Osas

SAS/IntrNet” 9.2
htmSQL

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/IntrNet”
9.2: htmSQL. Cary, NC: SAS Institute Inc.

SAS/IntrNet” 9.2: htmSQL
Copyright © 2008, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
Ist electronic book, March 2008

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-
3228.

SAS®and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

. About htmSQL

Understanding How htmSOQL Works: The Technical View
htmSOL Input Files

. Syntax for htmSQL Directives

Specifying Vaues for User IDs and Passwords
Automatic Variables

. Formats for Variable Values and Labels

I nvoking htmSQL
Configuring Y our Web Server to Recognize htmSOL Input Files

. A Step-by-Step Guide to Creating an htmSQL Web Page

Tips and Techniques for Using htmSOL
Reguirements

. The htmSQL Configuration File

Defining a Data Source
I nstructions for Invoking dsdef

. Configuring TCP/IP

Getting Started Exercises
retail1.hsgl Sample Input File

. Sample Data Source File

retail2.hsgl Sample Input File

About htmSQL

Users of today's information highway demand up-to-the-minute information that is easy to
access and read. htmSQL meets the challenge by integrating your SAS data with Web interface
technology.

htmSQL isa CGI program that enables you to perform SQL processing from a Web page. You
provide an input file containing SQL statements that are embedded in HTML ; htmSQL
performs updates and queries on your data source and then formats any results. Because
htmSQL uses the Web for information delivery, your users can easily access your SAS data
from anywhere on your network.

With htmSQL, you design the Web page--it can be as ssimple or as sophisticated as you want,
and you can use whatever HTML elements your Web browser supports. Y ou can display the
results of any number of SQL statements on a single page and embed the results anywherein a
page. htmSQL dynamically processes the SQL in response to user requests, ensuring that the
most current SAS data is processed.

htmSQL is available for the UNIX, Windows, and z/OS platforms.

Note: zZ/OS is the successor to the OS/390 and MV S operating systems. SAYIntrNet 9.1 for z/
OS is supported on the MV S, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MV S, unless otherwise stated.

Understanding How htmSQL Works: The
Technical View

htmSQL isa CGI program that is written in the C language and resides on your Web server. It
can process special directives that are embedded in an HTML file. These directives describe
one or more SQL statements and incorporate formatted results into the Web page that is created
by the HTML file.

htmSQL passes your SQL to a SAS/SHARE server, performs the requested updates and
gueries, and retrieves the results sets. The desired page is created dynamically and returned
through the Web server to the Web browser. See the data flow and required componentsin the
following diagram:

SERVER MACHINE A
HTTF
Web /\; - _Web
| ca
htmSQL

SRS 0L Protosal

SERVER MACHINE B

The Web server calls htmSQL each time it receives a URL that specifies the htmSQL program
name. htmSQL supports both the GET and POST CGI methods for sending form data.

htmSQL reads the input file for information that is contained within any of its directives. It
processes this information and returns the results to the Web server. It returnsall HTML
information to the Web server just asit appears in the input file.

The following exampleillustrates a URL for htmSQL.:

http://yourserver/dir/executable file/filenane. hsql ?query_string

2

. yourserver isyour Web server host name (and port, if required).

. di r isthe path of the Web server CGI program directory that contains htmSQL.

. execut abl e_fil eisthehtmSQL program name. For UNIX and z/OS, the program
name is htmSQL . For Windows, the program name is htmSQL .exe.

. filenane. hsql isyour tmSQL input file. Each file can contain multiple SQL
statements and can aso include other input files by reference.

. query_string specifiesvauesfor one or more of the variables that are referenced in
the input file. The variable name and value pairs are separated by ampersands (&) and
are specified using the following format:

var 1=val uel&var 2=val ue2&. .. var N=val ueN

Note: Some Web servers can be configured to recognize an input file by itsfile extension and

to automatically call the appropriate CGI program to process thefile. If your Web server can be
configured this way, you can omit the path to htmSQL when you specify the URL (that is, you
can omit the dir and executable file values). Consult your Web server documentation for
details on whether and how your server can be so configured.

For more information about CGI and CGlI scripting, refer to the Common Gateway Interface
documentation provided by W3C at www.w3.0rg/CGl.

Processing an htmSQL Input File
htmSQL uses a defined set of processing rules to process the information in the input file:

. htmSQL sends all text and characters that are not part of htmSQL (such asHTML tags
and newlineindicators) to st dout exactly asthey occur in thefile. If avariable
reference appearsin this text, tmSQL resolves the reference before sending the text to
st dout .

. htmSQL collects the information that is contained in the SOL section and sends it to the
SAS server as acomplete SQL statement that is to be executed. Each variable reference
that isin the SQL section isresolved to the current value of the variable. htmSQL
ignores newline indicators in the SQL section.

. For SQL queries, htmSQL retrieves arow of the results set and writesit to st dout
according to the information that is included in the eachrow section. Variable references

that correspond to column values are resolved. htmSQL repeats this step for each row in
the results set.
. For SQL statements that perform update functions, htmSQL processes the success

3

section if the return code is zero and the error section if the return code is not equal to
zero.

Note: zZ/OS is the successor to the OS/390 and MV S operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MV S, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also appliesto OS/390 and MV S, unless otherwise stated.

htmSQL Input Files

In order for htmSQL to create your Web page, you must first provide htmSQL with an input
file. Thisfile containsthe HTML and SQL that you want processed.

When someone wants to access your Web page, they pass a URL that contains the name and
location of the input fileto htmSQL. The URL can also contain information used to resolve
variable references that are in the input file.

If you are not familiar with htmSQL, you can follow the link at the bottom of this page to try
the sample exercise that we provide.

General Structure of an htmSQL Input File

Aninput file can contain zero or more of the following elements:

. Variable references. The references can be to columns selected in queries, to variables
specified in the URL, or to variables that htmSOQL automatically defines and supplies
values for. The references are replaced by the current value of the variable.

. complete query sections, delimited by the{ quer y} and{/ query} directive pair.
Each query section contains at least one SQL/eachrow section pair and can contain
multiple pairs. For each SQL section, you can include a norows section.

o The SQL sectionisdelimited by the{ sql } and{/sqgl } directive pair and
specifies how to construct a query that htmSQL sends to a SAS/SHARE server.

o The eachrow section is delimited by the { eachr ow} and {/ eachr ow}
directive pair and describes how to display the results set.

o The norows section is delimited by the { nor ows} and {/ nor ows} directive
pair and contains the steps to take when the previous SQL section does not return
any rows.

. complete update sections, delimited by the{ updat e} and{/ updat e} directive pair.
Each update section contains one or more SQL sections. For each SQL section you can
Include success and error sections.

o The SQL sectionisdelimited by the{sql } and{/sqgl } directive pair and

specifies how to construct an SQL statement that tmSQL sendsto aSAS
SHARE server.

o The success section is delimited by the{ success} and{/ success}

directive pair and contains the steps to take when the SQL is processed with a
return code of zero. The success section can also contain a norows section.

o Theerror sectionisdelimited by the{error} and{/ error} directive pair

and contains the steps to take when the SQL is processed with a nonzero return
code.

. {library} directive. The{l i brary} directive can beincluded in both the query

and update sections and defines a high-level qualifier that you use in the names of tables
and viewsin your SQL queries and statements.

. {l abel} directive. The{l abel } directive enables you to display the label for a
column in aresults set.

. included files. Usethe{i ncl ude} directiveto specify another file for htmSQL to
process before continuing with the current file.

. htmSQL comments. All text contained between { * and aclosing brace } is considered
an htmSQL comment and is not written to st dout .

Everything elsein the input fileiswritten, asis, to st dout . Thisincludes text, HTML, and
newline characters.

For more information about the elements that you can usein an input file, see Syntax for
htmSQL Directives. For step-by-step instructions on creating and using an htmSQL input file,
see A Step-by-Step Guide to Creating an htmSQL Web Page.

For introductory exercisesin using htmSQL, see Getting Started Exercises.

Syntax for htmSQL Directives

htmSQL directives are commands that process SQL statements and results sets for your Web page. For
more information on the structure of htmSQL input files, see htmSQL Input Files.

The following rules apply to all of the directives:

directives are delimited by braces{ }

all htmSQL keywords (directives, parameters, parameter values) are not case sensitive

unless otherwise noted, parameter values can be delimited by either double or single quotation
marks

white space within adirectiveisignored

no line breaks are allowed in the middle of any string that is delimited by quotation marks ().

The following directives and syntax elements are available:

. uer . {error}

. {sql} . variablereference ({ &var nane})

. {eachrow} . {library}

. {norows} . {label}

. {updat e} . {include}

. {success} . comment({* ...})
{query}

Syntax:

{query datasrc="ht nSQL-ds" server="host:port"

userid="id" password="pw' sapw="sapw'} ... {/query}

dat asr c="ht nS5QL- ds"

ht nSQL- ds isaname or avariable reference that identifies an htmSQL data source.

Examples:

{query datasrc="sal es data"}
{query datasrc="{&dsrc}"}

A data source specifies a SAS/SHARE server and the libraries that are avail able through the

7

server. Data sources are defined in data source definition files. To define a data source, use the
dsdef program that is provided with htmSQL.

server ="host: port"
host : port specifiesthe SAS/SHARE server to connect to. You can usetheser ver =
parameter instead of the dat asr c= parameter to specify the SAS/SHARE server. When used
alone, the ser ver = parameter must specify both the host name and the port for the SAS
SHARE server.

You can aso useser ver = together with dat asr c= to override the host and port that are
specified in a data source definition. When used together with the dat asr c= parameter, the
ser ver = parameter can specify the host name, the port, or both for the SAS/'SHARE server. If
you specify only one of these items, you must include a colon (:) to indicate which one you are

specifying.
Note: If any libraries are defined in the data source definition that is specified by the dat asr c=

parameter, then htmSQL attempts to define those same libraries to the server that is specified by
theser ver = parameter.

The host name can be specified as afully qualified domain name or it can be specified in any
shortened form that is sufficient to enable network servicesto identify it.

The port can be specified as a number or as a service name that is defined in the TCP/IP
SERVICESfile.

Userswho are familiar with the SAS syntax for specifying a server name can use aperiod (.)
instead of a colon (:) to separate the host name and port. All of the other syntax rulesfor the
ser ver = option still apply.

The following are examples of valid syntax:

{query server ="kl ondi ke. acme. com 5228"}

{query server="penn. syl vani a: 6500"}

{query server="yukon. sasshr1"}

{query datasrc="finance" server="testsrv:"}

{query datasrc="sal es & Marketing" server=":5010"}

{query dat asrc="al aska" server="yukon: sasshr1"}

Tip: If you are just getting started with htmSQL and do not want to define a data source
definition file, you can usethe ser ver = parameter instead of defining a data source. And, if
you specify a port number instead of a service name for this parameter, you also do not need to

8

add an entry to your TCP/IP SERVICESfile.

useri d="id" (conditionally optional)
I disauser ID for the system that the SAS/SHARE server runs on. If your server isrunningin
secured mode, you must specify auser ID. This can be done by specifying avalue for this
parameter or by specifying auser ID in your data source definition. Y ou do not have to specify
user IDsin both places. If the data source definition contains a user |D, then the user ID that you
specify for this parameter overrides the user ID that is stored in the data source definition.

passwor d="pw" (conditionally optional)
pwis the password for the user ID that is specified intheuser i d= parameter. If your server is
running in secured mode, you must specify a password. This can be done by specifying avalue
for this parameter or by specifying a password in your data source definition. You do not have to
specify passwords in both places. If the data source definition contains a password, then the
password that you specify for this parameter overrides the password that is stored in the data
source definition.

sapw="sapw' (optional)
sapwisthe SASSHARE server access password for users. This must be the same password that
Is specified in

o the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE
server. You must specify apassword if user accessto the server is password protected
and if this password is not already specified in your data source definition.

o the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO
statement.

The password that you specify for this parameter overrides the password that is stored in the data
source definition.

Description: The{ query} and{/ query} directive pair delimits the query section. An input file can
contain multiple query sections. Query sections can be nested within the eachrow and norows sections

of a query section and within the success, error, and norows sections of an update section. Each query
section must contain at least one SQL/eachrow section pair and can contain multiple pairs.

. The SQL sectionisdelimited by the{sqgl } and{/sqgl } directive pair and contains the query
to be sent to the SAS/'SHARE server.

. Theeachrow section isdelimited by the{ eachr ow} and {/ eachr ow} directive pair.
htmSQL applies the details in the eachrow section to the results set that is generated by the SQL
section that immediately precedes that eachrow section. The eachrow section is processed once
for each row in the results set.

A query section can also contain anorows section, a{l i brary} directive, and other text, including

9

HTML and variable references. The text can appear before sections, between sections, and after sections.

The following exampleillustrates a typical query section:

{query dat asrc="data_source_nane"}

{sal}
[SQL query here]
{/sql}
<p>This text is always output.</p>

{nor ows}
[Things to do if no rows are returned]
{/ nor ows}

<p>This text is output only when sone rows are returned. </ p>
{eachr ow}

[HTML formatting here]

{/ eachr ow}

<p>More text that is output only when sonme rows are returned. </ p>

{/query}

{sql}
Syntax: {sql enpty="success"|"error" error="noprint"} ... {/sql}

enpt y="success"|"error" (optional)
The value for enpt y= specifies whether processing transfers to the success section
(enpt y="success") or error section (enpt y="err or") if the SQL section resolvesto an
empty section. The default valueiserr or.

Note: This parameter is used only for SQL sections that are within update sections.
error="noprint" (optional)

Specify er ror =" nopri nt" if you want to suppress error messages that are produced by
htmSQL during SQL processing.

10

Note: If you do not specify this option and your SQL statement contains a SAS data set
password, then you risk exposing the password because htmSQL includes the SQL statement
along with the SQL error message.

Description: The{sql } and{/ sql } directive pair delimits the SQL section. The SQL sectionisa
part of both the query and update sections and contains the SQL statements that are to be sent to the
SAS/SHARE server. You can use any SQL statement that is supported by the SAS SQL processor. You
can have only one SQL statement per SQL section, but you can have multiple SQL sections within both
the query and update sections.

For more information about using SQL statements with SAS data, see the SAS Procedures Guide.

SQL for a Query Section

In a query section, the information between the beginning and ending { sql } directives must begin
with the SELECT keyword and must contain one valid SQL query.

An SQL query can be either static or variable.

. If you want each of your users to use the same query every time they access your Web page,
write a static query. Static queries consist of expressions and clauses that contain constant values
and no variable references.

. With avariable query, the users of your Web page can customize the query by specifying their
own values for search parameters. The query iswritten using variable references that are given
values when users access the Web page.

For example, if your data contains a DATE column, and you want usersto be able to specify
their own dates to search on, you can place a variable reference in the query for DATE. The
following example illustrates this query:

{sal}
sel ect NAVE, TITLE, DEPT from EMPDB. EMPLOYEE
wher e START=' { &DATE}"'

{/sql}
The values that users provide can be specified on the htmSQL URL or collected from an HTML

form that you link them to. If you nest a query in the eachrow section of another query section,
your nested query can refer to variablesin the results set of the encompassing query.

SQL for an Update Section
In an update section, the information between the beginning and ending { sql } directives must begin

with the ALTER, CREATE, DELETE, DROP, INSERT, or UPDATE keyword and must contain one
valid SQL statement.

11

Note: The Webmaster can disable ALTER, CREATE, DELETE, DROP, INSERT, and UPDATE
statements by specifying the READONLY option in the htmSQL configuration file.

The following example SQL sections are placed consecutively in an update section. The first section
creates a data set named def . pl ay, and the second section inserts values into it.

{sal}
create tabl e def.play
(a nuneric, b nuneric, ¢ nuneric, d char, e char);

{/sql}

{saql}
insert into def.play
set a=1, b=2, c¢=3, d='xx', e='"yy';

{/sal}

{eachrow}
Syntax:

{eachrow n="nl1" first="n2" |ast="n3"
cl osequery="yes| no"} ... {/eachrow}

n="nl" (optional)
n1 isthetotal number of rows that you want htmSQL to get. A value of max tells htmSQL to
get al the rowsin the results set. The default value is max.

Note: Then=and | ast = parameters are mutually exclusive. When you specify both of them,
whichever parameter is specified last is the one that is used. For example, if you specify

{eachrow | ast =" 15" n="10"}
then the last row that is retrieved is row 10.

first="n2" (optiona)
n2 isthe number of the first row that you want htmSQL to get. The default valueis 1.

| ast =" n3" (optional)
n3 isthe number of the last row that you want htmSQL to get. A value of max specifies the last
row in the results set. For example, if you specify the following:

12

{eachrow first="20" |ast="nmax"}
you get all but the first nineteen rows in the results set.

Note: Then=and| ast = parameters are mutually exclusive. When you specify both of them,
whichever parameter is specified last is the one that is used. For example, if you specify

{eachrow n="10" | ast="15"}
then the last row that is retrieved is row 15.

cl osequery="yes| no" (optional)
cl osequery="yes" tellshtmSQL to send the SAS/SHARE server a message that causes the
server to terminate query processing when htmSQL finishes processing the eachrow section.
When the SAS/SHARE server terminates query processing, it closes the input tables and frees
the memory associated with this query. If you do not specify this parameter or if you specify
cl osequer y="no", then query processing is not terminated until htmSQL finishes processing
the main input file.

Specify this parameter

o if your htmSQL input file contains more than 64 queries to the same SAS/SHARE server
o if you want to perform aDROP or ALTER TABLE on atable that the query refersto.

Note: If you specify this parameter, then no references to the columns of the results set are
allowed after the eachrow section.

Description: The{eachr ow} and{/ eachr ow} directive pair delimits the eachrow section. The
eachrow section is a part of the query section and contains instructions on how to format the results that
are generated by the SQL section that immediately precedes that eachrow section. The formatting
information is applied to each row of the results set and can include any valid HTML tag and variable
reference. The variable references contained in the eachrow section are resolved for each row of output
asthat row isformatted.

Note: Because htmSQL sendsall HTML information to st dout exactly asit is encountered, eachrow
sections that are enclosed within HTML PRE elements might not format the way that you expect them
to. If your { eachr ow} directiveisfollowed by aline break, htmSQL sends that line break to st dout
and causes the output to appear double-spaced. The following lines

<pre>
{eachr ow}

X { &} Y: {&y}
{/ eachr ow}

</ pre>

13

aresent to st dout (the Web browser) as

<pr e>

X1 Y: A
X 2 Y: B
X 3 Y: C
</ pre>

and the Web browser displays following double-spaced output on the Web page:

X 1 Y: A
X 2 Y: B
X 3 Y: C

Y ou can avoid double-spacing by putting the { eachr ow} directive on the same row as the variables:

<p|’e>

{eachrow} X: {&x} Y: {&y}
{/ eachr ow}

</ pre>

Nested Sections

If you want to submit more SQL statements from within your eachrow section, you can do one of the
following:

. hest one or more SQL sections (with accompanying eachrow and norows sections) in the
eachrow section. All queries are sent to the data source that is specified by the encompassing
{query} directive.

Note that you canalsonest a{ |l i br ary} directive; however, we recommend that you nest
themonly if your {1 i br ary} directive contains variable references that change as the eachrow
section is processed. Otherwise, if the parametersinthe{| i br ar y} directive have static
values, then placethe{ | i br ary} directive before the eachrow section to avoid unnecessary
processing.

. hest acomplete query section in the eachrow section, and use the { quer y} directive to specify
adifferent data source. The SQL, eachrow, and norows sections that are within the nested

14

section will work with data from this new data source.

. nest acomplete update section in the eachrow section to update data from the same data source
or from a different data source.

Note: htmSQL does not limit the number of times that you can nest query sections or SQL /eachrow
section pairs within eachrow sections. However, beyond a certain point, you might experience poor
performance or your system can run out of memory.

{norows}

Syntax: {norows} ... {/norows}

Description: The{ nor ows} and{/ nor ows} directive pair delimits the norows section. The norows
section is a part of the query and success sections. In this section, you include the HTML elements and
htmSQL directives that you want htmSQL to process when the previous SQL section does not return or
update any rows. After processing a norows section in a query section, htmSQL skipsto either the next
SQL section or to the end of the query section, whichever comes first. After processing a norows
section in a success section, htmSQL skips to the end of the success section.

When an SQL section returns or updates at least one row of data, htmSQL ignores the norows section
and continues processing the input file starting with the first line after the norows section.

Nested Sections

If you want to submit more SQL statements from within your norows section, you can do one of the
following:

. nest one or more SQL sections (with accompanying { | i br ary} directive and eachrow,
success, error, and norows sections when necessary) in the norows section. All SQL statements
are sent to the data source that is specified by the encompassing { quer y} or { updat e}
directives.

. hest acomplete query or update section in the norows section. The SQL, eachrow, success, error,
and norows sections that are within the nested section will work with data from the data source
that is specified onthe{ quer y} or { updat e} directive.

Note: htmSQL does not limit the number of times that you can nest sections within norows sections.
However, beyond a certain point, you might experience poor performance or your system can run out of
memory.

15

{update}
Syntax:

{updat e dat asrc="ht nSQ.-ds" server="host: port"
userid="id" password="pw' sapw="sapw'} ... {/update}

dat asr c="ht nSQL- ds"
ht mSQL- ds isaname or avariable reference that identifies an htmSQL data source.

Examples:

{updat e dat asrc="enpl oyee_data"}
{updat e datasrc="{&dsrc}"}

A data source specifies a SAS/SHARE server and the libraries that are avail able through the
server. Data sources are defined in data source definition files. To define a data source, use the

dsdef program that is provided with htmSQL.

server ="host: port"
host : port specifiesthe SAS/SHARE server to connect to. You can usetheser ver =
parameter instead of the dat asr c= parameter to specify the SAS/SHARE server. When used
alone, the ser ver = parameter must specify both the host name and the port for the SAS/
SHARE server.

You can aso useser ver = together with dat asr c= to override the host and port that are
specified in a data source definition. When used together with the dat asr c= parameter, the
ser ver = parameter can specify the host name, the port, or both for the SAS/'SHARE server. If
you specify only one of these items, you must include a colon (:) to indicate which one you are

specifying.

Note: If any libraries are defined in the data source definition that is specified by the dat asr c=
parameter, then htmSQL attempts to define those same libraries to the server that is specified by
theser ver = parameter.

The host name can be specified as afully qualified domain name or it can be specified in any
shortened form that is sufficient to enable network servicesto identify it.

The port can be specified as a number or as a service name that is defined in the TCP/IP
SERVICESfile.

Userswho are familiar with the SAS syntax for specifying a server name can use aperiod (.)
instead of acolon (:) to separate the host name and port. All of the other syntax rules for the

16

ser ver = option still apply.
The following are examples of valid syntax:

{updat e server ="kl ondi ke. acnme. com 5228"}

{updat e server="penn. syl vani a: 6500"}

{updat e server="yukon. sasshr 1"}

{updat e datasrc="finance" server="testsrv:"}

{updat e datasrc="sal es & Marketing" server=":5010"}

{updat e datasrc="al aska" server="yukon: sasshr1"}

Tip: If you are just getting started with htmSQL and do not want to define a data source
definition file, you can use the ser ver = parameter instead of defining a data source. And, if
you specify a port number instead of a service name for this parameter, you also do not need to
configure a TCP/IP SERVICES file for htmSQL.

useri d="i d" (conditionally optional)
I disauser ID for the system that the SAS/SHARE server runs on. If your server isrunning in
secured mode, you must specify auser ID. This can be done by specifying avalue for this
parameter or by specifying auser ID in your data source definition. Y ou do not have to specify
user IDs in both places. If the data source definition contains a user 1D, then the user 1D that you
specify for this parameter overrides the user ID that is stored in the data source definition.

passwor d="pw" (conditionally optional)
pwis the password for the user ID that is specified intheuser i d= parameter. If your server is
running in secured mode, you must specify a password. This can be done by specifying avalue

for this parameter or by specifying a password in your data source definition. You do not have to

specify passwords in both places. If the data source definition contains a password, then the
password that you specify for this parameter overrides the password that is stored in the data
source definition.

sapw="sapw' (optional)
sapwisthe SASSHARE server access password for users. This must be the same password that
Is specified in

o the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE
server. You must specify apassword if user accessto the server is password protected
and if this password is not already specified in your data source definition.

o the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO
Statement.

17

The password that you specify for this parameter overrides the password that is stored in the data
source definition.

Description: The{ updat e} and{/ updat e} directive pair delimits the update section. Aninput file
can contain multiple update sections. Update sections can be nested within the success, norows, and

error sections of an update section and within the eachrow and norows sections of a query section. Each
update section must contain at least one SQL section and can contain multiple sections. The update
section can also contain a success section and an error section.

. The SQL sectionisdelimited by the{sqgl } and{/sqgl } directive pair and contains the SQL
statement that isto be sent to the SAS/SHARE server. The allowed SQL statements are ALTER,
CREATE, DELETE, DROP, INSERT, and UPDATE.

Note: The Webmaster can disable these SQL statements by specifying the READONLY option in

the htmSQL configuration file.
. The success section isdelimited by the { success} and {/ success} directive pair and

contains instructions on what to do if the SQL statement returns with areturn code of zero. The
success section can contain a norows section for instances where no rows are updated.

. Theerror sectionisdelimited by the{error} and{/error} directivepair and contains
instructions on what to do if the SQL statement returns with areturn code that is not equal to
zero.

An update section can also containa{l i br ary} directive and other text, including HTML and
variable references. The text can appear before sections, between sections, and after the sections.

The following exampleillustrates atypical update section:

{updat e datasrc="data_source_nane"}

{sal}
[SQL statenent here]

{/sal}

{success}
[Things to do if the return code is 0]
{nor ows}
[Things to do if no rows are returned]

{/ nor ows}
{/ success}

{error}
[Things to do if the return code is not 0]

18

{lerror}

{/ updat e}

{success}

Syntax: {success} ... {/success}

Description: The{success} and{/ success} directive pair delimits the success section. The
success section is a part of the update section. In this section, you include the HTML elements and
htmSQL directives that you want htmSQL to process when the previous SQL section completes with a
return code of zero.

When an SQL section returns with areturn code that is not equal to zero, htmSQL ignores the success
section.

The success section can include a norows section for instances where no rows are updated.

Nested Sections

If you want to submit more SQL statements from within your success section, you can do one of the
following:

. hest one or more SQL sections (with accompanying {| i br ar y} directive and success, error,
and norows sections when necessary) in the success section. All SQL statements are sent to the
data source that is specified by the encompassing { updat e} directive.

. hest acomplete update section in the success section, and use the { updat e} directiveto
specify adifferent data source. The SQL, success, error, and norows sections that are within the
nested section will work with data from this new data source.

. nest acomplete query section in the success section to query data from the same data source or
from a different data source.

Note: htmSQL does not limit the number of times that you can nest sections within success sections.
However, beyond a certain point, you might experience poor performance or your system can run out of
memory.

{error}

19

Syntax: {error} ... {/error}

Description: The{error} and{/ error} directive pair delimitsthe error section. The error section
isapart of the update section. In this section, you include the HTML elements and htmSQL directives
that you want htmSQL to process when the previous SQL section completes with a nonzero return code.

When an SQL section returns with areturn code of zero, htmSQL ignores the error section.
Nested Sections

If you want to submit more SQL statements from within your error section, you can do one of the
following:

. hest one or more SQL sections (with accompanying {| i br ar y} directive and success, error,
and norows sections when necessary) in the error section. All SQL statements are sent to the data
source that is specified by the encompassing { updat e} directive.

. hest acomplete update section in the error section, and use the { updat e} directiveto specify a
different data source. The SQL, success, error, and norows sections that are within the nested
section will work with data from this new data source.

. hest acomplete query section in the error section to query data from the same data source or
from a different data source.

Note: htmSQL does not limit the number of times that you can nest sections within error sections.
However, beyond a certain point, you might experience poor performance or your system can run out of
memory.

Variable Reference

Syntax:

{ & arnane format=formats before="stringl"
bet ween="string2" after="string3"}

&var name
var name isthe name of the variable. If the variable you want to reference was specified in the
URL with more than one value, you can use the following syntax to reference a single specific
value, arange of values, or all values:

20

&var nane[n] references the nth value that the variable contains where n>=1.

&var name[m . n] | referencesall valuesfrom the nth value to the nth value where
nk=1<n and the variable contains two or more values.

&var nanme[*] references al values that the variable contains.

In the first two instances above, mand n can be references to numeric variables.

format =f ormat s
f or mat s isasingle formatting option (f or mat =val ue) or acomma-delimited list of options
enclosed in parentheses (f or mat =(val ue, . .., val ueN)). Do not use quotation marks to
delimit the values. Thisis an optional parameter. See Formats for Variable Vaues and Labelsfor

alist of formatting options.

bef ore="stringl"

bet ween="stri ng2"

after="string3"
These parameters enable you to output strings of characters before, between, and after variable
values.

Y ou can use an unlimited number of charactersin your strings (note that the maximum number
of characters that you can use depends on how much memory your system has). If you want to
include double quotation marks within your string, then delimit the string with single quotation
marks or use two double quotations marks within your string. For example, both of the following
values will return the string " How are you?".

bet ween='"How are you?"'
bet ween="""How are you?"""

To include single quotation marks within your string, delimit the string with double quotation
marks or use two single quotation marks within your string. For example, both of the following
values will return the stringWhat ' s up?.

bef ore="Wat's up?”
before="VWat''s up?

The default value for bef or e=isanull string ("").
The default value for bet ween= isablank space (").
The default value for af t er = isanull string (*").

Description: A variable reference is astring that htmSQL replaces with the value of avariable.
Variables are symbols that are defined on the URL, columns that are selected by a query, or symbols

that htmSQL automatically defines and supplies values for.

21

When htmSQL encounters a variable reference, it replaces the reference with the current value of the
variable. If the reference isto a column in aresults set and

. thevariable reference occurs before the SQL section, then the variable is undefined and cannot
be resolved. The variable reference iswritten to st dout unresolved.

. thevariable reference occurs between the SQL section and the eachrow section, then htmSQL
replaces the variable reference with the variable's value from the first row of the results set.

. thevariable reference occurs within an eachrow section, then htmSQL replaces the variable
reference with the current row's value for the variable.

. thevariable reference occurs after the eachrow section, then htmSQL replaces the variable
reference with the variable's value from the last row of the results set.

Resolution of Nested Variable References

htmSQL also supports the resolution of nested variable references. That is, the value of avariable can
itself be avariable that htmSQL can resolve. For example, if you have avariable namedt axi , and the
valueof t axi isthevariable namedri ver,

{&axi} ----- > driver
and thevalueof dri ver isBob,

{&driver} ----- > Bob
then, when you specify { & &t axi } } , htmSQL resolves the nested references to a value of Bob.

{& &t axi}} ----- > Bob

htmSQL can resolve an infinite number of these nested variable references.
Examples
The following are examples of variable references:

{ &rynane}

{ &eekdays[1..7]}

{& hewor | d[*]}

{&arrayl[{&counter}]}

{&array?2[{&begi n}..{&end}]}

{&months[1..12] before="(" between="," after=")"}

22

{&{ & ar nane}}
{&{ &sys. col nane[*] } }

{library}

Syntax: {l i brary sql nane="tabl e-qualifier" path="1ibrary-path"}
Note: Thekeyword | i bname isasynonymfor | i brary.

sql name="t abl e-qual i fier"
t abl e- qual i fi er isthehigh-level qualifier you use in your SQL for the names of tables
and views that reside in this SAS data library. This qualifier corresponds to the libref in a SAS
program.

Y ou can use the keyword | i br ef asasynonym for sql nane.

pat h="11i brary-path"
| i br ary- pat h isthe pathname of the SAS datalibrary.

Description: The{l i br ary} directive can beincluded in both the query and update sections and
defines ahigh-level qualifier that you use in the names of tables and views in your SQL queries and
statements. Use this directive when the SAS library that contains the tables and views that you want to
accessis

. hot predefined to the SAS/SHARE server through which the library is accessed and
. not defined as part of a data source that specifies that server.

Notes:

. When you specify avaluefor sgl nane (or | i br ef), you can use that high-level qualifier for
any update or query section that specifies the same valuesfor thedat asr c=and ser ver =
parameters.

. You can also specify the same high-level qualifier for two different librariesif they are on
different servers. If you specify the same high-level qualifier for two libraries that are on the
same server, then the second value overrides the first one.

{label}

Syntax:
23

{l abel var="varnanel varnane2 ... varnanmeN' format=formats
bef ore="stringl" between="string2" after="string3"}

var ="varnanel varnane2 ... varnaneN'
varnanel varname2 ... varnaneN arethe names of variables whose labels you want
to display. Y ou can specify one or more variable names; separate the variable names with single
spaces.

Y ou can aso use avariable reference for avaue. For example,

var =" { &yl abel }"
var =" { &sys. col nane[*] }"

format =f ormat s
f or mat s isasingle formatting option (f or mat =val ue) or acomma-delimited list of options
enclosed in parentheses (f or mat =(val ue, .. ., val ueN)). Do not use quotation marks to
delimit the values. Thisis an optional parameter. See Formats for Variable Vaues and Labels for

alist of formatting options.

bef ore="stringl"
bet ween="stri ng2"
after="string3"
These parameters enable you to output strings of characters before, between, and after labels.

Y ou can use an unlimited number of charactersin your strings (note that the maximum number
of charactersthat you can use depends on how much memory your system has). The only
character that is not allowed is the double quotation mark (*). If you want to include double
quotation marks within your string, then delimit the string with single quotation marks or use
two double quotations marks within your string. For example, both of the following values will
return the string " How are you?".

bet ween='"How are you?"'
bet ween="""How are you?"""

To include single quotation marks within your string, delimit the string with double quotation
marks or use two single quotation marks within your string. For example, both of the following
valueswill return the string What ' s up?.

bef ore="Wat's up?”
bef ore="What''s up?

The default value for bef or e=isanull string ("").
The default value for bet ween=isablank space (").
The default value for af t er = isanull string ("").

24

Description: The{| abel } directive enablesyou to display the label for avariable that isin aresults
set. The label is either returned from the data set or set in the SQL statement. If you want to display the
label using a particular format, you can specify thef or mat = parameter.

{include}
Syntax:

{include fil e="web-server-host - pat hnane"
var s="var l=val uel&var 2=val ue2& .. "}

file="web-server-host-pat hnane"
web- server - host - pat hnane isthe pathname (either absolute or relative) for afilethat is
to be processed as an htmSQL input file. If the pathname isrelative, then it isrelative to either
the current working directory for htmSQL or to the path of the calling input file--see your setting
for the RELATI VE run-time configuration option.

Y ou can use a variable reference to specify the filename. For example:

{include file="/dept/web/{&proj}.hsql"}

Note: Thevauefor thef i | e= parameter must be a physical pathname on the Web server
machine. It isnot aURL.

var s="var 1l=val uel&var 2=val ue2&. .."
var 1=val uel&var 2=val ue2&. . . isoneor more variable name and value pairs that the
included input file requires.

The variables that you specify exist in the scope of the included file. This scoping is done so that
avariable that is set by both the input file and the included file can retain separate values for
each file. When htmSQL finishes processing the included file and returnsto the calling input
file, the value of the variable is restored to the value that it had before the included file was
called. If avariableis only defined for the included file, then you cannot access it after htmSQL
returns to the calling file.

The following example uses an input file named emps.hsgl that requires values for the variables
name and st at us:

{include file="enps. hsql" vars="nanme={&enp} &st at us=EXEMPT" }

Note from the example that you can use one or more variable references (such as{ &enp}) in

25

thevaluefor thevar s parameter.
Description: The{i ncl ude} directive enablesyou to include other HTML filesinto the current file.
The included file can be asimple HTML file or another htmSQL input file. If it isan htmSQL input file,
then it must be complete; it cannot contain a partial query or update section.

The{i ncl ude} directive cannot appear inside any other htmSQL directive section.

Comment

Syntax: {* your conments here}

Description: All text contained between { * and the closing brace} isconsidered an htmSQL comment
and is not written to st dout . Y ou can comment out single directives or entire sections with one pair of
comment braces. The following example shows an entire query section that is commented out:

{*
{query datasrc="enpl oyee"}
{saql}
sel ect * from enpdb. enpl oyee
{/sql}
{eachr ow}
| ast nanme: {& nane} firstnanme: {&f nane}
{/ eachr ow}
{/ query}
}

Note: HTML comments are considered text and are written to st dout along with the other text in the
input file.

26

Specifying Values for User IDs and Passwords

Y ou can specify values for theuser i d= and passwor d= parametersin any of three ways.
1. Hard-code the values.

2. Collect the password or user 1D through an HTML form. The value is passed to htmSQL along with the
CGil request for your input file. Y ou specify the password or user ID by using a variable reference as the

value of this parameter. The following example illustrates the use of variable references as the values of
theuser i d= and passwor d= parameters.

{updat e dat asrc="enpl oyeel" userid="{&userid}" password="{&password}"}

3. Inthe htmSQL input file, perform a query that retrieves the user 1D or password from a user 1D/password
data set. In subsequent query and update sections, you can use a variable reference to refer to the value in

either auser i d= or passwor d= parameter (see previous example).

Thefirst of these three methods is not very secure; the second method is secure only if you are using secure
sockets or secure HTTP; the third method is fairly secure and, if your Web server supports client authentication,
can be used to supply adifferent user ID and password for each user.

27

Automatic Variables

htmSQL automatically defines a number of variables that contain htmSQL processing
information. The following sections list the variables and examples of variable values and

usage:

. Date and time variables
. SOL-related variables
. Miscellaneous variables

htmSQL also provides a sample input file named autovars.hsgl that lists values for many of the
automatic variables.

Date and Time Variables

The format of the date and time variable information is determined by the LC_TIME and
LANG environment variables and according to the NL S installation on your Web server
machine.

Variable Name Description Example Value
sys.ampm the time of day before or after noon (AM PM

or PM)
sys.date the current date in ddMmmyy or

ddMmmyyyy format (depending on the
value of the YEARDI G TS run-time

configuration option)

04Apr2000

sys.datetime the current date in ddMmmyy hh:mm:ss
TZ or ddMmmyyyy hh:mm:ss TZ format

(depending on the value of the 04Apr2000 16:30:52 EDT -
YEARDI G TS run-time configuration

option)

sys.fulldate the current date, including the weekday

and date Friday, April 04, 1997

28

sys.fulldatetime |the current date, including the weekday, |Friday, April 04, 1997 04:30:52
date, time, and time zone PM EDT -
sys.month the month of the year September
sys.month3 the month of the year (abbreviated) Sep
sys.monthday |the day of the month 05
sys.monthnum |the mqnth of the year expressed 09
numerically
sys.seconds the second of the minute 47
sys.time the time of day using a 12-hour clock 3:36
sys.time24 the time of day using a 24-hour clock 15:36
sys.tz the time zone EDT -
sys.weekday the day of the week Saturday
sys.weekday3 |the day of the week (abbreviated) Sat
sys.year the calendar year 1997
sys.year2 the last two digits of the calendar year 97

"For the Windows platforms, the value for the time zone is not abbreviated (for example,
Eastern Daylight Time).

SQL-Related Variables

Thefollowing list contains variables for information that is related to an SQL statement:

sys.colname

The column names in aresults set. Use the following syntax to reference asingle
specific value, arange of values, or all values:

&sys. col nane[n]

where n>=1.

references the nth column name in the results set

&sys. col nane[m . n]

references all column names from the nth value to the
nth value where nk=1<n and the results set contains
two or more columns.

&sys. col nange[*]

references all the column names in the results set.

29

For example, for the following SQL statement,
{sql }sel ect * from enpl oyee. nanes{/sql }

the selected columnsarefi r st , m ddl e, and| ast . The following are some example
references and their resolved values:

{&sys. col nane[1]} ----- > first

{&sys.colnane[2..3]} ----- > m ddl e | ast

{&sys. col nane[*]} ----- > first mddle | ast
sys.grow

The number of the current row in the results set. The following example shows how to
include the SY S.QROW variable in an eachrow section:

{eachr ow}
{&sys.grow} {& astnane} {&firstnane} {&m ddleinit}
{/ eachr ow}

Each row that is output would contain the number of the row and the three values that
correspond to the other three variable references. The output might look something like

the following:
1 Doe John D.
2 Doe Jane R
3 Doe Sam E.
sys.query
The last SQL query that is processed. All the characters in the query are included except
for

o newline characters
o leading blank spaces that are before the SELECT keyword.

sys.updrows

sys.updcount
The number of rows that are inserted, deleted, or updated by the last INSERT,
DELETE, or UPDATE statement.

sys.updrc
The return code from the last INSERT, DELETE, or UPDATE statement.

30

Miscellaneous Variables

Variable Name Description Example Value
sys.dirurl the URL directory path (with no filename) :

for the top-level input file /myfiles
sys.filetime the date and time of the last modification Monday, May 05, 1997

of the current input file 02:05:45 PM EDT :
sys.fileurl]Eir:i URL pathname for the top-level input Imyfilesimyinput.hsg
sys.url the URL for invoking htmSQL (not L

including the pathname of the input file) fegi-bin/htmSQL
sys.version the version number for htmSQL 2.0

"For the Windows platforms, the value for the time zone is not abbreviated (for example,
Eastern Daylight Time).

31

Formats for Variable Values and Labels

htmSQL supports formats in two different ways:

by providing the f or mat = parameter which enables you to explicitly specify aformat
with variable references and directives.

. by using the format that is associated with the data set column.

Specified Formats

The following values can be used for the f or mat = parameter of htmSQL variable references
and directives:

comma

formats numeric values using commas to separate every three digits. When you specify
aformat of w.d with the comma format, you must specify either a0 or 2 for the value of

d (the number of decimal placesto the right of the decimal character). If you specify any
other value for d, then d defaultsto avalue of 2. When d is equal to 2, htmSQL outputs
adecimal point followed by two fraction digits.

The following is an example of how to use this format:

{&bc format=(conmm, 10.2)}

commax

dollar

formats numeric values using periods to separate every three digits. When you specify a
format of w.d with the commax format, you must specify either a0 or 2 for the value of

d (the number of decimal placesto the right of the decimal character). If you specify any
other value for d, then d defaults to avalue of 2. When d is equal to 2, the htmSQL
outputs a comma followed by two fraction digits.

The following is an example of how to use this format:

{ &abcx format=(commax, 10.2)}

32

formats numeric values using aleading dollar sign ($) or currency symbol and using
commas to separate every three digits. If you specify aformat of w.d with the dollar
format, and you specify anonzero value for d (the number of decimal places to the right
of the decimal character), then htmSQL outputs a decimal point followed by two
fraction digits.

The following are examples of how to use this format:

{&abc format=(dollar, 15.2)}
{ &abc format=dol | ar}

dollar x

exp

hex

formats numeric values using aleading dollar sign ($) or currency symbol and using
periods to separate every three digits. If you specify aformat of w.d with the dollarx

format, and you specify anonzero value for d (the number of decimal places to the right
of the decimal character), then htmSQL outputs a comma followed by two fraction
digits.

The following are examples of how to use this format:

{&abcx format=(dollarx, 15.2)}
{ &abc format =dol | ar x}

formats numeric values in scientific notation. For example, if the numeric variable abc
has avalue of -13454, then if you use the following variable reference,

{ &bc format=(exp, 10.3)}

htmSQL formats the value as -1.345e+04.

formats numeric values in hexadecimal. If you use the w.d format with the hex format,
htmSQL ignores the d value.

htmlescape

causes each of the following special characters to be replaced by the corresponding
character entity reference whenever htmSQL encounters the special character in a
variable value;

33

Special Character Character Entity Reference
left angle bracket (<) <
right angle bracket (>) > ;
ampersand (&) &anp;
double quotation mark (™) &gquot ;

Usethis option if the variable's value includes special characters that should be rendered
as is when the output Web page is displayed.

left
causes htmSQL to print the value of a numeric variable with no leading blanks.
notrim
retains the trailing blank spacesin the variable value. Retaining trailing blanks enables
you to line up values on the Web page more easily. If you do not specify
f or mat =not r i m htmSQL discardstrailing blanks in the variable value when it
resolves the reference.
Note: Because most Web browsers collapse consecutive blank spaces, the notrim
format is most effective when it is used with the <PRE> HTML element.
right
right aligns character variable values and pads enough blank spaces on the left to fill up
the field width. For example, if the variable| i nenane contains the string "line01",
then
- {& i nenane format=10}: appearsas
11 nell
and: {& inenane format=(right, 10)}: appearsas
| i ne01l:
Note: Because most Web browsers collapse consecutive blank spaces, the right format
Is most effective when it is used with the <PRE> HTML element.
urlencode

causes the value of the variable to be URL-encoded. When the values are URL -encoded,

34

w.d

Zero

the spaces are replaced with plus signs (+). All other nonal phanumeric characters are
replaced with escape sequences (%oxx), where xx is the hexadecimal representation of
the ASCII code point.

Use this option when you include variable references in the values for the ACTI ON or
HREF attributes of HTML elements.

w specifies the width of the print field. The allowed values for w are integers from 1 to
32767. d isthe precision specifier (specifies the number of decimal placesto the right of
the decimal character). The maximum value for d depends on the exponent of the largest
numeric value that an operating system can store in adouble. If you do not specify a
value for d, the default valueisO.

Y ou can specify avalue either for w, for d, or for both. If you specify d by itself, you
must precede it with aperiod (.). The value for d is useful only for numeric valuesand is
ignored for variables containing character and integer values. Note that the following
format values are all equivalent: f or mat =8. , f or mat =8, and f or mat =8. 0.

Noteto SAS software users:

The htmSQL implementation of field widths (w) for numeric values differs from the
SAS implementation. For SAS software, w is generally an absolute specification for the
field width, and SA S software changes the formatting of the number to accommodate
the width (by doing such things as reducing precision and changing formats). For
numeric values in htmSQL, the w width specification isaminimum and is adjusted
upward, if necessary, to accommodate the numeric value and the precision specifier (d).

The htmSQL implementation of field widths (w) for character datais the same asthe
SAS implementation. Both implementations indicate the exact number of charactersto
format, either truncating or blank-padding as necessary.

pads enough zeros on the left of numeric valuesto fill up the field width. Without the
zero format, numeric values are |eft-padded with blanks. The zero format isignored
when either the left or exp formats are used.

Associated Formats

. When you refer to acolumn in a query results set, if you do not specify thef or mat =

35

parameter but the column has one of the following formats associated with it, then
htmSQL uses the associated format to resolve the reference:

o w.d
COMMAw.d
COMMAXw.d
DOLLARw.d
DOLLARXw.d
Ew.

Zw.d

O O O O O O

. When you refer to a column in aquery results set, if the column has a date, time, or
datetime format associated with it, the following formats are used:

For date values:

Regardless of what date format your column has, htmSQL aways outputs date
values as either ddMmyy or ddMmyyyy, where

« dd isthe day of the month

« Mmmisthefirst three letters of the month of the year

« Yy andyyyy arethelast two and four digits of the year, respectively
(depending on the value of the YEARDI G TS run-time configuration
option).

For time values:

Regardless of what time format your column has, htmSQL always outputs time
valuesashh: nm ss, where

= hh isthe hour of the day using a 24-hour clock

= mmisthe minute of the hour

« SS isthe second of the minute. Note that htmSQL does not handle
fractions of seconds.

For datetime values:

Regardless of what datetime format your column has, htmSQL always outputs
datetime valuesasddMmyy hh: nm ss or ddMmyyyy hh: nm ss, where

« dd isthe day of the month

36

« Mmmisthefirst three letters of the month of the year

« Yy andyyyy arethelast two and four digits of the year, respectively
(depending on the value of the YEARDI G TS run-time configuration
option)

« there are two spaces separating the date value and the time value

« hhisthe hour of the day using a 24-hour clock

= mmis the minute of the hour

= SS isthe second of the minute. Note that htmSQL does not handle
fractions of seconds.

Note: If you want to use other date, time, or datetime formats, you can use the PUT() _
function in your SQL query to change the format.

37

Invoking htmSQL
Y ou can invoke htmSQL
. from the Web

o by creatingan HTML form
o by specifying a URL for your Web page

. from the command line prompt.

From the Web
From your Web browser, you can either use an HTML form or specify a URL to invoke htmSQL.

Creating an HTML form

The HTML form must use the URL for your Web page as the value of the ACTI ON attribute of the HTML FORMelement.
Y ou can a'so use the optional METHOD attribute to specify the CGI method to use for sending form data:

<formaction="http://yourserver/dir/executable_ file/input-file" [nethod=get|post]>

. your server isyour Web server host name (and port, if required).

. di r isthe path of the Web server CGI program directory that contains htmSQL .

. execut abl e_fil eisthe htmSQL program name. For UNIX and z/OS, the program name is htmSQL. For
Windows, the program name is htmSQL .exe.

. input-fileisyourinputfileasarelative pathname under the Web server's root directory (which can include a
Web server alias).

. GET and POST are the two CGI methods for sending form data.

nmet hod=get
your Web browser sends the form data to the Web server as part of the URL. The Web server passes the
form data to htmSQL through the environment variable QUERY _STRING.

met hod=post
your Web browser sends the form data to the Web server as part of the body of the HTTP request. htmSQL
reads the form data from st di n.

On the form, use HTML | NPUT elementsto collect variable values. For the NAME attribute of the | NPUT element, use the
same variable names that you use for your variable references. When the form is submitted, the Web browser automatically
generates the query string

var 1=val uel&var 2=val ue2&. . . var N=val ueN

from the form input and appends it to the URL that is specified by the ACTI ON attribute (for the GET method) or sends it
in the body of the HTTP request (for the POST method).

38

Note: Some Web servers can be configured to recognize an input file by its file extension and to automatically call the
appropriate CGI program to process the file. If your Web server can be configured this way, you can omit the path to
htmSQL when you specify the URL (that is, you can omit the dir and executable file values). Consult your Web server
documentation for details on whether and how your server can be so configured.

Specifying a URL for your Web page

Specify the URL either on an existing Web page or on your Web browser command line. A URL for htmSQL must include
the pathname for an input file and must be of the form:

http://yourserver/dir/executable filel/input-file[?query-string]

. your server isyour Web server host name (and port, if required).

. di r isthe path of the Web server CGI program directory that contains htmSQL.

. execut abl e_fil e isthehtmSQL program name. For UNIX and z/OS, the program name is htmSQL. For
Windows, the program name is htmSQL .exe.

. i nput-fileisyourinputfileasarelative pathname under the Web server's root directory (which can include a
Web server dlias).

. query-string specifiesvalues for one or more of the variables that are referenced in the input file. This
parameter is optional. The variable name and value pairs are separated by ampersands (&) and are specified using
the following format:

var 1=val uel&var 2=val ue2&. . . var N=val ueN

Be sure to properly encode any nonal phabetic characters that are in the query string: spaces become plus signs (+)
and other characters are replaced by a percent sign (%) and the two-digit ASCII representation.

The following example shows a URL that is used to invoke htmSQL :

http://support.sas.conl cgi _bin/ht nSQL/ enpdat a. hsql ?fi rst=f nanme& ast =l name&m ddl e=mi
Note: Some Web servers can be configured to recognize an input file by its file extension and to automatically call the
appropriate CGI program to process the file. If your Web server can be configured this way, you can omit the path to

htmSQL when you specify the URL (that is, you can omit the dir and executable file values). Consult your Web server
documentation for details on whether and how your server can be so configured.

From the command line prompt

The output that htmSQL generatesis sent to st dout (usually your terminal display). Y ou can capture the generated
output by redirecting st dout to afile. Use this method of invocation to test an htmSQL input file or to produce a static
page that contains SAS data.

Thefollowing is the syntax for the htmSQL command (parameters that are within square brackets ([]) are optional):
ht QL input-file ["query-string"] [-rc config-file] [-dsf datasrc-file]
. input-fil e specifiesthe pathname for your input file.

. query_string specifies values for one or more of the variables that are referenced in the input file. The variable

name and value pairs are separated by ampersands (&) and are specified using the following format:
39

var 1=val uel&var 2=val ue2&. . . var N=val ueN
Y ou do not need to encode nonal phabetic characters that are in the query string.

. -rc config-fil e specifiesthe pathname of the configuration file to use. Y ou can name the file whatever you
want and locate the file in whichever path you choose. htmSQL will not run if the specified file cannot be opened.

This parameter is optional. For information on running htmSQL without explicitly specifying a configuration
pathname, see Specifying and Naming the Configuration File.

. -dsf datasrc-fil e specifiesthe pathname of the data source definition file. If you specify a simple filename,
htmSQL looks in the current directory for the file. This option overrides any data source definition file that is
specified in the configuration file. The file does not have to be named htmSQL .datasrc, htmSQL.dsf, or HTM SQL
DATASRC.

. the-rc and- dsf parameters can be placed anywhere after the htmSQL command name.

Note: z/OS is the successor to the OS/390 and MV S operating systems. SAS/IntrNet 9.1 for zZ/OS is supported on the

MV'S, 0S/390, and z/OS operating systems and, throughout this document, any reference to zZ/OS a so applies to OS/390
and MV'S, unless otherwise stated.

40

Configuring Your Web Server to Recognize htmSQL Input
Files

When you configure your Web server to recognize htmSQL input files, you no longer have to specify the pathname of the
htmSQL executable in the URL that you use for invoking htmSQL . For example, instead of the following URL

htt p://support.sas.coni cgi-bi n/ ht nSQ./ nyi nput/ nyfil e. hsql
you can use
htt p://support.sas. conif nyi nput/nyfile. hsql
and the Web server knows to automatically invoke htmSQL to process the input file.
The following sections provide some instructions on how to configure various Web servers to recognize htmSQL input files.
Note: This section discusses only serversthat we have tested and is not an exhaustive discussion of the topic. If you

encounter problems when configuring your Web server or for more information about configuring your Web server, consult
your Web server documentation.

Apache

To configure the Apache Web server (version 1.1 or later), add the following lines to the srm.conf file. The lines that begin
with the pound sign (#) are comment lines that are already in the srm.conf file that is included in the Apache download
package.

AddHandl er allows you to map certain file extensions to "handl ers",

actions unrelated to filetype. These can be either built into the server
or added with the Action command (see bel ow)

Format: AddHandl er action-name ext1

AddHandl er ht nSQL . hsql

Action lets you define nedia types that will execute a script whenever
a matching file is called. This elimnates the need for repeated URL
pat hnanmes for oft-used CA file processors.

Format: Action nedia/type /cgi-script/location

Format: Action handl er-nane /cgi-script/location

Action ht nSQL /cgi-bin/ ht nSQL
Peer Web Services and Internet Information Server (11S)

Internet Information Server (11S) 6.0
To set up htmSQL on I1S 6.0, compl ete the following steps within the 11S Administrator:
1. InlIS, right-click the individual Web site or the Web Sites folder, and then click Properties.

2. OntheHome Directory tab, click Configuration.
41

w

Under Application Configuration, click Add, and then click the M appings tab.
4. With the Add/Edit Application Extension Mapping dialog box open, click Browse to select the htmsqgl.exe file from
the local path on the Web server.

Note: You must type the path to avalid file in the Executable text box or the OK button remains unavailable. The
easiest way to ensure that you enter avalid path isto select the file by using the Br owse button.

5. After the path appears in the Executable text box, click in the Executable text box to initialize the path.

6. Click inthe Extension space, and then type . hsql asthe filename extension.
Note: Y ou must enter the period (.) in front of the extension in the Extension text box, or the OK button remains
unavailable.

7. Click OK.

8. ConfigurellSto alow the hsgl MIME type. This can be done by completing the following steps:

1. Intheleft window of the I1S Administrator, right-click your machine name and select Properties.
2. AddaMIMEtypeof . hsql, application/octet-stream
9. Right-click the directory where the htmsgl.exe file is located (for example, cgi-bin) and allow scripts and executabl es.
If your 11S6 Web Server does not already haveascr i pt s directory or acgi - bi n directory, you will need to
create one. After you create this directory, on the Virtual Directory tab, specify Scripts and Executables for the
value of Execution Permissions.

Some versions of |1S might have a check box called Execute (such as|SAPI applications or CGl). If you have this
selection, then the box should be checked.

10. Right-click the directory where the Web site is located (for example, MyWeb) and allow scripts and executables.

11. Enable Web Service Extensions for the htmsgl.exe file. This can be done by completing the following steps:

1. Intheleft window of the I1S Administrator, select your machine name. Then select the Web Service
Extensions folder. The Web Service Extensions folder is under the folder that specifies the name of your
machine. For example, if your machine name is SUSANZ, then there should be three folders under SUSAN2
(caled Application Pools, Web Sites, and Web Service Extensions).

2. Browseto the EXE for htmSQL and click Allow (to permit the htmsgl.exe file to be executed). Otherwise, the
status will be DENY .

12. Start your Share server.

For more information about running CGI Taools on Microsoft |1S 6.0 Web Server, see SAS Note #23931 at support.sas.com/
kb.

Internet Information Server (11S) 5.0 and Earlier, and Peer Web Services

To configure Microsoft Peer Web Services for Windows NT workstations or the Microsoft Internet Information Server (115)
for Windows NT servers, you must add two string values for the following key in the Windows registry on your Web server
machine:

[HKEY_ LOCAL_ MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Ser vi ces\ WBSVC\ Par anet er s\ Scri pt Map]
Use the Registry Editor (r egedi t) to add the following string values:

".hsgl"="c:\directory for_ht nSQL_execut abl e\ ht n5Q. exe"
".hsqg"="c:\directory for_htnSQ._execut abl e\ ht n5QL. exe"

Ensure that you changedi rect ory_f or _ht mSQL_execut abl e to the directory in which you installed htmSQL.

Note: Y ou must also turn on the execute bit for the directory that contains the .hsq or .hsgl files.

42

A Step-by-Step Guide to Creating an htmSQL Web
Page
The following steps guide you through the process of creating and displaying a Web page with htmSQL:

1. Construct your SQL statement. Decide whether you want to vary any part of it (that is, use variable
references). For example

sel ect nane, address, city, zip
fromdef.nmailresp
where incr="{& ncr}" and ager="{&ager}"
order by city, zip
wherei ncr and ager arevariablesthat you define on the URL when you invoke htmSQL.

2. Decide how you want to organize the results--perhaps in atable or in a preformatted section.

3. Decide how you want your Web page to look and where you want to place the various elements of your
page (be sure to include titles, headings, images, and any query results).

4. If necessary, ask your Webmaster to add data sources to your data source definition file. To define adata
source, the Webmaster uses the dsdef program that is provided with htmSQL.

5. If you want to update data, use an update section in your input file. In the update section, include

o an SQL section that contains the SQL you wrote in step 1. The SQL keywordsthat are allowed in
an update section are ALTER, CREATE, DELETE, DROP, INSERT, and UPDATE.

o asuccess section that contains the steps to take if the SQL is processed with a return code of zero.

o an error section that contains the steps to take if the SQL is processed with a nonzero return code.

6. To perform aquery and display data from the results set, use a query section at the location where you
want your query results to be displayed. In the query section, include

o an SQL section that contains the SQL you wrote in step 1. Use variable references for the parts

you want to vary, such as column values in a WHERE clause and column names in an ORDER
BY clause.

o an eachrow section that contains the text and HTML that is to accompany each row of the results

set (depending on what you decided in step 2). Use variable references in the appropriate places
for the columns you want to display.

=« If you want the results shown as preformatted text, the eachrow section should be

43

contained within an HTML PRE element.

« |f you want the results shown in an HTML table, the eachrow section should be contained
within an HTML TABLE element. Between { eachr ow} and {/ eachr ow} , therow
details should be contained within an HTML TR element.

Continuing with the example:

{query datasrc="denps"}

{sal}
sel ect nane, address, city, zip

fromdef.mailresp
where incr="{& ncr}" and ager="{&ager}"
order by city, zip

{/sql}

{eachr ow}

{ &hane}

{ &addr ess}

{&city}, TX {&zip}<p>
{/ eachr ow}

{/query}

7. You can test your file by invoking htmSQL from a command line prompt and passing the file and any
required variables on the command line:

ht m6QL mai | res3. hsql "incr=20K to 39K&ager=30 to 39" > filel.out.htm
where mailres3.hsgl is the name of an input file.

The string that is enclosed within the quotation marks (') specifies values for the variables that are used
by the input file. See Invoking htmSQL for more information about htmSQL command line options.

Y ou can then display filel.out.html in aWeb browser to ensure that what htmSQL produced is what you
want.

8. After you test your input file, you can link to your new Web page

o froman HTML form, or
o by specifying the URL for your Web page either on an existing Web page or on your Web
browser command line.

Y ou can see the complete example input file that is described on this page by visiting the following URL: www?2.
sas.com/htmSQL /mailres3.txt.

44

Tips and Techniques for Using htmSQL

This page includes tips and hints that other users have found useful.

. Checking the version number

. Comparing floating point values

. Unigue namespaces

. Using existing connections

. Using SAS formats and the PUT() function
. Using user-defined formats

Checking the Version Number

To find out which version of htmSQL you are running, invoke htmSQL without specifying an
input file. htmSQL displays the version number at the end of the usage page that it displays.

Comparing Floating Point Values

Numeric values in htmSQL are always represented as floating point values. When comparing
numeric values in htmSQL, you must ensure that the values you compare can be represented
exactly in floating point notation. That is, the value you specify must be able to remain the
same after going through conversions from binary floating point to string and vice versa (these
conversions are necessary for SQL functions). Some floating point values, namely fractions,
cannot be exactly reproduced following conversions.

Be aware that when you usethe SAS Tl ME() and DATETI ME() functions to generate your
time and date values, your generated values are likely to contain fractions because SAS dates
and times are stored as floating point values.

If you want to use a WHERE clause that compares fractional values or htmSQL variable
references with numeric columns that contain fractional values (for example, WHERE x=1. 22
or WHERE x={ &yf | oat }), you can apply any of the following strategies:

. Truncate date and time values to integer values before you store them. Note that
htmSQL does not output the fractional part of dates and times.

45

. Usethe PUT() function to change the floating point value into a different format before
you store it.

Unigue Namespaces

For any given scope, there is one namespace for variable names (that is, thereisonly onelist in
which variable names are stored). Each input file has a separate scope. Include files have
separate scopes so they also have separate namespaces.

If, inaquery, you select a variable with the same name as a variable that was passed in on the
guery string or that was selected in a previous query, then the original value of that variableis
replaced by your newly selected value.

It is also possible to overwrite the value of an automatic variable if you pass avalue for an
automatic variable in the query string of a URL.

Using Existing Connections

htmSQL recognizeswhen a{ quer y} directive uses the same parameters as the previous
{ quer y} directive. Instead of making a new connection, htmSQL uses the existing
connection, which savesin execution time.

Using SAS Formats and the PUT() Function

If you want to format data using a SAS format that is not supported by htmSQL , you can use
the PUT() function in your SQL statement to specify that format. For example, if you want to
use the SAS mmddyy8. format to format a date, write an SQL statement like the following
SELECT statement:

sel ect put(datevar, middyy8.) as datevar
Thevalue that isreturned in the dat evar variable is acharacter value in the mmddyy8.
format. Y ou can then provide more formatting for the variable by using thef or mat option.
For example,

{&dat evar format=|eft}

applies aformat that htmSQL supports (left) onto the date variable.

Note that if you use the following select statement,

46

sel ect datevar format=mddyy8. ..

htmSQL does not format the dat evar variable using the mmddyy8. format. Instead a
numeric valueis returned and is formatted using the default date format.

Using User-defined Formats

If you want to use aformat that you yourself defined, then you must provide a libref definition
in the SAS program that starts your SAS server. For example:

| i bname nyfnts '/u/joeuser/formats';
options fntsearch=nyfnts;

proc serverid=shrl...;

After you define your formats in this way, you can use the PUT() function to specify the
format in your SQL code.

47

Requirements

Before you can use htmSQL

« you must know your SAS data, be able to write valid SQL statements, and understand

HTML tags
. your Web server must run under UNIX, Windows, or Z/OS

. your network must include aversion of SAS software with licenses for

o SAS/SHARE software
o SAYIntrNet software.

If your dataisin an externa DBMS, you must also have the SAS/ACCESS software for that
DBMS.

Note: zZ/OS is the successor to the OS/390 and MV S operating systems. SASYIntrNet 9.1 for z/
OS is supported on the MV S, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MV S, unless otherwise stated.

48

The htmSQL Configuration File

The htmSQL configuration file contains the values for the htmSQL run-time configuration options.

. Specifying and naming the configuration file
. Customizing the configuration file

Specifying and Naming the Configuration File

htmSQL can run both with and without a configuration file. If you want it to run with a configuration file, htmSQL can
automatically locate your file if you follow our rules for naming and locating the file. Or if you need to name or locate the
filein amanner different from what is required, you can explicitly specify the file's pathname in either the - r ¢ parameter
or the HTMSQL_CFG Web server environment variable.

If you want htmSQL to automatically locate your file, you must do both of the following:
. Name the configuration file
execut abl e_nane. cfg

where execut abl e_nane isthe name of the htmSQL executable file. For example, if the name of your htmSQL
executable fileis ht mBSQL, then name the configuration file ht mSQL. cf g. If the name of your htmSQL
executablefileisht mSQL. exe, then you still name the configuration file ht nSQL. cf g.

If you rename the executable file, then you must also rename the configuration file to match.
Note for UNIX userswho are upgrading:

If you are upgrading from a previous release of htmSQL and your configuration file is named .htmSQLrc, then you
can keep that name (that is, you do not need to follow the above rule for naming the file).

. Put the configuration file in alocation that htmSQL knows about. htmSQL looks for the configuration file

1. firstin the current directory
2. thenin the directory where the htmSQL executable file is |ocated
3. andif it still cannot find the file, htmSQL looksin

« [usr/local/lib/IntrNet/htmSQL (for UNIX and z/OS)
« C:\Program Files\SA S Software (for Windows)

Note: If htmSQL does not find a configuration file, then it will run without a configuration file. If htmSQL finds a
configuration file but cannot open it, then htmSQL will not run.

If you want to give an explicit name and location ...

If you want to explicitly specify the name and location of your configuration file, then provide either arelative or absolute
pathname for one of the following:

49

. the-r c_parameter when you run htmSQL from the command line
. the HTMSQL_CFG Web server environment variable.

Y ou can name your configuration file whatever you want and locate the file in whichever path you choose.

Both of the values are optional, but if you specify both values, then the value of the - r ¢ parameter takes precedence over
the value of the HTM SQL _CFG environment variable.

Note: If htmSQL cannot open the file, then htmSQL will not run.

Customizing the Configuration File
A default configuration file is downloaded with the htmSQL package. Modify the preset options to match your needs.
The syntax rules for the file are as follows:

. al options must be specified asopti on = val ue onasingle line unless a continuation character is specified
. option names are not case sensitive

. Whitespace around the option names and values is not significant

. blank lines areignored

. any linethat beginswith! , #, or * isignored.

The following configuration options are available:

. CONTENT- TYPE . PATHSEPARATOR
. CONTI NUATI ON . PRAGVA
. DATASRCFI LE . READONLY
. EXPORT . REFRESH
. FULLHEADER . RELATI VE
. | NCLUDE . SET
. LAST- MODI FI ED . YEARDI G TS
. NO NCLUDE
Options
CONTENT- TYPE

The CONTENT- TYPE option specifies the string to be included in the Cont ent -t ype HTTP header that is
output by htmSQL. If this option is not specified, the header defaultstot ext / ht m . If the option is specified with
no value, then no Cont ent - t ype header is generated. For example
CONTENT- TYPE =

CONTI NUATI ON

The CONTI NUATI ON option specifies the list of continuation characters that can be used in your configuration file.
50

If the last non-blank character of the line is a continuation character, then at run time, the continuation character
(and all blank spaces that immediately precede and follow the continuation character) is replaced with the contents
of the next line (minus leading white space).

o If you continue an option value to the next line and the first character of the continued textisan! , #, or *,
do not place the character in column 1 because htmSQL will interpret it as a comment character and ignore
therest of that line.

o The CONTI NUATI ON option itself cannot be continued from one line to the next (that is, the
CONTI NUATI ON option must be specified on asingleline).

If the CONTI NUATI ON option is not specified, then the continuation character defaults to the backward slash (V).

For example:

CONTI NUATI ON = +\,

DATASRCFI LE = /1 ocal / di sk1/ ht n8QL/ ht nSQL. dat asrc: \
/1 ocal /di skl/ht n5Q./al t. dat asrc: +
/1 ocal / di sk2/ hr/ apps/ per. dsf: \

/I ocal / di sk2/ hr/ apps/ per 2. dsf: ,
/1 ocal / di sk2/fac/ apps/fac. dat asrc

atruntimeis

DATASRCFI LE = /1 ocal / di sk1/ ht nBQL/ ht nBQL. datasrc: /1 ocal / di sk1l/htnBQL/al t.
dat asrc:
/1 ocal / di sk2/ hr/ apps/ per 2. dsf: /1 ocal /di sk2/fac/apps/fac. datasrc

DATASRCFI LE

The DATASRCFI LE option specifies the pathnames of one or more data source definition files to use. If this option
is not specified, then the pathname defaults to

o fusr/local/lib/IntrNet/htmSQL/htmSQL .datasrc (for UNIX and z/OS)
o C:\Program Files\SAS Software\ntmSQL .dsf (for Windows).

If you specify more than one data source definition file, then specify a path separator character between the
pathnames. (Path separator characters are listed in the PATHSEPARATOR option.) htmSQL |oads the definitions
from the filesin the order they are specified; if the same data source or SAS/SHARE server is specified in two files,
then the later definition overrides the earlier one.

Some examples:

For UNIX and z/OS:

DATASRCFI LE = /usr/ 1 ocal / SAS/ ht n5QL/ dat a_sour ces
DATASRCFI LE = /1 ocal / ht nBQL/ ht nSQL. dat asrc: /| ocal / ht n5QL/ al t. dat asrc

For Windows:;

PATHSEPARATOR = ;
DATASRCFI LE = c:\ ht nSQ.\ nydat a. src
DATASRCFI LE = c: \ ht nSQ.\ nydat a. src; c: \ ht n5QL\ your dat a. src

51

EXPORT

The EXPORT option enables the Webmaster to make Web server environment variables available as htmSQL
variables. The default htmSQL configuration file that comes with the htmSQL package exports the following
environment variables. The Webmaster can add to or delete from thislist:

EXPORT = HTTP_USER AGENT, REMOTE ADDR, REMOTE_HOST, REMOTE_USER

Although htmSQL variable names are not case sensitive, environment variable names ar e case sensitive. The
Webmaster must specify the proper case when referring to a variable in the EXPORT option, but anyone creating an
htmSQL input file can use uppercase, lowercase, or a combination of the two cases.

Note: Because htmSQL does not distinguish between upper- and lowercase, the Webmaster can export only one
environment variable whose case-normalized name is a given sequence of characters (for example, you cannot
export both the HOVE and the horre environment variables).

FULLHEADER

The FULLHEADER option specifies whether htmSQL generates a complete set of HTTP headers. This optionis
intended for Web servers that require CGI programsto generate afull set of HTTP headers (typically, the Web
server generates these header lines).

The values for this option are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant).

When the value of FULLHEADER is YES, Y, TRUE, or T or if no value is specified, then htmSQL generates a
complete set of HTTP headers, which consists of the following lines:

HTTP/ 1.0 200 K
M ME-Version: 1.0

plusthe Cont ent - t ype HTTP header, asindicated by the CONTENT- TYPE option. If the CONTENT- TYPE
option is specified with no value, then the FULLHEADER option is ignored.

When the value of FULLHEADER is NO, N, FALSE, or F or if the option is not specified, then the compl ete set of
headers is not generated.

I NCLUDE

The I NCLUDE option specifies alist of filename patterns. The patterns are specified with path separator characters
in between them. Any input filename must match at least one of the patternsin thelist. If this option is not
specified, input filenames are not required to match any pattern. If both this option and the NO NCLUDE option are
specified, any input file must match at least one pattern in the | NCLUDE list and must not match any pattern in the
NO NCLUDE list. The following example alows only files whose names end in .hsgl or .hsg:

I NCLUDE = *. hsqgl: *. hsq
LAST- MODI FI ED

The LAST- MODI FI ED option specifies whether htmSQL generatesalLast - Modi fi ed HTTP header, which
shows the date and time at which htmSQL executes.

52

The valuesfor thisoption are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant).

When the value of LAST- MODI FI EDis YES, Y, TRUE, or T or if the option is not specified or is specified without
avalue, thenalLast - Modi f i ed header is generated.

If the valueis NO, N, FALSE, or F, the header is not generated.
Example:
LAST- MODI FI ED = TRUE

NO NCLUDE

The NO NCLUDE option specifies alist of filename patterns. The patterns are specified with path separator
characters in between them. Any input filename must not match any of the patternsin the list. If this option is not

specified, then the value defaultsto an empty list. If both this option and the | NCLUDE option are specified, any
input file must match at least one pattern in the | NCLUDE list and must not match any pattern in the NO NCLUDE
list. The following example disallows any input file whose name begins with local or etc or includes a subdirectory
named "private":

PATHSEPARATOR = ;
NO NCLUDE = c:\local*;c:\etc*;c:*\private*

PATHSEPARATCOR

The PATHSEPARATOR option specifies the list of characters that can be used to separate pathnames or path
patterns in the values of the | NCLUDE, NO NCLUDE, and DATASRCFI LE options.

Specifying one separator character between pathnames and patterns is sufficient, although you are allowed to
specify more than one character. For example,

PATHSEPARATOR = ;
I NCLUDE = *. hsq; *. hsqgl ;;*. htnl

If this option is not specified, then the path separator character defaults to the colon (3).
PRAGVA

The PRAGVA option specifies the string to be included in the Pr agma HTTP header that is output by htmSQL. If
the PRAGVA option is not specified or is specified without a value, then the Pr agna header is not generated.

Example:
PRAGVMA = no-cache

READONLY

The READONLY option specifies whether the SQL UPDATE, INSERT, DELETE, CREATE, DROP, and ALTER
statements are allowed in htmSQL input files.

Thevaluesfor thisoption are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant). Specify YES, Y,
TRUE, or T to prevent users from using these SQL statements. If the READONLY option is not specified, then the
53

statements are alowed.
Example:

READONLY = YES

REFRESH

The REFRESH option specifies the string to be included in the Ref r esh HTTP header that is output by htmSQL.
When the Web browser receives the Ref r esh header, it automatically rel oads the document after adelay of a
specified number of seconds. When you specify the REFRESH option, you must specify the number of seconds that
the Web browser delays. Y ou can optionally specify a URL that designates an alternate Web page to load at time of
refresh.

If the REFRESH option is not specified or is specified without a value, then the Ref r esh header is not generated.
Some examples:

REFRESH
REFRESH

3
3, URL=http://support.sas.com

Note that you can achieve the same refresh effect (on Web browsers that support them) on a per-page basis by
including an HTML META element in the htmSQL input file.

For example:

<META HTTP- EQUI V="Ref resh"” CONTENT="3; URL=http://support.sas.coni>

RELATI VE

SET

The RELATI VE option specifies whether the relative pathnames of included input files are specified with respect to
the location of the calling input file or with respect to the working directory. By default, htmSQL treats relative
pathnames of included input files as being relative to that of the calling input file (avalue of CALLI NG). If you
want to change the default so that tmSQL regards the pathname as being relative to the working directory, then
specify avalue of WORKI NG. For example,

RELATI VE = WORKI NG

The SET option enables you to specify default values for variables. Y ou can specify one or more variable name and
value pairs. The pairs are separated by ampersands (&) and are specified using the following format:

SET var 1=val uel&var 2=val ue2&. .. var N=val ueN
The values can contain URL -encoded data.
Y ou can specify multiple instances of the SET option in a configuration file. For example

SET var 1=val uel&var 2=val ue2
SET var 3=val ue3

54

YEARDI G TS

The YEARDI G TS option specifies the number of digits that htmSQL uses in the year portion of its date and
datetime formats. Y ou can specify avalue of either 2 or 4. For example,

YEARDIG TS = 4

If this option is not specified, then the value of YEARDI G TS defaultsto 2. Note that this option also affects
certain automatic variables.

Note: zZ/OS s the successor to the OS/390 and MV S operating systems. SAS/IntrNet 9.1 for zZ/OS is supported on the
MV'S, 0S/390, and z/OS operating systems and, throughout this document, any reference to zZ/OS also appliesto OS/390
and MV'S, unless otherwise stated.

55

Defining a Data Source

A data source identifies a SAS/'SHARE server that htmSQL can get data from. A data source definition can also
include SAS datalibraries or an externa database management system (DBMYS) that htmSQL accesses through that
server.

After the Webmaster defines a data source, an htmSQL programmer can access it by specifying its name in the query
or update section of an htmSQL input file.

Creating a Data Source Definition File

A program called dsdef is supplied with htmSQL. Use dsdef to define data sources for htmSQL . dsdef prompts the
user for data source information and then creates or updates a data source definition file. For invocation and syntax
information about dsdef, see Instructions for Invoking dsdef.

Note: The data source definition file should be modified only by the Webmaster. The file could be corrupted if it is
simultaneously modified by multiple people.

Using dsdef

dsdef prompts for information about data sources, SAS data libraries, and SAS/SHARE servers. If the data source,
library, or server that you specify was defined previously, dsdef puts the existing attribute values in square brackets
([1) next to the prompts for new values. Y ou can accept the existing value by not entering a new value and pressing
the Enter key.

The following dialog box is generated by dsdef. To get more information about each step, select the number that
precedes the prompt.

Note: User input isindicated by bold print.

L Syst enPronpt > dsdef <ret ur n>

Configure data sources for htnBSQ

Use this programto create or nodify the definition of one or nore data
sources for htnSQ.

A data source specifies exactly one SAS/ SHARE server and may al so specify
one or nore SAS data libraries or an external DBMS to be accessed through
t he server.

Dat a source names can be any |length and can contain any character except a

doubl e quote ("). They are case sensitive and nust be entered in an ht nSQ
56

N

> jw

o |0

[~

[© oo

= Is
= O

e [
5 b K &

=
]

[W

input file exactly as they are defined.

In the dialog that follows, default or previously specified values are shown
in square brackets ([]); to accept such a value, press return or enter.

The only required values in a data source definition are the data source
nanme and server nane. You can omt all other values by press return or

enter when you are pronpted for them

When you have finished defining data sources, you can save your changes
by pressing return or enter at the 'Enter a Data Source Nanme' pronpt.
You can cancel your changes by entering a 'c' instead.

Enter a Data Source Nane to configure: datasrcl<return>

Enter information for: datasrcl

Description: sanple data source<return>

SAS/ SHARE server nane (host.service): nodel.serverl<return>

Require SAS SQ. processor to undo partial updates? (usually NO: <return>
DBVMS to pass SQ to (omt for SAS data): <return>

Options to pass when connecting to DBMS: <return>

Enter information for: Server nodel.serverl

SAS/ SHARE server host IP nane (fully qualified) or address [nodel]: <return>
User I D for SAS/ SHARE server host: <return>

Password for specified user ID: <return>

SAS/ SHARE server user access password: pword<return>

=< Enter a library in data source "datasrcl" to configure: userlibl<return>

Enter information for: datasrcl USERLI Bl

Description: a sanple |ibrary<return>

Li brary path nane: sasuser/<return>

SAS engi ne the SAS/ SHARE server shoul d use: <return>

Options (only ACCESS=READONLY and SLI BREF=server-|ibref supported): <return>

“~ Enter a library in data source "datasrcl" to configure: <return>

“° Enter a Data Source Nanme to configure: datasrc2<return>

Enter information for: datasrc?2

Description: sanple data source 2<return>
SAS/ SHARE server nane (host.service): nodel. server1l<return>

57

Require SAS SQ. processor to undo partial updates? (usually NO: <return>
DBVMS to pass SQ to (omt for SAS data): <return>
Options to pass when connecting to DBMS: <return>

~N o o

Do you want to update configuration for server nodel.serverl? <return>
“~ Enter a library in data source "datasrcl" to configure: <return>

“® Enter a Data Source Nanme to configure: <return>

A Step-by-Step Explanation of dsdef
The following steps explain the information that you must provide to the dsdef program.
1. At the system command line prompt, enter dsdef . If you want to save your data source definition filein a

directory other than the default directory, you must specify the - conf i g option and the pathname for the file.
The following exampleillustrates this:

dsdef -config c:\htnSQ.\ nydat a. dsf

If - confi g isnot specified, the definition is written to a default pathname. If the definition file already
exigts, it is updated; otherwise, it is created.

Note: To end the program, enter ¢ to cancel without saving or press the Enter key to save your data source
information and then end the program. Depending on where you are in the program, you might need to press
the Enter key more than once to completely exit the program.

2. AttheEnter a Data Source Name to configure: prompt, enter the name of your data source.
Thisisthe value you specify for the dat asr c= parameter of the{ quer y} or {updat e} directive that you

specify in your htmSQL input (.hsqgl) file.

A data source name can be of any length and can contain any character (including blank spaces) except for the
following characters: [1 {} () " ?*=! @ : ; . Use aname that you can remember and type accurately. Note that
caseis significant in data source names.

3. AttheDescri ption (): prompt, enter adescription of the data source. Thisvaueis optional. The
description can be up to 1024 characters long.

4. Atthe SAS/ SHARE server nane (host. service): prompt, enter the name of the SAS'SHARE
server for this data source. Specify a two-part name (host.service or host.port), where

o host isthe node name of the machine where the server runs
o serviceisthe service name that is specified

« When the SAS/'SHARE server isdefined as aservice in the TCP/IP SERVICESfile

« for the ID= option of the PROC SERVER statement that is used to define the SAS/SHARE server

o port isthe port number of the SAS/SHARE server.

58

10.

11.

Note: If you use a port number to identify a SAS/SHARE server, then you do not need to modify the
SERVICESfile on the Web server machine.

This two-part name is the same name that you specify inaLIBNAME or PROC SQL CONNECT TO
statement in a SAS program.

AttheRequi re SAS SQ. processor to undo partial updates? (usually NO : prompt,
specify the setting for the UNDO_POLICY option of the SAS SQL processor. The following values are valid:

n, N, no, or NO (default value)

resets the UNDO_POLICY to NONE. NONE specifies that if the UPDATE or INSERT of arow falils,
then any rows that were updated or inserted by that SQL statement (before the failure) remain inserted
or updated.

y,Y,yes, or YES

retains the default value (REQUIRED) of UNDO_POLICY. REQUIRED specifiesthat if the UPDATE
or INSERT of arow fails, then any rows that were updated or inserted by that SQL statement (before
the failure) are undone.

AttheDBMS to pass SQL to (omt for SAS data): prompt, if your dataisin an externa
DBMS, specify the SAS/ACCESS engine for the DBMS. Example values are DB2, ORACLE, and SQLDS. If
your dataisin a SAS library, do not specify avalue.

AttheOpti ons to pass when connecting to DBMS: prompt, enter any options that are required
for connecting to the external DBMS. The exact options that are available and the exact option names depend
on the DBM S that you specify for step 6 and for the SAS/ACCESS view engine for that DBMS. The
connection options correspond to the DBM S arguments that are documented in the SQL Procedure Pass-
Through facility's documentation for that SAS/ACCESS view engine. Example values are USERI D=user i d
and PASSWORD=passwor d, whereuser i d and passwor d are the user ID and password for the DBMS.
At the SAS/ SHARE server host |IP nane (fully qualified) or address [nodel]:
prompt, enter the server's nodename. If you do not enter a nodename, this value defaults to the nodename that
you specified in step 4 (in this example, nodel isthe default value). In acomplex environment, you might
need to specify afully qualified domain address for the server such asser ver 1. unx. sas. com
AttheUser | D for SAS/ SHARE server host: prompt, enter auser ID for the system that the server
runson. Thisisan optional value that you specify if the server isrunning in secured mode; otherwise, the value
isignored.

If you omit the user ID from the data source definition, the htmSQL programmer must specify the user ID in
the htmSQL input file by using theuser i d= parameter of the{ quer y} or { updat e} directive.

AtthePassword for specified user |D: prompt, enter the password for the user ID that you
specified in step 9. Thisis an optional value that you specify if the server isrunning in secured mode;
otherwise, the value is ignored.

If the server is running in secured mode and you omit the password from the data source definition, the
htmSQL programmer must specify the password in the htmSQL input file by using the passwor d= parameter

of the{ quer y} or {updat e} directive.

Atthe SAS/ SHARE server user access password: prompt, enter the server access password for
users. Thisisan optional value. This must be the same password that is specified in

59

12.

13.

14.

15.

16.

17.

18.

19.

o the UAPW= option of the SERVER procedure that was used to define the SASSHARE server. You
must specify a password if user access to the server is password protected.
o the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO statement.
If the SAS library that contains your datais not predefined to the SAS/'SHARE server, then at theEnt er a
library in data source "datasrcl"” to configure: prompt, enter alibref for the library.
htmSQL programmers use this libref as the high-level qualifier for the table names in the SQL queries and
statements that their applications send to the SAS/'SHARE server. Steps 13 through 16 request additional

information about this library.

The library name can be up to eight characters long. The first character must be aletter or an underscore.
Subsequent characters can be letters, numeric digits, or underscores. Blanks and special characters are not
allowed.

AttheDescri ption (): prompt, enter adescription of the library. Thisvalueisoptional. The description
can be up to 1024 characters long.

AtthelLi brary path nane: prompt, enter the physical name of the library. This must include avalid
pathname for the operating system in which your server library is stored.

Atthe SAS engi ne t he SAS/ SHARE server shoul d use: prompt, specify the SAS enginethat is
required for writing to and reading from this server library. Thisoption isrequired only if you do not want the
SAS/SHARE server to use the engine that the server selects by default. For information about other engines,
see the description of the LIBNAME statement in the SA'S companion for the operating system in which your
server library is stored.

AttheOptions (only ACCESS=READONLY and SLI BREF=server-|ibref supported):
prompt, specify one or both of the following values (these values are optional):

SLI BREF=ser ver-1i bref
specifies the server's library reference name for the library.

ACCESS=READONLY
gives users read-only access to the SAS data setsin the library.

AttheEnter a library in data source "datasrcl" to configure: prompt, youcan
either enter the name of another server library or you can press the Enter key if you do not want to add any
more libraries to this data source.

Note: If you do specify another library, dsdef takes you through steps 13 through 16 for that library. If you do
not specify another library, dsdef proceeds to step 18.

AttheEnter a Data Source Name to configure: prompt, you can either enter the name of
another data source or you can press the Enter key if you do not want to add any more data sources.

Note: If you do specify another data source, dsdef takes you through steps 3 through 7 for that data source. If

you do not specify another data source, the dsdef program ends.

If in step 4 you specify a SAS/'SHARE server that is already defined for the data source, dsdef prompts to see
whether you want to update the server configuration information. Y ou can either enter yes or pressthe Enter
key for no.

Note: If you do specify yes, dsdef takes you through steps 8 through 11 so you can update the information for
that server. Otherwise, dsdef proceeds to step 12.

60

Instructions for Invoking dsdef

dsdef is aline-mode configuration program that defines data sources for use with htmSQL. It
enables you to configure data sources and the SAS/'SHARE servers and libraries that you
include in the data sources.

Syntax: dsdef -confi g pat hnane
-confi g pat hnane (optional)
pat hnane specifies the pathname (including the filename) for the data source

definition file. You can use- ¢ asan aliasfor - confi g.

The definition information is written to the definition file specified by the - conf i g
option. If - conf i g isnot specified, the definition is written to a default pathname of

o /usr/local/lib/IntrNet/htmSQL/htmSQL .datasrc (for UNIX and z/QS)
o C:\Program Files\SA S Software\ntmSQL .dsf (for Windows).

If you name your definition file something other than the default pathname, you must
specify the following line in the tmSQL configuration file

datasrcfil e = pat hnane
where pathname is the full pathname of your data source definition file.
If the definition file already exists, it is updated; otherwise, it is created.

Note: The directory for the data source definition file must exist before you invoke
dsdef; otherwise, nofileis created.

Examples

For UNIX and z/OS:

dsdef -config /usr/local/data source/enpl oyee. data_source
dsdef -c¢ /nyfiles/financial.datasrc

For Windows:

61

dsdef -config c:\nydata\ dat asour ces\ personal . dsf
dsdef -c¢c m\network\central \datasources\m s. dat asource

For adetailed description of the dsdef dialog box, see Using dsdef.

Note: zZ/OS is the successor to the OS/390 and MV S operating systems. SASIntrNet 9.1 for z/
OS is supported on the MVS, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also appliesto OS/390 and MV S, unless otherwise stated.

62

Configuring TCP/IP

htmSQL uses TCP/IP to communicate with a SAS/SHARE server. To enable communication
between your Web server and a SAS/'SHARE server through TCP/IP, you must perform the
following configuration steps:

. Specify one of the following options on the SAS command or in an OPTIONS
statement when you start the SAS/'SHARE SERVER procedure (PROC SERVER):

o COVAM D=TCP
o COVAUX1=TCP.
. Definethe SAS/SHARE server inthe TCP/IP SERVICES file that ison the SAS
SHARE server machine and on the Web server machine.

Note: If you use a port number to identify a SAS/SHARE server, then you do not need
to modify the SERVICES file on the Web server machine.

o For UNIX and z/OS, the SERVICESfileis

/ etc/services

o For Windows NT and Windows 2000, the SERVICESfileis
UBYSTEMROOT% syst enB2/ dri ver s/ et c/ SERVI CES
where %SY STEMROOT% is the directory where Windows NT isinstalled.

Each entry in the SERVICES file associates a service name with the port number and
communications protocol that are used by that service. For htmSQL, use the name of the
SAS/SHARE server as the service name. An entry for a SAS'SHARE server has the
form

<server-nane> <port nunber>/tcp # <comments>

The server name must be 1-8 characterslong and is generally case sensitive. The first
character must be a letter or underscore; the remaining seven characters can include
letters, digits, underscores, the dollar sign ($), or the at sign (@). Y ou specify this same
server name when you define the server for your data source (either in the data source

definition file or inthe ser ver = parameter of the{ quer y} or { updat e} directive).

63

Note: zZ/OS s the successor to the OS/390 and MV S operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MV S, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MV S, unless otherwise stated.

64

Getting Started Exercises

The following exercisesillustrate the steps that your organization must follow to install
htmSQL and run htmSQL applications. The first exercise requires no data source definition file
and does not require that you modify the TCP/IP SERVICES file on your Web server machine.

Notes:

.« Our exercises assign each step to either the Webmaster or the programmer. However,
depending on the way your organization is set up, you might have other people
performing the tasks.

.« For more htmSQL samples, see your htmSQL administrator for the URL of the samples
that are installed with the htmSQL software. The default URL is

http://yourserver/sasweb/ | ntrNet 9/ ht nSQL/ sanpl es. ht

whereyour ser ver isyour Web server host name.

Exercise 1: The Basics

In the samples directory, we provide an example htmSOL input file (retail 1.hsgl) that you can
modify and use. This exercise shows how to customize and run the examplefile.

Note: Y ou do not need to save the example htmSQL input file that is shown in this
documentation. All of the example files in these exercises are supplied in the samples directory.

1. Webmaster: Install htmSQL by following the instructions in the README file that is
in the download package.

2. Webmaster: Define your SAS/SHARE server in the TCP/IP SERVICES file on the
SAS/'SHARE server machine.

3. Webmaster: Ensure that a SAS/SHARE server isrunning. The following SAS
commands can be used to start a SAS/SHARE server. Our exercise uses an example
value of shr 10 for the server ID; replace shr 10 with the service name that you
defined in step 2.

65

options conmam d=t cp;
proc server id=shrl0;
run;

4. Programmer: Edit the{ quer y} directivein the exampleinput file that isin the
samples directory:

o Changesanpnode. pc. sas. comto the IP name of the SAS/SHARE server
machine.

o Change 5000 to the port number that is assigned to the service name that you
defined in step 2.

In our exercise, the SAS/SHARE server, shr 10, isrunning on sanpnode. pc. sas.
com Serviceshr 10 isassigned to port 5000.

5. Programmer: Invoke htmSQL to process the example input file. To run our example
from the command line, change to the samples directory and issue the following
command:

ht mSQL retail 1. hsgl paran=1992

Exercise 2: Something More Advanced

In the samples directory, we also provide two files that demonstrate how to use a data source
definition with htmSQL. This example htmSQL input file (retail2.hsgl) and example data
source definition file (retail .datasrc for UNIX and z/OS and retail .dsf for Windows) perform
the same task asthe input file in exercise 1 but give you the ability to centralize the definition
of your data.

Note: You do not need to save the example htmSQL input file and data source definition file
that are shown in this documentation. All of the example files in these exercises are supplied in
the samples directory.

1. Webmaster: Install htmSQL by following the instructions in the README file that is
in the download package.

2. Webmaster: Define your SAS/SHARE server in the TCP/IP SERVICES file on both

66

the SAS/SHARE server machine and on the Web server machine.

. Webmaster: Ensure that a SAS/SHARE server isrunning. The following SAS
commands can be used to start a SAS/SHARE server. Our exercise uses an example
value of shr 10 for the server ID; replace shr 10 with the service name that you
defined in step 2.

options conmam d=t cp;
proc server id=shrl0;
run;

. Webmaster: Modify the example data source definition file that is in the samples
directory (you can use atext editor to make these changes):

o Change sanpnode. pc. sas. comto the IP name of the SAS/SHARE server
machine.

1 Change all occurrences of sanpnode. shr 10 to node.service where
= Nnode isthe node name of the server machine

« Serviceisthe service namethat is specified in the TCP/IP SERVICESfile
in step 2 (which is also the value for the ID= option of the PROC
SERVER statement in step 3).

In our exercise, the SAS/SHARE server, shr 10, isrunning on sampnode.pc.sas.
com.

. Programmer: Invoke htmSQL to process the example input file. To run our example

from the command line, change to the samples directory and issue one of the following
commands:

For UNIX and z/OS:

ht nS5QL retail 2. hsgl paranm=1992 -dsf retail.datasrc
For Windows:

ht m6QL retail 2. hsgl param=1992 -dsf retail. dsf

67

Note: zZ/OS is the successor to the OS/390 and MV S operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MV S, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS390 and MV S, unless otherwise stated.

68

retaill.hsgl Sample Input File

{* __ *}
{* Note: You do not need to save this file fromyour Wb browser. *1
{* This file is available in the htnSQ "sanpl es" subdirectory. *1
{* *}

{* This input file produces a Wb page that |lists sales infornmation *1
{* that is stored in the 'retail' SAS data set of the SASHELP |ibrary. *}

{* __ *}

<HEAD><TI TLE>ht nSQL: Retai | Data</ Tl TLE></ HEAD>
<BODY BGCOLOR=" FFFFFF" >

{* __ ~k}
{* The follow ng section queries the SAS server that is identified by *}
{* the server= paraneter and dynam cally generates the sales *1
{* information.

*}

{* __ *}

{query server="sanpnode. pc. sas. com 5000"}
{sal}

sel ect sal es, dat e, year, nont h, day

from sashel p.retail where

year = {&PARAM

{/sql}

{* __ *}
{* W use a table to show the sales information. *1
{* __ *}
<TABLE BORDER=1 ALI GN=LEFT>

<TR>

<TH ALI GN=CENTER VAL| G\N=M DDLE BGCOLOR="FF0000" NOWRAP>Sal es</ TH>
<TH ALI GN=CENTER VALI GN=M DDLE BGCOLOR="FF0000" NOARAP>Dat e</ TH>
<TH ALI GN=CENTER VALI GN=M DDLE BGCOLOR="FF0000" NOARAP>Year </ TH>
<TH ALI GN=CENTER VAL| GN=M DDLE BGCOLOR="FF0000" NOARAP>MbnNt h</ TH>
<TH ALI GN=CENTER VALI GN=M DDLE BGCOLOR="FF0000" NOWRAP>Day</ TH>
</ TR>

{* __ ~k}
{* Each row of our results set corresponds to a rowin the table *1
{* __ *}
{eachr ow}

69

<TR>

<TD ALI GN=LEFT VALI G\N=M DDLE NOARAP>{ &sal es} </ TD>
<TD ALl GN=LEFT VALI G\N=M DDLE NOWRAP>{ &dat e} </ TD>
<TD ALI GN=LEFT VALI G\N=M DDLE NOWRAP>{ &year} </ TD>
<TD ALI GN=LEFT VALI G\N=M DDLE NOWRAP>{ &nont h} </ TD>
<TD ALl GN=LEFT VALI G\N=M DDLE NOWRAP>{ &day} </ TD>
</ TR>

{/ eachr ow}

</ TABLE>

{* __

{* End the query section.

{/query}
</ BODY>

70

Sample Data Source File

{* __ *}
{* Note: You do not need to save this file fromyour Wb browser. *1
{* This file is available in the htnSQ "sanpl es" subdirectory. *1
{* *}

{* This input file produces a Wb page that |lists sales infornmation *1
{* that is stored in the 'retail' SAS data set of the SASHELP |ibrary. *}

{* __ *}

<HEAD><TI TLE>ht nSQL: Retai | Data</ Tl TLE></ HEAD>
<BODY BGCOLOR=" FFFFFF" >

{* __ *}

{* The follow ng section queries the SAS server that is identified by *}
{* the data source and dynam cally generates the sales information.

*}

{* __ *}

{query datasrc="retail "}

{sal}

sel ect sal es, dat e, year, nont h, day
from sashel p.retail where

year = {&PARAM

{/sql}

{* __ ~k}
{* W use a table to show the sales infornmation. *1
{* __ *}
<TABLE BORDER=1 ALI GN=LEFT>

<TR>

<TH ALI GN=CENTER VALI G\=M DDLE BGCOLOR="FF0000" NOARAP>Sal es</ TH>
<TH ALI GN=CENTER VALI GN=M DDLE BGCOLOR="FF0000" NOWRAP>Dat e</ TH>
<TH ALI GN=CENTER VALI G\N=M DDLE BGCOLOR="FF0000" NOWRAP>Year </ TH>
<TH ALI GN=CENTER VALI G\=M DDLE BGCOLOR="FF0000" NOARAP>Mont h</ TH>
<TH ALI GN=CENTER VALI G\=M DDLE BGCOLOR="FF0000" NOWRAP>Day</ TH>
</ TR>

{* __ *}
{* Each row of our results set corresponds to a rowin the table *1
{* __ *}
{eachr ow}

<TR>

71

<TD ALI GN=LEFT VALI G\N=M DDLE NOWRAP>{ &sal es} </ TD>
<TD ALl GN=LEFT VALI G\=M DDLE NOWRAP>{ &dat e} </ TD>
<TD ALI GN=LEFT VALI G\N=M DDLE NOWRAP>{ &year} </ TD>
<TD ALI GN=LEFT VALI G\N=M DDLE NOWRAP>{ &nont h} </ TD>
<TD ALI GN=LEFT VALI GN=M DDLE NOWRAP>{ &day} </ TD>
</ TR>

{/ eachr ow}

</ TABLE>

{* __ *}

{* End the query section. *1

{/query}
</ BODY>

72

retail2.hsqgl Sample Input File

0% X % X % X % X % X % X ok X X X

QO
3

* % ok ok % ok Xk ok X ok Kk X ok Xk * 5

Not es about this sanple htnSQ. data source file.

o

o

You do not need to save this file fromyour Wb browser.
This file is available in the ht nSQ. "sanpl es" subdirectory.

This data source definition file specifies one data source
naned 'retail’'.

The retail data source specifies the SAS/ SHARE server
' sanpnode. shr 10" .

The server nane is derived as foll ows:

The SAS/ SHARE server is running on sanpnode. pc.sas.com
(machi ne nanme). The id (which is also the TCP/IP service

is shr10. The following job is running on
sanmpnode. pc. sas. com

options comam d=t cp;
proc server id=shrl0;
run;

A data source definition file can include one or nore
i braries. However, because the library we are using,
SASHELP, is already predefined to the server, you do
not need to define it in the data source file.

Note that the 'retail' data source is referenced in
the associated 'retail.hsqgl' file. Simlarly, the 'sashel p'
library is also referenced in 'retail. hsql"’

* % F

| dentify Data Sources

In this exanple, the data source is naned 'retail"'.

73

Met hod t cp: COMVEXE=wget cp
Met hods: t cp=

Server sanpnode. shr10: AM=t cp

Server sanpnode. shr 10: SASSHARE=yes

Server sanpnode. shr10: Server Versi on=6

Server sanpnode. shr10: Ser ver Addr ess=sanpnode. pc. sas. com
Server sanpnode. shr10: Tr aceFl ags=0

Servers: sanpnode. shr 10=

Defi ne Data Sources

In this exanple, the data source is naned 'retail"'.
Note that this data source is identified under the
"Identify Data Sources' section of this file.

* % ok k% ok X ok

retail:Description=Retail Data Source
retail: Server=sanpnode. shr 10
retail : UndoRequi r ed=y

74

	Table of Contents
	About htmSQL
	How It Works
	Input Files
	Syntax
	User IDs and Passwords
	Automatic Variables
	Formats
	Invoking
	Configuring for Input File Recognition
	Creating a Web Page
	Tips and Techniques for Using htmSQL
	Requirements
	Configuration File
	Defining a Data Source
	Invoking dsdef
	Configuring TCP/IP
	Getting Started Exercises
	retail1.hsql Sample Input File
	Sample Data Source File
	retail2.hsql Sample Input File

