References

  • Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, New York: Dover Publications.

  • Aiken, R. C. (1985), Stiff Computation, New York: Oxford University Press.

  • Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least Squares,” Journal of the Operations Research Society, 36, 405–421.

  • Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least Squares,” Journal of Optimization Theory and Applications, 48, 359–377.

  • Ansley, C. F. (1979), “An Algorithm for the Exact Likelihood of a Mixed Autoregressive–Moving Average Process,” Biometrika, 66, 59–65.

  • Ansley, C. F. (1980), “Computation of the Theoretical Autocovariance Function for a Vector ARMA Process,” Journal of Statistical Computation and Simulation, 12, 15–24.

  • Ansley, C. F. and Kohn, R. (1986), “A Note on Reparameterizing a Vector Autoregressive Moving Average Model to Enforce Stationary,” Journal of Statistical Computation and Simulation, 24, 99–106.

  • Barnett, V. and Lewis, T. (1978), Outliers in Statistical Data, New York: John Wiley & Sons.

  • Barreto, H. and Maharry, D. (2006), “Least Median of Squares and Regression through the Origin,” Computational Statistics and Data Analysis, 50, 1391–1397.

  • Barrodale, I. and Roberts, F. D. K. (1974), “Algorithm 478: Solution of an Overdetermined System of Equations in the $L_1$-Norm,” Communications of the ACM, 17, 319–320.

  • Bates, D. M., Lindstrom, M. J., Wahba, G., and Yandell, B. S. (1987), “GCVPACK-Routines for Generalized Cross Validation,” Communications in Statistics—Simulation and Computation, 16, 263–297.

  • Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” in F. A. Lootsma, ed., Numerical Methods for Nonlinear Optimization, London: Academic Press.

  • Beaton, A. E. (1964), The Use of Special Matrix Operations in Statistical Calculus, Princeton, NJ: Educational Testing Service.

  • Bickart, T. A. and Picel, Z. (1973), “High Order Stiffly Stable Composite Multistep Methods for Numerical Integration of Stiff Differential Equations,” BIT, 13, 272–286.

  • Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975), Discrete Multivariate Analysis: Theory and Practice, Cambridge, MA: MIT Press.

  • Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, Rev. Edition, San Francisco: Holden-Day.

  • Breiman, L. (1995), “Better Subset Regression Using the Nonnegative Garrote,” Technometrics, 37, 373–384.

  • Brent, R. P. (1973), Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall, chapter 5.

  • Brewer, C. A. (2013), “ColorBrewer 2.0: Color Advice for Cartography,” http://colorbrewer.org/, accessed 2013-06-04.

  • Brockwell, P. J. and Davis, R. A. (1991), Time Series: Theory and Methods, 2nd Edition, New York: Springer-Verlag.

  • Brownlee, K. A. (1965), Statistical Theory and Methodology in Science and Engineering, New York: John Wiley & Sons.

  • Charnes, A., Frome, E. L., and Yu, P. L. (1976), “The Equivalence of Generalized Least Squares and Maximum Likelihood Estimation in the Exponential Family,” Journal of the American Statistical Association, 71, 169–172.

  • Christensen, R. (1997), Log-Linear Models and Logistic Regression, 2nd Edition, New York: Springer-Verlag.

  • Chung, C. F. (1996), “A Generalized Fractionally Integrated ARMA Process,” Journal of Time Series Analysis, 2, 111–140.

  • Cox, D. R. and Hinkley, D. V. (1974), Theoretical Statistics, London: Chapman & Hall.

  • Daubechies, I. (1992), Ten Lectures on Wavelets, Vol. 61, CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia: Society for Industrial and Applied Mathematics.

  • Davies, L. (1992), “The Asymptotics of Rousseeuw’s Minimum Volume Ellipsoid Estimator,” Annals of Statistics, 20, 1828–1843.

  • de Boor, C. (1978), A Practical Guide to Splines, New York: Springer-Verlag.

  • de Jong, P. (1991), “Stable Algorithms for the State Space Model,” Journal of Time Series Analysis, 12, 143–157.

  • Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.

  • Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values,” Journal of Optimization Theory and Applications, 28, 453–482.

  • Devroye, L. (1986), Non-uniform Random Variate Generation, New York: Springer-Verlag.
    URL http://luc.devroye.org/rnbookindex.html

  • Donelson, J. and Hansen, E. (1971), “Cyclic Composite Predictor-Corrector Methods,” SIAM Journal on Numerical Analysis, 8, 137–157.

  • Donoho, D. L. and Johnstone, I. M. (1994), “Ideal Spatial Adaptation via Wavelet Shrinkage,” Biometrika, 81, 425–455.

  • Donoho, D. L. and Johnstone, I. M. (1995), “Adapting to Unknown Smoothness via Wavelet Shrinkage,” Journal of the American Statistical Association, 90, 1200–1224.

  • Duchon, J. (1976), “Fonctions-spline et espérances conditionnelles de champs gaussiens,” Annales scientifiques de l’Université de Clermont-Ferrand 2, Série Mathématique, 14, 19–27.

  • Emerson, P. L. (1968), “Numerical Construction of Orthogonal Polynomials from a General Recurrence Formula,” Biometrics, 24, 695–701.

  • Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified Cholesky Factorization,” ACM Transactions on Mathematical Software, 17, 306–312.

  • Fishman, G. S. (1996), Monte Carlo: Concepts, Algorithms, and Applications, New York: John Wiley & Sons.

  • Fletcher, R. (1987), Practical Methods of Optimization, 2nd Edition, Chichester, UK: John Wiley & Sons.

  • Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,” Journal of Numerical Analysis, 7, 371–389.

  • Forsythe, G. E., Malcom, M. A., and Moler, C. B. (1967), Computer Solution of Linear Algebraic Systems, Englewood Cliffs, NJ: Prentice-Hall, chapter 17.

  • Furnival, G. M. and Wilson, R. W. (1974), “Regression by Leaps and Bounds,” Technometrics, 16, 499–511.

  • Gaffney, P. W. (1984), “A Performance Evaluation of Some FORTRAN Subroutines for the Solution of Stiff Oscillatory Ordinary Differential Equations,” Association for Computing Machinery, Transactions on Mathematical Software, 10, 58–72.

  • Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM Transactions on Mathematical Software, 9, 503–524.

  • Gentle, J. E. (2003), Random Number Generation and Monte Carlo Methods, 2nd Edition, Berlin: Springer-Verlag.

  • Gentleman, W. M. and Sande, G. (1966), “Fast Fourier Transforms for Fun and Profit,” AFIPS Proceedings of the Fall Joint Computer Conference, 19, 563–578.

  • George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

  • Geweke, J. and Porter-Hudak, S. (1983), “The Estimation and Application of Long Memory Time Series Models,” Journal of Time Series Analysis, 4, 221–238.

  • Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1984), “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Transactions on Mathematical Software, 10, 282–298.

  • Golub, G. H. (1969), “Matrix Decompositions and Statistical Calculations,” in R. C. Milton and J. A. Nelder, eds., Statistical Computation, New York: Academic Press.

  • Golub, G. H. and Van Loan, C. F. (1989), Matrix Computations, 2nd Edition, Baltimore: Johns Hopkins University Press.

  • Gonin, R. and Money, A. H. (1989), Nonlinear $L_ p$-Norm Estimation, New York: Marcel Dekker.

  • Goodnight, J. H. (1979), “A Tutorial on the Sweep Operator,” American Statistician, 33, 149–158.

  • Graybill, F. A. (1969), Introduction to Matrices with Applications in Statistics, Belmont, CA: Wadsworth.

  • Grizzle, J. E., Starmer, C. F., and Koch, G. G. (1969), “Analysis of Categorical Data by Linear Models,” Biometrics, 25, 489–504.

  • Hadley, G. (1962), Linear Programming, Reading, MA: Addison-Wesley.

  • Harvey, A. C. (1989), Forecasting, Structural Time Series Models, and the Kalman Filter, Cambridge: Cambridge University Press.

  • Harville, D. A. (1997), Matrix Algebra from a Statistician’s Perspective, New York: Springer-Verlag.

  • Hocking, R. R. (1985), The Analysis of Linear Models, Monterey, CA: Brooks/Cole.

  • Jenkins, M. A. and Traub, J. F. (1970), “A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration,” SIAM Journal on Numerical Analysis, 7, 545–566.

  • Jennrich, R. I. and Moore, R. H. (1975), “Maximum Likelihood Estimation by Means of Nonlinear Least Squares,” American Statistical Association, 1975 Proceedings of the Statistical Computing Section, 57–65.

  • Johnson, M. E. (1987), Multivariate Statistical Simulation, New York: John Wiley & Sons.

  • Kaiser, H. F. and Caffrey, J. (1965), “Alpha Factor Analysis,” Psychometrika, 30, 1–14.

  • Kastenbaum, M. A. and Lamphiear, D. E. (1959), “Calculation of Chi-Square to Test the No Three-Factor Interaction Hypothesis,” Biometrics, 15, 107–122.

  • Kohn, R. and Ansley, C. F. (1982), “A Note on Obtaining the Theoretical Autocovariances of an ARMA Process,” Journal of Statistical Computation and Simulation, 15, 273–283.

  • Korff, F. A., Taback, M. A. M., and Beard, J. H. (1952), “A Coordinated Investigation of a Food Poisoning Outbreak,” Public Health Reports, 67, 909–913.

  • Kotz, S., Balakrishnan, N., and Johnson, N. L. (2000), Continuous Multivariate Distributions, 2nd Edition, New York: Wiley-Interscience.

  • Kotz, S. and Nadarajah, S. (2004), Multivariate t Distributions and Their Applications, Cambridge: Cambridge University Press.

  • Kruskal, J. B. (1964), “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis,” Psychometrika, 29, 1–27.

  • Lee, W. and Gentle, J. E. (1986), “The LAV Procedure,” in SUGI Supplemental Library User’s Guide, 257–260, Cary, NC: SAS Institute Inc.

  • Lewart, C. R. (1973), “Algorithm 463: Algorithms SCALE1, SCALE2, and SCALE3 for Determination of Scales on Computer Generated Plots,” Communications of the ACM, 16, 639–640, available at http://portal.acm.org/citation.cfm?id=362375.362417.

  • Lindström, P. and Wedin, P. A. (1984), “A New Line-Search Algorithm for Nonlinear Least-Squares Problems,” Mathematical Programming, 29, 268–296.

  • Madsen, K. and Nielsen, H. B. (1993), “A Finite Smoothing Algorithm for Linear $L_1$ Estimation,” SIAM Journal on Optimization, 3, 223–235.

  • Mallat, S. (1989), “Multiresolution Approximation and Wavelets,” Transactions of the American Mathematical Society, 315, 69–88.

  • McKean, J. W. and Schrader, R. M. (1987), “Least Absolute Errors Analysis of Variance,” in Y. Dodge, ed., Statistical Data Analysis Based on $L_1$ Norm and Related Methods, 297–305, Amsterdam: North-Holland.

  • McLeod, A. I. (1975), “Derivation of the Theoretical Autocovariance Function of Autoregressive–Moving Average Time Series,” Applied Statistics, 24, 255–256.

  • Mittnik, S. (1990), “Computation of Theoretical Autocovariance Matrices of Multivariate Autoregressive Moving Average Time Series,” Journal of the Royal Statistical Society, Series B, 52, 151–155.

  • Moler, C. B. (2004), Numerical Computing with MATLAB, Natick, MA: MathWorks.
    URL http://www.mathworks.com/moler

  • Moler, C. B. (2011), Experiments with MATLAB, Natick, MA: MathWorks, available as e-book only.
    URL http://www.mathworks.com/moler/exm/chapters.html

  • Monro, D. M. and Branch, J. L. (1977), “Algorithm AS 117: The Chirp Discrete Fourier Transform of General Length,” Journal of the Royal Statistical Society, Series C, 26, 351–361.

  • Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and Theory,” in G. A. Watson, ed., Lecture Notes in Mathematics, volume 30, 105–116, Berlin: Springer-Verlag.

  • Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM Journal on Scientific and Statistical Computing, 4, 553–572.

  • Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,” Journal of the Royal Statistical Society, Series A, 135, 370–384.

  • Nijenhuis, A. and Wilf, H. S. (1978), Combinatorial Algorithms, New York: Academic Press.

  • Nussbaumer, H. J. (1982), Fast Fourier Transform and Convolution Algorithms, 2nd Edition, New York: Springer-Verlag.

  • Ogden, R. T. (1997), Essential Wavelets for Statistical Applications and Data Analysis, Boston: Birkhäuser.

  • Osborne, M. R. (1985), Finite Algorithms in Optimization and Data Analysis, New York: John Wiley & Sons.

  • Pizer, S. M. (1975), Numerical Computing and Mathematical Analysis, Chicago: Science Research Associates.

  • Pocock, S. J. (1977), “Group Sequential Methods in the Design and Analysis of Clinical Trials,” Biometrika, 64, 191–199.

  • Pocock, S. J. (1982), “Interim Analyses for Randomized Clinical Trials: The Group Sequential Approach,” Biometrics, 38, 153–162.

  • Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,” Mathematical Programming, 12, 241–254.

  • Powell, M. J. D. (1978), “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,” in G. A. Watson, ed., Lecture Notes in Mathematics, volume 630, 144–175, Berlin: Springer-Verlag.

  • Powell, M. J. D. (1982), VMCWD: A Fortran Subroutine for Constrained Optimization, Technical Report DAMTP 1982/NA4, Cambridge University.

  • Powell, M. J. D. (1992), “A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation,” DAMTP/NA5.

  • Ralston, A. and Rabinowitz, P. (1978), A First Course in Numerical Analysis, New York: McGraw-Hill.

  • Rao, C. R. and Mitra, S. K. (1971), Generalized Inverse of Matrices and Its Applications, New York: John Wiley & Sons.

  • Reinsch, C. H. (1967), “Smoothing by Spline Functions,” Numerische Mathematik, 10, 177–183.

  • Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, 2nd Edition, New York: Springer-Verlag.

  • Rice, S. O. (1973), “Efficient Evaluation of Integrals of Analytic Functions by the Trapezoidal Rule,” Bell System Technical Journal, 52, 707–722.

  • Rousseeuw, P. J. (1984), “Least Median of Squares Regression,” Journal of the American Statistical Association, 79, 871–880.

  • Rousseeuw, P. J. (1985), “Multivariate Estimation with High Breakdown Point,” in W. Grossmann, G. Pflug, I. Vincze, and W. Wertz, eds., Mathematical Statistics and Applications, 283–297, Dordrecht, Netherlands: Reidel Publishing.

  • Rousseeuw, P. J. and Croux, C. (1993), “Alternatives to the Median Absolute Deviation,” Journal of the American Statistical Association, 88, 1273–1283.

  • Rousseeuw, P. J. and Hubert, M. (1996), “Recent Development in PROGRESS,” Computational Statistics and Data Analysis, 21, 67–85.

  • Rousseeuw, P. J. and Hubert, M. (1997), “Recent Developments in PROGRESS,” $L_1$-Statistical Procedures and Related Topics.

  • Rousseeuw, P. J. and Leroy, A. M. (1987), Robust Regression and Outlier Detection, New York: John Wiley & Sons.

  • Rousseeuw, P. J. and Van Driessen, K. (1998), Computing LTS Regression for Large Data Sets, Technical report, University of Antwerp.

  • Rousseeuw, P. J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum Covariance Determinant Estimator,” Technometrics, 41, 212–223.

  • Rousseeuw, P. J. and Van Zomeren, B. C. (1990), “Unmasking Multivariate Outliers and Leverage Points,” Journal of the American Statistical Association, 85, 633–639.

  • Schatzoff, M., Tsao, R., and Fienberg, S. (1968), “Efficient Calculation of All Possible Regressions,” Technometrics, 10, 769–779.

  • Shampine, L. (1978), “Stability Properties of Adams Codes,” ACM Transactions on Mathematical Software, 4, 323–329.

  • Sikorsky, K. (1982), “Optimal Quadrature Algorithms in $H_ P$ Spaces,” Numerische Mathematik, 39, 405–410.

  • Sikorsky, K. and Stenger, F. (1984), “Optimal Quadratures in $H_ P$ Spaces,” Association for Computing Machinery, Transactions on Mathematical Software, 3, 140–151.

  • Singleton, R. C. (1969), “An Algorithm for Computing the Mixed Radix Fast Fourier Transform,” IEEE Transactions on Audio and Electroacoustics, 17, 93–103.

  • Sowell, F. (1992), “Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models,” Journal of Econometrics, 53, 165–188.

  • Squire, W. (1987), “Comparison of Gauss-Hermite and Midpoint Quadrature with the Application of the Voigt Function,” in P. Keast and G. Fairweather, eds., Numerical Integration: Recent Developments, Dordrecht, Netherlands: Reidel Publishing.

  • Stenger, F. (1973a), “Integration Formulas Based on the Trapezoidal Formula,” Journal of the Institute of Mathematics and Its Applications, 12, 103–114.

  • Stenger, F. (1973b), “Remarks on Integration Formulas Based on the Trapezoidal Formula,” Journal of the Institute of Mathematics and Its Applications, 19, 145–147.

  • Stenger, F. (1978), “Optimal Convergence of Minimum Norm Approximations in $H_ P$,” Numerische Mathematik, 29, 345–362.

  • Stoer, J. and Bulirsch, R. (1980), Introduction to Numerical Analysis, New York: Springer-Verlag.

  • Thisted, R. A. (1988), Elements of Statistical Computing: Numerical Computation, London: Chapman & Hall.

  • Trotter, H. F. (1962), “Algorithm 115: PERM,” Communications of the ACM, 5, 434–435.

  • Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: Society for Industrial and Applied Mathematics.

  • Wang, S. K. and Tsiatis, A. A. (1987), “Approximately Optimal One Parameter Boundaries for Group Sequential Trials,” Biometrics, 43, 193–199.

  • Wilkinson, J. H. and Reinsch, C. (1971), Handbook for Automatic Computation: Linear Algebra, volume 2, New York: Springer-Verlag.

  • Woodfield, T. J. (1988), “Simulating Stationary Gaussian ARMA Time Series,” Computer Science and Statistics: Proceedings of the 20th Symposium on the Interface, 612–617.

  • Young, F. W. (1981), “Quantitative Analysis of Qualitative Data,” Psychometrika, 46, 357–388.