
SAS ® 9.2
Integration Technologies
Directory Services Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Integration Technologies: Directory Services Reference. Cary, NC: SAS Institute
Inc.

SAS® 9.2 Integration Technologies: Directory Services Reference
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-848-5
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009

1st printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Overview of Directory Services 1
What Are Directory Services? 1

What Is the Lightweight Directory Access Protocol (LDAP)? 2

Understanding the Directory Information Tree (DIT) 3

Understanding LDAP Security 5

How Does SAS Implement Directory Services? 6

Chapter 2 � LDAP CALL Routine Interface 7
Overview of the LDAP CALL Routine Interface 7

Dictionary 7

Chapter 3 � LDAP SCL Interface 29
Overview of the LDAP SCL Interface 29

Index 41

iv

1

C H A P T E R

1
Overview of Directory Services

What Are Directory Services? 1
What Is the Lightweight Directory Access Protocol (LDAP)? 2

Understanding the Directory Information Tree (DIT) 3

Directory Structure 3

Directory Entries 3

Searching a Directory Information Tree 4
Understanding LDAP Security 5

Overview of LDAP Security 5

Authentication 5

Access Control 6

How Does SAS Implement Directory Services? 6

What Are Directory Services?
Today’s enterprise computing environments support an extensive array of users and

resources. Frequently, users require access to computing resources from multiple
operating environments across the distributed enterprise. This need for access makes
the administration and tracking of user profiles and resource attributes difficult, if not
completely unmanageable. It is also difficult for applications to access data about
resources that are located on other systems.

Enterprise directory services solves these problems by enabling you to collect
information that describes users, applications, file and print resources, access control,
and other resources into a common directory that is accessible from all users and
applications on the network. This directory, or repository, can be administered in one
place using one interface. SAS Integration Technologies software provides application
interfaces that enable you to develop SAS programs using either the DATA step or SAS
Component Language (SCL) that use directory services. These interfaces enable SAS
distributed application components to share a common application directory with
components that execute in other run-time environments across the distributed
enterprise. This common application directory eliminates the islands of information
that can be created when applications implement their own specialized repositories to
manage resource information.

Additionally, SAS Integration Technologies uses directory services to host all of its
product infrastructure and run-time configuration information. This includes server
and transport bindings, publish/subscribe channel and subscriber profiles, package
archive repositories, and data source locators.

For Version 9 of Integration Technologies, SAS provides the SAS Open Metadata
Architecture. The SAS Open Metadata Architecture provides a central repository for
metadata for the entire enterprise. For the SAS Metadata Server, SAS includes the
SAS Management Console, which enables you to administer the configuration

2 What Is the Lightweight Directory Access Protocol (LDAP)? � Chapter 1

information using a graphical user interface. Because the information is centrally
managed, any additions or changes that you make to the information in the directory
are immediately available to all users and directory-enabled applications. For example,
instead of changing an access control list for a resource on each system that accesses it,
you change the information only once. Each application can use this information to
control access to the resource.

Another type of directory service is the Lightweight Directory Access Protocol (LDAP).
Using this access protocol, applications can search, retrieve, add, delete, and modify
objects in an enterprise directory from anywhere within the distributed environment.

This document provides information on how to incorporate the LDAP directory
services functions into your SAS programs.

What Is the Lightweight Directory Access Protocol (LDAP)?
In 1987 the Comité Consultatif International Téléphonique et Télégraphique (CCITT)

X.500 recommendation on directory services was adopted. The CCITT later became the
International Telecommunications Union (ITU). This recommendation included a
specification for a Directory Access Protocol (DAP) that defined a protocol used to
control communication between a user and the directory. This DAP was based on the
Open Systems Interconnect (OSI) protocol stack.

The X.500 recommendation set the stage for several successful commercial
implementations of directory services. (One early implementation of particular note
was the Novell Directory Services (NDS) first introduced in NetWare Version 4.0.)
However, one of the obstacles to broader acceptance of the X.500 standard was the
reliance of the DAP on the OSI protocol stack. The OSI stack has yet to gain
widespread acceptance by the industry, in part because of its complexity.

To address this issue, the University of Michigan, with support from the Internet
Engineering Task Force (IETF), developed a simpler DAP called the Lightweight
Directory Access Protocol (LDAP). LDAP was developed to provide access to a directory
server without the overhead of the OSI protocol stack. LDAP is based on TCP/IP and is
therefore applicable for use on Local Area Networks (LANs), Wireless Area Networks
(WANs), as well as over the Internet.

LDAP is an open, vendor-neutral standard that enables you to work with any
LDAP-compliant server. LDAP specifies only the interface protocol to the directory and
does not specify how the actual directory is implemented. For example, the Microsoft
Active Directory in Windows 2000 is implemented quite differently than the iPlanet
Directory Server (previously known as the Netscape Directory Server). However,
because they both support an LDAP interface, you can use the same applications to
work with them.

LDAP is supported in most network operating systems and collaborative
applications. LDAP support has also been implemented in most network-oriented
middleware products.

Specific platform support for LDAP access is broad. Client bindings are available for
various platforms in C/C++ from the OpenLDAP and Mozilla organizations as well as
commercial vendors. PERL support is available from Mozilla, and Java support is
provided through Sun Microsystems’ JNDI facility. Support for Windows is provided
through the Active Directory Services Interface (ADSI) and third-party ActiveX controls.

Draft specifications have been developed to extend LDAP by adding a standard
access control model, dynamic directories, server-side sorting of search results, LDAP
server discovery, and other extensions.

Overview of Directory Services � Directory Entries 3

Understanding the Directory Information Tree (DIT)

Directory Structure
A directory is a specialized database that is designed to retrieve information quickly

and securely. It is optimized for read access because the type of information in the
directory is searched often, but changes infrequently. For example, a user name that
you add for a new employee is not likely to change for the entire period of employment.

Information about the services, resources, users, and other objects that are accessible
from the applications is organized as a collection of individual entries that contain
information about each resource. To make accessing these entries as efficient as
possible, they are organized in a hierarchy called the Directory Information Tree (DIT).

The following figure shows an example of a DIT:

The root of the tree is typically a country (C) followed by an organization (O). For
example, in the preceding figure, the root of the tree is o=Alphalite Airways,c=US. One
or more organizational units (OU) typically appear below the root. These are container
objects in that they can contain other directory entries. Directory entries that store
information about a specific resource are referred to as leaf objects and they are added
to the tree under an existing container object.

The path to each entry in the tree is called its distinguished name (DN), and each
DN in the tree is unique. For example, using the DIT in the preceding figure, the DN
for the Airplane Maintenance Department of Alphalite Airways is
ou=Planes,ou=Maintenance,o=Alphalite Airways,c=US.

Directory Entries
A directory entry contains a set of name/value pairs, which are called attributes. An

objectclass attribute is required for each entry in the directory. The object class
determines which attributes are allowed for the entry as well as any attributes that are
required. The set of defined attributes and object classes that defines the content of
acceptable entries within the directory server is called the Directory Schema.

An attribute for a given entry can have multiple values. For example, because an OU
can have multiple values assigned to it, a person might belong to more than one
organization unit. When the DIT is searched, the order in which the attributes are
returned cannot be guaranteed. Therefore, no implicit priority or hierarchy of attribute
values can exist within an entry.

Here is an example of a directory entry for a person in our example airline
enterprise: cn=John Smith,o=Alphalite Airways,c=US

cn=John Smith

4 Searching a Directory Information Tree � Chapter 1

cn=John_Smith
sn=Smith
objectclass=top

objectclass=person
objectclass=salesPerson
l=Chicago
title=Senior Sales Manager
ou=Finance
ou=Marketing

mail=Smith.John@alphaliteairways.com
telephonenumber=312-258-8655
roomnumber=117
uid=jsmith

Searching a Directory Information Tree

Entries in an LDAP directory can be read directly if the exact DN is known. Usually,
however, the directory is searched for entries that match a particular set of
specifications. In order to perform a search, the directory server has to know the
starting place in the tree (called the base), how deep in the tree the user wants to look
(called the scope), and the search criteria (called the filter).

The base can be any DN that is served by the directory server that is being queried.
If the DN is outside the domain of the server, it might return a referral. The referral
has the data that is necessary to connect to another server that might have more
entries that match the filter. The client might decide either to chase (peruse possible
filter matches on the other server) the referral or to ignore it.

A search can also contain a scope. The scope determines how far down in the tree
from the base the search is made. A scope of BASE returns only the base object if it
exists and matches the filter. (The filter is required even with a scope of BASE). A scope
of ONE searches only the base and entries immediately below the base entry. A scope of
SUB searches the entire sub tree starting at the base entry. Limiting the scope of a
search makes it more efficient. If you know that an entry is one level below the base,
then limiting the search to that scope makes the search run faster. If you want to
search all entries that are below the base, search the sub tree.

A scope of BASE is used when you retrieve special entries. For example, most
servers support a special entry with a DN of cn=monitor that returns information about
the state of the server. When you search for that entry, a scope of BASE is required.

The search filter determines which entries below the base are returned. A simple
filter consists of an attribute name, an operator, and a value. The following table
describes the valid search operators.

Table 1.1 LDAP Search Filter Operators

Operator Definition Description Example

= Equality Attribute must exactly
match value.

cn=Jean Smith

=<string>*<string> Substrings Substring attribute must
contain substrings
provided. The asterisk (*)
matches zero or more
characters.

(cn=*Smith,
title=*Manager*)

Overview of Directory Services � Authentication 5

Operator Definition Description Example

>= Greater than or equal to Attribute must be greater
than or equal to value.

age>=30

<= Less than or equal to Attribute must be less than
or equal to value.

roomnumber<=3999

=* Presence matches Entry has attribute of
specified name.

(objectclass=*)

~= Approximate Usually implemented as a
"sounds like" algorithm.
Attribute must be
"approximately equal" to
value.

cn~=Jean Smits

& Boolean AND All filters must be true. (&(sn=Smith)(ou=Reservations))

| Boolean OR Any of the filters might be
true.

(|(manager=cn=Jean
Smith,ou=Reservations,o=Alphalite
Airways,c=US)(ou=Marketing))

! Boolean NOT None of the filters might be
true.

(&(!(ou=Maintenance)(!(ou=Finance))))

Understanding LDAP Security

Overview of LDAP Security
While the intent of the directory is to share much of the information in it across

many applications, it must also be protected in order to prevent unauthorized access to
sensitive data.

Security within the directory is achieved using both authentication and access
control. Authentication identifies a user’s credentials to the directory server. Access
control determines which entries a user is allowed to access based on that identity.
Both of these topics are discussed next.

Authentication
A user establishes a connection to a directory server by performing a bind operation.

Part of the information that is used in performing this operation is the user’s identity
and password. The three basic bind mechanisms are anonymous, simple, and secure.

The most basic bind mechanism is an anonymous bind. Access is granted based on
the user having no identity within the directory. While it is normal to provide read
access to certain entries and attributes for anonymous users, most application data is
protected against retrieval by unknown users.

A simple bind operation is performed when the user provides a DN for an entry
within the directory and a password that goes with that entry. The entry must have a
USERPASSWORD attribute, which is checked against the password provided. If the
bind is successful, the user’s identity becomes that DN for the duration of the
connection and access to entries are based on that identity.

While the simple bind is adequate for most environments, it requires that you send
the password in clear text over the network. Some directory servers implement secure
authentication methods, such as Kerberos or certificate-based authentication like

6 Access Control � Chapter 1

Secure Sockets Layer (SSL). Any authentication method that is used must resolve to a
directory entry in order to permit a comparison with the access control list (ACL). After
authentication, the ACL specifies access controls that are based on the DN for the user.

Access Control
There are as many access control schemes as there are directory servers. The

OpenLDAP server keeps the access control lists in the configuration file and uses
regular expressions for the comparison of ACL targets (what is being secured) and
subjects (who is being allowed access) while iPlanet (previously Netscape) and IBM
keep the access control information in the directory tree as an attribute of the entries.
However, the basic ideas are similar across server implementations. The ACLs can
control access to the entire directory tree, or portions of it, down to the attribute level.
Special access can be granted so that users can access their own DNs. Users might be
allowed access to attributes on their own entry that no one else has access to, such as
the USERPASSWORD attribute. There is usually a default access mode, and the ACLs
are used to override that default. For example, iPlanet directory servers have a default
access of none. If no ACLs are defined on a directory tree, then no users can access the
tree except the directory manager. ACLs can be added to allow access to parts of the
tree or specific entries based on user DN or group membership.

How Does SAS Implement Directory Services?

The SAS implementation of directory services is based on LDAP Version 2.
Integration Technologies versions 8.2 and 9 include support for UTF-8 character
encoding, which means that you can use either an LDAP Version 2 or LDAP Version 3
server.

Integration Technologies software includes two facilities that can be used to add,
modify, delete, and search entries in an LDAP server:

� Chapter 2, “LDAP CALL Routine Interface,” on page 7

� Chapter 3, “LDAP SCL Interface,” on page 29

The LDAP CALL Routine Interface and the LDAP SCL Interface are application
facilities that enable you to use an enterprise directory server from within a SAS
application environment.

These facilities interact with a directory server using either LDAP Version 2 or
Version 3. SAS Integration Technologies supports the following directory servers that
have been tested for use with the product:

� iPlanet Directory Server

� IBM eNetwork LDAP Directory Server

� Microsoft Active Directory.

Active Directory is the Microsoft implementation of directory services that runs on
Windows 2000 Server platforms. While more than a generic LDAP server, it does
support an LDAP interface through the Active Directory Service Interface (ADSI).

While commercial enterprise directory servers are currently recommended, SAS
Institute acknowledges the LDAP open-source initiative. SAS makes executables of the
openLDAP slapd server generally available across a variety of platforms. If your site
has not yet implemented an LDAP-enabled directory, contact your SAS account
representative for deployment options.

7

C H A P T E R

2
LDAP CALL Routine Interface

Overview of the LDAP CALL Routine Interface 7
Dictionary 7

Overview of the LDAP CALL Routine Interface
The LDAP CALL Routine Interface consists of a set of SAS CALL routines that

enable your SAS programs to manipulate LDAP directory entries.
The following are two examples of SAS programs that use the LDAP CALL Routine

Interface to manipulate LDAP server entries:
� “Searching an LDAP Directory” on page 25
� “Adding a Directory Entry to an LDAP Server” on page 24.

For more information about manipulation LDAP directory entries, see Chapter 3,
“LDAP SCL Interface,” on page 29.

Dictionary

LDAPS_ADD

Adds new entries to an LDAP directory

Syntax
CALL LDAPS_ADD(lHandle, entryName, rc, attr, numValues, attrVal1, …attrValN,

<attr, numValues, attrVal1, …attrValN>);

Arguments

lHandle
identifies the connection handle that is returned by a successful LDAPS_OPEN call.
The connection handle identifies the open connection to use when adding entries.

8 LDAPS_ADD � Chapter 2

Type: Numeric
Direction: Input

entryname
names the directory entry that is to be created.
Type: Character
Direction: Input

rc
receives a numeric code that indicates success or failure.
Type: Numeric
Direction: Output

attr
names an attribute for this particular entry.
Type: Character
Direction: Input

numValues
specifies the number of values that are associated with the attr parameter.
Type: Numeric
Direction: Input

attrVal1, … attrValN
specifies one or more attribute values. The number of values is determined by the
numValues parameter.
Type: Numeric or Character
Direction: Input

Details
One or more attributes can be specified. Each attribute name must be followed by the
number of attribute values, then followed by a comma-separated list of one or more
attribute values.

Examples
The following example adds two single-value entries to a distinguished name.

dn = cn=alpair02.unx.com,o=Alphalite Airways,c=US;

attrName = objectclass;
objValue = SASDomain;

attrName2 = node;
nodeValue = oak.unx.com;

CALL LDAPS_ADD(lHandle, dn, rc, attrName, 1, objValue, attrName2, 1, nodeValue);

The following example adds three attributes, one with multiple values.

dn=sasSubscriberCn=JohnSmith,cn=sassubscribers,
sasComponent=sasPublishSubscribe,cn=SAS,o=Alphalite Airways,c=US;

attrName = objectclass;
objValue = sassubscriber;

LDAP CALL Routine Interface � LDAPS_ATTRNAME 9

attrName2 = sasEntryInclusionFilter;
val = gif;
val2 = dataset;
htmlvalue = html;

attrnName3 = sasPersonDN;
val3 = uid=JSmith,ou=people,o=Alphalite Airways,c=us;

CALL LDAPS_ADD(lHandle, dn, rc, attrName, 1, objValue,
attrName2, 3, val, val2, htmlvalue, attrName3, 1, val3);

LDAPS_ATTRNAME

Returns the name and the number of values of an attribute in an LDAP entry

Syntax

CALL LDAPS_ATTRNAME(sHandle, entryIndex, attributeIndex, attributeName,
numValues, rc);

Arguments

sHandle
specifies the search handle that is returned by the LDAPS_SEARCH CALL routine.
The search handle identifies the entry list returned in the search.

Type: Numeric

Direction: Input

entryIndex
specifies the index into the entry list. This index is 1-based.

Type: Numeric

Direction: Input

attributeIndex
specifies the index into the attribute list for the specified entry. This index is 1-based.

Type: Numeric

Direction: Input

attributeName
returns the name of the specified attribute.

Type: Character

Direction: Output

10 LDAPS_ATTRVALUE � Chapter 2

numValues
returns the number of values for the specified attribute.

Type: Numeric

Direction: Output

rc
receives a return code that indicates success or failure.

Type: Numeric

Direction: Output

Example

The following example prints to the SAS log the names and values of all attributes in
all entries in a given LDAP directory.

call ldaps_search(lhandle, sHandle, filter, attribs, numEntries, rc);
do entryIndex = 1 to numEntries;

numAttributes = 0;
entryName=’’;

/* retrieve entry indexed by integer entryIndex */
call ldaps_entry(sHandle, entryIndex, entryName, numAttributes, rc);
put ’Entry name is ’ entryName;
put ’Number of attributes returned is ’ numAttributes;

do attrIndex = 1 to numAttributes;
call LDAPS_ATTRNAME(sHandle, entryIndex, attrIndex,

attribName, numValues, rc);
put ’Attribute name is ’ attribName;
put ’Number of values for this attribute is ’ numValues;

do attrValueIndex = 1 to numValues;
call ldaps_attrvalue(sHandle, entryIndex, attrindex,

attrValueIndex, value, rc);
put Attribute value is value;

end;
end;

end;

LDAPS_ATTRVALUE

Retrieves an attribute value

Syntax

CALL LDAPS_ATTRVALUE(sHandle, entryIndex, attributeIndex, valueIndex, value,
rc);

LDAP CALL Routine Interface � LDAPS_ATTRVALUE 11

Arguments

sHandle
specifies the search handle that is returned by the LDAPS_SEARCH CALL routine.
The search handle identifies the entry list that is returned in the search.
Type: Numeric
Direction: Input

entryIndex
specifies an index into the entry list. This index is 1-based.
Type: Numeric
Direction: Input

attributeIndex
specifies an index into the attribute list for the specified entry.
Type: Numeric
Direction: Input

valueIndex
specifies an index into the list of attribute values.
Type: Numeric
Direction: Input

value
returns the value of the specified attribute.
Type: Character
Direction: Output

rc
receives a return code that indicates success or failure.
Type: Numeric
Direction: Output

Example
The following example prints to the SAS log the names and values of all attributes in
all entries in a given LDAP directory.

call ldaps_search(lhandle, sHandle, filter, attribs, numEntries, rc);
do entryIndex = 1 to numEntries;

numAttributes = 0;
entryName=’’;

/* retrieve entry indexed by integer entryIndex */
call ldaps_entry(sHandle, entryIndex, entryName, numAttributes, rc);
put ’Entry name is ’ entryName;
put ’Number of attributes returned is ’ numAttributes;

do attrIndex = 1 to numAttributes;
call ldaps_attrname(sHandle, entryIndex, attrIndex, attribName,

numValues, rc);
put ’Attribute name is ’ attribName;
put ’Number of values for this attribute is ’ numValues;

12 LDAPS_CLOSE � Chapter 2

do attrValueIndex = 1 to numValues;
value=’’;
call LDAPS_ATTRVALUE

(sHandle, entryIndex, attrindex, attrValueIndex, value,
rc);
put Attribute value is value;

end;
end;

end;

LDAPS_CLOSE

Closes a connection to an LDAP server

Syntax
CALL LDAPS_CLOSE(lHandle, rc);

Arguments

lHandle
specifies the connection handle that is returned by the LDAPS_OPEN CALL routine.
Type: Numeric
Direction: Input

rc
receives a return code that specifies success or failure.
Type: Numeric
Direction: Output

Details
When invoked, the LDAPS_CLOSE CALL routine closes the connection to the LDAP
server. All resources associated with the connection are freed. Therefore, any valid
search handles that are associated with this connection are no longer valid.

Example
The following example closes an open connection to an LDAP server.

call ldaps_close(lHandle, rc);

LDAP CALL Routine Interface � LDAPS_ENTRY 13

LDAPS_DELETE

Deletes an entry from an LDAP directory

Syntax

CALL LDAPS_DELETE(lHandle, entryName, rc);

Arguments

lHandle
specifies the connection handle that is returned by the LDAPS_OPEN CALL routine.

Type: Numeric

Direction: Input

entryName
names the entry that is to be deleted from the LDAP directory.

Type: Character

Direction: Input

rc
receives a return code that indicates success or failure.

Type: Numeric

Direction: Output

Example

The following example deletes an entry from an LDAP directory.

dn = "cn=alpair02.unx.com,o=Alphalite Airways,c=US";
rc=0;
call ldaps_delete(lHandle, entryName, rc);

LDAPS_ENTRY

Retrieves information about a specific entry returned in a search

Syntax

CALL LDAPS_ENTRY(sHandle, entryIndex, entryName, numAttributes, rc);

14 LDAPS_ENTRY � Chapter 2

Arguments

sHandle
specifies the search handle that is returned by the LDAPS_SEARCH CALL routine.
The search handle identifies the entry list that is returned in the search.
Type: Numeric
Direction: Input

entryIndex
specifies the index into the entry list that is returned by the search. This index is
1-based.
Type: Numeric
Direction: Input

entryName
returns the name of the entry.
Type: Character
Direction: Output

numAttributes
returns the total number of attributes for the specified entry.
Type: Numeric
Direction: Output

rc
receives a return code that indicates success or failure.
Type: Numeric
Direction: Output

Example
The following example prints to the SAS log the names and values of all attributes in
all entries in a given LDAP directory.

call ldaps_search(lhandle, sHandle, filter, attribs, numEntries, rc);
do entryIndex = 1 to numEntries;

numAttributes = 0;
entryName=’’;

/* retrieve entry indexed by integer entryIndex */
call LDAPS_ENTRY(sHandle, entryIndex, entryName, numAttributes, rc);
put ’Entry name is ’ entryName;
put ’Number of attributes returned is ’ numAttributes;

do attrIndex = 1 to numAttributes;
call ldaps_attrname(sHandle, entryIndex, attrIndex, attribName,

numValues, rc);
put ’Attribute name is ’ attribName;
put ’Number of values for this attribute is ’ numValues;

do attrValueIndex = 1 to numValues;
call ldaps_attrvalue(sHandle, entryIndex, attrindex, attrValueIndex,

value, rc);

LDAP CALL Routine Interface � LDAPS_MODIFY 15

put Attribute value is value;
end;

end;
end;

LDAPS_FREE

Frees search resources

Syntax
CALL LDAPS_FREE(sHandle, rc);

Arguments

sHandle
specifies the search handle that is returned by the LDAPS_SEARCH CALL routine.
The search handle identifies the entry list that is returned in the search.
Type: Numeric
Direction: Input

rc
receives a return code that indicates success or failure.
Type: Numeric
Direction: Output

Details
When invoked, the LDAPS_FREE CALL routine frees all resources that are associated
with the specified search handle. The resources that are freed include all returned
entry and attribute information, as shown in the following example:

call ldaps_free(sHandle, rc);

LDAPS_MODIFY

Modifies an LDAP directory entry

Syntax
CALL LDAPS_MODIFY(lHandle, entryName, rc, modifyType1, attr1, numValues1 <,

attr1Val1, …attr1ValN> <…, modifyTypeN, attrN, numValuesN<, attrNVal1…,
attrNValN>>);

16 LDAPS_MODIFY � Chapter 2

Arguments

1Handle
specifies the connection handle that is returned by the LDAPS_OPEN CALL routine.
The connection handle identifies the open connection to use when modifying the
LDAP directory entry.
Type: Numeric
Direction: Input

entryname
names the directory entry to be modified.
Type: Character
Direction: Input

rc
receives a return code that indicates success or failure.
Type: Numeric
Direction: Output

modifyType
specifies the type of modification. Valid values are ADD, DELETE, and REPLACE.
Type: Character
Direction: Input

attr
identifies the attribute to be modified.
Type: Character
Direction: Input

numValues
specifies the number of values to be modified for the specified attribute.
Type: Numeric
Direction: Input

attrVal1, …attrValN
specifies zero or more attribute values, the number of which is specified by the
numValues parameter.
Type: Numeric or Character
Direction: Input

Details
Zero or more attributes can be specified.

If the value of the modifyType parameter is DELETE and if the value of the
numValues parameter is 0, then the entire attribute and all of its values are deleted.

If the value of the modifyType parameter is DELETE and if the value of the
numValues parameter is 1 or greater, then only the specified values will be deleted.

If the value of the modifyType parameter is REPLACE, then the existing attribute and
all of its values are deleted and replaced with the specified attribute and its newly
specified values.

Examples
The following example modifies the node associated with a distinguished name.

LDAP CALL Routine Interface � LDAPS_OPEN 17

dn = "cn=alpair02.unx.com,o=Alphalite Airways,c=US";

attrName = "objectclass";
objValue = "SASDomain";

attrName2 = "node";
nodeValue = "oak.unx.com";

CALL LDAPS_MODIFY(lHandle, dn, rc, "ADD", attrName, 1, objValue,
"DELETE", attrName2, 0);

The following example modifies a filter associated with an LDAP entry.

dn="sasSubscriberCn=JohnSmith,cn=sassubscribers,
sasComponent=sasPublishSubscribe,cn=SAS,o=Alphalite Airways,c=US";

attrName = "sasDescription";

attrName2 = "sasEntryInclusionFilter";
val = "gif";
val2 = "dataset";
htmlvalue = "html";

CALL LDAPS_MODIFY(lHandle, dn, rc, "DELETE", attrName, 0, "REPLACE",
attrName2, 3, val, val2, htmlvalue);

LDAPS_OPEN

Opens a connection to an LDAP server

Syntax
CALL LDAPS_OPEN(lHandle, ldapServerName, port, base, bindDN, password, rc,

<options>);

Arguments

lHandle
returns a connection handle that is used in subsequent CALL routines to access the
LDAP server session.
Type: Numeric
Direction: Output

ldapServerName
identifies the LDAP server that is to be connected to. If blank, the value defaults to
the host that issued the CALL routine. Otherwise, the value must be the DNS name
or IP address of a host on which an LDAP server is running.
Type: Character
Direction: Input

18 LDAPS_OPEN � Chapter 2

port
specifies the TCP port of the LDAP server. If the value is zero, then the standard
port of 389 is used.

Type: Numeric

Direction: Input

base
specifies a distinguished name that establishes the base object for the search. The
base object is the point in the LDAP tree at which you want to start searching. If
this value is blank, then the default value is the macro variable or environment
variable LDAP_BASE.

Type: Character

Direction: Input

bindDN
specifies the distinguished name that is used to bind to the server. If this value is
blank, then the macro variable or environment variable LDAP_BINDDN is used as
the bind-distinguished name. If the value "" is specified and the LDAP_BINDDN
variable has not been set, then an unauthenticated bind is performed.

Type: Character

Direction: Input

password
specifies the password that is associated with the bindDN value. If this value is
blank, then the macro variable or environment variable LDAP_BINDPW is used as
the bind-distinguished name. If the value "" is specified and the LDAP_BINDPW
variable has not been set, then an unauthenticated bind is performed. Passwords
that have been encoded by using the PWENCODE procedure can be used to bind to
the server. For more information, see the PWENCODE procedure in Base SAS
Procedures Guide.

Type: Character

Direction: Input

rc
receives a return code that identifies success or failure.

Type: Numeric

Direction: Output

options
specifies one or more session options to use with this bind.

Type: Character

Direction: Input

The following session options are valid:

OPT_REFERRALS_OFF
instructs the server to not chase referrals. Specifying this option overrides the
default value of OPT_REFERRALS_ON.

SUBTREE_SEARCH_SCOPE
sets the scope of the search to include all subtrees. This is the default value.

BASE_SEARCH_SCOPE
sets the scope of the search to include only the base. This value overrides the
default value of SUBTREE_SEARCH_SCOPE.

LDAP CALL Routine Interface � LDAPS_SETOPTIONS 19

ONELEVEL_SEARCH_SCOPE
sets the scope of the search to include the base and one additional level. This
value overrides the default value of SUBTREE_SEARCH_SCOPE.

Note: Specify only one search scope option. If multiple search scope options are
specified, then the one that appears last is used. If none of the search scope options
are specified, then the default value of SUBTREE_SEARCH_SCOPE is used. �

Details
The options that are specified in the LDAPS_OPEN CALL routine include only those
that must be specified when the server connection is first opened. Additional options
can be specified after the connection is opened by using the LDAPS_SETOPTIONS
CALL routine.

Examples
The following example opens a connection to an LDAP server by using an anonymous
bind and default session options.

server="alpair01.unx.com";port=8010;
base="sasComponent=sasPublishSubscribe,cn=SAS,o=Alphalite Airways,c=US";
bindDN="";
Pw="";
call LDAPS_OPEN(lHandle, server, port, base, bindDN, Pw, rc);

The following example opens a connection to an LDAP server, binds to the server,
and passes in a session option of OPT_REFERRALS_OFF. This instructs the LDAP
server not to chase referrals.

server = "alpair02.unx.com";
base = "o=Alphalite Airways,c=US";
bindDN ="cn=John Doe,o=Alphalite Airways,c=us";
bindPW ="myPass1";
option= "OPT_REFERRALS_OFF";
call LDAPS_OPEN(lHandle, server,8001,base,bindDN,bindPW,rc, option);

LDAPS_SETOPTIONS

Sets options on an open LDAP server session

Syntax
CALL LDAPS_SETOPTIONS(lHandle, timeLimit, sizeLimit, base, referral, restart, rc

< , Property, propertyValue>);

20 LDAPS_SETOPTIONS � Chapter 2

Arguments

lHandle
specifies the connection handle that is returned by the LDAPS_OPEN CALL routine.
The connection handle identifies the open connection to use when specifying options
on the LDAP server session.

Type: Numeric

Direction: Input

timeLimit
specifies the maximum number of seconds that the client waits for an answer to a
search request. The value 0 indicates that no limit is imposed. The default value is 0
unless another value is specified. The value -1 specifies that the server retain its
current timeLimit value; the value is not changed.

Type: Numeric

Direction: Input

sizelimit
specifies the maximum number of entries that the server is to return from the
search. The value 0 indicates that no limit should be imposed. The default value is 0
unless another value is specified. The value -1 specifies that the server is to retain
its current sizeLimit setting; the value is not changed.

Type: Numeric

Direction: Input

base
specifies the base object (distinguished name) for the search operation. An initial
base object was specified when the connection to the LDAP server was established
with the LDAPS_OPEN CALL routine. Specifying a non-blank value for the base
parameter overrides the existing base object definition. To retain the existing base
object definition, specify a blank value for the base parameter.

Type: Character

Direction: Input

referral
indicates whether to chase referrals, by setting either the OPT_REFERRALS_ON
option or the OPT_REFERRALS_OFF option. One or the other of these options was
specified when the connection to the LDAP server was established with the
LDAPS_OPEN CALL routine. Specifying either option as the value of the referral
parameter overrides the existing value. Specifying a blank value retains the existing
value.

Type: Character

Direction: Input

restart
indicates whether to restart a query if error condition EINTR occurs. At ldaps_open
time, the default session settings are determined. ldaps_setOptions can be used to
change these defaults. Valid values for restart are OPT_RESTART_ON or
OPT_RESTART_OFF. A blank value can be passed in to indicate that the default
value of OPT_RESTART_OFF should be used.

Type: Character

Direction: Input

LDAP CALL Routine Interface � LDAPS_SETOPTIONS 21

rc
receives a return code that indicates success or failure.

Type: Numeric

Direction: Output

property
specifies the name of an optional property that is being set. Currently, the only
property that is supported is the SEARCH_SCOPE property, which specifies the
scope of searches in the LDAP directory. Specify the value of the property by using
the propertyValue parameter.

Type: Character

Direction: Input

propertyValue
specifies the value for the property parameter.

Type: Character

Direction: Input

The following values for the SEARCH_SCOPE property are valid:

SUBTREE_SEARCH_SCOPE
sets the scope of the search to include all subtrees. This is the default value.

BASE_SEARCH_SCOPE
sets the scope of the search to include only the base. This value overrides the
default value of SUBTREE_SEARCH_SCOPE.

ONELEVEL_SEARCH_SCOPE
sets the scope of the search to include the base and one additional level. This
value overrides the default value of SUBTREE_SEARCH_SCOPE.

Examples
The following example specifies maximum limits on search time and number of entries
returned. This example also specifies that the server is to refrain from chasing
referrals. The existing base object definition is to remain unchanged.

timeLimit=120;
sizeLimit=100;
base=; /* use default set at _open time */
referral = OPT_REFERRALS_OFF;
restart = ;
call ldaps_setOptions(lHandle, timeLimit, sizeLimit, base,

referral, restart, rc);

The following example uses the optional properties parameter to set the scope of
LDAP searches.

timelimit = -1; /* use current setting */
sizelimit = -1; /* use current setting */
base=; /* use default set at _open time */
referral = ; /* use default set at _open time */
restart = ; /* use default */
prop = SEARCH_SCOPE;
propValue = BASE_SEARCH_SCOPE; /* only search the base */
call ldaps_setOptions(lHandle, timelimit, sizelimit, base, referral, restart,

prop, propValue);

22 LDAPS_SEARCH � Chapter 2

LDAPS_SEARCH

Searches and retrieves information from the specified LDAP directory

Syntax
CALL LDAPS_SEARCH(lHandle, sHandle, filter, attributes, numEntries, rc);

Arguments

lHandle
specifies the connection handle that is returned by the LDAPS_OPEN CALL routine.
The connection handle identifies the open connection to use when searching the
LDAP server.

Type: Numeric

Direction: Input

sHandle
returns the search handle that identifies the list of entries returned in the search.
The search handle is used in subsequent CALL routines to access the search results.
The search handle remains valid until it is closed with the LDAPS_FREE or
LDAPS_CLOSE CALL routine.

Type: Numeric

Direction: Output

filter
specifies search criteria that determine that the entries are to be added to the entry
list that is returned by the search.

Type: Numeric

Direction: Input

attributes
specifies the attributes to return along with each entry that matches the search
criteria. If more than one attribute is specified, then the attributes must be
separated by blank spaces, as follows:

attrs = objectclass sasdeliverytransport sasnamevalueinclusionfilter;

Specifying a null string indicates that all available attributes are to be returned, as
follows:

attrs =

Type: Character

Direction: Input

numEntries
returns the total number of result entries found during the search.

Type: Numeric

Direction: Output

LDAP CALL Routine Interface � LDAPS_SEARCH 23

rc
receives a return code that indicates success or failure.
Type: Numeric
Direction: Output

Details
The LDAPS_SEARCH CALL routine selects and retrieves entries from a specified
LDAP directory. A search handle is returned so that information about specific entries
and attributes can be obtained. The search information that is identified by the search
handle can be used until it is explicitly freed using the LDAPS_FREE CALL routine or
until the connection is closed using the LDAPS_CLOSE CALL routine.

Note: For Microsoft Active Directory servers, the maximum number of attributes
that can be returned is limited. You can use a technique called range retrieval to work
around this issue. For more information, see
http://msdn.microsoft.com/en-us/library/aa367017.aspx in the Microsoft
Developer Network library. �

Examples
The following example returns a list of entries on the LDAP server that match the
values of the specified filter. The list of entries returned from the search includes the
values of two attributes for each matching entry.

filter=(&(saschannelcn=DeleteTest)(objectclass=*));
attrs=description objectclass;
rc=0;
numEntries=0;
sHandle=0;
call LDAPS_SEARCH(lhandle, sHandle, filter, attrs, numEntries, rc);

The following example prints to the SAS log the names and values of all attributes in
all entries in a given LDAP directory.

call LDAPS_SEARCH(lhandle, sHandle, filter, attribs, numEntries, rc);
do entryIndex = 1 to numEntries;

numAttributes = 0;
entryName=’’;

/* retrieve entry indexed by integer entryIndex */
call ldaps_entry(sHandle, entryIndex, entryName, numAttributes, rc);
put ’Entry name is ’ entryName;
put ’Number of attributes returned is ’ numAttributes;

do attrIndex = 1 to numAttributes;
call ldaps_attrname

(sHandle,entryIndex, attrIndex, attribName, numValues, rc);

24 LDAPS_SEARCH � Chapter 2

do attrValueIndex = 1 to numValues;
call ldaps_attrvalue

(sHandle, entryIndex, attrindex, attrValueIndex, value, rc);
put Attribute value is value;

end;
end;

end;

Adding a Directory Entry to an LDAP Server The following example uses the LDAP
CALL Routine Interface to add an entry to an LDAP directory.

data _null_;

rc =0; handle=0;
server="alpair.unx.sas.com";
port=8010;
base="sasComponent=sasPublishSubscriber,cn=SAS,o=Alphalite Airways,c=US";
bindDN=""; Pw="";

/* open connection to LDAP server */
call ldaps_open(handle, server, port, base, bindDn, Pw, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put "LDAPS_OPEN call successful.";

/* add the following entry, which has 6 attributes */
entryName="saschannelcn=DeleteTest,cn=saschannels,sasComponent=sasPublishSubscribe,

cn=SAS,o=SAS Institute,c=US";
a1="objectclass";
a1Value="saschannel";
a2="sasSubject";
a2Value="Steph’s channel to test";
a3="description";
a3Value="Entry include/exclude testing";
a4="sasFrequency";
a4Value="bi-monthly";
a5="SASDeliveryTransport";
a5Value="queue";
a5Value2="email";
a5Value3="ftp";
a6="sasSubscriberCn";
a6Value="stephEmail";

/* add entry (including all attributes and attribute values) */
call ldaps_add(handle, entryName, rc, a1, 1, a1Value,

a2, 1, a2Value,
a3, 1, a3Value,
a4, 1, a4Value,
a5, 3, a5Value, a5Value2, a5Value3,
a6, 1, a6Value);

if rc ne 0 then do;
msg = sysmsg();

LDAP CALL Routine Interface � LDAPS_SEARCH 25

put msg;
end;
else

put "LDAPS_ADD call successful.";

/* close connection to LDAP server */
call ldaps_close(handle,rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put "LDAPS_CLOSE call successful.";
run;

quit;

Searching an LDAP Directory The following example uses LDAP call routines to
search an LDAP directory and process the search results.

data _null_;

length entryname $200 attrName $100 value $100 filter $100;

rc =0; handle =0;
server="alpair01.unx.com";
port=8010;
base="sasComponent=sasPublishSubscribe,cn=SAS,o=Alphalite Airways,c=US";
bindDN=""; Pw="";

/* open connection to LDAP server */
call ldaps_open(handle, server, port, base, bindDn, Pw, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put "LDAPS_OPEN call successful.";

shandle=0;
num=0;
filter="(&(saschannelcn=DeleteTest)(objectclass=*))";
attrs="description";

/* search the LDAP directory */
call ldaps_search(handle,shandle,filter, attrs, num, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else do;

put " ";
put "LDAPS_SEARCH call successful.";
put "Num entries returned is " num;
put " ";

end;

26 LDAPS_SEARCH � Chapter 2

do eIndex = 1 to num;
numAttrs=0;
entryname=’’;

/* retrieve each entry name and number of attributes */
call ldaps_entry(shandle, eIndex, entryname, numAttrs, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else do;

put " ";
put "LDAPS_ENTRY call successful.";
put "Num attributes returned is " numAttrs;

end;

/* for each attribute, retrieve name and values */
do aIndex = 1 to numAttrs;

attrName=’’;
numValues=0;
call ldaps_attrName(shandle, eIndex, aIndex, attrName, numValues, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else do;

put " ";
put "Attribute name is " attrName;
put "Num values returned is " numValues;

end;

do vIndex = 1 to numValues;
call ldaps_attrValue(shandle, eIndex, aIndex, vIndex, value, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else do;

put "Value : " value;
end;

end;
end;

end;

/* free search resources */
call ldaps_free(shandle,rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put "LDAPS_FREE call successful.";

LDAP CALL Routine Interface � LDAPS_SEARCH 27

/* close connection to LDAP server */
call ldaps_close(handle,rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put "LDAPS_CLOSE call successful.";
run;

quit;

28

29

C H A P T E R

3
LDAP SCL Interface

Overview of the LDAP SCL Interface 29
_ADD 29

_CLOSE 31

_DELETE 31

_MODIFY 32

_OPEN 33
_SETOPTIONS 36

_SEARCH 38

Overview of the LDAP SCL Interface
The LDAP SAS Component Language (SCL) Interface consists of an SCL class that

is named LDAPSERVICES, which enables you to write SCL programs to manipulate
LDAP directory entries.

The LDAPSERVICES class is included in the Base SAS catalog and is available for
use when you license SAS Integration Technologies software.

For more information about manipulating LDAP directory entries, see Chapter 2,
“LDAP CALL Routine Interface,” on page 7.

_ADD

Adds a new entry to an LDAP directory

Syntax
_ADD(entryName, entry);

30 _ADD � Chapter 3

Arguments

entryName
names the new directory entry.

Type: Character

Direction: Input

entry
specifies the attributes and values of the new directory entry.
Type: SCL list

Direction: Input

Details
When invoked on an LDAPSERVICES instance, the _ADD method adds a new entry to
the specified LDAP directory.

The entry parameter is an SCL list that specifies the attributes of the new directory
entry, as well as the values associated with each attribute. The format of the entry
parameter is a list of lists. Each list contains the attribute name as well as its values
and should have the following format:

Table 3.1 SCL List Format

Item Number Value

1 Character value representing the attribute
name.

2 Numeric or character attribute value.

…

n Numeric or character attribute value.

Example
The following example adds an entry to an LDAP directory by creating three attribute
and value lists, combining the three lists, and using the combined list as the entry
parameter in the _ADD method.

dn = "cn=myhost.pc.com,o=Alphalite Airways,c=US";
entry = makelist();
alist1 = makelist();
rc = insertc(alist1, "objectclass", -1);
rc = insertc(alist1, "SASDomain", -1);

alist2 = makelist();
rc = insertc(alist2, "cn", -1);
rc = insertc(alist2, server, -1);

alist3 = makelist();
rc = insertc(alist3, "node", -1);
rc = insertc(alist3, "oak.unx.com", -1);

rc = insertl(entry, alist1, -1);

LDAP SCL Interface � _DELETE 31

rc = insertl(entry, alist2, -1);
rc = insertl(entry, alist3, -1);

rc = ds._ADD(dn,entry);

rc = dellist(alist1);
rc = dellist(alist2);
rc = dellist(alist3);

_CLOSE

Closes the connection to the LDAP server

Syntax
_CLOSE

Details
When invoked on an LDAPSERVICES instance, the _CLOSE method closes the
connection to the LDAP server, as shown in the following example:

rc = ds._CLOSE();

_DELETE

Deletes an entry in an LDAP directory

Syntax
_DELETE(entryName);

Arguments

entryName
names the directory entry that is to be deleted.
Type: Character
Direction: Input

32 _MODIFY � Chapter 3

Details
When invoked on an LDAPSERVICES instance, the _DELETE method deletes an entry
from the LDAP directory, as shown in the following example:

dn = "cn=myhost.net.com,o=Alphalite Airways,c=US";
rc = ds._DELETE(dn);

_MODIFY

Modifies an LDAP directory entry

Syntax
_MODIFY(entryName, attrs);

Arguments

entryName
names the directory entry that is to be modified.

Type: Character

Direction: Input

attrs

Type: SCL list

Direction: Input

specifies the modify type, attributes, and values that are to be modified in the LDAP
directory entry.

Details
When invoked on an LDAPSERVICES instance, the _MODIFY method modifies the
attributes and attribute values in an LDAP directory entry.

The attrs parameter specifies the attributes and the values in each attribute that are
to be modified. The format of the attrs parameter is a list of lists. Each list contains the
modification type, attribute name, and attribute values, if any. The lists must have the
following format:

Table 3.2 List Format

Item Number Value

1 Character value that represents the type of modification,
which can be ADD, DELETE, or REPLACE.

2 Character value that represents an attribute name.

3 Numeric or character attribute value.

LDAP SCL Interface � _OPEN 33

Item Number Value

…

n Numeric or character attribute value.

If the type of modification is DELETE and if no attribute values are specified, then
the entire attribute and all values are deleted. If DELETE is specified with one or more
attribute values, then only the specified values are deleted.

If the type of modification is REPLACE, then the existing attribute is deleted and is
replaced with the specified attribute and attribute values. You must specify all
attribute values, because all of the existing attribute values are replaced with the
attribute values specified with this method.

Example
The following example modifies three attributes in an LDAP directory entry.

dn = "cn=srvr01.unx.com,o=Alphalite Airways,c=US";
entry = makelist();
alist1 = makelist();
rc = insertc(alist1, "ADD", -1); /* modify type */
rc = insertc(alist1, "sasFrequency", -1); /* attribute name */
rc = insertc(alist1, "monthly", -1); /* attribute value */
rc = insertc(alist1, "weekly", -1); /* attribute value */

alist2 = makelist();
rc = insertc(alist2, "DELETE", -1); /* modify type */
rc = insertc(alist2, "sasNameValueFilter", -1); /* attribute name */

alist3 = makelist();
rc = insertc(alist3, "REPLACE", -1); /* modify type */
rc = insertc(alist3, "sasDeliveryTransport", -1); /* attribute name */
rc = insertc(alist3, "email", -1);

rc = insertl(entry, alist1, -1);
rc = insertl(entry, alist2, -1);
rc = insertl(entry, alist3, -1);

rc = ds._MODIFY(dn,entry);

rc = dellist(alist1);
rc = dellist(alist2);
rc = dellist(alist3);

_OPEN
Opens a connection to an LDAP server

Syntax
_OPEN(ldapServerName, port, base, bindDN, password, <session_options>);

34 _OPEN � Chapter 3

Arguments

ldapServerName
names the LDAP server to connect to. If the ldapServerName parameter is left
blank, the default server name is that of the host that is running the application that
called this method. Otherwise, the value of the ldapServerName parameter must be
the DNS name or IP address of a host on which an LDAP server is running.
Type: Character
Direction: Input

port
specifies the TCP port of the LDAP server. If the value 0 is specified, then the
standard port of 389 is used.
Type: Numeric
Direction: Input

base
specifies the base object for the upcoming search operation. The base object is the
point in the LDAP tree at which you want to start searching. Its value is a
distinguished name. If this value is blank, then the macro variable or environment
variable LDAP_BASE is used for the definition of the base object.
Type: Character
Direction: Input

bindDN
specifies the distinguished name that is used to bind to the server. If this value is
blank, then the macro variable or environment variable LDAP_BINDDN is used as
the bind distinguished name. If the value "" is specified and the LDAP_BINDDN
variable has not been set, then an unauthorized bind is performed.
Type: Character
Direction: Input

password
specifies the password that is used to bind to the server. If this value is blank, then
the macro variable or environment variable LDAP_BINDPW is used as the bind
password. If the value "" is specified and the LDAP_BINDPW variable has not been
set, then an unauthenticated bind is performed. Passwords that have been encoded
by using the PWENCODE procedure can be used to bind to the server. For more
information, see the PWENCODE procedure in Base SAS Procedures Guide.
Type: Character
Direction: Input

session_options
specifies one or more session options to use with this bind.
Type: Character
Direction: Input

Valid session options are as follows:

OPT_REFERRALS_OFF
instructs the server to not chase referrals. Specifying this option overrides the
default value of OPT_REFERRALS_ON.

SUBTREE_SEARCH_SCOPE
sets the scope of the search to include all subtrees. This is the default value.

LDAP SCL Interface � _OPEN 35

BASE_SEARCH_SCOPE
sets the scope of the search to include only the base. This value overrides the
default value of SUBTREE_SEARCH_SCOPE.

ONELEVEL_SEARCH_SCOPE
sets the scope of the search to include the base and one additional level. This
value overrides the default value of SUBTREE_SEARCH_SCOPE.

Note: Specify only one search scope option. If multiple search scope options are
specified, then the one that appears last is used. If none of the search scope options
are specified, then the default value of SUBTREE_SEARCH_SCOPE is used. �

Details

When invoked on an LDAPSERVICES instance, the _OPEN method initializes the
connection to the specified LDAP server.

The %SYSRC macro can be used to check for errors that are returned from the
_OPEN method. Here are the possible error return codes:

_SELDBOS indicates that the specified bind distinguished name is outside the
scope of the directory server.

_SELDNSO indicates that the bind DN does not exist.

_SELDICR indicates that an invalid password was specified.

_SELDDWN indicates that the SAS system was unable to connect to the LDAP
server.

If the return code is not one of these pre-defined system return codes, use the
SYSMSG() function to determine the exact error message. See the examples section for
sample code that shows how to check for these return codes.

Examples

The following example opens a connection to an LDAP server using an anonymous bind
and the default session options. It also shows how to check for error conditions from the
_OPEN method.

dclass = loadclass(’sashelp.base.ldapservices.class’);
ds = instance(dclass);
server = "myhost.net.com";
base = "Alphalite Airways,c=US";
bindDn="";
pw="";
rc = ds._open(server,8001,base,bindDn,pw);
if rc ne 0 then do;

if (rc = %sysrc(_SELDBOS)) then
put ’Bind outside of scope.’;

else if (rc = %sysrc(_SELDNSO)) then
put ’No such object.’;

else if (rc = %sysrc(_SELDICR)) then
put ’Invalid credentials.’;

else if (rc = %sysrc(_SELDDWN)) then
put ’Unable to contact LDAP server.’;

36 _SETOPTIONS � Chapter 3

else do;
msg = sysmsg();
put msg;

end;
end;

The following example opens a connection to an LDAP server, binding as user John
Doe. It passes in a session option of OPT_REFERRALS_OFF; this option instructs the
LDAP server not to chase referrals.

server = "myhost.net.com";
base = "Alphalite Airways,c=US";
bindDN ="cn=John Doe,ou=People,o=Alphalite Airways,c=us";
pw="myPass1";
referral= "OPT_REFERRALS_OFF";
rc = ds._OPEN(server,8001,base,bindDn,pw,referral);

_SETOPTIONS
Sets options on an open LDAP server session

Syntax
_SETOPTIONS(timeLimit, sizeLimit, base, referral, restart, property, propertyValue);

Arguments

timeLimit
specifies the maximum number of seconds that the client is willing to wait for a
response to a search request. The value 0 indicates no time limit. The time limit is
set to 0 by default. The default value is in effect until it is changed. The value -1
indicates that the existing value is to remain unchanged.
Type: Numeric
Direction: Input

sizeLimit
specifies the maximum number of entries to return in a search result. The value 0
indicates no size limit. The size limit is set to 0 by default. The default value
remains in effect until it is changed. The value -1 indicates that the existing value is
to remain unchanged.
Type: Numeric
Direction: Input

base
specifies the base object for the search operation, which must be a distinguished
name. An initial base object was specified when the connection to the LDAP server
was established. Specifying a non-blank value for the base parameter overrides the
existing base object definition. Specifying a blank value retains the existing value.
Type: Character
Direction: Input

LDAP SCL Interface � _SETOPTIONS 37

referral
indicates whether to chase referrals, by setting either the OPT_REFERRALS_ON
option or the OPT_REFERRALS_OFF option. One or the other of these options was
specified when the connection to the LDAP server was established. Specifying either
option as the value of the referral parameter overrides the existing value. Specifying
a blank value retains the existing value.
Type: Character
Direction: Input

restart
indicates whether to restart a query if error condition EINTR occurs. At _open time,
the default session settings are determined. The _SETOPTIONS method can be used
to change these defaults. Valid values for restart are OPT_RESTART_ON or
OPT_RESTART_OFF. A blank value can be passed in to indicate that the default
value of OPT_RESTART_OFF should be used.

Type: Character
Direction: Input

property
specifies the name of an optional property that is being set. Currently, the only
property that is supported is the SEARCH_SCOPE property, which specifies the
scope of searches in the LDAP directory. Specify the value of the property by using
the propertyValue parameter.

Type: Character
Direction: Input

propertyValue
specifies the value for the property parameter. Valid values for the SEARCH_SCOPE
property are as follows:

SUBTREE_SEARCH_SCOPE
sets the scope of the search to include all subtrees. This is the default value.

BASE_SEARCH_SCOPE
sets the scope of the search to include only the base. This value overrides the
default value of SUBTREE_SEARCH_SCOPE.

ONELEVEL_SEARCH_SCOPE
sets the scope of the search to include the base and one additional level. This
value overrides the default value of SUBTREE_SEARCH_SCOPE.

Type: Character
Direction: Input

Details
When invoked on an LDAPSERVICES instance, the _SETOPTIONS method configures
an LDAP session by changing session options. Once changed, these values remain in
effect until they are overridden by a subsequent call.

Examples
The following example sets various session options.

timelimit=120;
sizelimit=100;
base=’’; /* use default set at _open time */

38 _SEARCH � Chapter 3

referral = OPT_REFERRALS_OFF;
restart = ; /* use default */
rc = ds._SETOPTIONS(timelimit, sizelimit, base, referral, restart);

The following example uses the optional properties parameter to set the search scope.

timelimit = -1; /* use current setting */
sizelimit = -1; /* use current setting */
base=’’; /* use default set at _open time */
referral = ; /* use default set at _open time */
restart = ; /* use default */
prop = SEARCH_SCOPE;
propValue = BASE_SEARCH_SCOPE; /* only search the base */
rc = ds._setOptions(timelimit, sizelimit, base, referral, restart, prop, propValue);

_SEARCH

Searches and retrieves information from an LDAP directory

Syntax
_SEARCH(filter, attribs, results);

Arguments

filter
specifies search criteria that determine that the entries are to be added to the entry
list returned by the search.
Type: Character
Direction: Input

attribs
specifies in an SCL list the names of the attributes to be returned in the search
results for each entry that matches the search criteria. The value 0 indicates that all
attributes are to be returned.
Type: SCL list
Direction: Input

results
returns the results of the search.
Type: SCL list
Direction: Output

LDAP SCL Interface � _SEARCH 39

Details
When invoked on an LDAPSERVICES instance, the _SEARCH method allows you to
select and retrieve entries from an LDAP directory.

The content returned in the results parameter is a list of SCL lists containing the
entries, attributes, and values that match the search criteria. Each entry in the entry
list contains a sublist in the following format:

Table 3.3 Entry Contents

Item Type Value

1 Character Distinguished name of an
entry.

2 Numeric Number of attributes and
values in an entry.

3 SCL list Attribute name and values.

… SCL list Attribute name and values.

num_attrs+2 SCL list Attribute name and values.

The SCL list that contains the attribute names and values (see item 3 in Table 3.1)
has the following format:

Table 3.4 SCL List Contents

Item Type Value

1 Character Attribute name

2 Numeric Number of values returned for
this attribute

3 Character Attribute value

... Character Attribute value

num_values+2 Character Attribute value

Note: This method should not be used to retrieve internal attributes from a
Microsoft Active Directory server. �

Examples
For a single LDAP directory entry, the following example returns four attributes and
the values of those attributes.

/* list of attributes to be returned */
attribs = makelist();
rc = insertc(attribs, uid, -1);
rc = insertc(attribs, mail, -1);
rc = insertc(attribs, roomnumber, -1);
rc = insertc(attribs, employeenumber, -1);

r = makelist(); /* results returned in r */
rc = ds._SEARCH(’cn=John Smith’, attribs, r);

40 _SEARCH � Chapter 3

The following example searches an LDAP directory and extracts from the search
results the attribute names and all the values of those attributes.

results=makelist();
rc = dirInst._SEARCH(filter, attribs, results);

total_entries = listlen(results);

do i = 1 to total_entries;
/* each list in results is entry matching criteria */
entry = getiteml(results, i);

/* distinguished name */
dn = getitemc(entry, 1);

/* total number of attributes returned */
attribNum = getitemn(entry, 2);

do k= 3 to (attribNum+2);

/* each attribute is its own list, get first attrib */
attrib = getiteml(entry, k);

/* name of attribute */
attribname = getitemc(attrib,1);

/* number of values */
numValues = getitemn(attrib, 2);

/* retrieve values */
do z = 3 to (numValues + 2);

value = getitemc(attrib, z);
end;

end;
end;

41

Index

A
access control 6
_ADD method 30
anonymous bind 5

LDAP_OPEN CALL routine and 19
_OPEN method and 35

attribute names 9, 38
attributes 3

adding 32
deleting 32
list format 32
maximum number for Active Directory 23
modifying 32
number of values 9
replacing 32
retrieving values 11
SCL list format 30
value lists 30

authentication 5

B
base 4

searching base and one additional level 19, 35
searching only the base 18, 35

base object
establishing with distinguished name 18
specifying 20, 34, 36

BASE_SEARCH_SCOPE property value 37
BASE_SEARCH_SCOPE session option 18, 35
bind operations 5

anonymous bind 5, 19, 35
distinguished name for 18, 34
secure bind 5
session options for 18, 34
simple bind 5

C
character encoding 6
chasing referrals 4, 18, 20, 34
_CLOSE method 31
connection handle 20
connections

closing connections to LDAP servers 12, 31
opening connections to LDAP servers 17, 34

container objects 3

D
DAP (Directory Access Protocol) 2
_DELETE method 31
Directory Access Protocol (DAP) 2
directory entries 3

adding 7, 16, 30
adding to LDAP servers 7, 24
contents of 39
deleting 13, 16, 31
modifying 16, 32
modifying attributes 32
name and number of attribute values 9
replacing 16
retrieving attribute values 11
retrieving information about 14
returned in a search 14
selecting and retrieving 38
size limit for searches 20
time limit for searches 20

Directory Information Tree (DIT) 3
directory entries 3
directory structure 3
example of 3
searching 4

Directory Schema 3
directory servers 6
directory services 1

SAS implementation of 6
directory structure 3
distinguished name (DN) 3

adding directory entries to 8
establishing base object with 18
for bind operations 18, 34
modifying the node associated with 16

DIT
See Directory Information Tree (DIT)

E
encoding 6
error return codes 35

F
filter 4

search filter operators 4
specifying 22, 38

freeing search resources 15

42 Index

I
IBM eNetwork LDAP Directory Server 6
iPlanet Directory Server 6

L
LDAP CALL Routine Interface 6, 7
LDAP directories

searching 22, 25
LDAP (Lightweight Directory Access Protocol) 2
LDAP open-source initiative 6
LDAP SCL Interface 6, 29
LDAP search filter operators 4
LDAP servers 7

adding directory entries to 7, 24
closing connections to 12, 31
connection handle 20
opening connections to 17, 34
searching 7
setting session options 36

LDAPS_ADD CALL routine 7
LDAPS_ATTRNAME CALL routine 9
LDAPS_ATTRVALUE CALL routine 11
LDAPS_CLOSE CALL routine 12
LDAPS_DELETE CALL routine 13
LDAPS_ENTRY CALL routine 14
LDAPSERVICES class 29
LDAPS_FREE CALL routine 15
LDAPS_MODIFY CALL routine 16
LDAPS_OPEN CALL routine 17
LDAPS_SEARCH CALL routine 22
LDAPS_SETOPTIONS CALL routine 20
leaf objects 3
Lightweight Directory Access Protocol (LDAP) 2
list format 32

M
Microsoft Active Directory 6

maximum number of attributes for 23
_SEARCH method and 39

_MODIFY method 32

N
nodes

associated with distinguished name 16

O
object classes 3
ONELEVEL_SEARCH_SCOPE property value 37
ONELEVEL_SEARCH_SCOPE session option 35
Open Metadata Architecture 1
_OPEN method 34

error return codes for 35
open-source initiative 6
Open Systems Interconnect (OSI) protocol stack 2
openLDAP slapd server 6
operators

search filter operators 4
OPT_REFERRALS_OFF option 37
OPT_REFERRALS_OFF session option

LDAPS_OPEN CALL routine 18
_OPEN method 34

OPT_REFERRALS_ON option 37
organizational units (OU) 3
OSI protocol stack 2

P
passwords 5

LDAPS_OPEN CALL routine and 18
_OPEN method and 34

properties, optional 37
property names 21
property values 21, 37

Q
queries, restarting 20, 37

R
referrals 4

chasing 18, 20, 34, 37
restarting queries 20, 37
return codes

_OPEN method 35

S
SAS Management Console 1
SAS Metadata Server 1
SAS Open Metadata Architecture 1
Schema, Directory 3
SCL Interface 6, 29
SCL list format 30
SCL lists 39

contents of 39
SCL programs 29
scope 4

including all subtrees 18, 34
including base and one additional level 19, 35
including base only 18, 35
SEARCH_SCOPE property 37

search filter operators 4
search handle 23
_SEARCH method 38
searches

freeing resources 15
number of entries to return 36
results 38
time limits for 36

searching directory entries 38
base only 18, 35
including all subtrees 18, 34
including base and one additional level 19, 35
retrieving information about returned entries 14
size limit for 20
time limit for 20

searching DITs 4
searching LDAP directories 22

example 25
searching LDAP servers 7
SEARCH_SCOPE property 37

values for 37
secure bind 5
security 5

access control 6
authentication 5

Index 43

_SELDBOS error return code 35
_SELDDWN error return code 35
_SELDICR error return code 35
_SELDNSO error return code 35
server session options 36
servers

See also LDAP servers
directory servers 6
openLDAP slapd server 6
SAS Metadata Server 1

session options
LDAPS_OPEN CALL routine 18
_OPEN method 34, 35
_SETOPTIONS method 36

_SETOPTIONS method 36
simple bind 5
size limit for searches 20
subtrees

including all in search 18, 34
SUBTREE_SEARCH_SCOPE property value 37

SUBTREE_SEARCH_SCOPE session option 18, 34

%SYSRC macro 35

T
TCP port

LDAPS_OPEN CALL routine 18

_OPEN method 34

time limits for searches 20, 36

U
user identity 5

UTF-8 character encoding 6

V
value lists 30

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	Overview of Directory Services
	What Are Directory Services?
	What Is the Lightweight Directory Access Protocol (LDAP)?
	Understanding the Directory Information Tree (DIT)
	Directory Structure
	Directory Entries
	Searching a Directory Information Tree

	Understanding LDAP Security
	Overview of LDAP Security
	Authentication
	Access Control

	How Does SAS Implement Directory Services?

	LDAP CALL Routine Interface
	Overview of the LDAP CALL Routine Interface
	Dictionary

	LDAP SCL Interface
	Overview of the LDAP SCL Interface

	Index

