
SAS/IntrNet® 9.2
htmSQL

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/IntrNet®
9.2: htmSQL. Cary, NC: SAS Institute Inc.

SAS/IntrNet® 9.2: htmSQL

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-
3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

● About htmSQL
● Understanding How htmSQL Works: The Technical View
● htmSQL Input Files
● Syntax for htmSQL Directives
● Specifying Values for User IDs and Passwords
● Automatic Variables
● Formats for Variable Values and Labels
● Invoking htmSQL
● Configuring Your Web Server to Recognize htmSQL Input Files
● A Step-by-Step Guide to Creating an htmSQL Web Page
● Tips and Techniques for Using htmSQL
● Requirements
● The htmSQL Configuration File
● Defining a Data Source
● Instructions for Invoking dsdef
● Configuring TCP/IP
● Getting Started Exercises
● retail1.hsql Sample Input File
● Sample Data Source File
● retail2.hsql Sample Input File

About htmSQL

Users of today's information highway demand up-to-the-minute information that is easy to
access and read. htmSQL meets the challenge by integrating your SAS data with Web interface
technology.

htmSQL is a CGI program that enables you to perform SQL processing from a Web page. You
provide an input file containing SQL statements that are embedded in HTML; htmSQL
performs updates and queries on your data source and then formats any results. Because
htmSQL uses the Web for information delivery, your users can easily access your SAS data
from anywhere on your network.

With htmSQL, you design the Web page--it can be as simple or as sophisticated as you want,
and you can use whatever HTML elements your Web browser supports. You can display the
results of any number of SQL statements on a single page and embed the results anywhere in a
page. htmSQL dynamically processes the SQL in response to user requests, ensuring that the
most current SAS data is processed.

htmSQL is available for the UNIX, Windows, and z/OS platforms.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MVS, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MVS, unless otherwise stated.

1

Understanding How htmSQL Works: The
Technical View

htmSQL is a CGI program that is written in the C language and resides on your Web server. It
can process special directives that are embedded in an HTML file. These directives describe
one or more SQL statements and incorporate formatted results into the Web page that is created
by the HTML file.

htmSQL passes your SQL to a SAS/SHARE server, performs the requested updates and
queries, and retrieves the results sets. The desired page is created dynamically and returned
through the Web server to the Web browser. See the data flow and required components in the
following diagram:

The Web server calls htmSQL each time it receives a URL that specifies the htmSQL program
name. htmSQL supports both the GET and POST CGI methods for sending form data.

htmSQL reads the input file for information that is contained within any of its directives. It
processes this information and returns the results to the Web server. It returns all HTML
information to the Web server just as it appears in the input file.

The following example illustrates a URL for htmSQL:

http://yourserver/dir/executable_file/filename.hsql?query_string

2

● yourserver is your Web server host name (and port, if required).
● dir is the path of the Web server CGI program directory that contains htmSQL.
● executable_file is the htmSQL program name. For UNIX and z/OS, the program

name is htmSQL. For Windows, the program name is htmSQL.exe.
● filename.hsql is your htmSQL input file. Each file can contain multiple SQL

statements and can also include other input files by reference.
● query_string specifies values for one or more of the variables that are referenced in

the input file. The variable name and value pairs are separated by ampersands (&) and
are specified using the following format:

var1=value1&var2=value2&...varN=valueN

Note: Some Web servers can be configured to recognize an input file by its file extension and
to automatically call the appropriate CGI program to process the file. If your Web server can be
configured this way, you can omit the path to htmSQL when you specify the URL (that is, you
can omit the dir and executable_file values). Consult your Web server documentation for
details on whether and how your server can be so configured.

For more information about CGI and CGI scripting, refer to the Common Gateway Interface
documentation provided by W3C at www.w3.org/CGI.

Processing an htmSQL Input File

htmSQL uses a defined set of processing rules to process the information in the input file:

● htmSQL sends all text and characters that are not part of htmSQL (such as HTML tags
and newline indicators) to stdout exactly as they occur in the file. If a variable
reference appears in this text, htmSQL resolves the reference before sending the text to
stdout.

● htmSQL collects the information that is contained in the SQL section and sends it to the
SAS server as a complete SQL statement that is to be executed. Each variable reference
that is in the SQL section is resolved to the current value of the variable. htmSQL
ignores newline indicators in the SQL section.

● For SQL queries, htmSQL retrieves a row of the results set and writes it to stdout
according to the information that is included in the eachrow section. Variable references
that correspond to column values are resolved. htmSQL repeats this step for each row in
the results set.

● For SQL statements that perform update functions, htmSQL processes the success

3

section if the return code is zero and the error section if the return code is not equal to
zero.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MVS, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MVS, unless otherwise stated.

4

htmSQL Input Files

In order for htmSQL to create your Web page, you must first provide htmSQL with an input
file. This file contains the HTML and SQL that you want processed.

When someone wants to access your Web page, they pass a URL that contains the name and
location of the input file to htmSQL. The URL can also contain information used to resolve
variable references that are in the input file.

If you are not familiar with htmSQL, you can follow the link at the bottom of this page to try
the sample exercise that we provide.

General Structure of an htmSQL Input File

An input file can contain zero or more of the following elements:

● variable references. The references can be to columns selected in queries, to variables
specified in the URL, or to variables that htmSQL automatically defines and supplies
values for. The references are replaced by the current value of the variable.

● complete query sections, delimited by the {query} and {/query} directive pair.
Each query section contains at least one SQL/eachrow section pair and can contain
multiple pairs. For each SQL section, you can include a norows section.

❍ The SQL section is delimited by the {sql} and {/sql} directive pair and
specifies how to construct a query that htmSQL sends to a SAS/SHARE server.

❍ The eachrow section is delimited by the {eachrow} and {/eachrow}
directive pair and describes how to display the results set.

❍ The norows section is delimited by the {norows} and {/norows} directive
pair and contains the steps to take when the previous SQL section does not return
any rows.

● complete update sections, delimited by the {update} and {/update} directive pair.
Each update section contains one or more SQL sections. For each SQL section you can
include success and error sections.

5

❍ The SQL section is delimited by the {sql} and {/sql} directive pair and
specifies how to construct an SQL statement that htmSQL sends to a SAS/
SHARE server.

❍ The success section is delimited by the {success} and {/success}
directive pair and contains the steps to take when the SQL is processed with a
return code of zero. The success section can also contain a norows section.

❍ The error section is delimited by the {error} and {/error} directive pair
and contains the steps to take when the SQL is processed with a nonzero return
code.

● {library} directive. The {library} directive can be included in both the query
and update sections and defines a high-level qualifier that you use in the names of tables
and views in your SQL queries and statements.

● {label} directive. The {label} directive enables you to display the label for a
column in a results set.

● included files. Use the {include} directive to specify another file for htmSQL to
process before continuing with the current file.

● htmSQL comments. All text contained between {* and a closing brace } is considered
an htmSQL comment and is not written to stdout.

Everything else in the input file is written, as is, to stdout. This includes text, HTML, and
newline characters.

For more information about the elements that you can use in an input file, see Syntax for
htmSQL Directives. For step-by-step instructions on creating and using an htmSQL input file,
see A Step-by-Step Guide to Creating an htmSQL Web Page.

For introductory exercises in using htmSQL, see Getting Started Exercises.

6

Syntax for htmSQL Directives

htmSQL directives are commands that process SQL statements and results sets for your Web page. For
more information on the structure of htmSQL input files, see htmSQL Input Files.

The following rules apply to all of the directives:

● directives are delimited by braces {}
● all htmSQL keywords (directives, parameters, parameter values) are not case sensitive
● unless otherwise noted, parameter values can be delimited by either double or single quotation

marks
● white space within a directive is ignored
● no line breaks are allowed in the middle of any string that is delimited by quotation marks (").

The following directives and syntax elements are available:

● {query}

● {sql}

● {eachrow}

● {norows}

● {update}

● {success}

● {error}

● variable reference ({&varname})
● {library}

● {label}

● {include}

● comment ({* ...})

{query}

Syntax:

{query datasrc="htmSQL-ds" server="host:port"
 userid="id" password="pw" sapw="sapw"} ... {/query}

datasrc="htmSQL-ds"
htmSQL-ds is a name or a variable reference that identifies an htmSQL data source.

Examples:

 {query datasrc="sales data"}
 {query datasrc="{&dsrc}"}

A data source specifies a SAS/SHARE server and the libraries that are available through the

7

server. Data sources are defined in data source definition files. To define a data source, use the
dsdef program that is provided with htmSQL.

server="host:port"
host:port specifies the SAS/SHARE server to connect to. You can use the server=
parameter instead of the datasrc= parameter to specify the SAS/SHARE server. When used
alone, the server= parameter must specify both the host name and the port for the SAS/
SHARE server.

You can also use server= together with datasrc= to override the host and port that are
specified in a data source definition. When used together with the datasrc= parameter, the
server= parameter can specify the host name, the port, or both for the SAS/SHARE server. If
you specify only one of these items, you must include a colon (:) to indicate which one you are
specifying.

Note: If any libraries are defined in the data source definition that is specified by the datasrc=
parameter, then htmSQL attempts to define those same libraries to the server that is specified by
the server= parameter.

The host name can be specified as a fully qualified domain name or it can be specified in any
shortened form that is sufficient to enable network services to identify it.

The port can be specified as a number or as a service name that is defined in the TCP/IP
SERVICES file.

Users who are familiar with the SAS syntax for specifying a server name can use a period (.)
instead of a colon (:) to separate the host name and port. All of the other syntax rules for the
server= option still apply.

The following are examples of valid syntax:

 {query server="klondike.acme.com:5228"}

 {query server="penn.sylvania:6500"}

 {query server="yukon.sasshr1"}

 {query datasrc="finance" server="testsrv:"}

 {query datasrc="sales & Marketing" server=":5010"}

 {query datasrc="alaska" server="yukon:sasshr1"}

Tip: If you are just getting started with htmSQL and do not want to define a data source
definition file, you can use the server= parameter instead of defining a data source. And, if
you specify a port number instead of a service name for this parameter, you also do not need to

8

add an entry to your TCP/IP SERVICES file.

userid="id" (conditionally optional)
id is a user ID for the system that the SAS/SHARE server runs on. If your server is running in
secured mode, you must specify a user ID. This can be done by specifying a value for this
parameter or by specifying a user ID in your data source definition. You do not have to specify
user IDs in both places. If the data source definition contains a user ID, then the user ID that you
specify for this parameter overrides the user ID that is stored in the data source definition.

password="pw" (conditionally optional)
pw is the password for the user ID that is specified in the userid= parameter. If your server is
running in secured mode, you must specify a password. This can be done by specifying a value
for this parameter or by specifying a password in your data source definition. You do not have to
specify passwords in both places. If the data source definition contains a password, then the
password that you specify for this parameter overrides the password that is stored in the data
source definition.

sapw="sapw" (optional)
sapw is the SAS/SHARE server access password for users. This must be the same password that
is specified in

❍ the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE
server. You must specify a password if user access to the server is password protected
and if this password is not already specified in your data source definition.

❍ the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO
statement.

The password that you specify for this parameter overrides the password that is stored in the data
source definition.

Description: The {query} and {/query} directive pair delimits the query section. An input file can
contain multiple query sections. Query sections can be nested within the eachrow and norows sections
of a query section and within the success, error, and norows sections of an update section. Each query
section must contain at least one SQL/eachrow section pair and can contain multiple pairs.

● The SQL section is delimited by the {sql} and {/sql} directive pair and contains the query
to be sent to the SAS/SHARE server.

● The eachrow section is delimited by the {eachrow} and {/eachrow} directive pair.
htmSQL applies the details in the eachrow section to the results set that is generated by the SQL
section that immediately precedes that eachrow section. The eachrow section is processed once
for each row in the results set.

A query section can also contain a norows section, a {library} directive, and other text, including

9

HTML and variable references. The text can appear before sections, between sections, and after sections.

The following example illustrates a typical query section:

 {query datasrc="data_source_name"}

 {sql}
 [SQL query here]
 {/sql}

 <p>This text is always output.</p>

 {norows}
 [Things to do if no rows are returned]
 {/norows}

 <p>This text is output only when some rows are returned.</p>

 {eachrow}
 [HTML formatting here]
 {/eachrow}

 <p>More text that is output only when some rows are returned.</p>

 {/query}

{sql}

Syntax: {sql empty="success"|"error" error="noprint"} ... {/sql}

empty="success"|"error" (optional)
The value for empty= specifies whether processing transfers to the success section
(empty="success") or error section (empty="error") if the SQL section resolves to an
empty section. The default value is error.

Note: This parameter is used only for SQL sections that are within update sections.

error="noprint" (optional)
Specify error="noprint" if you want to suppress error messages that are produced by
htmSQL during SQL processing.

10

Note: If you do not specify this option and your SQL statement contains a SAS data set
password, then you risk exposing the password because htmSQL includes the SQL statement
along with the SQL error message.

Description: The {sql} and {/sql} directive pair delimits the SQL section. The SQL section is a
part of both the query and update sections and contains the SQL statements that are to be sent to the
SAS/SHARE server. You can use any SQL statement that is supported by the SAS SQL processor. You
can have only one SQL statement per SQL section, but you can have multiple SQL sections within both
the query and update sections.

For more information about using SQL statements with SAS data, see the SAS Procedures Guide.

SQL for a Query Section

In a query section, the information between the beginning and ending {sql} directives must begin
with the SELECT keyword and must contain one valid SQL query.

An SQL query can be either static or variable.

● If you want each of your users to use the same query every time they access your Web page,
write a static query. Static queries consist of expressions and clauses that contain constant values
and no variable references.

● With a variable query, the users of your Web page can customize the query by specifying their
own values for search parameters. The query is written using variable references that are given
values when users access the Web page.

For example, if your data contains a DATE column, and you want users to be able to specify
their own dates to search on, you can place a variable reference in the query for DATE. The
following example illustrates this query:

 {sql}
 select NAME, TITLE, DEPT from EMPDB.EMPLOYEE
 where START='{&DATE}'
 {/sql}

The values that users provide can be specified on the htmSQL URL or collected from an HTML
form that you link them to. If you nest a query in the eachrow section of another query section,
your nested query can refer to variables in the results set of the encompassing query.

SQL for an Update Section

In an update section, the information between the beginning and ending {sql} directives must begin
with the ALTER, CREATE, DELETE, DROP, INSERT, or UPDATE keyword and must contain one
valid SQL statement.

11

Note: The Webmaster can disable ALTER, CREATE, DELETE, DROP, INSERT, and UPDATE
statements by specifying the READONLY option in the htmSQL configuration file.

The following example SQL sections are placed consecutively in an update section. The first section
creates a data set named def.play, and the second section inserts values into it.

 {sql}
 create table def.play
 (a numeric, b numeric, c numeric, d char, e char);
 {/sql}

 {sql}
 insert into def.play
 set a=1, b=2, c=3, d='xx', e='yy';
 {/sql}

{eachrow}

Syntax:

{eachrow n="n1" first="n2" last="n3"
 closequery="yes|no"} ... {/eachrow}

n="n1" (optional)
n1 is the total number of rows that you want htmSQL to get. A value of max tells htmSQL to
get all the rows in the results set. The default value is max.

Note: The n= and last= parameters are mutually exclusive. When you specify both of them,
whichever parameter is specified last is the one that is used. For example, if you specify

 {eachrow last="15" n="10"}

then the last row that is retrieved is row 10.

first="n2" (optional)
n2 is the number of the first row that you want htmSQL to get. The default value is 1.

last="n3" (optional)
n3 is the number of the last row that you want htmSQL to get. A value of max specifies the last
row in the results set. For example, if you specify the following:

12

 {eachrow first="20" last="max"}

you get all but the first nineteen rows in the results set.

Note: The n= and last= parameters are mutually exclusive. When you specify both of them,
whichever parameter is specified last is the one that is used. For example, if you specify

 {eachrow n="10" last="15"}

then the last row that is retrieved is row 15.

closequery="yes|no" (optional)
closequery="yes" tells htmSQL to send the SAS/SHARE server a message that causes the
server to terminate query processing when htmSQL finishes processing the eachrow section.
When the SAS/SHARE server terminates query processing, it closes the input tables and frees
the memory associated with this query. If you do not specify this parameter or if you specify
closequery="no", then query processing is not terminated until htmSQL finishes processing
the main input file.

Specify this parameter

❍ if your htmSQL input file contains more than 64 queries to the same SAS/SHARE server
❍ if you want to perform a DROP or ALTER TABLE on a table that the query refers to.

Note: If you specify this parameter, then no references to the columns of the results set are
allowed after the eachrow section.

Description: The {eachrow} and {/eachrow} directive pair delimits the eachrow section. The
eachrow section is a part of the query section and contains instructions on how to format the results that
are generated by the SQL section that immediately precedes that eachrow section. The formatting
information is applied to each row of the results set and can include any valid HTML tag and variable
reference. The variable references contained in the eachrow section are resolved for each row of output
as that row is formatted.

Note: Because htmSQL sends all HTML information to stdout exactly as it is encountered, eachrow
sections that are enclosed within HTML PRE elements might not format the way that you expect them
to. If your {eachrow} directive is followed by a line break, htmSQL sends that line break to stdout
and causes the output to appear double-spaced. The following lines

 <pre>
 {eachrow}
 X: {&x} Y: {&y}
 {/eachrow}
 </pre>

13

are sent to stdout (the Web browser) as

 <pre>

 X: 1 Y: A

 X: 2 Y: B

 X: 3 Y: C

 </pre>

and the Web browser displays following double-spaced output on the Web page:

 X: 1 Y: A

 X: 2 Y: B

 X: 3 Y: C

You can avoid double-spacing by putting the {eachrow} directive on the same row as the variables:

 <pre>
 {eachrow}X: {&x} Y: {&y}
 {/eachrow}
 </pre>

Nested Sections

If you want to submit more SQL statements from within your eachrow section, you can do one of the
following:

● nest one or more SQL sections (with accompanying eachrow and norows sections) in the
eachrow section. All queries are sent to the data source that is specified by the encompassing
{query} directive.

Note that you can also nest a {library} directive; however, we recommend that you nest
them only if your {library} directive contains variable references that change as the eachrow
section is processed. Otherwise, if the parameters in the {library} directive have static
values, then place the {library} directive before the eachrow section to avoid unnecessary
processing.

● nest a complete query section in the eachrow section, and use the {query} directive to specify
a different data source. The SQL, eachrow, and norows sections that are within the nested

14

section will work with data from this new data source.

● nest a complete update section in the eachrow section to update data from the same data source
or from a different data source.

Note: htmSQL does not limit the number of times that you can nest query sections or SQL/eachrow
section pairs within eachrow sections. However, beyond a certain point, you might experience poor
performance or your system can run out of memory.

{norows}

Syntax: {norows} ... {/norows}

Description: The {norows} and {/norows} directive pair delimits the norows section. The norows
section is a part of the query and success sections. In this section, you include the HTML elements and
htmSQL directives that you want htmSQL to process when the previous SQL section does not return or
update any rows. After processing a norows section in a query section, htmSQL skips to either the next
SQL section or to the end of the query section, whichever comes first. After processing a norows
section in a success section, htmSQL skips to the end of the success section.

When an SQL section returns or updates at least one row of data, htmSQL ignores the norows section
and continues processing the input file starting with the first line after the norows section.

Nested Sections

If you want to submit more SQL statements from within your norows section, you can do one of the
following:

● nest one or more SQL sections (with accompanying {library} directive and eachrow,
success, error, and norows sections when necessary) in the norows section. All SQL statements
are sent to the data source that is specified by the encompassing {query} or {update}
directives.

● nest a complete query or update section in the norows section. The SQL, eachrow, success, error,
and norows sections that are within the nested section will work with data from the data source
that is specified on the {query} or {update}directive.

Note: htmSQL does not limit the number of times that you can nest sections within norows sections.
However, beyond a certain point, you might experience poor performance or your system can run out of
memory.

15

{update}

Syntax:

{update datasrc="htmSQL-ds" server="host:port"
 userid="id" password="pw" sapw="sapw"} ... {/update}

datasrc="htmSQL-ds"
htmSQL-ds is a name or a variable reference that identifies an htmSQL data source.

Examples:

 {update datasrc="employee_data"}
 {update datasrc="{&dsrc}"}

A data source specifies a SAS/SHARE server and the libraries that are available through the
server. Data sources are defined in data source definition files. To define a data source, use the
dsdef program that is provided with htmSQL.

server="host:port"
host:port specifies the SAS/SHARE server to connect to. You can use the server=
parameter instead of the datasrc= parameter to specify the SAS/SHARE server. When used
alone, the server= parameter must specify both the host name and the port for the SAS/
SHARE server.

You can also use server= together with datasrc= to override the host and port that are
specified in a data source definition. When used together with the datasrc= parameter, the
server= parameter can specify the host name, the port, or both for the SAS/SHARE server. If
you specify only one of these items, you must include a colon (:) to indicate which one you are
specifying.

Note: If any libraries are defined in the data source definition that is specified by the datasrc=
parameter, then htmSQL attempts to define those same libraries to the server that is specified by
the server= parameter.

The host name can be specified as a fully qualified domain name or it can be specified in any
shortened form that is sufficient to enable network services to identify it.

The port can be specified as a number or as a service name that is defined in the TCP/IP
SERVICES file.

Users who are familiar with the SAS syntax for specifying a server name can use a period (.)
instead of a colon (:) to separate the host name and port. All of the other syntax rules for the

16

server= option still apply.

The following are examples of valid syntax:

 {update server="klondike.acme.com:5228"}

 {update server="penn.sylvania:6500"}

 {update server="yukon.sasshr1"}

 {update datasrc="finance" server="testsrv:"}

 {update datasrc="sales & Marketing" server=":5010"}

 {update datasrc="alaska" server="yukon:sasshr1"}

Tip: If you are just getting started with htmSQL and do not want to define a data source
definition file, you can use the server= parameter instead of defining a data source. And, if
you specify a port number instead of a service name for this parameter, you also do not need to
configure a TCP/IP SERVICES file for htmSQL.

userid="id" (conditionally optional)
id is a user ID for the system that the SAS/SHARE server runs on. If your server is running in
secured mode, you must specify a user ID. This can be done by specifying a value for this
parameter or by specifying a user ID in your data source definition. You do not have to specify
user IDs in both places. If the data source definition contains a user ID, then the user ID that you
specify for this parameter overrides the user ID that is stored in the data source definition.

password="pw" (conditionally optional)
pw is the password for the user ID that is specified in the userid= parameter. If your server is
running in secured mode, you must specify a password. This can be done by specifying a value
for this parameter or by specifying a password in your data source definition. You do not have to
specify passwords in both places. If the data source definition contains a password, then the
password that you specify for this parameter overrides the password that is stored in the data
source definition.

sapw="sapw" (optional)
sapw is the SAS/SHARE server access password for users. This must be the same password that
is specified in

❍ the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE
server. You must specify a password if user access to the server is password protected
and if this password is not already specified in your data source definition.

❍ the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO
statement.

17

The password that you specify for this parameter overrides the password that is stored in the data
source definition.

Description: The {update} and {/update} directive pair delimits the update section. An input file
can contain multiple update sections. Update sections can be nested within the success, norows, and
error sections of an update section and within the eachrow and norows sections of a query section. Each
update section must contain at least one SQL section and can contain multiple sections. The update
section can also contain a success section and an error section.

● The SQL section is delimited by the {sql} and {/sql} directive pair and contains the SQL
statement that is to be sent to the SAS/SHARE server. The allowed SQL statements are ALTER,
CREATE, DELETE, DROP, INSERT, and UPDATE.

Note: The Webmaster can disable these SQL statements by specifying the READONLY option in
the htmSQL configuration file.

● The success section is delimited by the {success} and {/success} directive pair and
contains instructions on what to do if the SQL statement returns with a return code of zero. The
success section can contain a norows section for instances where no rows are updated.

● The error section is delimited by the {error} and {/error} directive pair and contains
instructions on what to do if the SQL statement returns with a return code that is not equal to
zero.

An update section can also contain a {library} directive and other text, including HTML and
variable references. The text can appear before sections, between sections, and after the sections.

The following example illustrates a typical update section:

 {update datasrc="data_source_name"}

 {sql}
 [SQL statement here]
 {/sql}

 {success}
 [Things to do if the return code is 0]
 {norows}
 [Things to do if no rows are returned]
 {/norows}
 {/success}

 {error}
 [Things to do if the return code is not 0]

18

 {/error}

 {/update}

{success}

Syntax: {success} ... {/success}

Description: The {success} and {/success} directive pair delimits the success section. The
success section is a part of the update section. In this section, you include the HTML elements and
htmSQL directives that you want htmSQL to process when the previous SQL section completes with a
return code of zero.

When an SQL section returns with a return code that is not equal to zero, htmSQL ignores the success
section.

The success section can include a norows section for instances where no rows are updated.

Nested Sections

If you want to submit more SQL statements from within your success section, you can do one of the
following:

● nest one or more SQL sections (with accompanying {library} directive and success, error,
and norows sections when necessary) in the success section. All SQL statements are sent to the
data source that is specified by the encompassing {update} directive.

● nest a complete update section in the success section, and use the {update} directive to
specify a different data source. The SQL, success, error, and norows sections that are within the
nested section will work with data from this new data source.

● nest a complete query section in the success section to query data from the same data source or
from a different data source.

Note: htmSQL does not limit the number of times that you can nest sections within success sections.
However, beyond a certain point, you might experience poor performance or your system can run out of
memory.

{error}
19

Syntax: {error} ... {/error}

Description: The {error} and {/error} directive pair delimits the error section. The error section
is a part of the update section. In this section, you include the HTML elements and htmSQL directives
that you want htmSQL to process when the previous SQL section completes with a nonzero return code.

When an SQL section returns with a return code of zero, htmSQL ignores the error section.

Nested Sections

If you want to submit more SQL statements from within your error section, you can do one of the
following:

● nest one or more SQL sections (with accompanying {library} directive and success, error,
and norows sections when necessary) in the error section. All SQL statements are sent to the data
source that is specified by the encompassing {update} directive.

● nest a complete update section in the error section, and use the {update} directive to specify a
different data source. The SQL, success, error, and norows sections that are within the nested
section will work with data from this new data source.

● nest a complete query section in the error section to query data from the same data source or
from a different data source.

Note: htmSQL does not limit the number of times that you can nest sections within error sections.
However, beyond a certain point, you might experience poor performance or your system can run out of
memory.

Variable Reference

Syntax:

{&varname format=formats before="string1"
 between="string2" after="string3"}

&varname
varname is the name of the variable. If the variable you want to reference was specified in the
URL with more than one value, you can use the following syntax to reference a single specific
value, a range of values, or all values:

20

&varname[n] references the nth value that the variable contains where n>=1.

&varname[m..n] references all values from the mth value to the nth value where
m<=1<n and the variable contains two or more values.

&varname[*] references all values that the variable contains.

In the first two instances above, m and n can be references to numeric variables.

format=formats
formats is a single formatting option (format=value) or a comma-delimited list of options
enclosed in parentheses (format=(value,...,valueN)). Do not use quotation marks to
delimit the values. This is an optional parameter. See Formats for Variable Values and Labels for
a list of formatting options.

before="string1"
between="string2"
after="string3"

These parameters enable you to output strings of characters before, between, and after variable
values.

You can use an unlimited number of characters in your strings (note that the maximum number
of characters that you can use depends on how much memory your system has). If you want to
include double quotation marks within your string, then delimit the string with single quotation
marks or use two double quotations marks within your string. For example, both of the following
values will return the string "How are you?".

 between='"How are you?"'
 between="""How are you?"""

To include single quotation marks within your string, delimit the string with double quotation
marks or use two single quotation marks within your string. For example, both of the following
values will return the string What's up?.

 before="What's up?"
 before='What''s up?'

The default value for before= is a null string ("").
The default value for between= is a blank space (" ").
The default value for after= is a null string ("").

Description: A variable reference is a string that htmSQL replaces with the value of a variable.
Variables are symbols that are defined on the URL, columns that are selected by a query, or symbols
that htmSQL automatically defines and supplies values for.

21

When htmSQL encounters a variable reference, it replaces the reference with the current value of the
variable. If the reference is to a column in a results set and

● the variable reference occurs before the SQL section, then the variable is undefined and cannot
be resolved. The variable reference is written to stdout unresolved.

● the variable reference occurs between the SQL section and the eachrow section, then htmSQL
replaces the variable reference with the variable's value from the first row of the results set.

● the variable reference occurs within an eachrow section, then htmSQL replaces the variable
reference with the current row's value for the variable.

● the variable reference occurs after the eachrow section, then htmSQL replaces the variable
reference with the variable's value from the last row of the results set.

Resolution of Nested Variable References

htmSQL also supports the resolution of nested variable references. That is, the value of a variable can
itself be a variable that htmSQL can resolve. For example, if you have a variable named taxi, and the
value of taxi is the variable name driver,

 {&taxi} -----> driver

and the value of driver is Bob,

 {&driver} -----> Bob

then, when you specify {&{&taxi}}, htmSQL resolves the nested references to a value of Bob.

 {&{&taxi}} -----> Bob

htmSQL can resolve an infinite number of these nested variable references.

Examples

The following are examples of variable references:

 {&myname}
 {&weekdays[1..7]}
 {&theworld[*]}
 {&array1[{&counter}]}
 {&array2[{&begin}..{&end}]}
 {&months[1..12] before="(" between="," after=")"}

22

 {&{&varname}}
 {&{&sys.colname[*]}}

{library}

Syntax: {library sqlname="table-qualifier" path="library-path"}

Note: The keyword libname is a synonym for library.

sqlname="table-qualifier"
table-qualifier is the high-level qualifier you use in your SQL for the names of tables
and views that reside in this SAS data library. This qualifier corresponds to the libref in a SAS
program.

You can use the keyword libref as a synonym for sqlname.

path="library-path"
library-path is the pathname of the SAS data library.

Description: The {library} directive can be included in both the query and update sections and
defines a high-level qualifier that you use in the names of tables and views in your SQL queries and
statements. Use this directive when the SAS library that contains the tables and views that you want to
access is

● not predefined to the SAS/SHARE server through which the library is accessed and
● not defined as part of a data source that specifies that server.

Notes:

● When you specify a value for sqlname (or libref), you can use that high-level qualifier for
any update or query section that specifies the same values for the datasrc= and server=
parameters.

● You can also specify the same high-level qualifier for two different libraries if they are on
different servers. If you specify the same high-level qualifier for two libraries that are on the
same server, then the second value overrides the first one.

{label}

Syntax:
23

{label var="varname1 varname2 ... varnameN" format=formats
 before="string1" between="string2" after="string3"}

var="varname1 varname2 ... varnameN"
varname1 varname2 ... varnameN are the names of variables whose labels you want
to display. You can specify one or more variable names; separate the variable names with single
spaces.

You can also use a variable reference for a value. For example,

 var="{&mylabel}"
 var="{&sys.colname[*]}"

format=formats
formats is a single formatting option (format=value) or a comma-delimited list of options
enclosed in parentheses (format=(value,...,valueN)). Do not use quotation marks to
delimit the values. This is an optional parameter. See Formats for Variable Values and Labels for
a list of formatting options.

before="string1"
between="string2"
after="string3"

These parameters enable you to output strings of characters before, between, and after labels.

You can use an unlimited number of characters in your strings (note that the maximum number
of characters that you can use depends on how much memory your system has). The only
character that is not allowed is the double quotation mark ("). If you want to include double
quotation marks within your string, then delimit the string with single quotation marks or use
two double quotations marks within your string. For example, both of the following values will
return the string "How are you?".

 between='"How are you?"'
 between="""How are you?"""

To include single quotation marks within your string, delimit the string with double quotation
marks or use two single quotation marks within your string. For example, both of the following
values will return the string What's up?.

 before="What's up?"
 before='What''s up?'

The default value for before= is a null string ("").
The default value for between= is a blank space (" ").
The default value for after= is a null string ("").

24

Description: The {label} directive enables you to display the label for a variable that is in a results
set. The label is either returned from the data set or set in the SQL statement. If you want to display the
label using a particular format, you can specify the format= parameter.

{include}

Syntax:

{include file="web-server-host-pathname"
 vars="var1=value1&var2=value2&..."}

file="web-server-host-pathname"
web-server-host-pathname is the pathname (either absolute or relative) for a file that is
to be processed as an htmSQL input file. If the pathname is relative, then it is relative to either
the current working directory for htmSQL or to the path of the calling input file--see your setting
for the RELATIVE run-time configuration option.

You can use a variable reference to specify the filename. For example:

 {include file="/dept/web/{&proj}.hsql"}

Note: The value for the file= parameter must be a physical pathname on the Web server
machine. It is not a URL.

vars="var1=value1&var2=value2&..."
var1=value1&var2=value2&... is one or more variable name and value pairs that the
included input file requires.

The variables that you specify exist in the scope of the included file. This scoping is done so that
a variable that is set by both the input file and the included file can retain separate values for
each file. When htmSQL finishes processing the included file and returns to the calling input
file, the value of the variable is restored to the value that it had before the included file was
called. If a variable is only defined for the included file, then you cannot access it after htmSQL
returns to the calling file.

The following example uses an input file named emps.hsql that requires values for the variables
name and status:

 {include file="emps.hsql" vars="name={&emp}&status=EXEMPT"}

Note from the example that you can use one or more variable references (such as {&emp}) in

25

the value for the vars parameter.

Description: The {include} directive enables you to include other HTML files into the current file.
The included file can be a simple HTML file or another htmSQL input file. If it is an htmSQL input file,
then it must be complete; it cannot contain a partial query or update section.

The {include} directive cannot appear inside any other htmSQL directive section.

Comment

Syntax: {* your comments here}

Description: All text contained between {* and the closing brace } is considered an htmSQL comment
and is not written to stdout. You can comment out single directives or entire sections with one pair of
comment braces. The following example shows an entire query section that is commented out:

 {*
 {query datasrc="employee"}
 {sql}
 select * from empdb.employee
 {/sql}
 {eachrow}
 lastname: {&lname} firstname: {&fname}
 {/eachrow}
 {/query}
 }

Note: HTML comments are considered text and are written to stdout along with the other text in the
input file.

26

Specifying Values for User IDs and Passwords

You can specify values for the userid= and password= parameters in any of three ways:

1. Hard-code the values.

2. Collect the password or user ID through an HTML form. The value is passed to htmSQL along with the
CGI request for your input file. You specify the password or user ID by using a variable reference as the
value of this parameter. The following example illustrates the use of variable references as the values of
the userid= and password= parameters.

{update datasrc="employee1" userid="{&userid}" password="{&password}"}

3. In the htmSQL input file, perform a query that retrieves the user ID or password from a user ID/password
data set. In subsequent query and update sections, you can use a variable reference to refer to the value in
either a userid= or password= parameter (see previous example).

The first of these three methods is not very secure; the second method is secure only if you are using secure
sockets or secure HTTP; the third method is fairly secure and, if your Web server supports client authentication,
can be used to supply a different user ID and password for each user.

27

Automatic Variables

htmSQL automatically defines a number of variables that contain htmSQL processing
information. The following sections list the variables and examples of variable values and
usage:

● Date and time variables
● SQL-related variables
● Miscellaneous variables

htmSQL also provides a sample input file named autovars.hsql that lists values for many of the
automatic variables.

Date and Time Variables

The format of the date and time variable information is determined by the LC_TIME and
LANG environment variables and according to the NLS installation on your Web server
machine.

Variable Name Description Example Value

sys.ampm the time of day before or after noon (AM
or PM)

PM

sys.date the current date in ddMmmyy or
ddMmmyyyy format (depending on the
value of the YEARDIGITS run-time
configuration option)

04Apr2000

sys.datetime the current date in ddMmmyy hh:mm:ss
TZ or ddMmmyyyy hh:mm:ss TZ format
(depending on the value of the
YEARDIGITS run-time configuration
option)

04Apr2000 16:30:52 EDT
*

sys.fulldate the current date, including the weekday
and date

Friday, April 04, 1997

28

sys.fulldatetime the current date, including the weekday,
date, time, and time zone

Friday, April 04, 1997 04:30:52

PM EDT
*

sys.month the month of the year September

sys.month3 the month of the year (abbreviated) Sep

sys.monthday the day of the month 05

sys.monthnum the month of the year expressed
numerically

09

sys.seconds the second of the minute 47

sys.time the time of day using a 12-hour clock 3:36

sys.time24 the time of day using a 24-hour clock 15:36

sys.tz the time zone EDT
*

sys.weekday the day of the week Saturday

sys.weekday3 the day of the week (abbreviated) Sat

sys.year the calendar year 1997

sys.year2 the last two digits of the calendar year 97

*
For the Windows platforms, the value for the time zone is not abbreviated (for example,

Eastern Daylight Time).

SQL-Related Variables

The following list contains variables for information that is related to an SQL statement:

sys.colname
The column names in a results set. Use the following syntax to reference a single
specific value, a range of values, or all values:

&sys.colname[n] references the nth column name in the results set
where n>=1.

&sys.colname[m..n] references all column names from the mth value to the
nth value where m<=1<n and the results set contains
two or more columns.

&sys.colname[*] references all the column names in the results set.

29

For example, for the following SQL statement,

{sql}select * from employee.names{/sql}

the selected columns are first, middle, and last. The following are some example
references and their resolved values:

{&sys.colname[1]} -----> first
{&sys.colname[2..3]} -----> middle last
{&sys.colname[*]} -----> first middle last

sys.qrow
The number of the current row in the results set. The following example shows how to
include the SYS.QROW variable in an eachrow section:

{eachrow}
{&sys.qrow} {&lastname} {&firstname} {&middleinit}
{/eachrow}

Each row that is output would contain the number of the row and the three values that
correspond to the other three variable references. The output might look something like
the following:

1 Doe John D.
2 Doe Jane R.
3 Doe Sam E.

sys.query
The last SQL query that is processed. All the characters in the query are included except
for

❍ newline characters
❍ leading blank spaces that are before the SELECT keyword.

sys.updrows
sys.updcount

The number of rows that are inserted, deleted, or updated by the last INSERT,
DELETE, or UPDATE statement.

sys.updrc
The return code from the last INSERT, DELETE, or UPDATE statement.

30

Miscellaneous Variables

Variable Name Description Example Value

sys.dirurl the URL directory path (with no filename)
for the top-level input file

/myfiles/

sys.filetime the date and time of the last modification
of the current input file

Monday, May 05, 1997

02:05:45 PM EDT
*

sys.fileurl the URL pathname for the top-level input
file

/myfiles/myinput.hsql

sys.url the URL for invoking htmSQL (not
including the pathname of the input file)

/cgi-bin/htmSQL

sys.version the version number for htmSQL 2.0

*
For the Windows platforms, the value for the time zone is not abbreviated (for example,

Eastern Daylight Time).

31

Formats for Variable Values and Labels

htmSQL supports formats in two different ways:

● by providing the format= parameter which enables you to explicitly specify a format
with variable references and directives.

● by using the format that is associated with the data set column.

Specified Formats

The following values can be used for the format= parameter of htmSQL variable references
and directives:

comma
formats numeric values using commas to separate every three digits. When you specify
a format of w.d with the comma format, you must specify either a 0 or 2 for the value of
d (the number of decimal places to the right of the decimal character). If you specify any
other value for d, then d defaults to a value of 2. When d is equal to 2, htmSQL outputs
a decimal point followed by two fraction digits.

The following is an example of how to use this format:

{&abc format=(comma, 10.2)}

commax
formats numeric values using periods to separate every three digits. When you specify a
format of w.d with the commax format, you must specify either a 0 or 2 for the value of
d (the number of decimal places to the right of the decimal character). If you specify any
other value for d, then d defaults to a value of 2. When d is equal to 2, the htmSQL
outputs a comma followed by two fraction digits.

The following is an example of how to use this format:

{&abcx format=(commax, 10.2)}

dollar

32

formats numeric values using a leading dollar sign ($) or currency symbol and using
commas to separate every three digits. If you specify a format of w.d with the dollar
format, and you specify a nonzero value for d (the number of decimal places to the right
of the decimal character), then htmSQL outputs a decimal point followed by two
fraction digits.

The following are examples of how to use this format:

{&abc format=(dollar, 15.2)}
{&abc format=dollar}

dollarx
formats numeric values using a leading dollar sign ($) or currency symbol and using
periods to separate every three digits. If you specify a format of w.d with the dollarx
format, and you specify a nonzero value for d (the number of decimal places to the right
of the decimal character), then htmSQL outputs a comma followed by two fraction
digits.

The following are examples of how to use this format:

{&abcx format=(dollarx, 15.2)}
{&abc format=dollarx}

exp
formats numeric values in scientific notation. For example, if the numeric variable abc
has a value of -13454, then if you use the following variable reference,

{&abc format=(exp, 10.3)}

htmSQL formats the value as -1.345e+04.

hex
formats numeric values in hexadecimal. If you use the w.d format with the hex format,
htmSQL ignores the d value.

htmlescape
causes each of the following special characters to be replaced by the corresponding
character entity reference whenever htmSQL encounters the special character in a
variable value:

33

Special Character Character Entity Reference

left angle bracket (<) <

right angle bracket (>) >

ampersand (&) &

double quotation mark (") "

Use this option if the variable's value includes special characters that should be rendered
as is when the output Web page is displayed.

left
causes htmSQL to print the value of a numeric variable with no leading blanks.

notrim
retains the trailing blank spaces in the variable value. Retaining trailing blanks enables
you to line up values on the Web page more easily. If you do not specify
format=notrim, htmSQL discards trailing blanks in the variable value when it
resolves the reference.

Note: Because most Web browsers collapse consecutive blank spaces, the notrim
format is most effective when it is used with the <PRE> HTML element.

right
right aligns character variable values and pads enough blank spaces on the left to fill up
the field width. For example, if the variable linename contains the string "line01",
then

:{&linename format=10}: appears as

:line01 :

and :{&linename format=(right, 10)}: appears as

: line01:

Note: Because most Web browsers collapse consecutive blank spaces, the right format
is most effective when it is used with the <PRE> HTML element.

urlencode
causes the value of the variable to be URL-encoded. When the values are URL-encoded,

34

the spaces are replaced with plus signs (+). All other nonalphanumeric characters are
replaced with escape sequences (%xx), where xx is the hexadecimal representation of
the ASCII code point.

Use this option when you include variable references in the values for the ACTION or
HREF attributes of HTML elements.

w.d
w specifies the width of the print field. The allowed values for w are integers from 1 to
32767. d is the precision specifier (specifies the number of decimal places to the right of
the decimal character). The maximum value for d depends on the exponent of the largest
numeric value that an operating system can store in a double. If you do not specify a
value for d, the default value is 0.

You can specify a value either for w, for d, or for both. If you specify d by itself, you
must precede it with a period (.). The value for d is useful only for numeric values and is
ignored for variables containing character and integer values. Note that the following
format values are all equivalent: format=8., format=8, and format=8.0.

Note to SAS software users:

The htmSQL implementation of field widths (w) for numeric values differs from the
SAS implementation. For SAS software, w is generally an absolute specification for the
field width, and SAS software changes the formatting of the number to accommodate
the width (by doing such things as reducing precision and changing formats). For
numeric values in htmSQL, the w width specification is a minimum and is adjusted
upward, if necessary, to accommodate the numeric value and the precision specifier (d).

The htmSQL implementation of field widths (w) for character data is the same as the
SAS implementation. Both implementations indicate the exact number of characters to
format, either truncating or blank-padding as necessary.

zero
pads enough zeros on the left of numeric values to fill up the field width. Without the
zero format, numeric values are left-padded with blanks. The zero format is ignored
when either the left or exp formats are used.

Associated Formats

● When you refer to a column in a query results set, if you do not specify the format=

35

parameter but the column has one of the following formats associated with it, then
htmSQL uses the associated format to resolve the reference:

❍ w.d
❍ COMMAw.d
❍ COMMAXw.d
❍ DOLLARw.d
❍ DOLLARXw.d
❍ Ew.
❍ Zw.d

● When you refer to a column in a query results set, if the column has a date, time, or
datetime format associated with it, the following formats are used:

For date values:

Regardless of what date format your column has, htmSQL always outputs date
values as either ddMmmyy or ddMmmyyyy, where

■ dd is the day of the month
■ Mmm is the first three letters of the month of the year
■ yy and yyyy are the last two and four digits of the year, respectively

(depending on the value of the YEARDIGITS run-time configuration
option).

For time values:

Regardless of what time format your column has, htmSQL always outputs time
values as hh:mm:ss, where

■ hh is the hour of the day using a 24-hour clock
■ mm is the minute of the hour
■ ss is the second of the minute. Note that htmSQL does not handle

fractions of seconds.

For datetime values:

Regardless of what datetime format your column has, htmSQL always outputs
datetime values as ddMmmyy hh:mm:ss or ddMmmyyyy hh:mm:ss, where

■ dd is the day of the month

36

■ Mmm is the first three letters of the month of the year
■ yy and yyyy are the last two and four digits of the year, respectively

(depending on the value of the YEARDIGITS run-time configuration
option)

■ there are two spaces separating the date value and the time value
■ hh is the hour of the day using a 24-hour clock
■ mm is the minute of the hour
■ ss is the second of the minute. Note that htmSQL does not handle

fractions of seconds.

Note: If you want to use other date, time, or datetime formats, you can use the PUT()
function in your SQL query to change the format.

37

Invoking htmSQL

You can invoke htmSQL

● from the Web

❍ by creating an HTML form
❍ by specifying a URL for your Web page

● from the command line prompt.

From the Web

From your Web browser, you can either use an HTML form or specify a URL to invoke htmSQL.

Creating an HTML form

The HTML form must use the URL for your Web page as the value of the ACTION attribute of the HTML FORM element.
You can also use the optional METHOD attribute to specify the CGI method to use for sending form data:

<form action="http://yourserver/dir/executable_file/input-file" [method=get|post]>

● yourserver is your Web server host name (and port, if required).
● dir is the path of the Web server CGI program directory that contains htmSQL.
● executable_file is the htmSQL program name. For UNIX and z/OS, the program name is htmSQL. For

Windows, the program name is htmSQL.exe.
● input-file is your input file as a relative pathname under the Web server's root directory (which can include a

Web server alias).
● GET and POST are the two CGI methods for sending form data.

method=get
your Web browser sends the form data to the Web server as part of the URL. The Web server passes the
form data to htmSQL through the environment variable QUERY_STRING.

method=post
your Web browser sends the form data to the Web server as part of the body of the HTTP request. htmSQL
reads the form data from stdin.

On the form, use HTML INPUT elements to collect variable values. For the NAME attribute of the INPUT element, use the
same variable names that you use for your variable references. When the form is submitted, the Web browser automatically
generates the query string

var1=value1&var2=value2&...varN=valueN

from the form input and appends it to the URL that is specified by the ACTION attribute (for the GET method) or sends it
in the body of the HTTP request (for the POST method).

38

Note: Some Web servers can be configured to recognize an input file by its file extension and to automatically call the
appropriate CGI program to process the file. If your Web server can be configured this way, you can omit the path to
htmSQL when you specify the URL (that is, you can omit the dir and executable_file values). Consult your Web server
documentation for details on whether and how your server can be so configured.

Specifying a URL for your Web page

Specify the URL either on an existing Web page or on your Web browser command line. A URL for htmSQL must include
the pathname for an input file and must be of the form:

http://yourserver/dir/executable_file/input-file[?query-string]

● yourserver is your Web server host name (and port, if required).
● dir is the path of the Web server CGI program directory that contains htmSQL.
● executable_file is the htmSQL program name. For UNIX and z/OS, the program name is htmSQL. For

Windows, the program name is htmSQL.exe.
● input-file is your input file as a relative pathname under the Web server's root directory (which can include a

Web server alias).
● query-string specifies values for one or more of the variables that are referenced in the input file. This

parameter is optional. The variable name and value pairs are separated by ampersands (&) and are specified using
the following format:

var1=value1&var2=value2&...varN=valueN

Be sure to properly encode any nonalphabetic characters that are in the query string: spaces become plus signs (+)
and other characters are replaced by a percent sign (%) and the two-digit ASCII representation.

The following example shows a URL that is used to invoke htmSQL:

http://support.sas.com/cgi_bin/htmSQL/empdata.hsql?first=fname&last=lname&middle=mi

Note: Some Web servers can be configured to recognize an input file by its file extension and to automatically call the
appropriate CGI program to process the file. If your Web server can be configured this way, you can omit the path to
htmSQL when you specify the URL (that is, you can omit the dir and executable_file values). Consult your Web server
documentation for details on whether and how your server can be so configured.

From the command line prompt

The output that htmSQL generates is sent to stdout (usually your terminal display). You can capture the generated
output by redirecting stdout to a file. Use this method of invocation to test an htmSQL input file or to produce a static
page that contains SAS data.

The following is the syntax for the htmSQL command (parameters that are within square brackets ([]) are optional):

htmSQL input-file ["query-string"] [-rc config-file] [-dsf datasrc-file]

● input-file specifies the pathname for your input file.

● query_string specifies values for one or more of the variables that are referenced in the input file. The variable
name and value pairs are separated by ampersands (&) and are specified using the following format:

39

var1=value1&var2=value2&...varN=valueN

You do not need to encode nonalphabetic characters that are in the query string.

● -rc config-file specifies the pathname of the configuration file to use. You can name the file whatever you
want and locate the file in whichever path you choose. htmSQL will not run if the specified file cannot be opened.

This parameter is optional. For information on running htmSQL without explicitly specifying a configuration
pathname, see Specifying and Naming the Configuration File.

● -dsf datasrc-file specifies the pathname of the data source definition file. If you specify a simple filename,
htmSQL looks in the current directory for the file. This option overrides any data source definition file that is
specified in the configuration file. The file does not have to be named htmSQL.datasrc, htmSQL.dsf, or HTMSQL
DATASRC.

● the -rc and -dsf parameters can be placed anywhere after the htmSQL command name.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported on the
MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also applies to OS/390
and MVS, unless otherwise stated.

40

Configuring Your Web Server to Recognize htmSQL Input
Files

When you configure your Web server to recognize htmSQL input files, you no longer have to specify the pathname of the
htmSQL executable in the URL that you use for invoking htmSQL. For example, instead of the following URL

 http://support.sas.com/cgi-bin/htmSQL/myinput/myfile.hsql

you can use

 http://support.sas.com/myinput/myfile.hsql

and the Web server knows to automatically invoke htmSQL to process the input file.

The following sections provide some instructions on how to configure various Web servers to recognize htmSQL input files.

Note: This section discusses only servers that we have tested and is not an exhaustive discussion of the topic. If you
encounter problems when configuring your Web server or for more information about configuring your Web server, consult
your Web server documentation.

Apache

To configure the Apache Web server (version 1.1 or later), add the following lines to the srm.conf file. The lines that begin
with the pound sign (#) are comment lines that are already in the srm.conf file that is included in the Apache download
package.

 # AddHandler allows you to map certain file extensions to "handlers",
 # actions unrelated to filetype. These can be either built into the server
 # or added with the Action command (see below)
 # Format: AddHandler action-name ext1

 AddHandler htmSQL .hsql

 # Action lets you define media types that will execute a script whenever
 # a matching file is called. This eliminates the need for repeated URL
 # pathnames for oft-used CGI file processors.
 # Format: Action media/type /cgi-script/location
 # Format: Action handler-name /cgi-script/location

 Action htmSQL /cgi-bin/htmSQL

Peer Web Services and Internet Information Server (IIS)

Internet Information Server (IIS) 6.0

To set up htmSQL on IIS 6.0, complete the following steps within the IIS Administrator:

1. In IIS, right-click the individual Web site or the Web Sites folder, and then click Properties.
2. On the Home Directory tab, click Configuration.

41

3. Under Application Configuration, click Add, and then click the Mappings tab.
4. With the Add/Edit Application Extension Mapping dialog box open, click Browse to select the htmsql.exe file from

the local path on the Web server.

Note: You must type the path to a valid file in the Executable text box or the OK button remains unavailable. The
easiest way to ensure that you enter a valid path is to select the file by using the Browse button.

5. After the path appears in the Executable text box, click in the Executable text box to initialize the path.
6. Click in the Extension space, and then type .hsql as the filename extension.

Note: You must enter the period (.) in front of the extension in the Extension text box, or the OK button remains
unavailable.

7. Click OK.
8. Configure IIS to allow the hsql MIME type. This can be done by completing the following steps:

1. In the left window of the IIS Administrator, right-click your machine name and select Properties.
2. Add a MIME type of .hsql, application/octet-stream.

9. Right-click the directory where the htmsql.exe file is located (for example, cgi-bin) and allow scripts and executables.
If your IIS6 Web Server does not already have a scripts directory or a cgi-bin directory, you will need to
create one. After you create this directory, on the Virtual Directory tab, specify Scripts and Executables for the
value of Execution Permissions.

Some versions of IIS might have a check box called Execute (such as ISAPI applications or CGI). If you have this
selection, then the box should be checked.

10. Right-click the directory where the Web site is located (for example, MyWeb) and allow scripts and executables.
11. Enable Web Service Extensions for the htmsql.exe file. This can be done by completing the following steps:

1. In the left window of the IIS Administrator, select your machine name. Then select the Web Service
Extensions folder. The Web Service Extensions folder is under the folder that specifies the name of your
machine. For example, if your machine name is SUSAN2, then there should be three folders under SUSAN2
(called Application Pools, Web Sites, and Web Service Extensions).

2. Browse to the EXE for htmSQL and click Allow (to permit the htmsql.exe file to be executed). Otherwise, the
status will be DENY.

12. Start your Share server.

For more information about running CGI Tools on Microsoft IIS 6.0 Web Server, see SAS Note #23931 at support.sas.com/
kb.

Internet Information Server (IIS) 5.0 and Earlier, and Peer Web Services

To configure Microsoft Peer Web Services for Windows NT workstations or the Microsoft Internet Information Server (IIS)
for Windows NT servers, you must add two string values for the following key in the Windows registry on your Web server
machine:

 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\ScriptMap]

Use the Registry Editor (regedit) to add the following string values:

 ".hsql"="c:\directory_for_htmSQL_executable\htmSQL.exe"
 ".hsq"="c:\directory_for_htmSQL_executable\htmSQL.exe"

Ensure that you change directory_for_htmSQL_executable to the directory in which you installed htmSQL.

Note: You must also turn on the execute bit for the directory that contains the .hsq or .hsql files.

42

A Step-by-Step Guide to Creating an htmSQL Web
Page

The following steps guide you through the process of creating and displaying a Web page with htmSQL:

1. Construct your SQL statement. Decide whether you want to vary any part of it (that is, use variable
references). For example

select name, address, city, zip
 from def.mailresp
 where incr="{&incr}" and ager="{&ager}"
 order by city, zip

where incr and ager are variables that you define on the URL when you invoke htmSQL.

2. Decide how you want to organize the results--perhaps in a table or in a preformatted section.

3. Decide how you want your Web page to look and where you want to place the various elements of your
page (be sure to include titles, headings, images, and any query results).

4. If necessary, ask your Webmaster to add data sources to your data source definition file. To define a data
source, the Webmaster uses the dsdef program that is provided with htmSQL.

5. If you want to update data, use an update section in your input file. In the update section, include

❍ an SQL section that contains the SQL you wrote in step 1. The SQL keywords that are allowed in
an update section are ALTER, CREATE, DELETE, DROP, INSERT, and UPDATE.

❍ a success section that contains the steps to take if the SQL is processed with a return code of zero.

❍ an error section that contains the steps to take if the SQL is processed with a nonzero return code.

6. To perform a query and display data from the results set, use a query section at the location where you
want your query results to be displayed. In the query section, include

❍ an SQL section that contains the SQL you wrote in step 1. Use variable references for the parts
you want to vary, such as column values in a WHERE clause and column names in an ORDER
BY clause.

❍ an eachrow section that contains the text and HTML that is to accompany each row of the results
set (depending on what you decided in step 2). Use variable references in the appropriate places
for the columns you want to display.

■ If you want the results shown as preformatted text, the eachrow section should be

43

contained within an HTML PRE element.

■ If you want the results shown in an HTML table, the eachrow section should be contained
within an HTML TABLE element. Between {eachrow} and {/eachrow}, the row
details should be contained within an HTML TR element.

Continuing with the example:

{query datasrc="demos"}

{sql}
 select name, address, city, zip
 from def.mailresp
 where incr="{&incr}" and ager="{&ager}"
 order by city, zip
{/sql}

{eachrow}
{&name}

{&address}

{&city}, TX {&zip}<p>
{/eachrow}

{/query}

7. You can test your file by invoking htmSQL from a command line prompt and passing the file and any
required variables on the command line:

htmSQL mailres3.hsql "incr=20K to 39K&ager=30 to 39" > file1.out.html

where mailres3.hsql is the name of an input file.

The string that is enclosed within the quotation marks (") specifies values for the variables that are used
by the input file. See Invoking htmSQL for more information about htmSQL command line options.

You can then display file1.out.html in a Web browser to ensure that what htmSQL produced is what you
want.

8. After you test your input file, you can link to your new Web page

❍ from an HTML form, or
❍ by specifying the URL for your Web page either on an existing Web page or on your Web

browser command line.

You can see the complete example input file that is described on this page by visiting the following URL: www2.
sas.com/htmSQL/mailres3.txt.

44

Tips and Techniques for Using htmSQL

This page includes tips and hints that other users have found useful.

● Checking the version number
● Comparing floating point values
● Unique namespaces
● Using existing connections
● Using SAS formats and the PUT() function
● Using user-defined formats

Checking the Version Number

To find out which version of htmSQL you are running, invoke htmSQL without specifying an
input file. htmSQL displays the version number at the end of the usage page that it displays.

Comparing Floating Point Values

Numeric values in htmSQL are always represented as floating point values. When comparing
numeric values in htmSQL, you must ensure that the values you compare can be represented
exactly in floating point notation. That is, the value you specify must be able to remain the
same after going through conversions from binary floating point to string and vice versa (these
conversions are necessary for SQL functions). Some floating point values, namely fractions,
cannot be exactly reproduced following conversions.

Be aware that when you use the SAS TIME() and DATETIME() functions to generate your
time and date values, your generated values are likely to contain fractions because SAS dates
and times are stored as floating point values.

If you want to use a WHERE clause that compares fractional values or htmSQL variable
references with numeric columns that contain fractional values (for example, WHERE x=1.22
or WHERE x={&myfloat}), you can apply any of the following strategies:

● Truncate date and time values to integer values before you store them. Note that
htmSQL does not output the fractional part of dates and times.

45

● Use the PUT() function to change the floating point value into a different format before
you store it.

Unique Namespaces

For any given scope, there is one namespace for variable names (that is, there is only one list in
which variable names are stored). Each input file has a separate scope. Include files have
separate scopes so they also have separate namespaces.

If, in a query, you select a variable with the same name as a variable that was passed in on the
query string or that was selected in a previous query, then the original value of that variable is
replaced by your newly selected value.

It is also possible to overwrite the value of an automatic variable if you pass a value for an
automatic variable in the query string of a URL.

Using Existing Connections

htmSQL recognizes when a {query} directive uses the same parameters as the previous
{query} directive. Instead of making a new connection, htmSQL uses the existing
connection, which saves in execution time.

Using SAS Formats and the PUT() Function

If you want to format data using a SAS format that is not supported by htmSQL, you can use
the PUT() function in your SQL statement to specify that format. For example, if you want to
use the SAS mmddyy8. format to format a date, write an SQL statement like the following
SELECT statement:

 select put(datevar,mmddyy8.) as datevar ...

The value that is returned in the datevar variable is a character value in the mmddyy8.
format. You can then provide more formatting for the variable by using the format option.
For example,

 {&datevar format=left}

applies a format that htmSQL supports (left) onto the date variable.

Note that if you use the following select statement,

46

 select datevar format=mmddyy8...

htmSQL does not format the datevar variable using the mmddyy8. format. Instead a
numeric value is returned and is formatted using the default date format.

Using User-defined Formats

If you want to use a format that you yourself defined, then you must provide a libref definition
in the SAS program that starts your SAS server. For example:

 libname myfmts '/u/joeuser/formats';
 options fmtsearch=myfmts;
 .
 .
 .
 proc serverid=shr1...;

After you define your formats in this way, you can use the PUT() function to specify the
format in your SQL code.

47

Requirements

Before you can use htmSQL

● you must know your SAS data, be able to write valid SQL statements, and understand
HTML tags

● your Web server must run under UNIX, Windows, or z/OS
● your network must include a version of SAS software with licenses for

❍ SAS/SHARE software
❍ SAS/IntrNet software.

If your data is in an external DBMS, you must also have the SAS/ACCESS software for that
DBMS.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MVS, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MVS, unless otherwise stated.

48

The htmSQL Configuration File

The htmSQL configuration file contains the values for the htmSQL run-time configuration options.

● Specifying and naming the configuration file
● Customizing the configuration file

Specifying and Naming the Configuration File

htmSQL can run both with and without a configuration file. If you want it to run with a configuration file, htmSQL can
automatically locate your file if you follow our rules for naming and locating the file. Or if you need to name or locate the
file in a manner different from what is required, you can explicitly specify the file's pathname in either the -rc parameter
or the HTMSQL_CFG Web server environment variable.

If you want htmSQL to automatically locate your file, you must do both of the following:

● Name the configuration file

 executable_name.cfg

where executable_name is the name of the htmSQL executable file. For example, if the name of your htmSQL
executable file is htmSQL, then name the configuration file htmSQL.cfg. If the name of your htmSQL
executable file is htmSQL.exe, then you still name the configuration file htmSQL.cfg.

If you rename the executable file, then you must also rename the configuration file to match.

Note for UNIX users who are upgrading:

If you are upgrading from a previous release of htmSQL and your configuration file is named .htmSQLrc, then you
can keep that name (that is, you do not need to follow the above rule for naming the file).

● Put the configuration file in a location that htmSQL knows about. htmSQL looks for the configuration file

1. first in the current directory
2. then in the directory where the htmSQL executable file is located
3. and if it still cannot find the file, htmSQL looks in

■ /usr/local/lib/IntrNet/htmSQL (for UNIX and z/OS)
■ C:\Program Files\SAS Software (for Windows)

Note: If htmSQL does not find a configuration file, then it will run without a configuration file. If htmSQL finds a
configuration file but cannot open it, then htmSQL will not run.

If you want to give an explicit name and location ...

If you want to explicitly specify the name and location of your configuration file, then provide either a relative or absolute
pathname for one of the following:

49

● the -rc parameter when you run htmSQL from the command line
● the HTMSQL_CFG Web server environment variable.

You can name your configuration file whatever you want and locate the file in whichever path you choose.

Both of the values are optional, but if you specify both values, then the value of the -rc parameter takes precedence over
the value of the HTMSQL_CFG environment variable.

Note: If htmSQL cannot open the file, then htmSQL will not run.

Customizing the Configuration File

A default configuration file is downloaded with the htmSQL package. Modify the preset options to match your needs.

The syntax rules for the file are as follows:

● all options must be specified as option = value on a single line unless a continuation character is specified
● option names are not case sensitive
● whitespace around the option names and values is not significant
● blank lines are ignored
● any line that begins with !, #, or * is ignored.

The following configuration options are available:

● CONTENT-TYPE

● CONTINUATION

● DATASRCFILE

● EXPORT

● FULLHEADER

● INCLUDE

● LAST-MODIFIED

● NOINCLUDE

● PATHSEPARATOR

● PRAGMA

● READONLY

● REFRESH

● RELATIVE

● SET

● YEARDIGITS

Options

CONTENT-TYPE

The CONTENT-TYPE option specifies the string to be included in the Content-type HTTP header that is
output by htmSQL. If this option is not specified, the header defaults to text/html. If the option is specified with
no value, then no Content-type header is generated. For example

CONTENT-TYPE =

CONTINUATION

The CONTINUATION option specifies the list of continuation characters that can be used in your configuration file.
50

If the last non-blank character of the line is a continuation character, then at run time, the continuation character
(and all blank spaces that immediately precede and follow the continuation character) is replaced with the contents
of the next line (minus leading white space).

❍ If you continue an option value to the next line and the first character of the continued text is an !, #, or *,
do not place the character in column 1 because htmSQL will interpret it as a comment character and ignore
the rest of that line.

❍ The CONTINUATION option itself cannot be continued from one line to the next (that is, the
CONTINUATION option must be specified on a single line).

If the CONTINUATION option is not specified, then the continuation character defaults to the backward slash (\).

For example:

 CONTINUATION = +\,
 DATASRCFILE = /local/disk1/htmSQL/htmSQL.datasrc: \
 /local/disk1/htmSQL/alt.datasrc: +
 # /local/disk2/hr/apps/per.dsf: \
 /local/disk2/hr/apps/per2.dsf: ,
 /local/disk2/fac/apps/fac.datasrc

at run time is

 DATASRCFILE = /local/disk1/htmSQL/htmSQL.datasrc:/local/disk1/htmSQL/alt.
datasrc:
 /local/disk2/hr/apps/per2.dsf:/local/disk2/fac/apps/fac.datasrc

DATASRCFILE

The DATASRCFILE option specifies the pathnames of one or more data source definition files to use. If this option
is not specified, then the pathname defaults to

❍ /usr/local/lib/IntrNet/htmSQL/htmSQL.datasrc (for UNIX and z/OS)
❍ C:\Program Files\SAS Software\htmSQL.dsf (for Windows).

If you specify more than one data source definition file, then specify a path separator character between the
pathnames. (Path separator characters are listed in the PATHSEPARATOR option.) htmSQL loads the definitions
from the files in the order they are specified; if the same data source or SAS/SHARE server is specified in two files,
then the later definition overrides the earlier one.

Some examples:

For UNIX and z/OS:

 DATASRCFILE = /usr/local/SAS/htmSQL/data_sources
 DATASRCFILE = /local/htmSQL/htmSQL.datasrc:/local/htmSQL/alt.datasrc

For Windows:

 PATHSEPARATOR = ;
 DATASRCFILE = c:\htmSQL\mydata.src
 DATASRCFILE = c:\htmSQL\mydata.src;c:\htmSQL\yourdata.src

51

EXPORT

The EXPORT option enables the Webmaster to make Web server environment variables available as htmSQL
variables. The default htmSQL configuration file that comes with the htmSQL package exports the following
environment variables. The Webmaster can add to or delete from this list:

EXPORT = HTTP_USER_AGENT, REMOTE_ADDR, REMOTE_HOST, REMOTE_USER

Although htmSQL variable names are not case sensitive, environment variable names are case sensitive. The
Webmaster must specify the proper case when referring to a variable in the EXPORT option, but anyone creating an
htmSQL input file can use uppercase, lowercase, or a combination of the two cases.

Note: Because htmSQL does not distinguish between upper- and lowercase, the Webmaster can export only one
environment variable whose case-normalized name is a given sequence of characters (for example, you cannot
export both the HOME and the home environment variables).

FULLHEADER

The FULLHEADER option specifies whether htmSQL generates a complete set of HTTP headers. This option is
intended for Web servers that require CGI programs to generate a full set of HTTP headers (typically, the Web
server generates these header lines).

The values for this option are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant).

When the value of FULLHEADER is YES, Y, TRUE, or T or if no value is specified, then htmSQL generates a
complete set of HTTP headers, which consists of the following lines:

 HTTP/1.0 200 OK
 MIME-Version: 1.0

plus the Content-type HTTP header, as indicated by the CONTENT-TYPE option. If the CONTENT-TYPE
option is specified with no value, then the FULLHEADER option is ignored.

When the value of FULLHEADER is NO, N, FALSE, or F or if the option is not specified, then the complete set of
headers is not generated.

INCLUDE

The INCLUDE option specifies a list of filename patterns. The patterns are specified with path separator characters
in between them. Any input filename must match at least one of the patterns in the list. If this option is not
specified, input filenames are not required to match any pattern. If both this option and the NOINCLUDE option are
specified, any input file must match at least one pattern in the INCLUDE list and must not match any pattern in the
NOINCLUDE list. The following example allows only files whose names end in .hsql or .hsq:

INCLUDE = *.hsql:*.hsq

LAST-MODIFIED

The LAST-MODIFIED option specifies whether htmSQL generates a Last-Modified HTTP header, which
shows the date and time at which htmSQL executes.

52

The values for this option are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant).

When the value of LAST-MODIFIED is YES, Y, TRUE, or T or if the option is not specified or is specified without
a value, then a Last-Modified header is generated.

If the value is NO, N, FALSE, or F, the header is not generated.

Example:

LAST-MODIFIED = TRUE

NOINCLUDE

The NOINCLUDE option specifies a list of filename patterns. The patterns are specified with path separator
characters in between them. Any input filename must not match any of the patterns in the list. If this option is not
specified, then the value defaults to an empty list. If both this option and the INCLUDE option are specified, any
input file must match at least one pattern in the INCLUDE list and must not match any pattern in the NOINCLUDE
list. The following example disallows any input file whose name begins with local or etc or includes a subdirectory
named "private":

PATHSEPARATOR = ;
NOINCLUDE = c:\local*;c:\etc*;c:*\private*

PATHSEPARATOR

The PATHSEPARATOR option specifies the list of characters that can be used to separate pathnames or path
patterns in the values of the INCLUDE, NOINCLUDE, and DATASRCFILE options.

Specifying one separator character between pathnames and patterns is sufficient, although you are allowed to
specify more than one character. For example,

PATHSEPARATOR = ;
INCLUDE = *.hsq;*.hsql;;*.html

If this option is not specified, then the path separator character defaults to the colon (:).

PRAGMA

The PRAGMA option specifies the string to be included in the Pragma HTTP header that is output by htmSQL. If
the PRAGMA option is not specified or is specified without a value, then the Pragma header is not generated.

Example:

PRAGMA = no-cache

READONLY

The READONLY option specifies whether the SQL UPDATE, INSERT, DELETE, CREATE, DROP, and ALTER
statements are allowed in htmSQL input files.

The values for this option are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant). Specify YES, Y,
TRUE, or T to prevent users from using these SQL statements. If the READONLY option is not specified, then the

53

statements are allowed.

Example:

READONLY = YES

REFRESH

The REFRESH option specifies the string to be included in the Refresh HTTP header that is output by htmSQL.
When the Web browser receives the Refresh header, it automatically reloads the document after a delay of a
specified number of seconds. When you specify the REFRESH option, you must specify the number of seconds that
the Web browser delays. You can optionally specify a URL that designates an alternate Web page to load at time of
refresh.

If the REFRESH option is not specified or is specified without a value, then the Refresh header is not generated.

Some examples:

REFRESH = 3
REFRESH = 3,URL=http://support.sas.com

Note that you can achieve the same refresh effect (on Web browsers that support them) on a per-page basis by
including an HTML META element in the htmSQL input file.

For example:

<META HTTP-EQUIV="Refresh" CONTENT="3;URL=http://support.sas.com">

RELATIVE

The RELATIVE option specifies whether the relative pathnames of included input files are specified with respect to
the location of the calling input file or with respect to the working directory. By default, htmSQL treats relative
pathnames of included input files as being relative to that of the calling input file (a value of CALLING). If you
want to change the default so that htmSQL regards the pathname as being relative to the working directory, then
specify a value of WORKING. For example,

RELATIVE = WORKING

SET

The SET option enables you to specify default values for variables. You can specify one or more variable name and
value pairs. The pairs are separated by ampersands (&) and are specified using the following format:

SET var1=value1&var2=value2&...varN=valueN

The values can contain URL-encoded data.

You can specify multiple instances of the SET option in a configuration file. For example

SET var1=value1&var2=value2
SET var3=value3

54

YEARDIGITS

The YEARDIGITS option specifies the number of digits that htmSQL uses in the year portion of its date and
datetime formats. You can specify a value of either 2 or 4. For example,

YEARDIGITS = 4

If this option is not specified, then the value of YEARDIGITS defaults to 2. Note that this option also affects
certain automatic variables.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported on the
MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also applies to OS/390
and MVS, unless otherwise stated.

55

Defining a Data Source

A data source identifies a SAS/SHARE server that htmSQL can get data from. A data source definition can also
include SAS data libraries or an external database management system (DBMS) that htmSQL accesses through that
server.

After the Webmaster defines a data source, an htmSQL programmer can access it by specifying its name in the query
or update section of an htmSQL input file.

Creating a Data Source Definition File

A program called dsdef is supplied with htmSQL. Use dsdef to define data sources for htmSQL. dsdef prompts the
user for data source information and then creates or updates a data source definition file. For invocation and syntax
information about dsdef, see Instructions for Invoking dsdef.

Note: The data source definition file should be modified only by the Webmaster. The file could be corrupted if it is
simultaneously modified by multiple people.

Using dsdef

dsdef prompts for information about data sources, SAS data libraries, and SAS/SHARE servers. If the data source,
library, or server that you specify was defined previously, dsdef puts the existing attribute values in square brackets
([]) next to the prompts for new values. You can accept the existing value by not entering a new value and pressing
the Enter key.

The following dialog box is generated by dsdef. To get more information about each step, select the number that
precedes the prompt.

Note: User input is indicated by bold print.

 1 SystemPrompt> dsdef<return>

 Configure data sources for htmSQL
 =================================

 Use this program to create or modify the definition of one or more data
 sources for htmSQL.

 A data source specifies exactly one SAS/SHARE server and may also specify
 one or more SAS data libraries or an external DBMS to be accessed through
 the server.

 Data source names can be any length and can contain any character except a
 double quote ("). They are case sensitive and must be entered in an htmSQL

56

 input file exactly as they are defined.

 In the dialog that follows, default or previously specified values are shown
 in square brackets ([]); to accept such a value, press return or enter.
 The only required values in a data source definition are the data source
 name and server name. You can omit all other values by press return or
 enter when you are prompted for them.

 When you have finished defining data sources, you can save your changes
 by pressing return or enter at the 'Enter a Data Source Name' prompt.
 You can cancel your changes by entering a 'c' instead.

 2 Enter a Data Source Name to configure: datasrc1<return>

 Enter information for: datasrc1

 3 Description: sample data source<return>

 4 SAS/SHARE server name (host.service): node1.server1<return>

 5 Require SAS SQL processor to undo partial updates? (usually NO): <return>

 6 DBMS to pass SQL to (omit for SAS data): <return>

 7 Options to pass when connecting to DBMS: <return>

 Enter information for: Server node1.server1

 8 SAS/SHARE server host IP name (fully qualified) or address [node1]: <return>

 9 User ID for SAS/SHARE server host: <return>

10 Password for specified user ID: <return>

11 SAS/SHARE server user access password: pword<return>

12 Enter a library in data source "datasrc1" to configure: userlib1<return>

 Enter information for: datasrc1 USERLIB1

13 Description: a sample library<return>

14 Library path name: sasuser/<return>

15 SAS engine the SAS/SHARE server should use: <return>

16 Options (only ACCESS=READONLY and SLIBREF=server-libref supported): <return>

17 Enter a library in data source "datasrc1" to configure: <return>

18 Enter a Data Source Name to configure: datasrc2<return>

 Enter information for: datasrc2

 3 Description: sample data source 2<return>

 4 SAS/SHARE server name (host.service): node1.server1<return>

57

 5 Require SAS SQL processor to undo partial updates? (usually NO): <return>

 6 DBMS to pass SQL to (omit for SAS data): <return>

 7 Options to pass when connecting to DBMS: <return>

19 Do you want to update configuration for server node1.server1? <return>

17 Enter a library in data source "datasrc1" to configure: <return>

18 Enter a Data Source Name to configure: <return>

A Step-by-Step Explanation of dsdef

The following steps explain the information that you must provide to the dsdef program.

1. At the system command line prompt, enter dsdef. If you want to save your data source definition file in a
directory other than the default directory, you must specify the -config option and the pathname for the file.
The following example illustrates this:

dsdef -config c:\htmSQL\mydata.dsf

If -config is not specified, the definition is written to a default pathname. If the definition file already
exists, it is updated; otherwise, it is created.

Note: To end the program, enter c to cancel without saving or press the Enter key to save your data source
information and then end the program. Depending on where you are in the program, you might need to press
the Enter key more than once to completely exit the program.

2. At the Enter a Data Source Name to configure: prompt, enter the name of your data source.
This is the value you specify for the datasrc= parameter of the {query} or {update} directive that you
specify in your htmSQL input (.hsql) file.

A data source name can be of any length and can contain any character (including blank spaces) except for the
following characters: []{}()"?*=!@,:;. Use a name that you can remember and type accurately. Note that
case is significant in data source names.

3. At the Description (): prompt, enter a description of the data source. This value is optional. The
description can be up to 1024 characters long.

4. At the SAS/SHARE server name (host.service): prompt, enter the name of the SAS/SHARE
server for this data source. Specify a two-part name (host.service or host.port), where

❍ host is the node name of the machine where the server runs

❍ service is the service name that is specified

■ when the SAS/SHARE server is defined as a service in the TCP/IP SERVICES file

■ for the ID= option of the PROC SERVER statement that is used to define the SAS/SHARE server

❍ port is the port number of the SAS/SHARE server.

58

Note: If you use a port number to identify a SAS/SHARE server, then you do not need to modify the
SERVICES file on the Web server machine.

This two-part name is the same name that you specify in a LIBNAME or PROC SQL CONNECT TO
statement in a SAS program.

5. At the Require SAS SQL processor to undo partial updates? (usually NO): prompt,
specify the setting for the UNDO_POLICY option of the SAS SQL processor. The following values are valid:

n, N, no, or NO (default value)

resets the UNDO_POLICY to NONE. NONE specifies that if the UPDATE or INSERT of a row fails,
then any rows that were updated or inserted by that SQL statement (before the failure) remain inserted
or updated.

y, Y, yes, or YES

retains the default value (REQUIRED) of UNDO_POLICY. REQUIRED specifies that if the UPDATE
or INSERT of a row fails, then any rows that were updated or inserted by that SQL statement (before
the failure) are undone.

6. At the DBMS to pass SQL to (omit for SAS data): prompt, if your data is in an external
DBMS, specify the SAS/ACCESS engine for the DBMS. Example values are DB2, ORACLE, and SQLDS. If
your data is in a SAS library, do not specify a value.

7. At the Options to pass when connecting to DBMS: prompt, enter any options that are required
for connecting to the external DBMS. The exact options that are available and the exact option names depend
on the DBMS that you specify for step 6 and for the SAS/ACCESS view engine for that DBMS. The
connection options correspond to the DBMS arguments that are documented in the SQL Procedure Pass-
Through facility's documentation for that SAS/ACCESS view engine. Example values are USERID=userid
and PASSWORD=password, where userid and password are the user ID and password for the DBMS.

8. At the SAS/SHARE server host IP name (fully qualified) or address [node1]:
prompt, enter the server's nodename. If you do not enter a nodename, this value defaults to the nodename that
you specified in step 4 (in this example, node1 is the default value). In a complex environment, you might
need to specify a fully qualified domain address for the server such as server1.unx.sas.com.

9. At the User ID for SAS/SHARE server host: prompt, enter a user ID for the system that the server
runs on. This is an optional value that you specify if the server is running in secured mode; otherwise, the value
is ignored.

If you omit the user ID from the data source definition, the htmSQL programmer must specify the user ID in
the htmSQL input file by using the userid= parameter of the {query} or {update} directive.

10. At the Password for specified user ID: prompt, enter the password for the user ID that you
specified in step 9. This is an optional value that you specify if the server is running in secured mode;
otherwise, the value is ignored.

If the server is running in secured mode and you omit the password from the data source definition, the
htmSQL programmer must specify the password in the htmSQL input file by using the password= parameter
of the {query} or {update} directive.

11. At the SAS/SHARE server user access password: prompt, enter the server access password for
users. This is an optional value. This must be the same password that is specified in

59

❍ the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE server. You
must specify a password if user access to the server is password protected.

❍ the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO statement.
12. If the SAS library that contains your data is not predefined to the SAS/SHARE server, then at the Enter a

library in data source "datasrc1" to configure: prompt, enter a libref for the library.
htmSQL programmers use this libref as the high-level qualifier for the table names in the SQL queries and
statements that their applications send to the SAS/SHARE server. Steps 13 through 16 request additional
information about this library.

The library name can be up to eight characters long. The first character must be a letter or an underscore.
Subsequent characters can be letters, numeric digits, or underscores. Blanks and special characters are not
allowed.

13. At the Description (): prompt, enter a description of the library. This value is optional. The description
can be up to 1024 characters long.

14. At the Library path name: prompt, enter the physical name of the library. This must include a valid
pathname for the operating system in which your server library is stored.

15. At the SAS engine the SAS/SHARE server should use: prompt, specify the SAS engine that is
required for writing to and reading from this server library. This option is required only if you do not want the
SAS/SHARE server to use the engine that the server selects by default. For information about other engines,
see the description of the LIBNAME statement in the SAS companion for the operating system in which your
server library is stored.

16. At the Options (only ACCESS=READONLY and SLIBREF=server-libref supported):
prompt, specify one or both of the following values (these values are optional):

SLIBREF=server-libref
specifies the server's library reference name for the library.

ACCESS=READONLY
gives users read-only access to the SAS data sets in the library.

17. At the Enter a library in data source "datasrc1" to configure: prompt, you can
either enter the name of another server library or you can press the Enter key if you do not want to add any
more libraries to this data source.

Note: If you do specify another library, dsdef takes you through steps 13 through 16 for that library. If you do
not specify another library, dsdef proceeds to step 18.

18. At the Enter a Data Source Name to configure: prompt, you can either enter the name of
another data source or you can press the Enter key if you do not want to add any more data sources.

Note: If you do specify another data source, dsdef takes you through steps 3 through 7 for that data source. If
you do not specify another data source, the dsdef program ends.

19. If in step 4 you specify a SAS/SHARE server that is already defined for the data source, dsdef prompts to see
whether you want to update the server configuration information. You can either enter yes or press the Enter
key for no.

Note: If you do specify yes, dsdef takes you through steps 8 through 11 so you can update the information for
that server. Otherwise, dsdef proceeds to step 12.

60

Instructions for Invoking dsdef

dsdef is a line-mode configuration program that defines data sources for use with htmSQL. It
enables you to configure data sources and the SAS/SHARE servers and libraries that you
include in the data sources.

Syntax: dsdef -config pathname

-config pathname (optional)
pathname specifies the pathname (including the filename) for the data source
definition file. You can use -c as an alias for -config.

The definition information is written to the definition file specified by the -config
option. If -config is not specified, the definition is written to a default pathname of

❍ /usr/local/lib/IntrNet/htmSQL/htmSQL.datasrc (for UNIX and z/OS)
❍ C:\Program Files\SAS Software\htmSQL.dsf (for Windows).

If you name your definition file something other than the default pathname, you must
specify the following line in the htmSQL configuration file

 datasrcfile = pathname

where pathname is the full pathname of your data source definition file.

If the definition file already exists, it is updated; otherwise, it is created.

Note: The directory for the data source definition file must exist before you invoke
dsdef; otherwise, no file is created.

Examples

For UNIX and z/OS:

dsdef -config /usr/local/data_source/employee.data_source
dsdef -c /myfiles/financial.datasrc

For Windows:

61

dsdef -config c:\mydata\datasources\personal.dsf
dsdef -c m:\network\central\datasources\mis.datasource

For a detailed description of the dsdef dialog box, see Using dsdef.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MVS, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MVS, unless otherwise stated.

62

Configuring TCP/IP

htmSQL uses TCP/IP to communicate with a SAS/SHARE server. To enable communication
between your Web server and a SAS/SHARE server through TCP/IP, you must perform the
following configuration steps:

● Specify one of the following options on the SAS command or in an OPTIONS
statement when you start the SAS/SHARE SERVER procedure (PROC SERVER):

❍ COMAMID=TCP
❍ COMAUX1=TCP.

● Define the SAS/SHARE server in the TCP/IP SERVICES file that is on the SAS/
SHARE server machine and on the Web server machine.

Note: If you use a port number to identify a SAS/SHARE server, then you do not need
to modify the SERVICES file on the Web server machine.

❍ For UNIX and z/OS, the SERVICES file is

/etc/services

❍ For Windows NT and Windows 2000, the SERVICES file is

%SYSTEMROOT%/system32/drivers/etc/SERVICES

where %SYSTEMROOT% is the directory where Windows NT is installed.

Each entry in the SERVICES file associates a service name with the port number and
communications protocol that are used by that service. For htmSQL, use the name of the
SAS/SHARE server as the service name. An entry for a SAS/SHARE server has the
form

<server-name> <port number>/tcp # <comments>

The server name must be 1-8 characters long and is generally case sensitive. The first
character must be a letter or underscore; the remaining seven characters can include
letters, digits, underscores, the dollar sign ($), or the at sign (@). You specify this same
server name when you define the server for your data source (either in the data source
definition file or in the server= parameter of the {query} or {update} directive).

63

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MVS, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MVS, unless otherwise stated.

64

Getting Started Exercises

The following exercises illustrate the steps that your organization must follow to install
htmSQL and run htmSQL applications. The first exercise requires no data source definition file
and does not require that you modify the TCP/IP SERVICES file on your Web server machine.

Notes:

● Our exercises assign each step to either the Webmaster or the programmer. However,
depending on the way your organization is set up, you might have other people
performing the tasks.

● For more htmSQL samples, see your htmSQL administrator for the URL of the samples
that are installed with the htmSQL software. The default URL is

 http://yourserver/sasweb/IntrNet9/htmSQL/samples.html

where yourserver is your Web server host name.

Exercise 1: The Basics

In the samples directory, we provide an example htmSQL input file (retail1.hsql) that you can
modify and use. This exercise shows how to customize and run the example file.

Note: You do not need to save the example htmSQL input file that is shown in this
documentation. All of the example files in these exercises are supplied in the samples directory.

1. Webmaster: Install htmSQL by following the instructions in the README file that is
in the download package.

2. Webmaster: Define your SAS/SHARE server in the TCP/IP SERVICES file on the
SAS/SHARE server machine.

3. Webmaster: Ensure that a SAS/SHARE server is running. The following SAS
commands can be used to start a SAS/SHARE server. Our exercise uses an example
value of shr10 for the server ID; replace shr10 with the service name that you
defined in step 2.

65

 options comamid=tcp;

 proc server id=shr10;
 run;

4. Programmer: Edit the {query} directive in the example input file that is in the
samples directory:

❍ Change sampnode.pc.sas.com to the IP name of the SAS/SHARE server
machine.

❍ Change 5000 to the port number that is assigned to the service name that you
defined in step 2.

In our exercise, the SAS/SHARE server, shr10, is running on sampnode.pc.sas.
com. Service shr10 is assigned to port 5000.

5. Programmer: Invoke htmSQL to process the example input file. To run our example
from the command line, change to the samples directory and issue the following
command:

 htmSQL retail1.hsql param=1992

Exercise 2: Something More Advanced

In the samples directory, we also provide two files that demonstrate how to use a data source
definition with htmSQL. This example htmSQL input file (retail2.hsql) and example data
source definition file (retail.datasrc for UNIX and z/OS and retail.dsf for Windows) perform
the same task as the input file in exercise 1 but give you the ability to centralize the definition
of your data.

Note: You do not need to save the example htmSQL input file and data source definition file
that are shown in this documentation. All of the example files in these exercises are supplied in
the samples directory.

1. Webmaster: Install htmSQL by following the instructions in the README file that is
in the download package.

2. Webmaster: Define your SAS/SHARE server in the TCP/IP SERVICES file on both

66

the SAS/SHARE server machine and on the Web server machine.

3. Webmaster: Ensure that a SAS/SHARE server is running. The following SAS
commands can be used to start a SAS/SHARE server. Our exercise uses an example
value of shr10 for the server ID; replace shr10 with the service name that you
defined in step 2.

 options comamid=tcp;

 proc server id=shr10;
 run;

4. Webmaster: Modify the example data source definition file that is in the samples
directory (you can use a text editor to make these changes):

❍ Change sampnode.pc.sas.com to the IP name of the SAS/SHARE server
machine.

❍ Change all occurrences of sampnode.shr10 to node.service where

■ node is the node name of the server machine

■ service is the service name that is specified in the TCP/IP SERVICES file
in step 2 (which is also the value for the ID= option of the PROC
SERVER statement in step 3).

In our exercise, the SAS/SHARE server, shr10, is running on sampnode.pc.sas.
com.

5. Programmer: Invoke htmSQL to process the example input file. To run our example
from the command line, change to the samples directory and issue one of the following
commands:

For UNIX and z/OS:

 htmSQL retail2.hsql param=1992 -dsf retail.datasrc

For Windows:

 htmSQL retail2.hsql param=1992 -dsf retail.dsf

67

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/
OS is supported on the MVS, OS/390, and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390 and MVS, unless otherwise stated.

68

retail1.hsql Sample Input File

{*--*}
{* Note: You do not need to save this file from your Web browser. *}
{* This file is available in the htmSQL "samples" subdirectory. *}
{* *}
{* This input file produces a Web page that lists sales information *}
{* that is stored in the 'retail' SAS data set of the SASHELP library.*}
{*--*}

<HEAD><TITLE>htmSQL: Retail Data</TITLE></HEAD>
<BODY BGCOLOR="FFFFFF">

{*--*}
{* The following section queries the SAS server that is identified by *}
{* the server= parameter and dynamically generates the sales *}
{* information.
*}
{*--*}

{query server="sampnode.pc.sas.com:5000"}
{sql}
select sales,date,year,month,day
from sashelp.retail where
year = {&PARAM}
{/sql}

{*--*}
{* We use a table to show the sales information. *}
{*--*}

<TABLE BORDER=1 ALIGN=LEFT>
 <TR>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Sales</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Date</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Year</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Month</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Day</TH>
 </TR>

{*--*}
{* Each row of our results set corresponds to a row in the table *}
{*--*}

 {eachrow}

69

 <TR>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&sales}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&date}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&year}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&month}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&day}</TD>
 </TR>
 {/eachrow}
</TABLE>

{*--*}
{* End the query section. *}
{*--*}

{/query}
</BODY>

70

Sample Data Source File

{*--*}
{* Note: You do not need to save this file from your Web browser. *}
{* This file is available in the htmSQL "samples" subdirectory. *}
{* *}
{* This input file produces a Web page that lists sales information *}
{* that is stored in the 'retail' SAS data set of the SASHELP library.*}
{*--*}

<HEAD><TITLE>htmSQL: Retail Data</TITLE></HEAD>
<BODY BGCOLOR="FFFFFF">

{*--*}
{* The following section queries the SAS server that is identified by *}
{* the data source and dynamically generates the sales information.
*}
{*--*}

{query datasrc="retail"}
{sql}
select sales,date,year,month,day
from sashelp.retail where
year = {&PARAM}
{/sql}

{*--*}
{* We use a table to show the sales information. *}
{*--*}

<TABLE BORDER=1 ALIGN=LEFT>
 <TR>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Sales</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Date</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Year</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Month</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Day</TH>
 </TR>

{*--*}
{* Each row of our results set corresponds to a row in the table *}
{*--*}

 {eachrow}
 <TR>

71

 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&sales}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&date}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&year}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&month}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&day}</TD>
 </TR>
 {/eachrow}
</TABLE>

{*--*}
{* End the query section. *}
{*--*}

{/query}
</BODY>

72

retail2.hsql Sample Input File

*---
*
* Notes about this sample htmSQL data source file.
*
* o You do not need to save this file from your Web browser.
* This file is available in the htmSQL "samples" subdirectory.
*
* o This data source definition file specifies one data source
* named 'retail'.
*
* o The retail data source specifies the SAS/SHARE server
* 'sampnode.shr10'.
*
* o The server name is derived as follows:
*
* The SAS/SHARE server is running on sampnode.pc.sas.com
* (machine name). The id (which is also the TCP/IP service
name)
* is shr10. The following job is running on
* sampnode.pc.sas.com:
*
* options comamid=tcp;
* proc server id=shr10;
* run;
*
* o A data source definition file can include one or more
* libraries. However, because the library we are using,
* SASHELP, is already predefined to the server, you do
* not need to define it in the data source file.
*
* o Note that the 'retail' data source is referenced in
* the associated 'retail.hsql' file. Similarly, the 'sashelp'
* library is also referenced in 'retail.hsql'.
*
*---

* --
* Identify Data Sources
*
* In this example, the data source is named 'retail'.

73

*
* --

Data Source Name:retail=sas

* --
* Define Method
* --

Method tcp:COMMEXE=wqetcp
Methods:tcp=

* --
* Define Server
*
* In this example, the server is called 'sampnode.shr10'.
*
* --

Server sampnode.shr10:AM=tcp
Server sampnode.shr10:SASSHARE=yes
Server sampnode.shr10:Server Version=6
Server sampnode.shr10:ServerAddress=sampnode.pc.sas.com
Server sampnode.shr10:TraceFlags=0
Servers:sampnode.shr10=

* --
* Define Data Sources
*
* In this example, the data source is named 'retail'.
* Note that this data source is identified under the
* 'Identify Data Sources' section of this file.
*
* --

retail:Description=Retail Data Source
retail:Server=sampnode.shr10
retail:UndoRequired=y

74

	Table of Contents
	About htmSQL
	How It Works
	Input Files
	Syntax
	User IDs and Passwords
	Automatic Variables
	Formats
	Invoking
	Configuring for Input File Recognition
	Creating a Web Page
	Tips and Techniques for Using htmSQL
	Requirements
	Configuration File
	Defining a Data Source
	Invoking dsdef
	Configuring TCP/IP
	Getting Started Exercises
	retail1.hsql Sample Input File
	Sample Data Source File
	retail2.hsql Sample Input File

