call missing(k, d);
end;
/* Define constant key and data values */
rc = h.add(key: 'Joyce', data: 'Ulysses');
/* Find the key JOYCE */
rc = h.find(key: 'Joyce');
if (rc = 0) then
put 'Key is in the hash object.';

run;

If the hash object has multiple data items for each key, use “FIND NEXT Method” on
page 32 and “FIND PREV Method” on page 34 in conjunction with the FIND
method to traverse a multiple data item list.

Comparisons

The FIND method returns a value that indicates whether the key is in the hash object. If
the key is in the hash object, then the FIND method also sets the data variable to the
value of the data item so that it is available for use after the method call. The CHECK
method returns only a value that indicates whether the key is in the hash object. The data
variable is not updated.

Example: Using the FIND Method to Find the Key in a
Hash Object

The following example creates a hash object. Two data values are added. The FIND
method is used to find a key in the hash object. The data value is returned to the data set
variable that is associated with the key.

data null_;
length k $8;
length d $12;
/* Declare hash object and key and data variable names */
if N_ =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
/* avoid uninitialized variable notes */
call missing(k, d);
rc = h.defineDone() ;
end;
/* Define constant key and data values and add to hash object */

32 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

rc = h.add(key: 'Joyce', data: 'Ulysses');
rc = h.add(key: 'Homer',6 data: 'Odyssey');
/* Verify that key JOYCE is in hash object and */
/* return its data value to the data set variable D */
rc = h.find(key: 'Joyce');
put d=;
run;

d=Ulysses is written to the SAS log.

See Also

» “Storing and Retrieving Data” in SAS Language Reference: Concepts

Methods:

* “CHECK Method” on page 9

+ “DEFINEKEY Method” on page 24
* “FIND NEXT Method” on page 32
+ “FIND PREV Method” on page 34
* “REF Method” on page 54

FIND_NEXT Method

Sets the current list item to the next item in the current key's multiple item list and sets the data for the
corresponding data variables.

Applies to: Hash object

Syntax
rc=object. FIND_NEXT();

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, an
appropriate error message is printed to the log.

object
specifies the name of the hash object.

Details

The FIND method determines whether the key exists in the hash object. The

HAS NEXT method determines whether the key has multiple data items associated with
it. When you have determined that the key has another data item, that data item can be
retrieved by using the FIND NEXT method, which sets the data variable to the value of
the data item so that it is available for use after the method call. Once you are in the data
item list, you can use the HAS NEXT and FIND NEXT methods to traverse the list.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n1o424sjzc97dsn17j8vqw40mhxt

Example

FIND_NEXT Method 33

This example uses the FIND NEXT method to iterate through a data set where several
keys have multiple data items. If a key has more than one data item, subsequent items

are marked dup.

data dup;
length key data 8;
input key data;
datalines;

10

11

15

20

16

U R W NN W RN R
\\e]

99
data null_;
dcl hash h(dataset:'dup', multidata:
h.definekey('key');
h.definedata('key', 'data');
h.definedone () ;
/* avoid uninitialized variable notes
call missing (key, data);
do key = 1 to 5;
rc = h.find();
if (rc = 0) then do;
put key= data=;
rc = h.find next();
do while(rc = 0);
put 'dup ' key= data;
rc = h.find next();
end;
end;
end;
run;

The following lines are written to the SAS log.

lyl)'.

*/

key=1 data=10
dup key=1 5
dup key=1 15
key=2 data=11
dup key=2 9
dup key=2 16
key=3 data=20
dup key=3 100
key=4 data=6
key=5 data=5
dup key=5 99

See Also

* “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr

34 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Methods:

* “FIND Method” on page 30

* “FIND_PREV Method” on page 34
* “HAS_NEXT Method” on page 36

FIND_PREV Method

Sets the current list item to the previous item in the current key's multiple item list and sets the data for the
corresponding data variables.

Applies to: Hash object

Syntax
rc=object. FIND_PREV();

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, an
appropriate error message is printed to the log.

object
specifies the name of the hash object.

Details

The FIND method determines whether the key exists in the hash object. The

HAS PREYV method determines whether the key has multiple data items associated with
it. When you have determined that the key has a previous data item, that data item can be
retrieved by using the FIND PREV method, which sets the data variable to the value of
the data item so that it is available for use after the method call. Once you are in the data
item list, you can use the HAS PREV and FIND PREV methods in addition to the

HAS NEXT and FIND NEXT methods to traverse the list. See “HAS NEXT Method”
on page 36 for an example.

See Also

* “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

Methods:

* “FIND Method” on page 30

+ “FIND NEXT Method” on page 32
+ “HAS PREV Method” on page 38

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr

FIRST Method 35

FIRST Method

Returns the first value in the underlying hash object.

Applies to: Hash iterator object

Syntax
rc=object. FIRST();

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, an
appropriate error message will be printed to the log.

object
specifies the name of the hash iterator object.

Details

The FIRST method returns the first data item in the hash object. If you use the
ordered: 'yes' orordered: 'ascending' argument tag in the DECLARE
statement or NEW __ operator when you instantiate the hash object, then the data item
that is returned is the one with the 'least' key (smallest numeric value or first alphabetic
character), because the data items are sorted in ascending key-value order in the hash
object. Repeated calls to the NEXT method will iteratively traverse the hash object and
return the data items in ascending key order. Conversely, if you use the ordered:
'descending' argument tag in the DECLARE statement or NEW operator when
you instantiate the hash object, then the data item that is returned is the one with the
'highest' key (largest numeric value or last alphabetic character), because the data items
are sorted in descending key-value order in the hash object. Repeated calls to the NEXT
method will iteratively traverse the hash object and return the data items in descending
key order.

Use the LAST method to return the last data item in the hash object.

Note: The FIRST method sets the data variable to the value of the data item so that it is
available for use after the method call.

Example: Retrieving Hash Object Data

The following example creates a data set that contains sales data. You want to list
products in order of sales. The data is loaded into a hash object and the FIRST and
NEXT methods are used to retrieve the data.

data work.sales;
input prod $1-6 gty $9-14;
datalines;

banana 398487

apple 384223

orange 329559

36 Chapter2 -

Dictionary of Hash and Hash lIterator Object Language Elements

data null ;
/* Declare hash object and read SALES data set as ordered */
if N =1 then do;
length prod $10;
length gty $6;
declare hash h(dataset: 'work.sales', ordered: 'yes');
declare hiter iter('h');
/* Define key and data variables */
h.defineKey('qgty');
h.defineData ('prod') ;
h.defineDone () ;
/* avoid uninitialized variable notes */
call missing(qgty, prod);
end;
/* Iterate through the hash object and output data values */
rc = iter.first();
do while (rc = 0);
put prods=;
rc = iter.next();
end;
run;

The following lines are written to the SAS log:

prod=orange
prod=apple
prod=banana

See Also
* “Using the Hash Iterator Object ” in SAS Language Reference: Concepts

Methods:
* “LAST Method” on page 40

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

HAS_NEXT Method

Determines whether there is a next item in the current key's multiple data item list.

Applies to:

Hash object

Syntax
rc=object HAS_NEXT (RESULT: R);

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k

HAS_NEXT Method 37

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

RESULT:R
specifies the numeric variable R, which receives a zero value if there is not another
data item in the data item list or a nonzero value if there is another data item in the
data item list.

Details

If a key has multiple data items, you can use the HAS NEXT method to determine
whether there is a next item in the current key's multiple data item list. If there is another
item, the method will return a nonzero value in the numeric variable R. Otherwise, it will
return a zero.

The FIND method determines whether the key exists in the hash object. The

HAS NEXT method determines whether the key has multiple data items associated with
it. When you have determined that the key has another data item, that data item can be
retrieved by using the FIND NEXT method, which sets the data variable to the value of
the data item so that it is available for use after the method call. Once you are in the data
item list, you can use the HAS PREV and FIND PREV methods in addition to the

HAS NEXT and FIND NEXT methods to traverse the list.

Example: Finding Data Iltems

This example creates a hash object where several keys have multiple data items. It uses
the HAS NEXT method to find all the data items.

data testdup;
length key data 8;
input key data;
datalines;

100

11

15

20

16

Ul R oUW NN W RN R
e}

99
data null ;
length r 8;
dcl hash h(dataset:'testdup',K multidata: 'y');
h.definekey('key');
h.definedata('key', 'data');

38 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

h.definedone () ;
call missing (key, data);
do key =1 to 5;
rc = h.find();
if (rc = 0) then do;
put key= data=;
h.has next (result: r);
do while(r ne 0);
rc = h.find next();
put 'dup ' key= data;
h.has next (result: r);
end;
end;
end;
run;

The following lines are written to the SAS log.

key=1 data=100
dup key=1 5
dup key=1 15
key=2 data=11
dup key=2 9
dup key=2 16
key=3 data=20
dup key=3 100
key=4 data=6
key=5 data=5
dup key=5 99

See Also

» “Using the Hash Iterator Object " in SAS Language Reference: Concepts

Methods:

* “FIND Method” on page 30

+ “FIND NEXT Method” on page 32
+ “FIND_PREV Method” on page 34
+ “HAS PREV Method” on page 38

HAS_PREV Method

Determines whether there is a previous item in the current key's multiple data item list.

Applies to: Hash object

Syntax
rc=object HAS_PREV (RESULT: R);

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k

ITEM_SIZE Attribute 39

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

RESULT:R
specifies the numeric variable R, which receives a zero value if there is not another
data item in the data item list or a nonzero value if there is another data item in the
data item list.

Details

If a key has multiple data items, you can use the HAS PREV method to determine
whether there is a previous item in the current key's multiple data item list. If there is a
previous item, the method will return a nonzero value in the numeric variable R.
Otherwise, it will return a zero.

The FIND method determines whether the key exists in the hash object. The

HAS NEXT method determines whether the key has multiple data items associated with
it. When you have determined that the key has a previous data item, that data item can be
retrieved by using the FIND PREV method, which sets the data variable to the value of
the data item so that it is available for use after the method call. Once you are in the data
item list, you can use the HAS PREV and FIND PREV methods in addition to the

HAS NEXT and FIND NEXT methods to traverse the list. See “HAS NEXT Method”
on page 36 for an example.

See Also

* “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

Methods:

* “FIND Method” on page 30

* “FIND NEXT Method” on page 32
* “FIND PREV Method” on page 34
* “HAS NEXT Method” on page 36

ITEM_SIZE Attribute

Returns the size (in bytes) of an item in a hash object.

Applies to: Hash object

Syntax
variable_name=object ITEM_SIZE;

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr

40 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

Arguments

variable_name
specifies the name of the variable that contains the size of the item in the hash object.

object
specifies the name of the hash object.

Details

The ITEM_SIZE attribute returns the size (in bytes) of an item, which includes the key
and data variables and some additional internal information. You can get an estimate of
how much memory the hash object is using with the ITEM_SIZE and NUM_ITEMS
attributes. The ITEM_SIZE attribute does not reflect the initial overhead that the hash
object requires, nor does it take into account any necessary internal alignments.
Therefore, ITEM_SIZE does not provide exact memory usage, but it does return a good
approximation.

Example: Returning the Size of a Hash Item
The following example uses ITEM_SIZE to return the size of the item in MYHASH:

data work.stock;
input prod $1-10 gty 12-14;
datalines;
broccoli 345
corn 389
potato 993
onion 730
data null ;
if N =1 then do;
length prod $10;
/* Declare hash object and read STOCK data set as ordered */
declare hash myhash(dataset: "work.stock");
/* Define key and data variables */
myhash.defineKey ('prod') ;
myhash.defineData ('qgty') ;
myhash.defineDone () ;
end;
/* Add a key and data value to the hash object */
prod = 'celery';
gty = 183;
rc = myhash.add () ;

/* Use ITEM SIZE to return the size of the item in hash object */
itemsize = myhash.item size;
put itemsize=;

run;

itemsize=40 is written to the SAS log.

LAST Method

Returns the last value in the underlying hash object.

_NEW _ Operator, Hash and Hash Iterator Objects 41

Applies to: Hash iterator object

Syntax
rc=object. LAST(),

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

Details

The LAST method returns the last data item in the hash object. If you use the ordered:
'yes' or ordered: 'ascending' argument tag in the DECLARE statement or
NEW operator when you instantiate the hash object, then the data item that is returned
is the one with the 'highest' key (largest numeric value or last alphabetic character),
because the data items are sorted in ascending key-value order in the hash object.
Conversely, if you use the ordered: 'descending' argument tag in the DECLARE
statement or NEW _ operator when you instantiate the hash object, then the data item
that is returned is the one with the 'least' key (smallest numeric value or first alphabetic
character), because the data items are sorted in descending key-value order in the hash
object.

Use the FIRST method to return the first data item in the hash object.

Note: The LAST method sets the data variable to the value of the data item so that it is
available for use after the method call.

See Also

» “Using the Hash Iterator Object ” in SAS Language Reference: Concepts

Methods:
* “FIRST Method” on page 35

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

NEW Operator, Hash and Hash Iterator Objects

Creates an instance of a hash or hash iterator object.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k

42 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

Applies to: Hash object, Hash iterator object

Syntax

object-reference = _NEW _object (<argument tag-1: value-1 <, ...argument _tag-n:
value-n>>);,

Arguments

object-reference
specifies the object reference name for the hash or hash iterator object.

object

specifies the component object. It can be one of the following:

hash indicates a hash object. The hash object provides a mechanism for quick
data storage and retrieval. The hash object stores and retrieves data based
on lookup keys.

hiter indicates a hash iterator object. The hash iterator object enables you to

retrieve the hash object's data in forward or reverse key order.

See “Using DATA Step Component Objects” in SAS Language Reference:
Concepts and “Using the Hash Iterator Object ” in SAS Language Reference:
Concepts

argument_tag:value
specifies the information that is used to create an instance of the hash object.
Valid hash object argument tags and values are

dataset: 'dataset name <(datasetoption)>'
names a SAS data set to load into the hash object.

The name of the SAS data set can be a literal or character variable. The data set
name must be enclosed in single or double quotation marks. Macro variables
must be enclosed in double quotation marks.

You can use SAS data set options when declaring a hash object in the DATASET
argument tag. Data set options specify actions that apply only to the SAS data set
with which they appear. They enable you to perform the following operations:

* renaming variables

» selecting a subset of observations based on observation number for
processing

» selecting observations using the WHERE option

» dropping or keeping variables from a data set loaded into a hash object, or for
an output data set specified in an OUTPUT method call

» specifying a password for a data set.
The following syntax is used:

dcl hash h;
h = new_ hash (dataset: 'x (where = (i > 10))');

For a list of SAS data set options, see the SAS Data Set Options: Reference.

Note If the data set contains duplicate keys, the default is to keep the first
instance in the hash object; subsequent instances are ignored. To store the

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k

_NEW _ Operator, Hash and Hash Iterator Objects 43

last instance in the hash object or to write an error message in the SAS log
if there is a duplicate key, use the DUPLICATE argument tag.

duplicate: 'option'
determines whether to ignore duplicate keys when loading a data set into the hash
object. The default is to store the first key and ignore all subsequent duplicates.
Option can be one of the following values:

'replace' | 'r'
stores the last duplicate key record.

‘error’' | 'e'
reports an error to the log if a duplicate key is found.

The following example using the REPLACE option stores brown for the key
620 and blue for the key 531. If you use the default, green would be stored for
620 and yellow would be stored for 531.

data table;
input key data $;
datalines;
531 yellow
620 green
531 blue
908 orange
620 brown
143 purple
run;
data null ;
length key 8 data $ 8;
if (n = 1) then do;
declare hash myhash;
myhash = new hash (dataset: "table", duplicate: "r");
rc = myhash.definekey('key');
rc = myhash.definedata('data');
myhash.definedone () ;
end;
rc = myhash.output (dataset:"otable");

run;

hashexp: n
is the hash object's internal table size, where the size of the hash table is 2",

The value of HASHEXP is used as a power-of-two exponent to create the hash
table size. For example, a value of 4 for HASHEXP equates to a hash table size
of 24, or 16. The maximum value for HASHEXP is 20.

The hash table size is not equal to the number of items that can be stored.
Imagine the hash table as an array of 'buckets.' A hash table size of 16 would
have 16 'buckets.' Each bucket can hold an infinite number of items. The
efficiency of the hash table lies in the ability of the hashing function to map items
to and retrieve items from the buckets.

You should set the hash table size relative to the amount of data in the hash
object in order to maximize the efficiency of the hash object lookup routines. Try
different HASHEXP values until you get the best result. For example, if the hash
object contains one million items, a hash table size of 16 (HASHEXP = 4) would
work, but not very efficiently. A hash table size of 512 or 1024 (HASHEXP =9
or 10) would result in the best performance.

44 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

Default 8, which equates to a hash table size of 28 or 256

keysum:'variable-name'
specifies the name of a variable that tracks the key summary for all keys. A key
summary is a count of how many times a key has been referenced on a FIND
method call.

Note The key summary is in the output data set.

ordered: 'option'
specifies whether or how the data is returned in key-value order if you use the
hash object with a hash iterator object or if you use the hash object OUTPUT
method.

The argument value can also be enclosed in double quotation marks.

option can be one of the following values:

'ascending' | 'a’' Data is returned in ascending key-value order. Specifying
'ascending' is the same as specifying 'yes'.

'descending' |'d" Data is returned in descending key-value order.

"YES'|'Y' Data is returned in ascending key-value order. Specifying
'yes' is the same as specifying 'ascending'.

'NO'|'N' Data is returned in some undefined order.

Default NO

multidata: 'option’
specifies whether multiple data items are allowed for each key.

The argument value can also be enclosed in double quotation marks.

option can be one of the following values:

'YES'|'Y' Multiple data items are allowed for each key.
'NO' |'N' Only one data item is allowed for each key.

Default NO
See “Non-Unique Key and Data Pairs” in SAS Language Reference:
Concepts

suminc: 'variable-name'
maintains a summary count of hash object keys. The SUMINC argument tag is
given a DATA step variable, which holds the sum increment. The sum increment
is how much to add to the key summary for each reference to the key. For
example, a key summary changes using the current value of the DATA step
variable.

dcl hash myhash(suminc: 'count');

For more information, see “Maintaining Key Summaries” in SAS Language
Reference: Concepts.

See “Initializing Hash Object Data Using a Constructor” in SAS Language
Reference: Concepts and “Declaring and Instantiating a Hash Object” in SAS
Language Reference: Concepts

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1ogtv7ori3cpzn110q1iqkrntl7
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1ogtv7ori3cpzn110q1iqkrntl7
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n10wzwzqnm9hh1n18cye6bvswpbf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n10wzwzqnm9hh1n18cye6bvswpbf

_NEW _ Operator, Hash and Hash Iterator Objects 45

Details

To use a DATA step component object in your SAS program, you must declare and
create (instantiate) the object. The DATA step component interface provides a
mechanism for accessing the predefined component objects from within the DATA step.

If youuse the NEW _ operator to instantiate the component object, you must first use
the DECLARE statement to declare the component object. For example, in the following
lines of code, the DECLARE statement tells SAS that the object reference H is a hash
object. The NEW _ operator creates the hash object and assigns it to the object reference
H.

declare hash h();
h = new_ hash();

Note: You can use the DECLARE statement to declare and instantiate a hash or hash
iterator object in one step.

A constructor is a method that is used to instantiate a component object and to initialize
the component object data. For example, in the following lines of code, the NEW _
operator instantiates a hash object and assigns it to the object reference H. In addition,
the data set WORK.KENNEL is loaded into the hash object.

declare hash h();
h = new hash(datset: "work.kennel");

For more information about the predefined DATA step component objects and
constructors, see “Using DATA Step Component Objects” in SAS Language Reference:
Concepts.

Comparisons

You can use the DECLARE statement and the NEW _ operator, or the DECLARE
statement alone to declare and instantiate an instance of a hash or hash iterator object.

Example: Using the _NEW__ Operator to Instantiate and
Initialize Hash Object Data

This example uses the NEW operator to instantiate and initialize data for a hash object
and instantiate a hash iterator object.

The hash object is filled with data, and the iterator is used to retrieve the data in key
order.

data kennel;
input name $1-10 kenno $14-15;

datalines;
Charlie 15
Tanner 07
Jake 04
Murphy 01
Pepe 09
Jacques 11

Princess Z 12
run;
data null ;
if N =1 then do;
length kenno $2;

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3

46 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

length name $10;
/* Declare the hash object */
declare hash h();
/* Instantiate and initialize the hash object */
h = new hash(dataset:"work.kennel", ordered: 'yes');
/* Declare the hash iterator object */
declare hiter iter;
/* Instantiate the hash iterator object */
iter = new_ hiter('h');
/* Define key and data variables */
h.defineKey('kenno') ;
h.defineData('name', 'kenno');
h.defineDone () ;
/* avoid uninitialized variable notes */
call missing(kenno, name);
end;
/* Find the first key in the ordered hash object and output to the log */
rc = iter.first();
do while (rc = 0);
put kenno ' ' name;
rc = iter.next();
end;
run;

The following lines are written to the SAS log:

NOTE: There were 7 observations read from the data set WORK.KENNEL.
01 Murphy

04 Jake

07 Tanner

09 Pepe

11 Jacques

12 Princess Z

15 Charlie

See Also
» “Using DATA Step Component Objects” in SAS Language Reference: Concepts

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

NEXT Method

Returns the next value in the underlying hash object.

Applies to: Hash iterator object

Syntax
rc=object NEXT();

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3

NUM_ITEMS Attribute 47

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

Details

Use the NEXT method iteratively to traverse the hash object and return the data items in
key order.

The FIRST method returns the first data item in the hash object.
You can use the PREV method to return the previous data item in the hash object.

Note: The NEXT method sets the data variable to the value of the data item so that it is
available for use after the method call.

Note: If you call the NEXT method without calling the FIRST method, then the NEXT
method will still start at the first item in the hash object.

See Also

» “Using the Hash Iterator Object ”” in SAS Language Reference: Concepts

Methods:
* “FIRST Method” on page 35
* “PREV Method” on page 53

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

NUM_ITEMS Attribute

Returns the number of items in the hash object.

Applies to:

Hash object

Syntax
variable name=object NUM_ITEMS;

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k

48 Chapter 2 - Dictionary of Hash and Hash Iterator Object Language Elements

Arguments

variable_name
specifies the name of the variable that contains the number of items in the hash
object.

object
specifies the name of the hash object.

Example: Returning the Number of Items in a Hash
Object

This example creates a data set and loads the data set into a hash object. An item is
added to the hash object and the total number of items in the resulting hash object is
returned by the NUM_ITEMS attribute.

data work.stock;
input item $ qty;
datalines;
broccoli 345
corn 389
potato 993
onion 730
data null ;
if N =1 then do;
length item $10;
length gty 8;
length totalitems 8;
/* Declare hash object and read STOCK data set as ordered */
declare hash myhash(dataset: "work.stock");
/* Define key and data variables */
myhash.defineKey ('item') ;
myhash.defineData ('qty');
myhash.defineDone () ;

end;

/* Add a key and data value to the hash object */
item = 'celery';

gty = 183;

rc = myhash.add() ;
if (rc ne 0) then
put 'Add failed';
/* Use NUM_ITEMS to return updated number of items in hash object */
totalitems = myhash.num items;
put totalitems=;
run;

totalitems=5 is written to the SAS log.

OUTPUT Method

Creates one or more data sets, each of which contains the data in the hash object.

Applies to: Hash object

OUTPUT Method 49

Syntax

rc=object. OUTPUT (DATASET: 'dataset-1 <(datasetoption)>"
<, ...<DATASET: 'dataset-n>"> ('datasetoption <(datasetoption)>");

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

DATASET: 'dataset’
specifies the name of the output data set.

The name of the SAS data set can be a character literal or character variable. The
data set name can also be enclosed in double quotation marks. When specifying the
name of the output data set, you can use SAS data set options in the DATASET
argument tag. Macro variables must be enclosed in double quotation marks.

datasetoption
specifies a data set option.

For more information about how to specify data set options, see “Syntax” in SAS
Data Set Options: Reference.

Details

Hash object keys are not automatically stored as part of the output data set. The keys can
be defined as data items to be included in the output data set by using the DEFINEDATA
method. In addition, if no data items are defined using the DEFINEDATA method, the
keys are written to the data set specified in the OUTPUT method.

If you use the ordered: 'yes' or ordered: 'ascending' argument tag in the
DECLARE statement or the NEW operator when you instantiate the hash object, then
the data items are written to the data set in ascending key-value order. If you use the
ordered: 'descending' argument tag in the DECLARE statement or the NEW
operator when you instantiate the hash object, then the data items are written to the data
set in descending key-value order. If you do not use the ordered argument tag, the
order is undefined.

When specifying the name of the output data set, you can use SAS data set options in the
DATASET argument tag. Data set options specify actions that apply only to the SAS
data set with which they appear and enable you to complete these actions:

* rename variables
» select a subset of observations based on the observation number for processing
» select observations using the WHERE option

» drop or keep variables from a data set loaded into a hash object, or for an output data
set that is specified in an OUTPUT method call

Note: The variables that are dropped or kept must have been included in the hash
table by using the DEFINEDATA or DEFINEKEY method. Otherwise, an error
occurs.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=69751&id=p1rc3i2de8tgjtn1ljwdq6ajnpic
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=69751&id=p1rc3i2de8tgjtn1ljwdq6ajnpic

50 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

» specify a password for a data set

This example uses the WHERE data set option to select specific data for the output data
set named OUT.

data x;

doi =1 to 20;
output;

end;

run;

/* Using the WHERE option. */
data null ;

length i 8;

dcl hash h(dataset:'x"');

h.definekey(all: 'y');

h.definedone () ;

h.output (dataset: 'out (where =(1 < 8))');
run;

This example uses the RENAME data set option to rename the variable J to K for the
output data set named OUT.

data x;
doi =1 to 20;
output;
end;
run;
/* Using the RENAME option. */
data null ;
length i j 8;
dcl hash h(dataset:'x"');
h.definekey(all: 'y');
h.definedone () ;
h.output (dataset: 'out (rename =(i=k))');
run;

For a list of data set options, see SAS Data Set Options: Reference.

Note: When you use the OUTPUT method to create a data set, the hash object is not
part of the output data set. In this example, the H2 hash object is omitted from the
output data set and a warning is written to the SAS log.

data null ;
length k 8;
length d $10;
declare hash h2();
declare hash h(ordered: 'y');
.defineKey('k');
.defineData('k', 'd', 'h2');
.defineDone () ;
= 99;
= 'abc';
.add () ;
199;
= 'def’';
.add () ;
.output (dataset: 'work.x');

[O T = N o T =A==

run;

OUTPUT Method 51

Example

Using the data set ASTRO that contains astronomical data, the following code creates a
hash object with the Messier (OBJ) objects sorted in ascending order by their right-
ascension (RA) values and uses the OUTPUT method to save the data to a data set.

data astro;
input obj $1-4 ra $6-12 dec $14-19;

datalines;
M31 00 42.7 +41 16
M71 19 53.8 +18 47
M51 13 29.9 +47 12
M98 12 13.8 +14 54
M13 16 41.7 +36 28
M39 21 32.2 +48 26
M81 09 55.6 +69 04
M100 12 22.9 +15 49
M41 06 46.0 -20 44
M44 08 40.1 +19 59
M10 16 57.1 -04 06
M57 18 53.6 +33 02
M3 13 42.2 +28 23
M22 18 36.4 -23 54
M23 17 56.8 -19 01
M49 12 29.8 +08 00
M68 12 39.5 -26 45
M17 18 20.8 -16 11
M14 17 37.6 -03 15
M29 20 23.9 +38 32
M34 02 42.0 +42 47
M82 09 55.8 +69 41
M59 12 42.0 +11 39
M74 01 36.7 +15 47
M25 18 31.6 -19 15
i
run;
data null ;

if N =1 then do;
length obj $10;
length ra $10;
length dec $10;
/* Read ASTRO data set as ordered */
declare hash h(hashexp: 4, dataset:"work.astro", ordered: 'vyes');
/* Define variables RA and OBJ as key and data for hash object */
h.defineKey('ra');
h.defineData('ra', 'obj');
h.defineDone () ;
/* avoid uninitialized variable notes */
call missing(ra, obj);
end;
/* Create output data set from hash object */
rc = h.output (dataset: 'work.out');

run;

proc print data=work.out;
var ra obj;
title 'Messier Objects Sorted by Right-Ascension Values';

52 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements
run;

Output 2.2 Messier Objects Sorted by Right-Ascension Values

Messier Objects Sorted by Right-Ascension Values

Obs | ra obj
100427 M31
01367 M74
02420 M34
06 46.0 MM41
08 40.1 | M44
09556 M31
09 558 MB2
1213.8 M35
12229 M100

W e | = & @n k| | M

-
=

1229.8 M49
12 39.5 MGE
12420 M&S

[e
L | Pl | =

1329.9 M51

-
£=4

13422 M3

—
L5,]

16 41.7 M13
16 57.1 M0
17376 M4

- ek | ok
(== I =

17 66.8 | M23
18 20.8 MY
18 31.6 M25

Bd | Pl |
- | =D |

18 36.4 M22

ol
P

18 53.6 M&Y

P
[#E]

19 63.8 M7
20239 M239
21322 M39

Pd | B
LS I =

PREV Method 53

See Also

» “Saving Hash Object Data in a Data Set” in SAS Language Reference.: Concepts

Methods:
* “DEFINEDATA Method” on page 21

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

PREV Method

Returns the previous value in the underlying hash object.

Applies to: Hash iterator object

Syntax
rc=object. PREV();

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

Details

Use the PREV method iteratively to traverse the hash object and return the data items in
reverse key order.

The FIRST method returns the first data item in the hash object. The LAST method
returns the last data item in the hash object.

You can use the NEXT method to return the next data item in the hash object.

Note: The PREV method sets the data variable to the value of the data item so that it is
available for use after the method call.

See Also

» “Using the Hash Iterator Object ”” in SAS Language Reference: Concepts

Methods:

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n1jqsx30orgc5en19p89se5kvxfl
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k

54 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

* “FIRST Method” on page 35
* “LAST Method” on page 40
* “NEXT Method” on page 46

Operators:

+ “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:
+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

REF Method
Consolidates the CHECK and ADD methods into a single method call.
Applies to: Hash object

Syntax

re=object. REF (<<KEY: keyvalue-1>, ... <KEY: keyvalue-n>, <DATA: datavalue-1>
, ...<DATA: datavalue-n>>);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method.

Details

You can consolidate CHECK and ADD methods into a single REF method. You can
change the following code:

rc = h.check() ;
if (rc ne 0) then
rc = h.add();

REF Method 55

to
rc = h.ref();

The REF method is useful for counting the number of occurrences of each key in a hash
object. The REF method initializes the key summary for each key on the first ADD, and
then changes the ADD for each subsequent CHECK.

For more information about key summaries, see “Maintaining Key Summaries” in SAS
Language Reference: Concepts.

Example: Using the REF Method for Key Summaries

The following example uses the REF method for key summaries:

data keys;
input key;
datalines;

R O sND W NN U w RN

data count;
length count key 8;
keep key count;
if n =1 then do;
declare hash myhash(suminc: "count", ordered: "y");
declare hiter iter ("myhash");
myhash.defineKey ('key') ;
myhash.defineDone () ;
count = 1;
end;
do while (not done);
set keys end=done;
rc = myhash.ref () ;
end;
rc = iter.first();
do while(rc = 0);
rc = myhash.sum(sum: count) ;

output;

rc = iter.next();
end;
stop;
run;

proc print data=count;
run;

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr

56 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Output 2.3 Output of DATA Using the REF Method

The SAS System

Obs | count | key

1 4 1
2 3 2
3 2 3
4 1 4
5 2]
See Also
Methods:

* “ADD Method” on page 8
* “CHECK Method” on page 9

REMOVE Method
Removes the data that is associated with the specified key from the hash object.

Applies to: Hash object

Syntax
rc=object. REMOVE (<KEY: keyvalue-1, .. KEY: keyvalue-n>);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

REMOVE Method 57

Restriction If an associated hash iterator is pointing to the keyvalue, then the
REMOVE method will not remove the key or data from the hash
object. An error message is issued.

Details
The REMOVE method deletes both the key and the data from the hash object.

You can use the REMOVE method in one of two ways to remove the key and data in a
hash object.

You can specify the key, and then use the REMOVE method as shown in the following
code:

data null_;
length k $8;
length d $12;
if N =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone() ;
/* avoid uninitialized variable notes */
call missing(k, d);
end;
rc = h.add(key: 'Joyce', data: 'Ulysses');
/* Specify the key */
k = 'Joyce';
/* Use the REMOVE method to remove the key and data */
rc = h.remove () ;
if (rc = 0) then
put 'Key and data removed from the hash object.';

run;

Alternatively, you can use a shortcut and specify the key directly in the REMOVE
method call as shown in the following code:

data null_;
length k $8;
length d $12;
if N =1 then do;
declare hash h();
rc = h.defineKey('k"');
rc = h.defineData('d');
rc = h.defineDone() ;
/* avoid uninitialized variable notes */
call missing(k, d);
end;
rc = h.add(key: 'Joyce', data: 'Ulysses');
rc = h.add(key: 'Homer', data: 'Iliad');
/* Specify the key in the REMOVE method parameter */
rc = h.remove (key: 'Homer');
if (rc =0) then
put 'Key and data removed from the hash object.';

run;

Note: The REMOVE method does not modify the value of data variables. It removes
only the value in the hash object.

58 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Note: If you specify multidata: 'y" in the hash object constructor, the REMOVE
method will remove all data items for the specified key.

Example: Removing a Key in the Hash Table

This example illustrates how to remove a key in the hash table.

/* Generate test data */

data x;
do k = 65 to 70;
d = byte (k);
output;
end;
run;
data null ;

length k 8 d $1;
/* define the hash table and iterator */
declare hash H (dataset:'x', ordered:'a');
H.defineKey ('k');
H.defineData (
H.defineDone ()
(k,d);
declare hiter HI ('H');
/*Use this logic to remove a key in the hash object when an*/
/*iterator is pointing to that key. The NEXT method will*/
/*start at the first item in the hash object if it is called*/
/*without calling the FIRST method. */
do while (hi.next() = 0);
if flag then rc=h.remove (key:key) ;
if d = 'C' then do;
key=k;
flag=1;
end;

k! |d|)’.
d

call missing

else flag=0;
end;
if flag then rc=h.remove (key:key);
rc = h.output (dataset: 'work.out');
stop;
run;
proc print;

run;

The following output shows that the key and data for the third object (key=67, data=C)
is deleted.

REMOVEDUP Method 59

Output 2.4 Key and Data Removed from Output

The SAS System

Obs | k

GG
G
69
70

m o om O m > =

[I U LR

See Also

* “Replacing and Removing Data in the Hash Object” in SAS Language Reference:
Concepts

Methods:

+ “ADD Method” on page 8

+ “DEFINEKEY Method” on page 24

+ “REMOVEDUP Method” on page 59

REMOVEDUP Method

Removes the data that is associated with the specified key's current data item from the hash object.

Applies to: Hash object

Syntax
rc=object. REMOVEDUP (<KEY: keyvalue-1, .. KEY: keyvalue-n>);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1esjfpjt8pkupn1sa698kyujtfr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1esjfpjt8pkupn1sa698kyujtfr

60 Chapter 2 < Dictionary of Hash and Hash Iterator Object Language Elements

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

Restriction If an associated hash iterator is pointing to the keyvalue, then the
REMOVEDUP method does not remove the key or data from the hash
object. An error message is issued.

Details
The REMOVEDUP method deletes both the key and the data from the hash object.

You can use the REMOVEDUP method in one of two ways to remove the key and data
in a hash object. You can specify the key, and then use the REMOVEDUP method.
Alternatively, you can use a shortcut and specify the key directly in the REMOVEDUP
method call.

Note: The REMOVEDUP method does not modify the value of data variables. It
removes only the value in the hash object.

Note: If only one data item is in the key's data item list, the key and data are removed
from the hash object.

Comparisons

The REMOVEDUP method removes the data that is associated with the specified key's
current data item from the hash object. The REMOVE method removes the data that is
associated with the specified key from the hash object.

Example: Removing Duplicate Iltems in Keys

This example creates a hash object where several keys have multiple data items. The
second data item in the key is removed.

data testdup;
length key data 8;
input key data;
datalines;

10

11

15

20

16

Ul 2w DN W RN
O

data null ;
length r 8;
dcl hash h(dataset:'testdup', multidata: 'y', ordered: 'y');
h.definekey('key');
h.definedata('key', 'data');
h.definedone () ;
call missing (key, data);
do key = 1 to 5;
rc = h.find();

REPLACE Method 61

if (rc = 0) then do;
h.has next (result: r);
if (r ne 0) then do;
h.find next();
h.removedup () ;
end;
end;
end;
dcl hiter i('h');
rc = i.first();
= 0);
put key= data=;

do while (rc

rc = i.next();
end;
run;

The following lines are written to the SAS log:

key=1 data=10
key=1 data=5
key=2 data=11
key=2 data=9
key=3 data=20
key=4 data=6
key=5 data=5

See Also
* “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

Methods:
+ “REMOVE Method” on page 56

REPLACE Method

Replaces the data that is associated with the specified key with new data.

Applies to: Hash object

Syntax

rc=object. REPLACE (<<KEY: keyvalue-1>, ... <KEY: keyvalue-n>, <DATA:
datavalue-1>,
...<DATA: datavalue-n>>),

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr

62 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables
that you define by using the DEFINEKEY method.

Requirement The KEY:keyvalue arguments must be in the same order as they were
defined in the hash object because the hash object variable names are
not specified.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method.

Requirement The DATA:datavalue arguments must be in the same order as they
were defined in the hash object because the hash object variable
names are not specified.

Details
You can use the REPLACE method in one of two ways to replace data in a hash object.

You can define the key and data item, and then use the REPLACE method as shown in
the following code. In this example, the data for the key 'Rottwlr' is changed from 'Ist' to
2nd'.
data work.show;
length brd $10 plc $8;
input brd plc;
datalines;
Terrier 2nd
LabRetr 3rd
Rottwlr 1st
Collie bis
ChinsCrstd 2nd
Newfnlnd 3rd

i

proc print data=work.show;
title 'SHOW Data Set Before Replace';

run;

data null_;
length brd $12;
length plc $8;
if N =1 then do;
declare hash h(dataset: 'work.show');
rc = h.defineKey('brd');
rc = h.defineData('brd', 'plc');
rc = h.defineDone() ;
end;
/* Specify the key and new data value */
brd = 'Rottwlr';

REPLACE Method

plc = '2nd';
/* Call the REPLACE method to replace the data value */
rc = h.replace();
/* Write the hash table to the data set. */
rc = h.output (dataset: 'work.show');
run;

proc print data=work.show;
title 'SHOW Data Set After Replace';
run;

Alternatively, you can use a shortcut and specify the key and data directly in the
REPLACE method call as shown in the following code:

data work.show;
length brd $10 plc $8;
input brd plc;
datalines;
Terrier 2nd
LabRetr 3rd
Rottwlr 1lst
Collie bis
ChinsCrstd 2nd
Newfnlnd 3rd
data null ;
length brd $12;
length plc $8;
if N =1 then do;
declare hash h(dataset: 'work.show');
rc = h.defineKey('brd');
rc = h.defineData('brd', 'plc');
rc = h.defineDone() ;
/* avoid uninitialized variable notes */
call missing(brd, plc);
end;
/* Specify the key and new data value in the REPLACE method */
rc = h.replace(key: 'Rottwlr', data: '2nd');
/* Write the hash table to the data set. */
rc = h.output (dataset: 'work.show');
run;

Note: The hash object's REPLACE method is intended for use with hash tables that

63

have a single item for each key (MULTIDATA: 'NO'), whereas the REPLACEDUP

method is intended for use with hash tables that have multiple data items for each
key (MULTIDATA: 'YES').Inthe SAS 9.4 release, if you call the REPLACE
method and the hash object was declared using the multidata: 'y' option, then

all data items for the current key are replaced with the new data. In previous releases,

no items are replaced and the new data is added to the current key.For more
information about the MULTIDATA option, see “DECLARE Statement, Hash and
Hash Iterator Objects” on page 13.

Note: If you call the REPLACE method and the key is not found, then the key and data

are added to the hash object.

Note: The REPLACE method does not replace the value of the data variable with the
value of the data item. It replaces only the value in the hash object.

64 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Comparisons

The REPLACE method replaces the data that is associated with the specified key with
new data. The REPLACEDUP method replaces the data that is associated with the
current key's current data item with new data.

See Also

+ “Replacing and Removing Data in the Hash Object” in SAS Language Reference:
Concepts

Methods:

+ “DEFINEDATA Method” on page 21
+ “DEFINEKEY Method” on page 24

+ “REPLACEDUP Method” on page 64

REPLACEDUP Method

Replaces the data that is associated with the current key's current data item with new data.

Applies to: Hash object

Syntax
rc=object. REPLACEDUP (<DATA: datavalue-1, ... DATA: datavalue-n>);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method for the current key.

Details

You can use the REPLACEDUP method in one of two ways to replace data in a hash
object.

You can define the data item, and then use the REPLACEDUP method. Alternatively,
you can use a shortcut and specify the data directly in the REPLACEDUP method call.

Note: 1f you call the REPLACEDUP method and the key is not found, then the key and
data are added to the hash object.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1esjfpjt8pkupn1sa698kyujtfr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=p1esjfpjt8pkupn1sa698kyujtfr

REPLACEDUP Method 65

Note: The REPLACEDUP method does not replace the value of the data variable with
the value of the data item. It replaces only the value in the hash object.

Comparisons

The REPLACEDUP method replaces the data that is associated with the current key's
current data item with new data. The REPLACE method replaces the data that is
associated with the specified key with new data.

Example: Replacing Data in the Current Key

This example creates a hash object where several keys have multiple data items. When a
duplicate data item is found, 300 is added to the value of the data item.

data testdup;
length key data 8;
input key data;
datalines;

10

11

15

20

16

Ul R WD NN W RN R
e}

99
data null ;
length r 8;
dcl hash h(dataset:'testdup',K multidata: 'y', ordered: 'y');
h.definekey('key');
h.definedata('key', 'data');
h.definedone() ;
call missing (key, data);
do key = 1 to 5;
rc = h.find();
if (rc = 0) then do;
put key= data=;
h.has next (result: r);
do while(r ne 0);
rc = h.find next();
put 'dup ' key= data;
data = data + 300;
rc = h.replacedup() ;
h.has next (result: r);
end;
end;
end;
put 'iterating...';
dcl hiter i('h');
rc = i.first();
do while (rc = 0);
put key= data=;

66 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

rc = i.next();
end;
run;

The following lines are written to the SAS log.

key=1 data=10
dup key=1 15
dup key=1 5
key=2 data=11
dup key=2 16
dup key=2 9
key=3 data=20
dup key=3 100
key=4 data=6
key=5 data=5
dup key=5 99
iterating...
key=1 data=10
key=1 data=315
key=1 data=305
key=2 data=11
key=2 data=316
key=2 data=309
key=3 data=20
key=3 data=400
key=4 data=6
key=5 data=5
key=5 data=399

See Also

* “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

Methods:
+ “REPLACE Method” on page 61

RESET_DUP Method

Resets the pointer to the beginning of a duplicate list of keys when you use the DO_OVER method.
Applies to: Hash object

Syntax
rc=object. RESET_DUP();

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr

SETCUR Method 67

Details

When a hash object has multiple values for a single key, you can use the DO_OVER
method in an iterative DO loop to traverse the duplicate keys. The DO_OVER method
reads the key on the first method call and continues to traverse the duplicate key list until
the key reaches the end.

If you switch the key in the middle of an iteration, you must use the RESET DUP
method to reset the pointer to the beginning of the list. Otherwise, SAS continues to use
the first key.

For an example, see the DO _OVER method example on page 27.

See Also

Methods:
*+ “DO_OVER Method” on page 26

SETCUR Method

Specifies a starting key item for iteration.

Applies to: Hash iterator object

Syntax
rc=object. SETCUR (KEY: 'keyvalue-1'<, ... KEY: 'keyvalue-n">);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

KEY: 'keyvalue'
specifies a key value as the starting key for the iteration.

Details

The hash iterator enables you to start iteration on any item in the hash object. The
SETCUR method sets the starting key for iteration. You use the KEY option to specify
the starting item.

Example: Specifying the Starting Key Item

The following example creates a data set that contains astronomical data. You want to
start iteration at RA= 18 31.6 instead of the first or last items. The data is loaded into a
hash object and the SETCUR method is used to start the iteration. Because the ordered
argument tag was set to YES, note that the output is sorted in ascending order.

68 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

data work.astro;
input obj $1-4 ra $6-12 dec $14-19;

datalines;
M31 00 42.7 +41 16
M71 19 53.8 +18 47
M51 13 29.9 +47 12
M98 12 13.8 +14 54
M13 16 41.7 +36 28
M39 21 32.2 +48 26
M81 09 55.6 +69 04
M100 12 22.9 +15 49
M41 06 46.0 -20 44
M44 08 40.1 +19 59
M10 16 57.1 -04 06
M57 18 53.6 +33 02
M3 13 42.2 +28 23
M22 18 36.4 -23 54
M23 17 56.8 -19 01
M49 12 29.8 +08 00
Mé68 12 39.5 -26 45
M17 18 20.8 -16 11
M14 17 37.6 -03 15
M29 20 23.9 +38 32
M34 02 42.0 +42 47
M82 09 55.8 +69 41
M59 12 42.0 +11 39
M74 01 36.7 +15 47
M25 18 31.6 -19 15

The following code sets the starting key for iteration to '18 31.6"':

data _null_;

length obj $10;

length ra $10;

length dec $10;

declare hash myhash (hashexp: 4, dataset:"work.astro", ordered:"yes");

declare hiter iter('myhash');
myhash.defineKey('ra');
myhash.defineData('obj', 'ra');
myhash.defineDone () ;
call missing (ra, obj, dec);
rc = iter.setcur(key: '18 31.6');
do while (rc = 0);
put obj= ra=;
rc = iter.next();
end;
run;

The following lines are written to the SAS log.

obj=M25 ra=18 31.6
obj=M22 ra=18 36.
obj=M57 ra=18 53.
0bj=M71 ra=19 53.
obj=M29 ra=20 23.
obj=M39 ra=21 32.

N W © O B

SUM Method 69

You can use the FIRST method or the LAST method to start iteration on the first item or
the last item, respectively.

See Also

» “Using the Hash Iterator Object ” in SAS Language Reference: Concepts

Methods:
* “FIRST Method” on page 35
* “LAST Method” on page 40

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:

+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

SUM Method

Retrieves the summary value for a given key from the hash table and stores the value in a DATA step

variable.

Applies to:

Hash object

Syntax
rc=object. SUM (<KEY: keyvalue-1, ... KEY: keyvalue-n,> SUM: variable-name);

Required Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

SUM: variable-name
specifies a DATA step variable that stores the current summary value of a given key.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p1f92kngyuurnln120e2na45022k

70 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Details

You use the SUM method to retrieve key summaries from the hash object. For more
information, see “Maintaining Key Summaries” in SAS Language Reference: Concepts.

Comparisons

The SUM method retrieves the summary value for a given key when only one data item
exists per key. The SUMDUP method retrieves the summary value for the current data
item of the current key when more than one data item exists for a key.

Example: Retrieving the Key Summary for a Given Key

The following example uses the SUM method to retrieve the key summary for each
given key, K=99 and K=100.

k = 99;
count =
h.add() ;
/* key=99 summary is now 1 */
k = 100;

h.add() ;

/* key=100 summary is now 1 */
k = 99;

h.find();

/* key=99 summary is now 2 */

1;

count = 2;

h.find() ;

/* key=99 summary is now 4 */
k = 100;

h.find() ;

/* key=100 summary is now 3 */
h.sum(sum: total);

put 'total for key 100 = ' total;
k = 99;

h.sum(sum:total) ;

put 'total for key 99 = ' total;
run;

The first PUT statement prints the summary for k=100:
total for key 100 = 3
The second PUT statement prints the summary for k=99:

total for key 99 = 4

See Also

Methods:

* “ADD Method” on page 8

* “FIND Method” on page 30

* “CHECK Method” on page 9

* “DEFINEKEY Method” on page 24
* “REF Method” on page 54

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr

SUMDUP Method 71

* “SUMDUP Method” on page 71

Operators:

* “ NEW_ Operator, Hash and Hash Iterator Objects” on page 41

Statements:
+ “DECLARE Statement, Hash and Hash Iterator Objects” on page 13

SUMDUP Method

Retrieves the summary value for the current data item of the current key and stores the value in a DATA

step variable.

Applies to:

Hash object

Syntax
re=object. SUMDUP (SUM: variable-name);

Arguments

re
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, an
appropriate error message is printed to the log.

object
specifies the name of the hash object.

SUM: variable-name
specifies a DATA step variable that stores the summary value for the current data
item of the current key.

Details

You use the SUMDUP method to retrieve key summaries from the hash object when a
key has multiple data items. For more information, see “Maintaining Key Summaries” in
SAS Language Reference: Concepts.

Comparisons

The SUMDUP method retrieves the summary value for the current data item of the
current key when more than one data item exists for a key. The SUM method retrieves
the summary value for a given key when only one data item exists per key.

Example: Retrieving a Summary Value

The following example uses the SUMDUP method to retrieve the summary value for the
current data item. It also illustrates that it is possible to loop backward through the list by
using the HAS PREV and FIND PREV methods. The FIND PREV method works

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n145x2os6zo07kn1lr0wpgv7nxsr

72 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

similarly to the FIND NEXT method with respect to the current list item except that it
moves backward through the multiple item list.

data dup;
length key data 8;
input key data;
cards;

10

11

15

20

16

ua s P U WwW NN W R N
O

99
data null ;
length r i sum 8;
i=0;
dcl hash h(dataset:'dup', multidata: 'y', suminc: 'i');
h.definekey('key');
h.definedata('key', 'data');
h.definedone () ;
call missing (key, data);
i=1;
do key =1 to 5;
rc = h.find();
if (rc = 0) then do;
h.has next (result: r);
do while(r ne 0);
rc = h.find next();
rc = h.find prev();
rc = h.find next();
h.has next (result: r);
end;
end;
end;
i=0;
do key = 1 to 5;
rc = h.find();
if (rc = 0) then do;
h.sum(sum: sum) ;
put key= data= sum=;
h.has next (result: r);
do while(r ne 0);
rc = h.find next();
h.sumdup (sum: sum) ;
put 'dup ' key= data= sum=;
h.has next (result: r);
end;
end;
end;
run;

SUMDUP Method 73

The following lines are written to the SAS log.

key=1 data=10 sum=2

dup key=1 data=15 sum=3
dup key=1 data=5 sum=2
key=2 data=11 sum=2

dup key=2 data=16 sum=3
dup key=2 data=9 sum=2
key=3 data=20 sum=2

dup key=3 data=100 sum=2
key=4 data=6 sum=1
key=5 data=5 sum=2

dup key=5 data=99 sum=2

To see how this works, consider the key 1, which has three data values: 10, 15, and 5
(which are stored in that order).

key=1 data=10 sum=2
dup key=1 data=15 sum=3
dup key=1 data=5 sum=2

When traversing the data list in the firstdo key = 1 to 5; loop, the key summary
for data item 10 is set to 1 on the initial FIND method call. The first FIND NEXT
method call sets the key summary for data item 15 to 1. The next FIND PREV method
call moves back to data item 10 and increments its key summary to 2. Finally, the last
call to the FIND NEXT method increments the key summary for data item 15 to 2. The
next iteration through the loop sets the key summary for data item 5 to 1 and the key
summary for data item 15 to 3. Finally, the key summary for data item 5 is incremented
to 2.

You do not call the HAS PREV method before calling the FIND PREV method in this
example because you already know that there is a previous entry in the list. Otherwise,
you would not be in the loop.

Also shown here is the necessity of using special methods for some duplicate operations.
(In this case, the SUMDUP method works similarly to the SUM method by retrieving
the key summary for the current data item.)

See Also

* “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

Methods:
+ “SUM Method” on page 69

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1b4cbtmb049xtn1vh9x4waiioz4&anchor=n0qfb59kvu938mn12qy97bgo6nqr

74 Chapter 2 + Dictionary of Hash and Hash Iterator Object Language Elements

Chapter 3

Dictionary of Java Object
Language Elements

75

Java Object Methods by Category it iiiiinnnnan..

Dictionary

CALLtypeMETHOD Method e

CALLSTATICtypeMETHOD Method

DECLARE Statement, JavaObject.

DELETE Method, Java Object
EXCEPTIONCHECK Method
EXCEPTIONCLEAR Method
EXCEPTIONDESCRIBE Method
FLUSHJAVAOUTPUT Method
GETtypeFIELD Method

GETSTATICtypeFIELD Methodo oot e

NEW Operator, Java Object
SETtypeFIELD Method

SETSTATICtypeFIELD Method oo oot e e

Java Object Methods by Category

There are five categories of Java object methods.

Table 3.1 Java Object Methods by Category

Category

Deletion

Exception

Field reference

Method reference

Output

Description

enables you to delete a Java object.

enables you to gather information about and clear an exception.

enables you to return or set the value of static and non-static instance
fields of the Java object.

enables you to access static and non-static Java methods.

enables you to send the Java output to its destination immediately.

76 Chapter 3 < Dictionary of Java Object Language Elements

The following table provides brief descriptions of the Java object methods. For more
detailed descriptions, see the dictionary entry for each method.

Category Language Elements Description

Deletion DELETE Method, Java Object ~ Deletes the Java object.
(p. 83)

Exception EXCEPTIONCHECK Method Determines whether an exception occurred during a method call.
(p. 84)

EXCEPTIONCLEAR Method Clears any exception that is currently being thrown.

(p- 85)
EXCEPTIONDESCRIBE Turns the exception debug logging on or off and prints exception
Method (p. 87) information.
Field Reference GET#typeFIELD Method (p. Returns the value of a non-static field for a Java object.
90)
GETSTATICtypeFIELD Returns the value of a static field for a Java object.

Method (p. 92)

SETtypeFIELD Method (p. Modifies the value of a non-static field for a Java object.
95)

SETSTATICtypeFIELD Method Modifies the value of a static field for a Java object.
(p-97)

Method Reference ~ CALL#ypeMETHOD Method Invokes an instance method on a Java object from a non-static
(p. 76) Java method.

CALLSTATIC#ypeMETHOD Invokes an instance method on a Java object from a static Java

Method (p. 79) method.
Output FLUSHJAVAOUTPUT Method Specifies that the Java output is sent to its destination.
(p. 88)

Dictionary

CALLtypeMETHOD Method

Invokes an instance method on a Java object from a non-static Java method.
Category: Method Reference
Applies to: Java object

CALLtypeMETHOD Method 77

Syntax

object. CALLtypeMETHOD ("method-name", <method-argument-1, ...method-
argument-n>,
<return-value>),

Arguments

object
specifies the name of the Java object.

fype
specifies the result type for the non-static Java method. The type can be one of the

following values:

BOOLEAN
specifies that the result type is BOOLEAN.

BYTE
specifies that the result type is BYTE.

CHAR
specifies that the result type is CHAR.

DOUBLE
specifies that the result type is DOUBLE.

FLOAT
specifies that the result type is FLOAT.

INT
specifies that the result type is INT.

LONG
specifies that the result type is LONG.

SHORT
specifies that the result type is SHORT.

STRING
specifies that the result type is STRING.

VOID
specifies that the result type is VOID.

See “Type Issues” in SAS Language Reference: Concepts

method-name
specifies the name of the non-static Java method.

Requirement The method name must be enclosed in either single or double
quotation marks.

method-argument
specifies the parameters to pass to the method.

return-value
specifies the return value if the method returns one.

Details

Once you instantiate a Java object, you can access any non-static Java method through
method calls on the Java object by using the CALL#ypeMETHOD method.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

78 Chapter 3 < Dictionary of Java Object Language Elements

Note: The type argument represents a Java data type. For more information about how
Java data types relate to SAS data types, see “Type Issues” in SAS Language
Reference: Concepts .

Comparisons

Use the CALLtypeMETHOD method for non-static Java methods. If the Java method is
static, use the CALLSTATIC#peMETHOD method.

Example: Setting and Retrieving Field Values

The following example creates a simple class that contains three non-static fields. The
Java object j is instantiated, and then the field values are set and retrieved using the
CALL#ypeFIELD method.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttest
{
public int i;
public double d;
public string s;
public int im()
{

return 1;

}

public String sm()

{

return s;

}

public double dm()

{
return d;
}
}

/* DATA step code */

data null_;
dcl javaobj j("ttest");
length val 8;
length str $20;
j.setIntField("i", 100);
j.setDoubleField("d", 3.14159);
j.setStringField("s", "abc");
j.callIntMethod ("im", val);

put val=;
j.callDoubleMethod ("dm", wval);
put val=;
j.callStringMethod ("sm", str);
put str=;

run;

The following lines are written to the SAS log:

val=100
val=3.14159
str=abc

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

CALLSTATICtypeMETHOD Method 79
See Also

Methods:
* “CALLSTATICtypeMETHOD Method” on page 79

CALLSTATICtypeMETHOD Method

Invokes an instance method on a Java object from a static Java method.
Category: Method Reference
Applies to: Java object

Syntax

object. CALLSTATICtypeMETHOD ("method-name", <method-argument-1
, ...method-argument-n>, <return-value>);

Arguments

object
specifies the name of the Java object.

type
specifies the result type for the static Java method. The type can be one of the
following values:

BOOLEAN
specifies that the result type is BOOLEAN.

BYTE
specifies that the result type is BYTE.

CHAR
specifies that the result type is CHAR.

DOUBLE
specifies that the result type is DOUBLE.

FLOAT
specifies that the result type is FLOAT.

INT
specifies that the result type is INT.

LONG
specifies that the result type is LONG.

SHORT
specifies that the result type is SHORT.

STRING
specifies that the result type is STRING.

VOID
specifies that the result type is VOID.

See “Type Issues” in SAS Language Reference: Concepts

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

80 Chapter 3 < Dictionary of Java Object Language Elements

method-name
specifies the name of the static Java method.

Requirement The method name must be enclosed in either single or double
quotation marks.

method-argument
specifies the parameters to pass to the method.

return-value
specifies the return value if the method returns one.

Details

Once you instantiate a Java object, you can access any static Java method through
method calls on the Java object by using the CALLSTATIC:ypeMETHOD method.

Note: The type argument represents a Java data type. For more information about how
Java data types relate to SAS data types, see “Type Issues” in SAS Language
Reference: Concepts .

Comparisons

Use the CALLSTATICtypeMETHOD method for static Java methods. If the Java
method is not static, use the CALLtypeMETHOD method.

Example: Setting and Retrieving Static Fields

The following example creates a simple class that contains three static fields. The Java
object j is instantiated, and then the field values are set and retrieved using the
CALLSTATICtypeFIELD method.

/* Java code */

import java.util.*;

import java.lang.*;

public class ttestc

{
public static double d;
public static double dm()

{

return d;

}

/* DATA step code */

data x;
declare javaobj j("ttestc");
length d 8;
j.SetStaticDoubleField("d", 3.14159);
j.callStaticDoubleMethod ("dm", d);
put d=;

run;
The following line is written to the SAS log:

d=3.14159

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

DECLARE Statement, Java Object 81
See Also

Methods:
* “CALLtypeMETHOD Method” on page 76

DECLARE Statement, Java Object

Declares a Java object; creates an instance of and initializes data for a Java object.

Alias:

Form 1:

Form 2:

DCL

Syntax
DECLARE JAVAOBJ object-reference;
DECLARE JAVAOBJ object-reference ("java-class", <argument-1, ... argument-n>);

Arguments

object-reference
specifies the object reference name for the Java object.

Jjava-class
specifies the name of the Java class to be instantiated.

Requirements The Java class name must be enclosed in either double or single
quotation marks.

If you specify a Java package path, you must use forward slashes (/)
and not periods (.) in the path. For example, an incorrect class name
is "java.util. Hashtable". The correct class name is "java/util/
Hashtable".

argument
specifies the information that is used to create an instance of the Java object. Valid
values for argument depend on the Java object.

See “Using the DECLARE Statement to Instantiate a Java Object (Form 2)” on
page 82

Details

The Basics

To use a DATA step component object in your SAS program, you must declare and
create (instantiate) the object. The DATA step component interface provides a
mechanism for accessing predefined component objects from within the DATA step.

For more information, see “Using DATA Step Component Objects” in SAS Language
Reference: Concepts.

Declaring a Java Object (Form 1)
You use the DECLARE statement to declare a Java object.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3

82 Chapter 3

Dictionary of Java Object Language Elements

declare javaobj j;
The DECLARE statement tells SAS that the object reference J is a Java object.

After you declare the new Java object, use the NEW operator to instantiate the object.
For example, in the following line of code, the NEW operator creates the Java object
and assigns it to the object reference J:

j = _new_ javaobj ("somejavaclass");

Using the DECLARE Statement to Instantiate a Java Object (Form 2)
Instead of the two-step process of using the DECLARE statement and the NEW
operator to declare and instantiate a Java object, you can use the DECLARE statement to
declare and instantiate the Java object in one step. For example, in the following line of
code, the DECLARE statement declares and instantiates a Java object and assigns the
Java object to the object reference J:

declare javaobj j("somejavaclass");
The preceding line of code is equivalent to using the following code:

declare javaobj j;
j = _new_ javaobj ("somejavaclass");

A constructor is a method that you can use to instantiate a component object and
initialize the component object data. For example, in the following line of code, the
DECLARE statement declares and instantiates a Java object and assigns the Java object
to the object reference J. Note that the only required argument for a Java object
constructor is the name of the Java class to be instantiated. All other arguments are
constructor arguments for the Java class itself. In the following example, the Java class
name, testjavaclass, is the constructor, and the values 100 and . 8 are constructor
arguments.

declare javaobj j("testjavaclass", 100, .8);

Comparisons

You can use the DECLARE statement and the NEW _ operator, or the DECLARE
statement alone to declare and instantiate an instance of a Java object.

Examples

Example 1: Declaring and Instantiating a Java Object By Using the
DECLARE Statement and the _NEW _ Operator

In the following example, a simple Java class is created. The DECLARE statement and
the NEW _ operator are used to create an instance of this class.

/* Java code */
import java.util.*;
import java.lang.*;
public class simpleclass
{

public int i;

public double d;

}

/* DATA step code
data null ;
declare javaobj myjo;

DELETE Method, Java Object 83

myjo = new_ javaobj ("simpleclass");

run;

Example 2: Using the DECLARE Statement to Create and Instantiate
a Java Object

In the following example, a Java class is created for a hash table. The DECLARE
statement is used to create and instantiate an instance of this class by specifying the
capacity and load factor. In this example, a wrapper class, mhash, is necessary because
the DATA step's only numeric type is equivalent to the Java type DOUBLE.

/* Java code */
import java.util.*;
public class mhash extends Hashtable;

{

mhash (double size, double load)

{

super ((int)size, (float)load);

}
}

/* DATA step code */
data _null_;
declare javaobj h("mhash", 100, .8);

run;

See Also
+ “Using DATA Step Component Objects” in SAS Language Reference: Concepts

Operators:

* “ NEW_ Operator, Java Object” on page 94

DELETE Method, Java Object

Deletes the Java object.

Category:
Applies to:

Deletion

Java object

Syntax
object DELETE();

Arguments
object

specifies the name of the Java object.
Details

DATA step component objects are deleted automatically at the end of the DATA step. If
you want to reuse the object reference variable in another Java object constructor, you
should delete the Java object by using the DELETE method.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3

84 Chapter3 -

Dictionary of Java Object Language Elements

If you attempt to use a Java object after you delete it, you will receive an error in the log.

EXCEPTIONCHECK Method

Determines whether an exception occurred during a method call.

Category:
Applies to:

Exception

Java object

Syntax
object EXCEPTIONCHECK (status);

Arguments

object
specifies the name of the Java object.

status
specifies the exception status that is returned.

Tip The status value that is returned by Java is of type DOUBLE, which
corresponds to a SAS numeric data value.

Details

Java exceptions are handled through the EXCEPTIONCHECK, EXCEPTIONCLEAR,
and EXCEPTIONDESCRIBE methods.

The EXCEPTIONCHECK method is used to determine whether an exception occurred
during a method call. Ideally, the EXCEPTIONCHECK method should be called after
every call to a Java method that can throw an exception.

Example: Checking an Exception

In the following example, the Java class contains a method that throws an exception. The
DATA step calls the method and checks for an exception.

/* Java code */
public class a

{

public void m() throws NullPointerException

{
throw new NullPointerException() ;
}
}

/* DATA step code */
data null ;
length e 8;
dcl javaobj j('a');
rc = j.callvoidmethod('m');
/* Check for exception. Value is returned in variable 'e' */
rc = j.exceptioncheck(e);
if (e) then

EXCEPTIONCLEAR Method 85

put 'exception';
else

put 'no exception';
run;

The following line is written to the SAS log:

exception
See Also

Methods:
+ “EXCEPTIONCLEAR Method” on page 85
+ “EXCEPTIONDESCRIBE Method” on page 87

EXCEPTIONCLEAR Method

Clears any exception that is currently being thrown.

Category:
Applies to:

Exception

Java object

Syntax
object EXCEPTIONCLEAR();

Arguments

object
specifies the name of the Java object.

Details

Java exceptions are handled through the EXCEPTIONCHECK, EXCEPTIONCLEAR,
and EXCEPTIONDESCRIBE methods.

If you call a method that throws an exception, it is strongly recommended that you check
for an exception after the call. If an exception was thrown, you should take appropriate
action and then clear the exception by using the EXCEPTIONCLEAR method.

If no exception is currently being thrown, this method has no effect.

Examples

Example 1: Checking and Clearing an Exception
In the following example, the Java class contains a method that throws an exception. The
method is called in the DATA step, and the exception is cleared.

/* Java code */

public class a

{

public void m() throws NullPointerException

{

86 Chapter 3 < Dictionary of Java Object Language Elements

throw new NullPointerException() ;

}

/* DATA step code */
data null ;
length e 8;
dcl javaobj j('a');
rc = j.callvoidmethod('m');
/* Check for exception. Value is returned in variable 'e' */
rc = j.exceptioncheck(e);
if (e) then
put 'exception';
else
put 'no exception';
/* Clear the exception and check it again */
rc = j.exceptionclear();
rc = j.exceptioncheck(e);
if (e) then
put 'exception';

put 'no exception';
run;

The following lines are written to the SAS log:

exception
no exception

Example 2: Checking for an Exception When Reading an External
File

In this example, the Java IO classes are used to read an external file from the DATA step.
The Java code creates a wrapper class for DataInputStream, which enables you to
pass a FileInputStream to the constructor. The wrapper is necessary because the
constructor actually takes an InputStream, which is the parent of
FileInputStream, and the current method lookup is not robust enough to perform the
superclass lookup.

/* Java code */
public class myDataInputStream extends java.io.DataInputStream

{

myDataInputStream(java.io.FileInputStream fi)

{

super (1) ;

}

After you create the wrapper class, you can use it to create a DataInputStream for an
external file and read the file until the end-of-file is reached. The EXCEPTIONCHECK
method is used to determine when the readInt method throws an EOFException,
which enables you to end the input loop.

/* DATA step code */
data null ;
length d e 8;
dcl javaobj f("java/io/File", "c:\temp\binint.txt");
dcl javaobj fi("java/io/FileInputStream", f);
dcl javaobj di ("myDataInputStream", £fi);

EXCEPTIONDESCRIBE Method 87

do while(1);
di.callIntMethod("readInt", 4d);
di.ExceptionCheck(e) ;
if (e) then
leave;
else
put d=;
end;
run;

See Also

Methods:
+ “EXCEPTIONCHECK Method” on page 84
+ “EXCEPTIONDESCRIBE Method” on page 87

EXCEPTIONDESCRIBE Method

Turns the exception debug logging on or off and prints exception information.

Category:
Applies to:

Exception

Java object

Syntax
object EXCEPTIONDESCRIBE (status);

Arguments

object
specifies the name of the Java object.

Status
specifies whether exception debug logging is on or off. The status argument can
be one of the following values:

0
specifies that debug logging is off.

specifies that debug logging is on.

Default 0 (off)

Tip The status value that is returned by Java is of type DOUBLE, which
corresponds to a SAS numeric data value.

Details

The EXCEPTIONDESCRIBE method is used to turn exception debug logging on or off.
If exception debug logging is on, exception information is printed to the JVM standard
output.

88 Chapter 3 < Dictionary of Java Object Language Elements

Note: By default, JVM standard output is redirected to the SAS log.

Example: Printing Exception Information to Standard
Output

In the following example, exception information is printed to the standard output.

/* Java code */

public class a

{

public void m() throws NullPointerException

{

throw new NullPointerException() ;

}
}

/* DATA step code */
data null ;
length e 8;
dcl javaobj j('a');
j.exceptiondescribe (1) ;
rc = j.callvoidmethod('m');

run;
The following lines are written to the SAS log:

java.lang.NullPointerException
at a.m(a.java:5)

See Also

Methods:
+ “EXCEPTIONCHECK Method” on page 84
+ “EXCEPTIONCLEAR Method” on page 85

FLUSHJAVAOUTPUT Method
Specifies that the Java output is sent to its destination.
Category: Output
Applies to: Java object

Syntax
object FLUSHJAVAOUTPUT();

Arguments

object
specifies the name of the Java object.

FLUSHJAVAOUTPUT Method 89

Details

Java output that is directed to the SAS log is flushed when the DATA step terminates. If
you use the FLUSHJAVAOUTPUT method, the Java output will appear after any output
that was issued while the DATA step was running.

Example: Displaying Java Output

In the following example, the “In Java class” lines are written after the DATA step is
complete.

/* Java code */
public class p
{
void p()
{
System.out.println("In Java class");
}
}

/* DATA step code */
data null ;
dcl javaobj j('p');
doi=1to 3;
j.callVoidMethod ('p') ;
put 'In DATA Step';
end;

run;
The following lines are written to the SAS log:

In DATA Step
In DATA Step
In DATA Step
In Java class
In Java class
In Java class

If you use the FLUSHJAVAOUTPUT method, the Java output is written to the SAS log
in the order of execution.

/* DATA step code */
data null ;
dcl javaobj j('p');
doi=1to 3;
j.callvoidMethod('p') ;
j .flushJavaOutput () ;
put 'In DATA Step';
end;

run;
The following lines are written to the SAS log:

In Java class
In DATA Step
In Java class
In DATA Step
In Java class
In DATA Step

90 Chapter 3 - Dictionary of Java Object Language Elements

See Also

“Java Standard Output” in SAS Language Reference: Concepts

GETtypeFIELD Method

Returns the value of a non-static field for a Java object.
Category: Field Reference

Applies to: Java object

Syntax
object. GETtypeFIELD ("field-name", value);

Arguments

object
specifies the name of a Java object.

type
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.

Requirement The field name must be enclosed in either single or double quotation
marks.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p0ebvmav6kogxen1idfc3259yhfm
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

GETtypeFIELD Method 91

value
specifies the name of the variable that receives the returned field value.

Details

Once you instantiate a Java object, you can access and modify its public fields through
method calls on the Java object. The GET#peFIELD method enables you to access non-
static fields.

Note: The type argument represents a Java data type. For more information about how
Java data types relate to SAS data types, see “Type Issues” in SAS Language
Reference: Concepts.

Comparisons

The GET#peFIELD method returns the value of a non-static field for a Java object. To
return the value of a static field, use the GETSTATIC#ypeFIELD method.

Example: Retrieving the Value of a Non-Static Field

The following example creates a simple class that contains three non-static fields. The
Java object j is instantiated, and then the field values are modified and retrieved using
the GET#peFIELD method.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttest
{
public int i;
public double d;
public string s;
}
}

/* DATA step code */

data _null_;
dcl javaobj j("ttest");
length val 8;
length str $20;
j.setIntField("i", 100);
j.setDoubleField ("d", 3.14159);
j.setStringField("s", "abc");
j.getIntField("i", wval);

put val=;
j.getDoubleField ("d", wval);
put val=;
j.getStringField("s", str);
put str=;

run;

The following lines are written to the SAS log:

val=100
val=3.14159
str=abc

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

92 Chapter 3 -« Dictionary of Java Object Language Elements
See Also

Methods:
* “GETSTATICtypeFIELD Method” on page 92
+ “SETtypeFIELD Method” on page 95

GETSTATICtypeFIELD Method

Returns the value of a static field for a Java object.
Category: Field Reference
Applies to: Java object

Syntax
object. GETSTATICtypeFIELD ("field-name", value);

Arguments

object
specifies the name of a Java object.

fype
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

GETSTATICtypeFIELD Method 93

Requirement The field name must be enclosed in either single or double quotation
marks.

value
specifies the name of the variable that receives the returned field value.

Details

Once you instantiate a Java object, you can access and modify its public fields through
method calls on the Java object. The GETSTATIC#peFIELD method enables you to
access static fields.

Note: The type argument represents a Java data type. For more information about how
Java data types relate to SAS data types, see “Type Issues” in SAS Language
Reference: Concepts.

Comparisons

The GETSTATICtypeFIELD method returns the value of a static field for a Java object.
To return the value of a non-static field, use the GET#peFIELD method.

Example: Retrieving the Value of a Static Field

The following example creates a simple class that contains three static fields. The Java
object j is instantiated, and then the field values are set and retrieved using the
GETSTATICtypeFIELD method.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttest
{
public int i;
public double d;
public string s;
}
}

/* DATA step code */

data null ;
dcl javaobj j("ttest");
length val 8;
length str $20;
j.setStaticIntField("i", 100);
j.setStaticDoubleField("d", 3.14159);
j.setStaticStringField("s", "abc");
j.getStaticIntField("i", val);
put val=;
j.getStaticDoubleField("d", val);
put val=;
j.getStaticStringField("s", str);
put str=;

run;

The following lines are written to the SAS log:

val=100
val=3.14159

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

94 Chapter3 -

Dictionary of Java Object Language Elements

str=abc
See Also

Methods:
* “GETtypeFIELD Method” on page 90
* “SETSTATICtypeFIELD Method” on page 97

NEW Operator, Java Object

Creates an instance of a Java object.

Valid in:
Applies to:

DATA step

Java object

Syntax
object-reference = _NEW_ JAVAOBJ ("java-class", <argument-1, ...argument-n>);

Arguments

object-reference
specifies the object reference name for the Java object.

Jjava-class
specifies the name of the Java class to be instantiated.

Requirement The Java class name must be enclosed in either single or double
quotation marks.

argument
specifies the information that is used to create an instance of the Java object. Valid
values for argument depend on the Java object.

Details

To use a DATA step component object in your SAS program, you must declare and
create (instantiate) the object. The DATA step component interface provides a
mechanism for accessing the predefined component objects from within the DATA step.

If you use the NEW _ operator to instantiate the Java object, you must first use the
DECLARE statement to declare the Java object. For example, in the following lines of
code, the DECLARE statement tells SAS that the object reference J is a Java object. The
_NEW _ operator creates the Java object and assigns it to the object reference J.

declare javaobj j;
j = _new_ javaobj ("somejavaclass");

Note: You can use the DECLARE statement to declare and instantiate a Java object in
one step.

A constructor is a method that is used to instantiate a component object and to initialize
the component object data. For example, in the following lines of code, the NEW
operator instantiates a Java object and assigns it to the object reference J. Note that the

SETtypeFIELD Method 95

only required argument for a Java object constructor is the name of the Java class to be
instantiated. All other arguments are constructor arguments for the Java class itself. In
the following example, the Java class name, testjavaclass, is the constructor, and
the values 100 and . 8 are constructor arguments.

declare javaobj j;
j = new Jjavaobj("testjavaclass", 100, .8);

For more information about the predefined DATA step component objects and
constructors, see “Using DATA Step Component Objects” in SAS Language Reference:
Concepts.

Comparisons

You can use the DECLARE statement and the NEW _ operator, or the DECLARE
statement alone to declare and instantiate an instance of a Java object.

Example: Using the _NEW_ Operator to Instantiate and
Initialize a Java Class

In the following example, a Java class is created for a hash table. The NEW _ operator
is used to create and instantiate an instance of this class by specifying the capacity and
load factor. In this example, a wrapper class, mhash, is necessary because the DATA
step's only numeric type is equivalent to the Java type DOUBLE.

/* Java code */
import java.util.*;
public class mhash extends Hashtable;

{

mhash (double size, double load)

{

super ((int)size, (float)load);
}
}

/* DATA step code */
data null ;

declare javaobj h;

h = new_ javaobj("mhash", 100, .8);
run;

See Also
* “Using DATA Step Component Objects” in SAS Language Reference: Concepts

Statements:
+ “DECLARE Statement, Java Object” on page 81

SETtypeFIELD Method

Modifies the value of a non-static field for a Java object.

Category:
Applies to:

Field Reference

Java object

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0f1o4z0kjttssn15qnysjq1mzf3

96 Chapter 3 - Dictionary of Java Object Language Elements

Syntax
object. SETtypeFIELD ("field-name", value);

Arguments

object
specifies the name of a Java object.

fype
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.

Requirement The field name must be enclosed in either single or double quotation
marks.

value
specifies the value for the field.

Details

Once you instantiate a Java object, you can access and modify its public fields through
method calls on the Java object. The SET#ypeFIELD method enables you to modify non-
static fields.

Note: The type argument represents a Java data type. For more information about how
Java data types relate to SAS data types, see “Type Issues” in SAS Language
Reference: Concepts.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

SETSTATICtypeFIELD Method 97

Comparisons

The SET#ypeFIELD method modifies the value of a non-static field for a Java object. To
modify the value of a static field, use the SETSTATIC#peFIELD method.

Example: Creating a Java Class with Non-Static Fields

The following example creates a simple class that contains three non-static fields. The
Java object j is instantiated, the field values are set using the SET#peFIELD method,
and then the field values are retrieved.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttest
{
public int i;
public double d;
public string s;
}
}

/* DATA step code */

data null_;
dcl javaobj j("ttest");
length val 8;
length str $20;
j.setIntField("i", 100) ;
j.setDoubleField("d", 3.14159);
j.setStringField("s", "abc");
j.getIntField("i", wval);

put val=;
j.getDoubleField("d", val);
put val=;
j.getStringField("s", str);
put str=;

run;

The following lines are written to the SAS log:

val=100
val=3.14159
str=abc

See Also

Methods:
* “GETtypeFIELD Method” on page 90
+ “SETSTATICtypeFIELD Method” on page 97

SETSTATICtypeFIELD Method

Modifies the value of a static field for a Java object.

98 Chapter3 -

Category:
Applies to:

Dictionary of Java Object Language Elements

Field Reference

Java object

Syntax
object SETSTATICtpeFIELD ("field-name", value);

Arguments

object
specifies the name of a Java object.

fype
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.

Requirement The field name must be enclosed in either single or double quotation
marks.

value
specifies the value for the field.

Details

Once you instantiate a Java object, you can access and modify its public fields through
method calls on the Java object. The SETSTATICtypeFIELD method enables you to
modify static fields.

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

SETSTATICtypeFIELD Method 99

Note: The type argument represents a Java data type. For more information about how
Java data types relate to SAS data types, see “Type Issues” in SAS Language
Reference: Concepts.

Comparisons

The SETSTATIC#ypeFIELD method modifies the value of a static field for a Java object.
To modify the value of a non-static field, use the SET#ypeFIELD method.

Example: Creating a Java Class with Static Fields

The following example creates a simple class that contains three static fields. The Java
object j is instantiated, the field values are set using the SETSTATICtypeFIELD
method, and then the field values are retrieved.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttestc
{
public static double d;
public static double dm()
{
return d;
}
}

/* DATA step code */

data null_;
dcl javaobj j("ttest");
length val 8;
length str $20;
j.setStaticIntField("i", 100);
j.setStaticDoubleField("d", 3.14159);
j.setStaticStringField("s", "abc");
j.getStaticIntField("i", wval);

put val=;
j.getStaticDoubleField("d", val);
put val=;
j.getStaticStringField("s", str);
put str=;

run;

The following lines are written to the SAS log:

val=100
val=3.14159
str=abc

See Also

Methods:
* “GETSTATICtypeFIELD Method” on page 92
* “SETtypeFIELD Method” on page 95

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n0swy2q7eouj2fn11g1o28q57v4u&anchor=p1eop5jjb9digin1adfp22tmssl0

100 Chapter 3 < Dictionary of Java Object Language Elements

Recommended Reading

101

Here is the recommended reading list for this title:

SAS Data Set Options: Reference

SAS Hash Object Programming Made Easy

SAS Language Reference: Concepts

SAS Logging: Configuration and Programming Reference

SAS Statements: Reference

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books

SAS Campus Drive

Cary, NC 27513-2414

Phone: 1-800-727-0025

Fax: 1-919-677-4444

Email: sasbook@sas.com

Web address: sas.com/store/books

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=69751&id=titlepage
http://www.sas.com/store/books/categories/usage-and-reference/sas-hash-object-programming-made-easy/prodBK_62230_en.html
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lestmtsref&pubcode=69738&id=titlepage
http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

102 Recommended Reading

Index

103

Special Characters
NEW operator 41, 94
declaring and instantiating hash objects
17
hash and hash iterator objects 41
Java object 94

A
ADD method 8
consolidating with CHECK method 54
appender objects 1
attributes 1

C
CALLSTATICtypeMETHOD method 79
CALLtypeMETHOD method 76
CHECK method 9

consolidating with ADD method 54
CLEAR method 11
component objects

See DATA step component objects

See Java objects
constructors 17, 82

D
data set options
loading hash objects with 17, 19
data sets
containing hash object data 48
DATA step component interface 1
DATA step component objects 1
creating instance of 41
declaring 13, 16, 81
dot notation 2
instantiating 13, 81
tips for using 3
DCL statement 13, 81
debugging
exception debug logging 87
DECLARE statement 13, 81
comparisons 17

details 16
hash and hash iterator objects 13
hash object examples 17
Java object 81
DEFINEDATA method 21
DEFINEDONE method 23
DEFINEKEY method 24
DELETE method 26, 83
hash and hash iterator objects 26
java object 83
DO_OVER method 26
dot notation 2
syntax 2

E
EQUALS method 28
EXCEPTIONCHECK method 84
EXCEPTIONCLEAR method 85
EXCEPTIONDESCRIBE method 87
exceptions

checking for 84

clearing 85

debug logging 87

printing information about 87
external files

exception checking when reading 86

F
FIND method 30

FIND NEXT method 32

FIND PREV method 34

FIRST method 35
FLUSHJAVAOUTPUT method 88

G
GETSTATICtypeFIELD method 92
GETtypeFIELD method 90

H
HAS_NEXT method 36

104 Index

HAS PREV method 38 invoking an instance method from a
hash iterator objects 1, 13 static method 79
deleting 26 lockdown 5
hash objects 1, 13 modifying values of non-static fields 95
adding data to 8 modifying values of static fields 97
checking for keys 9 returning values of non-static fields 90
clearing 11 returning values of static fields 92
completion of key and data definitions Java output
23 flushing 88
consolidaitng CHECK and ADD
methods 54
creating instance of DATA step L
component object 41 LAST method 40
data sets containing hash object data 48 lockdown
declaring and instantiating with NEW Java object 5
operator 17 logger objects 1

declaring and instantiating with
DECLARE statement 18

defining data to be stored 21 M
defining key variables 24 method calls
deleting 26 exceptions during 84
determining if specified key is stored in methods 1
30
determining if two are equal 28
determining previous item in list 38 N
first value in underlying object 35 NEXT method 46
instantiating and sizing 18 NUM_ITEMS attribute 47

item size 39
last value in underlying object 40

loading with data set options 17, 19 (o)

next item in data item list 36 operators 1

next value in underlying object 46 output

number of items in 47 flushing Java output 88

previous value in underlying object 53 OUTPUT method 48
removing data 56, 59
replacing data 61, 64
retrieving and storing summary values P
69, 71 PREV method 53
retrieving data items 32, 34
starting key item for iteration 67
hash table size 13 R
REF method 54
REMOVE method 56
| REMOVEDUP method 59
ITEM_SIZE attribute 39 REPLACE method 61
REPLACEDUP method 64
RESET DUP method 66

J

Java objects 1
creating instances of 94 S
declaring 81 SETCUR method 67
deleting 83 SETSTATICtypeFIELD method 97
instantiating 81 SETtypeFIELD method 95
invoking an instance method from a SUM method 69

non-static method 76 SUMDUP method 71

4 ‘
r 4 [

Z
Z

Gain Greater Insight into Your
SAS’Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

@ support.sas.com/bookstore Ssas

Q@O for additional books and resources. THE POWER TO KNOW,

SAE and all other SA5 Institute Ing, product or senice names are registered trademarks or frademarks of SAS Instiute [ne. in the LISA and other countries, & indeates USA registration, Other brand and prodect names:ane
ke of their i panies. £ 2013 SAS Insfitute inc: All rights reserved. B1075690U5 D613

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What’s New in SAS 9.4 Component Objects
	Tracking Key Summaries for Hash Objects
	Iterating over Multiple Keys for Hash Objects
	Lock-Down State Restrictions

	About SAS Component Objects
	DATA Step Component Objects
	The DATA Step Component Interface
	Dot Notation and DATA Step Component Objects
	Definition
	Syntax

	Tips When Using Component Objects

	Dictionary of Hash and Hash Iterator Object Language Elements
	Dictionary
	ADD Method
	CHECK Method
	CLEAR Method
	DECLARE Statement, Hash and Hash Iterator Objects
	DEFINEDATA Method
	DEFINEDONE Method
	DEFINEKEY Method
	DELETE Method, Hash and Hash Iterator Objects
	DO_OVER Method
	EQUALS Method
	FIND Method
	FIND_NEXT Method
	FIND_PREV Method
	FIRST Method
	HAS_NEXT Method
	HAS_PREV Method
	ITEM_SIZE Attribute
	LAST Method
	NEW Operator, Hash and Hash Iterator Objects
	NEXT Method
	NUM_ITEMS Attribute
	OUTPUT Method
	PREV Method
	REF Method
	REMOVE Method
	REMOVEDUP Method
	REPLACE Method
	REPLACEDUP Method
	RESET_DUP Method
	SETCUR Method
	SUM Method
	SUMDUP Method

	Dictionary of Java Object Language Elements
	Java Object Methods by Category
	Dictionary
	CALLtypeMETHOD Method
	CALLSTATICtypeMETHOD
Method
	DECLARE Statement, Java Object
	DELETE Method, Java Object
	EXCEPTIONCHECK Method
	EXCEPTIONCLEAR Method
	EXCEPTIONDESCRIBE Method
	FLUSHJAVAOUTPUT Method
	GETtypeFIELD Method
	GETSTATICtypeFIELD Method
	NEW Operator, Java Object
	SETtypeFIELD Method
	SETSTATICtypeFIELD Method

	Recommended Reading
	Index

