This example shows how an algorithm for computing alpha factor patterns (Kaiser and Caffrey, 1965) could be implemented in the SAS/IML language. This algorithm is similar to that provided by the METHOD=ALPHA option in the FACTOR procedure.
The following statements define a SAS/IML module for computing an alpha factor analysis. The input is a matrix of correlations. The module computes eigenvalues, communalities, and a factor pattern.
proc iml; /* Alpha Factor Analysis */ /* Ref: Kaiser et al., 1965 Psychometrika, pp. 12-13 */ /* Input: r = correlation matrix */ /* Output: m = eigenvalues */ /* h = communalities */ /* f = factor pattern */ start alpha(m, h, f, r); p = ncol(r); q = 0; h = 0; /* initialize */ h2 = I(p) - diag(1/vecdiag(inv(r)));/* smc=sqrd mult corr */ do while(max(abs(h-h2))>.001); /* iterate until converges */ h = h2; hi = diag(sqrt(1/vecdiag(h))); g = hi*(r-I(p))*hi + I(p); call eigen(m,e,g); /* get eigenvalues and vecs */ if q=0 then do; q = sum(m>1); /* number of factors */ iq = 1:q; end; /* index vector */ mm = diag(sqrt(m[iq,])); /* collapse eigvals */ e = e[,iq] ; /* collapse eigvecs */ h2 = h*diag((e*mm) [,##]); /* new communalities */ end; hi = sqrt(h); h = vecdiag(h2); /* communalities as vector */ f = hi*e*mm; /* resulting pattern */ finish;
The following statements call the ALPHA module on a sample correlation matrix. The results are shown in Output 9.4.1.
/* Correlation Matrix from Harmon, Modern Factor Analysis, */ /* Second edition, page 124, "Eight Physical Variables" */ nm = {Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8}; r ={ 1.00 .846 .805 .859 .473 .398 .301 .382 , .846 1.00 .881 .826 .376 .326 .277 .415 , .805 .881 1.00 .801 .380 .319 .237 .345 , .859 .826 .801 1.00 .436 .329 .327 .365 , .473 .376 .380 .436 1.00 .762 .730 .629 , .398 .326 .319 .329 .762 1.00 .583 .577 , .301 .277 .237 .327 .730 .583 1.00 .539 , .382 .415 .345 .365 .629 .577 .539 1.00}; run alpha(Eigenvalues, Communalities, Factors, r); print Eigenvalues, Communalities[rowname=nm], Factors[label="Factor Pattern" rowname=nm];
Output 9.4.1: Alpha Factor Analysis: Results
Eigenvalues |
---|
5.937855 |
2.0621956 |
0.1390178 |
0.0821054 |
0.018097 |
-0.047487 |
-0.09148 |
-0.100304 |
Communalities | |
---|---|
VAR1 | 0.8381205 |
VAR2 | 0.8905717 |
VAR3 | 0.81893 |
VAR4 | 0.8067292 |
VAR5 | 0.8802149 |
VAR6 | 0.6391977 |
VAR7 | 0.5821583 |
VAR8 | 0.4998126 |
Factor Pattern | ||
---|---|---|
VAR1 | 0.813386 | -0.420147 |
VAR2 | 0.8028363 | -0.49601 |
VAR3 | 0.7579087 | -0.494474 |
VAR4 | 0.7874461 | -0.432039 |
VAR5 | 0.8051439 | 0.4816205 |
VAR6 | 0.6804127 | 0.4198051 |
VAR7 | 0.620623 | 0.4438303 |
VAR8 | 0.6449419 | 0.2895902 |