
SAS/GRAPH® 9.2
Graph Template Language
User’s Guide
Second Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS/GRAPH® 9.2: Graph Template Language User's Guide, Second Edition. Cary, NC: SAS Institute
Inc.

SAS/GRAPH® 9.2: Graph Template Language User's Guide, Second Edition

Copyright © 2009, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-60764-387-6

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and
related documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, September 2009

1st printing, September 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing

Contents
Chapter 1 • ODS Graphics . 1

Overview of ODS Graphics . 1
Automatic Graphics from SAS Analytical Procedures . 2
Modifying Templates for Automatic Graphs . 2
The ODS Graphics Editor . 2
Creating Graphs Using SAS/GRAPH Statistical Graphics Procedures 3
The Graph Template Language . 3
ODS Graphics and SAS/GRAPH . 5
Sample of ODS Graphics Output . 6

Chapter 2 • Quick Start . 9
Steps for Creating a Graph Using GTL . 9
About the Examples in this Documentation . 9
Creating a Graph Template . 10
Executing the Template to Produce the Graph . 13
Managing the Graphical Output . 14

Chapter 3 • Overview of Basic Statements and Options . 19
Introduction to GTL Statements . 19
Categories of Statements . 21
Features Supported by Layout, Legend, and Text Statements . 31
Features Supported by Many Plot Statements . 33

Chapter 4 • Using a Simple Single-cell Layout . 39
The LAYOUT OVERLAY Statement . 39
Common Overlay Combinations . 40
How Plots are Overlaid . 47

Chapter 5 • Managing Axes in an OVERLAY Layout . 53
Introduction to Axis Management . 53
Axis Terminology . 54
How Plot Statements Affect Axis Construction . 55
Specifying Axis Options . 58
Default Axis Construction and Related Options . 59
LINEAR Axes . 69
TIME Axes . 72
LOG Axes . 75
Axis Line versus Wall Outline . 79
Axis Appearance Features Controlled by the Current Style . 81

Chapter 6 • Managing Graph Appearance: General Principles . 83
Default Appearance Features in Graphs . 83
Evaluating Supplied Styles . 85
Attributes as Collections of Related Options . 88
Appearance of Non-grouped Data . 92
Appearance of Grouped Data . 94
Using Custom Styles to Control the Appearance of Grouped Data 95
Making the Appearance of Grouped Data Independent of Data Order 97
Recommendations . 99

Chapter 7 • Adding and Changing Text in a Graph . 101

Text Strings in Graphs . 101
Text Properties and Syntax Conventions . 103
Text Statement Basics . 105
Managing the String on Text Statements . 107
Using Options on Text Statements . 110
ENTRY Statements: Additional Control . 113

Chapter 8 • Adding Legends to a Graph . 117
Introduction to Legend Management . 117
General Legend Features . 121
Features of Discrete Legends . 128
Features of Continuous Legends . 137

Chapter 9 • Using a Simple Multi-cell Layout . 143
The LAYOUT GRIDDED Statement . 143
Defining a Basic Grid . 144
Building a Table of Text . 148
Sizing Issues . 150

Chapter 10 • Using an Advanced Multi-cell Layout . 155
The LAYOUT LATTICE Statement . 155
Defining a Basic Lattice . 158
Creating Uniform Axes Across Rows or Columns . 164
Defining a Lattice with Additional Features . 169
Adjusting the Graph Size . 182

Chapter 11 • Using Classification Panels . 185
Introduction . 185
Organizing Panel Contents . 191
Setting Panel Axis Features . 198
Controlling the Classification Headers . 202
Using Sidebars . 204
Controlling the Interactions of Classifiers . 206
Using Non-computed Plots in Classification Panels . 217
Adding an Inset to Each Cell . 219
Using PROC SGPANEL to Create Classification Panels . 221

Chapter 12 • Using an Equated Layout . 225
The LAYOUT OVERLAYEQUATED Statement . 225
Basic Display Features of Equated Plots . 227

Chapter 13 • Using 3D Graphics . 233
The LAYOUT OVERLAY3D Statement . 233
Basic Display Features of 3D Graphs . 234
Data Requirements for 3D Plots . 238

Chapter 14 • Using Dynamics and Macro Variables to Make Flexible Templates 251
Introduction to Dynamics and Macro Variables . 251
Declaring Dynamics and Macro Variables . 251
Referencing Dynamics and Macro Variables . 252
Initializing Dynamics and Macro Variables . 253

Chapter 15 • Using Conditional Logic and Expressions . 259
Constructs Available for Runtime Programming . 259
Expressions . 259
Functions . 261

iv Contents

Conditional Logic . 265

Chapter 16 • Adding Insets to a Graph . 271
Uses for Insets in a Graph . 271
Creating a Simple Inset with an ENTRY Statement . 272
Creating an Inset as a Table of Text . 273
Positioning an Inset . 275
Creating an Inset with Values that are Computed in the Template 278
Creating an Inset from Values that are Passed to the Template 280
Adding Insets to a SCATTERPLOTMATRIX Graph . 285
Adding Insets to Classification Panels . 288
Creating an Axis-Aligned Inset with a Block Plot . 293

Chapter 17 • Managing the Graph Appearance with Styles . 299
ODS Style Templates . 299
Changing Fonts in a Style Template . 302
Controlling ODS Search Paths . 304
Changing Boxplot Display . 306

Chapter 18 • Executing Graph Templates . 311
Techniques for Executing Templates . 311
Minimal Required Syntax . 312
Managing the Input Data . 313
Initializing Template Dynamics and Macro Variables . 314
Managing the Output Data Object . 316

Chapter 19 • Managing Graphical Output . 319
Introduction . 319
SAS Registry Settings for ODS Graphics . 320
ODS Destination Statement Options Affecting ODS Graphics 321
ODS GRAPHICS Statement Options . 323
Common Tasks . 325
Creating Shared Templates . 339

Appendix 1 • SAS Keywords for Unicode Glyphs . 341
Greek Letters . 341
Special Characters . 343

Appendix 2 • SAS Graph Style Elements for GTL . 345
Graphical Style Elements . 345
Graphical Style Attributes . 352

Appendix 3 • Values for Marker Symbols and Line Patterns . 355
Values for Marker Symbols . 355
Values for Line Patterns . 355

Appendix 4 • SAS Formats Not Supported . 357
Using SAS Formats . 357
Unsupported Numeric Formats . 357
Unsupported Date and Time Formats Related to IS0 8601 . 358
Other Unsupported Date and Time Formats . 358
Unsupported Currency Formats . 359

Appendix 5 • Memory Management for ODS Graphics . 361
SAS Options Affecting Memory . 361

Contents v

Glossary . 363
Index . 377

vi Contents

Chapter 1
ODS Graphics

Overview of ODS Graphics . 1

Automatic Graphics from SAS Analytical Procedures . 2

Modifying Templates for Automatic Graphs . 2

The ODS Graphics Editor . 2

Creating Graphs Using SAS/GRAPH Statistical Graphics Procedures 3

The Graph Template Language . 3
Overview . 3
Defining the Graph Template . 4
Creating the Graph . 4
When GTL is Needed . 4

ODS Graphics and SAS/GRAPH . 5

Sample of ODS Graphics Output . 6

Overview of ODS Graphics
ODS Graphics is a system for creating graphics that address the following requirements:

• the need for a flexible syntax to create complex graphs

• the need to create high quality graphical output.

Modern analytical graphs are an integral part of an analysis or a study. ODS Graphics gives
SAS analytical procedures the ability to create complex analytical graphs that deliver the
analysis results with clarity and without clutter. By enabling ODS Graphics, SAS users get
the relevant graphs automatically as part of the analysis process. Additionally, they have
easy to use tools that can create related graphs for preview of the data or for creating graphs
from the results of multiple analyses.

ODS Graphics are driven by the Graph Template Language (GTL) syntax, which provides
the power and flexibility to create many complex graphs. Whereas you can use GTL to
create your own graphics, its power and flexibility comes with some complexity. For that
reason, this document discusses the ways in which the SAS System leverages the power
of GTL to create graphics using other tools and systems. You might find that these other
tools meet all of your needs.

1

Automatic Graphics from SAS Analytical
Procedures

With SAS 9.2, users can generate ODS graphs automatically from analytical procedures,
which can produce the graphs along with the tabular data. These graphs can be produced
automatically by turning on ODS Graphics using the following statement:

ods graphics on </ options>;

After ODS Graphics is switched on, the graphs defined as part of any procedure's output
are written to the active ODS destinations. Users can control the specific graphs produced
by using the PLOTS= options on the procedure statement or by using the ODS SELECT
and ODS EXCLUDE statements. For more information, see the primer and syntax sections
in the discussion of statistical graphics using ODS in the SAS/STAT User's Guide.

Modifying Templates for Automatic Graphs
The graphs that are produced by the analytical procedures are created from compiled
STATGRAPH templates written in GTL. For each graph that is created by a procedure, a
template has been defined by the procedure writers and shipped with SAS. These templates
can be found in the appropriate sub-folder of the SASHELP.TMPLMST item store (issue
the ODSTEMPLATE command to open the Templates window). Users wanting to make
persistent changes to these automatic graphics can do so by editing and recompiling these
definitions of the graphs. Understanding the structure of these templates requires
knowledge of GTL, as described in this User's Guide. Changes to these templates should
follow the guidelines presented in the discussion on statistical graphics using ODS in the
SAS/STAT User's Guide.

The ODS Graphics Editor
After an ODS graph is created, some users might want to edit and/or customize the graphical
output for presentation to their audience or for inclusion in other documents. These changes
could be something as simple as editing the graph title, or adding a footnote to the graph.
Although you could edit the associated template using GTL and then regenerate the graph,
you can use the ODS Graphics Editor to make simple, customized changes to the ODS
Graphics output. The Editor is an interactive, GUI-based tool that is specifically designed
for this purpose. Using this tool, you can

• edit or add titles and footnotes to the graphs

• change graph styles and visual attributes, such as marker shapes, line patterns, colors,
and so on

• add free-form text, arrows, lines, and other graph elements to call out various elements
of the results.

Changes made to a graph with the ODS Graphics Editor do not affect the template that
defined the graph. For more information on the ODS Graphics Editor, please see the
SAS/GRAPH ODS Graphics Editor User's Guide.

2 Chapter 1 • ODS Graphics

Creating Graphs Using SAS/GRAPH Statistical
Graphics Procedures

As seen so far, you can obtain analytical graphs automatically from SAS analytical
procedures. Furthermore, you can edit or customize these graphs with the ODS Graphics
Editor, all without any need to learn the GTL syntax.

However, frequently you might need to get a better understanding of the data in a study or
survey by creating preliminary graphical views of the data. Such views might be necessary
before a decision can be made about the detailed analysis process.

Also, your task might require data analysis using multiple procedures and some custom
data management. After such analysis process, the results contained in the output data sets
might need to be displayed as custom graphs.

Many such graphs can be created using the Statistical Graphics (SG) Procedures. The SG
procedures are a set of graphics procedures that leverage the power of GTL behind the
scenes to create commonly used graphs using a simple and concise syntax. The following
new SG procedures are available with SAS 9.2:

• The SGPLOT procedure for creating single-cell graphs.

• The SGPANEL procedure for creating multi-cell classification panels.

• The SGSCATTER procedure for creating multi-cell comparative scatter plots.

The SG procedures also provide additional data summarization features that are not
provided by GTL. For many users, these procedures are the right set of tools to use for
meeting their needs, without deploying the full power of GTL.

For more information on the set of SG procedures, see the SAS/GRAPH Statistical Graphics
Procedures Guide.

The Graph Template Language

Overview
At the heart of ODS Graphics lies the Graph Template Language. For example, all of the
graphs that are created by the SAS analytical procedures and by the SAS/GRAPH Statistical
Graphics Procedures are generated using GTL. Users who need to go beyond the graphs
created by these SAS procedures can use GTL directly to design their graphs using the
TEMPLATE and SGRENDER procedures. To successfully create or modify GTL
templates, you need the information in this User's Guide, which helps you understand
important concepts and offers many complete code examples illustrating often used
features. You also need access to the SAS/GRAPH Graph Template Language Reference,
which is the language dictionary for GTL.

Creating a graph using GTL is a two step process:

1. Define the structure of the graph using the GTL syntax in a STATGRAPH template
that is specified on the TEMPLATE procedure. Compile and save this template.

2. Create the graph by running the SGRENDER procedure to associate the appropriate
data with the template.

Overview 3

Defining the Graph Template
GTL uses a structured "building-block" approach to defining a graph. The syntax provides
a set of layout, plot, and other statements to define the graph. Figure 1.1 on page 4 shows
a graph of car profiles by horsepower and the syntax necessary to define the graph using
GTL.

Figure 1.1 ODS Graph and the Template to Generate It

The template definition consists of the following parts:

A. The GTL syntax block from BEGINGRAPH to ENDGRAPH.
B. The title for the graph.
C. The LAYOUT OVERLAY block. The results of the statements in this block are
overlaid in the graph.
D. A histogram of the horsepower variable.
E. A density plot of the horsepower variable.

Running the program in Figure 1.1 on page 4 creates the CARS template and saves it in an
item store.

Creating the Graph
To create the graph in Figure 1.1 on page 4, the SGRENDER procedure is run to associate
the appropriate data set with the compiled template:

proc sgrender data=sashelp.cars template=cars; run;

In the template definition, the HORSEPOWER variable is used explicitly for the
HISTOGRAM and DENSITYPLOT statements. The explicit reference in the template to
a variable named HORSEPOWER requires that the data set have a numeric column named
HORSEPOWER. Chapter 14, “Using Dynamics and Macro Variables to Make Flexible
Templates,” on page 251 shows you how to make the template more flexible.

The GTL syntax supports a variety of layout, plot, and other statements to create a wide
range of graphs. Details on all these statements and options are covered in this User's Guide
and in the SAS/GRAPH Graph Template Language Reference.

When GTL is Needed
• The graphs that are created by the analytical procedures use predefined GTL templates.

These templates are designed by SAS procedure writers and shipped with SAS. Every

4 Chapter 1 • ODS Graphics

graph created by these procedures has a corresponding template stored in the
SASHELP.TMPLMST item store. To customize these templates, you must develop a
basic understanding of the GTL.

• Often analysts need graphs of the data before an analysis can be started. Or, the results
of a complex analysis involving multiple procedures or DATA steps need to be
presented as graphs. Although many of these tasks can be accomplished using the SG
Procedures, those procedures do not provide many of the advanced layout capabilities
of GTL. To create such custom graphs, you must develop a basic understanding of the
GTL.

ODS Graphics and SAS/GRAPH
Beginning in SAS 9.2, the Graph Template Language and ODS Graphics provide new ways
of creating graphics. This system is completely independent from the traditional
SAS/GRAPH procedures in many significant ways. Some of the architectural differences
are as follows:

• GTL has a layout-centric architecture. Each graph comprises components such as plots,
insets, and legends that can be combined in flexible ways inside layout containers that
can build complex graphs.

• Several layout types are available, some that produce a graph in a single cell and others
that produce a graph as a panel of cells. In most cases, the components used in the
single-cell graphs can also be used in the multi-cell graphs.

• Axes, backgrounds, titles, legends, and the other components in a graph are managed
by the containers and do not belong to an individual plot.

• Global options are specified in the ODS GRAPHICS statement or in the ODS
DESTINATION statement. GTL does not use the traditional SAS/GRAPH global
statements, such as SYMBOL, PATTERN, AXIS, LEGEND, and GOPTIONS. Also,
SAS TITLE and FOOTNOTE statements do not appear in the graph. GTL has its own
statements for titles and footnotes. (However, the specialized SGPLOT, SGPANEL,
and SGLATTICE procedures are specified with SAS/GRAPH syntax and do
accommodate the TITLE and FOOTNOTE statements. They generate GTL behind the
scene.)

• A plot statement is available for generating each plot type so that you do not have to
specify the plot type by setting an interpolation option on a SYMBOL statement.

• All graphical attributes for markers, lines, color, and so on, are derived by default from
the active ODS Style. For more information on ODS styles, see Chapter 6, “Managing
Graph Appearance: General Principles,” on page 83.

• GTL supports the use of transparency and anti-aliasing for creating modern graphs.

• The rendering technology for GTL is not based on device drivers. The graphics area is
not partitioned in cell-based units. Graphical content gracefully scales up and down as
the size of the output is changed.

• Markers, lines, and fonts are scaled using DPI.

• GTL produces all output in industry standard output formats, such as PNG, GIF, JPEG,
and so on. GTL does not create GRSEG entries in a catalog.

• The Annotate facility is not supported by the GTL (although you can annotate ODS
Graphics output using the ODS Graphics Editor).

ODS Graphics and SAS/GRAPH 5

Sample of ODS Graphics Output
The following graphs provide a small sample of the diverse output you can produce with
ODS Graphics:

Figure 1.2 PROC LIFETEST (SAS/STAT)

6 Chapter 1 • ODS Graphics

Figure 1.3 PROC SGSCATTER (SAS/GRAPH)

Sample of ODS Graphics Output 7

Figure 1.4 Custom Template Rendered with PROC SGRENDER (SAS/GRAPH)

8 Chapter 1 • ODS Graphics

Chapter 2
Quick Start

Steps for Creating a Graph Using GTL . 9

About the Examples in this Documentation . 9

Creating a Graph Template . 10
Quick Look at a GTL Graph Definition . 10
More Detailed Look at a GTL Graph Definition . 11
Compiling the Template . 12

Executing the Template to Produce the Graph . 13

Managing the Graphical Output . 14
Directing Output to ODS Destinations . 14
Modifying Graph Appearance with Styles . 16
Controlling Physical Aspects of the Output . 17

Steps for Creating a Graph Using GTL
This chapter provides an overview of how graphs are created with the GTL and a brief
discussion of what is going on behind the scenes. All the examples are completely coded.
You can copy and paste these programs into an editor of a SAS Session (beginning in SAS
9.2) and follow the steps as they are described.

As you learned in “Defining the Graph Template” on page 4, creating a graph using GTL
is a two-step process:

1. Use PROC TEMPLATE to define a STATGRAPH template with GTL syntax. Compile
and save this template.

2. Create the graph by running the SGRENDER procedure to associate the appropriate
data with the template.

About the Examples in this Documentation
The programs in this documentation often provide all of the code you need to generate the
graphs that are shown in the figures. We encourage you to copy and paste the code into
your SAS session and generate the graphs for yourself. The graphs that you generate in the

9

LISTING destination will be rendered in their default 640 pixel by 480 pixel size (except
for those examples that show you how to change the graph size).

The graphical output in this documentation does not show graphs in their default size
because of the limitations of the production system used. The maximum graph width that
can be included in this document is 495 pixels. Hence, all graphs are scaled down to fit.

When graphs that are produced with ODS graphics are reduced in size, several automatic
processes take place to optimize the appearance of the output. Among the differences
between default size graphs and smaller graphs are that the smaller graphs have scaled
down font sizes and their numeric axes might display a reduced number of ticks and tick
values. Thus, the graphs that you generate from the example programs will not always look
identical to the graphs that are shown in the figures, although both graphs will accurately
represent the data.

In addition, a custom style was created to further enhance the readability of the smaller
graphs. The custom style modifies the supplied LISTING style by further reducing font
sizes so that more space is available to the graphical elements in the output, and by making
some labeling text bold to enhance the contrast in the graph.

You can use the same techniques when producing your graphical output. The “Managing
Your Graphics” and " Controlling Graph Appearance with Modified Styles" chapters
explain how to set fonts, DPI, anti-aliasing, and other features that contribute to producing
professional-looking graphics of any size in any output format.

Creating a Graph Template

Quick Look at a GTL Graph Definition
To illustrate the steps needed to create a graph, assume that we want to produce a graph
showing a linear regression fit for a set of data where HEIGHT is an independent variable
and WEIGHT is a dependent variable.

proc template;
 define statgraph modelfit;
 begingraph;
 entrytitle "Regression Fit Plot";
 layout overlay;
 scatterplot x=height y=weight;
 regressionplot x=height y=weight;

10 Chapter 2 • Quick Start

 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class
 template=modelfit;
run;

You can submit this program to produce the graph. Let us now look in more detail into
what this program does.

More Detailed Look at a GTL Graph Definition
The TEMPLATE procedure can produce different kinds of templates, like STYLE,
TABLE, COLUMN, and STATGRAPH. The type of template to be created is specified
with a DEFINE statement.

The DEFINE STATGRAPH statement and its matching END statement indicate that a
graphics template named MODELFIT is to be created. The template name can be a simple
one-level name or a multi-level name such as GRAPHS.MODELFIT or
PROJECT.STUDY3.MODELFIT indicating a folders where the MODELFIT template is
to be stored.

The BEGINGRAPH statement and its matching ENDGRAPH statement define the
outermost container for the graph. It supports options for sizing the graph. Within this block
you can use various statements that define the content of the graph.

ENTRYTITLE and ENTRYFOOTNOTE statements can be used to specify graph title lines
and graph footnote lines, if needed.

More Detailed Look at a GTL Graph Definition 11

The LAYOUT OVERLAY statement and its matching ENDLAYOUT statement define
the type of graphical layout to be used. The OVERLAY layout allows the contained plots
to be overlaid. It manages the plot layers and queries all contained plots to decide the axis
types, axis labels, and axis ranges.

Both the SCATTERPLOT and REGRESSIONPLOT statements specify HEIGHT for the
X variable and WEIGHT for the Y variable. For the regression, X is always used for the
independent variable and Y for the dependent variable. By default, a linear regression is
used.

For more information on the types of layouts and plots in GTL, see Chapter 3, “Overview
of Basic Statements and Options,” on page 19.

Compiling the Template
When you submit your PROC TEMPLATE statements, the template syntax is checked.

If no syntax error is detected, a compiled template named MODELFIT is created and stored
physically in the SASUSER.TEMPLAT item store by default. This item store is chosen by
default because it is the first item store that can be updated in the current ODS path.

It should be noted that STATGRAPH template syntax requires that any necessary
arguments be specified (X= and Y= arguments are required for both the SCATTERPLOT
and REGRESSIONPLOT statements), but no checking for the existence of the assigned
variables is performed at compile time. Also note that no reference to an input data set
appears in the template.

Compiling the template does not produce a graph—it only creates a compiled template that
can be executed to produce a graph.

12 Chapter 2 • Quick Start

To verify that the template was created, you can issue the ODSTEMPLATE command
(ODST, for short). This opens the Templates window where you view all item stores and
their contents. All STATGRAPH templates can be identified by the common icon shown
above.

You can also browse the source for any compiled template by double-clicking on its name.

For more information about item stores and PROC TEMPLATE in general, see the SAS
Output Delivery System: User's Guide in the Base documentation.

Executing the Template to Produce the Graph
To produce a graph, use the SGRENDER procedure:

proc sgrender data=sashelp.class template=modelfit; run;

The SGRENDER procedure takes two required arguments: DATA= for the input data set
and TEMPLATE= for the STATGRAPH template to be used.

SGRENDER produces the graph by

• building a data object for the template. This data object contains only the requested
variables (HEIGHT and WEIGHT) for the scatter points along with any other internally
computed values, such as the points on the regression line.

• obtaining default color, line, marker, and font properties from the currently active style.

This information, along with the GTL definition of the graph, is then passed to a rendering
module that assembles everything and produces an image, which is integrated into the
active ODS destination(s).

Executing the Template to Produce the Graph 13

Minimally, one ODS destination must be open. By default, that destination is LISTING.
For this destination, the default is to create an image of type PNG.

Graph output to the LISTING destination is not displayed automatically. To view the
output, you can open the Results window (choose View ð Results from the menu) and
select it.

Display 2.1 Graph that Has Been Opened from the Results Window in MS Windows

For more information on other features of SGRENDER, see Chapter 18, “Executing Graph
Templates,” on page 311.

Managing the Graphical Output

Directing Output to ODS Destinations
All ODS graphics are generated in industry standard formats (PNG, PDF, and so on),
depending on the settings for the active ODS destinations. The ODS LISTING destination
is on by default, and the default image format for the LISTING destination is PNG.

All ODS destinations such as HTML, PDF, RTF, LATEX, and PRINTER are fully
supported. The ODS destinations enable you to

• manage the graphs that are generated by ODS Graphics

• display the output in a variety of forms (HTML, PDF, RTF, ...)

• control the location of stored output files and other features that are relevant for the
active destinations.

14 Chapter 2 • Quick Start

As discussed in “Compiling the Template” on page 12, a compiled template is stored in an
item store. Thus, without rewriting or resubmitting the template code, we can render the
graph as often as needed during the current SAS session or a future SAS session.

To generate ODS Graphics output for use on the Web, we can direct the output to the HTML
destination, which generates an image file for the graph, and also an HTML file that
references the image. Thus, output that is generated in the HTML destination is ready for
display in a Web browser.

The following ODS HTML statement stores the output files in the folder C:\myfiles
\mywebserver. The code first closes the LISTING destination to avoid creating extra
output:

ods listing close;
ods html path="C:\myfiles\mywebserver" (url=none) file="modelfit.html" ;
proc sgrender data=sashelp.class template=modelfit; run;
ods html close;
ods listing; /* reopen the listing destination for subsequent output */

• The PATH= option specifies storage location C:\myfiles\mywebserver for
output files that are created by the SAS statements, including images from ODS
Graphics.

• The FILE= option specifies that SAS output is written to the file modelfit.html,
which is saved in the location specified on PATH=.

• The ODS HTML CLOSE statement closes the HTML destination, which enables you
to see your output. By default, the HTML destination uses the DEFAULT style for
graphics output (“Modifying Graph Appearance with Styles” on page 16 provides an
introduction to ODS styles), which uses a gray background.

See Chapter 19, “Managing Graphical Output,” on page 319 for more information about
the ODS destinations and the type of output that results from each destination.

Directing Output to ODS Destinations 15

Modifying Graph Appearance with Styles
GTL has been designed to be totally integrated with ODS styles.

Note: Although every appearance detail of a graph is controlled by the current style by
default, you can use GTL syntax options to change the appearance of the graph.

The following template code generates the histogram that was introduced in “Defining the
Graph Template” on page 4.

proc template;
 define statgraph cars;
 begingraph;
 entrytitle "Cars Profile";
 layout overlay;
 histogram horsepower;
 densityplot horsepower;
 endlayout;
 endgraph;
 end;
run;

Every ODS destination has a style that it uses by default. For the listing destination, the
default style is LISTING. To modify the appearance of the graph, you can change its style
by specifying the STYLE= option in the ODS destination statement before running the
SGRENDER procedure:

ods listing style=analysis ;
proc sgrender data=sashelp.cars template=cars;
run;

ods listing style=journal ;
proc sgrender data=sashelp.cars template=cars;
run;

16 Chapter 2 • Quick Start

ods listing style=astronomy ;
proc sgrender data=sashelp.cars template=cars;
run;

For more information on how the appearance of the graph is determined and the ways you
can modify it, see Chapter 6, “Managing Graph Appearance: General Principles,” on page
83 and Chapter 17, “Managing the Graph Appearance with Styles,” on page 299.

Controlling Physical Aspects of the Output
The ODS GRAPHICS statement provides options that control the physical aspects of your
graphs, such as the graph size and the name of the output image file.

The LISTING destination's default image size of 640 pixels by 480 pixels (4:3 aspect ratio)
for ODS Graphics is set in the SAS Registry. You can change the graph size using the ODS
GRAPHICS statement’s WIDTH= and/or HEIGHT= options. To name the output image
file, use the IMAGENAME= option.

The following ODS GRAPHICS statement sets a 320 pixel width for the graph and names
the output image modelfitgraph:

ods graphics / width=320px imagename=”modelfitgraph” ;

proc sgrender data=sashelp.class template=modelfit;
run;

ods graphics / reset ;

Controlling Physical Aspects of the Output 17

• The WIDTH= option sets the image width to 320 pixels. Because no HEIGHT= option
is used, SAS uses the design aspect ratio of the graph to compute the appropriate height.
(The width of 320px is half the default width, so SAS will set the height to 240px,
which is half the default height.) In general, it is good practice to specify only one sizing
option without the other — just the WIDTH= option or just the HEIGHT= option. That
way SAS will maintain the design aspect ratio of the graph, which might be important
for many graphs.

• The IMAGENAME= option in the first ODS GRAPHICS statement sets the name of
the output image file to modelfitgraph.

• The RESET option in the second ODS GRAPHICS statement resets all ODS
GRAPHICS options to their default state. If the options are not reset, all subsequent
graphs would be 320 pixels wide and image names would be assigned incremental
names (modelfitgraph1, modelfitgraph2, and so on) every time a graph is produced.

For more information on the details of managing image name, image size, image format,
and DPI., see Chapter 19, “Managing Graphical Output,” on page 319.

18 Chapter 2 • Quick Start

Chapter 3
Overview of Basic Statements
and Options

Introduction to GTL Statements . 19
Statements . 19
Blocks . 20

Categories of Statements . 21
Overview . 21
Plot Statements—Terminology and Concepts . 21
Legend Statements . 28
Text Statements . 29
Layout Containers . 30

Features Supported by Layout, Legend, and Text Statements 31
Backgrounds . 32
Borders . 32
Padding . 32
Positioning . 32

Features Supported by Many Plot Statements . 33
Plot Features to Be Displayed . 33
Plot Appearance . 33
Plot Transparency . 33
Plot Identification . 34
Labels for Plot Features . 35
Grouping . 36
Axis Assignment . 37
Data Tips . 37

Introduction to GTL Statements
GTL encompasses a large number of statements and options. This chapter provides an
organizational framework to help you think about the language. Just as you can think of
the SAS language syntax in terms of Statements, Functions, Formats, and System options,
you can apply a classification scheme to GTL. A general understanding of the GTL helps
you write your templates with more confidence and efficiency. Some of the terminology
introduced here will appear often in other chapters.

Statements
All GTL statements have the following syntax:

KEYWORD(s) required argument(s) < / option(s)>

19

Examples:

/* This statement uses two keywords, no required arguments,
 and no options */
LAYOUT OVERLAY;

/* This statement uses one keyword and two required arguments */
SCATTERPLOT X=height Y=weight;

/* This statement specifies a required argument.
 Required arguments do not have to be name-value pairs. */
HISTOGRAM weight;

/* This statement uses one option.
 Options are specified after a slash (/) and are usually
 name-value pairs. */
SCATTERPLOT X=height Y=weight / GROUP=age;

Blocks
A block is a pair of statements that indicate the beginning and end of a syntax unit.
Typically, other statements are nested within the block. GTL has many specialized block
constructs.

Examples:

/* This is a valid block. No nested statements are required. */
LAYOUT OVERLAY;
ENDLAYOUT;

/* This block has no restrictions on the number of nested statements. */
LAYOUT OVERLAY;
 SCATTERPLOT X=height Y=weight;
 REGRESSIONPLOT X=height Y=weight;
ENDLAYOUT;

/* This block allows only nested ROWAXIS statements. */
ROWAXES;
 ROWAXIS / LABEL="Row 1";
 ROWAXIS / LABEL="Row 2";
ENDROWAXES;

/* Blocks support nested blocks */
CELL;
 CELLHEADER;
 ENTRY "Cell 1";
 ENDCELLHEADER;
 LAYOUT OVERLAY;
 HISTOGRAM weight;
 DENSITYPLOT weight;
 ENDLAYOUT;
ENDCELL;

Whenever blocks are nested, there exists a "Parent - Child" relationship. In the previous
example, the CELL block is the parent of the CELLHEADER block and LAYOUT
OVERLAY block. This is important because most blocks have rules about what statements
they might contain, and they also have nesting restrictions. For example, a CELLHEADER

20 Chapter 3 • Overview of Basic Statements and Options

block, if used, must be the direct child of a CELL block. Only one CELLHEADER block
can be used per CELL block. To improve code readability, nested blocks are indented in
source programs.

Categories of Statements

Overview
GTL statements generally fall into two main categories:

• Plot, Legend, and Text statements that determine what items are drawn in the graph.

• Layout statements that determine how or where the items in the graphs are placed.

Plot Statements—Terminology and Concepts

Overview
GTL has numerous plot statements that can be combined with one another in many different
ways. In future releases of GTL, new layout and plot statements will be added to supplement
those now available. GTL has been designed as a high-level toolkit that enables you to
create a large variety of graphs by combining its constructs in different ways. As you might
imagine, not all combinations of statements are possible, and most of the invalid
combinations are caught during template compilation. Rather than trying to create graphs
by trial and error, it is recommended that you understand a few basic "rules of assembly"
to guide your efforts and make the language easier to work with. To that end, some new
terminology is useful.

Plot Terminology
Computed Plots

Computed plots internally perform computational transformations on the input data
and, as necessary, add new columns to a data object in order to render the requested
plot. For example, a LOESSPLOT requires two numeric columns of raw input data
(X=column and Y=column). A loess fit line is computed for these input point pairs, a
new set of points on a fit line is generated, and a new column that contains the computed
points is added to the data object. A smoothed line is drawn through the computed
points. Most computed plots have several options to control the computation performed.
Another form of computed plot is one with user-defined data transformations. For
example, you can use an EVAL() function to compute a new column such as Y=
eval(log10(column)). This transforms column values into corresponding
logarithmic values. Why is it important to know whether a plot is computed? Certain
layouts such as PROTOTYPE currently do not allow computed plots to be included.

Parameterized Plots
Parameterized plots simply render the input data they are given. They are useful
whenever you have input data that does not need to be preprocessed or that has already
been summarized (possibly an output data set from a procedure like PROC FREQ). For
example, BARCHARTPARM draws one bar per input observation: the X= column
provides the bar tick value and the Y=column provides the bar length. So a bar chart
with five bars requires a data set with five observations and two variables. A
parameterized bar chart statement is useful when the computed BARCHART statement
does not perform the type of computation you want, and you have done the
summarization yourself. Many parameterized plots have a "PARM" suffix added to

Plot Statements—Terminology and Concepts 21

their name. Another common situation is when you want to draw a fit line and a
confidence band from a set of data that already has the appropriate set of (X,Y) point
coordinates. For these situations you would use a SERIESPLOT statement for the fit
line and a BANDPLOT statement for the confidence band. Why is it important to know
whether a plot is parameterized? Parameterized plots ensure that no additional
computation will take place on the input data. Thus, input data that does not meet the
special requirements on the parameterized plot might result in bad output or a blank
graph.

Stand-alone Plots
A stand-alone plot is one that can be drawn without any other accompanying plot. In
general, a plot is stand-alone if its input data defines a range of values for all axes that
are needed to display the plot. For example, the observations plotted in a
SCATTERPLOT normally span a certain data range in both X and Y axes. This
information is necessary to successfully draw the axes and the markers. Why is it
important to know which plots are stand-alone? Because most layouts need to know
the extents of the X and Y axis to draw the plot.

Dependent Plots
A dependent plot is one that, by itself, does not provide enough information for the
axes that are needed to successfully draw the plot. For example, the REFERENCELINE
statement draws a straight line perpendicular to one axis at a given input point on the
same axis. Because there is only one point provided, there is not enough information
to determine the full range of data for this axis. Furthermore, no information is provided
for the data range of the second axis. Thus, a REFERENCELINE statement does not
provide enough information by itself to draw the axes and the plot. Such a plot needs
to work with another "Stand-alone" plot, which will provide the necessary information
to determine the data extents of the two axes.

Primary Plot
When you overlay two or more plots, the layout container determines the type of axis
to use, the data range of all axes, and the default format and label to use for each axis.
By default, the first encountered stand-alone plot is used to decide the axis type and
axis format and label. In some cases, you desire a certain overlay stacking and must
order your statements accordingly. This might result in undesirable axis properties. By
adding the PRIMARY=TRUE option to a stand-alone plot, you can request that this
plot be used to determine axis type and axis format and label. A dependent plot cannot
be designated as primary.

Graphics Types
GTL supports both 2D and 3D graphics. Currently there are only two 3D plot statements
(SURFACEPLOTPARM and BIHISTOGRAM3DPARM). 3D plot statements must
be used in a 3D layout. 2D plot statements cannot be used in a 3D layout, and 3D plot
statements cannot be used in a 2D layout. For more information on layouts, see “Layout
Containers” on page 30.

Plot Statements Categorized by Type
Plot statements are generally categorized as stand-alone or dependent, computed or
parameterized, and 2D or 3D. The following tables show the distribution of plots in these
categories.

22 Chapter 3 • Overview of Basic Statements and Options

Table 3.1 Stand-alone, 2D, Computed Plots

2D PLOTS: COMPUTED

Statement Required Arguments Comments

BARCHART One column Horizontal or vertical.

BOXPLOT One numeric-column Horizontal or vertical.

HISTOGRAM One numeric-column Horizontal or vertical.

DENSITYPLOT One numeric-column Theoretical distribution curve (for
example, NORMAL or KDE).

REGRESSIONPLOT Two numeric-columns Fit plot using linear, quadratic, or cubic
regression.

LOESSPLOT Two numeric-columns Fit plot using loess.

PBSPLINEPLOT Two numeric-columns Fit plot using Penalized B-spline.

ELLIPSE Two numeric-columns Confidence or prediction ellipse for a
set of points.

SCATTERPLOTMATRIX Two or more numeric-
columns

Grid of scatter plots. Might include
computed ellipses, histograms, density
curves.

Table 3.2 Stand-alone, 2D, Parameterized Plots

2D PLOTS: NONCOMPUTED / PARAMETERIZED

Statement Required Arguments Comments

BANDPLOT Three columns, at least
two numeric limits

Area bounded by two straight or
curved lines.

BARCHARTPARM Two columns, Y must be
numeric

Horizontal or vertical. Summarized
data provided by user.

BLOCKPLOT Two columns Strip of X- axis aligned rectangular
blocks containing text. The X data
must be sorted.

BOXPLOTPARM One numeric-column
and one string-column

Horizontal or vertical. Needs special
data format.

CONTOURPLOTPARM Three numeric-columns Draws contour plot from pre-gridded
data. Basic "gridding" feature is
provided using an option.

ELLIPSEPARM Five numbers or
numeric-columns

Draws ellipse given center, slope,
semi-major and semi-minor axis
lengths.

Plot Statements—Terminology and Concepts 23

2D PLOTS: NONCOMPUTED / PARAMETERIZED

Statement Required Arguments Comments

FRINGEPLOT One numeric-column Draws a short line segment of equal
length along the X or X2 axis for each
observation's X value.

HISTOGRAMPARM Two numeric-columns Horizontal or vertical. The Y data must
be non-negative.

NEEDLEPLOT Two columns, Y must be
numeric

Draws parallel, vertical line segments
connecting data points to a baseline.

SCATTERPLOT Two columns Draws markers at data point locations.

SERIESPLOT Two columns Draws line segments to connect a set of
data points.

STEPPLOT Two columns, Y must be
numeric

Draws stepped line segments to
connect a set of data points.

VECTORPLOT At least two and up to
four numeric-columns,
X and Y origins can be
numeric constants.

Creates directed line segment(s) based
on pairs of data points.

Table 3.3 Stand-alone, 3D, Parameterized Plots

3D PLOTS: NONCOMPUTED / PARAMETERIZED

Statement Required Arguments Comments

SURFACEPLOTPARM Three numeric-columns Smooth surface.

BIHISTOGRAM3DPARM Three numeric-columns Bivariate histogram. The Z data must
be non-negative.

Table 3.4 Dependent Plots

Statement Required Arguments Comments

MODELBAND CLM or CLI name of
associated fit plot

Confidence bands. Used only in
conjunction with a fit plot.

DROPLINE (X,Y) point location,
two columns, or one
value and one column

Draws a perpendicular line from a data
point to a specified axis.

24 Chapter 3 • Overview of Basic Statements and Options

Statement Required Arguments Comments

LINEPARM (X,Y) point location and
slope. The three values
can be provided in any
combination of number
and numeric-column

Draws line(s) given a data point and the
slope of the line.

REFERENCELINE X or Y location, column Draws line(s) perpendicular to an axis.

Plot Concepts
To illustrate the use of the different types of plot statements, consider the following
template. In this template, named MODELFIT, a SCATTERPLOT is overlaid with a
REGRESSIONPLOT. The REGRESSIONPLOT is a computed plot because it takes the
input columns (HEIGHT and WEIGHT) and transforms them into two new columns that
correspond to points on the requested fit line. By default, a linear regression (DEGREE=1)
is performed with other statistical defaults. The model in this case is WEIGHT=HEIGHT,
which in the plot statement is specified with X=HEIGHT (independent variable) and
Y=WEIGHT (dependent variable). The number of observations generated for the fit line is
around 200 by default.

Note: Plot statements have to be used in conjunction with Layout statements. To simplify
our discussion, we will continue using the most basic layout statement: LAYOUT
OVERLAY. This layout statement acts as a single container for all plot statements
placed within it. Every plot is drawn on top of the previous one in the order that the
plot statements are specified, with the last one drawn on top.

proc template;
 define statgraph modelfit;
 begingraph;
 entrytitle "Regression Fit Plot";
 layout overlay;
 scatterplot x=height y=weight /
 primary=true;
 regressionplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class
 template=modelfit;
run;

Plot Statements—Terminology and Concepts 25

The REGRESSIONPLOT statement can also generate sets of points for the upper and lower
confidence limits of the mean (CLM), and for the upper and lower confidence limits of
individual predicted values (CLI) for each observation. The CLM="name" and
CLI="name" options cause the extra computation. However, the confidence limits are not
displayed by the regression plot. Instead, you must use the dependent plot statement
MODELBAND, with the unique name as its required argument. Notice that the
MODELBAND statement appears first in the template, ensuring that the band will appear
behind the scatter points and fit line. A MODELBAND statement must be used in
conjunction with a REGRESSIONPLOT, LOESSPLOT, or PBSPLINEPLOT statement.

layout overlay;
 modelband "myclm" ;
 scatterplot x=height y=weight /
 primary=true;
 regressionplot x=height y=weight /
 alpha=.01 clm="myclm" ;
endlayout;

This is certainly the easiest way to construct this type of plot. However, you might want
to construct a similar plot from an analysis by a statistical procedure that has many more
options for controlling the fit. Most procedures create output data sets that can be used

26 Chapter 3 • Overview of Basic Statements and Options

directly to create the plot you want. Here is an example of using non-computed, stand-alone
plots to build the fit plot. First choose a procedure to do the analysis.

proc reg data=sashelp.class noprint;
 model weight=height / alpha=.01;
 output out=predict predicted=p lclm=lclm uclm=uclm;
run; quit;

The output data set, PREDICT, contains all the variables and observations in
SASHELP.CLASS plus, for each observation, the computed variables P, LCLM, and
UCLM.

Now the template can use simple, non-computed SERIESPLOT and BANDPLOT
statements for the presentation of fit line and confidence bands.

proc template;
 define statgraph fit;
 begingraph;
 entrytitle "Regression Fit Plot";
 layout overlay;
 bandplot x=height
 limitupper=uclm
 limitlower=lclm /
 fillattrs=GraphConfidence;
 scatterplot x=height y=weight /
 primary=true;
 seriesplot x=height y=p /
 lineattrs=GraphFit;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=predict template=fit;
run;

Plot Statements—Terminology and Concepts 27

Legend Statements
GTL supports two types of legends: a discrete legend that is used to identify graphical
features such as grouped markers, lines, or overlaid plots; and a continuous legend that
shows the range of numeric variation as a ramp of color values. Legend statements are
dependent on one or more plot statements and must be associated with the plot(s) that they
describe. The basic strategy for creating legends is to "link" the plot statement(s) to a legend
statement by assigning a unique, case-sensitive name to the plot statement on its NAME=
option and then referencing that name on the legend statement.

Statement Required Arguments Comments

DISCRETELEGEND Name(s) of associated
plot(s)

Traditional legend with entries for
grouped markers/lines or overlaid
plots.

CONTINUOUSLEGEND Name of an associated
plot

Shows a numeric scales with a color
ramp. Used in conjunction with
contours, surfaces, and scatter plots.

layout overlay;
 modelband "clm";
 scatterplot x=height y=weight /
 primary=true
 group=sex name="s" ; /* the name is case-sensitive */
 regressionplot x=height y=weight /
 alpha=.01 clm="clm";
 discretelegend "s" ; /* case must match the case on NAME= */
endlayout;

28 Chapter 3 • Overview of Basic Statements and Options

For more information, seeChapter 8, “Adding Legends to a Graph,” on page 117.

Text Statements
GTL supports statements that add text to predefined locations of the graph. SAS Title and
Footnotes statements do not contribute to the graph. However, there are comparable
ENTRYTITLE and ENTRYFOOTNOTE statements. Like Title and Footnote statements,
multiple instances of these statements can be used to create multi-line text.

Statement Required Arguments Comments

ENTRYTITLE String Text to appear above graph. The
ENTRYTITLE statement is specified
inside the BEGINGRAPH block but
outside of the outermost layout.

ENTRYFOOTNOTE String Text to appear below graph. The
ENTRYFOOTNOTE statement is
specified inside the BEGINGRAPH
block but outside of the outermost
layout.

ENTRY String Text to appear within graph. The
ENTRY statement is specified inside a
layout block.

layout overlay;
 modelband "clm";
 scatterplot x=height y=weight /
 primary=true;
 regressionplot x=height y=weight /
 alpha=.05 clm="clm";
 entry "Band shows 95% CLM" /
 autoalign=auto;
endlayout;

Text Statements 29

For more information, seeChapter 7, “Adding and Changing Text in a Graph,” on page
101.

Layout Containers
Layout statements, a key feature of the GTL, form "containers" that determine how the
plots, legends and texts items are drawn in the graph. GTL supports many different layout
statements that are suitable for different usage. However, these fall into two main
categories.

• Single-cell layout statements place the plots, legends, and entries in a common region.
The statements that are placed within these "overlay" containers are processed in order.
Each plot is drawn on top of the previous plot, with the last one drawn on top.

• Multi-cell layout statements partition the graph region into multiple smaller "cells."
Each cell can be populated by an individual plot, an overlay, or a nested multi-cell
layout. The layout of the "cells" is determined by the user, or by classification variables.

Layout blocks always begin with the LAYOUT keyword followed by a keyword indicating
the purpose of the layout. All layout blocks end with an ENDLAYOUT statement. The
following table summarizes the available layouts.

Layout (Description)

Graphics
Allowed and
Cells
Produced Comments Example

OVERLAY

(Single Cell)

2D

One cell

General purpose layout for
superimposing 2D plots

OVERLAYEQUATED

(Single Cell)

2D

One cell

Specialized OVERLAY with
equated axes

PROTOTYPE

(Single Cell)

2D

One cell

Specialized LAYOUT used
only as child layout of
DATAPANEL or
DATALATTICE

30 Chapter 3 • Overview of Basic Statements and Options

Layout (Description)

Graphics
Allowed and
Cells
Produced Comments Example

OVERLAY3D

(Single Cell)

3D

One cell

General purpose 3D layout for
superimposing 3D plots.

LATTICE

(Advanced Multi-cell)

2D or 3D

One or more
cells

All cells must be predefined.
Axes can be shared across
columns or rows, and they can
be external to the grid. Many
grid labeling and alignment
features.

GRIDDED

(Simple Multi-cell)

2D or 3D

One or more
cells

All cells must be predefined.
Axes independent for each
cell. Very simple multi-cell
container.

DATAPANEL

(Classification Panel)

2D

One or more
cells

Displays a panel of similar
graphs based on data subsetted
by classification variable(s).
Number of cells is based on
crossings of n classification
variable(s).

DATALATTICE

(Classification Panel)

2D

One or more
cells

Displays a panel of similar
graphs based on data subsetted
by classification variable(s).
Number of cells is based on
crossings of one or two
classification variables.

To learn more about layouts, refer to the appropriate chapter:

• Chapter 4, “Using a Simple Single-cell Layout,” on page 39 (OVERLAY)

• Chapter 12, “Using an Equated Layout,” on page 225 (OVERLAYEQUATED)

• Chapter 13, “Using 3D Graphics,” on page 233 (OVERLAY3D)

• Chapter 9, “Using a Simple Multi-cell Layout,” on page 143 (GRIDDED)

• Chapter 10, “Using an Advanced Multi-cell Layout,” on page 155 (LATTICE)

• Chapter 11, “Using Classification Panels,” on page 185 (DATAPANEL,
DATALATTICE, PROTOTYPE)

Features Supported by Layout, Legend, and Text
Statements

All layout, legend, and text statements have a general set of features that include those
listed in the following tables. For more information on these and other options, see the

Features Supported by Layout, Legend, and Text Statements 31

chapters specific to the layouts, text statements, and legends. Also see the SAS/GRAPH:
Graph Template Language Reference.

Backgrounds

OPAQUE= FALSE | TRUE Whether the background is transparent or not. By
default, OPAQUE=FALSE

BACKGROUNDCOLOR= color If the background is opaque, a color can be assigned
to it.

Borders

BORDER= FALSE | TRUE Whether a border is displayed. By default,
BORDER=FALSE.

BORDERATTRS= (line-options) If the border is displayed, its line properties can be
set.

Padding

PAD= number Whether extra space is added inside the border. By
default, layouts and legends have PAD=0, while text
statements have PAD=(LEFT=3px RIGHT=3px) as
the default.

PAD=(<TOP=number>
<BOTTOM=number> <LEFT=number>
<RIGHT=number>

Positioning

HALIGN= LEFT | CENTER | RIGHT When a layout or legend is nested inside an overlay-
type layout, or for ENTRY statements, a position
can be specified relative to the container.
ENTRYTITLE and ENTRYFOOTNOTE
statements have fixed vertical positions but can be
adjusted horizontally.

VALIGN= TOP | CENTER | BOTTOM

32 Chapter 3 • Overview of Basic Statements and Options

Features Supported by Many Plot Statements

Plot Features to Be Displayed
All plots have a standard set of features to display. Most plots can show a different feature
set. For example, a HISTOGRAM can display bars that are outlined , filled, or both outlined
and filled. A SERIESPLOT displays a line and, if requested, point markers.

DISPLAY=(feature …) Specifies the plot features to be displayed. Features
are plot specific.

Plot Appearance
Depending on the display features, there are options to control the appearance of the
features.

MARKERATTRS=(marker-options) Specifies the symbol, size, color, and weight of
markers.

LINEATTRS= (line-options) Specifies the pattern, thickness, and color of lines.

TEXTATTRS= (text-options) Specifies the text color, font, font size, font weight,
and font style.

FILLATTRS= (fill-options) Specifies the fill color and transparency.

Plot Transparency
Transparency can be applied to plots that display markers, lines, or filled areas.

DATATRANSPARENCY= number Specifies the degree of transparency. Default is 0
(fully opaque). 1 is fully transparent.

layout overlay;
 modelband "cli" / display=(outline)
 outlineattrs=GraphPrediction
 datatransparency=.5 ;
 modelband "clm" / display=(fill)
 fillattrs=GraphConfidence
 datatransparency=.5 ;
 scatterplot x=height y=weight /
 primary=true;
 regressionplot x=height y=weight /
 alpha=.05 clm="clm" cli="cli"; endlayout;

Plot Transparency 33

For more information, seeChapter 6, “Managing Graph Appearance: General Principles,”
on page 83.

Plot Identification
In GTL, legends and some dependent plots (for example, MODELBAND) require a
reference (association) with a plot. The association is established by 1) naming the plot,
and 2) referring to the plot name within the legend or dependent plot statement.

NAME= "string" Specifies a unique name for a plot in order to
associate it with another statement.

LEGENDLABEL= "string" Specifies a description of a plot to appear in a
legend.

layout overlay;
 modelband "cli" / display=(outline)
 outlineattrs=GraphPrediction
 name="predict"
 legendlabel="95% Prediction Limits" ;
 modelband "clm" / display=(fill)
 fillattrs=GraphConfidence
 name="conf"
 legendlabel="95% Confidence Limits" ;
 scatterplot x=height y=weight /
 primary=true;
 regressionplot x=height y=weight /
 alpha=.05 clm="clm" cli="cli";
 discretelegend "predict" "conf" ;
endlayout;

34 Chapter 3 • Overview of Basic Statements and Options

For more information, seeChapter 8, “Adding Legends to a Graph,” on page 117.

Labels for Plot Features
Most plots have one or more options that enable you to display descriptive labels or data
values for points, lines, bars, or bands.

DATALABEL= column Specifies a column to label data points in a scatter
plot, series plot, needle plot, stepplot, or vectorplot.

DATALABELATTRS= text-properties Specifies text properties for data labels.

CURVELABEL= "string" | column Specifies a string or a string-column to label one or
more lines in a REFERENCELINE,
DENSITYPLOT, LINEPARM,
REGRESSIONPLOT, LOESSPLOT,
PBSPLINEPLOT, SERIESPLOT, or STEPPLOT
statement.

CURVELABELUPPER= "string" |
column

CURVELABELLOWER= "string" |
column

Specifies a string or a string-column to label one or
more lines in a BANDPLOT or MODELBAND
statement.

CURVELABELATTRS= text-properties Specifies text properties for curve label(s).

CURVELABELLOCATION= INSIDE |
OUTSIDE

Specifies whether the curve label(s) are located
inside or outside the plot area.

CURVELABELPOSITION= Specifies positioning options for the curve label(s).

layout overlay;
 modelband "cli" / display=(outline)
 outlineattrs=GraphPrediction
 curvelabelupper="95% CLI"
 curvelabellower="95% CLI"
 curvelabelattrs=

Labels for Plot Features 35

 (color=GraphPrediction:Contrastcolor)
 curvelabellocation=outside ;

 modelband "clm" / display=(fill)
 fillattrs=GraphConfidence
 curvelabelupper="95% CLM"
 curvelabellower="95% CLM"
 curvelabelattrs=
 (color=GraphConfidence:Color)
 curvelabellocation=outside ;

 scatterplot x=height y=weight /
 primary=true datalabel=sex ;

 regressionplot x=height y=weight /
 alpha=.05 clm="clm" cli="cli"
 curvelabel="Fit"
 curvelabelattrs=
 (color=GraphFit:ContrastColor)
 curvelabellocation=outside ;
endlayout;

For more information, see Chapter 7, “Adding and Changing Text in a Graph,” on page
101.

Grouping
Many plots support a GROUP= option, which causes visually different markers, lines, or
bands to be displayed for each distinct data value of the specified column. You can vary
the appearance of group values with the INDEX= option.

GROUP= column Specifies a group column, always treated as having
discrete values. For an example use, see the example
for “Legend Statements” on page 28.

INDEX= positive-integer-column Specifies an integer column that associates each
distinct data value to a predefined graphical style
element GraphData1, GraphData2, …

36 Chapter 3 • Overview of Basic Statements and Options

For more information on using groups, see Chapter 6, “Managing Graph Appearance:
General Principles,” on page 83.

Axis Assignment
All 2D plots have four potential axes: X, X2, Y, and Y2. You can choose which axes any
plot uses. Axis options are typically specified on LAYOUT statement containing the plot.

XAXIS= X | X2 Specifies whether the plot's X= column is displayed
on the X or X2 axis.

YAXIS= Y | Y2 Specifies whether the plot's Y= column is displayed
on the Y or Y2 axis.

For more information, see Chapter 5, “Managing Axes in an OVERLAY Layout,” on page
53.

Data Tips
Data tips (or tooltips) are text balloons that appear in HTML pages when you move your
mouse pointer over a plot component such as a line, marker, or filled area of a graph. To
obtain default data tips, simply specify ODS GRAPHICS / IMAGEMAP; as well as the
ODS HTML destination. You can customize the data tip information.

ROLENAME= (role=column …) Creates additional roles to customize data tips.

TIP= (role-names) Specifies which plot roles are used for data tips.

TIPFORMAT=(role=format …) Specifies a format to be applied to the data for a plot
role.

TIPLABEL=(role="string" …) Specifies a label to be applied to the column for a
plot role.

For more information and an example, see “Controlling Data Tips” on page 337.

Data Tips 37

38 Chapter 3 • Overview of Basic Statements and Options

Chapter 4
Using a Simple Single-cell Layout

The LAYOUT OVERLAY Statement . 39

Common Overlay Combinations . 40

How Plots are Overlaid . 47
Statements Allowed in the Overlay Container . 47
Restrictions on Allowed Statements . 47
Restrictions on Statement Combinations . 48
Avoiding Plot Conflicts . 49
Plots with Incompatible Data . 50

The LAYOUT OVERLAY Statement
The LAYOUT OVERLAY statement builds a 2D, single-cell graph by overlaying the
results of the statements that are contained in the layout block. This layout is one of several
possible layout containers in GTL. Other chapters provide detailed information on the other
layout types. It is recommended that you learn about this type of layout first, because most
of the other layout chapters contrast their feature sets with those of the OVERLAY layout.

The outermost layout block of any template defines the content of the graphical area, which
is represented in the following schematic:

The graph in this next figure was defined by an OVERLAY layout with its border turned
on. The layout contains a simple scatter plot. The boundaries of the layout container are
shown by a light gray border. Everything within this border is managed by the layout.

39

The OVERLAY layout container controls

• which statements (plot, legend, text) can be included in the layout block

• which statements can be combined in the plot area bounded by the axes

• various axis features

• which axes are used (there are four available: X and Y, as well X2 and Y2)

• which axis types are used (axis types are LINEAR, DISCRETE, LOG, and TIME)

• axis label, axis data range, ticks, and tick values

• other axis features such as offsets

• border, padding, and background properties

• positioning and alignment of all contained plots, text, legends, and nested layouts

• default appearance of the generated plots (CYCLEATTRS= option).

The layout container also queries the contained statements for options that might change
the default internal rules for combining plots.

Common Overlay Combinations
After you become familiar with the plot statements GTL offers, you will see them as basic
components that can be stacked in many ways to form more complex plots. For example,
there is no "BARLINE" statement in GTL. You design this kind of graph by overlaying a
SERIESPLOT on a BARCHART or BARCHARTPARM.

proc template;
 define statgraph barline;
 begingraph;
 entrytitle "Overlay of REFERENCELINE, BARCHARTPARM and SERIESPLOT";
 layout overlay;
 referenceline y=25000000 / curvelabel="Target";
 barchartparm x=year y=retail;
 seriesplot x=year y=profit / name="series";
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

/* compute sums for each product line */

40 Chapter 4 • Using a Simple Single-cell Layout

proc summary data=sashelp.orsales nway;
 class year;
 var total_retail_price profit;
 output out=orsales sum=Retail Profit;
run;

proc sgrender data=orsales template=barline;
 format retail profit comma12.;
run;

The output reflects the requested stacking order.

Chart Orientation. When creating a bar chart, it is sometimes desirable to rotate the chart
from vertical to horizontal. GTL does not provide separate statements for vertical and
horizontal charts—each is considered to be the same plot type with a different orientation.
To create the horizontal version of the bar-line graph, you need to specify
ORIENT=HORIZONTAL on the BARCHARTPARM statement:

proc template;
 define statgraph barline;
 begingraph;
 entrytitle "Overlay of REFERENCELINE, BARCHARTPARM and SERIESPLOT";
 layout overlay;
 referenceline x=25000000 / curvelabel="Target";
 barchartparm x=year y=retail / orient=horizontal ;
 seriesplot x=profit y=year / name="series"
 legendlabel="Profit in USD";
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

Here, the Y axis becomes the category (DISCRETE) axis, and the X axis is used for the
response values. Both the REFERENCELINE and SERIESPLOT reflect this directly by
changing the variables that are mapped to the X and Y axes. The variable mapping for
BARCHARTPARM remains the way it was, but we add the ORIENT=HORIZONTAL
option to swap the axis mappings. The data set up and SGRENDER step are unchanged.

Common Overlay Combinations 41

This same strategy would be used to create a horizontal box plot or histogram. If you wanted
to reverse the ordering of the Y axis, you could add the REVERSE=TRUE option to the
Y-axis options:

layout overlay / yaxisopts=(reverse=true);

Multiple Axes. Sometimes you have equivalent data in different scales (currency,
measurements, and so on), or comparable data in the same scale that you want to display
on independent opposing axes.

The OVERLAY layout supports up to four independent axes, with a Y2 opposing the Y
axis to the right, and an X2 axis opposing the X axis at the top of the layout container.

The following is a complete program to generate this type of graph. We would like to
display Fahrenheit temperatures on a separate Y2 axis from the Y axis used to display
Celsius temperatures. For this particular example, it is not necessary to have input variables
for both temperatures because an EVAL function can be used to compute a new column
of data within the context of the template.

42 Chapter 4 • Using a Simple Single-cell Layout

At this point, the most important concept to understand about template code is that an
independent axis can be created by mapping data to it. Notice that the SCATTERPLOT
statement uses the YAXIS=Y2 option. This causes the Y2 to axis to be displayed and scaled
with the computed variable representing Fahrenheit values. It is important to note that
multiple plots in an overlay share the same axis (such as the X-Axis). Hence, the options
to control the axis attributes are not found on the plot statements, but rather in the LAYOUT
statement. Most of the Y and Y2 axis options are included to force the tick marks for the
two different axis scales to exactly correspond. This example and many other axis issues
are discussed in detail in Chapter 5, “Managing Axes in an OVERLAY Layout,” on page
53.

data temps;
 input City $1-11 Celsius;
datalines;
New York 11
Sydney 12
Mexico City 18
Paris 8
Tokyo 6
run;

proc template;
 define statgraph Y2axis;
 begingraph;
 entrytitle "Overlay of NEEDLEPLOT and SCATTERPLOT";
 entrytitle "SCATTERPLOT uses Y2 axis";
 layout overlay /
 xaxisopts=(display=(tickvalues))
 yaxisopts=(griddisplay=on offsetmin=0
 linearopts=(viewmin=0 viewmax=20
 thresholdmin=0 thresholdmax=0))
 y2axisopts=(label="Fahrenheit" offsetmin=0
 linearopts=(viewmin=32 viewmax=68
 thresholdmin=0 thresholdmax=0)) ;
 needleplot x=City y=Celsius;
 scatterplot x=City y=eval(32+(9*Celsius/5)) / yaxis=y2
 markerattrs=(symbol=circlefilled);
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=temps template=y2axis;
run;

Often, the input data's organization will affect your choice of plot statements in an
OVERLAY layout. In Chapter 3, “Overview of Basic Statements and Options,” on page
19, you saw that you would choose different plot statements for a fit plot, depending on
the nature of the input data for a fit plot.

Common Overlay Combinations 43

Computed versus Paramterized Plots. If the data set has numeric columns for raw data
values of Height and Weight, the simplest way to create the fit line and confidence bands
is with a REGRESSIONPLOT, LOESSPLOT, or PBSPLINEPLOT statement and a
MODELBAND statement. All of these computed plot statements generate the values of
new columns corresponding to the points of the fit line and band boundaries.

layout overlay;
 modelband "myclm";
 scatterplot x=height y=weight / primary=true;
 regressionplot x=height y=weight / alpha=.01 clm="myclm";
endlayout;

If you have data computed by an analytic procedure that provides points on the fit line and
bands, you would choose a SERIESPLOT and BANDPLOT for the graph. This technique
is required when the desired fit line can't be computed by the REGRESSIONPLOT,
LOESSPLOT, or PBSPLINEPLOT statement options.

layout overlay;
 bandplot x=height limitupper=uclm limitlower=lclm /
 fillattrs=GraphConfidence;
 scatterplot x=height y=weight / primary=true;
 seriesplot x=height y=p / lineattrs=GraphFit;
endlayout;

Also, notice that additional options are used to set the appearance of the fit line and band
to match the defaults for REGRESSIONPLOT and MODELBAND.

Grouped Data. Another common practice is to overlay series lines for comparisons. If
your data contains a classification variable in addition to X and Y variables, you could use
one SERIESPLOT statement with a GROUP= option:

proc template;
 define statgraph seriesgroup;
 begingraph;
 entrytitle "Overlay of SERIESPLOTs with GROUP=";
 layout overlay;
 seriesplot x=date y=close / group=stock name="s";
 discretelegend "s";
 endlayout;
 endgraph;

44 Chapter 4 • Using a Simple Single-cell Layout

 end;
run;

proc sgrender data=sashelp.stocks template=seriesgroup;
 where date between "1jan2002"d and "31dec2005"d;
run;

By default when you use a GROUP= option with a plot, the plot automatically cycles
through appearance features (colors, line styles, and marker symbols) to distinguish group
values in the plot. The default features that are assigned to each group value are determined
by the current style. For the following graph, the default colors and line styles of the
LISTING style are used:

Multiple Response Variables. If your data has multiple response variables, you could
create a SERIESPLOT overlay for each response. In such situations, you often need to
adjust the Y axis label.

proc template;
 define statgraph series;
 begingraph;
 entrytitle "Overlay of Multiple SERIESPLOTs";
 layout overlay / yaxisopts=(label="IBM Stock Price") ;
 seriesplot x=date y=high / curvelabel="High";
 seriesplot x=date y=low / curvelabel="Low";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=series;
 where date between "1jan2002"d and "31dec2005"d
 and stock="IBM";
run;

Notice that, by default, each overlaid plot in this situation has the same appearance
properties.

Common Overlay Combinations 45

Appearance Options. In cases when multiple plots have the same appearance, you can
use plot options to adjust the appearance of individual plots. For example, to adjust the
series lines from the previous example, you can use the LINEATTRS= option:

layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High" lineattrs=GraphData1 ;
 seriesplot x=date y=low / curvelabel="Low" lineattrs=GraphData2 ;
endlayout;

You can also use the CYCLEATTRS= option, which is an option of the LAYOUT
OVERLAY statement that might cause each statement to acquire different appearance
features from the current style.

layout overlay / yaxisopts=(label="IBM Stock Price") cycleattrs=true ;
 seriesplot x=date y=high / curvelabel="High";
 seriesplot x=date y=low / curvelabel="Low";
endlayout;

Either coding produces the following graph:

46 Chapter 4 • Using a Simple Single-cell Layout

For additional information on how set the appearance features of plots, see see Chapter 6,
“Managing Graph Appearance: General Principles,” on page 83 and Chapter 17,
“Managing the Graph Appearance with Styles,” on page 299.

How Plots are Overlaid
The following sections explain in more detail how the overlay process works and why some
overlay constructs might not generate the graph you expect.

Statements Allowed in the Overlay Container
If you were to randomly place GTL statements within a LAYOUT OVERLAY block, you
would often get compile errors. The following basic rules indicate which statements can
be used within the layout block:

• all 2D plot statements except SCATTERPLOTMATRIX

• statements such as ENTRY, DISCRETELEGEND, and CONTINUOUSLEGEND

• GRIDDED, LATTICE, and overlay-type layout blocks can be nested.

However, the following restrictions apply:

• 3D plot statements cannot be included. Place these statements in a LAYOUT
OVERLAY3D block.

• ENTRYTITLE or ENTRYFOOTNOTE statements cannot be included. Place these
statements outside the outermost layout block.

• Other layout types such as PROTOTYPE, DATALATTICE, and DATAPANEL
layouts cannot be nested in an OVERLAY layout.

Restrictions on Allowed Statements
Even among the statements that are valid within an OVERLAY layout, some restrictions
apply to their use. For example, some dependent statements must be accompanied by at
least one stand-alone plot statement, such as SCATTERPLOT or SERIESPLOT, in order
to produce a usable graph. See Chapter 3, “Overview of Basic Statements and Options,”
on page 19 for lists of stand-alone and dependent statements.

For example, if you were to execute a template with the following layout block, it would
produce an empty graph at runtime.

proc template;
 define statgraph test;
 begingraph;
 layout overlay;
 referenceline x=10;
 endlayout;
 endgraph;
 end;
run;
proc sgrender data=sashelp.class template=test;
run;

WARNING: A blank graph is produced. For possible causes, see the graphics
 template language documentation.

Restrictions on Allowed Statements 47

The GTL Reference documentation for the REFERENCELINE statement states an
important requirement that explains why this graph is empty:

A REFERENCELINE statement can be used only within 2D overlay-type layouts
(OVERLAY, OVERLAYEQUATED, or PROTOTYPE). A stand-alone plot statement
that provides a sufficient data range for determining axis extents must be included in the
layout. For example, a REFERENCELINE statement can be used with a scatter plot or a
histogram statement.

Restrictions on Statement Combinations
Certain combinations of contained statements produce unexpected results. This section
examines why these combinations do not produce the expected graph.

Consider the following template code, which generates a warning in the log:

proc template;
 define statgraph test;
 begingraph;
 layout overlay;
 boxplot x=age y=weight;
 regressionplot x=age y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=test;
run;

WARNING: REGRESSIONPLOT statement cannot be placed under a layout OVERLAY with a
 discrete axis. The plot will not be drawn.

When multiple statements that potentially contribute to axis construction are placed in the
layout, the layout must verify that all data that is mapped to a particular axis is of the same
type (all numeric, or all character, or all time). In addition, the layout must verify that each
plot can use the requested axis type(s). In this case, the first statement in the layout is a
BOXPLOT. Statements such as BOXPLOT, BOXPLOTPARM, BARCHART, and
BARCHARTPARM treat the X=column as a categorical variable (regardless of data type)
and build a DISCRETE (categorical) axis. Therefore, because BOXPLOT is the first
statement in this example layout, it determines that the X axis is set to DISCRETE, and
subsequent plots must be compatible with a discrete axis.

Many computed plots, such as REGRESSIONPLOT, LOESSPLOT, and ELLIPSE, require
both X and Y axes to be of LINEAR type, which is a standard numeric interval axis type.
Had you specified a SCATTERPLOT instead of a REGRESSIONPLOT, there would be
no problem because a SCATTERPLOT can be displayed on either a DISCRETE or
LINEAR X and Y axis. The end result of this example is a graph containing only the box
plot output.

In this next example, the REGRESSIONPLOT and BOXPLOT statements have been
switched:

layout overlay;
 regressionplot x=age y=weight;
 boxplot x=age y=weight;
endlayout;

48 Chapter 4 • Using a Simple Single-cell Layout

WARNING: BOXPLOT statement has a conflict with the axis type. The plot will not
be drawn.

In this case, the REGRESSIONPLOT (first plot) has fixed the type of the X axis to be
LINEAR. Now the BOXPLOT is blocked because it needs a DISCRETE X axis. The end
result of this example is a graph containing only the regression line.

Because a SCATTERPLOT can be included on either LINEAR or DISCRETE axes, you
might think the following combination is valid:

layout overlay;
 scatterplot x=age y=weight;
 boxplot x=age y=weight;
endlayout;

WARNING: BOXPLOT statement has a conflict with the axis type. The plot will not
be drawn.

In this case, the SCATTERPLOT (first statement) sets the X or Y axis type to LINEAR if
the variable for that axis is numeric—even though the data might be categorical in nature.
However, if the variable is character, the SCATTERPLOT must use a DISCRETE axis.
So, once again the BOXPLOT is not displayed. If you switch the statements, both plots are
drawn because after the X axis is fixed to be DISCRETE, the SCATTERPLOT can display
numeric values on a DISCRETE axis.

When a character variable is used, the axis-type conflict often does not arise. The following
combination works regardless of statement order. In either case, the DISCRETE X axis
will display a combination of AGE values with box plots above and SEX values with scatter
points above.

layout overlay;
 scatterplot x=sex y=weight;
 boxplot x=age y=weight;
endlayout;

Avoiding Plot Conflicts
In GTL, it is important to know what types of axes a given plot requires or can support. If
you understand the basic ideas behind previous examples, you can use the following
additional GTL syntax to avoid some of the problems caused by the first plot statement
deciding the axis type:

• use the PRIMARY=TRUE option on a plot statement to ensure that plot is used to
determine the axis type

• declare an axis type on the layout block.

Most non-dependent plot statements support the PRIMARY= option. By default,
PRIMARY=TRUE for the first plot and PRIMARY=FALSE for the rest of the plots in the
layout. On a per-axis basis, only one plot in an overlay can use PRIMARY=TRUE. If
multiple plots specify PRIMARY=TRUE for the same axis, the last one encountered is
considered primary. The plot that is designated as primary by default defines the axis types
for the axes it uses, regardless of its order within the layout block. This is useful when you
want a certain stacking order for the plots, but don't want the first plot to set the axis features,
such as axis type and default axis label.

In the following example, the BOXPLOT sets the X axis to be DISCRETE and the Y axis
to be LINEAR:

Avoiding Plot Conflicts 49

layout overlay;
 scatterplot x=age y=weight;
 boxplot x=age y=weight / primary=true ;
endlayout;

All layouts that manage axes provide options that enable you to control the axis features.
The following example shows how to declare an axis type for the X axis. Any plot in the
layout that cannot support a discrete axis will be dropped. Also note that specifying an axis
type overrides the default axis type that is derived from the primary plot. Axis options are
discussed in detail in Chapter 5, “Managing Axes in an OVERLAY Layout,” on page
53.

layout overlay / xaxisopts=(type=discrete) ;
 scatterplot x=age y=weight;
 boxplot x=age y=weight;
endlayout;

Some plot combinations can never be used. A histogram and bar chart look similar, but
they have different data and axis requirements. The histogram must use a linear X axis and
the bar chart must use a discrete X axis. The two plot types can never be overlaid.

layout overlay;
 barchart x=age;
 histogram age;
endlayout;

WARNING: HISTOGRAM statement has a conflict with the axis type. The plot will not
be drawn.

layout overlay;
 histogram age;
 barchart x=age;
endlayout;

WARNING: BARCHART statement has a conflict with the axis type. The plot will not
be drawn.

Plots with Incompatible Data
All plot statements have required argument(s) that map input data column(s) to one or more
axes. Many plot statements have restrictions on the variable type (numeric or character)
that can be used for the required arguments.

For example, the HISTOGRAM statement accepts only a numeric variable for the required
argument. Consider the following template:

proc template;
 define statgraph test;
 begingraph;
 layout overlay;
 histogram sex;
 endlayout;
 endgraph;
 end;
run;

50 Chapter 4 • Using a Simple Single-cell Layout

NOTE: STATGRAPH 'Test' has been saved to: SASUSER.TEMPLAT

If you were to create this template, you would not see a compilation error or warning
because no variables are checked at compile time. However, you would see warnings in
the log when the template is executed:

proc sgrender data=sashelp.class template=test;
run;

WARNING: Invalid data passed to BIN. Variable must be numeric.
WARNING: The histogram statement will not be drawn because one or more of the
 required arguments were not supplied.
WARNING: A blank graph is produced. For possible causes, see the graphics
 template language documentation.

In general, GTL produces a graph whenever possible. Plots in the overlay that can be drawn
will be drawn. Plots are not drawn if they have incompatible data for the required arguments
or if they cannot support the existing axis type(s). Hence, you might get a graph with some
or none of the requested plot overlays.

The same strategy extends to plot options that have incompatible data. In the following
example, the wrong variable name was used for the GROUP= option. In the data, the
column is named SEX, not GENDER. This is not regarded as an error condition—the bar
chart will be drawn without groups.

layout overlay;
 barchart x=age / group=gender;
endlayout;

Plots with Incompatible Data 51

52 Chapter 4 • Using a Simple Single-cell Layout

Chapter 5
Managing Axes in an OVERLAY
Layout

Introduction to Axis Management . 53

Axis Terminology . 54

How Plot Statements Affect Axis Construction . 55

Specifying Axis Options . 58

Default Axis Construction and Related Options . 59
Determine Axis Type . 59
Apply Axis Options . 61
Determine Axis Data Range . 61
Determine Axis Label . 61
Determine Axis Tick Values . 64
Apply Axis Thresholds . 64
Apply Axis Offsets . 67

LINEAR Axes . 69
Setting the Axis Data Range and Tick Values . 69
Formatting Axis Tick Values . 70
Avoiding Tick Value Collisions . 71

TIME Axes . 72
Overview . 72
Setting the Tick Values . 72
Formatting Axis Tick Values . 74
Avoiding Tick Value Collisions . 74
Setting the Axis Data Range . 75

LOG Axes . 75
Overview . 75
Setting the Log Base . 76
Setting the Tick Intervals . 77

Axis Line versus Wall Outline . 79

Axis Appearance Features Controlled by the Current Style 81

Introduction to Axis Management
When you write GTL programs, all axes are automatically managed for you. For example,
in a LAYOUT OVERLAY block, the overlay container decides

• which axes are displayed

53

• the axis type of each axis (linear, time, ...)

• the data range of each axis

• the label of the axis

• other axis characteristics, some of which are derived from the current style.

Usually, the internal techniques that are used to manage axes produce good default axes.
Occasionally, you might find some feature you want to change. Layout statements provide
many axis options that change the default axis behavior. This chapter shows how axes are
managed by default and the programming options that are available to you for changing
that behavior.

Note: This chapter discusses axis features that are specific to an OVERLAY layout when
it is the outermost layout and not nested in another layout. Nesting layouts sometimes
causes interactions that affect the axis features. You should read this chapter before
reading about other layout types because this chapter provides the basic principles of
axis management. Be aware, though, that the other layout types (for example,
OVERLAYEQUATED, OVERLAY3D, LATTICE, DATAPANEL and
DATALATTICE) also control axes. Many of these layouts have similar although not
identical options to the OVERLAY layout. See the chapters on these other layouts for
detailed discussions on how they manage axes.

Axis Terminology
The OVERLAY container has up to four independent axes (X, Y, X2, Y2) that can be used
in various combinations. Each axis has the following features, which can be selectively
displayed using the option or setting that is shown in parentheses.

• axis line (LINE)

• axis label (LABEL)

• tick marks (TICKS)

• tick values (TICKVALUES)

• grid lines drawn perpendicular to the axis at tick marks (GRIDDISPLAY=)

• gaps at the beginning and end of the axis (OFFSETMIN= and OFFSETMAX=).

54 Chapter 5 • Managing Axes in an OVERLAY Layout

How Plot Statements Affect Axis Construction
Primary and Secondary Axes. The LAYOUT OVERLAY container supports two
horizontal (X and X2) and two vertical (Y and Y2) axes. The bottom axis (X) and the left
axis (Y) are the default axes, referred to as the primary axes. The top axis (X2) and the
right axis (Y2) are referred to as the secondary axes and are displayed only if they are
requested. For example, consider this simple layout block:

layout overlay;
 scatterplot x=city y=fahrenheit;
endlayout;

Explicitly, the layout block means the following:

layout overlay;
 scatterplot x=city y=fahrenheit / xaxis=x yaxis=y ;
endlayout;

How Plot Statements Affect Axis Construction 55

The defaults result in an XY plot having only two axes, X and Y. However, you can request
that either the X or Y columns be mapped to the X2 or Y2 axis. The XAXIS= option can
be set to X or X2. Similarly, the YAXIS= option can be set to Y or Y2:

layout overlay;
 scatterplot x=city y=fahrenheit / xaxis=x2 yaxis=y2 ;
endlayout;

A single plot statement can activate one horizontal and/or one vertical axis. It cannot
activate both horizontal or both vertical axes. Thus, to see both a Y and Y2 axis based on
the same Y column, you could specify an additional plot statement:

layout overlay;
 scatterplot x=city y=fahrenheit / xaxis=x yaxis=y ;
 scatterplot x=city y=fahrenheit / xaxis=x yaxis=y2 ;
endlayout;

This layout could be more compactly written as follows:

layout overlay;
 scatterplot x=city y=fahrenheit;
 scatterplot x=city y=fahrenheit / yaxis=y2 ;
endlayout;

Note that this coding produces two overlaid scatter plots, each with five markers. Because
the five (X,Y) value pairs and the five (X,Y2) value pairs are identical, the Y and Y2 axes
are identical and the markers are exactly superimposed. However, it is not necessary to
create a second plot when you want the secondary axis to be a duplicate of the primary

56 Chapter 5 • Managing Axes in an OVERLAY Layout

axis. A more direct way to accomplish this is shown in “Specifying Axis Options” on page
58.

The next two examples show the independent nature of primary and secondary axes. In
each case, a different data column is mapped to the Y and Y2 axes.

layout overlay;
 seriesplot x=date y=price;
 needleplot x=date y=volume / yaxis=y2;
endlayout;

As the following figure shows, the primary and secondary Y axes are independently scaled
and there is not a necessary connection between the units or data ranges of either axis.

In the next example, even though the Y and Y2 variables are different, the primary and
secondary Y axes represent the same data range in different units. In such cases, the
positioning of the tick values on each axis should be coordinated so that the grid lines
represent the same temperature on each axis. “Apply Axis Thresholds” on page 64
provides example code that shows how to coordinate the tick value positions.

layout overlay;
 scatterplot x=city y=fahrenheit;
 scatterplot x=city y=celsius / yaxis=y2 ;
endlayout;

How Plot Statements Affect Axis Construction 57

Specifying Axis Options
To set axis options on the LAYOUT OVERLAY statement, you use the following syntax.
Notice that each axis has its own separate set of options, and that the option specifications
must be enclosed in parentheses. GTL frequently uses parentheses to bundle options that
modify a specific feature. These are called "option bundles."

layout overlay / xaxisopts =(options) yaxisopts =(options)
 x2axisopts=(options) y2axisopts=(options);

If you specify the X2AXISOPTS= or Y2AXISOPTS= options but there is no data mapped
to these axes, the option bundles are ignored.

One of the basic options that you can set for any axis is DISPLAY= keyword | (feature-
list). Four features are available for the feature-list: LINE, TICKS, TICKVALUES, and
LABEL. The keywords STANDARD and ALL are equivalent to specifying the full list:
(LINE TICKS TICKVALUES LABEL). You can also use DISPLAY=NONE to
completely suppress all parts of the axis.

Example: Some plots don't really need TICKS on all axes. The follow axis option
eliminates the ticks on the X axis by omitting the TICKS value on the feature-list.

layout overlay / xaxisopts=(display=(line label tickvalues));
 barchartparm x=city y=fahrenheit;
endlayout;

Let's return to the common situation where you want a duplicated Y2 axis. Here is the most
efficient way to do it:

layout overlay / yaxisopts=(displaysecondary=standard);
 barchartparm x=city y=fahrenheit;
endlayout;

This specification creates the Y2 axis as a duplicate of the Y axis: all features are displayed
without having to map data to the Y2 axis. You can also restrict the secondary axis features
that are displayed by specifying a list of the features you want to be displayed. The values
available for the DISPLAYSECONDARY= option are the same as those of the DISPLAY=
option. The following example specifies that the secondary axis label will not be displayed.
It also requests that grid lines be displayed on the Y axis:

58 Chapter 5 • Managing Axes in an OVERLAY Layout

layout overlay / xaxisopts=(display=(line label tickvalues))
 yaxisopts=(displaysecondary=(ticks tickvalues line)
 griddisplay=on);
 barchartparm x=city y=fahrenheit;
endlayout;

Default Axis Construction and Related Options

Determine Axis Type
To determine axis types, the OVERLAY container examines all of the stand-alone plot
statements that are specified. It also examines whether an axis type has been specified with
the TYPE= setting on an axis option (for example, on XAXISOPTS=). If there is only one
stand-alone plot, or a plot is designated as PRIMARY, the rules are simple:

• If the plot statement that is mapped to an axis treats data values as discrete (such as the
X= column of the BARCHART or BOXPLOT statement), the axis type is DISCRETE
for that axis, regardless of whether the data column that is mapped to the axis is character
or numeric. A DISCRETE axis has tick values for each unique value in a data column.

• If the plot statement that is mapped to an axis bases the axis type on the data type of
the assigned values, a DISCRETE axis is created when the column type is character.
Otherwise, a TIME or LINEAR axis is created.

• If the plot statement that is mapped to an axis specifies a numeric column and the
column has a date, time, or datetime format associated with it, the axis type is TIME.
See “TIME Axes” on page 72 for examples. Otherwise, the numeric axis type is
LINEAR, the general numeric axis type. See “LINEAR Axes” on page 69 for
examples.

• A LOG axis is never automatically created. To obtain a LOG axis, you must explicitly
declare the axis type with the TYPE=LOG option. See “LOG Axes” on page 75 for
examples.

• If a TYPE= axis-type option is specified, that is the type used. Plots that cannot support
that axis type will not be drawn.

Determine Axis Type 59

When the overlay container has multiple plots that generate axes, GTL can determine
default axis features for the shared axes, or you can use the PRIMARY= option on one of
the plot statements to specify which plot you want the GTL to use.

• If no plot is designated as primary, the data columns that are associated with the first
plot that generates an axis are considered primary on a per-axis basis.

• If PRIMARY=TRUE for a plot within an overlay-type layout, that plot's data columns
and type will be used to determine the default axis features, regardless of where this
plot statement occurs within the layout block.

• Only one plot can be primary on a per-axis basis. If multiple plots specify
PRIMARY=TRUE for the same axis, the last one encountered is considered primary.

Example: For the following layout block, the BARCHART is considered the primary plot
because it is the first stand-alone plot that is specified in the layout and no other plot has
been set as the primary plot. A BARCHART requires a discrete X-axis. You cannot change
the axis type. It does not matter whether QUARTER is a numeric or character variable.
Because the SERIESPLOT can use a discrete axis, the overlay will be successful.

layout overlay;
 barchart x=quarter y=actualSales;
 seriesplot x=quarter y=predictedSales;
endlayout;

Example: For the following layout block, the first SERIESPLOT is considered primary.
If the QUARTER variable is numeric and has a date format, then the X-axis type will be
TIME. If the variable is numeric, but does not have a date format, then the axis type will
be LINEAR. If the variable is character, then the axis type will be DISCRETE.

layout overlay;
 seriesplot x=quarter y=predictedSales;
 seriesplot x=quarter y=actualSales;
endlayout;

Example: For the following layout block, the X-axis is DISCRETE because it was declared
to be DISCRETE and this does not contradict any internal decision about axis type because
both SERIESPLOT and BARCHART support a discrete axis. It does not matter whether
QUARTER is a numeric or character variable.

layout overlay / xaxisopts=(type=discrete);
 seriesplot x=quarter y=predictedSales;
 barchart x=quarter y=actualSales;
endlayout;

Example: For the following layout block, the SERIESPLOT is the primary plot. If
QUARTER is a character variable, a discrete axis is used and the overlay is successful.
However, if QUARTER is a numeric variable, either a TIME or LINEAR axis is used, the
BARCHART overlay fails, and a message is written to the log.

layout overlay;
 seriesplot x=quarter y=predictedSales;
 barchart x=quarter y=actualSales;
endlayout;

WARNING: BARCHART statement has a conflict with the axis type. The plot will not
be drawn.

60 Chapter 5 • Managing Axes in an OVERLAY Layout

Apply Axis Options
Each of the four possible axes (X, Y, X2, Y2) can be managed with a set of options that
apply to axes of any type. In addition, option bundles are available for managing each
specific axis type. For example, the following syntax shows the option bundles that are
available on the LAYOUT OVERLAY statement's XAXISOPTS= option:

LAYOUT OVERLAY </ XAXISOPTS=(general-options LINEAROPTS=(options)
DISCRETEOPTS=(options) TIMEOPTS=(options) LOGOPTS=(options)) >;

These same bundles are available for the other axes using the following LAYOUT
OVERLAY options:

YAXISOPTS= (same-as-xaxisopts)
Y2AXISOPTS=(same-as-xaxisopts)
X2AXISOPTS=(same-as-xaxisopts)

You can specify as many type-specific option bundles as you want, but only the bundle
that corresponds to the axis type will be used for a given template execution.

Determine Axis Data Range
After the type of each axis is determined in the layout, the data ranges of all plot statements
that contribute to an axis are compared. For LINEAR, TIME, and LOG axes, the minimum
of all minimum values and the maximum of all maximum values are derived as a "unioned"
data range. For a DISCRETE axis, the data range is the set of all unique values from the
sets of all values. The VIEWMIN= and VIEWMAX= options for LINEAR, TIME, and
LOG axes can be used to change the displayed axis range. For examples, see “LINEAR
Axes” on page 69, “TIME Axes” on page 72, and “LOG Axes” on page 75.

Determine Axis Label
The default axis label is determined by the primary plot. If a label is associated with the
data column, the label is used. If no column label is assigned, the column name is used for
the axis label. Each set of axis options provides LABEL= and SHORTLABEL= options
that can be used to change the axis label. By default, the font characteristics of the label
are set by the current style, but the plot statement's LABELATTRS= option can be used to
change the font characteristics. See “Axis Appearance Features Controlled by the Current
Style” on page 81. The following examples show how axis labels are determined and
how to set an axis label.

Consider the following data set, which contains information about bacteria and virus
growth:

data growth;
 do Hours=1 to 15 by .5;
 Bacteria= 1000*10**(sqrt(Hours));
 Virus= 1000*10**(log(hours));
 label bacteria="Bacteria Growth" virus="Virus Growth";
 output;
 end;
run;

To plot the growth trend for both Bacteria and Virus in the same graph, we can use a simple
overlay of series plots. Whenever two or more columns are mapped to the same axis, the
primary plot determines the axis label. In the following example, the first SERIESPLOT

Determine Axis Label 61

is primary by default, so its columns determine the axis labels. In this case, the Y-axis label
is determined by the BACTERIA column.

layout overlay / cycleattrs=true;
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
endlayout;

If we designate another plot statement as "primary," its X= and Y= columns will be used
to label the axes. The PRIMARY= option is useful when you desire a certain stacking order
of the overlays, but you want the axis characteristics to be determined by a plot statement
that is not the default primary plot statement. In the following example, the second
SERIESPLOT is set as the primary plot, so its columns determine the axis labels. In this
case, the Y-axis label is determined by the VIRUS column.

layout overlay / cycleattrs=true;
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus" primary=true ;
endlayout;

In the previous two examples, allowing the primary plot to determine the Y-axis label did
not result in an appropriate label because a more generic label is needed. To achieve this,
you must set the axis label yourself with the LABEL= option.

layout overlay / cycleattrs=true
 yaxisopts=(label="Growth of Virus and Bateria Cultures") ;

62 Chapter 5 • Managing Axes in an OVERLAY Layout

 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
endlayout;

Short Labels. If the data column's label is long, or if you supply a long string for the label,
the label might be truncated if it won't fit in the allotted space. This might happen when
you create a small graph or when the font size for the axis label is large.

As a remedy for these situations, you can specify a "backup" label with the
SHORTLABEL= option. The short label will be displayed whenever the default label or
the LABEL= string won't fit.

layout overlay / cycleattrs=true
 yaxisopts=(label="Growth of Virus and Bacteria Cultures"
 shortlabel="Growth");
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
endlayout;

Computed Columns. Another situation where you might want to control the axis label is
when a computed column is used.

layout overlay;
 histogram eval(weight*height);
endlayout;

Determine Axis Label 63

You can use an EVAL expression to compute a new column that can be used as a required
argument. Such columns have manufactured names in the associated data object. The name
is based on the input column(s) and the functional transformation that was applied to the
input column. In this example, BIN(WEIGHT*HEIGHT) is the manufactured name.

Determine Axis Tick Values
The tick values for LINEAR and TIME axes are calculated according to an internal
algorithm that produces good tick values by default. This algorithm can be modified or
bypassed with axis options. For examples, see “LINEAR Axes” on page 69 and “LOG
Axes” on page 75.

By default, the font characteristics of the tick values are set by the current style. You can
set alternative font characteristics with the TICKVALUEATTRS= option. For more
information, see “Axis Appearance Features Controlled by the Current Style” on page
81.

Apply Axis Thresholds
For LINEAR axes only, part of the default axis construction computes a small number of
"good" tick values for the axis. This list might include "encompassing" tick values that go
beyond the data range on both the lower or upper side of the axis. The THRESHOLDMIN=
and THRESHOLDMAX= options of LINEAROPTS = () can be used to establish rules
for when to add encompassing tick marks. In the following example, the data range is 5 to
47. When the THRESHOLDMIN=0 and THRESHOLDMAX=0, the lowest and highest
tick marks will always be at or inside the data range. Notice that the lowest tick mark is 10
and the highest tick mark is 40.

64 Chapter 5 • Managing Axes in an OVERLAY Layout

When the THRESHOLDMIN=1 and THRESHOLDMAX=1, the lowest and highest tick
marks will always be at or outside the data range. Notice that the lowest tick mark is 0 and
the highest tick mark is 50.

When the thresholds are set to any value between 0 and 1, a computation is performed to
determine whether an encompassing tick is added. The default value for both thresholds
is .3. Notice that the highest tick mark is 50 and the lowest tick mark is 10. In this case, an
encompassing tick was added for the highest tick but not for the lowest tick.

At the high end of the axis, there is a tick mark at 40. The THRESHOLDMAX= option
determines whether a tick mark should be displayed at 50. The threshold distance is
calculated by multiplying the THRESHOLDMAX= value (0.3) by the tick interval value
(10), which equals 3. Measuring the threshold distance 3 down from 50 yields 47, so if the
highest data value is between 47 and 50, a tick mark will be displayed at 50. In this case,
the highest data value is 47 and it is within the threshold, so the tick mark at 50 is displayed.

At the low end of the axis, there is a tick mark at 10. The THRESHOLDMIN= option
determines whether a tick mark should be displayed at 0. The threshold distance is
calculated by multiplying the THRESHOLDMIN= value (0.3) by the tick interval value
(10), which equals 3. Measuring the threshold distance of 3 up from 0 yields 3, so if the
lowest data value is between 0 and 3, a tick mark will be displayed at 0. In this case, the
lowest data value is 5 and it is not within this threshold, so the tick mark at 0 is not displayed.

Thresholds are important when you want the Y and Y2 (or X and X2) axes to have ticks
marks located at equivalent locations on different scales. By preventing "encompassing"
ticks from being drawn, you can ensure that the axis ranges for the two axes correctly align.
The following example accepts the default minimum and maximum data values for each
axis. Notice that the five scatter points for each plot are superimposed exactly.

layout overlay /
 yaxisopts=(griddisplay=on
 linearopts=(integer=true thresholdmin=0 thresholdmax=0))

 y2axisopts=(linearopts=(integer=true thresholdmin=0 thresholdmax=0));

Apply Axis Thresholds 65

 scatterplot x=city y=fahrenheit;
 scatterplot x=city y=celsius / yaxis=y2;
endlayout;

In the following example, the axes have different but equivalent ranges that are established
with the VIEWMIN= and VIEWMAX= options (32F <==> 0C and 86F <==> 30C).

layout overlay /
 yaxisopts= (griddisplay=on
 linearopts=(integer=true thresholdmin=0 thresholdmax=0
 viewmin=32 viewmax=86))

 y2axisopts= (linearopts=(integer=true thresholdmin=0 thresholdmax=0
 viewmin=0 viewmax=30));

 scatterplot x=City y=Fahrenheit;
 scatterplot x=City y=Celsius / yaxis=y2;
endlayout;

This next example creates equivalent ticks for a computed histogram. We want to ensure
that the percentage and actual count correspond on the Y and Y2 axes.

layout overlay / yaxisopts=(linearopts=(thresholdmin=0 thresholdmax=0))
 y2axisopts=(linearopts=(thresholdmin=0 thresholdmax=0));
 histogram mrw / scale=percent;

66 Chapter 5 • Managing Axes in an OVERLAY Layout

 histogram mrw / scale=count yaxis=y2;
endlayout;

Apply Axis Offsets
In addition to axis thresholds, there are also axis offsets. Offsets are small gaps that are
potentially added to each end of an axis: before the start of the data range and after the end
of the data range. Offsets can be applied to any type of axis. For example, axis offsets are
automatically added to allow for markers to appear at the first or last tick without clipping
the marker

For plots such as box plots, histograms, and barcharts, offset space is added to ensure that
the first and last box or bar does not get clipped.

Apply Axis Offsets 67

The OFFSETMIN= option on a layout statement controls the distance from the beginning
of the axis to the first tick mark (or minimum data value). The OFFSETMAX= option
controls the distance between last tick (or maximum data value) and the end of the axis.
The offset range is from 0 to 1, and the specified value is used to calculate the offset as a
percentage of the full axis length. The default offset reserves just enough space to fully
display markers and other graphical features near the ends of an axis.

For some plots, the axis offsets are not desirable. To illustrate this, consider the contour
plot below. Notice that the entire plot area between minimum and maximum data values
is filled with colors that correspond to a Z value. The narrow white bands around the top
and right edges of the filled area and the axis wall boundaries are due to the default axis
offsets.

layout overlay;
 contourplotparm x=height y=weight z=density;
endlayout;

To eliminate the "extra" gaps at the ends of the axes, we can set axis offsets and thresholds
to zero. An offset is a value between 0 and 1 that represents a percentage of the length of
the axis.

layout overlay / xaxisopts=(offsetmin=0 offsetmax=0
 linearopts=(thresholdmin=0 thresholdmax=0))
 yaxisopts=(offsetmax=0 offsetmax=0
 linearopts=(thresholdmin=0 thresholdmax=0));
 contourplotparm x=height y=weight z=density;
endlayout;

68 Chapter 5 • Managing Axes in an OVERLAY Layout

LINEAR Axes

Setting the Axis Data Range and Tick Values
For a LINEAR axis, you can set the tick values in several ways. If you use
TICKVALUELIST = (values) or TICKVALUESEQUENCE= (start-end increment)
syntax, the values that you specify will be used as long as those values are within the actual
range of the data. Notice in the following example that the smallest and largest tick values
on the Y axis are not what was requested because the Y-axis data range did not include 0
or 8000000. To extend (or reduce) the axis data range, you can use the VIEWMIN= and
VIEWMAX= sub-options of the LINEAROPTS= option. Notice that because the X-axis
was extended with these options, all the specified tick values were used. The X-axis also
illustrates that the tick values do not have to be uniformly spaced. (Please note that choosing
tick values in this manner does NOT create a log scale. See “LOG Axes” on page 75 for
information about log axes.)

layout overlay /
 xaxisopts=(linearopts=(viewmin=0 viewmax=16
 tickvaluelist=(0 2 4 8 16)))
 yaxisopts=(linearopts=
 (tickvaluesequence=(start=0 end=8e6 increment=1e6)));
 seriesplot x=Hours y=Bacteria;

endlayout;

Setting the Axis Data Range and Tick Values 69

Formatting Axis Tick Values
Linear axes use special techniques that provide the generation of "good" tick values that
are based on the data range. If a tick value format is not specified, the column formats
provide a "hint" on how to represent the tick values, but those formats do not generally
control the representation or precision of the tick values.

To force a given format to be used for a linear axis, you can use syntax similar to the
following, where you specify any SAS numeric format:

 linearopts=(tickvalueFormat= best6.)

Note: GTL currently honors most but not every SAS format. For a list of supported
formats, see Appendix A4, “SAS Formats Not Supported,” on page 357.

If you simply want the column format of the input data column to be directly used, specify
the following:

 linearopts=(tickvalueFormat=data)

There are special options to control tick values. INTEGER=TRUE calculates good integers
to use as tick values given the range of the data. EXTRACTSCALE=TRUE can be used
to extract some factor of ten from all tick values in order to reduce the overall width of the
tick values and improve legibility. The extracted factor is concatenated to the existing axis
label. In the following example, a factor of 1000000 (million) is extracted from the Y-axis
values and the text (million) is appended to the axis label.

layout overlay / xaxisopts=(linearopts=(integer=true))
 yaxisopts=(linearopts=(tickvalueFormat= (extractScale=true)));
 seriesplot x=Hours y=Bacteria;
endlayout;

70 Chapter 5 • Managing Axes in an OVERLAY Layout

Avoiding Tick Value Collisions
Another intelligent feature that axes have is to change the display of tick values whenever
the tick value text becomes too crowded. For example, the axis below comfortably shows
eleven tick values:

If the size of the graph decreases or the font size for the tick values increases, the axis ticks
and tick values will automatically be "thinned" by removing alternating ticks and tick
values. LINEAROPTS = (TICKVALUEFITPOLICY=THIN) is the default action for
linear axes:

You can set TICKVALUEFITPOLICY=ROTATE which angles the tick value text 45
degrees:

You can set TICKVALUEFITPOLICY=STAGGER which creates alternating tick values
on two rows.

Avoiding Tick Value Collisions 71

You can set TICKVALUEFITPOLICY to a compound policy ROTATETHIN,
STAGGERTHIN, or STAGGERROTATE. The compound policies attempt the second
policy if the first policy does not work well. These policies are available for X and X2 axes.
The only fit policy for the Y and Y2 axes is THIN.

Note: The TICKVALUEFITPOLICY= is never applied unless a tick value collision
situation is present. That is, you cannot force tick values to be rotated or staggered if
there is no collision situation.

TIME Axes

Overview
TIME axes are numeric axes that display SAS date or time values in an intelligent way.
Such axes are created whenever the primary plot has a SAS date, time, or datetime format
associated with a column that is mapped to an axis. In the following example, the DATE
variable has a SAS date format associated with it. By default, the TIME axis decides an
appropriate tick value format and an interval to display. Notice that, in the default case,
when the X or X2 axis is a TIME axis, the space that is used for the tick values is conserved
by splitting the values at appropriate date or time intervals and extracting larger intervals.
In this example, the column format for the DATE variable could be MMDDYY or any
other date-type format. The actual format serves only as a hint and is not used directly,
unless requested.

layout overlay;
 seriesplot x=date y=close;
endlayout;

Note: In this example, the data range for DATE was from 1Jan2004 to 1Dec2005. The
TIME axis chose the interval of MONTH to display tick values. Had the data range
been larger, say 1Jan1998 to 1Dec2005, the TIME axis would choose a larger interval,
YEAR, to display by default.

Setting the Tick Values
Using the INTERVAL= option, you can select different date or time intervals to display.
The default interval is AUTO, which chooses an appropriate interval, based on the data
and the column format.

72 Chapter 5 • Managing Axes in an OVERLAY Layout

Value on
INTERVAL= Unit Tick Interval

Default Tick Value
Format

AUTO DATE, TIME, or
DATETIME

automatically chosen automatically chosen

SECOND TIME or DATETIME second TIME8.

MINUTE TIME or DATETIME minute TIME8.

HOUR TIME or DATETIME hour TIME8.

DAY DATE or
DATETIME

day TIME9.

TENDAY DATE or
DATETIME

ten days TIME9.

WEEK DATE or
DATETIME

seven days TIME9.

SEMIMONTH DATE or
DATETIME

1st and 16th of each
month

TIME9.

MONTH DATE or
DATETIME

month MONYY7.

QUARTER DATE or
DATETIME

three months YYQC6.

SEMIYEAR DATE or
DATETIME

six months MONYY7.

YEAR DATE or
DATETIME

year YEAR4.

The following example specifies that tick values should occur at quarter intervals:

layout overlay / xaxisopts=(timeopts=(interval=quarter));

You can turn off the splitting feature with the SPLITTICKVALUE=FALSE option. Notice
that each tick value uses more space.

Setting the Tick Values 73

layout overlay / xaxisopts=(timeopts=(interval=quarter
 splittickvalue=false));

Formatting Axis Tick Values
As with LINEAR axes, you can force a specific format for tick values with the
TICKVALUEFORMAT= option, which also turns off the tick splitting feature. If you
specify TICKVALUEFORMAT=DATA, the format is associated with the column that is
used. Or you can specify a format:

layout overlay / xaxisopts=(timeopts=(interval=semiyear
 tickvalueformat=monyy.));

Avoiding Tick Value Collisions
As with LINEAR axes, you can specify a tick value fitting policy for a TIME axis. The
following policies are available: THIN, ROTATE, STAGGER, ROTATETHIN,
STAGGERTHIN, and STAGGERROTATE when tick values are not split. The default
policy is THIN .

layout overlay / xaxisopts=(timeopts=(interval=month
 splittickvalue=false
 tickvaluefitpolicy=rotate));

74 Chapter 5 • Managing Axes in an OVERLAY Layout

Setting the Axis Data Range
As with LINEAR axes, you can force specific tick values to be displayed with the
TICKVALUELIST= option. The VIEWMIN= and VIEWMAX= options control the data
range of the axis. If you specify TICKVALUEFORMAT=DATA, the format that is
associated with the column is used.

layout overlay / xaxisopts=(timeopts=(tickvalueformat=data
 viewmin="31Dec2002"d viewmax="31Dec2004"d
 tickvaluelist=("31Dec2002"d "30Jun2003"d
 "31Dec2003"d "30Jun2004"d "31Dec2004"d)));

LOG Axes

Overview
An axis displaying a logarithmic scale is very useful when your data values span orders of
magnitude. For example, when you plot your growth data with a linear axis, you suspect
that the growth rate is exponential.

layout overlay;
 seriesplot x=Hours y=Growth;
endlayout;

Overview 75

To confirm this, you can request a log axis, which is never drawn by default. Instead, you
must request it with the TYPE=LOG axis option. Any of the four axes can be a log axis.

layout overlay / yaxisopts=(type=log);

The numeric data that is used for a log axis must be positive. If zero or negative values are
encountered, a linear axis is substituted and the following note is written to the log:

NOTE: Log axis cannot support zero or negative values in the data range. The axis
type will
 be changed to LINEAR.

Setting the Log Base
You can show a log axis with any of three bases: 10, 2 and E (natural log). The default log
base is 10. To set another base, use the BASE= suboption setting of the LOGOPTS= option.

layout overlay / yaxisopts=(type=log logopts=(base=2));

76 Chapter 5 • Managing Axes in an OVERLAY Layout

layout overlay / yaxisopts=(type=log logopts=(base=e));

Setting the Tick Intervals
Log axes support the TICKINTERVALSTYLE= option, which provides different styles
for displaying tick values:

AUTO
A LOGEXPAND, LOGEXPONENT, or LINEAR representation is chosen
automatically, based on the range of the data. When the data range is small (within an
order of magnitude), a LINEAR representation is typically used. Data ranges that
encompass several orders of magnitude typically use the LOGEXPAND or
LOGEXPONENT representation. AUTO is the default.

LOGEXPAND
Major ticks are placed at uniform intervals at integer powers of the base. By default, a
BEST6. format is applied to BASE=10 and BASE=2 tick values. This means that,
depending on the range of data values, you might see very large or very small values
written in exponential notation (10E6 instead of 1000000). The preceding examples
with a log axis show TICKINTERVALSYTLE=LOGEXPAND.

LOGEXPONENT
Major ticks are placed at uniform intervals at integer powers of the base. The tick values
are only the integer exponents for all bases.

LINEAR
Major tick marks are placed at non-uniform intervals, covering the range of the data.

Setting the Tick Intervals 77

When using TICKINTERVALSTYLE=LOGEXPONENT, it might not be clear what base
is being used. You should consider adding information to the axis label to clarify the
situation:

layout overlay / yaxisopts=(type=log label="Growth (Powers of 10)"
 logopts=(base=10 tickintervalstyle=logexponent));

When using TICKINTERVALSTYLE=LINEAR, it is visually helpful to turn on the grid
lines:

layout overlay / yaxisopts=(type=log griddisplay=on
 logopts=(base=10 tickintervalstyle=linear));

When using BASE=10 and TICKINTERVALSTYLE=LOGEXPAND or
TICKINTERVALSTYLE=LOGEXPONENT, you can add minor ticks to emphasize the
log scale:

layout overlay / yaxisopts=(type=log griddisplay=on
 logopts=(base=10 tickintervalstyle=linear minorticks=true));

78 Chapter 5 • Managing Axes in an OVERLAY Layout

As with LINEAR and TIME axes, the data range of a log axis can be set with the
VIEWMIN= and VIEWMAX= log options.

If your input data has already been transformed into log values, you should always use a
LINEAR axis to display them, not a LOG axis.

layout overlay;
 seriesplot x=Hours y=eval(log10(growth));
endlayout;

Axis Line versus Wall Outline
The area bounded by the X, Y, X2, and Y2 axes is called the Wall Area or simply the Wall.
The wall consists of a filled area (FILL) and a boundary line (OUTLINE). The display of
the Wall is independent of the display of axes. When both are displayed, the axes are placed
on top of the wall outline. Most frequently, your plots will use only the X and Y axes, not
X2 or Y2.

By default, you will see lines that look like X2 and Y2 axis lines, but they are not axis lines.
They are the lines of the wall outline, which happens to be the same color and thickness as
the axis lines. This can be made apparent by assigning different visual properties to the
wall outline and the axis lines.

The GraphAxisLines style element controls the appearance of all axis lines, and the
GraphWalls style element controls the wall. The following example shows how you can

Axis Line versus Wall Outline 79

change the appearance of the axes and wall with a style definition. In the template code,
the PROC TEMPLATE block defines a style named AXIS_WALL, and then the ODS
LISTING statements sets the AXIS_WALL style as the active style for output that is
directed to the LISTING destination:

proc template ;
 define style axis_wall;
 parent=styles.listing;
 style graphwalls from graphwalls /
 frameborder=on
 linestyle=1
 linethickness=2px
 backgroundcolor=GraphColors("gwalls")
 contrastcolor= orange;
 style graphaxislines from graphaxislines /
 linestyle=1
 linethickness=2px
 contrastcolor=blue;
 end;
run;

ods listing style=axis_wall ;

If a simple GTL template containing the following layout block is executed while the
AXIS_WALL style is in effect, you would be able to see that the axis lines are distinct
from the wall outlines:

layout overlay / walldisplay=(fill outline); /* default walldisplay */
 scatterplot x=City y=Fahrenheit / datatransparency=.5;
 entry textattrs=(color=green) "(Wall Area)";
endlayout;

Most styles set the axis lines and the wall outline to be the same color, line pattern, and
thickness, so it is impossible to see the difference. Sometimes you might not want to see
the wall outline, or you might want to change the wall color. These types of changes can
be set on a style or with the WALLDISPLAY= option on the LAYOUT OVERLAY
statement. For example, the GTL default for the wall is WALLDISPLAY=(FILL
OUTLINE).

The following code fragment shows how to use the style definition to turn off the wall
outline:

80 Chapter 5 • Managing Axes in an OVERLAY Layout

 style GraphWalls from GraphWalls /
 frameborder=off;

This next code fragment shows how to use GTL to turn off the wall outline:

 layout overlay / walldisplay=(fill);

Axis Appearance Features Controlled by the
Current Style

The appearance of graphs produced with GTL is always affected by the ODS style that is
in effect for the ODS destination. From an axis perspective, the default appearance of the
axis line, ticks, tick values, axis label, and grid lines are controlled by predefined style
elements.

Style Element Style Attributes Values Controls

GraphAxisLines TickDisplay "ACROSS"
"INSIDE"
"OUTSIDE"

Tick mark location

LineStyle Integer: 1 to 49 Axis line pattern

LineThickness Dimension Axis line and tick
thickness

ContrastColor Color Axis line and tick
color

GraphGridlines DisplayOpts "AUTO" "ON"
"OFF"

When to display grid
lines

LineStyle Integer: 1 to 49 Grid line pattern

* A style font-specification include attributes for FONTFAMILY, FONTWEIGHT,
FONTSTYLE, and FONTSIZE

Axis Appearance Features Controlled by the Current Style 81

Style Element Style Attributes Values Controls

LineThickness Dimension Grid line thickness

ContrastColor Color Grid line color

GraphLabelText Color Color Axis label text color

Font font-specification * Axis label font

GraphValueText Color Color Axis tick value text
color

Font font-specification * Axis tick value font

* A style font-specification include attributes for FONTFAMILY, FONTWEIGHT,
FONTSTYLE, and FONTSIZE

The following GTL axis options also control the appearance of axis features. When you
include these options, the corresponding information from the current style is overridden.

Option Overrides ...

GRIDDISPLAY= DisplayOpts attribute of GraphGridLines

GRIDATTRS= GraphGridLines

LABELATTRS= GraphLabelText

TICKVALUEATTRS= GraphValueText

TICKSTYLE= TickDisplay attribute of GraphAxisLines

Example: Assure that the axis label text appears in bold.

layout overlay / xaxisopts=(labelattrs=(weight=bold))
 yaxisopts=(labelattrs=(weight=bold));

Example: Display grid lines.

layout overlay / xaxisopts=(griddisplay=on)
 yaxisopts=(griddisplay=on);

Example: Use a dot pattern for grid lines.

layout overlay / xaxisopts=(griddisplay=on gridattrs=(pattern=dot))
 yaxisopts=(griddisplay=on gridattrs=(pattern=dot));

Example: Make ticks cross the axes lines.

layout overlay / xaxisopts=(tickstyle=across)
 yaxisopts=(tickstyle=across);

For all of the preceding examples, you would add similar coding to the X2AXISOPTS=
and Y2AXISOPTS= options if the X2 or Y2 axes are used as independent scales. For
complete documentation on the axis options that are available, see the SAS/GRAPH Graph
Template Language Reference.

82 Chapter 5 • Managing Axes in an OVERLAY Layout

Chapter 6
Managing Graph Appearance:
General Principles

Default Appearance Features in Graphs . 83

Evaluating Supplied Styles . 85

Attributes as Collections of Related Options . 88
Overview . 88
LINEATTRS Option . 88
MARKERATTRS Option . 90
TEXTATTRS Option . 91

Appearance of Non-grouped Data . 92

Appearance of Grouped Data . 94

Using Custom Styles to Control the Appearance of Grouped Data 95

Making the Appearance of Grouped Data Independent of Data Order 97

Recommendations . 99

Default Appearance Features in Graphs
Graphs that are produced with GTL derive their general default appearance features (fonts,
colors, line properties, and marker properties) from the current ODS style. The following
three images show the same graph that is rendered with three different styles.

83

Figure 6.1 ods listing style=default;

Figure 6.2 ods listing style=astronomy;

84 Chapter 6 • Managing Graph Appearance: General Principles

Figure 6.3 ods listing style=journal;

An important point to note, here, is that the appearance of the graph changes when the
template is executed, not when it is compiled.

Fully one third of all GTL syntax addresses matters of appearance. Yet, most of the
examples in this document do not use the appearance syntax because the examples take
advantage of the pre-defined styles. Whenever the options in your graph template explicitly
change a color or font family, you are locking those decisions into the compiled template.
Appearance options in GTL always override any similar appearance settings contained in
the style. Thus, setting a fixed font or color appearance option might yield satisfactory
results with some styles but not with others. For that reason, the compiled graph and table
templates that are included with many SAS procedures do not contain references to fixed
fonts and colors.

This chapter shows "best practices" to follow so that your GTL programs integrate style
definitions to create the look you desire in your graphics output. The coding strategy that
you use will depend on how much style integration you need. If you want to change the
appearance of all your graphs or apply a custom style to them, you can define your own
style. For details, see Chapter 17, “Managing the Graph Appearance with Styles,” on page
299.

Evaluating Supplied Styles
Over fifty ODS styles are available for use with GTL graphs. These styles are stored in the
SASHELP.TMPLMST item store under the STYLES directory. To list the names of all
the supplied templates in the SAS Output window, you can submit the following program:

proc template;
 path sashelp.tmplmst;
 list styles;
run;

Evaluating Supplied Styles 85

Listing of: SASHELP.TMPLMST
Path Filter is: Styles
Sort by: PATH/ASCENDING

Obs Path Type

 1 Styles Dir
 2 Styles.Analysis Style
 3 Styles.Astronomy Style
 4 Styles.Banker Style
 (more)

You can also browse the styles interactively using the Templates window. To do so, issue
the ODSTEMPLATE command to open the Templates window, and then select STYLES
under the SASHELP.TMPLMST item store.

Some of the ODS styles have been around for a long time, before the introduction of ODS
Graphics. All styles will work with ODS Graphics, but many of the older ones have not
been fully optimized for ODS Graphics. Below is a list of recommended styles and a brief
description of each.

Style Example

LISTING

• white background

• white wall

• sans-serif fonts

• color used for lines, markers, and
filled areas

• other colors the same as DEFAULT
style

86 Chapter 6 • Managing Graph Appearance: General Principles

Style Example

DEFAULT

• gray background

• white wall

• sans-serif fonts

STATISTICAL

• white background

• white wall

• sans-serif fonts

• contrasting color scheme of blues,
reds, greens for markers, lines, and
filled areas

ANALYSIS

• light tan background

• white wall

• sans-serif fonts

• muted color scheme of tans, greens,
yellows, oranges and browns for lines,
markers, and filled areas

JOURNAL

• white background

• white wall

• sans-serif fonts

• gray-scale color scheme for markers,
lines, and filled areas

Evaluating Supplied Styles 87

Style Example

JOURNAL2

• white background

• white wall

• sans-serif fonts

• black-only scheme for markers and
lines

• no filled areas—a minimal ink style

Attributes as Collections of Related Options

Overview
In GTL, the syntax for explicitly setting the properties of a graphical feature is a list of
name-value pairs that is enclosed in parentheses. For example, to set the X-axis properties,
you use the following:

XAXISOPTS=(LABEL="string" TYPE=axis-type …)

The syntax for setting appearance options is similar. For example, statements such as
SERIESPLOT, DENSITYPLOT, REFERENCELINE, DROPLINE, and several others
have a LINEATTRS= option:

LINEATTRS= (COLOR=color PATTERN=line-pattern THICKNESS=line-thickness)

As a matter of fact, the properties of any line that you can draw in GTL are specified in
exactly the same way, possibly with a different option keyword.

For BANDPLOT and MODELBAND statements, you would use the following option:

OUTLINEATTRS=(COLOR=color PATTERN=line-pattern THICKNESS=line-
thickness)

For the BOXPLOT statement, you could use either of the following options:

WHISKERATTRS=(COLOR=color PATTERN=line-pattern THICKNESS=line-
thickness)

MEDIANATTRS=(COLOR=color PATTERN=line-pattern THICKNESS=line-
thickness)

The list of common options is sometimes called an "attribute bundle." An interesting feature
of attribute bundles for appearance-related options is that there are several ways of setting
the values of the sub-options:

LINEATTRS Option
The following syntax is the complete syntax for the LINEATTRS= option:

LINEATTRS = style-element | style-element (line-options) | (line-options)

88 Chapter 6 • Managing Graph Appearance: General Principles

By default, a style-element is used for the LINEATTRS= setting. For the
REFERENCELINE and DROPLINE statements, the default style element is the
GraphReference element. What exactly does this mean?

If we look up the GraphReference element in the DEFAULT style (see Appendix A2, “SAS
Graph Style Elements for GTL,” on page 345 for a complete list of all elements and
attributes and their defaults), we find the following:

style GraphReference /
 linethickness = 1px
 linestyle = 1
 contrastcolor = GraphColors('greferencelines');

This definition is ODS style syntax for an attribute bundle. The following table shows how
this definition's style attributes map to GTL options.

Style Attribute Description GTL Suboption Description

LINETHICKNESS dimension, most often
pixels

THICKNESS dimension, most often
pixels

LINESTYLE numeric; 1 to 46, 1
being a solid line

PATTERN either 1 to 46 or a
pattern name, such as
SOLID, DASH, DOT
(see “Values for Line
Patterns” on page
355 for examples of
available line
patterns)

CONTRASTCOLOR color specification COLOR color specification

The default specification for REFERENCELINE and DROPLINE statements is
LINEATTRS=GraphReference, which is a shortcut meaning "initialize the three GTL
line properties with the corresponding attributes that are defined in a style element." This
can be explicitly expressed in GTL as follows:

LINEATTRS=(PATTERN = GraphReference:LineStyle
 THICKNESS= GraphReference:LineThickness
 COLOR = GraphReference:ContrastColor)

In GTL, a style reference is a construct of the form style-element : style-attribute. This
convention is the way to refer to a specific style attribute of a specific style element.

First of all, let's look at what it means to use a different style element for the LINEATTRS=
option.

When selecting a different style element, you should make sure that the style element does
set line properties (graph style elements do not necessarily define all possible attributes).
Some reasonable choices might be GraphDataDefault, GraphAxisLines, GraphGridLines.
and GraphBorderLines. You might choose GraphGridLines to force a reference line to
match the properties of grid lines (if displayed). When you make this kind of assignment,
you really don't know what actual line properties will be used because they might change,
depending on how a given style is defined. What you should be confident of is that the grid
lines and reference lines will be identical in terms of line properties.

Now let's assume that you want reference lines to be somewhat like a style element, but
nevertheless different. This involves an override. Here are some examples:

LINEATTRS Option 89

1) LINEATTRS=GraphGridLines(THICKNESS=2px)
2) LINEATTRS=GraphAxisLines(PATTERN=DASH)
3) LINEATTRS=GraphReference(COLOR=GraphAxisLines:ContrastColor)
4) LINEATTRS=(COLOR=GraphAxisLines:ContrastColor)
5) LINEATTRS=(COLOR=BLUE)

In example 1, the reference line will look like a grid line (color and pattern), but be thicker
(assuming most styles define grid lines as 1px).

In example 2, the reference line will look like an axis line (color and thickness), but it will
use the DASH pattern.

In example 3, the reference line will look like a reference line (pattern and thickness), but
it will have the color of axis lines.

Example 4 is a short form for example 3. Any time that you don't supply a style element
or don’t override all the sub-options, the sub-options not overridden come from the default
style references.

Example 5 shows how you can "hard-code" visual properties. This technique is a
straightforward way of getting what you want. The results might look good when the
DEFAULT or LISTING styles are in effect, but might not look good when the ANALYSIS
style is in effect because ANALYSIS does not use any blues in its color scheme.

When specifying the attributes for a line, the available line-options can be any one or more
of the following settings. The options must be enclosed in parentheses, and each option is
specified as a name = value pair. In all cases, the value can be a style-reference in the form
style-element:style-attribute (see Example 3).

COLOR= style-reference | color
specifies the line color. If you use a style-reference, the style-attribute should be a valid
attribute, such as COLOR, CONTRASTCOLOR, STARTCOLOR, NEUTRAL, or
ENDCOLOR. The convention is to use CONTRASTCOLOR for lines.

PATTERN=style-reference | line-pattern-name | line-pattern-number
specifies the line pattern. If you use a style-reference, the style-attribute should be
LINESTYLE. Line patterns can be specified as a pattern name or pattern number. See
Appendix A3, “Values for Marker Symbols and Line Patterns,” on page 355 for a list
of all possible line patterns.

THICKNESS=style-reference | dimension
specifies the line thickness. If you use a style-reference, the style-attribute should be
LINETHICKNESS.

MARKERATTRS Option
Much of what is said about line properties in “LINEATTRS Option” on page 88 also applies
to marker properties. Some plot statements, such as SERIESPLOT, display a line and can
display markers. In those cases, you should use the DISPLAY=(MARKERS) option to turn
on the marker display, and also use the MARKERATTRS= option to control the appearance
of markers. (The BOXPLOT statement uses OUTLIERATTRS= and MEANATTRS=
options).

The following syntax is the complete syntax for the MARKERATTRS= option:

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)

The following marker-options are available:

COLOR= style-reference | color
SYMBOL= style-reference | marker-name

90 Chapter 6 • Managing Graph Appearance: General Principles

SIZE= style-reference | marker-size

The following table shows how MARKERATTRS= style attributes map to GTL options.

Style Attribute Description GTL Suboption Description

CONTRASTCOLOR color specification COLOR color specification

MARKERSIZE dimension, most often
pixels

SIZE dimension, most often
pixels

MARKERSYMBOL string—for example,
"circle" or "square"

SYMBOL predefined keywords
such a CIRCLE,
SQUARE,
TRIANGLE

none WEIGHT NORMAL or BOLD

COLOR= style-reference | color
specifies the line color. If you use a style-reference, the style-attribute should be a valid
attribute such as COLOR, CONTRASTCOLOR, STARTCOLOR, NEUTRAL, or
ENDCOLOR. The convention is to use CONTRASTCOLOR for lines.

SYMBOL=style-reference | marker-name
specifies the marker symbol. If you use a style-reference, the style-attribute should be
MARKERSYMBOL. Markers are specified by keywords. See Appendix A3, “Values
for Marker Symbols and Line Patterns,” on page 355 for a list of all possible markers
and their keywords.

SIZE= style-reference | dimension
specifies the marker size. If you use a style-reference, the style-attribute should be
MARKERSIZE.

WEIGHT = NORMAL | BOLD
specifies the marker weight. NORMAL is the default. BOLD makes markers appear
heavier or denser.

TEXTATTRS Option
The appearance of all text that appears in a graph can be controlled by the style or with
GTL syntax. Title and footnote text in a graph is specified with the ENTRYTITLE and
ENTRYFOOTNOTE statements. One or more lines of text can be displayed in the plot
area by using one or more ENTRY statements. Each of these statements provides the
TEXTATTRS= option for controlling the appearance of that text.

The following syntax is the complete syntax for the TEXTATTRS= option:

TEXTATTRS=style-element | style-element (text-options) | (text-options)

Most often the TEXTATTRS=(text-options) settings are used to control text font and color
properties.

Text can also be specified on numerous options that are available on plot statements and
layout statements, and also on various axis options. For example, most plot statements that
can display a line provide the CURVELABEL= for labeling the line. Axis options that are
available for the layout statements provide the LABEL= option for specifying an axis label.
The default appearance of the text in these cases is controlled by styles, but GTL syntax
provides the CURVELABELATTRS= and LABELATTRS= options for overriding the

TEXTATTRS Option 91

defaults. The syntax and use for these options is similar to that of the TEXTATTRS= option.
For example, the following syntax is the complete syntax for the LABELATTRS= option:

LABELATTRS=style-element | style-element (text-options) | (text-options)

Changing text attributes is fully discussed in Chapter 7, “Adding and Changing Text in a
Graph,” on page 101.

Appearance of Non-grouped Data
When you use statements such as SERIESPLOT, BANDPLOT, NEEDLEPLOT,
ELLIPSE, STEPPLOT, FRINGEPLOT, LINEPARM, and VECTORPLOT to draw plots
containing lines, the same style element, GraphDataDefault, is used for all line and marker
properties. You can think of these plots as "non-specialized," and they all have the same
default appearance when used in overlays

In the graph that is produced by the following code, the series lines have the same default
appearance.

proc template;
 define statgraph series;
 begingraph;
 entrytitle "Overlay of Multiple SERIESPLOTs";
 layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High";
 seriesplot x=date y=low / curvelabel="Low";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=series;
 where date between "1jan2002"d and "31dec2005"d
 and stock="IBM";
run;

To ensure that the series lines differ in appearance, you can use any style element with line
properties. A set of carefully constructed style elements named GraphData1 to GraphDataN

92 Chapter 6 • Managing Graph Appearance: General Principles

(where N=12 for most styles, some styles might have fewer) are normally used for this
purpose. These elements all use different marker symbols, line pattern, fill colors
(COLOR=) and line/marker colors (CONTRASTCOLOR=). All line/marker colors are of
different hues but with the same brightness, which means that all twelve colors can be
distinguished but none stands out more than another. Fill colors are based on the same hue
but have less saturation, making them similar but more muted than the corresponding
contrast colors.

In the following template code, the style elements GraphData1 and GraphData2 are used
to change the default appearance of the series lines in the graph.

layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High" lineattrs=GraphData1 ;
 seriesplot x=date y=low / curvelabel="Low" lineattrs=GraphData2 ;
endlayout;

Note: This same graph could also have been achieved by specifying
CYCLEATTRS=TRUE on the LAYOUT OVERLAY statement and omitting the
LINEATTRS= options on the plot statements.

By default, the GraphDataN style elements can be used interchangeably to achieve visual
distinction. All of these elements vary color, line pattern, and marker symbols to gain
maximum differentiation. Sometimes, you might not want to vary all properties at once.
For example, to force only the color to change but not the line pattern, you can override
one or more properties you want to hold constant.

layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High"
 lineattrs=GraphData1(pattern=solid) ;
 seriesplot x=date y=low / curvelabel="Low"
 lineattrs=GraphData2(pattern=solid) ;
endlayout;

Appearance of Non-grouped Data 93

Other statements such as DENSITYPLOT, REGRESSIONPLOT, LOESSPLOT,
PBSPLINEPLOT, MODELBAND, REFERENCELINE, and DROPLINE are
"specialized" in the sense that their default line appearance is governed by other style
elements such as GraphFit, GraphConfidence, GraphPrediction, GraphReference, or some
other specialized style element. When these statements are used in conjunction with the
"non-specialized" plot statements, there will automatically be differences in appearance.

Appearance of Grouped Data
The GROUP= column option is used to plot data when a classification or grouping variable
is available. By default, this option automatically uses the style elements GraphData1 to
GraphDataN for the presentation of each unique group value.

proc template;
 define statgraph group;
 begingraph;
 entrytitle "Tech Stocks 2002-2004";
 entryfootnote halign=left "Source: SASHELP.STOCKS";
 layout overlay;
 seriesplot x=date y=close / group=stock name="series"
 lineattrs=(thickness=2);
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=group;
 where date between "1jan02"d and "31dec04"d;
run;

94 Chapter 6 • Managing Graph Appearance: General Principles

In general, you cannot specify the line or marker properties for specific group values
directly from GTL, as you can for non-grouped data. Consider the following specification
for a line attribute:

lineattrs=(thickness=2)

When this line option is used, the line thickness is set as a style override. However, this
override applies equally to all group values. The same is true for overrides of color or line
pattern. This means that you can set one or more fixed appearance attributes from GTL for
all group values, but you cannot directly assign unique visual properties to an individual
group value in GTL.

Using Custom Styles to Control the Appearance of
Grouped Data

Each style potentially can change the style attributes for GraphData1-GraphDataN. If you
have certain preferences for grouped data items, you can create a modified style that will
display your preferences. The following code creates a new style named STOCKS that is
based on the supplied style STYLES.LISTING. This modification changes the properties
for the GraphData1-GraphData3 style elements. All other style elements are inherited from
LISTING.

proc template;
 define style stocks;
 parent=styles.listing;
 style GraphData1 /
 ContrastColor=blue
 Color=lightBlue
 MarkerSymbol="CircleFilled"
 Linestyle=1;
 style GraphData2 /
 ContrastColor=brown
 Color=lightBrown
 MarkerSymbol="TriangleFilled"
 Linestyle=1;
 style GraphData3 /
 ContrastColor=orange

Using Custom Styles to Control the Appearance of Grouped Data 95

 Color=lightOrange
 MarkerSymbol="SquareFilled"
 Linestyle=1;
 end;
run;

In this style definition, the LINESTYLE is set to 1 (solid) for the first three data values.
Style syntax requires that line styles be set with their numeric value, not their keyword
counterparts in GTL such as SOLID, DASH, or DOT. See Appendix A3, “Values for
Marker Symbols and Line Patterns,” on page 355 for the complete set of line styles.

CONTRASTCOLOR is the attribute applied to grouped lines and markers. COLOR is the
attribute applied to grouped filled areas, such as grouped bar charts or grouped ellipses.
MARKERSYMBOL defines the same values that can be specified with the
MARKERATTRS=(SYMBOL=keyword) option in GTL. See Appendix A3, “Values for
Marker Symbols and Line Patterns,” on page 355 for the complete set of marker names.

After the STOCKS style is defined, it must be requested on the ODS destination statement.
No modification of the compiled template is necessary:

ods listing style=stocks;

proc sgrender data=sashelp.stocks
 template=group;
 where date between
 "1jan02"d and "31dec04"d;
run;

One issue you should be aware of is that the STOCKS style only customized the appearance
of the first three group values. If there were more group values, other unaltered style
elements will be used, starting with GraphData4. Most styles define (or inherit) GraphData1
to GraphData12 styles elements. If you need more elements, you can add as many as you
desire, starting with one more than the highest existing element (for example,
GraphData13) and numbering them sequentially thereafter.

96 Chapter 6 • Managing Graph Appearance: General Principles

Making the Appearance of Grouped Data
Independent of Data Order

When unique group values are gathered, they are internally recorded in the order that they
appear in the data. They are not subsequently sorted. This means that if an input data source
is modified, sorted, or filtered, the order of the group values and their associations with
GraphData1-GraphDataN might change.

proc sort data=sashelp.stocks out=stocks;
 by date descending stock;
run;

ods listing style=stocks;

proc sgrender data= stocks template=group;
 where date between
 "1jan02"d and "31dec04"d;
run;

In many cases, this might not be a problem because you really don't care which line pattern,
marker symbols, or colors are associated with particular group values, but in some cases
you might care. For example, if you create many plots grouped by GENDER, you might
want a consistent set of visual properties for Females and Males across plots, regardless of
the input data order.

In our example, you might want IBM to always have a blue color associated with it. To
enforce this kind of association, you need to modify the input data by adding another
numeric column that maps all group values to a positive integer that corresponds to one of
the GraphData1-GraphDataN style elements. The name of the new variable can be
anything.

data indexed;
 set sashelp.stocks;
 select (stock);
 when ("IBM") ID=1;
 when ("Microsoft") ID=2;

Making the Appearance of Grouped Data Independent of Data Order 97

 when ("Intel") ID=3;
 otherwise;
 end;
run;

Now the template needs to be modified by adding an INDEX=ID option. The
DISPLAY=(MARKERS) option was added to make sure that desired markers are also
used.

proc template;
 define statgraph groupindex;
 begingraph;
 entrytitle "Tech Stocks 2002-2004";
 entryfootnote halign=left "Source: SASHELP.STOCKS";
 layout overlay;
 seriesplot x=date y=close / group=stock index=id
 name="series" lineattrs=(thickness=2) display=(markers) ;
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

Now we can repeat our test to make sure that IBM is blue regardless of data order.

ods listing style=stocks;

proc sgrender data=indexed
 template=groupindex;
 where date between
 "1jan02"d and "31dec04"d;
run;

proc sort data=indexed out=stocks;
 by date descending stock;
run;

ods listing style=stocks;

proc sgrender data= stocks
 template=groupindex;

98 Chapter 6 • Managing Graph Appearance: General Principles

 where date between
 "1jan02"d and "31dec04"d;
run;

Recommendations
The issue of when to use hard-coded values versus style references for overriding
appearance features is complex and basically boils down to what you are trying to achieve
with GTL. Here are some recommendations that are based on common use cases:

• You are creating a graph for a specific purpose and probably will not use the code again.

Recommendation: Develop your template code with one style in mind and use hard-
coded overrides to make desired changes. One possibility is to use the JOURNAL style
as a starting point. It has a gray-scale color scheme. If you want to introduce colors for
certain parts the graph, there won't be much conflict with blacks and grays coming from
the style. You really don't care what the graph looks like with another style.

• You are creating a reusable graph template (without hard-coded variable names) that
can be used with different sets of data in different circumstances.

Recommendation: If style overrides are needed, use style-reference overrides, not hard-
coded overrides. This will allow your graph's appearance to change appropriately when
you (or someone else) uses a different style.

• You want all of your templates to produce output with the same look-and-feel, possibly
a corporate theme.

Recommendation: Spend time developing a new style that produces the desired "look-
and-feel" rather than making a lot of similar appearance changes every time you create
a new graph template to enforce consistency. Be sure to coordinate the colors and fonts
for the graphical style elements with tabular style elements. See Chapter 17, “Managing
the Graph Appearance with Styles,” on page 299 for more information.

Recommendations 99

100 Chapter 6 • Managing Graph Appearance: General Principles

Chapter 7
Adding and Changing Text in a
Graph

Text Strings in Graphs . 101

Text Properties and Syntax Conventions . 103

Text Statement Basics . 105
Using Titles and Footnotes . 105
Using Text Entries in the Graphical Area . 106

Managing the String on Text Statements . 107
Text Statement Syntax . 107
Using Rich Text . 107
Horizontally Aligning Text Items . 108
Generating Text Items with Dynamics, Macro Variables, and Expressions 108
Adding Subscripts, Superscripts, and Unicode Rendering 108
Using Unicode Values in Labels . 109

Using Options on Text Statements . 110
Options Available on All Text Statements . 110
Setting Text Background, Borders, and Padding . 111
Managing Long Text in Titles and Footnotes . 112

ENTRY Statements: Additional Control . 113
Features Available for ENTRY Text . 113
Positioning ENTRY Text . 113
Rotating ENTRY Text . 115

Text Strings in Graphs
Using the GTL, you can add and control text that appears in your graph. The annotation in
the following diagram indicates some of the options and statements that are used to set the
text in a typical graph.

101

The following options, available on plot and legend statements, manage most of the text
that you can add to a graph:

Task Statement Option

label data points plot statements that
display markers

DATALABEL=column

label a curve or a reference
line

plot statements that
display lines

CURVELABEL="string" | column

describe a plot in a legend most plot statements LEGENDLABEL="string"

add title to a legend legend statements TITLE="string"

label an axis axis statement or layout
axis option

LABEL="string"

The GTL also provides the following text statements that can be used to add custom
information about the graph analysis or the graph display. This text is independent of the
text that is managed by the options on plot and legend statements:

ENTRYTITLE "string" Defines title text for the entire graph.

ENTRYFOOTNOTE "string" Defines footnote text for the entire graph.

ENTRY "string" Defines text that is displayed in the graphical area.

102 Chapter 7 • Adding and Changing Text in a Graph

This chapter focuses primarily on how to set text properties for any text. Additional
information on text-related features for axes, legends, insets, and multi-cell layouts is
available in other chapters:

• For managing the text in axes, see Chapter 5, “Managing Axes in an OVERLAY
Layout,” on page 53.

• For managing the text in legends, see Chapter 8, “Adding Legends to a Graph,” on page
117.

• For managing the text in insets, see Chapter 16, “Adding Insets to a Graph,” on page
271.

• For managing the text in multi-cell layouts, see Chapter 10, “Using an Advanced Multi-
cell Layout,” on page 155 and Chapter 11, “Using Classification Panels,” on page
185.

Text Properties and Syntax Conventions
All options or statements that define text strings have supporting text options that enable
you to set the color and font properties of the text. The following table shows some of the
supporting text options that are available:

Statement Type Option Supporting Text Option

plot statements DATALABEL= DATALABELATTRS=

CURVELABEL= CURVELABELATTRS=

legend statements TITLE= TITLEATTRS=

layout or axis
statements

LABEL= LABELATTRS=

text statements TEXTATTRS=

The supporting text options all have similar syntax:

supporting-text-option = style-element | style-element (text-options) | (text-options)

All supporting-text-options use a style element to determine their default characteristics.
Thus, when a different ODS style is applied to a graph, you might see different fonts, font
sizes, font weights, and font styles used for various pieces of text in the graph. See
“Attributes as Collections of Related Options” on page 88 for a full discussion of how style
elements and override options work.

Any text that you add to the graph can have the following properties for the text-options:

Text Option Value Examples

COLOR= color | style-reference (color=black)

(color=GraphLabelText:color)

Text Properties and Syntax Conventions 103

Text Option Value Examples

FAMILY= " font-name " | style-reference (family="Arial Narrow")

(family=GraphLabelText:FontFamily)

SIZE= dimension | style-reference (size=10pt)

(size=GraphLabelText:FontSize)

WEIGHT= NORMAL | BOLD | style-reference (weight=bold)

(weight=GraphLabelText:FontWeight)

STYLE= NORMAL | ITALIC | style-
reference

(style=italic)

(style=GraphLabelText:FontStyle)

Several style elements affect text in different parts of a graph. Each style element defines
attributes for all of its available text options. The following table shows some of the style
elements that are available for setting text attributes:

Style Element Default Use

GraphTitleText Used for all titles of the graph. Typically uses the largest font size among
fonts in the graph.

GraphFootnoteText Used for all footnotes. Typically uses a smaller font size than the titles.
Sometime footnotes are italicized.

GraphLabelText Used for axis labels and legend titles. Generally uses a smaller font size
than titles.

GraphValueText Used for axis tick values and legend entries. Generally uses a smaller
font size than labels.

GraphDataText Used for text where minimum size is necessary (such as point labels).

GraphUnicodeText Used for adding special glyphs (for example α , ±, €) to text in the graph.

GraphAnnoText Default font for text that is added as annotation (using the ODS Graphics
Editor).

For example, to specify that axis labels should have the same text properties as axis tick
values, you could specify the following:

layout overlay / xaxisopts=(labelattrs=GraphValueText)
 yaxisopts=(labelattrs=GraphValueText);

Style elements can also be used to modify the display of grouped data. For example, by
default, the text color of data labels for grouped markers in a scatter plot changes to match
the marker color for each group value. To specify that grouped data labels should use the
same color as non-grouped data labels, you could specify the following:

scatterplot x=height y=weight / group=age datalabel=name
 datalabelattrs=(color=GraphDataText:Color) ;

To ensure that a footnote is displayed in bold italics, you could specify the following:

104 Chapter 7 • Adding and Changing Text in a Graph

entryfootnote "Study conducted in 2007" /
 textattrs=(weight=bold style=italic) ;

Because the other font properties are not overridden in this example, they are obtained from
the GraphFootnoteText style element.

Text Statement Basics
The ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY statements add text to predefined
areas of the graph. The text that they add cannot be specified by the options that are available
in plot, axis, legend, or layout statements.

Using Titles and Footnotes
To add titles or footnotes to a graph, use one or more ENTRYTITLE or
ENTRYFOOTNOTE statements. These statements must appear inside the BEGINGRAPH
block, but outside any layout blocks. The following code shows the typical placement of
these statements:

begingraph;
 entrytitle "Title One";
 entrytitle "Title Two";
 layout overlay;
 scatterplot x=height y=weight;
 endlayout;
 entryfootnote "Footnote One";
 entryfootnote "Footnote Two";
endgraph;

However, the following statement placement yields the same result:

begingraph;
 entryfootnote "Footnote One";
 entrytitle "Title One";
 layout overlay;
 scatterplot x=height y=weight;
 endlayout;
 entryfootnote "Footnote Two";
 entrytitle "Title Two";
endgraph;

Note: a light gray border was added to the graph area to indicate the boundaries between
the separate areas.

Using Titles and Footnotes 105

Unlike SAS TITLE and FOOTNOTE statements, the GTL statements are not numbered.
If you include multiple ENTRYTITLE or ENTRYFOOTNOTE statements, the titles or
footnotes will be stacked in the specified order —all ENTRYTITLE statements are
gathered and placed in the ENTRYTITLE area at the top of the graph, and all
ENTRYFOOTNOTE statements are gathered and placed in the ENTRYFOOTNOTE area
at the bottom of the graph.

You can add as many titles and footnotes as you want. However, the space that is needed
to accommodate the titles and footnotes always decreases the height of the graphical area.
For graphs with extensive titles or footnotes, you should consider enlarging the graph size.
For a discussion on sizing graphs, see “Controlling Graph Size” on page 326.

Using Text Entries in the Graphical Area
An ENTRY statement defines text within the graphical area. Here is a simple example that
places text in the upper left corner of the plot wall area:

layout overlay;
 scatterplot x=height y=weight;
 entry halign=left "NOBS = 19" /
 valign=top border=true;
endlayout;

You can use multiple ENTRY statements in conjunction with GRIDDED layouts to create
tables of text and complex insets.

106 Chapter 7 • Adding and Changing Text in a Graph

This example is discussed in detail in Chapter 16, “Adding Insets to a Graph,” on page
271

Managing the String on Text Statements

Text Statement Syntax
Options on the ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY text statements enable
you to create simple or complex text constructs. The following syntax shows the general
form of these statements:

TEXT-STATEMENT text-item <…<text-item>> / <options>;

Any text-item is some combination of the following:

<prefix-option …<prefix-option>> "string" | dynamic | character-expression | {text-
command}

What this means is that the final text that is to be created can be specified in a series of
separate items, each with individual prefix options. Statement options can also affect the
final text. These possibilities are explained by the examples in the following sections.

Using Rich Text
"Rich text" describes text in which each character can have different text properties. The
following example creates rich text by separating the text into pieces and using prefix
options to set different text properties for each piece. Properties that are set this way stay
in effect for subsequent text items, unless changed by another TEXTATTRS= prefix option.

entrytitle textattrs=(size=12pt color=red) "Hello "
 textattrs=(size=10pt color=blue style=italic) "World";

Using Rich Text 107

For each horizontal alignment, the overall text for these statements is formed by the
concatenation of the text items. Notice that there is no concatenation operator and that any
spacing (such as word breaks) must be provided as needed within the strings ("Hello
" "World"). The space that separates the text-item specifications is never included in the
final text string.

Horizontally Aligning Text Items
Text items can have different horizontal alignments: LEFT, CENTER, or RIGHT. The
default alignment is CENTER. Text items with the same alignment are gathered and
concatenated.

entryfootnote halign=left textattrs=(weight=bold) "XYZ Corp."
 halign=right textattrs=(weight=normal) "30JUN08";

Generating Text Items with Dynamics, Macro Variables, and
Expressions

Text items are not limited to string literals. Text items can also be defined as dynamics,
macro variables, or expressions. In the following example, SYSDATE is declared with an
MVAR template statement. As a result, this automatic macro variable is resolved to today's
date at runtime.

entryfootnote halign=left textattrs=(weight=bold) "XYZ Corp."
 halign=right textattrs=(weight=normal) SYSDATE ;

This next example shows how the GTL EVAL function causes an expression to be
evaluated at runtime. In this case, the PUT function (same as the PUT function in the DATA
step) is used to convert a SAS date value into a string:

entryfootnote "Summary for " eval(put(today(),mmddyyd.)) ;

For more information on dynamics, macro variables, and EVAL expressions in GTLsee
Chapter 14, “Using Dynamics and Macro Variables to Make Flexible Templates,” on page
251 and Chapter 15, “Using Conditional Logic and Expressions,” on page 259.

Adding Subscripts, Superscripts, and Unicode Rendering
You can build strings with subscripts or superscripts using the {SUB "string" } or {SUP
"string" } text commands. You can also use dynamics or macro variables for the string
portion of the text command.

entryfootnote "R" {sup "2"} "=.457";
entryfootnote "for the H" {sub "2"} "O Regression" ;

108 Chapter 7 • Adding and Changing Text in a Graph

Another way to form text is to use the {UNICODE "hex-value"x } text command. For fonts
that support Unicode code points, you can use the following syntax to render the glyph
(character) corresponding to any Unicode value:

entryfootnote {unicode "03B1"x} "=.05" ;

In the code, the "03B1"x is the hexadecimal code point value for the lowercase Greek
letter alpha. Because Greek letters and some other statistical symbols are so common in
statistical graphics, keyword short cuts to produce them have been added to GTL syntax.
So another way of indicating "03B1"x is

entryfootnote {unicode alpha} "=.05" ;

For a complete list of keywords that can be used with the {unicode keyword} notation,
see Appendix A1, “SAS Keywords for Unicode Glyphs,” on page 341.

Additionally, any Unicode glyph for currency, punctuation, arrows, fractions and
mathematical operators, symbols, and dingbats can be used. Fonts such as Arial
(comparable to SAS-supplied Albany AMT) have many, but not all, Unicode code points
available, and sometimes a more complete Unicode font such as Arial Unicode MS (or
SAS-supplied Monotype Sans WT J) needs to be specified. ODS styles have a style element
named GraphUnicodeText that can be safely used for rendering any unicode characters.
The following example uses the GraphUnicodeText style element for rendering a bar over
the X:

entry "X"{unicode bar}"=6.78" / textattrs=GraphUnicodeText;

Using Unicode Values in Labels
The {UNICODE}, {SUB}, and {SUP} text commands apply only to the ENTRY,
ENTRYTITLE, and ENTRYFOOTNOTE statements. However, strings that are assigned
to axis labels, curve labels, legend labels, and so on, can present Unicode characters using
what is called "in-line formatting." To use this special formatting, you embed within the
string an ODS escape sequence followed by a text command. Specifically, whenever you
include (*ESC*) in a quoted string, it signals that the next token represents a text command.
Currently, only the {UNICODE} text command is recognized, not {SUB} or {SUP}.

In the following example, the alpha value for the upper and lower confidence limits is
displayed using the Greek letter alpha:

proc template;
 define statgraph fit;
 begingraph;
 entrytitle "Regression Fit Plot with CLM Band";
 layout overlay;
 modelband "clm" / display=(fill) name="band"
 legendlabel="(*ESC*){unicode alpha}=.05" ;
 scatterplot x=height y=weight / primary=true ;

Using Unicode Values in Labels 109

 regressionplot x=height y=weight / alpha=.05 clm="clm"
 legendlabel="Linear Regression" name="fit";
 discretelegend "fit" "band";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=fit;
run;

Using Options on Text Statements

Options Available on All Text Statements
The ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY text statements provide options
that apply to all of the text-items that form the text string (unlike the prefix options, which
can be applied to pieces of the text).

TEXT-STATEMENT text-item <…<text-item>> / <options>;

The following options are available on all of the text statements:

BACKGROUNDCOLOR= style-reference | color
Specifies the color of the text background.

BORDER= boolean
Specifies whether a border line is displayed around the text.

BORDERATTRS= style-element | style-element (line-options) | (line-options)
Specifies the properties of the border line.

OPAQUE= boolean
Specifies whether the entry background is opaque.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
Specifies the font attributes of all text. If a TEXTATTRS= prefix option is also used,
it takes precedence over this statement option.

110 Chapter 7 • Adding and Changing Text in a Graph

Setting Text Background, Borders, and Padding
By default, the background of all text is transparent. To specify a background color, you
must specify OPAQUE=TRUE to turn off transparency, which then enables you to specify
a background color. In the following example, the fill color of the band is specified for the
background of the entry text. A border is also added.

Note: Data points that are behind the entry text are obscured when OPAQUE=TRUE.

begingraph;
 entrytitle "Regression Plot";
 entryfootnote halign=right
 "Prepared with SAS/GRAPH" {unicode "00AE"x} " Software" /
 textattrs=(size=9pt);
 layout overlay;
 modelband "clm";
 scatterplot x=height y=weight;
 regressionplot x=height y=weight / clm="clm" alpha=.05;
 entry {unicode alpha} " = .05" / autoalign=auto border=true
 opaque=true backgroundcolor=GraphConfidence:color ;
 endlayout;
endgraph;

Notice that extra space appears between the entry border and the text. This space is called
padding and can be set with the PAD= option. The default padding is

ENTRY "string" / PAD=(LEFT=3px RIGHT=3px TOP=0 BOTTOM=0) border=true;

You can set the padding individually for the LEFT, RIGHT, TOP, and BOTTOM
directions, or you can set the same padding in all directions as follows:

ENTRY "string" / PAD=5px border=true;

Padding is especially useful when you want to add extra space between titles, or add space
between the last title (or first footnote) and the plot area in the graph:

begingraph;
 entrytitle "Regression Plot" / pad=(bottom=10px) ;
 entryfootnote halign=right

Setting Text Background, Borders, and Padding 111

 "Prepared with SAS/GRAPH" {unicode "00AE"x} " Software" /
 textattrs=(size=9pt) pad=(top=10px) ;
 layout overlay;
 modelband "clm";
 scatterplot x=height y=weight;
 regressionplot x=height y=weight / clm="clm" alpha=.05;
 endlayout;
endgraph;

Managing Long Text in Titles and Footnotes
When you change the size of a graph, the size of all fonts in the graph is scaled up or down
by default. However, when the graph size is reduced, even font scaling has limits on what
it can do with long text strings that are specified on ENTRYTITLE or ENTRYFOOTNOTE
statements. The following statement options are available to deal with this situation:

TEXTFITPOLICY= WRAP | SHORT | TRUNCATE

SHORTTEXT= (text-items)

By default, TEXTFITPOLICY=WRAP, and no default is defined for the SHORTTEXT=
option.

The text fitting policies take effect when the length of the text and/or its font properties
cause the text line to exceed the space available for it. The font properties include the font
family, font size, and font weight (BOLD or NORMAL). Thus, adjusting the length of the
text and/or changing its font properties are adjustments you can make to fit text in the
available space. You can also use the TEXTFITPOLICY= and/or SHORTTEXT= options.

The following long title uses the default fit policy, which is to wrap text that does not fit
on a single line:

entrytitle "This is a lot of text to display on one line";

112 Chapter 7 • Adding and Changing Text in a Graph

Notice that the current horizontal alignment (CENTER in this case) is used when text wraps.
Text is wrapped only at word boundaries (a space). This next example sets the fit policy
to TRUNCATE, and the ellipsis in the output text indicates where the truncation occurs.

Rather than truncating text, you can specify alternative "short" text to substitute whenever
the primary text will not fit without wrapping in the available space. The short text is
substituted whenever the primary text won't fit without wrapping.

entrytitle "This is a lot of text to display on one line" /
 textfitpolicy=short shorttext=("Short alternative text");

ENTRY Statements: Additional Control

Features Available for ENTRY Text
ENTRY statements are more flexible than ENTRYTITLE or ENTRYFOOTNOTE
statements and support additional features for automatically positioning text, aligning text
vertically, and rotating text:

AUTOALIGN= NONE | AUTO | (location-list)
Specifies whether the entry is automatically aligned within its parent when nested
within an overlay-type layout.

ROTATE= 0 | 90 | 180 | 270
Specifies the angle of text rotation.

VALIGN= CENTER | TOP | BOTTOM
Specifies the vertical alignment of the text.

Positioning ENTRY Text
By default, any ENTRY statement that is defined within a 2D overlay-type layout and does
not specify a location is placed in the center of the graph wall (HALIGN=CENTER
VALIGN=CENTER).

If you know where you want to place the text, one way to position it is to use the HALIGN=
and VALIGN= options, as shown in the following example:

layout overlay;
 scatterplot x=height y=weight;
 entry halign=left "NOBS = 19" /
 valign=top border=true;
endlayout;

Positioning ENTRY Text 113

Whenever you add text within the graph wall, you have to consider the possibility that the
text might appear on top of or behind data markers and plot lines. For this reason, you
should consider using the AUTOALIGN= option rather than the HALIGN= and VALIGN=
options for positioning the text.

The AUTOALIGN= option enables you to set a priority list that restricts the entry location
to certain locations. The priority list can include any of the keywords TOPLEFT, TOP,
TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and
BOTTOMRIGHT.

In the following histogram, we know that the best location for an entry is either TOPLEFT
or TOPRIGHT, depending on the skewness of the data. With the following coding, if the
data were skewed to the right so the entry text overlaps with the histogram, the text would
automatically appear at TOPLEFT.

layout overlay;
 histogram weight;
 entry "NOBS = 19" /
 autoalign=(topright topleft)
 border=true;
endlayout;

When the parent layout contains only scatter plots, the ENTRY statement can use the
AUTOALIGN=AUTO setting to automatically position the text where it is the farthest
away from any scatter points. In all cases, even one like the following example where many
positions are available that might minimize data collision, the AUTO specification selects
the position for you and you have no further control over the text position.

layout overlay;
 scatterplot x=height y=weight;
 entry halign=left "NOBS = 19" /
 autoalign=auto border=true;
endlayout;

114 Chapter 7 • Adding and Changing Text in a Graph

Rotating ENTRY Text
ENTRY statements can appear in most layout types. For example, ENTRY statements can
be used to define the text that appears in a CELLHEADER block in a LATTICE layout.
You can also use ENTRY statements in SIDEBAR , ROWHEADER, and
COLUMNHEADER blocks.

In the following example, the ROWHEADERS block shows how to define rotated row
headers for a lattice layout. The complete code for this example is shown in “Defining a
Lattice with Additional Features” on page 169.

 rowheaders;
 layout gridded / columns=2;
 entry "Volume" / textattrs=GraphLabelText rotate=90 ;
 entry "(Millions of Shares)" / textattrs=GraphValueText rotate=90 ;
 endlayout;
 layout gridded / columns=2;
 entry "Price" / textattrs=GraphLabelText rotate=90 ;
 entry "(Adjusted Close)" / textattrs=GraphValueText rotate=90 ;
 endlayout;
 endrowheaders;

Rotating ENTRY Text 115

116 Chapter 7 • Adding and Changing Text in a Graph

Chapter 8
Adding Legends to a Graph

Introduction to Legend Management . 117
Some of the Uses for a Legend . 117
Types of Legends in GTL . 118
General Syntax for Using Legends . 118
Example Legend Coding for Common Situations . 119

General Legend Features . 121
Positioning Options . 121
General Appearance Options . 125

Features of Discrete Legends . 128
Ordering the Legend Entries for a Grouped Plot . 128
Ordering the Legend Entries for Non-grouped Plots . 130
Arranging Legend Entries into Columns and Rows . 132
When Discrete Legends Get Too Large . 135

Features of Continuous Legends . 137
Plots That Can Use Continuous Legends . 137
Positioning a Continuous Legend . 140
Using Color Gradients to Represent Response Values . 140

Introduction to Legend Management

Some of the Uses for a Legend
A graphical legend provides a key to the marker symbols, lines, and other data elements
that are displayed in a graph. Here are some of the situations where legends are useful:

• when a plot contains grouped markers (scatter plots, for example)

• when a plot contains lines that differ by color, marker symbol, or line pattern (series
plots or step plots, for example)

• when a plot contains one or more lines or bands that require identification or explanation

• when series plots with different data are overlaid in the graph, or fit lines are displayed
with confidence bands, or density plots with different distributions are generated

• when markers vary in color to show the values of a response variable

• when contour or surface plots use gradient fill colors to show the values of a response
variable.

117

GTL does not automatically generate legends for the above situations. However, the
mechanism for creating legends is simple and flexible.

Types of Legends in GTL
GTL supports two legend statements:

DISCRETELEGEND
legend that contains one or more legend entries. Each entry consists of a graphical item
(marker, line, ...) and corresponding text that explains the item. A discrete legend would
be used for the first two situations listed in “Some of the Uses for a Legend” on page
117.

For details, see “General Legend Features” on page 121 and “Features of Discrete
Legends” on page 128.

CONTINUOUSLEGEND
legend that maps a color gradient to response values. A continuous legend would be
used for the last two situations listed in “Some of the Uses for a Legend” on page
117.

For details, see “General Legend Features” on page 121 and “Features of Continuous
Legends” on page 137.

General Syntax for Using Legends
Regardless of the situation, the basic strategy for creating legends is to "link" one or more
plot statements to a legend statement by assigning a unique, case-sensitive name to the plot
statement and then referencing that name on the legend statement:

plot-statement . . . / name="id-string1" ;

plot-statement . . . / name="id-string2" ;

legend-statement "id-string1" "id-string2" < / options > ;

One way of thinking about this syntax is that you can identify any plot with a NAME=
option, and you can then selectively include plot names on a legend statement. This enables
the legend to query the identified plots so that it can get the information it needs to build
the legend entries.

Note: When the legend statement includes the name of a plot, it does not always mean that
the legend will include an entry for that plot. For example, a block plot with
FILLTYPE=ALTERNATE will not show up in a legend.

118 Chapter 8 • Adding Legends to a Graph

Example Legend Coding for Common Situations

Show group values in a legend
The appearance of the markers is automatically determined by the current style. The order
of the legend entries is controlled by the data order.

layout overlay;
 scatterplot x=height y=weight / group=sex name="scatter";
 discretelegend "scatter";
endlayout;

Identify overlaid plots in a legend
This example illustrates that more than one plot can contribute to a legend. The order of
the names in the DISCRETELEGEND statement controls the order of the legend entries.
For more information about the CYCLEATTRS= option, see “Ordering the Legend Entries
for Non-grouped Plots” on page 130.

layout overlay / cycleattrs=true;
 seriesplot x=month y=actual / name="sp1";
 seriesplot x=month y=predicted / name="sp2";
 discretelegend "sp1" "sp2";
endlayout;

Example Legend Coding for Common Situations 119

In this case, the default legend entry text was determined by the label for the Y= variable
of each plot. You could set the legend entry text explicitly by specifying
LEGENDLABEL="string" on each plot statement.

Show group values and identify plots in a legend
A legend can show group values for multiple groups and identify one or more plots.

layout overlay;
 scatterplot x=height y=weight / group=sex name="scatter";
 loessplot x=height y=weight / name="Loess";
 discretelegend "Loess" "scatter";
endlayout;

If a plot variable does not have a variable label, the case-sensitive plot name is used for the
legend label. In this case, because the Y= variable of the LOESSPLOT statement does not
have a variable label, the plot name "Loess" is used. You could also set the legend entry
text explicitly by setting LEGENDLABEL="string" in the LOESSPLOT statement.

Show a legend for a continuous response variable (scatter plot)
This example shows how marker color in a scatter plot can represent the values of a response
variable (WEIGHT in this case).

layout overlay;
 scatterplot x=age y=height / markercolorgradient=weight name="sc"
 markerattrs=(symbol=circlefilled);
 continuouslegend "sc" / title="Weight";
endlayout;

120 Chapter 8 • Adding Legends to a Graph

Show a legend for a continuous response variable (contour plot)
This example shows how a fill color gradient in a contour can represent values of a response
variable (DENSITY in this case)

layout overlay;
 contourplotparm x=height y=weight z=density /
 contourtype=gradient name="con";
 continuouslegend "con" / title="Density";
endlayout;

General Legend Features
The following sections discuss several features that are common to both discrete legends
and continuous legends.

Positioning Options

Overview
You can include a legend statement in most layout blocks. Most of the time you would
simply like to ensure that the legend appears where you want in relation to the plot(s) of
the graph. The issues differ, depending on whether you define a single-cell graph or a multi-
cell graph. This section discusses single-cell graphs. The discussion of legend placement
for multi-cell layouts such as GRIDDED, LATTICE, DATALATTICE, and
DATAPANEL appears in the appropriate layout chapter:

• Chapter 9, “Using a Simple Multi-cell Layout,” on page 143 (GRIDDED)

• Chapter 10, “Using an Advanced Multi-cell Layout,” on page 155 (LATTICE)

• Chapter 11, “Using Classification Panels,” on page 185 (DATAPANEL,
DATALATTICE, PROTOTYPE)

The following positioning options control a legend's location within its parent layout. They
are available only when the legend is nested within an overlay-type layout:

LOCATION= INSIDE | OUTSIDE
determines whether the legend is drawn inside the plot wall of the cell, or outside the
plot wall (and outside the axes). The default is OUTSIDE.

Positioning Options 121

HALIGN = LEFT | CENTER | RIGHT
determines horizontal alignment. The default is CENTER.

VALIGN = TOP | CENTER | BOTTOM
determines vertical alignment. The default is BOTTOM.

Displaying Legends Outside of the Plot Wall
When you place a legend statement in a single-cell layout such as OVERLAY,
OVERLAYEQUATED, or OVERLAY3D, the default legend appears outside the plot wall
but inside the layout border:

layout overlay;
 scatterplot X=Height Y=Weight /
 name="sp" group=sex;
 discretelegend "sp" /
 location=outside
 halign=center valign=bottom ;
endlayout;

Using the HALIGN= and VALIGN= options, you can place a legend in eight positions
outside the plot wall. The only combination that is not supported is HALIGN=CENTER
and VALIGN=CENTER. To accommodate the legend, the size of the plot wall is adjusted
so that the legend(s) can be displayed.

Note: Sometimes with large legends, this size adjustment causes problems. Sizing issues
are discussed in “Arranging Legend Entries into Columns and Rows” on page 132 and
“When Discrete Legends Get Too Large” on page 135.

The following example positions the legend in the outside center-right location.

layout overlay;
 scatterplot X=Height Y=Weight /
 name="sp" group=sex;
 discretelegend "sp" /
 halign=right valign=center ;
endlayout;

122 Chapter 8 • Adding Legends to a Graph

Displaying Legends Inside the Plot Wall
A legend can be placed inside the plot wall (LOCATION=INSIDE) and positioned with
the HALIGN= and VALIGN= options. Nine inside positions are possible. The defaults are
HALIGN=CENTER and VALIGN=CENTER. The following example positions the
legend in the inside bottom-right location.

layout overlay;
 scatterplot X=Height Y=Weight /
 name="sp" group=sex;
 discretelegend "sp" / location=inside
 halign=right valign=bottom ;
endlayout;

One of the advantages of inside legends is that the plot wall does not shrink.

One of the disadvantages of inside legends with HALIGN= and VALIGN= positions is
that the legend might be placed on top of plot markers, lines, or filled areas (legends, entries,
and nested layouts are always stacked on top of plots, regardless of the statement order in
an overlay block).

Automatically Aligning an Inside Legend
When the plot statements are specified in a 2D overlay-type layout, the AUTOALIGN=
option can be used to automatically position an inside legend. AUTOALIGN= selects a
position that avoids or minimizes collision with plot components.

The AUTOALIGN= option enables you to specify an ordered list of potential positions for
the legend. The list contains one or more of the following keywords: TOPLEFT, TOP,

Positioning Options 123

TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and
BOTTOMRIGHT. In the following example, we know that the best position for an inside
legend is TOPRIGHT or TOPLEFT. Because the AUTOALIGN= option specifies a list of
preferred positions, the first of the listed positions that does not involve data collision is
used. Had the histogram been skewed to the right, the TOPLEFT position would be used.

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / kernel()
 legendlabel="Kernel Density"
 name="kde";
 discretelegend "kde" /
 location=inside
 autoalign=(topright topleft) ;
endlayout;

When the parent layout contains only scatter plots, you can fully automate the selection of
an internal position by specifying AUTOALIGN=AUTO. This is a "smart" option that
automatically selects a position where there is no (or minimal) collision with plot
components. The AUTOALIGN=AUTO option selects a position for you. Note that
positions that are not possible with HALIGN= and VALIGN= might be used.

layout overlay;
 scatterplot X=Height Y=Weight / name="sp" group=sex;
 discretelegend "sp" / location=inside autoalign=auto ;
endlayout;

124 Chapter 8 • Adding Legends to a Graph

General Appearance Options

Using Background Transparency and Color
The following options control the appearance of the legend background:

OPAQUE = TRUE | FALSE
determines whether the legend background is 100% transparent or 0% transparent.

BACKGROUNDCOLOR= style-reference | color
determines legend background color. OPAQUE=TRUE must be set for the background
color to be seen. The GraphLegendBackground:Color style reference is the default.

By default, OPAQUE=FALSE when LOCATION=INSIDE. This minimizes the potential
for the legend to obscure the markers, lines, fills, and labels in the plot area. when When
LOCATION=OUTSIDE, OPAQUE=TRUE by default. This enables the legend
background color to appear. Typically, the default legend background color is the same as
the plot wall background color. The following graph illustrates the default settings (the
graph uses the DEFAULT style, which has a gray graph background):

The next graph illustrates how the graph looks when the default opacity is reversed. With
reverse opacity, the default background color of an inside legend is the same as the fill
color of the plot wall that is behind it. For outside legends, the default background color is
100% transparent, so the graph background color shows through the legend.

General Appearance Options 125

When the legend background is opaque, you can use the BACKGROUNDCOLOR= option
to set its color. In the following example, BACKGROUNDCOLOR=GraphAltBlock:Color
for both the inside and outside opaque legends. Other style references you could use include
GraphHeaderBackground:Color, GraphBlock:Color, or any other style element with a
COLOR= attribute. You can also specify a specific color, such as
BACKGROUNDCOLOR=white.

Using a Legend Title and Title Border
By default, legends do not have titles. To add a title, you can use the TITLE= option. You
can also add a dividing line between the legend title and the legend body with the
TITLEBORDER=TRUE setting.

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / normal()
 legendlabel="Normal" name="norm"
 lineattrs=GraphData1;
 densityplot Weight / kernel()
 legendlabel="Kernel" name="kde"
 lineattrs=GraphData2;
 discretelegend "norm" "kde" /
 location=inside across=1
 autoalign=(topright topleft)
 title="Theoretical Distributions"
 titleborder=true ;
endlayout;

126 Chapter 8 • Adding Legends to a Graph

Legend Border
By default, a border is displayed around a legend. You can remove the border by specifying
BORDER=FALSE (which also removes the title border). The line properties of a legend
border can be set by the BORDERATTRS= option. The following example modifies the
legend border so that it is thicker than the title border:

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / normal()
 legendlabel="Normal" name="norm"
 lineattrs=GraphData1;
 densityplot Weight / kernel()
 legendlabel="Kernel" name="kde"
 lineattrs=GraphData2;
 discretelegend "norm" "kde" /
 location=inside across=1
 autoalign=(topright topleft)
 title="Theoretical Distributions"
 titleborder=true
 borderattrs=(thickness=2) ;
endlayout;

Legend Text Properties
The TITLEATTRS= and VALUEATTRS= options control the text properties of the
legend. By default, the text properties come from the current style. The legend title uses
TITLEATTRS = GraphLabelText, and legend entries use VALUEATTRS =

General Appearance Options 127

GraphValueText. For visual consistency in the graph, the GraphLabelText style element
is also used for axis labels, and the GraphValueText style element is also used for axis tick
values. In general, style elements are used as needed in a graph to maintain visual
consistency.

The following example sets all legend text to gray. The font for the legend title is made the
same as the default font for the legend values by setting TITLEATTRS=GraphValueText.

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / normal()
 legendlabel="Normal" name="norm"
 lineattrs=GraphData1;
 densityplot Weight / kernel()
 legendlabel="Kernel" name="kde"
 lineattrs=GraphData2;
 discretelegend "norm" "kde" /
 location=inside across=1
 autoalign=(topright topleft)
 title="Theoretical Distributions"
 border=false valueattrs=(color=gray)
 titleattrs=GraphValueText(color=gray) ;
endlayout;

Features of Discrete Legends

Ordering the Legend Entries for a Grouped Plot

Overivew
When the GROUP=column option is used with a plot, the unique values of column are
presented in the legend in the order that they occur in the data.

proc template;
 define statgraph order;
 dynamic TITLE;
 begingraph;
 entrytitle TITLE;
 layout overlay;

128 Chapter 8 • Adding Legends to a Graph

 scatterplot x=height y=weight / name="sp"
 group=age ;
 discretelegend "sp" / title="Age";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=order;
 dynamic
 title="Default Order of Legend Entries";
run;

Sorting the Data
To see the group values in ascending or descending order, you must sort the input data by
column before executing the template.

proc sort data=sashelp.class out=class;
 by age;
run;

proc sgrender data=class template=order;
 dynamic
 title="Sorted Order of Legend Entries";
run;

Ordering the Legend Entries for a Grouped Plot 129

Formatting the Data
You can apply a format to a group column to change the legend entry labels or the number
of classification levels. The ordering of the legend entries is based on the order of the pre-
formatted group values. In the following example, the data is sorted in ascending order, so
the legend entry order is "Pre-Teen" "Teen" "Adult" (there are no adults, so "Adult" does
not appear in the graph). If the data were sorted in descending age order the legend entry
order would be reversed.

proc format;
 value teenfmt
 low-12 = "Pre-Teen"
 13-19 = "Teen"
 20-high = "Adult";
run;

proc sort data=sashelp.class out=class;
 by age;
run;

proc sgrender data=class template=order;
 format age teenfmt.;
 dynamic
 title="Formatted Order of Legend Entries";
run;

In a GTL template, the plot statement, not the legend statement, defines the association of
grouped data values with colors, symbols, and line patterns. The association is simply
reflected in the legend entries. To change the mapping between grouped data values and
the associated style elements, use the INDEX=column option on the plot statement. For a
discussion of the INDEX= option, see Chapter 6, “Managing Graph Appearance: General
Principles,” on page 83.

Ordering the Legend Entries for Non-grouped Plots

Overview
When plots are overlaid and you want to distinguish them in a legend, you must assign
each plot a name and then reference the name in the legend statement. The order in which
the plot names appear on the legend statement controls the ordering of the legend entries
for the plots.

130 Chapter 8 • Adding Legends to a Graph

Varying Visual Properties
In the following examples, the CYCLEATTRS=TRUE setting is used as a quick way to
change the visual properties of each plot without explicitly setting it. When
CYCLEATTRS=TRUE, any plots that derive their default visual properties from one of
the GraphData elements are cycled through those elements for deriving visual properties.
So, the first plot gets its visual properties from the GraphData1 style element, the next plot
gets its properties from the GraphData2 style element, and so on. When plot lines represent
entities such as fit lines or confidence bands, it is recommended that you use options such
as LINEATTRS= or OUTLINEATTRS= and specify appropriate style elements. For
example, you might specify LINEATTRS=GraphFit or
OUTLINEATTRS=GraphConfidence.

layout overlay / cycleattrs=true
 yaxisopts=(display=(ticks tickvalues));
 seriesplot X=month Y=actual / name="a";
 seriesplot X=month Y=predict / name="p";

 discretelegend "a" "p" /valign=bottom;
 discretelegend "p" "a" /valign=top;
endlayout;

Assigning Legend Entry Labels
Every GTL plot type (except box plot) has a default legend entry label. For example, for
some X-Y plots, the default entry legend label is the label of the Y= column (or the column
name if no label is assigned).

To assign a legend entry label for a plot, you can use a LABEL statement with PROC
SGRENDER, or use the LEGENDLABEL="string" option on the plot statement.

layout overlay / yaxisopts=(label="Sales")
 cycleattrs=true;
 seriesplot x=month y=actual / name="a"
 legendlabel="Actual" ;
 seriesplot x=month y=predict / name="p"
 legendlabel="Predicted" ;

 discretelegend "a" "p"/ valign=bottom;
endlayout;

Ordering the Legend Entries for Non-grouped Plots 131

Note: Other techniques are available for labeling plots without using a legend. Plots that
render one or more lines (SERIESPLOT, STEPPLOT, DENSITYPLOT,
REGRESSIONPLOT, LOESSPLOT, PBSPLINEPLOT, MODELBAND,
BANDPLOT, LINEPARM, REFERENCELINE, and DROPLINE) all support a
CURVELABEL= option that places text inside or outside of the plot wall to label the
line(s). Additional options are available to control curve label location, position, and
text properties. For examples, see Chapter 6, “Managing Graph Appearance: General
Principles,” on page 83 and Chapter 7, “Adding and Changing Text in a Graph,” on
page 101.

Arranging Legend Entries into Columns and Rows

Overview
When legends have many entries or the legend value labels are long, you might want to
control how the legend entries are organized. The following examples show how the size
of the graph can affect the default legend organization.

When the graph is wide enough, all legend information can fit in one row.

Note: When all the legend entries and the legend title will fit in one row, the legend title
is drawn on the left as shown in the following graph. This is done to conserve the vertical
space that is used by the legend.

132 Chapter 8 • Adding Legends to a Graph

Legend Wrapping
As the graph gets smaller, the area that is allotted to the legend is reduced. In the following
graph, the width of the graph is reduced to the point where it causes the legend entries to
wrap into an additional row. Because the legend needs this extra row, the height of the plot
wall must be reduced, leaving less room for the data display. Also, because the legend
entries and title do not fit in one row, the title is now drawn above the legend entries.

Options to Control Legend Wrapping
You can explicitly control the organization of legend entries with the following options on
the legend statement:

ORDER = ROWMAJOR | COLUMMAJOR
determines whether legend entries are wrapped on a column or row basis. Default is
ROWMAJOR.

ACROSS = number
determines the number of columns. Only used with ORDER=ROWMAJOR

DOWN = number
determines the number of rows. Use only with ORDER=COLUMNMAJOR

DISPLAYCLIPPED = TRUE | FALSE
determines whether to show a legend when there are too many entries to fit in the
available space

Organizing Legend Entries in a Fixed Number of Columns
For legends with left or right horizontal alignment, a vertical orientation of legend entries
works best because it allows the most space for the plot area. In such cases, you typically
want to set a small fixed number of columns for the legend entries and let the entries wrap
to a new row whenever necessary. This entails setting ORDER=ROWMAJOR and an
ACROSS= value. In the following example, ACROSS=1 means "place all entries in one
column, and start as many new rows as necessary."

layout overlay;
 scatterplot x=Height y=Weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age"
 halign=right valign=center
 order=rowmajor across=1 ;
endlayout;

Arranging Legend Entries into Columns and Rows 133

As you increase the number of columns, the plot area decreases. In the following example,
ACROSS=2 means "place all entries in two columns left to right, and start as many new
rows as necessary."

layout overlay;
 scatterplot x=Height y=Weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age"
 halign=right valign=center
 order=rowmajor across=2 ;
endlayout;

Organizing Legend Entries in a Fixed Number of Rows
For legends with a top and bottom alignment, a horizontal orientation of legend entries
works best. In such cases, you typically want to set a small fixed number of rows for the
legend entries and let the entries wrap to a new column whenever necessary. This entails
setting ORDER=COLUMNMAJOR and a DOWN= value. In the following example,
DOWN=1 means "place all entries in one row, and start as many new columns as
necessary."

layout overlay;
 scatterplot x=Height y=Weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age"

134 Chapter 8 • Adding Legends to a Graph

 order=columnmajor down=1 ;
endlayout;

As you increase the number of rows, the plot area decreases. In the following example,
DOWN=2 means "place all entries in two rows top to bottom, and start as many new
columns as necessary."

layout overlay;
 scatterplot x=Height y=Weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age"
 order=columnmajor down=2 ;
endlayout;

When Discrete Legends Get Too Large
As a discrete legend gets more entries or as the legend entry text is lengthy, the legend
grows and the plot wall shrinks to accommodate the legend's size. At some point, the plot
wall becomes so small that it is useless. For that reason, whenever all the legends in a graph
occupy more than 20% of the total area of the graph, the larger legends are dropped as
needed from the graph to keep the legend area at 20% or less of the graph area. For example,
the following code generates only one legend, but that legend would occupy more than
20% of the total area of the graph, so the legend is dropped and the plot is rendered as if
no legend were specified.

When Discrete Legends Get Too Large 135

proc template;
 define statgraph legendsize;
 begingraph;
 entrytitle "Legend Drops out with GROUP=NAME";
 layout overlay;
 scatterplot x=Height y=Weight / name="sp" group=name;
 discretelegend "sp" / title="Name" across=2 halign=right;
 endlayout;
 endgraph;
 end;
run;

proc sort data=sashelp.class out=class; by name; run;

proc sgrender data=class template=legendsize;
run;

When the legend is dropped from the graph, you see the following log note:

NOTE: Some graph legends have been dropped due to size constraints. Try adjusting
 the MAXLEGENDAREA=, WIDTH= and HEIGHT= options in the ODS GRAPHICS
 statement.

In such cases, you can use the WIDTH= and HEIGHT= options in the ODS GRAPHICS
statement to increase the graph area so that at some point the legend is displayed.

Another alternative is to use the MAXLEGENDAREA= option to change the threshold
area for when legends drop out. The following specification allows all legends to occupy
up to 40% of the graph area:

ods graphics / maxlegendarea=40;
proc sgrender data=class template=legendsize;
run;

However, changing the total area that is allotted to legends might not resolve the problem
if the specified legend organization does not fit in the existing size. In these cases, the
legend might not be displayed and you would see the following log message:

WARNING: DISCRETELEGEND statement with DISPLAYCLIPPED=FALSE is getting clipped.
 The legend will not be drawn.

To investigate this problem, you can specify DISPLAYCLIPPED=TRUE in the
DISCRETELEGEND statement, which forces the legend to display so that you can visually
inspect it.

136 Chapter 8 • Adding Legends to a Graph

discretelegend "sp" / title="Name" across=2 halign=right displayclipped=true ;

In the current example, it is apparent that the height chosen for the output is not large enough
to display the title and all legend entries in two columns. The problem can be fixed in any
of the following ways:

• increasing the graph height (HEIGHT= on ODS GRAPHICS statement or
DESIGNHEIGHT= on the BEGINGRAPH statement)

• relocating the legend and/or reorganizing it with the ACROSS= or DOWN= options

• setting DISPLAYCLIPPED=TRUE if you are willing to see only a portion of the legend

• reducing the font size for the legend entries (and possibly the title).

To change the font sizes of the legend entries, use the VALUEATTRS= option on the
legend statement. To change the font size of the legend title, use the TITLEATTRS= option.
Normally, the legend entries are displayed in 9pt font, and the legend title is displayed in
10pt font. The following example reduces the size of legend text:

discretelegend "sp" / title="Name" across=2 halign=right
 valueattrs=(size= 7pt) titleattrs=(size= 8pt);

Features of Continuous Legends

Plots That Can Use Continuous Legends
A continuous legend maps the data range of a response variable to a range of colors.
Continuous legends can be used with the following plot statements when the enabling plot
option is also specified.

Plots That Can Use Continuous Legends 137

Plot Statement Enabling Plot Option Related Plot Options

CONTOURPLOTPARM CONTOURTYPE= COLORMODEL=

REVERSECOLORMODEL=

NLEVELS=

NHINT=

SCATTERPLOT MARKERCOLORGRADIENT= COLORMODEL=

REVERSECOLORMODEL=

SURFACEPLOTPARM SURFACECOLORGRADENT= COLORMODEL=

REVERSECOLORMODEL=

A contour plot provides the CONTOURTYPE= option, which you can use to manage the
contour display. The following graph illustrates the values that are available for the
CONTOURTYPE= option.

All of the variations that support color, except for LINE and LABELEDLINE, can have a
legend that shows the value of the required Z= column. For example, the following code
generates a contour plot with CONTOURTYPE=FILL:

proc template;
 define statgraph contour;
 begingraph;
 entrytitle "CONTOURTYPE=FILL";
 layout overlay / xaxisopts=(offsetmin=0 offsetmax=0)
 yaxisopts=(offsetmin=0 offsetmax=0);
 contourplotparm x=Height y=Weight z=Density / name="cont"
 contourtype=fill ;
 continuouslegend "cont" / title="Density";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.gridded template=contour;
 where height>=53 and weight<=225;
run;

138 Chapter 8 • Adding Legends to a Graph

If you change to CONTOURTYPE=GRADIENT you get the following output:

For a FILL contour, the Z variable is split into equal-sized value ranges, and each range is
assigned a different color. The continuous legend shows the value range boundaries and
the associated colors as a long strip of color swatches with an axis on it. The contour options
NHINT= and NLEVELS= are used to change the number of levels (ranges) of the contour.
NHINT=10 requests that a number near ten be used that results in "good" intervals for
displaying in the legend. NLEVELS=10 forces ten levels to be used.

contourplotparm x=Height y=Weight
 z=Density / name="cont"
 contourtype=fill nhint=10 ;
continuouslegend "cont" /
 title="Density";

You can think of a GRADIENT contour as a FILL contour with a very large number of
levels. A color ramp is displayed with an axis that shows reference points that are within
the data range. The number of reference points is determined by default.

Plots That Can Use Continuous Legends 139

When a CONTINUOUS legend is used with a plot that uses gradient color, the
VALUESCOUNT= and VALUESCOUNTHINT= options can be used to manage the
legend's gradient axis. These options are similar to the NLEVELS= and NHINT= plot
options.

continuouslegend "cont" /
 title="Density"
 valuecounthint=5 ;

continuouslegend "cont" /
 title="Density"
 valuecounthint=10 ;

Positioning a Continuous Legend
The ACROSS= , DOWN= and ORDER= options are not supported by the
CONTINUOUSLEGEND statement. However, you can position a continuous legend with
the LOCATION=, HALIGN=, VALIGN=, and ORIENT= options. By default,
LOCATION=OUTSIDE and ORIENT=VERTICAL when HALIGN=RIGHT or
HALIGN=LEFT.

Using Color Gradients to Represent Response Values
Contour plots and surface plots support the use of color gradients to represent response
values. For example, the SURFACEPLOTPARM statement provides the
SURFACECOLORGRADIENT=numeric-column setting to map surface colors to a
continuous gradient and enable the use of a continuous legend. All surface types (FILL,
FILLGRID, and WIREFRAME) can be used. The COLORMODEL= and
REVERSECOLORMODEL= options also apply. For more information on surface plots,
see Chapter 13, “Using 3D Graphics,” on page 233.

140 Chapter 8 • Adding Legends to a Graph

proc template;
 define statgraph surfaceplot;
 begingraph;
 entrytitle "SURFACECOLORGRADIENT=TEMPERATURE";
 layout overlay3d / cube=false;
 surfaceplotparm x=length y=width z=depth / name="surf"
 surfacetype=fill
 surfacecolorgradient=temperature
 reversecolormodel=true
 colormodel=twocoloraltramp ;
 continuouslegend "surf" /
 title="Temperature ((*ESC*){unicode '00B0'x}F)"
 halign=right ;
 endlayout;
 endgraph;
 end;
run;

data lake;
 set sashelp.lake;
 if depth = 0 then Temperature=46;
 else Temperature=46+depth;
run;

/* create smoothed interpolated spline data for surface */
proc g3grid data=lake out=spline;
 grid width*length = depth temperature / naxis1=75 naxis2=75 spline;
run;

proc sgrender data=spline template=surfaceplot;
run;

When you use VALIGN=BOTTOM or VALIGN=TOP instead of the HALIGN= option ,
then the default orientation of the legend automatically becomes
ORIENT=HORIZONTAL:

continuouslegend "surf" /
 title="Temperature ((*ESC*){unicode '00B0'x}F)"
 valign=bottom ;

Using Color Gradients to Represent Response Values 141

Notice the coding that is used to embed a degree symbol into the legend title. For more
information on using symbols in text, see Chapter 7, “Adding and Changing Text in a
Graph,” on page 101.

142 Chapter 8 • Adding Legends to a Graph

Chapter 9
Using a Simple Multi-cell Layout

The LAYOUT GRIDDED Statement . 143

Defining a Basic Grid . 144
Setting Grid Dimensions . 144
Setting Gutters . 146
Defining Cells . 146

Building a Table of Text . 148
Using a Single Layout . 148
Using Nested Layouts . 149

Sizing Issues . 150
Row and Column Sizes . 150
Adjusting Graph Size . 153

The LAYOUT GRIDDED Statement
The GTL provides several layout types to organize your graph into smaller regions (cells).
The GRIDDED and LATTICE layouts support a regular grid of cells with a fixed number
of rows and columns. The DATALATTICE and DATAPANEL layouts generate
classification panels, which are graphs where the number of cells and the cell content are
determined by the values of one or more classification variables.

The GRIDDED layout differs from the classification panel layouts in that the number of
cells must be predefined and that you must define of the content of each cell separately.
GRIDDED is superficially similar to a LATTICE layout because it can create a grid of
heterogeneous plots. However, the LATTICE layout can automatically align plot areas
across columns and rows and has much more functionality. For more information on the
LATTICE layout, see Chapter 10, “Using an Advanced Multi-cell Layout,” on page 155.

Typical applications of GRIDDED layouts are to create

• a table of text, such as an inset (discussed in detail in Chapter 16, “Adding Insets to a
Graph,” on page 271)

• a simple grid of plots (discussed in this chapter).

In a GRIDDED layout, each cell is independent. Contents of the cell can be specified by a
stand-alone plot statement or a nested layout. The following example shows a very simple
GRIDDED layout:

proc template;
 define statgraph intro;

143

 begingraph;
 entrytitle "Two-Cell Gridded Layout";
 layout gridded;
 barchart x=age;
 scatterplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=intro;
run;

In this case, each plot statement is considered independent and is placed in a separate cell.
When no grid size is provided, the default layout creates a graph with one column of cells,
and it allots each cell the same amount of space. The number of rows in the grid is
determined by the number and arrangement of stand-alone plot statements and nested
layouts in the GRIDDED layout block.

Defining a Basic Grid
Although you can generate a nice looking graph in a default GRIDDED layout, in most
cases you will want more control over the grid, how it is populated, and the complexity of
the cell contents.

Setting Grid Dimensions
Assume you want a grid of five plots. Before starting to write code, you must first decide
what grid dimensions you want to set (how many columns and rows) and whether you want
to permit an empty cell in the grid. If do not want an empty cell, you must limit the grid to
five cells, which gives you two choices for the grid dimensions: five columns by one row
(5x1), or one column by five rows (1x5).

To specify the grid size, you use the COLUMNS= or ROWS= option in the LAYOUT
GRIDDED statement. To use ROWS=, you must also specify
ORDER=COLUMNMAJOR.

144 Chapter 9 • Using a Simple Multi-cell Layout

Two explicit specifications could be used to create the following grid, which contains one
row and five columns:

layout gridded / columns=5;
 /* plot defintions */
endlayout;

When the number of columns is specified, you place
a limit on how many columns can be displayed across
a row. The COLUMNS= option is honored only if
ORDER=ROWMAJOR (the default).

In the example code to the left, if you were to include
more than five plot definitions, additional rows (with
five columns) would be added automatically to
accommodate all of the cells that are needed to
display all specified plot definitions.

layout gridded / order=columnmajor
 rows=1;
 /* plot definitions */
endlayout;

When the number of rows is specified, you place a
limit on how many rows can be displayed down a
column. The ROWS= option is honored only if
ORDER=COLUMNMAJOR.

In the example code to the left, if you were to include
more than five plot definitions, additional columns
would be added automatically, but the grid would not
wrap to a second row because the ROWS= setting
limits the grid to a single row.

If you are willing to have an empty cell in the grid, you could use a 2x3 or a 3x2 grid:

layout gridded / columns=3 ;
endlayout;

By default, the layout uses the ORDER=ROWMAJOR setting to populate grid cells. This
specification essentially means "fill in all cells in the top row (starting at the top left) and
then continue to the next row below." COLUMNS=1 by default when
ORDER=ROWMAJOR, so you must specify an alternative setting to increase the number
of columns in the grid:

layout gridded / columns=3 ;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Setting Grid Dimensions 145

Alternatively, you can specify ORDER=COLUMNMAJOR, which means "fill in all cells
in the left column and then continue to the next column to the right." ROWS=1 by default
when ORDER=COLUMNMAJOR, so you must specify an alternative setting to increase
the number of rows in the grid:

layout lattice / rows=2 order=columnmajor ;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Setting Gutters
To conserve space, the default GRIDDED layout does not include a gap between cell
boundaries. In some cases, this might cause the cell contents to appear too congested. You
can add a vertical gap between all cells with the COLUMNGUTTER= option, and you can
add a horizontal gap between all rows with the ROWGUTTER= option. If no units are
specified, pixels (PX) are assumed.

layout gridded / columns=3 columngutter=5 rowgutter=5 ;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Note that by adding gutters, you do not increase the size of the graph. Instead, the cells
shrink to accommodate the gutters. Depending on the number of cells in the grid and the
size of the gutters, you will frequently want to adjust the size of the graph to obtain optimal
results, especially if the cells contain complex graphs. For more information, see “Sizing
Issues” on page 150

Defining Cells
Two valid techniques are available for indicating the contents of a cell:

146 Chapter 9 • Using a Simple Multi-cell Layout

Technique Example Advantages Disadvantages

stand-alone plot
statement or text
statement

scatterplot x= y=; simplicity can't have overlays

can't adjust axes,
borders, or
backgrounds (these are
layout options)

layout block layout overlay;
 scatterplot x= y=;
 seriesplot x= y=;
endlayout;

cell can contain a
complex plot

axes can be adjusted

other layout types can
be used

more complexity

The following definition for a GRIDDED layout shows a simple example:

entrytitle "Simple 3x2 Lattice with Five Cells Populated";

layout gridded / columns=3;

 /* stand-alone plot statements define cells 1-3 */
 boxplot x=sex y=age;
 boxplot x=sex y=height;
 boxplot x=sex y=weight;

 /* overlay blocks define cells 4-5 */
 layout overlay;
 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 entry halign=right "Spline" / valign=bottom;
 endlayout;

 layout overlay;
 scatterplot y=weight x=height;
 loessplot y=weight x=height;
 entry halign=right "Loess " / valign=bottom;
 endlayout;

endlayout;

Defining Cells 147

Notice that some Y-axis labels are too close to their neighboring plots. You can use the
COLUMNGUTTER= and ROWGUTTER= options to add gutters between all columns
and rows. The following layout statement defines a grid with 30-pixel gutters:

layout gridded / columns=3 columngutter=30 rowgutter=30 ;

Notice that adding gutters visually separates graphs, but it does not increase the overall
graph size. To compensate for the gutters, the cells become smaller. This same behavior is
observed by other multi-cell layouts, as well.

Building a Table of Text

Using a Single Layout
One of the most common applications of the GRIDDED layout is to build a table of text
or statistics using nested ENTRY statements.

148 Chapter 9 • Using a Simple Multi-cell Layout

layout gridded / columns=2 order=rowmajor
 border=true columngutter=5px;
 /* row 1 */
 entry halign=left "N";
 entry halign=left "5203";
 /* row 2 */
 entry halign=left "Mean";
 entry halign=left "119.96";
 /* row 3 */
 entry halign=left "Std Dev";
 entry halign=left "19.98";
endlayout;

Tables like this can be organized many different ways. For more information on these
techniques, see Chapter 7, “Adding and Changing Text in a Graph,” on page 101 for details
about ENTRY statements, and see Chapter 16, “Adding Insets to a Graph,” on page 271
for details about defining the tables.

Using Nested Layouts
When GRIDDED layouts are used to create tables of text, the tables often appear within
another layout. For example, the table might be used within the plot wall of an OVERLAY
layout, or within a SIDEBAR block of a LATTICE layout. When the table is used within
a LAYOUT OVERLAY, it is often necessary to position the table so that it avoids collision
with the plot. In the following example, the AUTOALIGN=(position-list) option of the
GRIDDED layout is used to dynamically position the table in the TOPRIGHT or TOPLEFT
position. TOPRIGHT is tried first, but TOPLEFT is used if the TOPRIGHT position would
cause the histogram to collide with the table.

proc template;
define statgraph inset2;
 begingraph;
 entrytitle "Auto-positioning the Inset Within the Plot Wall";
 layout overlay;
 histogram mrw;
 layout gridded / columns=1 border=true
 columngutter=5px
 autoalign=(topright topleft);
 entry halign=left "N" halign=right "5203";
 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
 endlayout;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.heart template=inset2;
run;

Using Nested Layouts 149

In this example, the values for the statistics in the table are hard-coded. Obviously, you
would prefer that the statistics values be calculated in the template. Chapter 16, “Adding
Insets to a Graph,” on page 271 shows how these values can be computed in the template
or passed to the template using dynamic or macro variables.

Sizing Issues

Row and Column Sizes
Unlike the LATTICE layout, the GRIDDED layout offers no way to control column sizes
or row sizes. These sizes are determined by the contents of the cells. If only plots are used
in the cells, the grid is partitioned equally based on the graph size. However, any individual
cell in the grid might contain a legend or text. Consider the next two examples, in which
the sixth cell of the grid is populated with a legend.

layout gridded / columns=3 rows=2 columngutter=10 rowgutter=10;
 /* standalone plot statements define cells 1-3 */
 boxplot x=sex y=age;
 boxplot x=sex y=height;
 boxplot x=sex y=weight;

 /* overlay blocks define cells 4-5 */
 layout overlay;
 scatterplot y=weight x=height / group=sex name="scatter" ;
 pbsplineplot y=weight x=height;
 entry halign=right "Spline" / valign=bottom;
 endlayout;

 layout overlay;
 scatterplot y=weight x=height / group=sex;
 loessplot y=weight x=height;
 entry halign=right "Loess " / valign=bottom;

150 Chapter 9 • Using a Simple Multi-cell Layout

 endlayout;

 /* legend defines cell 6 */
 discretelegend "scatter" / title="Sex";
endlayout;

In this first case, the legend height and width are smaller than the default column and rows
sizes, so the legend fits nicely into the empty cell.

However, this second case demonstrates that if the legend is larger than the default column
width or row height, the legend size has precedence and the cell size is adjusted to fit the
legend. The same thing might happen when ENTRY statements with lengthy strings are
used in cells.

Because of this behavior, you should consider using a LATTICE layout whenever you want
to enforce uniform or user-defined column widths and row heights for the grid, regardless

Row and Column Sizes 151

of cell contents. If this layout were changed to a LATTICE, the legend would be either
omitted or clipped, depending on the setting of the DISPLAYCLIPPED= option of the
DISCRETELEGEND statement.

Even when the GRIDDED layout does not contain legend or text statements, the plot-area
size in a row or column in the grid might be changed by cell contents. Consider this three-
cell GRIDDED layout with OVERLAY layouts defining each cell.

Because the Y axes are duplicated across cells, you might try to conserve space by turning
off the Y axes for the second and third cells. You can do this with the
YAXISOPTS=(DISPLAY=NONE) option of the OVERLAY layout. Here is the result:

Once again, the three cells have the same size, but the plot areas do not because the cells
that no longer display the Y axis have extended the plot areas into the space that formerly
displayed the axes. Rather than using the GRIDDED layout, you can use the LATTICE
layout to ensure that the three plot areas have the same size:

152 Chapter 9 • Using a Simple Multi-cell Layout

This graph was produced with LATTICE layout with an external axis. See Chapter 10,
“Using an Advanced Multi-cell Layout,” on page 155 for details.

Adjusting Graph Size
When defining the grid size, you will generally have some idea of a good overall aspect
ratio for the graph. For example, if you are creating a one row by three column grid, the
graph has a default aspect ratio of 4:3 and looks as follows:

The graph would look better if the graph height were smaller in relation to the width. You
can establish a good default graph size in the template definition by setting the
DESIGNWIDTH= and DESIGNHEIGHT= options in the BEGINGRAPH statement.
After some experimentation, you might decide that something closer to a 2:1 aspect ratio
looks good:

begingraph / designwidth=400px designheight=180px;

Adjusting Graph Size 153

The DESIGNWIDTH= and DESIGNHEIGHT= options set the graph size as part of the
template definition so that if you later want a larger or smaller version of this graph, you
can use the ODS GRAPHICS statement rather than resetting the design size and
recompiling the template. You need only specify either a WIDTH= or a HEIGHT= option
in the ODS GRAPHICS statement. The other dimension is automatically computed for
you, based on the aspect ratio that is specified in the compiled template by the
DESIGNWIDTH= and DESIGNHEIGHT= options.

ods graphics / reset width=375px;
proc sgrender data=sashelp.cars template=fitcompare;
run;

If you provide both the HEIGHT= and WIDTH= options in the ODS GRAPHICS
statement, you completely override the design aspect ratio. If the WIDTH= or HEIGHT=
options are not specified, the design size is in effect.

Setting the DESIGNHEIGHT= and DESIGNWIDTH= options is highly recommended for
all multi-cell layouts that contain plots. This recommendation applies to the GRIDDED,
LATTICE, DATAPANEL, and DATALATTICE layouts.

154 Chapter 9 • Using a Simple Multi-cell Layout

Chapter 10
Using an Advanced Multi-cell
Layout

The LAYOUT LATTICE Statement . 155

Defining a Basic Lattice . 158
Setting Grid Dimensions . 158
Setting Gutters . 160
Defining Cells . 160
Adding Cell Headers . 162

Creating Uniform Axes Across Rows or Columns . 164
Internal Axes . 164
Uniform Axis Ranges . 164
External Axes . 165

Defining a Lattice with Additional Features . 169
Overview . 169
Transforming the Input Data . 170
Using External Axes . 172
Using Cell Axes . 174
Adding Sidebars . 175
Using Column or Row Headers . 176
Adjusting the Sizes of Rows and Columns . 178

Adjusting the Graph Size . 182

The LAYOUT LATTICE Statement
The LAYOUT LATTICE statement defines a multi-cell grid of graphs that can
automatically align plot areas and tick display areas across grid cells to facilitate data
comparisons among plots. The LATTICE layout differs from the classification panel
layouts in that the number of cells must be predefined and that you must define the content
of each cell separately. LATTICE is superficially similar to a GRIDDED layout because
it can create a grid of heterogeneous plots. However, the LATTICE has much more
functionality and supports the following:

• adjustable column and row sizes

• axis equalization on a row or column basis to facilitate comparisons

• internal axes on a per-cell basis, or external axes for rows or columns of cells

• internal labeling of cell contents (cell header)

• external labeling of rows and columns (column and row headers)

155

• external sidebars that span all columns (top and bottom) or rows (left and right).

Figure 10.1 on page 156 shows a four-cell grid (two rows and two columns). It was
produced with a LATTICE layout to illustrate the features of this layout type. The figure
contains definitions of four plots, which by default are treated independently.

A mixture of plot types or nested layouts could be used in the cells of the lattice. By default,
each plot manages its own axes internal to the lattice boundaries. In the figure, a light gray
border has been added to each plot to show its boundaries within the lattice. The shaded
areas represent the optional features that you can add to the lattice definition. By default,
these shaded areas are not used in the lattice and space is not reserved for them. Thus, in
the default case, the plot areas would expand to replace the shaded areas in the cells.

Figure 10.1 LATTICE Layout with Internal Axes

The shaded areas that are shown in the figure are typically used as follows:

• Cell Headers are commonly used to describe the contents of a cell. Notice that the cell
header, when present, has a separate space above the plot wall area. The cell header
can contain more than one line of text, but it is not restricted to displaying text. For
example, you could use this area to display a legend.

• Sidebars are often used to present text or a legend that pertains to all rows or all columns
in the grid. Again, the sidebar is not limited to text or a legend. You could place another
plot in a sidebar.

• Column Headers and Row Headers present text that pertains to individual columns and
rows. These header areas can also be used to display other components, like legends
and plots.

156 Chapter 10 • Using an Advanced Multi-cell Layout

Figure 10.2 on page 157 shows how the lattice would look if you used additional options
to externalize the axes. The figure externalizes both the row and column axes, but you could
externalize the axes only for the rows, or only for the columns. When axes are external to
the cells, the scale of the data ranges that are displayed for the plots are always unified in
some form. Unifying the scale of the data ranges means taking the minimum of all data
minima and the maximum of all data maxima from a set of plots. The following variations
are available for unifying the axes:

• the scale of the data ranges of all X-axes in a column can be unified on a per-column
basis, or unified across all columns (see "Column 1 Axis" and "Column 2 Axis" in
Figure 10.2 on page 157).

• the scale of the data ranges of all Y-axes in a row can be unified on a per-row basis, or
unified across all rows (see "Row 1 Axis" and "Row 2 Axis" in Figure 10.2 on page
157).

By default, external axes are displayed only on the primary axes (bottom and left). They
are not displayed on the secondary axes (top and right) unless requested. Notice that
external axes use less space and result in larger plot areas than internal axes. (Compare
Figure 10.2 on page 157 with Figure 10.1 on page 156, which is the same size.)

Figure 10.2 LATTICE Layout with External Axes

The following example shows a very simple LATTICE layout:

proc template;
 define statgraph intro;
 begingraph;
 entrytitle "Two-Cell Lattice Layout";

The LAYOUT LATTICE Statement 157

 layout lattice;
 barchart x=age;
 scatterplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=intro;
run;

In a LATTICE layout, each plot statement is considered independent and is placed in a
separate cell. When no grid size is provided, the default layout creates a graph with one
column of cells, and it allots each cell the same amount of space. The number of rows in
the grid is determined by the number of stand-alone plot statements in the layout block.

Defining a Basic Lattice

Setting Grid Dimensions
Assume you want a grid of five plots. Before starting to write code, you must first decide
what grid dimensions you want to set (how many columns and rows) and whether you want
to permit an empty cell in the grid. If you do not want an empty cell, you must limit the
grid to five cells, which gives you two choices for the grid dimensions: five columns by
one row (5x1), or one column by five rows (1x5).

To specify grid size, you use the ROWS= and COLUMNS= options in the LAYOUT
LATTICE statement. These options can be used in three ways to create the following grid,
which contains one row and five columns:

158 Chapter 10 • Using an Advanced Multi-cell Layout

layout lattice / columns=5 rows=1;
 /* plot definitions */
endlayout;

This makes the grid size explicit.

layout lattice / order=columnmajor
 rows=1;
 /* plot definitions */
endlayout;

To specify only one grid row, also specify
ORDER=COLUMNMAJOR. In this case, there will
be as many grid columns as there are plot definitions.
This is the recommended way to create a row of plots.

layout lattice / columns=5;
 /* plot defintions */
endlayout;

When only the number of columns is specified, you
place a limit on how many plots can appear in one
row. If you were to include more than five plot
definitions, additional rows (with five columns)
would be added automatically because
ORDER=ROWMAJOR by default.

If you are willing to have an empty cell in the grid, you could use a 2x3 or a 3x2 grid:

layout lattice / columns=3 rows=2 ;
endlayout;

Note: The LAYOUT LATTICE statement honors the full specification of columns and
rows, unlike the LAYOUT GRIDDED statement, which honors only COLUMNS= or
ROWS=, depending on the ORDER= setting.

By default, the layout uses the ORDER=ROWMAJOR setting to populate grid cells. This
specification essentially means "fill in all cells in the top row (starting at the top left) and
then continue to the next row below":

layout lattice / columns=3 rows=2 ;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Alternatively, you can specify ORDER=COLUMNMAJOR, which means "fill in all cells
in the left column and then continue to the next column to the right":

layout lattice / columns=3 rows=2 order=columnmajor ;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */

Setting Grid Dimensions 159

 /* plot5 definition */
endlayout;

Setting Gutters
To conserve space, the default LATTICE layout does not include a gap between cell
boundaries. In some cases, this might cause the cell contents to appear too congested. You
can add a vertical gap between all cells with the COLUMNGUTTER= option, and you can
add a horizontal gap between all rows with the ROWGUTTER= option. If no units are
specified, pixels (PX) are assumed.

layout lattice / columns=3 rows=2 columngutter=5 rowgutter=5 ;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Note that by adding gutters, you do not increase the size of the graph. Instead, the cells
shrink to accommodate the gutters. Depending on the number of cells in the grid and the
size of the gutters, you will frequently want to adjust the size of the graph to obtain optimal
results, especially if the cells contain complex graphs. For more information, see
“Adjusting the Graph Size” on page 182.

Defining Cells
Several valid techniques are available for indicating the contents of a cell:

Technique Example Advantages Disadvantages

stand-alone plot
statement

scatterplot x= y=; simplicity can't adjust axes

can't have overlays

can't have cell headers

layout block layout overlay;
 scatterplot x= y=;
 seriesplot x= y=;
endlayout;

cell can contain a
complex plot

axes can be adjusted

other layout types can
be used

can't have cell headers

160 Chapter 10 • Using an Advanced Multi-cell Layout

Technique Example Advantages Disadvantages

cell block cell;
 layout overlay;
 scatterplot x= y=;
 seriesplot x= y=;
 endlayout;
endcell;

makes it easy to see cell
boundary in code

required if a cell header
is desired

adds to program length
when no cell header is
desired

The following code fragment for a LATTICE layout shows a simple example:

entrytitle "Simple 3x2 Lattice with Five Cells Populated";
layout lattice / columns=3 rows=2 columngutter=10 rowgutter=10;

 /* stand-alone plot statements define cells 1-3 */
 boxplot x=sex y=age;
 boxplot x=sex y=height;
 boxplot x=sex y=weight;

 /* overlay blocks define cells 4-5 */
 layout overlay;
 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 entry halign=right "Spline" / valign=bottom;
 endlayout;

 layout overlay;
 scatterplot y=weight x=height;
 loessplot y=weight x=height;
 entry halign=right "Loess " / valign=bottom;
 endlayout;

endlayout;

Defining Cells 161

In the examples shown to this point, a LATTICE layout produces the same result as a
GRIDDED layout. We can now look at features that are not available with the GRIDDED
layout.

Adding Cell Headers
To add cell headers to the grid, you must specify a CELL block that contains a nested
CELLHEADER block. The CELLHEADER block can contain one or more ENTRY
statements, or it can contain other statements (DISCRETELEGEND, for example).

entrytitle "Simple 3x1 Lattice with Cell Headers";
layout lattice / columns=3 rows=1;

 /* cell blocks cells 1-3 */
 cell;
 cellheader;
 entry "Spline Fit";
 endcellheader;
 layout overlay;
 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 endlayout;
 endcell;

 cell;
 cellheader;
 entry "Loess Fit";
 endcellheader;
 layout overlay;
 scatterplot y=weight x=height;
 loessplot y=weight x=height;
 endlayout;
 endcell;

 cell;
 cellheader;
 entry "Regression Fit";
 endcellheader;
 layout overlay;
 scatterplot y=weight x=height;
 regressionplot y=weight x=height;
 endlayout;
 endcell;
endlayout;

162 Chapter 10 • Using an Advanced Multi-cell Layout

You can enhance any cell header in the following way:

• nest a GRIDDED layout in the CELLHEADER block

• set BORDER=TRUE on the LAYOUT GRIDDED statement

• add the ENTRY statement(s) to the GRIDDED layout.

Because the GRIDDED layout fills the cell header space above the plot wall, its border
aligns nicely with the plot.

You can further enhance the cell header by making the GRIDDED layout's background
opaque and setting a background color for it. To ensure that the color remains coordinated
with the current style, you could choose any of several style elements that define light
background colors, such as GraphHeaderBackground, GraphBlock, or GraphAltBlock.
Note that several style definitions set the GraphHeaderBackground color to be the same as
the GraphBackground color. For styles like LISTING and JOURNAL, the background is
white.

As a final enhancement, you could coordinate the text color for the cell headers with a
visual attribute in the plot. For example, if you are displaying a fit plot in the cell, you could
set the text color to match the color of the fit line. The TEXTATTRS= option in the ENTRY
statement can be used to set the text properties. The default settings for TEXTATTRS= are
derived from the GraphValueText style element. For more information on ENTRY
statements, see Chapter 7, “Adding and Changing Text in a Graph,” on page 101.

The following code enhances the cell header block of the first cell. Similar code would be
used to enhance the header blocks of the other two cells:

cellheader;
 layout gridded / border=true opaque=true
 backgroundcolor=GraphAltBlock:color;
 entry "Spline Fit" / textattrs=(color=GraphFit:contrastColor);
 endlayout;
endcellheader;

If you have a lengthy text description to add to a cell header, you should use multiple
ENTRY statements to break the text into small segments; otherwise, the text might be
truncated. Also, for a given row, if the number of lines of text in the cell headers varies, a
uniform cell height is maintained across the row by setting all the row headers to the height
needed by the largest cell header.

Adding Cell Headers 163

Creating Uniform Axes Across Rows or Columns

Internal Axes
By default, the plots in the cells of the LATTICE layout manage their own axes, as
demonstrated by the following example:

proc template;
 define statgraph internalaxes;
 begingraph;
 entrytitle "Internal (cell-defined) Axes";
 layout lattice / columns=2 columngutter=5px;
 histogram mpg_city;
 histogram mpg_highway;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.cars template=internalaxes;
run;

In this example, notice that the X and Y axes have different data ranges for each cell. In
cases where you want to facilitate comparisons of the cell contents, you can set uniform
axis scales across the rows in the grid, or across the columns, or across both.

Uniform Axis Ranges
To set a uniform scale on the X axes in each row of a lattice, use the
COLUMNDATARANGE= option on the LAYOUT LATTICE statement. Likewise, to set
a uniform scale on the Y axes in each row of the lattice, use the ROWDATARANGE=
option. Both options accept one of the following values:

DATA
scales the axes independently for each cell. This is the default.

164 Chapter 10 • Using an Advanced Multi-cell Layout

UNION
finds the minimum of the data minima and the maximum of the data maxima, on a per-
row or per-column basis, and sets this range on the appropriate axis for each cell in a
row or column.

UNIONALL
finds the minimum of the data minima and the maximum of the data maxima over all
rows or all columns, and sets this range on the appropriate axis for each cell.

layout lattice / columns=2 columngutter=5px
 columdatarange=unionall
 rowdatarange=union ;
 histogram mpg_city;
 histogram mpg_highway;
endlayout;

Note: The default X-axis for a histogram shows ticks at bin midpoints or bin start/end
points. If the histograms happen to have the same bin width, it is possible to create
uniformly scaled X axes. However, when the bin widths are different, there might not
be any common midpoints. To handle this situation, the LATTICE layout automatically
switches to a LINEAR type axis so that the axis tick values can be uniform, even though
they might not be at bin midpoints or boundaries for all histograms.

Some restrictions apply to the UNION and UNIONALL settings on any row or column of
the lattice:

• all plots must have the same axis type: LINEAR, LOG, TIME, or DISCRETE

• overlaid plots should not specify both a Y and Y2 axis, or both an X and X2 axis.

• if a cell contains a LAYOUT OVERLAY3D or LAYOUT OVERLAYEQUATED
statement, the uniform axis ranges and external axes are not supported for that row or
column.

External Axes

Specifying External Axes
Whenever axis scales have been unified for a row or a column, you can replace the
individual cell axes in that row or column with a single axis that is external to the cells.

External Axes 165

To externalize X axes, use the following syntax:

COLUMNAXES;
COLUMNAXIS / options ;
<COLUMNAXIS / options ;>

ENDCOLUMNAXES;

To externalize Y axes, use the following syntax:

ROWAXES;
ROWAXIS / options ;
<ROWAXIS / options ;>

ENDROWAXES;

Within the axes blocks, you should specify as many COLUMNAXIS or ROWAXIS
statements as there are columns or rows in the grid. The options that are available to each
statement are similar to those that are available for the XAXISOPTS= and YAXISOPTS=
options of a LAYOUT OVERLAY statement. The options that you specify can differ from
statement to statement.

Note: When a row or column external axis is used, all axis options on the internal axes in
that same dimension will be ignored.

The following code fragment externalizes the Y axes:

layout lattice / columns=2 columngutter=5px
 columndatarange=unionall
 rowdatarange=union;
 histogram mpg_city;
 histogram mpg_highway;
 rowaxes;
 rowaxis / griddisplay=on;
 endrowaxes;
endlayout;

Displaying External Secondary Axes
The DISPLAYSECONDARY= option can be used on a ROWAXIS statement to display
a row axis at the right of the lattice. It can be used on a COLUMNAXIS statement to display
a column axis at the top of the lattice. An external secondary axis is a duplicate of the
external primary axis, not a truly independent axis. However, you can change the features

166 Chapter 10 • Using an Advanced Multi-cell Layout

that are displayed on the secondary axis. In the following example, the ticks and tick values
are repeated on the right side of the lattice, but the axis label is suppressed by not listing it
among the features that are requested on the DISPLAYSECONDARY= option.

layout lattice / columns=2 columngutter=5px
 columndatarange=unionall
 rowdatarange=union;
 histogram mpg_city;
 histogram mpg_highway;
 rowaxes;
 rowaxis / griddisplay=on displaysecondary=(ticks tickvalues);
 endrowaxes;
endlayout;

External Axes and Empty Cells
If a LATTICE layout generates empty cells and there are external axes, a row or column
axis might be displayed near one or more of those empty cells. The following example
shows the default case:

layout lattice / columns=2 rows=2
 rowgutter=5px columngutter=5px
 rowdatarange=unionall columndatarange=unionall;

 /* overlay blocks define cells 1-3 */
 layout overlay;
 entry "Spline Fit" / valign=top;
 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 endlayout;
 layout overlay;
 entry "Loess Fit" / valign=top;
 scatterplot y=weight x=height;
 loessplot y=weight x=height;
 endlayout;
 layout overlay;
 entry "Regression Fit" / valign=top;
 scatterplot y=weight x=height;
 regressionplot y=weight x=height;
 endlayout;

External Axes 167

 rowaxes;
 rowaxis;
 rowaxis;
 endrowaxes;
 columnaxes;
 columnaxis;
 columnaxis;
 endcolumnaxes;
endlayout;

Adding the SKIPEMPTYCELLS=TRUE setting to the LAYOUT LATTICE statement
eliminates the space that is normally reserved for the empty cells. In that case, an external
axis that might have been displayed near an empty cell will be displayed near a populated
cell instead:

layout lattice / columns=2 rows=2
 rowgutter=5px columngutter=5px
 rowdatarange=unionall columndatarange=unionall
 skipemptycells=true ;

168 Chapter 10 • Using an Advanced Multi-cell Layout

Defining a Lattice with Additional Features

Overview
The following sections explain how to generate Figure 10.3 on page 170, which requires
the following tasks:

• transforming the input data

• using external axes instead of internal cell axes

• adding sidebars that display descriptive text

• using column headers

• sizing rows.

Overview 169

Figure 10.3 Stock Plot

Transforming the Input Data
A common use for a lattice is to create a graph that shows different subsets of the same
input data. In some cases, those subsets are already defined in the input data. However, you
will frequently have to transform the input data to make it suitable for the graph you are
trying to create. This might require any or all of the following:

• summarizing the data

• transposing the data

• scaling the data values

• creating new variables that represent subsets of the data.

The graph that is shown in Figure 10.3 on page 170 is based on data from
SASHELP.STOCKS, which contains several years of monthly stock information for three
companies. The data set contains columns for STOCK, DATE , VOLUME, and
ADJCLOSE (Adjusted Closing Price). However, it does not have the volume and price
information in the form that is needed for the graph. The LATTICE layout does not support
subsets of the input data on a per-cell basis. So, in order to make the cell content different,
unique variables must be created for each cell to provide the appropriate date, volume, and
price information. The following DATA step performs the necessary input data
transformations:

data stock;
 set sashelp.stocks;
 where stock eq "Microsoft" and year(date) in (2004 2005);
 format Date2004 Date2005 date.
 Price2004 Price2005 dollar6.;
 label Date2004="2004" Date2005="2005";
 if year(date) = 2004 then do;

170 Chapter 10 • Using an Advanced Multi-cell Layout

 Date2004=date;
 Vol2004=volume*10**-6;
 Price2004=adjclose;
 end;
 else if year(date)=2005 then do;
 Date2005=date;
 Vol2005=volume*10**-6;
 Price2005=adjclose;
 end;
 keep Date2004 Date2005 Vol2004
 Vol2005 Price2004 Price2005;
run;

The data is filtered for Microsoft and for the years 2004 and 2005. Next, new variables are
created for each year and the Volume and Stock Price within each year. Because the
volumes are large, they are scaled to millions. This scaling will be noted in the graph. This
coding results in a "sparse" data set, but it is the correct organization for the lattice because
observations with missing X or Y values are not plotted.

Obs Date2004 Date2005 Price2004 Price2005 Vol2004 Vol2005

 1 . 01DEC05 . $26 . 62.8924
 2 . 01NOV05 . $27 . 71.4692
 3 . 03OCT05 . $25 . 72.1325
 4 . 01SEP05 . $25 . 66.9765
 5 . 01AUG05 . $27 . 65.5300
 6 . 01JUL05 . $25 . 69.0466
 7 . 01JUN05 . $25 . 62.9567
 8 . 02MAY05 . $25 . 62.6998
 9 . 01APR05 . $25 . 77.0902
 10 . 01MAR05 . $24 . 72.8997
 11 . 01FEB05 . $25 . 75.9923
 12 . 03JAN05 . $26 . 79.6428
 13 01DEC04 . $26 . 84.4881 .
 14 01NOV04 . $26 . 86.4461 .
 15 01OCT04 . $25 . 65.7429 .
 16 01SEP04 . $24 . 57.7253 .
 17 02AUG04 . $24 . 52.1046 .
 18 01JUL04 . $25 . 76.6667 .
 19 01JUN04 . $25 . 77.0683 .
 20 03MAY04 . $23 . 58.9425 .
 21 01APR04 . $23 . 77.3867 .
 22 01MAR04 . $22 . 77.1119 .
 23 02FEB04 . $23 . 57.3859 .
 24 02JAN04 . $24 . 63.6359 .

The key point to be aware of is that every plot in every cell must use variables that contain
just the information appropriate for that cell. You cannot use WHERE clauses within the
template definition to form subsets of the data.

The following initial template defines the lattice:

proc template;
define statgraph lattice1;
 begingraph;
 entrytitle "Microsoft Stock Performance";
 layout lattice / columns=2 rows=2;
 /* define row 1 */

Transforming the Input Data 171

 seriesplot y=price2004 x=date2004 / lineattrs=GraphData1;
 seriesplot y=price2005 x=date2005 / lineattrs=GraphData1;

 /* define row 2 */
 needleplot y=vol2004 x=date2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid);
 needleplot y=vol2005 x=date2005 /
 lineattrs= GraphData2(thickness=2px pattern=solid);

 endlayout;
 endgraph;
end;
run;

proc sgrender data=stock template=lattice1;
run;

Note that because Date2004 and Date2005 have an associated SAS date format that a TIME
axis is used and the variable labels are used for X-axis labels.

Figure 10.4 Initial Lattice for the Graph

Using External Axes
Figure 10.4 on page 172 would benefit from externalizing the X and Y axes because the
external axes will reduce the redundant X axis information and unify the data ranges in the
Y axes. We would also like to add grid lines to all axes. To conserve space along the X
axes, the automatic formatting of each TIME axis is turned off in the following template
code. The TICKVALUEFORMAT=MONNAME1. setting indicates how to format the
time axis tick values.

172 Chapter 10 • Using an Advanced Multi-cell Layout

proc template;
define statgraph lattice2;
 begingraph / designwidth=495px designheight=370px;
 entrytitle "Microsoft Stock Performance";
 layout lattice / columns=2 rows=2
 rowdatarange=union columndatarange=union
 rowgutter=3px columngutter=3px ;
 /* define row 1 */
 seriesplot x=date2004 y=price2004 / lineattrs=GraphData1;
 seriesplot x=date2005 y=price2005 / lineattrs=GraphData1;

 /* define row 2 */
 needleplot x=date2004 y=vol2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid);

 needleplot x=date2005 y=vol2005 /
 lineattrs= GraphData2(thickness=2px pattern=solid);

 rowaxes;
 rowaxis / griddisplay=on display=(label tickvalues)
 label="Price" labelattrs=(weight=bold);
 rowaxis / griddisplay=on display=(label tickvalues)
 label="Volume" labelattrs=(weight=bold);
 endrowaxes;

 columnaxes;
 columnaxis / griddisplay=on display=(label tickvalues)
 labelattrs=(weight=bold)
 timeopts=(tickvalueformat=monname1.);
 columnaxis / griddisplay=on display=(label tickvalues)
 labelattrs=(weight=bold)
 timeopts=(tickvalueformat=monname1.);
 endcolumnaxes;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=stock template=lattice2;
run;

Using External Axes 173

Figure 10.5 Lattice with External Axes

Using Cell Axes
In most cases externalizing axes improves graph appearance and streamlines coding.
However, if there are some axis options that do not apply uniformly to all axes in a column
or row, you need to use the standard axis options on a cell basis instead of external axes.

For example, if you wanted X-axis grid lines to appear on the top row of plots but not on
the second row of plots, you could not use external axes. Instead, you would enclose the
cell contents in an overlay-type layout block and add XAXISOPTS= options on the layout
statements. as shown in the following layout blocks:

/* overlay blocks define X-axis options for row 1 */
layout overlay / xaxisopts=(display=none griddisplay=on);
 seriesplot x=date2004 y=price2004 / lineattrs=GraphData1;
endlayout;

layout overlay / xaxisopts=(display=none griddisplay=on);
 seriesplot x=date2005 y=price2005 / lineattrs=GraphData1;
endlayout;

/* overlay blocks define X-axis options for row 2 */
layout overlay / xaxisopts=(display=(label tickvalues)
 timeopts=(tickvalueformat=monname1.));
 needleplot x=date2004 y=vol2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid);
endlayout;

layout overlay / xaxisopts=(display=(label tickvalues)
 timeopts=(tickvalueformat=monname1.));
 needleplot x=date2005 y=vol2005 /

174 Chapter 10 • Using an Advanced Multi-cell Layout

 lineattrs= GraphData2(thickness=2px pattern=solid);
endlayout;

Adding Sidebars
The graph in Figure 10.5 on page 174 is progressing well, but the ENTRYTITLE is centered
on the entire graph. It would look better if it were centered on the grid area. This can be
accomplished by removing the ENTRYTITLE statement and replacing it with a SIDEBAR
block. Four sidebar areas are available: two that span all columns (one on the TOP and one
on the BOTTOM), and two that span all rows (one on the RIGHT and one on the LEFT).

sidebar / align=top;
 entry "Microsoft Stock Performance" /
 textattrs=GraphTitleText pad=(bottom=5px);
endsidebar;

Finally, we need a way of explaining that the prices in the first row represent an adjusted
close value. We also need to explain that the axis scaling for the second row is in millions
of shares. Two strategies are available for providing this information.

The first strategy is to create an external legend. For this strategy, we must define legend
text on two of the plot statements, and add a DISCRETELEGEND statement to the
BOTTOM sidebar.

seriesplot x=date2004 y=price2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid)
 name="series" legendlabel="Adjusted Close";

needleplot x=date2004 y=vol2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid)
 name="needle" legendlabel="Millions of Shares";

sidebar / align=bottom;
 discretelegend "series" "needle" / border=off pad=(top=10px);
endsidebar;

Adding Sidebars 175

The following graph shows what this modification looks like:

The other strategy is to add to the row information. At first glance it would seem that you
could do this very simply by extending the axis label text:

rowaxes;
 rowaxis / griddisplay=on display=(tickvalues)
 label="Volume (Millions of Shares)" ;
 rowaxis / griddisplay=on display=(tickvalues)
 label="Price (Adjusted Close)" ;
endrowaxes;

The problem here is that the extra axis label text might not fit; depending on the text size
and the graph size, the text might be truncated. The axis option SHORTLABEL="string"
is available to handle truncation, but we want more text, not alternate text, and there is no
way to wrap the axis label to two lines. The solution is use row headers instead of specifying
axis labels.

Using Column or Row Headers
For the graph that is shown in Figure 10.5 on page 174, we want to explain that the axis
scaling in the first row is in millions of shares, and that the prices in the second row represent
an adjusted close value. The strategy that we used in “Adding Sidebars” on page 175 was
to create an external legend that displays that information. Another strategy we can use is
to remove the label information from the row axes and introduce a ROWHEADERS block,
as shown in the following code:

rowaxes;
 rowaxis / griddisplay=on display=(tickvalues);
 rowaxis / griddisplay=on display=(tickvalues);
endrowaxes;

rowheaders;
 layout gridded / columns=1;

176 Chapter 10 • Using an Advanced Multi-cell Layout

 entry "Volume" / textattrs=GraphLabelText;
 entry "(Millions of Shares)" / textattrs=GraphValueText;
 endlayout;
 layout gridded / columns=1;
 entry "Price" / textattrs=GraphLabelText;
 entry "(Adjusted Close)" / textattrs=GraphValueText;
 endlayout;
endrowheaders;

By nesting the ENTRY statements in the GRIDDED layouts, we can have multiple lines
of text split exactly where we want and in any text style we desire. Without the GRIDDED
layouts, only one ENTRY statement could be used per row.

To allow more space for the plots, we can rotate the row header text to make it appear to
be a row axis label. Notice that we must specify COLUMNS=2 for the GRIDDED layouts.

rowaxes;
 rowaxis / griddisplay=on display=(tickvalues);
 rowaxis / griddisplay=on display=(tickvalues);
endrowaxes;

rowheaders;
 layout gridded / columns=2 ;
 entry "Price" / textattrs=GraphLabelText rotate=90 ;
 entry "(Adjusted Close)" / textattrs=GraphValueText rotate=90 ;
 endlayout;
 layout gridded / columns=2 ;
 entry "Volume" / textattrs=GraphLabelText rotate=90 ;
 entry "(Millions of Shares)" / textattrs=GraphValueText rotate=90 ;
 endlayout;
endrowheaders;

Using Column or Row Headers 177

The clean look of the graph is achieved by removing redundant cell axis information and
moving it to external column and row locations. In this example, the use of row headers
provided the desired flexibility over row axis labels.

Adjusting the Sizes of Rows and Columns
By default, the rows and columns of the lattice are of the same depth and width. You can
use the ROWWEIGHTS= and COLUMNWEIGHTS= options on the LAYOUT LATTICE
statement to designate different row depths and/or column widths. Consider the following
settings:

LAYOUT LATTICE / ROW=2 COLUMNS=2
 ROWWEIGHTS=(.6 .4) COLUMNWEIGHTS=(.45 .65) ;

Figure 10.6 on page 179 uses these settings. The ROWWEIGHTS= setting specifies that
the first row gets 60% of available row space, and the second row gets 40%. The
COLUMNWEIGHTS= setting specifies that the first column gets 45% of available column
space, and the second column gets 65%. Potentially, the settings on these options affect
the space that is allocated to cell headers and to row and column headers.

178 Chapter 10 • Using an Advanced Multi-cell Layout

Figure 10.6 LAYOUT LATTICE with different Row and Column Sizes

In a traditional stock plot, the area devoted to price information is larger than the area
devoted to the volume information. Here is the adjustment made to the row depths:

layout lattice / columns=2 rows=2 rowweights=(.6 .4)
 rowdatarange=union columndatarange=union
 rowgutter=3px columngutter=3px;

Adjusting the Sizes of Rows and Columns 179

Figure 10.7 LATTICE with Adjusted Row Depths

This next example shows another way that the ROWWEIGHTS= and
COLUMNWEIGHTS= options can be used. Figure 10.8 on page 181 shows a two row by
one column lattice. The first row is an overlay of a histogram, a density plot, a fringe plot
(the short vertical lines below the histogram) representing each observation, and a legend.
The second row contains a box plot. The X axes have a uniform scale to ensure that the
box plot aligns correctly with the histogram. Because the space that is required to show the
second row (box plot) is so much less than the space that is required for the first row, the
option ROWEIGHTS=(.9 .1) has been used to reapportion the row space.

180 Chapter 10 • Using an Advanced Multi-cell Layout

Figure 10.8 Graph with ROWEIGHTS=(.9 .1)

proc template;
 define statgraph distribution;
 begingraph;
 entrytitle "Distribution of Cholesterol";
 entryfootnote halign=left
 "From Framingham Heart Study (SASHELP.HEART)";
 layout lattice / rowweights=(.9 .1)
 columndatarange=union rowgutter=2px;
 columnaxes;
 columnaxis / display=(ticks tickvalues);
 endcolumnaxes;
 layout overlay / yaxisopts=(offsetmin=.04 griddisplay=auto_on);
 discretelegend "Normal" / location=inside
 autoalign=(topright topleft) opaque=true;
 histogram Cholesterol / scale=percent binaxis=false;
 densityplot Cholesterol / normal() name="Normal";
 fringeplot Cholesterol / datatransparency=.7;
 endlayout;
 boxplot y=Cholesterol / orient=horizontal boxwidth=.9;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.heart template=distribution;
run;

For a generic version of this template, which can be used to show the distribution for any
continuous variable without redefining the template, see Chapter 14, “Using Dynamics and
Macro Variables to Make Flexible Templates,” on page 251.

Adjusting the Sizes of Rows and Columns 181

Adjusting the Graph Size
When defining the lattice grid size, you will generally have some idea of a good overall
aspect ratio for the graph. For example, if you are creating a one row by three column grid,
the graph has a default aspect ratio of 4:3. It would look something like this:

The graph would look better if the graph's height were smaller in relation to its width. You
can establish a good default graph size in the template definition by setting the
DESIGNWIDTH= and DESIGNHEIGHT= options in the BEGINGRAPH statement.
After some experimentation, you might decide that a 2:1 aspect ratio looks good:

begingraph / designwidth=400px designheight=200px ;

182 Chapter 10 • Using an Advanced Multi-cell Layout

The DESIGNWIDTH= and DESIGNHEIGHT= options set the graph size as part of the
template definition so that if you later want a larger or smaller version of this graph, you
can use the ODS GRAPHICS statement rather than resetting the design size and
recompiling the template. You need only specify either a WIDTH= or a HEIGHT= option
in the ODS GRAPHICS statement. The other dimension is automatically computed for
you, based on the aspect ratio that is specified in the compiled template by the
DESIGNWIDTH= and DESIGNHEIGHT= options.

ods graphics / reset width=300px;
proc sgrender data=sashelp.cars template=fitcompare;
run;

If you provide both the HEIGHT= and WIDTH= options in the ODS GRAPHICS
statement, you completely override the design aspect ratio. If the WIDTH= or HEIGHT=
options are not specified, the design size is in effect.

Setting the DESIGNHEIGHT= and DESIGNWIDTH= options is highly recommended for
all multi-cell layouts that contain plots. This recommendation applies to the GRIDDED,
LATTICE, DATAPANEL, and DATALATTICE layouts.

Adjusting the Graph Size 183

184 Chapter 10 • Using an Advanced Multi-cell Layout

Chapter 11
Using Classification Panels

Introduction . 185
Classification Panels in the GTL . 185
The LAYOUT DATAPANEL Statement . 186
The LAYOUT DATALATTICE Statement . 188
Coding Distinction Between DATAPANEL and DATALATTICE 190
The LAYOUT PROTOTYPE Statement . 190

Organizing Panel Contents . 191
Overview . 191
Grid Dimensions and Cell Population Order . 191
Gutters . 193
Graph Aspect Ratio . 194
Cell Size . 195
Prototype Orientation . 197

Setting Panel Axis Features . 198
Controlling Data Ranges of Rows or Columns . 198
Setting Axis Options . 200

Controlling the Classification Headers . 202

Using Sidebars . 204

Controlling the Interactions of Classifiers . 206
Appearance of the Last Panel . 207
User Control of Panel Generation . 210
Sparse Data . 214

Using Non-computed Plots in Classification Panels . 217

Adding an Inset to Each Cell . 219

Using PROC SGPANEL to Create Classification Panels . 221

Introduction

Classification Panels in the GTL
A classification panel is a graph with one or more cells in which each cell shows a common
graph (called a prototype). The prototypes that are displayed in the cells result from dividing
input data into subsets that are determined by the values of one or more classification
variables. GTL provides two layouts that can produce classification panels:

185

LAYOUT DATAPANEL
supports a list of class variables. The number of rows and columns are controlled by
statement options. Each cell is labeled with the class variable values in the cell header.

LAYOUT DATALATTICE
supports up to two class variables, one for a row variable and one for a column variable.
One row of cells is created for each value of the row class variable, and one column is
created for each value of the column class variable. The rows and columns are labeled.

The LAYOUT DATAPANEL Statement
The example in this section uses the LAYOUT DATAPANEL statement to specify a list
of two classification variables: DIVISION (two distinct values) and PRODUCT (three
distinct values). Six combinations (crossings) of these unique values are possible, which
produces a panel with six cells.

Notice the following details about the LAYOUT DATAPANEL statement:

• The CLASSVARS= option on the LAYOUT DATAPANEL statement can specify a
list of one or more classifiers.

• In the resulting graph, the data crossings are identified by the cell headers.

The following template code generates Figure 11.1 on page 187.

proc template;
 define statgraph datapanel_intro;
 begingraph;
 entrytitle "Office Furniture Sales";
 layout datapanel classvars=(product division) / columns=2;
 layout prototype;
 seriesplot x=month y=actual;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

186 Chapter 11 • Using Classification Panels

Figure 11.1 Classification Panel Created with LAYOUT DATAPANEL

In the template code, notice the LAYOUT PROTOTYPE block, which is inside the
LAYOUT DATAPANEL block. This nested block, a required part of the DATAPANEL
layout, defines the graphical content of all of the cells. The COLUMNS=2 setting forces
a DATAPANEL layout to display the cells in a two-column organization. The actual
number of rows that are generated depends on the number of crossings that are in the data.

For some data, the number of data crossings can be quite large. Thus, when rendering the
graph for a classification panel, it is common to use a WHERE expression to limit the
number of crossings:

proc sgrender data=sashelp.prdsale template=datapanel_intro;
 where country="U.S.A." and region="EAST" and
 product in ("CHAIR" "DESK" "TABLE") ;
 format actual dollar.;
run;

The following schematic shows the general organization of a graph that is produced with
the DATAPANEL layout. If the template code does not use the sidebar areas that are shown
in the schematic, that space is reclaimed in the graph. Also, the order in which you specify
the classification variables affects the cell ordering. The graph that is represented by the
schematic could be produced with CLASSVARS=(classvar1 classvar2).

The LAYOUT DATAPANEL Statement 187

The LAYOUT DATALATTICE Statement
The example in this section uses the LAYOUT DATALATTICE statement to specify the
same two classification variables: DIVISION and PRODUCT. Notice the following details
about the LAYOUT DATALATTICE statement:

• One of the ROWVAR= or COLUMNVAR= arguments is required. Both can be
specified. Each specifies a single classification variable, enabling you to specify either
one or two classifiers for the graph.

• In the resulting graph, the data crossings are identified by row or column headers.

• The default number of columns equals the number of unique values for the
COLUMNVAR classifier.

• The default number of rows equals the number of unique values for the ROWVAR
classifier.

The following template code generates Figure 11.2 on page 189.

proc template;
define statgraph datalattice_intro;
 begingraph;
 entrytitle "Office Furniture Sales";
 layout datalattice rowvar=product columnvar=division;
 layout prototype;
 seriesplot x=month y=actual;
 endlayout;

188 Chapter 11 • Using Classification Panels

 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.prdsale template=datalattice_intro;
 where country="U.S.A." and region="EAST" and
 product in ("CHAIR" "DESK" "TABLE");
 format actual dollar.;
run;

Figure 11.2 Classification Panel Created with LAYOUT DATALATTICE

In this example, the grid dimensions are automatically determined by the number of distinct
values of the classifiers PRODUCT and DIVISION.

The following schematic shows the general organization of a graph that is produced with
the DATALATTICE layout. As with a DATAPANEL layout, if the sidebar areas are not
used, that space is reclaimed. Notice that the sidebar area is between the cells and the row/
column headers.

The LAYOUT DATALATTICE Statement 189

Coding Distinction Between DATAPANEL and DATALATTICE
The primary difference between coding the DATAPANEL and DATALATTICE layouts
is the way that the classification variables are declared.

DATAPANEL takes one list of variables in parentheses. The number of class variables in
the list is unlimited, though the effectiveness of the graph decreases as the number of class
variables exceeds three or four. In such a case, it is better to use two class variables, and
use the other class variables in the BY statement of the SGRENDER procedure.

layout datapanel classvars=(product division) / . . . ;

DATALATTICE, on the other hand, takes one variable for a row dimension and/or one
variable for a column dimension:

layout datalattice rowvar=product colvar=division / . . .;

The LAYOUT PROTOTYPE Statement
In both the DATAPANEL and the DATALATTICE blocks, the nested PROTOTYPE
layout is similar to an OVERLAY layout, with the following major differences:

• Multiple plots can be overlaid, but BARCHART is the only computed plot that can be
included in the prototype. This means that you cannot use BOXPLOT,
DENSITYPLOT, ELLIPSE, HISTOGRAM, REGRESSIONPLOT, LOESSPLOT,
PBSPLINE, or MODELBAND statements in the PROTOTYPE layout. See “Using

190 Chapter 11 • Using Classification Panels

Non-computed Plots in Classification Panels” on page 217 for examples of how to
work around this limitation.

• DISCRETELEGEND, CONTINUOUSLEGEND, and ENTRY statements cannot be
included in the PROTOTYPE layout, nor can nested layouts. For information on adding
a legend or other information outside of the cells, see “Using Sidebars” on page 204.

• Axis options for classification panels are specified on the LAYOUT DATALATTICE
or LAYOUT DATAPANEL statement, not on the LAYOUT PROTOTYPE statement.
For information on setting axis options for the layout, see “Setting Panel Axis Features”
on page 198.

Organizing Panel Contents

Overview
When planning a classification panel, several factors will influence the layout specification:

• Grid dimensions (number of rows and columns)

• Cell population order as the layout is rendered

• Gutters between the cells

• Graph aspect ratio

• Cell size within the panel

• Prototype orientation.

Grid Dimensions and Cell Population Order
Assume you want to create a DATAPANEL layout with one classification variable that
has five unique values. Before starting to write code, you must first decide what grid
dimensions you want to set (how many columns and rows) and whether you want to permit
empty cells in the grid. If do not want empty cells, you must limit the grid to five cells,
which gives you two choices for the grid dimensions: five columns by one row (5x1), or
one column by five rows (1x5). If you are willing to have empty cells in the grid, you could
have several grid sizes, such as a 2x3 or a 3x2 grid.

The easiest way to specify a grid dimension is to set both the COLUMNS= and ROWS=
options to the desired number of columns and rows. If one dimension is set, the other
dimension automatically grows to accommodate the number of classification levels. By
default, COLUMNS=1, and the ROWS= option is not set.

By default, the layout uses the ORDER=ROWMAJOR setting to populate grid cells. This
specification essentially means "fill in all cells in the top row (starting at the top left) and
then continue to the next row below." The following layout leaves the default
ORDER=ROWMAJOR setting in effect:

layout datapanel classvars=(var) / columns=3 rows=2 ;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Grid Dimensions and Cell Population Order 191

Alternatively, you can specify ORDER=COLUMNMAJOR, which populates the grid by
filling in all cells in the left column (starting at the top), and then continuing with the next
column:

layout datapanel classvars=(var) / columns=3 rows=2 order=columnmajor ;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

One last variation is to specify START=BOTTOMLEFT which produces the following
grids, depending on the setting for the ORDER= option:

layout datapanel classvars=(var) / columns=3 rows=2 start=bottomleft ;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

layout datapanel classvars=(var) / columns=3 rows=2
 order=columnmajor start=bottomleft ;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Note: The ROWS=, COLUMNS=, and START= options are available on both the
DATAPANEL and DATALATTICE layouts. The ORDER= option is available only
on the DATAPANEL layout.

If the number of unique values of the classifiers exceeds the number of defined cells, you
automatically get as many separate panels as it takes to exhaust all the classification levels
(assuming the PANELNUMBER= option is not used). So if there are 17 classification

192 Chapter 11 • Using Classification Panels

levels and you define a 2x3 grid, three panels are created (with different names), and the
last panel will have one empty cell. The effect that the classifier values have on the panel
display is illustrated in “Controlling the Interactions of Classifiers” on page 206.

When you specify multiple classification variables, the crossings are always generated in
a specific way: by cycling though the last classifier, and then the next-to-last, until all
classifiers are exhausted. The following illustration assumes that classifier A has distinct
values a1 and a2, and that classifier B has distinct values b1, b2, and b3:

layout datapanel classvars=(A B) / columns=3 rows=2 ;

Gutters
To conserve space in the graph, the default DATAPANEL and DATALATTICE layouts
do not include a gap between cell boundaries in the panel. In some cases, this might cause
the cell contents to appear too congested. You can add a vertical gap between all cells with
the COLUMNGUTTER= option, and you can add a horizontal gap between all rows with
the ROWGUTTER= option. If no units are specified, pixels (PX) are assumed.

layout lattice classvars=(var) / columns=3 rows=2
 columngutter=5 rowgutter=5 ;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Note that by adding gutters, you do not increase the size of the graph. Instead, the cells
shrink to accommodate the gutters. Depending on the number of cells in the grid and the
size of the gutters, you will frequently want to adjust the size of the graph to obtain optimal

Gutters 193

results, especially if the cells contain complex graphs. The issues of graph size and cell
size are discussed in the following sections.

Graph Aspect Ratio
The default graph size is 640 pixels in width and 480 pixels in height, which sets a default
aspect ratio of 4:3 (640:480). Depending on your grid size, you might want to adjust the
aspect ratio to improve the appearance of the panel. The following example uses a three
column by one row grid with the default aspect ratio:

proc template;
 define statgraph onerow;
 begingraph;
 entrytitle "Yearly Profit for Sports Products";
 layout datapanel classvars=(product_group) / rows=1 ;
 layout prototype;
 barchart x=year y=profit / stat=sum ;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

In this case, the height of the cells could be reduced to improve the appearance. To adjust
the size of the graph, use the DESIGNHEIGHT= and/or DESIGNWIDTH= options in the
BEGINGRAPH statement. The following panel is rendered with a 2:1 aspect ratio.

194 Chapter 11 • Using Classification Panels

begingraph / designwidth=640px designheight=320px ;
 . . .
endgraph;

IThe DESIGNWIDTH= and DESIGNHEIGHT= options set the graph size as part of the
template definition so that if you later want a larger or smaller version of this graph, you
do not have to reset the design size and recompiling the template. Rather, you can specify
either a WIDTH= or a HEIGHT= option in the ODS GRAPHICS statement. The other
dimension is automatically computed for you, based on the aspect ratio that is specified in
the compiled template by the DESIGNWIDTH= and DESIGNHEIGHT= options. For
example, the following template produces a 5 inch by 2.5 inch graph (the 2:1 aspect ratio
is maintained).

ods graphics / reset width=5in ;

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

The following template execution produces a 6 inch by 3 inch output (2:1 aspect ratio is
maintained).

ods graphics / reset height=3in ;

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

Cell Size
You might think that the panel size can be varied to be as big or small as desired. However,
problems arise as the graph size shrinks. Several adjustments in the graph enable small
images to be produced:

• Font sizes are reduced.

• Axis tick values are thinned, rotated, or truncated.

• Labels in the cell headers are truncated. (The options that are available for controlling
the cell header content and size are discussed in “Controlling the Classification
Headers” on page 202.)

Cell Size 195

For example, the following code sets a 200 pixel height for a classification panel:

ods graphics / reset height=200px ;

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

This panel is approaching the limits of how small it can be. Reducing the size even more
would eventually produce the following log messages:

Cell width 72 is smaller than the minimum cell width 100. All contents are
removed from the layout.

NOTE: Listing image output written to SGRender.png.
NOTE: There were 48 observations read from the data set SASHELP.ORSALES.
 WHERE product_group in ('Golf', 'Soccer', 'Tennis');
NOTE: PROCEDURE SGRENDER used (Total process time):
 real time 0.50 seconds
 cpu time 0.28 seconds

Although an image is produced, it is empty. The GTL has an internal restriction on how
small a cell in the panel can be: 100 pixels by 100 pixels. Cell size is computed after all
titles, footnotes, and sidebar contents have been established. Thus, if we had additional
titles in the panel design, log messages similar to the one just shown would be issued, even
with a larger panel size.

The CELLWIDTHMIN= and CELLHEIGHTMIN= options on the LAYOUT
DATAPANEL or LAYOUT DATALATTICE statements can be used to specify smaller
cell sizes than 100 pixels:

proc template;
 define statgraph onerow;
 begingraph / designwidth=360px designheight=180px;
 entrytitle "Yearly Profit for Sports Products";
 layout datapanel classvars=(product_group) / rows=1
 headerlabeldisplay=value
 cellwidthmin=70 cellheightmin=70 ;
 layout prototype;
 barchart x=year y=profit / stat=sum;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

196 Chapter 11 • Using Classification Panels

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

For graph templates that are intended for repeated use (such as the ones that are part of
other SAS products), the effort has been made to set the CELLWIDTHMIN= and
CELLHEIGHTMIN= option to the smallest values that produce a reasonable panel. Other
strategies produce smaller cells without truncating text or resulting in other unwanted side
effects. For example, you can change the orientation of the prototype layout.

Prototype Orientation
Rather than generating a graph with the default row orientation, you can present the same
information in a column-oriented format. To do so, you should change the design size and
also consider changing the orientation of the prototype plot. Prototype plots with discrete
axes often benefit from a horizontal orientation because the horizontal alignment can
display discrete axis tick values without rotation or truncation (although it might eventually
thin or stagger the ticks). The following template code sets a horizontal orientation on a
prototype graph.

proc template;
 define statgraph onecol;
 begingraph / designwidth=280px designheight=380px ;
 entrytitle "Yearly Profit for Sports Products";
 layout datapanel classvars=(product_group) / columns=1
 headerlabeldisplay=value
 cellwidthmin=85 cellheightmin=85 ;
 layout prototype;
 barchart x=year y=profit / stat=sum
 orient=horizontal ;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.orsales template=onecol;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

Prototype Orientation 197

Setting Panel Axis Features
The axes for classification panels are always external to the cells and displayed as axes for
the rows or columns.

Controlling Data Ranges of Rows or Columns
The strength of a classification panel presentation is that it makes it easy to visually compare
similar plots across data categories. In the following example, the profits for Darts, Golf,
and Baseball are compared:

proc template;
 define statgraph unionall;
 begingraph / designwidth=350px
 designheight=400px;
 entrytitle
 "Yearly Profit for Sports Products";

 layout datapanel
 classvars=(product_group)/
 rowdatarange=unionall ;
 layout prototype;
 barchart x=year y=profit /
 stat=sum;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

198 Chapter 11 • Using Classification Panels

proc sgrender data=sashelp.orsales
 template=unionall;
 where product_group in
 ("Golf" "Darts" "Baseball");
run;

By default, the minimum and maximum data ranges over all rows in all panels are used to
establish identical data ranges across for axes that appear in the rows. The same is true for
columns. The options that set these defaults are ROWDATARANGE=UNIONALL and
COLUMNDATARANGE=UNIONALL. In most cases, these settings simplify quick
comparisons because the axis for each row is scaled identically. Likewise, all columns
share a common scale. So the graph just shown does a good job of showing that Golf
products in general provide more profits than Darts or Baseball, but it does not do a very
good job of showing the yearly variation in Baseball profits because those profits are so
small relative to Golf profits.

To set independent axis scaling within each row, you can set
ROWDATARANGE=UNION. Similarly, to set independent axis scaling within each
column, you can set COLUMNDATARANGE=UNION. The following panel shows
independent axes for each row. Now only the data minimum and data maximum for the
cells in each row are considered in deciding the axis range.

layout datapanel classvars=(product_group) /
 rowdatarange=union ;

Controlling Data Ranges of Rows or Columns 199

In this graph, the relative yearly trends for all product groups are equally apparent, but it
is harder to judge which product group is most profitable because bar lengths are
comparable only within each row.

Setting Axis Options
Classification panels use the ROWAXISOPTS=(axis-opts) and COLUMNAXISOPTS=
(axis-opts) options to set axis features. Options are available for all four axis types
(LINEAR, DISCRETE, LOG, and TIME), and most of the available axis options are a
slightly restricted set of the axis options that are available in an OVERLAY layout.

To demonstrate the use of axis options, the following example suppresses the row axis
label because the tick values are formatted with the DOLLAR format and the axis label is
therefore not needed. The column axis label is suppressed because the panel's title indicates
what the bars represent. Adding title information and eliminating axis labels is a good way
to make more space available to the panel's grid. Axis ticks on a discrete axis (YEAR) are
often not needed, so the example suppresses them. It also turns on grid lines to make
comparisons easier.

You have probably noticed in the examples with bar charts that the bars do not touch the
axis. This happens because a default minimum axis offset is applied to the axis to avoid
possible tick value collision with an adjacent cell. This example overrides the default offset
by setting OFFSETMIN=0, thus enabling the bars to touch the horizontal axis.

layout datapanel classvars=(product_group) /
 rowdatarange=union
 columnaxisopts=(display=(tickvalues))
 rowaxisopts= (display=(tickvalues)
 linearopts=(tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0) ;

200 Chapter 11 • Using Classification Panels

Any DATAPANEL display that uses one or two classifiers can be converted to a
DATALATTICE display. When the ROWVAR= option is used on the LAYOUT
DATALATTICE statement, the cell headers automatically become row headers. When the
COLVAR= option is used, cell headers automatically become column headers. On the
following LAYOUT DATALATTICE statement, the ROWVAR= option is used, and the
values of the classifier are displayed as row headers:

layout datalattice rowvar=product_group /
 rowdatarange=union
 rowgutter=5px
 columnaxisopts=(display=(tickvalues))
 rowaxisopts =(display=(tickvalues)
 linearopts= (tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0);

Setting Axis Options 201

Controlling the Classification Headers
In many cases, it is not necessary to display the classification-variable name in the
classification headers. Often, just the classification value is sufficient. Both the
DATALATTICE and DATAPANEL layouts support the HEADERLABELDISPLAY=
option. By default, HEADERLABELDISPLAY=NAMEVALUE, which shows both the
variable name and the value. You can set HEADERLABELDISPLAY=VALUE to display
only the value.

Row and column headers are unique to the DATALATTICE layout. By default,
COLUMNHEADERS=TOP, but you can set COLUMNHEADERS=BOTTOM or
COLUMNHEADERS=BOTH. Likewise, ROWHEADERS=RIGHT is the default setting,
but you can set LEFT or BOTH on the ROWHEADERS= option. The location of the row
or column axis information can be changed by using the DISPLAYSECONDARY= axis
option. In this next example, the row headers are relocated to the left, and the axis
information is relocated to the right. Note that DISPLAY=NONE is also needed to remove
the default row axis information from the left side.

layout datalattice rowvar=product_group /
 rowdatarange=union
 rowgutter=5px
 rowheaders=left
 headerlabeldisplay=value
 columnaxisopts=(display=(tickvalues))
 rowaxisopts= (display=none displaysecondary=(tickvalues)

202 Chapter 11 • Using Classification Panels

 linearopts=(tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0);

Both the DATAPANEL and DATALATTICE layouts support options that control the
background and text properties of the classification headers. By default, the background
of the cell headers is transparent (HEADEROPAQUE=FALSE).

To set a background color, you must set the HEADERBACKGROUNDCOLOR= option
to a fill color. In the following example, the color is set as a style reference. You must also
set HEADEROPAQUE=TRUE. You can use the HEADERLABELATTRS= option to set
the text properties of the classification headers. For example, if the classification values
are long, you can reduce their font size with HEADERLABELATTRS= (SIZE=6pt), or
use the smallest font in the current style by setting
HEADERLABELATTRS=GraphDataText. In the following example, the headers are set
to be bold.

layout datalattice rowvar=product_group /
 rowdatarange=union
 rowgutter=5px
 rowheaders=left
 headerlabeldisplay=value
 headerlabelattrs=(weight=bold)
 headeropaque=true
 headerbackgroundcolor=GraphAltBlock:color
 columnaxisopts=(display=(tickvalues))
 rowaxisopts= (display=none displaysecondary=(tickvalues)
 linearopts=(tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0);

Controlling the Classification Headers 203

Using Sidebars
Sidebars are useful for aligning information outside of the grid. In the following example,
a sidebar is used to display a graph title, rather than using an ENTRYTITLE statement.
The advantage of using sidebars for title and footnote information is that a sidebar is always
horizontally aligned on the grid itself, not on the complete graph width. Of course, you
have to specify the title text on an ENTRY statement, and then set the appropriate text
properties (TEXTATTRS= option), alignment (HALIGN= option), and padding (PAD=
option). Compare the default centering of the "title" in this example with similar examples
in this chapter that specify a title with the ENTRYTITLE statement.

This example also uses a sidebar to display a legend. A legend can be placed in any of the
TOP, BOTTOM, RIGHT, or LEFT sidebars. The legend's alignment is based on the grid
size, not the graph size.

proc template;
 define statgraph sidebar;
 begingraph / designwidth=490px designheight=800px border=false;

 layout datapanel classvars=(product division) / columns=2
 columngutter=10 rowgutter=5
 headerlabelattrs=GraphLabelText(weight=bold)
 rowaxisopts=(display=(tickvalues))
 columnaxisopts=(display=(ticks tickvalues)
 offsetmin=0
 linearopts=(tickvalueformat=dollar6. viewmax=2000
 tickvaluelist=(500 1000 1500 2000)));
 sidebar / align=top;

204 Chapter 11 • Using Classification Panels

 entry "Office Furniture Sales" /
 textattrs=GraphTitleText(size=14pt) pad=(bottom=5px);
 endsidebar;
 sidebar / align=bottom;
 discretelegend "actual" "predict";
 endsidebar;

 layout prototype;
 barchart x=month y=actual /
 orient=horizontal fillattrs=GraphData1
 barwidth=.6 name="actual";
 barchart x=month y=predict /
 orient=horizontal fillattrs=GraphData2
 barwidth=.3 name="predict";
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.prdsale template=sidebar;
 where country="U.S.A." and region="EAST" and
 product in ("CHAIR" "DESK" "TABLE");
run;

Using Sidebars 205

Controlling the Interactions of Classifiers
Whenever you have classifiers with a large number of unique levels, the potential exists
for generating a large number of cells in the panel. If you do not want to see all classification

206 Chapter 11 • Using Classification Panels

levels, you can limit the crossings by using a WHERE expression when creating the input
data. Or, you can use a WHERE expression as part of the PROC SGRENDER step that
renders the graph.

Appearance of the Last Panel
If you set the ROWS= and COLUMNS= options to define a relatively small grid, PROC
SGRENDER automatically generates as many separate panels as it takes to exhaust all the
classification levels. Depending on the grid size and total number of classification levels,
one or more empty cells might be created on the last panel to complete the grid. For
example, if there are seven classification levels and you define a 2x2 grid, two panels are
created (with different names), and the last panel contains one empty cell:

layout datapanel classvars=(product_category) /
 rows=2 columns=2
 headerlabeldisplay=value
 rowaxisopts=(griddisplay=on offsetmin=0
 display=(tickvalues) linearopts=(tickvalueformat=dollar12.));
 layout prototype;
 barchart x=year y=profit / fillattrs=GraphData1;
 endlayout;
 sidebar / align=top;
 entry "Profit for Selected Sports Items" /
 textattrs=GraphTitleText;
 endsidebar;
endlayout;

Appearance of the Last Panel 207

To eliminate empty cells on the last panel, you can specify SKIPEMPTYCELLS=TRUE:

layout datapanel classvars=(product_category) /
 rows=2 columns=2
 skipemptycells=true
 headerlabeldisplay=value
 rowaxisopts=(griddisplay=on offsetmin=0
 display=(tickvalues) linearopts=(tickvalueformat=dollar12.));

The SKIPEMPTYCELLS= option also applies to a DATALATTICE layout. The following
output shows the last panel when Division has two levels and Product has three levels,
while ROWS=2 and COLUMNS=2. When SKIPEMPTYCELLS=FALSE, the last panel

208 Chapter 11 • Using Classification Panels

will have a column of empty cells. Entire rows or columns of empty cells can be removed
by setting SKIPEMPTYCELLS=TRUE.

Appearance of the Last Panel 209

User Control of Panel Generation
It is possible to control the generation of panels. Consider the following output, in which
each panel displays in its upper-right corner the current panel number and the total number
of panels:

210 Chapter 11 • Using Classification Panels

User Control of Panel Generation 211

Normally, when the number of cells to be created in a panel is greater than the defined
panel size in the template (rows * columns), then the SGRENDER procedure automatically
produces the number of panel graphs that are necessary to draw all of the cells in the data.
However, you can instruct the template to create only one panel, which is specified by the
PANELNUMBER= option. This feature can be used to control the creation of the panels.

For example, the preceding panels were generated with the following template code, which
uses the NMVAR statement to declare macro variables that will resolve as numbers. The
PANELNUMBER=PANELNUM setting is a directive indicating which panel to produce.
The ENTRYTITLE statement changes as the panel number changes. For more information
on how to pass information to a template at runtime, see Chapter 14, “Using Dynamics and
Macro Variables to Make Flexible Templates,” on page 251.

proc template;
define statgraph panelgen;
 nmvar PANELNUM TOTPANELS ROWS COLS YEAR;
 begingraph;
 entrytitle halign=right "Panel " PANELNUM " of " TOTPANELS /
 textattrs=GraphFootnoteText;
 layout datapanel classvars=(product division) /
 rows=ROWS columns=COLS
 cellheightmin=50 cellwidthmin=50
 skipemptycells=true
 columnaxisopts=(type=time timeopts=(tickvalueformat=month.))
 rowaxisopts=(griddisplay=on)
 panelnumber=PANELNUM;
 layout prototype;
 seriesplot x=month y=actual / lineattrs=GraphData1;
 endlayout;
 sidebar / align=top;
 entry "Office Furniture Sales for " YEAR /
 textattrs=GraphTitleText;

212 Chapter 11 • Using Classification Panels

 endsidebar;
 endlayout;
 endgraph;
end;
run;

Now that the template is defined, a macro is needed to compute the number of panels that
will be generated, execute PROC SGRENDER an appropriate number of times, and
initialize the macro variables that are referenced in the template. The macro parameters
ROWS and COLUMNS allow different grid sizes to be used. The graph size changes based
on the grid size.

%macro panels(rows=1,cols=1,year=1994);
 %local div_vals prod_vals panels totpanels panelnumber;

 /* find the number of unique values for the classifiers */
 proc sql noprint;
 select n(distinct division) into: div_vals from sashelp.prdsale;
 select n(distinct product) into: prod_vals from sashelp.prdsale;
 quit;

 /* compute the number of panels based on input rows and cols */
 %let panels=%sysevalf(&div_vals * &prod_vals / (&rows * &cols));
 %let totpanels=%sysfunc(ceil(&panels)); /* round up to next integer */

 ods graphics / reset ;
 ods listing gpath="C:\temp" image_dpi=200;

 %do panelnum=1 %to &totpanels;

 ods graphics / imagename="Panel&panelnum"
 width=%sysevalf(200*&cols)px height=%sysevalf(200*&rows)px;

 proc sgrender data=sashelp.prdsale template=panelgen;
 where country="U.S.A." and region="EAST" and year=&year;
 run;

 %end;

%mend;

The three panels that are shown at the beginning of this section were produced with the
following macro call:

%panels(rows=2,cols=2)

If you invoke the macro with different grid dimensions, the number of panels is recomputed
and a new graph size is set. For example, if the following macro call is issued, two panels
are generated (only the last panel is shown here):

%panels(rows=2,cols=3)

User Control of Panel Generation 213

Sparse Data
Multiple classifiers sometimes have a hierarchical relationship, which results in very sparse
data when the classifier values are crossed. For example, consider the following LAYOUT
DATAPANEL statement:

layout datapanel classvars=(state city) / rows=4 columns=5;

Assume that the data for the STATE and CITY classifiers contains information for 20 states
and their capitals. How many panels would you expect to produce? One, or twenty? Or
400?

The answer is one panel, which is the desired result. A single panel is produced because
even though the default DATAPANEL layout attempts to generate a complete Cartesian
product of the crossing values (400 STATE*CITY crossings in this case), it does not create
panel cells for crossings that have no data. The SPARSE= option controls whether panel
cells are created when you have no observations for a crossing, and by default
SPARSE=FALSE.

The DATALATTICE layout does not support a SPARSE= option. The DATALATTICE
creates a row / column for each unique value of the ROWVAR / COLUMNVAR. So a cell
is created for all crossings of the two variable values, thus creating 400 cells.

Sometimes there are unexpected gaps in the data when classification variables are crossed.
For example, suppose you are conducting a study where a number of subjects each receives
over time four treatments that might lower the subject's heart rate after various amounts of
physical activity. However, assume that Subject 101 didn't get Treatment 3, and Subject
102 didn't get Treatment 2. In this case, when you create a DATAPANEL layout presenting
four treatments for three subjects per panel, the expected alignment of the columns does
not work:

214 Chapter 11 • Using Classification Panels

In this situation, you can generate a placeholder cell whenever a subject misses a treatment.
To do so, specify SPARSE=TRUE for the layout panel.

Sparse Data 215

proc template;
 define statgraph sparse;
 begingraph / designwidth=490px designheight=450px;
 entrytitle "Heart Rates for Subjects";
 layout datapanel classvars=(subject treatment) /
 columns=4 rows=3
 cellheightmin=50 cellwidthmin=50
 skipemptycells=true
 sparse=true
 columnaxisopts=(display=(tickvalues))
 rowaxisopts=(display=(label) offsetmin=0);
 layout prototype;
 barchart x=task y=heartrate / barlabel=true;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

The SPARSE= option does not apply to DATALATTICE layouts because they are
inherently sparse. When you specify two classifiers, the DATALATTICE layout manages
this situation automatically.

216 Chapter 11 • Using Classification Panels

proc template;
 define statgraph datalattice;
 begingraph / designwidth=490px designheight=400px;
 entrytitle "Heart Rates for Subjects";
 layout datalattice rowvar=subject columnvar=treatment /
 rows=3 rowgutter=5px
 cellheightmin=50 cellwidthmin=50
 rowheaders=left
 skipemptycells=true
 columnaxisopts=(display=(tickvalues))
 rowaxisopts=(display=none displaysecondary=(label) offsetmin=0);
 layout prototype;
 barchart x=task y=heartrate / barlabel=true;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

Using Non-computed Plots in Classification Panels
So far the discussion has focused on how to set up the grid and axes of the panel using
simple prototype examples. However, complex prototype plots can also be specified,
although BARCHART is the only computed plot that can be used in the prototype. The
restriction of using only non-computed plots in the prototype is mitigated by the fact that
most computed plot types are available in a non-computed (parameterized) version—
BOXPLOTPARM, ELLIPSEPARM, and HISTOGRAMPARM. Also, the fit line
statements (REGRESSIONPLOT, LOESSPLOT, or PBSPLINEPLOT) can be emulated

Using Non-computed Plots in Classification Panels 217

with a SERIESPLOT, and the MODELBAND statement can be emulated with a more
general BANDPLOT statement, provided the appropriate variables have been created in
the input data. Many SAS/STAT and SAS/ETS procedures can create output data sets with
this information.

The following example uses PROC GLM to create an output data set that is suitable for
showing a panel of scatter plots with overlaid fit lines and confidence bands.

proc template;
define statgraph dosepanel;
 begingraph / designwidth=490px designheight=350px;
 layout datapanel classvars=(dose) / rows=1;
 layout prototype;
 bandplot x=days limitupper=uclm limitlower=lclm / name="clm"
 display=(fill) fillattrs=GraphConfidence
 legendlabel="95% Confidence Limits";
 bandplot x=days limitupper=ucl limitlower=lcl / name="cli"
 display=(outline) outlineattrs=GraphPredictionLimits
 legendlabel="95% Prediction Limits";
 seriesplot x=days y=predicted / name="reg"
 lineattrs=graphFit legendlabel="Fit";
 scatterplot x=days y=response / primary=true
 markerattrs=(size=5px) datatransparency=.5;
 endlayout;
 sidebar / align=top;
 entry "Predicted Response to Dosage (mg) over Time" /
 textattrs=GraphTitleText pad=(bottom=10px);
 endsidebar;
 sidebar / align=bottom;
 discretelegend "reg" "clm" "cli" / across=3;
 endsidebar;
 endlayout;
 endgraph;

218 Chapter 11 • Using Classification Panels

 end;
run;

The following procedure code creates the required input data set for the template. It uses
a BY statement with the procedure to request the same classification variable that is used
in the panel.

data trial;
 do Dose = 100 to 300 by 100;
 do Days=1 to 30;
 do Subject=1 to 10;
 Response=log(days)*(400-dose)* .01*ranuni(1) + 50;
 output;
 end;
 end;
end;
run;

proc glm data=trial alpha=.05 noprint;
 by dose;
 model response=days / p cli clm;
 output out=stats
 lclm=lclm uclm=uclm
 lcl=lcl ucl=ucl
 predicted=predicted;
run; quit;

ods listing style=statistical;
proc sgrender data=stats template=dosepanel;
run;

The advantage of using a procedure to generate the data is that the statistical procedures
provide many options for controlling the model. A robust model enhances the output data
set and therefore benefits the graph.

Adding an Inset to Each Cell
You can define a unique inset for each cell of the classification panel with the INSET= and
INSETOPTS= options. The following graph builds on the last example by adding insets:

Adding an Inset to Each Cell 219

proc template;
define statgraph panelinset;
 begingraph / designwidth=495px designheight=350px;
 layout datapanel classvars=(dose) / rows=1
 inset=(F PROB)
 insetopts=(textattrs=(size=7pt) halign=right valign=bottom) ;
 layout prototype;
 bandplot x=days limitupper=uclm limitlower=lclm / name="clm"
 display=(fill) fillattrs=GraphConfidence
 legendlabel="95% Confidence Limits";
 bandplot x=days limitupper=ucl limitlower=lcl / name="cli"
 display=(outline) outlineattrs=GraphPredictionLimits
 legendlabel="95% Prediction Limits";
 seriesplot x=days y=predicted / name="reg"
 lineattrs=graphFit legendlabel="Fit";
 scatterplot x=days y=response / primary=true
 markerattrs=(size=5px) datatransparency=.5;
 endlayout;
 sidebar / align=top;
 entry "Predicted Response to Dosage (mg) over Time" /
 textattrs=GraphTitleText pad=(bottom=10px);
 endsidebar;
 sidebar / align=bottom;
 discretelegend "reg" "clm" "cli" / across=3;
 endsidebar;
 endlayout;
 endgraph;
end;
run;

data trial;
 do Dose = 100 to 300 by 100;
 do Days=1 to 30;
 do Subject=1 to 10;

220 Chapter 11 • Using Classification Panels

 Response=log(days)*(400-dose)* .01*ranuni(1) + 50;
 output;
 end;
 end;
 end;
run;

proc glm data=trial alpha=.05 noprint outstat=outstat ;
 by dose;
 model response=days / p cli clm;
 output out=stats
 lclm=lclm uclm=uclm lcl=lcl ucl=ucl predicted=predicted;
run; quit;

data inset;
 set outstat (keep=F PROB _TYPE_ where=(_TYPE_="SS1"));
 label F="F Value " PROB="Pr > F ";
 format F best6. PROB pvalue6.4;
run;

data stats2;
 merge stats inset;
run;

proc sgrender data=stats2 template=panelinset;
run;

In this template definition,

• The INSET=(F PROB) option names two variables that contain the values for the F
statistic and its p value. The INSETOPTS= option positions the inset and sets its text
properties.

• The OUTSTAT= option of PROC GLM creates a data set with several statistics for
each BY value.

• The DATA INSET step selects the appropriate three observations from the OUTSTAT
data set. The F and PROB variables are assigned labels and formats.

• The DATA STATS2 step creates a new input data set by performing a non-match merge
on the STATS and INSET data sets. It is important to structure the input data in this
fashion.

“Adding Insets to Classification Panels” on page 288discusses this topic in detail and
shows the coding for another example in which the inset information must align correctly
in a multi-row and multi-column classification panel.

Using PROC SGPANEL to Create Classification
Panels

When creating a panel like the one shown in “Using Non-computed Plots in Classification
Panels” on page 217, you might find it easier to create the panel by using PROC SGPANEL
in SAS/GRAPH because the procedure does all the necessary data computations for you.
For example, the REGRESSIONPLOT, LOESSPLOT, and PBSPLINEPLOT statements
have been incorporated into the SGPANEL procedure as REG, LOESS, and PBSPLINE

Using PROC SGPANEL to Create Classification Panels 221

statements. (SGPANEL can also generate other plot types.) By default on PROC
SGPANEL, the PANELBY statement creates a DATAPANEL layout.

ods listing style=statistical;

title "Predicted Response to Dosage (mg) over Time";
proc sgpanel data=trial;
 panelby dose / rows=1;
 reg x=days y=response / cli clm;
run;

Most, but not all, features of the DATALATTICE and DATAPANEL layouts are provided
in the SGPANEL procedure.

The SGPANEL procedure supports computed plot statements such as HISTOGRAM,
DENSITY, DOT, VBOX, and HBOX (vertical and horizontal box plots). The PANELBY
statement controls the layout, determining whether a DATAPANEL, DATALATTICE, or
other layout is used to produce the graph. ROWAXIS and COLAXIS statements control
the external axes, and the KEYLEGEND statement creates legends, which are placed in
sidebars for you.

The SGPANEL procedure does not have a PROTOTYPE block because all of the plot
statements after PANELBY are considered part of the prototype. The SGPANEL procedure
generates GTL template code behind the scenes and executes the template to create its
output. See the SAS/GRAPH Statistical Graphics Procedures Guide documentation for
details.

The following example shows additional features of SGPANEL:

ods listing style=statistical;

title "Cholesterol Distribution by Gender and Weight";
proc sgpanel data=sashelp.heart;
 panelby sex weight_status / layout=lattice onepanel novarname;
 histogram cholesterol;

222 Chapter 11 • Using Classification Panels

 density cholesterol / name="density";
 refline 227 / axis=x name="ref" legendlabel="Overall Mean = 227";
 rowaxis offsetmin=0 offsetmax=.1 max=30;
 keylegend "density" "ref";
run;

Using PROC SGPANEL to Create Classification Panels 223

224 Chapter 11 • Using Classification Panels

Chapter 12
Using an Equated Layout

The LAYOUT OVERLAYEQUATED Statement . 225

Basic Display Features of Equated Plots . 227
Types of Equated Axes . 227
Defining Axes for Equated Layouts . 229

The LAYOUT OVERLAYEQUATED Statement
Several SAS procedures create plots where the X and Y axes are scaled in the same units.
Here are some samples of such plots taken from the Examples section of the procedure
documentation.

Figure 12.1 Sample Plot from PROC PRINQUAL

225

Figure 12.2 Sample Plot from PROC LOGISTIC

Figure 12.3 Sample Plot from PROC PLS

Whenever the same units of measure are used on both axes, it is desirable that the distance
displayed between the same data interval be the same on both axes. To achieve this effect,
you must use an OVERLAYEQUATED layout.

For specifying plot statements, the OVERLAYEQUATED layout is similar to the
OVERLAY layout: you can specify one or more 2D plot statements within the layout block.
However, OVERLAYEQUATED imposes a restriction on the plot axes and differs from
OVERLAY in several ways. With OVERLAYEQUATED,

226 Chapter 12 • Using an Equated Layout

• Both X and Y axes are always numeric (TYPE=LINEAR). Thus, plot types that have
discrete or binned axes (BOXPLOT, BOXPLOTPARM, BARCHARTPARM,
HISTOGRAM, and HISTOGRAMPARM) cannot be used within this layout.

• For equal data intervals on both axes, the display distance is the same. For example, an
interval of 2 units on the X axis maps to the same display distance as an interval of 2
units on the Y axis.

• The slope of a line in the display is the same as the slope in the data. In other words, a
45° slope in data will be represented by a 45° slope in the display. The EQUATETYPE=
option offers different ways of presenting the data ranges while preserving the 45°
display slope (see “Types of Equated Axes” on page 227).

The following figure illustrates how a series plot might be displayed when it is specified
within an OVERLAYEQUATED layout rather than an OVERLAY layout:

Basic Display Features of Equated Plots

Types of Equated Axes
The EQUATETYPE= option of the LAYOUT OVELAYEQUATED statement manages
the display of the axes. The following values are available:

FIT
X and Y axes have equal increments between tick values. The data ranges of both axes
are compared to establish a common increment size. The axes can be of different lengths
and have a different number of tick marks. Each axis represents its own data range.
One axis can be extended to use available space in the plot area. This is the default.

Types of Equated Axes 227

EQUATE
Same as FIT except that neither axis is extended to use available space in the plot area.

SQUARE
Both the X and Y axes have the same length and the same tick values. The axis length
and tick values are chosen so that the minimum and maximum of both X and Y appear
in the range of values appearing on both axes.

The following example template uses the EQUATETYPE= option:

proc template;
 define statgraph mpg;
 mvar TYPE;
 begingraph;
 entrytitle "Comparison of " TYPE " Vehicle Mileage by Origin";
 entryfootnote halign=right "SASHELP.CARS";
 layout overlayequated / equatetype=fit;
 scatterplot x=mpg_city y=mpg_highway / group=origin
 name="s" markerattrs=(size=7px);
 referenceline x=eval(mean(mpg_city)) /
 curvelabel=eval(put(mean(mpg_city),4.1));
 referenceline y=eval(mean(mpg_highway)) /
 curvelabel=eval(put(mean(mpg_highway),4.1));
 discretelegend "s";
 layout gridded / columns=1 halign=right valign=bottom;
 entry "Reference lines at";
 entry "average overall city";

228 Chapter 12 • Using an Equated Layout

 entry "and highway mileages";
 endlayout;
 endlayout;
 endgraph;
 end;
 run;

 %let type=SUV;
 proc sgrender data=sashelp.cars template=mpg;
 where type="&type";
 run;

Note: This program uses several features, such as runtime macro variable resolution,
EVAL expressions, and insets. All of these features are discussed in detail in other
chapters.

Defining Axes for Equated Layouts
Axes for the OVERLAYEQUATED layout are similar to axes for the OVERLAY layout
with the following exceptions:

• Both axes are always of TYPE=LINEAR.

• Some axis options that always apply to both axes are specified in a
COMMONAXISOPTS= option. Some of the supported options are INTEGER,
TICKVALUELIST, TICKVALUESEQUENCE, VIEWMAX, and VIEWMIN.

• XAXISOPTS= and YAXISOPTS= options are supported (with a different set of sub-
options from those of OVERLAY), but X2AXISOPTS= and Y2AXISOPTS= options
are not supported. Some of the supported options are DISPLAY, LABEL,
GRIDDISPLAY, DISPLAYSECONDARY, OFFSETMAX, OFFSETMIN,
THRESHOLDMAX, THRESHOLDMIN, and TICKVALUEFORMAT.

• No independent secondary (X2, Y2) axes are available, although secondary axes that
mirror the primary axes can be displayed.

Defining Axes for Equated Layouts 229

Chapter 5, “Managing Axes in an OVERLAY Layout,” on page 53 discusses many of the
axis options that are available for managing graph axes.

To illustrate how to control axes for the equated layout, we will look at a simplified version
of the PPPLOT template that is supplied with PROC UNIVARIATE, which is delivered
with Base SAS. The following code shows a SAS program that can be used to run PROC
UNIVARIATE:

ods graphics on;

proc univariate data=sashelp.heart;
 var weight;
 ppplot / normal square;
run;
quit;

When the code is run, it creates the following plot. The plot uses the PPPLOT template,
which is stored in the BASE.UNIVARIATE.GRAPHICS folder of the
SASHELP.TMPLMST item store:

In PROC UNIVARIATE, the PPPLOT statement creates a probability-probability plot
(also referred to as a P-P plot or percent plot), which compares the empirical cumulative
distribution function (ecdf) of a variable with a specified theoretical cumulative distribution
function such as the normal. If the two distributions match, the points on the plot form a
linear pattern that passes through the origin and has unit slope. Thus, you can use a P-P
plot to determine how well a theoretical distribution models a set of measurements.

The supplied PPPLOT template uses several dynamics to pass in values for options, but in
essence, the following template is equivalent. The dynamics for the title and axis labels
have been converted into literals appropriate for this set of data.

proc template;
define statgraph pp_plot;
 begingraph;
 entrytitle "P-P Plot for Weight";
 entryfootnote halign=right "Derived from PPPLOT template";

 layout overlayequated / equatetype=square
 xaxisopts=(label="Normal(Mu=153.09 Sigma=28.915)"

230 Chapter 12 • Using an Equated Layout

 thresholdmin=1 thresholdmax=1)
 yaxisopts=(label="Cumulative Distribution of Weight"
 thresholdmin=1 thresholdmax=1)
 commonaxisopts=(viewmin=0.0 viewmax=1.0) ;

 scatterplot x=Theoretical y=Empirical;
 lineparm x=0 y=0 slope=1 / lineattrs=GraphFit;
 endlayout;

 endgraph;
end;
run;

This simplified template produces a similar plot if it is rendered with the same data as the
UNIVARIATE plot. An ODS OUTPUT statement can convert the output object from
UNIVARIATE into a SAS data set:

ods graphics on;
ods select ppplot;
ods output ppplot=ppdata;
proc univariate data=sashelp.heart;
 var weight;
 ppplot / normal square;
run;
quit;

proc sgrender data=ppdata
 template=pp_plot;
run;

The following template modifies the equated axes, as shown in the next graph:

 layout overlayequated / equatetype=square
 xaxisopts=(label="Normal(Mu=153.09 Sigma=28.915)"
 thresholdmin=1 thresholdmax=1
 tickvalueformat=3.2
 display=(label tickvalues)
 displaysecondary=(tickvalues)

Defining Axes for Equated Layouts 231

 griddisplay=on)
 yaxisopts=(label="Cumulative Distribution of Weight"
 thresholdmin=1 thresholdmax=1
 tickvalueformat=3.2
 display=(label tickvalues)
 displaysecondary=(tickvalues)
 griddisplay=on)
 commonaxisopts=(viewmin=0.0 viewmax=1.0
 tickvaluesequence=(start=0 end=1 increment=.25));

232 Chapter 12 • Using an Equated Layout

Chapter 13
Using 3D Graphics

The LAYOUT OVERLAY3D Statement . 233

Basic Display Features of 3D Graphs . 234
Managing the Display of Cube Lines . 234
Displaying a Fill in the Graph Walls . 235
Defining a Viewpoint . 236
Defining Axes . 237

Data Requirements for 3D Plots . 238
Overview . 238
Producing Bivariate Histograms . 238
Producing Surface Plots . 244

The LAYOUT OVERLAY3D Statement
GTL has one layout for 3D graphics: the LAYOUT OVERLAY3D statement. Two 3D plot
statements can be placed within this layout: BIHISTO3DPARM and
SURFACEPLOTPARM. No 2D plot statements can be used in this layout, although text
statements such as ENTRY can be used.

Typical applications of OVERLAY3D layout are to create a 3D representation of a surface
or a bi-variate histogram (possibly overlaid together). The 3D layout has features that 2D
layouts do not have. For example, it can do each of the following:

• generate axes for three independent variables (X, Y,and Z)

• set a viewpoint of the graph (TILT=, ROTATE=, and ZOOM= options)

• display lines that represent the intersection of axis walls (CUBE= option).
The following figure shows the basic anatomy of a 3D graph:

233

Basic Display Features of 3D Graphs

Managing the Display of Cube Lines
You can control whether the additional nine lines representing the intersection of all axis
planes are displayed with the CUBE= option in the LAYOUT OVERLAY3D statement.
The default is CUBE=TRUE.

layout overlay3d / cube=false ;
 surfaceplotparm x=height y=weight
 z=density;
endlayout;

234 Chapter 13 • Using 3D Graphics

Displaying a Fill in the Graph Walls
By default, only the outlines of the walls bounding the XY, XZ, and YZ axis planes are
shown. You can display filled walls by including the WALLDISPLAY=(FILL) or
WALLDISPLAY=(FILL OUTLINE) settings in the LAYOUT OVERLAY3D statement.
You can change the wall color (when filled) with the WALLCOLOR=option. When filled,
the wall lighting is adjusted to give a 3D effect, based on the graph viewpoint.

layout overlay3d / cube=false
 walldisplay=(fill) ;
 surfaceplotparm x=height y=weight
 z=density;
endlayout;

Displaying a Fill in the Graph Walls 235

Defining a Viewpoint
Representing a 3D graph statically in two dimensions often obscures details that are better
viewed from a different viewpoint. Three options on the LAYOUT OVERLAY3D
statement can be independently set to obtain a different viewpoint.

Option
Value
Range Default Description

ROTATE= -360 to 360 54 Specifies the angle of rotation. Rotation is
measured in a clockwise direction about a virtual
axis, parallel to the Z axis (vertical) and passing
through the center of the bounding cube. A
counterclockwise rotation can be specified with a
negative value.

TILT= -360 to 360 20 Specifies the angle of tilt in degrees. Tilt is
measured in a clockwise direction about a virtual
axis parallel to the X axis (vertical) and passing
through the center of the bounding cube. A
counterclockwise tilt can be specified with a
negative value.

ZOOM= > 0 1 Specifies a zoom factor. Factors greater than 1
move closer to the bounding cube (zoom in), less
than 1 move farther away (zoom out).

These options can be used in combination with each other to obtain a desired perspective.
The following figures show some examples. To generate the figures, a LATTICE layout
was used to "grid" a series of OVERLAY3D layouts of the same plot with different
viewpoints. The arrows on the X and Y axes indicate increasing X and Y values.

236 Chapter 13 • Using 3D Graphics

Defining Axes
Axes for the OVERLAY3D layout are similar to axes for the OVERLAY layout, although
the following exceptions apply to OVERLAY3D layouts:

• An additional ZAXISOPTS=() option is available for managing the Z axis.

• All three axis types can be either LINEAR, LOG, or TIME. A DISCRETE axis is not
supported on OVERLAY3D layouts.

• No secondary (X2, Y2, Z2) axes are available on OVERLAY3D layouts.

• Axis tick values are automatically thinned. No other fitting policy for OVERLAY3D
layout is available.

• For any axis, the location of the displayed axis features (line, ticks, tick values, and
label) might shift, based on the specified viewpoint.

The following layout specification displays grid lines and a label for the Z axis:

layout overlay3d / cube=false
 zaxisopts=(griddisplay=on
 label="Kernel Density") ;
 surfaceplotparm x=height y=weight
 z=density;
endlayout;

Defining Axes 237

Data Requirements for 3D Plots

Overview
Both of the plot statements that can be used in the OVERLAY3D layout are parameterized
plots (see “Plot Statements—Terminology and Concepts” on page 21). This means that the
input data must conform to certain prerequisites in order for the plot to be drawn.

Parameterized plots do not perform any internal data transformations or computing for you.
So, in most cases, you will need to perform some kind of preliminary data manipulation to
set up the input data correctly before executing the template. The types of data
transformations that you need to perform are commonly known as "binning" and
"gridding."

Producing Bivariate Histograms
A bivariate histogram shows the distribution of data for two continuous numeric variables.
In the following graph, the X axis displays HEIGHT values and the Y axis displays
WEIGHT values. The Z axis represents the frequency count of observations. The Z values
could be some other measure (for example, percentage of observations), but they can never
be negative.

As with a standard histogram, the X and Y variables in the bivariate histogram have been
uniformly binned, which means that their data ranges have been divided into equal sized
intervals (bins), and that observations are distributed into one of these bin combinations.

The BIHISTOGRAM3DPARM statement, which produced this plot, does not perform any
binning computation on the input columns. Thus, you must pre-bin the data. In the
following example, the binning is done with PROC KDE (part of the SAS/STAT product).

proc kde data=sashelp.heart;
 bivar height(ngrid=8) weight(ngrid=10) /
 out=kde(keep=value1 value2 count) noprint plots=none;
run;

In this program, the NGRID= option sets the number of bins to create for each variable.
The default for NGRID is 60. The binned values for HEIGHT are stored in VALUE1, and
the binned values for WEIGHT are stored in VALUE2. This selection of bins produces 1

238 Chapter 13 • Using 3D Graphics

observation for each of the 80 bin combinations. Frequency counts for each bin combination
are placed in a COUNT variable in the output data set.

Notice that when you form the grid by choosing the number of bins, the bin widths (about
3.5 for HEIGHT and about 26 for WEIGHT) are most often non-integer.

The following template definition displays this data. By default, the BINAXIS=TRUE
setting requests that X and Y axes show tick values at bin boundaries. Also by default,
XVALUES=MIDPOINTS and YVALUES=MIDPOINTS, which means that the X and Y
columns represent midpoint values rather than lower bin boundaries (LEFTPOINTS) or
upper bin boundaries (RIGHTPOINTS). Not all of the bins in this graph can be labelled
without collision because the graph is small. Thus, the ticks and tick values were thinned.
The non-integer bin values are converted to integers (TICKVALUEFORMAT=5.) to
simplify the axis tick values. DISPLAY=ALL means "show outlined, filled bins."

proc template;
 define statgraph bihistogram1a;
 begingraph;
 entrytitle "Distribution of Height and Weight";
 entryfootnote halign=right "SASHELP.HEART";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on)
 xaxisopts=(linearopts=(tickvalueformat=5.))
 yaxisopts=(linearopts=(tickvalueformat=5.));
 bihistogram3dparm x=value1 y=value2 z=count /
 display=all;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data= kde template=bihistogram1a;
 label value1="Height" value2="Weight";
run;

Producing Bivariate Histograms 239

Eliminating Bins that Have No Data. Notice that the bins of 0 frequency (there are
several) are included in the plot. If you want to eliminate the bins where there is no data,
you can generate a subset of the data. The subset makes it a bit clearer where there are bins
with small frequency counts verses portions of the grid with no data.

proc sgrender data= kde template=bihistogram1a;
 where count > 0;
 label value1="Height" value2="Weight";
run;

Displaying Percentages on Z Axis. To display the percentage of observations on the Z
axis instead of the actual count, you need to perform an additional data transformation to
convert the counts to percentages.

proc kde data=sashelp.heart;
 bivar height(ngrid=8) weight(ngrid=10) /

240 Chapter 13 • Using 3D Graphics

 out=kde(keep=value1 value2 count) noprint plots=none;
run;

data kde;
 if _n_ = 1 then do i=1 to rows;
 set kde(keep=count) point=i nobs=rows;
 TotalObs+count;
 end;
 set kde;
 Count=100*(Count/TotalObs);
 label Count="Percent";
run;

proc sgrender data= kde template=bihistogram1a;
 label value1="Height" value2="Weight";
run;

Setting Bin Width. Another technique for binning data is to set a bin width and compute
the number of observations in each bin. In the DATA step below, 5 is the bin width for
HEIGHT and 25 for WEIGHT. With this technique you do not know the exact number of
bins, but you can assure that the bins are of a "good" size.

data heart;
 set sashelp.heart(keep=height weight);
 if height ne . and weight ne .;
 height=round(height,5);
 weight=round(weight,25);
run;

After rounding, HEIGHT and WEIGHT can be used as classifiers for a summarization.
Notice that the COMPLETETYPES option forces all possible combinations of the two
variables to be output, even if no data exists for a particular crossing.

proc summary data=heart nway completetypes;
 class height weight;
 var height;

Producing Bivariate Histograms 241

 output out=stats(keep=height weight count) N=Count;
run;

The template can be simplified because we know that the bin midpoints are uniformly
spaced integers. For this selection of bin widths, 6 bins were produced for HEIGHT and
10 for WEIGHT.

proc template;
 define statgraph bihistogram2a;
 begingraph;
 entrytitle "Distribution of Height and Weight";
 entryfootnote halign=right "SASHELP.HEART";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on);
 bihistogram3dparm x=height y=weight z=count /
 display=all;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=stats template=bihistogram2a;
run;

If you prefer to see the axes labeled with the bin endpoints rather the bin midpoints, you
can use the ENDLABELS=TRUE setting on the BIHISTOGRAM3DPARM statement.
Note that the ENDLABELS= option is independent of the XVALUES= and YVALUES=
options.

In the following example, the bin widths are changed to even numbers (10 and 50) to make
the bin endpoints even numbers:

proc template;
 define statgraph bihistogram2a;
 begingraph;
 entrytitle "Distribution of Height and Weight";
 entryfootnote halign=right "SASHELP.HEART";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on);
 bihistogram3dparm x=height y=weight z=count /

242 Chapter 13 • Using 3D Graphics

 binaxis=true endlabels=true display=all;
 endlayout;
 endgraph;
 end;
run;
data heart;
 set sashelp.heart(keep=height weight);
 height=round(height,10);
 weight=round(weight,50);
run;
proc summary data=heart nway completetypes;
 class height weight;
 var height;
 output out=stats(keep=height weight count) N=Count;
run;

proc sgrender data=stats template=bihistogram2a;
run;

If you choose bin widths that are too small, "gaps" might be displayed among axis ticks
values, which might cause the following message:

WARNING: The data for a HISTOGRAMPARM statement is not appropriate.
 HISTOGRAMPARM statement expects uniformly-binned data. The
 histogram might not be drawn correctly.

Because BIHISTOGRAM3DPARM is a parameterized plot, you can use it to show the 3D
data summarization of a response variable Z, which must have non-negative values, by two
numeric classification variables that are uniformly spaced (X and Y). That is, even though
the graphical representation is a bivariate histogram, the Z axis does not have to display a
frequency count or a percent.

data cars;
 set sashelp.cars(keep=weight horsepower mpg_highway);
 if horsepower ne . and weight ne .;
 horsepower=round(horsepower,75);
 weight=round(weight,1000);

Producing Bivariate Histograms 243

run;

proc summary data=cars nway completetypes;
 class weight horsepower;
 var mpg_highway;
 output out=stats mean=Mean ;
run;

proc template;
 define statgraph bihistogram2b;
 begingraph;
 entrytitle
 "Distribution of Gas Mileage by Vehicle Weight and Horsepower";
 entryfootnote halign=right "SASHELP.CARS";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on) rotate=130;
 bihistogram3dparm y=weight x=horsepower z=mean / binaxis=true
 display=all;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=stats template=bihistogram2b;
run;

Producing Surface Plots
A surface plot shows points that are defined by three continuous numeric variables and
connected with a polygon mesh. A polygon mesh is a collection of vertices, edges, and
faces that defines the shape of a polyhedral object, which simulates the surface. For a
surface to be drawn, the input data must be "gridded"; that is, the X and Y data ranges are
split into uniform intervals (the grid), and the corresponding Z values are computed for
each X,Y pair. Smaller data grid intervals produce a smoother surface because more smaller
polygons are used but are more resource intensive because of the large number of polygons

244 Chapter 13 • Using 3D Graphics

that are generated. Larger data grid intervals produce a coarser, faceted surface because
the polygon mesh has fewer faces and is less resource intensive.

The faces of the polygons can be filled, and lighting is applied to the polygon mesh to create
the 3D effect. It is possible to superimpose a grid on the surface. The grid display is a
sampling of the data grid boundaries that intersect the surface. The grid display can be
thought of as a simpler see-through line version of the surface and can be rendered with or
without displaying the filled surface.

The default appearance of a surface is a filled polygon mesh with superimposed grid lines.

surfaceplotparm x=length y=width z=depth;

The SURFACEPLOTPARM statement assumes that the response/Z values have been
provided for a uniform X-Y grid. Missing Z values will leave a "hole" in the surface.

The observations in the input data set should form an evenly spaced grid of horizontal (X
and Y) values and one vertical (Z) value for each of these combinations. The observations
should be in sorted order of Y and X to obtain an accurate graph.

In the following example, 315 observations in SASHELP.LAKE are gridded into a 15 by
21 grid. The length of the grid is from 0 to 7 by .5, and the width of the grid is from 0 to
10 by .5 There are no missing Depth values.

Producing Surface Plots 245

Input data with non-gridded columns should be preprocessed with PROC G3GRID. This
procedure creates an output data set, and it allows specification of the grid size and various
methods for computed interpolated Z column(s). For further details, see the documentation
for PROC G3GRID in the SAS/GRAPH Reference.

Using PROC G3GRID, the following code performs a Spline interpolation and generates
a surface plot. By increasing the grid size and specifying a SPLINE interpolation, a
smoother surface is rendered.

proc g3grid data=sashelp.lake out=spline;
 grid width*length = depth / naxis1=75 naxis2=75 spline;
run;

proc sgrender data=spline template=surfaceplotparm;
run;

The SURFACETYPE= option offers three different types of surface rendering:

FILLGRID
a filled surface with grid outlines (the default)

FILL
a filled surface without grid outlines

WIREFRAME
an unfilled (see through) surface with grid outlines

246 Chapter 13 • Using 3D Graphics

Adding a Color Gradient. The surface can be colored with a gradient that is based on a
response variable by setting a column on the SURFACECOLORGRADIENT= option. The
following example uses the DEPTH variable:

proc template;
 define statgraph surfaceplotparm;
 begingraph;
 entrytitle "SURFACECOLORGRADIENT=DEPTH";
 layout overlay3d / cube=false;
 surfaceplotparm x=length y=width z=depth /
 surfacetype=fill
 surfacecolorgradient=depth
 colormodel=twocolorramp
 reversecolormodel=true ;
 endlayout;
 endgraph;
 end;
run;

/* create gridded data for surface */
proc g3grid data=sashelp.lake out=spline;
 grid width*length = depth / naxis1=75 naxis2=75 spline;
run;

proc sgrender data=spline template=surfaceplotparm;
run;

The COLORMODEL=TWOCOLORRAMP setting indicates a style element. Four
possible color ramps are supplied in every style. The REVERSECOLORMODEL=TRUE
setting exchanges (reverses) the start color and end color that is defined by the color model.
The colors were reversed so that the darker color maps to the lower depths.

Producing Surface Plots 247

Using Color to Show an Additional Response Variable. The
SURFACECOLORGRADIENT= option does not have to use the Z= variable. In the next
example, another variable, TEMPERATURE is used. Notice that it is possible to display
a continuous legend when you use the SURFACECOLORGRADIENT= option. Several
legend options can be used. Using other color ramps and continuous legends are discussed
in more detail in Chapter 8, “Adding Legends to a Graph,” on page 117.

proc template;
 define statgraph surfaceplot;
 begingraph;
 entrytitle "SURFACECOLORGRADIENT=TEMPERATURE";
 layout overlay3d / cube=false;
 surfaceplotparm x=length y=width z=depth / name="surf"
 surfacetype=fill
 surfacecolorgradient=temperature
 reversecolormodel=true
 colormodel=twocoloraltramp ;
 continuouslegend "surf" /
 title="Temperature ((*ESC*){unicode '00B0'x}F)" ;
 endlayout;
 endgraph;
 end;
run;

data lake;
 set sashelp.lake;
 if depth = 0 then Temperature=46;
 else Temperature=46+depth;
run;

/* create gridded data for surface */
proc g3grid data=lake out=spline;
 grid width*length = depth temperature / naxis1=75 naxis2=75 spline;

248 Chapter 13 • Using 3D Graphics

run;

proc sgrender data=spline template=surfaceplot;
run;

Producing Surface Plots 249

250 Chapter 13 • Using 3D Graphics

Chapter 14
Using Dynamics and Macro
Variables to Make Flexible
Templates

Introduction to Dynamics and Macro Variables . 251

Declaring Dynamics and Macro Variables . 251

Referencing Dynamics and Macro Variables . 252

Initializing Dynamics and Macro Variables . 253

Introduction to Dynamics and Macro Variables
If all of the variable names and options that are referenced in GTL templates had to be
"hard coded" in the compiled template, it would require that you redefine and recompile
the template every time you created the same type of graph with different variables. SAS
programmers are familiar with using SAS macros and macro variables to build application
code in which variables and other parameters can be specified by a calling program. The
same techniques, as well as other techniques unique to ODS templates, can be applied in
GTL to create reusable templates.

Note:

Declaring Dynamics and Macro Variables
Within the scope of a template definition, GTL supports the DYNAMIC statement for
declaring dynamic variables, and the MVAR and NMVAR statements for declaring macro
variables. These statements must appear after the DEFINE statement and before the
BEGINGRAPH block. The following syntax shows the overall template structure:

PROC TEMPLATE;
DEFINE STATGRAPH template-name;

DYNAMIC variable-1 <"text-1"> <…variable-n<"text-n">>;
MVAR variable-1 <"text-1"> <…variable-n<"text-n">>;
NMVAR variable-1 <"text-1"> <…variable-n<"text-n">>;
BEGINGRAPH;

GTL statements;
ENDGRAPH;

END;

251

RUN;

The difference between the MVAR and NMVAR declaration of macro variables is that
NMVAR always converts the supplied value to a numeric token (like the SYMGETN
function of the DATA step). Macro variables that are defined by MVAR resolve to strings
(like the SYMGET function of the DATA step).

Each of the DYNAMIC, MVAR, and NMVAR statements can define multiple variables
and an optional text string that denotes its purpose or usage:

dynamic YVAR "required" YLABEL "optional";
mvar LOCATE "can be INSIDE or OUTSIDE" SYSDATE;
nmvar TRANS "transparency factor";

Note: To make the template code more readable, it is helpful to adopt a naming convention
for these variables to distinguish them from actual option values or column names.
Common conventions include capitalization or adding leading or trailing underscores
to their names. The examples in this document use capitalization to indicate a dynamic
or macro variable.

Referencing Dynamics and Macro Variables
After dynamics and macro variables are declared, you can make one or more template
references to them by simply using the name of the dynamic or macro variable in any valid
context. These contexts include the following:

• as argument or option values:

seriesplot x=date y=YVAR / curvelabel=YLABEL
 curvelabellocation=LOCATE datatransparency=TRANS;

• as parts of concatenated text strings:

entrytitle "Time Series for " YLABEL;
entryfootnote "Created on " SYSDATE;

Dynamics and runtime macro variable references cannot be used in place of statement or
option keywords, or in place of punctuation that is part of the syntax (parentheses,
semicolons, and so on).

Note: If you precede a macro variable reference with an ampersand (&), the reference will
be resolved when the template is compiled, not when it is executed.

For example, it is permissible to define TRANS as an MVAR for use in the following
context:

proc template;
 define statgraph timeseries;
 dynamic YVAR YLABEL;
 mvar LOCATE TRANS;
 begingraph;
 layout overlay;
 seriesplot x=date y=YVAR / curvelabel=YLABEL
 curvelabellocation= LOCATE datatransparency= TRANS ;
 endlayout;
 endgraph;
 end;
run;

252 Chapter 14 • Using Dynamics and Macro Variables to Make Flexible Templates

This context is valid because an automatic, internal conversion using the BEST. format
will be performed (with no warning messages).

Initializing Dynamics and Macro Variables
The main difference between dynamics and macro variables is that they are initialized
differently.

For dynamics, use the DYNAMIC statement with PROC SGRENDER. Values for
dynamics that resolve to column names or strings should be quoted. Numeric values should
not be quoted:

proc sgrender data=financial template=timeseries;
 dynamic yvar="inflation" ylabel="Inflation Rate";
run;

For macro variables, use the current symbol table (local or global) to look up the macro
variable values at runtime:

%let locate=inside;
%let trans=.3;
proc sgrender data=financial template=timeseries;
 dynamic yvar="inflation" ylabel="Inflation Rate";
run;

No initialization is needed for automatic macro variables like the system date and time
value SYSDATE.

It is the responsibility of the person or process that initializes the dynamics or macro
variables to ensure that the expected value type and value that is supplied is appropriate
for the substitution context. If necessary, you can use conditional logic to evaluate the
supplied values of dynamics or macro variables. Conditional logic is discussed in Chapter
15, “Using Conditional Logic and Expressions,” on page 259.

If a dynamic is used to supply a GTL option with a specific value and the supplied value
is not valid or it is not initialized, then the option specification is ignored and the option's
default value is used. For example, the HALIGN= option accepts the values RIGHT,
CENTER, and LEFT. If the dynamic variable ALIGN is defined and then the template code
specifies HALIGN=ALIGN, the ALIGN dynamic must be initialized with one of the values
RIGHT, CENTER, or LEFT. If it is initialized with another value, TOP for example, the
HALIGN= specification in the template is ignored, the default setting for HALIGN= is
used, and you might see a warning in the SAS log.

If a dynamic is used to supply a required argument such as a column name, and the name
is misspelled or not provided, then a warning is issued and that plot statement drops out of
the final graph. A graph will still be produced, but it might be a blank graph, or it might
show the results of all statements except those that are in error.

The following example shows how to create a generalized template that can be used to
show the distribution of any numeric variable. The dynamic named VAR must be set, but
the other dynamics are optional: BINS (sets the number of histogram bins) and
FOOTNOTE. In the example, the DYNAMIC and MVAR variables are highlighted to
emphasize where they are being used.

proc template;
 define statgraph distribution;
 dynamic VAR BINS FOOTNOTE ;
 mvar SYSDATE ;

Initializing Dynamics and Macro Variables 253

 begingraph;
 entrytitle "Distribution of " VAR " with Normal Density Curve";
 entryfootnote halign=left FOOTNOTE halign=right "Created " SYSDATE ;
 layout lattice / rowweights=(.9 .1) columndatarange=union
 rowgutter=2px;
 columnaxes;
 columnaxis / display=(ticks tickvalues);
 endcolumnaxes;
 layout overlay / yaxisopts=(offsetmin=.04 griddisplay=auto_on);
 histogram VAR / scale=percent nbins=BINS ;
 densityplot VAR / normal() name="Normal";
 fringeplot VAR / datatransparency=.7;
 endlayout;
 boxplot y=VAR / orient=horizontal primary=true boxwidth=.9;
 endlayout;
 endgraph;
 end;
run;

The following execution of the template initializes the dynamic variables VAR and
FOOTNOTE, but it does not initialize BIN:

proc sgrender data=sashelp.heart template=distribution;
 dynamic var="Cholesterol"
 footnote="From Framingham Heart Study (SASHELP.HEART)";
run;

In this case, the template option bins=BINS drops out because the BINS dynamic has not
been initialized.

This next execution of the template assigns values to each of the dynamics VAR, BIN, and
FOOTNOTE, using different values from the previous example:

proc sgrender data=sashelp.cars template=distribution;
 dynamic var="Invoice" bins=20 footnote="From SASHELP.CARS";
run;

254 Chapter 14 • Using Dynamics and Macro Variables to Make Flexible Templates

The next example shows a simplified version of the previous graph, this time adding an
inset. The inset statistics are computed external to the template and passed into the template
at runtime, using dynamics and macro variables. For more information on coding insets in
graphs, see Chapter 16, “Adding Insets to a Graph,” on page 271.

proc template;
 define statgraph inset;
 dynamic VAR FOOTNOTE;
 mvar N MEAN STD;
 begingraph;
 entrytitle "Distribution of " VAR;
 entryfootnote halign=left FOOTNOTE;
 layout overlay / yaxisopts=(griddisplay=on);
 histogram VAR / scale=percent;
 layout gridded / columns=2
 autoalign=(topleft topright) border=true
 opaque=true backgroundcolor=GraphWalls:color;
 entry halign=left "N"; entry halign=left N ;
 entry halign=left "Mean"; entry halign=left MEAN ;
 entry halign=left "Std Dev"; entry halign=left STD ;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

We will now define a macro that can pass values to this template. For a given numeric
variable, the macro computes the number of observations, the mean, and the standard
deviation, storing these statistics in macro variables N, MEAN, and STD. The macro
variables are available to the SGRENDER step when the macro executes. Here is the
definition for the macro, which we will name HIST:

%macro hist(dsn,numvar,footnote);
 /* these macro variables are declared in the template */
 %local N MEAN STD;
 proc sql noprint;

Initializing Dynamics and Macro Variables 255

 select put(n(&numvar),12. -L),
 put(mean(&numvar),12.2 -L),
 put(std(&numvar),12.2 -L) into :N, :MEAN, :STD
 from &dsn;
 quit;

 /* remove trailing blanks */
 %let N=&N; %let MEAN=&MEAN; %let STD=&STD;

 proc sgrender data=&dsn template=inset;
 dynamic VAR="&numvar" FOOTNOTE="&footnote";
 run;

%mend;

Here are results of two executions of the macro with different input data. Notice the
placement of the inset might change on based on the amount of space that is available and
the setting for the AUTOALIGN= option.

%hist(sashelp.heart, cholesterol, From SASHELP.HEART)

%hist(sashelp.cars, Weight, From SASHELP.CARS)

256 Chapter 14 • Using Dynamics and Macro Variables to Make Flexible Templates

If you are familiar with the macro facility, you can create macros that validate the
parameters before executing the template. It is also possible to validate the parameters
within the compiled template, using the conditional logic syntax of GTL. For more
information, see Chapter 15, “Using Conditional Logic and Expressions,” on page 259.

GTL supports user-defined computed expressions within compiled templates. This means
that the inset statistics could have been computed directly within template, eliminating the
need to pass them in with dynamics or macro variables. An example of how to do this is
also discussed in Chapter 15, “Using Conditional Logic and Expressions,” on page 259.

For developers who would like to create a library of reusable templates, see the discussion
on creating shared templates in “Creating Shared Templates” on page 339.

Initializing Dynamics and Macro Variables 257

258 Chapter 14 • Using Dynamics and Macro Variables to Make Flexible Templates

Chapter 15
Using Conditional Logic and
Expressions

Constructs Available for Runtime Programming . 259

Expressions . 259

Functions . 261
Overview . 261
General Functions Supported Only in GTL . 261
GTL Summary Statistic Functions . 262

Conditional Logic . 265

Constructs Available for Runtime Programming
GTL has several constructs that can take advantage of runtime programming:

• Dynamics and macro variables

• Expressions

• Conditional processing

This chapter discusses expressions and conditional processing. Dynamics and macro
variables are discussed in Chapter 14, “Using Dynamics and Macro Variables to Make
Flexible Templates,” on page 251.

Expressions
In GTL, as in Base SAS, an expression is an arithmetic or logical expression that consists
of a sequence of operators, operands, and functions. An operand is a dynamic, a macro
variable, a column, a function, or a constant. An operator is a symbol that requests a
comparison, logical operation, arithmetic calculation, or character concatenation.

Expressions can be used to set an option value that is any one of the following:

• a constant (character or numeric)

• a column

• part of the text for ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY statements.

In GTL, an expression must be enclosed in an EVAL function.

259

The following examples show how to specify an expression. This first example uses the
MEAN function to compute several constants:

/* create reference lines at computed positions */
referenceline y=eval(mean(weight)+2*std(weight)) / curvelabel="+2 STD";
referenceline y=eval(mean(weight)) / curvelabel="Mean";
referenceline y=eval(mean(weight)-2*std(weight)) / curvelabel="-2 STD";

This next example creates a new column:

/* create a new column as a log transformation */
scatterplot x=date y=eval(log10(amount));

This final example builds a text string:

/* create a date and time stamp as a footnote */
entryfootnote eval(put(today(),date9.)||" : "||put(time(),timeampm8.));

Valid GTL expressions are identical to valid WHERE expressions. See the WHERE
statement documentation in Base SAS for a comprehensive list of operators and operands.
Unlike WHERE expressions, however, GTL expressions do not perform operations that
create subsets. For example, the difference between the result of a WHERE expression and
that of a logical GTL expression on a column is that the GTL expression returns a Boolean
value for each observation, without changing the number of observations.

For example, the expression for the Y= argument below does not reduce the number of
observations that are plotted.

scatterplot x=name y=eval(height between 40 and 60);

Instead, the computed numeric column for the Y= argument consists of 0s and 1s, based
on whether each observation's HEIGHT value is between 40 and 60.

Whenever expressions are used to create new columns, a new column name is internally
manufactured so that it does not collide with other columns in use.

Expressions in Statement Syntax. Throughout GTL documentation, you see expression
used in statement documentation:

BOXPLOT X= column | expression
Y= numeric-column | expression </ option(s)>;

For the X= argument in this BOXPLOT syntax, expression means any EVAL(expression)
that results in either a numeric or character column. An expression that yields a constant
is not valid.

For the Y= argument, expression means any EVAL(expression) that results in a numeric
column. The expression cannot result in a character column or any constant.

REFERENCELINE X= x-axis-value | column | expression </ option(s)>;

For a single line in this REFERENCELINE syntax, the X= argument can be a constant (x-
axis-value). For multiple lines, it can be a column. In either case, the supplied value(s) must
have the same data type as the axis. Thus, EVAL(expression) can result in a constant, or
it can result in a numeric or character column. In either case, the data type of the result
must agree with the axis type.

Type Conversion in GTL Expressions. Although expressions that are used in a DATA
step perform automatic type conversion, GTL expression evaluation does not. Thus, you
must use one or more functions to perform required type conversions in an expression;
otherwise, the expression generates an error condition without warning when the template
is executed.

For example, consider the following GTL expression:

260 Chapter 15 • Using Conditional Logic and Expressions

if(substr(value, 1, 2) = "11")

This expression uses the SUBSTR function to determine whether the first two characters
from VALUE evaluate to the string value "11". If VALUE is a string, the expression works
fine. However, if VALUE is numeric, then the expression generates an error condition. For
a numeric, you must convert the value to a string before passing it to the SUBSTR function.
The following modification uses the CATS function to perform the type conversion when
necessary:

if(substr(cats(value, 1, 2)) = "11")

Functions

Overview
GTL supports a large number of functions, including SAS functions that can be used in the
context of a WHERE expression, and other functions that are defined only in GTL.

SAS functions that can be used in a WHERE expression include the following types of
functions:

• character handling functions

• date and time functions

• mathematical and statistical functions.

Note: Not all SAS functions are available in WHERE expressions. Call routines and other
functions that are restricted to the DATA step (LAG, VNAME, and OPEN, for
example) are the types of functions that cannot be used.

All of the functions that are used in GTL must be enclosed within an EVAL function.

General Functions Supported Only in GTL
The following table shows functions that are used only in GTL. In all of these functions,
column can be either the name of a column in the input data set, or a dynamic variable or
macro variable that resolves to a column.

Function Name Description

COLNAME(column) returns the case-sensitive name of the column

COLLABEL(column) returns the case-sensitive label of the column. If no label is
defined for the column, the case-sensitive name of the column
is returned.

EXISTS (item) returns 1 if the specified item exists, 0 otherwise. If item is a
column, EXISTS tests for the presence of the column in the input
data set. If item is a dynamic variable or a macro variable,
EXISTS tests whether the variable has been initialized at
runtime.

EXPAND(numeric-column,

freq-column)

creates a new column whose values equal (numeric-column *
frequency-column)

General Functions Supported Only in GTL 261

Function Name Description

ASORT (column,

RETAIN=ALL)

sorts all of the data object's columns, in ascending order, by the
values of column. SORT is an alias for ASORT.

WARNING: if the RETAIN=ALL argument is not included,
column alone is sorted, not the other columns, thereby losing
row-wise correspondence.

DSORT (column,

RETAIN=ALL)

sorts all of the data object's columns, in descending order, by the
values of column.

WARNING: if the RETAIN=ALL argument is not included,
column alone is sorted, not the other columns, thereby losing
row-wise correspondence.

NUMERATE(column) returns a column that contains the ordinal position of each
observation in the input data set (similar to an OBS column).

The following code shows some example uses of the GTL functions:

/* arrange bars in descending order of response values */
 barchartparm x=region y=eval(dsort(amount,retain=all));

/* Label outliers with their position in the data set.
 It does not matter which column is used for NUMERATE(). */
boxplot x=age y=weight / datalabel=eval(numerate(age));

/* Add information about the column being processed.
 The column name is passed by a dynamic. */
entrytitle "Distribution for " eval(colname(DYNVAR));

GTL Summary Statistic Functions
The following functions return a numeric constant, based on a summary operation that is
performed on a numeric column. The results of these functions are the same as if the
corresponding statistics were requested with PROC SUMMARY. These functions take a
single argument, which resolves to the name of a numeric column. They take precedence
over similar multi-argument DATA step functions.

number = EVAL(function-name(numeric-column))

Function Name Description

CSS Corrected sum of squares

CV Coefficient of variation

KURTOSIS Kurtosis

LCLM One-sided confidence limit below the mean

MAX Largest (maximum) value

MEAN Mean

262 Chapter 15 • Using Conditional Logic and Expressions

number = EVAL(function-name(numeric-column))

Function Name Description

MEDIAN Median (50th percentile)

MIN Smallest (minimum) value

N Number of non-missing values

NMISS Number of missing values

P1 1st percentile

P5 5th percentile

P25 25th percentile

P50 50th percentile

P75 75th percentile

P90 90th percentile

P95 95th percentile

P99 99th percentile

PROBT p-value for Student's t statistic

Q1 First quartile

Q3 Third quartile

QRANGE Interquartile range

RANGE Range

SKEWNESS Skewness

STDDEV Standard deviation

STDERR Standard error of the mean

SUM Sum

SUMWGT Sum of weights

T Student's t statistic

UCLM One-sided confidence limit above the mean

USS Uncorrected sum of squares

GTL Summary Statistic Functions 263

number = EVAL(function-name(numeric-column))

Function Name Description

VAR Variance

The following example uses GTL summary statistic functions to dynamically construct
reference lines and a table of statistics for a numeric variable, which is supplied at runtime.

proc template;
 define statgraph expression;
 dynamic NUMVAR "required";
 begingraph;
 entrytitle "Distribution of " eval(colname(NUMVAR));
 layout overlay / xaxisopts=(display=(ticks tickvalues line));
 histogram NUMVAR;

 /* create reference lines at computed positions */
 referenceline x=eval(mean(NUMVAR)+2*std(NUMVAR)) /
 lineattrs=(pattern=dash) curvelabel="+2 STD";
 referenceline x=eval(mean(NUMVAR)) /
 lineattrs=(thickness=2px) curvelabel="Mean";
 referenceline x=eval(mean(NUMVAR)-2*std(NUMVAR)) /
 lineattrs=(pattern=dash) curvelabel="-2 STD";

 /* create inset */
 layout gridded / columns=2 order=rowmajor
 autoalign=(topleft topright) border=true;
 entry halign=left "N";
 entry halign=left eval(strip(put(n(NUMVAR),12.0)));
 entry halign=left "Mean";
 entry halign=left eval(strip(put(mean(NUMVAR),12.2)));
 entry halign=left "Std Dev";

264 Chapter 15 • Using Conditional Logic and Expressions

 entry halign=left eval(strip(put(stddev(NUMVAR),12.2)));
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.heart template=expression;
 dynamic numvar="MRW";
run;

Conditional Logic
GTL supports conditional logic that enables you to include or exclude one or more GTL
statements at runtime:

IF (condition)
GTL statement(s);

ELSE
GTL statement(s);

ENDIF ;

The IF statement requires an ENDIF statement, which delimits the IF block. The IF block
can be placed anywhere within the BEGINGRAPH / ENDGRAPH block.

The condition is an expression that evaluates to a numeric constant, where all numeric
constants other than 0 and MISSING are true. The IF block is evaluated with an implied
EVAL(condition), so it is not necessary to include an EVAL as part of the condition.

Here are some examples:

/* test a computed value */
if (weekday(today()) in (1 7))
 entrytitle "Run during the weekend";
else
 entrytitle "Run during the work week";
endif;

/* test for the value of a numeric dynamic */
if (ADDREF > 0)
 referenceline y=1;
 referenceline y=0;
 referenceline y=-1;
endif;

/* test for the value of a character dynamic */
if (upcase(ADDREF) =: "Y")
 referenceline y=1;
 referenceline y=0;
 referenceline y=-1;
endif;

/* test whether a dynamic is initialized */
if (exists(ADDREF))
 referenceline y=1;

Conditional Logic 265

 referenceline y=0;
 referenceline y=-1;
endif;

The GTL conditional logic is used only for determining which statements to render. It is
not used to control what is in the data object. In the following example, the data object
contains columns for DATE, AMOUNT, and LOG10(AMOUNT), but only one scatter
plot is created.

if (LOGFLAG)
 scatterplot x=date y=amount;
else
 scatterplot x=date y=eval(log10(amount));
endif;

For the conditional logic in GTL, it is seldom necessary to test for the existence of option
values that are set by columns or dynamics. Consider the following statement:

scatterplot x=date y=amount / group=GROUPVAR;

This SCATTERPLOT statement is equivalent to the following code because option values
that are set by columns that do not exist, or by dynamics that are uninitialized, simply "drop
out" at runtime and do not produce errors or warnings:

if (exists(GROUPVAR))
 scatterplot x=date y=amount / group=GROUPVAR;
else
 scatterplot x=date y=amount;
endif;

The GTL code that is specified in the conditional block must contain complete statements
and / or complete blocks of statements. For example, the following IF block produces a
compile error because there are more LAYOUT statements than ENDLAYOUT
statements:

/* produces a compile error */
if (exists(SQUAREPLOT))
 layout overlayequated / equatetype=square;
else
 layout overlay;
endif;

 scatterplot x=XVAR y=YVAR;
endlayout;

The following logic is the correct conditional construct:

if (exists(SQUAREPLOT))
 layout overlayequated / equatetype=square;
 scatterplot x=XVAR y=YVAR;
 endlayout;
else
 layout overlay;
 scatterplot x=XVAR y=YVAR;
 endlayout;
endif;

GTL does not provide ELSE IF syntax, but you can create a nested IF/ ELSE block as
follows:

IF (condition)
GTL statement(s);

266 Chapter 15 • Using Conditional Logic and Expressions

ELSE
IF (condition)

GTL statement(s);
ELSE

GTL statement(s);
ENDIF ;

ENDIF ;

The following example creates a generalized histogram that conditionally shows the
variable label and combinations of fitted distribution curves:

proc template;
 define statgraph conditional;
 dynamic NUMVAR "required" SCALE CURVE;
 begingraph;
 entrytitle "Distribution of " eval(colname(NUMVAR));

 if (colname(NUMVAR) ne collabel(NUMVAR))
 entrytitle "(" eval(collabel(NUMVAR)) ")";
 endif;

 layout overlay / xaxisopts=(display=(ticks tickvalues line));
 histogram NUMVAR / scale=SCALE;

 if (upcase(CURVE) in ("ALL" "NORMAL"))
 densityplot NUMVAR / normal() name="N"
 lineattrs=GraphData1 legendlabel="Normal Distribution";
 endif;

 if (upcase(CURVE) in ("ALL" "KDE" "KERNEL"))
 densityplot NUMVAR / kernel() name="K"
 lineattrs=GraphData2 legendlabel="Kernel Density Estimate";
 endif;
 discretelegend "N" "K";
 endlayout;

 endgraph;
 end;
run;

• The DYNAMIC statement identifies the dynamic variables.

• The first IF block specifies an ENTRYTITLE statement that is conditionally executed
if the column name differs from the column label.

• The next two IF blocks evaluate the value of the dynamic variable CURVE. If CURVE
is not used, the code in the conditional blocks is not executed. If CURVE is initialized
to one of the strings "all" or "normal" in any letter case, then the first DENSITYPLOT
statement is executed. If CURVE is initialized to one of the strings "all", "kde", or
"kernel" in any letter case, then the second DENSITYPLOT statement is executed.
Thus, the results of the conditional logic determine whether zero, one, or two density
plots are generated in the graph.

• Constructing the legend does not require conditional logic because any referenced plot
names that do not exist are not used.

After submitting the template code, we can execute the template with various combinations
of dynamic values.

Conditional Logic 267

In this first execution, the NUMVAR dynamic is initialized with a column that has a defined
label, so two title lines are generated. The first title line displays the column name, and the
second title line displays the column label. The CURVE dynamic is not initialized, so the
template does not generate a density plot.

proc sgrender data=sashelp.heart template=conditional;
 dynamic numvar="mrw";
run;

In this next execution of the template, the NUMVAR dynamic is initialized with a column
that does not have a label, so only a single title line is displayed in the graph. The CURVE
dynamic is initialized with the value "kde", so in addition to the histogram, the template
generates a kernel density estimate.

proc sgrender data=sashelp.heart template=conditional;
 dynamic numvar="cholesterol" curve="kde";
run;

268 Chapter 15 • Using Conditional Logic and Expressions

In this final execution of the template, the CURVE dynamic is initialized with the value
"all", so in addition to the histogram, the template generates a normal density estimate and
a kernel density estimate.

proc sgrender data=sashelp.heart template=conditional;
 dynamic numvar="cholesterol" scale="count" curve="all";
run;

The value of the SCALE dynamic does not need to be verified. If it is not one of COUNT,
PERCENT, or PROPORTION (not case sensitive), the default scale is used with no
warning or error.

Conditional Logic 269

270 Chapter 15 • Using Conditional Logic and Expressions

Chapter 16
Adding Insets to a Graph

Uses for Insets in a Graph . 271

Creating a Simple Inset with an ENTRY Statement . 272

Creating an Inset as a Table of Text . 273

Positioning an Inset . 275

Creating an Inset with Values that are Computed in the Template 278

Creating an Inset from Values that are Passed to the Template 280
Overview . 280
Creating a Template that Uses Macro Variables . 281
Defining a Macro to Initialize the Variables and Generate the Graph 282
Executing the Macro . 284

Adding Insets to a SCATTERPLOTMATRIX Graph . 285

Adding Insets to Classification Panels . 288

Creating an Axis-Aligned Inset with a Block Plot . 293

Uses for Insets in a Graph
Insets are commonly strings or tables of text that are displayed in the plot area to
communicate relevant statistics, parameters, or other information relating to a graph. The
information presented in an inset might come from

• text that appears in the template definition

• values that are computed with expressions within the template

• values that are passed externally to the inset by dynamics or macro variables

• columns that are assigned to an INSET= option on statements that support the option.

Inset information is often specified on ENTRY statements. However, the
SCATTERPLOTMATRIX statement and the classification panel layouts
(DATALATTICE and DATAPANEL layouts) provide options (for example, INSET=) that
enable you to construct and locate insets in multi-cell layouts, without using ENTRY
statements.

This chapter shows several techniques for adding insets to a graph. It assumes that you are
familiar with the concepts and techniques presented in Chapter 7, “Adding and Changing
Text in a Graph,” on page 101 and Chapter 9, “Using a Simple Multi-cell Layout,” on page
143.

271

Creating a Simple Inset with an ENTRY Statement
You can use an ENTRY statement to create a simple inset within most layout blocks.

If you create the insets within a 2D overlay-type layout, you can use each ENTRY
statement's AUTOALIGN= option or HALIGN= and VALIGN= options to position the
text within the plot area. The HALIGN= and VALIGN= options position the text in an
absolute position (such as HALIGN=LEFT and VALIGN=TOP). The AUTOALIGN=
option is used for dynamic positioning that is based on placement of the graphical
components in the plot area.

For example, to add an inset to an overlay of a scatter plot and an ellipse, you would like
for the text to appear where it does not collide with markers or the ellipse, if at all possible.
The AUTOALIGN=AUTO setting places the text in an area with the least congestion.

begingraph;
 entrytitle "Simple One Line Inset";
 layout overlay;
 ellipse x=height y=weight / alpha=.1 type=predicted display=all;
 scatterplot x=height y=weight;
 entry "Prediction Ellipse (" {unicode alpha} "=.1)" /
 autoalign=auto ;
 endlayout;
endgraph;

Note: The AUTO setting for the AUTOALIGN= option evaluates only the data points of
scatter plots to determine the ENTRY position. When other plot types are present, their
data representations are not evaluated and the ENTRY text might overlap a graphic
element in the plot area.

272 Chapter 16 • Adding Insets to a Graph

Creating an Inset as a Table of Text
Perhaps the most common use for an inset is to display a table of statistics within the graph.
This section shows how to construct that type of basic table. Later examples will show how
to make the contents of the table more dynamic and how to integrate the table into the
graph.

The basic technique for constructing the table is to place several ENTRY statements in a
LAYOUT GRIDDED block. Each ENTRY statement becomes a cell of the grid. ENTRY
statement options and layout options are used to further organize the table.

Suppose you want to create the following table of text:

The simplest technique for creating the table is to construct a one-column, three-row table.
The following example uses three ENTRY statements: one for each row in the table. The
statistic name is left-justified in each row, and the statistic value is right-justified:

layout gridded / columns=1 border=true;
 entry halign=left "N" halign=right "5203" ;
 entry halign=left "Mean" halign=right "119.96" ;
 entry halign=left "Std Dev" halign=right "19.98" ;
endlayout;

Another technique is to create the table with two columns and three rows. This approach
places each statistic name and statistic value in its own cell. Although this technique
requires six ENTRY statements, it is a more flexible arrangement because each column
alignment can be set independently. The following example left-justifies the text for each
ENTRY statement:

layout gridded / columns=2 order=rowmajor border=true;
 /* row 1 */
 entry halign=left "N";
 entry halign=left "5203";
 /* row 2 */
 entry halign=left "Mean";
 entry halign=left "119.96";
 /* row 3 */
 entry halign=left "Std Dev";

Creating an Inset as a Table of Text 273

 entry halign=left "19.98";
endlayout;

ORDER=ROWMAJOR means that cells are populated horizontally, starting from column
1, followed by column 2, and then advancing to the next row. You should order the ENTRY
statements as shown. To add additional rows in the table, just add additional pairs of
ENTRY statements.

Of course, the LAYOUT GRIDDED statement enables you to organize cells by column,
so you can achieve this same effect with ORDER=COLUMNMAJOR. The following code
fragment populates the cells vertically down the columns by populating the first cell in row
1, followed by the first cell in row 2, followed by the first cell in row 3, and then advancing
to the next column.

layout gridded / rows=3 order=columnmajor border=true;
 /* column 1 */
 entry halign=left "N";
 entry halign=left "Mean";
 entry halign=left "Std Dev";
 /* column 2 */
 entry halign=left "5203";
 entry halign=left "119.96";
 entry halign=left "19.98";
endlayout;

In both cases, an HALIGN=LEFT prefix option was added to each ENTRY statement to
left-justify its text (the default is HALIGN=CENTER). Note that the column widths in the
table are determined by the longest text string in each column on a per column basis.

The following example illustrates how to change the column justification and add extra
space between the columns with the COLUMNGUTTER= option. Borders have been
added to the ENTRY statements to show the text boundaries and alignment. Although it is
not used in this example, the LAYOUT GRIDDED statement also provides a
ROWGUTTER= option to add space between all rows.

layout gridded / rows=3 order=columnmajor
 columngutter=5px border=true;
 /* column 1 */
 entry halign=left "N" / border=true;
 entry halign=left "Mean" / border=true;
 entry halign=left "Std Dev" / border=true;
 /* column 2 */
 entry halign=right "5203" / border=true;
 entry halign=right "119.96" / border=true;
 entry halign=right "19.98" / border=true;
endlayout;

With the borders turned on in the layout, you should notice that there is spacing that appears
on the left and right of the ENTRY text. The space is called padding, and it can be explicitly
set with the PAD= option in the ENTRY statement. The default padding (in pixels) for
ENTRY statements is

274 Chapter 16 • Adding Insets to a Graph

PAD=(TOP=0 BOTTOM=0 LEFT=3 RIGHT=3)

You can adjust that padding as desired.

To embellish the basic inset table with a spanning title, nest one GRIDDED layout within
another GRIDDED layout. In the following example, notice that the outer GRIDDED
layout has one column and two rows (the nested GRIDDED layout is treated as one cell).

layout gridded / columns=1;
 entry textattrs=(weight=bold) "Stat Table";
 layout gridded / rows=3 order=columnmajor border=true;
 /* column 1 */
 entry halign=left "N";
 entry halign=left "Mean";
 entry halign=left "Std Dev";
 /* column 2 */
 entry halign=left "5203";
 entry halign=left "119.96";
 entry halign=left "19.98";
 endlayout;
endlayout;

Positioning an Inset
If a table of text is used as an inset within a 2D overlay-type layout, you can position the
table within the parent layout with options on the LAYOUT GRIDDED statement. You
can use the AUTOALIGN= option to automatically position the inset to avoid collision
with scatter points, lines, bars, and other plot components.

Alternatively, you can use the HALIGN= and VALIGN= options to position the table
absolutely. The combined values provide nine possible fixed positions. The disadvantage
of using the HALIGN= and VALIGN= options is that they do not attempt to avoid collision
with other plot components.

The following example uses the AUTOALIGN= option to restrict the table position to one
of the upper corners of the plot wall.

proc template;
define statgraph ginset3a;
 begingraph;
 entrytitle "Auto-positioning the Inset Within the Plot Wall";
 layout overlay;
 histogram mrw;
 layout gridded / columns=1 border=true autoalign=(topleft topright) ;
 entry halign=left "N" halign=right "5203";
 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
 endlayout;

Positioning an Inset 275

 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.heart template=ginset3a;
run;

In this particular case there was not enough space to display the inset in the top left position,
so the next position was used because it has no collision. With a different set of data, the
inset might appear in the top left position. If both positions resulted in a collision, the
position with the least collision would be used. You can specify an ordered list of up to
nine positions for the AUTOALIGN list: TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER,
RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT. For a scatter plot where
"open" space is not predictable, you can specify AUTOALIGN=AUTO, which selects a
position that minimizes collision with the scatter markers.

Note: The AUTO setting for the AUTOALIGN= option works best when the layout
contains only scatter plots. When other plot types are present, the ENTRY text might
overlap a graphic element in the plot area.

Outside Insets. An inset does not have to be placed inside the plot wall. This next example
positions an inset in the sidebar of a LATTICE layout.

proc template;
 define statgraph ginset3b;
 begingraph / pad=2px;
 entrytitle "Positioning the Inset Outside the Plot Wall";
 layout lattice;
 layout overlay;
 histogram mrw;
 endlayout;
 sidebar / align=right;
 layout overlay / pad=(left=2px);
 layout gridded / columns=1 border=true;
 entry halign=left "N" halign=right "5203";

276 Chapter 16 • Adding Insets to a Graph

 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
 endlayout;
 endlayout;
 endsidebar;
 endlayout;
 endgraph;
 end;
run;

ods listing style=default;
proc sgrender data=sashelp.heart template=ginset3b;
run;

By default, the background of ENTRY statements and a GRIDDED layout are transparent.
So if the current style defines a background color and the inset does not appear in the plot
wall, the style's background color will be seen through the inset. You can make the
background of the insert opaque and set its background color to match the plot wall color,
as shown in the following code fragment:

sidebar / align=right;
 layout overlay / pad=(left=2px);
 layout gridded / columns=1 border=true
 opaque=true backgroundcolor=graphWalls:color ;
 entry halign=left "N" halign=right "5203";
 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
 endlayout;
 endlayout;
endsidebar;

Positioning an Inset 277

Creating an Inset with Values that are Computed in
the Template

The examples presented so far have "hard coded" the statistic values in the compiled
template. Hard-coding the statistic values requires you to change and recompile the
template code whenever the column values change or you want to use different columns
for the analysis. A more flexible way to present a statistics table is to compute its content
as follows:

• use GTL functions to calculate any required statistics

• use dynamic variables as placeholders for column names in the template

• at runtime, initialize the dynamic variables so that they resolve to the names of columns
in the data object that is used to provide data values for the graph.

GTL supplies several functions that you can use to calculate the statistics, including
functions that match the statistic keywords used by PROC SUMMARY. GTL functions
are always specified within an EVAL function. To declare dynamic variables, you use the
DYNAMIC statement.

The following example uses the DYNAMIC statement to declare a dynamic variable named
VAR, which is used in the functions N, MEAN, and STDDEV to calculate the statistics
that are displayed in the statistics table:

proc template;
 define statgraph ginset4a;
 dynamic VAR;
 begingraph;
 entrytitle "Two Column Inset with Computed Values";
 layout overlay;
 histogram VAR ;
 layout gridded / rows=3 order=columnmajor border=true

278 Chapter 16 • Adding Insets to a Graph

 autoalign=(topleft topright);
 /* column 1 */
 entry halign=left "N";
 entry halign=left "Mean";
 entry halign=left "Std Dev";
 /* column 2 */
 entry halign=left eval(strip(put(n(VAR),12.0))) ;
 entry halign=left eval(strip(put(mean(VAR),12.2))) ;
 entry halign=left eval(strip(put(stddev(VAR),12.2))) ;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.heart template=ginset4a;
 dynamic VAR="mrw";
run;

• Dynamic VAR is first referenced in the HISTOGRAM statement, where it is used to
represent the variable that will provide numeric values for the histogram.

• Dynamic VAR is again referenced on each of the ENTRY statements that specify the
statistic values to use in the statistics table. Each of the ENTRY statements uses an
EVAL function to specify functions to calculate the statistic.

• On each of the ENTRY statements, the STRIP function strips leading and trailing blanks
from the returned values. The PUT function on the first ENTRY statement returns the
statistics value with format 12.0, and the next two PUT statements return values with
format 12.2. The N, MEAN, and STDDEV functions return the number of observations,
mean, and standard deviation of variable VAR.

• In the SGRENDER procedure, the DYNAMIC statement initializes dynamic VAR so
that it resolves at runtime to column MRW from the SASHELP.HEART data set.
Because the dynamic will resolve to a column name, the value that is assigned to it is
enclosed in quotation marks. (Values for dynamics that resolve to column names or
strings should be quoted. Numeric values should not be quoted.)

See Chapter 15, “Using Conditional Logic and Expressions,” on page 259 for more
information about the functions that can be used in the EVAL function. See Chapter 14,
“Using Dynamics and Macro Variables to Make Flexible Templates,” on page 251 for more
information on using dynamics and macro variables in GTL templates.

Creating an Inset with Values that are Computed in the Template 279

Creating an Inset from Values that are Passed to
the Template

Overview
When the statistic that you want to display in an inset cannot be computed within the
template, you can create an output data set from a procedure and then use dynamics or
macro variables to "import" the computed values at runtime.

The following discussion explains how to create and call a macro that can pass a data set
name and variable name to a previously compiled GTL template. To follow this discussion,
you should understand the topics that are discussed in Chapter 14, “Using Dynamics and
Macro Variables to Make Flexible Templates,” on page 251.

For this example, we will create a macro named HISTOGRAM that takes two arguments.

• The first argument, DSN, passes a data set name.

• The second argument, VAR, passes a variable name.

When invoked, the macro generates a histogram and model fit plot for the analysis variable
VAR. The graph also displays two insets that show the related statistics.

The following call to the HISTOGRAM macro uses the data set SASHELP.HEART to
generate a histogram for variable MRW (Metrapolitan Relative Weight for subjects in a
heart study):

%histogram(sashelp.heart, mrw)

280 Chapter 16 • Adding Insets to a Graph

Figure 16.1 Passing Parameter Values to a Template

For more information on creating and calling macros, see the SAS Macro Language:
Reference.

Creating a Template that Uses Macro Variables
This section creates a GTL template that can generate the histogram and model fit plot that
is shown in Figure 16.1 on page 281.The template definition uses the MVAR statement to
define macro variables that will provide runtime values and labels for the graph insets. The
MVAR statement also defines a macro variable named VAR, which will be used as the
column argument for the histogram and overlaid normal density plot.

For this example, the inset statistics are calculated in the macro body, and the value for
macro variable VAR is passed as a parameter on the macro call.

Here is the GTL code for a template that we will name GINSET:

proc template;
define statgraph ginset;
 MVAR VAR NOBS MEAN STD TEST TESTLABEL STAT PTYPE PVALUE ;
 begingraph;
 entrytitle "Histogram of " eval(colname(VAR));
 entrytitle "with Fitted Normal Distribution";
 layout overlay;
 histogram VAR ;
 densityplot VAR / normal();

 /* inset for normality test */
 layout gridded / columns=1 opaque=true
 autoalign=(topright topleft);
 entry TEST / textattrs=(weight=bold);
 entry "Test for Normality " TESTLABEL /
 textattrs=(weight=bold);
 layout gridded / columns=2 border=true;
 entry "Value"; entry PTYPE ;

Creating a Template that Uses Macro Variables 281

 entry STAT; entry PVALUE ;
 endlayout;
 endlayout;

 /* inset for descriptive statistics */
 layout gridded / columns=2 border=true
 opaque=true autoalign=(right left);
 entry halign=left "Nobs"; entry halign=left NOBS ;
 entry halign=left "Mean"; entry halign=left MEAN ;
 entry halign=left "Std Dev"; entry halign=left STD ;
 endlayout;
 endlayout;
 endgraph;
end;
run;

• The MVAR statement declares the macro variables that will be referenced in the
template.

• The ENTRYTITLE statement specifies macro variable VAR as the argument on the
COLNAME function, which returns the case-sensitive name of the column. Thus, the
variable name that you pass on the macro call will be displayed in the graph title.

• The HISTOGRAM and DENSITYPLOT statements specify macro variable VAR as
their column arguments. Again, the variable name that you pass on the macro call will
determine that column name.

• The first LAYOUT GRIDDED block constructs a table to use as an inset. The inset
identifies the normality test that is used in the analysis, and it displays the related
probability statistic.

The first two ENTRY statements in the layout block specify a title for the inset. Macro
variable TEST, which will be initialized by the code in the macro body, identifies the
normality test that is applied to the data. As we’ll see later when we create the macro,
either of two normality tests will be used, depending on the number of observations
that are read from the data. Macro variable TESTLABEL provides either of two test
labels, depending on which test is used at runtime.

The nested LAYOUT GRIDDED statement defines a two-column table for the statistics
table that is displayed in the first inset. Macro variable STAT in the first column
provides the normality value, and macro variables PTYPE and PVALUE provide the
probability statistics. These macro variables will be initialized by the code in the macro
body.

• The last LAYOUT GRIDDED statement constructs a two-column inset that shows
descriptive statistics for the analysis variable. Macro variables NOBS, MEAN, and
STD will be calculated by the code in the macro body and will resolve to the number
of observations in the data, the mean value, and the standard deviation.

Defining a Macro to Initialize the Variables and Generate the Graph
In “Creating a Template that Uses Macro Variables” on page 281 we created template
GINSET, which declared the following macro variables:

TEST Identifies the normality test that is applied to the data.

TESTLABEL Provides the label that is associated with the applied normality test.

282 Chapter 16 • Adding Insets to a Graph

STAT Provides the normality statistic that is calculated by the applied
normality test.

PTYPE and PVALUE Provide the probability (type and value) for the applied normality
test.

NOBS, MEAN, and STD Provide the number of observations, mean, and standard deviation
for the analysis variable.

To initialize these macro variables, we will now create a macro that calculates values for
them and also specifies an SGRENDER procedure that uses template GINSET. The macro
needs two parameters: one for passing a SAS data set name, and a second for passing the
name of a column in that data set.

The following macro code uses PROC UNIVARIATE to create two output data sets. A
DATA step then reads the output data sets, creates the required macro variables, and assigns
values to those macro variables in a local symbol table. When the macro runs the
SGRENDER procedure, the values of the macro variables are imported into the GINSET
template to produce a graph with insets, similar to the graph in shown in Figure 16.1 on
page 281. As mentioned earlier, the normality test that is performed on the analysis variable
will be based on the number of observations in that analysis variable.

Note: To make the following macro more robust, it could be designed to validate the
parameters.

%macro histogram(dsn,var);

/* compute tests for normality */
ods output TestsForNormality=norm;
proc univariate data=&dsn normaltest;
 var &var;
 output out=stats n=n mean=mean std=std;
run;

%local nobs mean std test testlabel stat ptype pvalue;

data _null_;
 set stats(keep=n mean std);
 call symputx("nobs",n);
 call symput("mean",strip(put(mean,12.3)));
 call symput("std",strip(put(std,12.4)));
 if n > 2000 then /* use Shapiro-Wilk */
 set norm(where=(TestLab="D"));
 else /* use Kolmogorov-Smirnov */
 set norm(where=(TestLab="W"));
 call symput("testlabel","("||trim(testlab)||")");
 call symput("test",strip(test));
 call symput("ptype",strip(ptype));
 call symput("stat",strip(put(stat,best8.)));
 call symput("pvalue",psign||put(pvalue,pvalue6.4));
run;

proc sgrender data=&dsn template=ginset;
run;

%mend;

Defining a Macro to Initialize the Variables and Generate the Graph 283

• The %MACRO statement declares a macro named HISTOGRAM that takes two
parameters: DSN (for the data set name) and VAR (for the column name).

• The ODS OUTPUT statement produces a SAS data set named NORM from the
TestsForNormality output object that will be generated by the UNIVARIATE
procedure (next statement). For more information on the ODS OUTPUT statement, see
the SAS Output Delivery System: User's Guide.

• Deriving the input data set name from the DSN parameter and the analysis variable
name from the VAR parameter, the UNIVARIATE procedure calculates the number
of observations, mean, and standard deviation for the analysis variable. It writes the
values for these statistics to an output data set named STATS, storing the values in
variables named N, MEAN, and STD.

• The %LOCAL statement creates a set of local macro variables to add to the local symbol
table.

• The DATA step reads variables N, MEAN, and STD from the STATS data set.

• The first three CALL SYMPUT routines use the data input variables to assign labels
and values to the local macro variables N, MEAN, and STD. On each CALL SYMPUT,
the first argument identifies the macro variable to receive the value, and the second
argument identifies the data input variable that contains the value to assign to the macro
variable in the symbol.

• The IF/ELSE structure determines which normality test values to read from the NORM
data set that was created by the ODS OUTPUT statement. If there are fewer than 2000
observations, the Shapiro-Wilk test values are used; otherwise, the Kolmogorov-
Smirnov values are used.

• The remaining CALL SYMPUT routines assign values to the rest of the macro
variables, using the values from variables in the NORM data set.

Executing the Macro
To execute the HISTOGRAM macro, we must pass it a data set name and the name of a
numeric column in the data.

The following macro call passes the data set name SASHELP.HEART and the column
name MRW. Because variable MRW has more than 2000 observations, the Kolmogorov-
Smirnov test is used in the analysis.

%histogram(sashelp.heart, mrw)

284 Chapter 16 • Adding Insets to a Graph

This next macro call passes the data set name SASHELP. CARS and the column name
INVOICE. Because variable INVOICE has 2000 or fewer observations, the Shapiro-Wilk
test is used in the analysis.

%histogram(sashelp.cars,invoice)

Adding Insets to a SCATTERPLOTMATRIX Graph
The SCATTERPLOTMATRIX statement provides the following options for displaying
insets in the cells of the graph matrix (see the documentation for the

Adding Insets to a SCATTERPLOTMATRIX Graph 285

SCATTERPLOTMATRIX statement in the SAS/GRAPH Graph Template Language
Reference for complete details about these options):

INSET= (info-options) Determines what information is displayed in an inset. Accepts one, two,
or all three of the following keywords:

NOBS
Number of observations

PEARSON
Pearson product-moment correlation

PEARSONPVAL
Probability value for the Pearson product-moment correlation

This option must be used to determine which inset information is
displayed in each cell. If this option is not used, the related
CORROPTS= and INSETOPTS= options are ignored.

CORROPTS=
(correlation-options)

Controls statistical options for computing correlations. These options
are similar to PROC CORR options. Accepts one or more of the
following keywords:

EXCLNPWGT=
specifies whether observations with non-positive weight values are
excluded from the analysis. Accepts TRUE (the default) or FALSE.

NOMISS=
specifies whether observations with missing values are excluded
from the analysis. Accepts TRUE (the default) or FALSE.

WEIGHT=
specifies a weighting variable to use in the calculation of Pearson
weighted product-moment correlation. The observations with
missing weights are excluded from the analysis. Accepts the name
of a numeric column.

VARDEF=
specifies the variance divisor in the calculation of variances and
covariances. Accepts one of the keywords DF (Degrees of Freedom,
the default, N - 1), N (number of observations), WDF (sum of
weights minus 1), WEIGHT (sum of weights).

286 Chapter 16 • Adding Insets to a Graph

INSETOPTS=
(appearance-options)

Controls the inset placement and other appearance features.

AUTOALIGN=
specifies whether the inset is automatically aligned within the layout.
Accepts keywords NONE (no auto-alignment, the default), AUTO
(available only with scatter plots, attempts to center the inset in the
area that is farthest from any surrounding markers), or a location list
in parentheses that contains one or more keywords that identify the
preferred alignment (TOPLEFT TOP TOPRIGHT LEFT CENTER
RIGHT BOTTOMLEFT BOTTOM BOTTOMRIGHT).

BACKGROUNDCOLOR=
specifies the color of the inset background. Accepts a style reference
or a color specification.

BORDER=
specifies whether a border is displayed around the inset. Accepts
TRUE or FALSE (the default).

HALIGN=
specifies the horizontal alignment of the inset. Accepts keywords
LEFT (the default), CENTER. or RIGHT.

OPAQUE=
specifies whether the inset background is opaque (TRUE) or
transparent (FALSE, the default).

TEXTATTRS=
specifies the text properties of the entire inset.

VALIGN=
specifies the vertical alignment of the inset. Accepts keywords TOP
(the default), CENTER. or BOTTOM.

The following example uses all three of these options to display an inset in the cells of a
graph that is generated with the SCATTERPLOTMATRIX statement:

proc template;
 define statgraph spminset;
 begingraph;
 entrytitle "Scatter Plot Matrix with Insets Showing";
 entrytitle "Correlation Coefficients and P Values";
 layout gridded;
 scatterplotmatrix sepalwidth sepallength /
 rowvars=(petalwidth petallength)
 inset=(nobs pearson pearsonpval)
 insetopts=(autoalign=auto border=true opaque=true)
 corropts=(nomiss=true vardef=df)
 markerattrs=(size=5px);
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.iris template=spminset;
run;

Adding Insets to a SCATTERPLOTMATRIX Graph 287

Notice that the inset position might change from cell to cell to avoid obscuring point
markers.

Adding Insets to Classification Panels
This section requires familiarity with Chapter 11, “Using Classification Panels,” on page
185. You should skip this section if you are not familiar with the general coding for
classification panels.

The DATALATTICE and DATAPANEL layouts provide INSET= and INSETOPTS=
options for displaying insets in classification panels. The INSETOPTS= option supports
the same placement and appearance features as those documented for the
SCATTERPLOTMATRIX statement in “Adding Insets to a SCATTERPLOTMATRIX
Graph” on page 285 However, unlike the SCATTERPLOTMATRIX statement, the
DATALATTICE and DATAPANEL layouts do not have predefined information available.
Thus, for the INSET= option, you must create the columns for the information that you
want to display in the inset and integrate it with the input data before the graph is rendered.
Then, on the INSET= option, you specify the name(s) of the column(s) that contain the
desired information.

For example, the following template code uses INSET=(NOBS MEAN) to reference input
data columns that are named NOBS and MEAN. When the graph is rendered, the values
that are stored in these columns will be displayed in the inset.

In the inset display in this example, one row is displayed for each column that is listed on
INSET=, and each row has two columns. The left column shows the column name (column
label, if it is defined in the data), and the right column contains the column value for that
particular cell of the panel. The number of rows of data for these columns should match
the number of cells in the classification panel and the sequence in which the cells are
populated.

288 Chapter 16 • Adding Insets to a Graph

The following template code defines a template named PANEL. The template "makes
room" for the insets in each panel by adding a maximum row axis offset. In this case,
OFFSETMAX=0.4 is sufficient, but the setting will vary case-by-case. This is what the
first row of the classification panel with insets will look like:

proc template;
 define statgraph panel;
 begingraph;
 entrytitle "Average City MPG for Vehicles";
 entrytitle "by Origin, Cylinders and VehicleType";
 layout datalattice columnvar=origin rowvar=cylinders /
 columndatarange=unionall rowdatarange=unionall
 headerlabeldisplay=value
 headerbackgroundcolor=GraphAltBlock:color
 inset=(cellN cellMean)
 insetopts=(border=true
 opaque=true backgroundcolor=GraphAltBlock:color)
 rowaxisopts=(offsetmax=.4 offsetmin=.1 display=(tickvalues))
 columnaxisopts=(display=(label tickvalues)
 linearopts=(tickvaluepriority=true
 tickvaluesequence=(start=5 end=30 increment=5))
 griddisplay=on offsetmin=0 offsetmax=.1);
 layout prototype;
 barchart x=type y=mean / orient=horizontal
 barwidth=.5 barlabel=true;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

When this template is used, the input data must contain separate columns for the following:

classification variables columnvar=origin rowvar=cylinders

inset information inset=(cellN cellMean)

bar chart x=type Y=mean

The data for this example is from the SASHELP.CARS data set. To calculate the number
of observations and mean for the observations, we can use PROC SUMMARY.

The following PROC SUMMARY step calculates the number of observations and the mean
of MPG_CITY for each of the classification interactions listed in the TYPES statement.
CYLINDERS*ORIGIN is the crossing needed for the cell summaries, and
CYLINDER*ORIGIN*TYPE is the crossing needed by each cell's bar chart.

Adding Insets to Classification Panels 289

The COMPLETETYPES option creates summary observations even when the frequency
of the classification interactions is zero. Additionally, the code creates subsets in the input
data to restrict the number of bars in each bar chart to at most three, and to reduce the
number cells in the classification panel. There are three values of ORIGIN (Asia, Europe,
and USA) and three values of CYLINDERS (4, 6, and 8).

For the insets to display accurate data, we must ensure that the order of the observations
in the data corresponds to the column order for the CLASS statement of PROC
SUMMARY. Because the panel cells are populated across one row before proceeding to
the next row, the values of the panel's row variable (CYLINDERS) determines the panel
order and must be specified first in the SUMMARY procedure's CLASS statement so that
the values of CYLINDERS also determine the order for the statistics calculations.

/* compute the barchart data and inset information */

proc summary data=sashelp.cars completetypes;
 where type in ("Sedan" "Truck" "SUV") and
 cylinders in (4 6 8);
 class cylinders origin type;
 var mpg_city;
 output out=mileage mean=Mean n=Nobs / noinherit;
 types cylinders*origin cylinders*origin*type;
run;

The SAS log displays the following note when the procedure code is submitted:

NOTE: There were 337 observations read from the data set SASHELP.CARS.
 WHERE type in ('SUV', 'Sedan', 'Truck') and cylinders in (4, 6, 8);
NOTE: The data set WORK.MILEAGE has 36 observations and 6 variables.

Display 16.1 Confirm the Order of Data Observations

Display 16.1 on page 290 shows the order of observations in the interim data set named
MILEAGE. Notice that the first nine observations (where _TYPE_ equals 6) are the cell
summaries. The remaining 27 observations (where _TYPE_ equals 7) are for each cell's
bar chart.

To create separate columns for the inset, we need to store the _TYPE_= 6 observations in
new columns. The following DATA step writes the inset information to another data set
named OVERALL.

data mileage
 overall(keep=origin cylinders mean nobs

290 Chapter 16 • Adding Insets to a Graph

 rename=(origin=cellOrigin cylinders=cellCyl
 mean=cellMean nobs=cellNobs));
 set mileage; by _type_;
 if _type_ eq 6 then output overall;
 else output mileage;
run;

The SAS log displays the following note when the code is submitted:

NOTE: There were 36 observations read from the data set WORK.MILEAGE.
NOTE: The data set WORK.MILEAGE has 27 observations and 5 variables.
NOTE: The data set WORK.OVERALL has 9 observations and 4 variables.

Finally, we create a new data set named SUMMARY, which merges the MILEAGE and
OVERALL data sets. Note that this is a non-match merge (no BY statement), and that all
columns in the two tables have unique names to prevent overwriting any data values.

data summary;
 merge mileage overall;
 label Mean="MPG (City)";
 format mean cellMean 4.1;
run;

NOTE: There were 27 observations read from the data set WORK.MILEAGE.
NOTE: There were 9 observations read from the data set WORK.OVERALL.
NOTE: The data set WORK.SUMMARY has 27 observations and 9 variables.

Display 16.2 Modified Input Data Set with Additional Columns

The SUMMARY data set can now be used to render a graph from template PANEL:

ods listing style=statistical;
proc sgrender data=summary template=panel;
run;

Adding Insets to Classification Panels 291

The following figure shows another example of adding insets to a classification panel. The
complete code for this output is presented inChapter 11, “Using Classification Panels,” on
page 185.

292 Chapter 16 • Adding Insets to a Graph

Creating an Axis-Aligned Inset with a Block Plot
Sometimes you want an inset to provide information on values along an axis. In the
following example, "events" have been defined over time and the inset information at the
top of the plot provides information about these events.

The example uses a BLOCKPLOT statement, which creates one or more strips of
rectangular blocks containing text values. The width of each block corresponds to specified
numeric intervals along the X-axis.

The following template code defines a template named BLOCKPLOT1, which is used to
create this graph. In the template code, the block plot is overlaid with a series plot to create
an axis-aligned inset. Notice that the BLOCKPLOT statement requires two input columns:
on for the X= argument and another for the BLOCK= argument. The BLOCK= transition
points control the boundary of each block and the text that is displayed. The range of the
X= values between two consecutive block transition points determine the width of each
block.

proc template;
 define statgraph blockplot1;
 begingraph;
 entrytitle "Microsoft Share Prices";
 entrytitle "and Significant OS Releases";
 layout overlay;
 blockplot x=event block=release / display=(outline values label)
 valuevalign=top valuehalign=center labelposition=top
 valueattrs=GraphDataText(weight=bold
 color=GraphData2:contrastcolor)
 labelattrs=GraphValueText(weight=bold
 color=GraphData2:contrastcolor)
 outlineattrs=(color=GraphGridLines:color);
 seriesplot x=date y=adjClose / lineattrs=GraphData1;

Creating an Axis-Aligned Inset with a Block Plot 293

 endlayout;
 endgraph;
 end;
run;

The BLOCKPLOT statement supports many options for controlling the content, position,
and appearance of the blocks and text information.

DISPLAY= (<OUTLINE> <FILL> <VALUES> <LABEL>)
specifies the features to display

VALUEVALIGN= TOP | CENTER | BOTTOM
specifies the vertical position of the text values within the blocks

VALUEHALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal position of the text values within the blocks

LABELPOSITION= LEFT | RIGHT | TOP | BOTTOM
specifies a position for the block label that applies to the block values

VALUEATTRS=style-element
specifies font properties for block the values

LABELATTRS=style-element
specifies font properties for the block label

The input data that is used with the BLOCKPLOT1 template must contain data for both
plots. The simplest way to construct the appropriate data is to create separate X= variables
for the block plot (EVENT) and the scatter plot (DATE).

/* data for block plot – ordered by event */
data MSevents;
 input Event date9. Release $7.;
 label Release="Windows Release";
 format Event date.;
datalines;
09dec1987 2.0
22may1990 3.0
01aug1993 NT 3.1
24aug1995 95
25jun1998 98
17feb2000 2000
25oct2001 XP
run;

294 Chapter 16 • Adding Insets to a Graph

/* non-match merge of input data */
data events;
 merge sashelp.stocks(keep=stock date adjClose
 where=(stock="Microsoft"))
 MSevents;
run;

proc sgrender data=events template=blockplot1;
run;

The next example shows a different way to present the same information. Here the outlines
are removed and the blocks are filled with colors. The example uses the following
BLOCKPLOT options:

FILLTYPE= MULTICOLOR | ALTERNATE
specifies how the blocks are filled

DATATRANSPARENCY= number
specifies the degree of the transparency of the block fill and outline. The range for
number is from 0 (opaque) to 1 (entirely transparent).

In this example, the FILLATTRS=MULTICOLOR setting ensures that the colors will be
obtained from the GraphData1 to GraphDataN style elements of the current style.
Transparency is added to fade the colors. The block label "Windows Release" is suppressed,
and the horizontal alignment of the block values is shifted to the left.

proc template;
 define statgraph blockplot1a;
 begingraph;
 entrytitle "Microsoft Share Prices";
 entrytitle "and Significant OS Releases";
 layout overlay;
 blockplot x=event block=release / display=(fill values)
 valuevalign=top valuehalign=left
 valueattrs=GraphDataText(weight=bold)
 filltype=multicolor

Creating an Axis-Aligned Inset with a Block Plot 295

 datatransparency=.5;
 seriesplot x=date y=adjClose / lineattrs=GraphData1;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=events template=blockplot1a;
run;

The BLOCKPLOT statement can also create a table of inset information where the columns
are centered on discrete values along the X-axis and the rows represent different statistics
for each value of the X= variable. This technique for displaying inset information is possible
for plots with a discrete X-axis, such as box plots and bar charts. The BLOCKPLOT
statement supports a CLASS=variable option that creates a separate block plot for each
unique value of the CLASS= variable. Notice that in this example, the block plot is not
located inside the OVERLAY layout but in its own cell of a LATTICE layout.

Figure 16.2 Inset Displayed as a Multi-row Table

To create this graph, some data set up is necessary. First, we can use PROC SUMMARY
to create the summarized input data for the block plot and the bar chart:

/* Create summarized data with desired statistics */
proc summary data=sashelp.cars nway alpha=.05;
 class type;
 var mpg_highway;
 output out=stats(drop=_FREQ_ _TYPE_) n=N mean=Mean uclm=UCLM lclm=LCLM;
run;

The columns for TYPE, MEAN, UCLM, and LCLM will be used by a BARCHARTPARM
statement.

296 Chapter 16 • Adding Insets to a Graph

However, the columns that are required for the BLOCKPLOT statement are not the same
as those for the BARCHARTPARM statement. The information must first be transposed.

/* Transpose data for use with BLOCKPLOT */
proc transpose data=stats
 out=blockstats(drop=_label_
 rename=(type=type2 _name_=statname col1=stat));
 by type;
 var n mean uclm lclm;
run;

The SAS log displays the following note when the procedure code is submitted:

NOTE: There were 6 observations read from the data set WORK.STATS.
NOTE: The data set WORK.BLOCKSTATS has 24 observations and 3 variables.

Finally, the data for the BARCHARTPARM and BLOCKPLOT statements must be non-
match merged into one input data set. Note that the TYPE and TYPE2 variables must be
distinct variables.

/* Combine summary data for BARCHARTPARM with tabular data for BLOCKPLOT */
data all;
 merge stats blockstats;
run;

NOTE: There were 6 observations read from the data set WORK.STATS.
NOTE: There were 24 observations read from the data set WORK.BLOCKSTATS.
NOTE: The data set WORK.ALL has 24 observations and 8 variables.

Creating an Axis-Aligned Inset with a Block Plot 297

The template for this graph uses a BLOCKPLOT statement with X=TYPE2 and
BLOCK=STAT. By default, if there are adjacent repeated values for the BLOCK= column,
a new block does not begin until the BLOCK value changes. The CLASS=STATNAME
setting creates a row (block plot) for each value of the TYPE2 variable. By default, the
values of the CLASS= variable appear as row labels external to the block plot.

The ROWWEIGHTS = option for the LATTICE layout governs the relative amount of
vertical space that is allotted to the BLOCKPLOT (15%) and the BARCHARTPARM
(85%). This would have to be changed if you have a much larger or smaller number of
rows in the statistics table.

proc template;
 define statgraph blockplot2;
 begingraph;
 entrytitle "Highway Mileage for Vehicle Types";
 entryfootnote halign=left {unicode alpha} " = .05";
 layout lattice / columns=1 rowweights=(.15 .85);

 blockplot x=type2 block=stat / class=statname
 includemissingclass=false
 display=(values label outline) valuehalign=center
 labelattrs=GraphDataText valueattrs=GraphDataText;

 barchartparm x=type y=mean / errorlower=lclm errorupper=uclm;

 endlayout;
 endgraph;
 end;
run;

ods listing style=default;
proc sgrender data=all template=blockplot2;
run;

298 Chapter 16 • Adding Insets to a Graph

Chapter 17
Managing the Graph Appearance
with Styles

ODS Style Templates . 299

Changing Fonts in a Style Template . 302

Controlling ODS Search Paths . 304

Changing Boxplot Display . 306

ODS Style Templates
It is often useful to create graphs with specific visual characteristics that do not have to be
hard coded into the GTL for every graph that you create. For example, you might want to
modify settings for the following graph features:

• font or font sizes

• line or marker properties

• colors

• display features for box plots, histograms, contours, and other chart types

• a combination of features that are related to a publication or corporate presentation
scheme.

Because the default properties of nearly all GTL appearance-related options are obtained
from the current style (see Chapter 6, “Managing Graph Appearance: General Principles,”
on page 83), modifying an existing style is often the best way to enforce a certain look-
and-feel across many graphs.

Similar to graphics templates, ODS style templates are stored in SAS item stores. All SAS-
supplied styles are located in the STYLES directory of the SASHELP.TMPLMST item
store. Templates can be viewed from the Templates window (ODSTEMPLATE
command). The template source can be viewed by opening any template.

299

Although an ODS style can be constructed from scratch, you will find it much simpler to
identify a style that is fairly close to what you want and make limited changes to it. The
following styles are recommended starting points.

Style Example

LISTING

• white background

• white wall

• sans-serif fonts

• color used for lines, markers, and
filled areas

• colors and other features are the same
as the DEFAULT style

DEFAULT

• gray background

• white wall

• sans-serif fonts

300 Chapter 17 • Managing the Graph Appearance with Styles

Style Example

STATISTICAL

• white background

• white wall

• sans-serif fonts

• contrasting color scheme of blues,
reds, greens for markers, lines, and
filled areas

ANALYSIS

• light tan background

• white wall

• sans-serif fonts

• muted color scheme of tans, greens,
yellows, oranges and browns for lines,
markers, and filled areas

JOURNAL

• white background

• white wall

• sans-serif fonts

• gray-scale color scheme for markers,
lines, and filled areas

JOURNAL2

• white background

• white wall

• sans-serif fonts

• black-only scheme for markers and
lines

• no filled areas—a minimal ink style

ODS Style Templates 301

Changing Fonts in a Style Template
Notice that all of the recommended styles use Sans-Serif fonts. The following example
shows how to create a custom style that uses Serif fonts instead. The example uses the
STATISTICAL style as a starting point (parent) for the custom style.

The following PROC TEMPLATE code shows the beginning of the style definition for the
STATISTICAL style, which is delivered with the SAS System. Only the code to be
modified is shown.

proc template;
define style Styles.Statistical;
parent = styles.default;

style fonts /
 'TitleFont2'=("<sans-serif>, <MTsans-serif>, Helvetica,Helv",2,bold)
 'TitleFont'=("<sans-serif>, <MTsans-serif>, Helvetica,Helv",3,bold)
 'StrongFont'=("<sans-serif>, <MTsans-serif>, Helvetica,Helv",2,bold)
 'EmphasisFont'=("<sans-serif>, <MTsans-serif>, Helvetica,Helv",2,italic)
 'FixedFont'=("<monospace>, Courier",2)
 'BatchFixedFont'=("SAS Monospace, <monospace>, Courier, monospace",2)
 'FixedHeadingFont'=("<monospace>, Courier, monospace",2)
 'FixedStrongFont'=("<monospace>, Courier, monospace",2,bold)
 'FixedEmphasisFont'=("<monospace>, Courier, monospace",2,italic)
 'headingEmphasisFont'=("<sans-serif>, <MTsans-serif>, Helvetica,
 Helv",2,bold italic)
 'headingFont'=("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,bold)
 'docFont'=("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2);

style GraphFonts /
 'GraphDataFont'=("<sans-serif>, <MTsans-serif>",7pt)
 'GraphUnicodeFont'=("<MTsans-serif-unicode>",9pt)
 'GraphValueFont'=("<sans-serif>, <MTsans-serif>",9pt)
 'GraphLabelFont'=("<sans-serif>, <MTsans-serif>",10pt)
 'GraphFootnoteFont'=("<sans-serif>, <MTsans-serif>",10pt,italic)
 'GraphTitleFont'=("<sans-serif>, <MTsans-serif>",11pt,bold)
 'GraphAnnoFont'=("<sans-serif>, <MTsans-serif>",10pt);

 /* more code */

end;
run;

We will make the following changes:

• Assign a name to a new style that identifies STATISTICAL as its parent style. It is
recommended that you create a new style of a different name so that access to the
existing style is not blocked. See discussion under “Controlling ODS Search Paths” on
page 304.

• Change the Fonts style element (affects tables) so that it uses Serif fonts.

• Change the GraphFonts style element (affects graphs) so that it uses Serif fonts.

Two style elements govern all fonts in a style: the Fonts element governs tables, and the
GraphFonts element governs graphs. When changing fonts in a style, be sure to make

302 Chapter 17 • Managing the Graph Appearance with Styles

consistent changes to both elements. In this case, we want to change from a sans-serif font
to a serif font. You can also change font size, weight, and style.

In style templates, the name of a font family normally appears as a quoted string. However,
ODS also supports an indirect reference to a font family. When a font name appears between
less than and greater than symbols, such as <sans-serif>, it means that the font family sans-
serif is defined in the SAS Registry. For the Windows Release of SAS, here are some of
the registry keys and values that are stored under ODS ð Fonts:

Display 17.1 Registry Keys and Values for Fonts in the Windows Release of SAS

The registry definition of MTsans-serif and MTserif refer to TrueType fonts that are
shipped with SAS and are similar to "Arial" and "Times New Roman." These "MT" fonts
(short for Monotype) can be used on any computer where SAS is installed. A specific font
family such as "Verdana" could be used instead. Note that fonts are normally listed in a
"most-specific" to "most generic" order so that reasonable substitution can be made when
a font cannot be located on the current computer.

Notice that several graph fonts affect different parts of a graph. The following table shows
some but not all features that are affected by the graph fonts:

GraphTitleFont Used for all titles of the graph. Typically the largest font.

GraphFootnoteFont Used for all footnotes. Typically smaller than the titles. Sometime
footnotes are italicized.

GraphLabelFont Used for axis labels and legend titles. Generally smaller than titles.

GraphValueFont Used for axis tick values and legend entries. Generally smaller than labels.

GraphDataFont Used for text where minimum size is necessary (such as point labels).

GraphUnicodeFont Used for adding special glyphs (for example, α , ±, €) to text in the graph
(see Chapter 7, “Adding and Changing Text in a Graph,” on page 101).

GraphAnnoFont Default font for text added as annotation in the ODS Graphics Editor.

The SAS Output Delivery System: User's Guide provides information and examples of all
predefined style elements and attributes.

In our example, we will name our modified style template SerifStatistical , change all
occurrences of sans-serif to serif, change all occurrences of MTsans-serif to MTserif, and
change Helvetica and Helv (sans-serif fonts) to Times (a serif font):

Changing Fonts in a Style Template 303

proc template;
 define style Styles.SerifStatistical ;
 parent = styles.statistical;
 style fonts /
 'TitleFont2'=(" <serif> , <MTserif> , Times ",2,bold)
 'TitleFont'=(" <serif> , <MTserif> , Times ",3,bold)
 'StrongFont'=(" <serif> , <MTserif> , Times ",2,bold)
 'EmphasisFont'=(" <serif> , <MTserif> , Times ",2,italic)
 'FixedFont'=("<monospace>, Courier",2)
 'BatchFixedFont'=("SAS Monospace, <monospace>, Courier, monospace",2)
 'FixedHeadingFont'=("<monospace>, Courier, monospace",2)
 'FixedStrongFont'=("<monospace>, Courier, monospace",2,bold)
 'FixedEmphasisFont'=("<monospace>, Courier, monospace",2,italic)
 'headingEmphasisFont'=(" <serif> , <MTserif> , Times ",
 2,bold italic)
 'headingFont'=(" <serif> , <MTserif> , Times ",2,bold)
 'docFont'=(" <serif> , <MTserif> , Times ",2);

 style GraphFonts /
 'GraphTitleFont'=(" <serif> , <MTserif> ",11pt,bold)
 'GraphFootnoteFont'=(" <serif> , <MTserif> ",10pt,italic)
 'GraphLabelFont'=(" <serif> , <MTserif> ",10pt)
 'GraphValueFont'=(" <serif> , <MTserif> ",9pt)
 'GraphDataFont'=(" <serif> , <MTserif> ",7pt)
 'GraphUnicodeFont'=(" <MTserif-unicode> ",9pt)
 'GraphAnnoFont'=(" <serif> , <MTserif> ",10pt);
 end;
run;

Note: By assigning the parent to STYLES.STATISTICAL, we need to change only two
style elements. The rest of the elements are inherited.

Controlling ODS Search Paths
Before you submit your modified style definition, you should consider whether this style
is for your use only or whether you want to share it with others. Your decision will determine
where you store the style.

The ODS PATH statement determines the read and write locations for SAS item store
templates.

ods path show;

Current ODS PATH list is:
1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

By default, modified templates are stored in SASUSER.TEMPLAT, which is appropriate
for your personal use. To store a modified template in this default location, you will see
the following note in the SAS Log after submitting the PROC TEMPLATE code:

NOTE: STYLE 'Styles.SerifStatistical' has been saved to:
SASUSER.TEMPLAT

304 Chapter 17 • Managing the Graph Appearance with Styles

You can then run your program with the new style:

ods rtf style=serifStatistical ;
ods graphics on;
proc reg data=sashelp.class;
 model weight=height;
quit;
ods rtf close;

To save a modified template to a location where others can access it, you cannot use the
default SASUSER.TEMPLAT location. Rather, store the template in a different library,
using the ODS PATH statement to set the search path:

libname common "u:\ODS_templates";

ods path common.dept(update)
 sasuser.templat(update)
 sashelp.tmpmst(read);

This ODS PATH statement establishes a new search path. The first itemstore
(common.dept) can be updated and will contain the new template (Styles.SerifStatistical).
It is important to include SASHELP.TMPLMST in the path because the inherited parent
style (Styles.Default) is in SASHELP.

After setting this new search path, you will see the following note in the SAS Log when
you submit the PROC TEMPLATE code:

NOTE: STYLE 'Styles.SerifStatistical' has been saved to:
COMMON.DEPT

For others to access this style definition, everyone will have to precede their programs with
the following code:

libname common "u:\ODS_templates" access=readonly;
ods path sasuser.templat(update)
 common.dept(read)
 sashelp.tmpmst(read);

They can then run their program with the new style:

ods rtf style=serifStatistical;
ods graphics on;
proc reg data=sashelp.class;
 model weight=height;
quit;
ods rtf close;

The following figure shows a table and graph from the output.

Controlling ODS Search Paths 305

Changing Boxplot Display
The SAS System defines many graphical style elements. Some have a very narrow scope,
such as those that control the display of box plots. Using these style elements as a starting
point, you can change the style attribute values to achieve a very different appearance for
your box plots. The same is true for histograms, contours, and some other plot types.

Using the DEFAULT style for an example, here is a portion of the style definition for
elements that are related to box plots:

proc template;
 define style Styles.Default;
 ...
 style GraphBox /
 capstyle = "serif"
 connect = "mean"
 displayopts = "fill caps median mean outliers";
 style GraphBoxMean / ... ;
 style GraphBoxMedian / ... ;
 style GraphBoxOutlier / ... ;
 style GraphBoxWhisker / ... ;

306 Chapter 17 • Managing the Graph Appearance with Styles

 ...
 end;
run;

Style Element Purpose

GraphBox general box plot properties (see the next table)

GraphBoxMean marker properties of mean marker

(MARKERSYMBOL= , MARKERSIZE=, CONTRASTCOLOR=)

GraphBoxMedian line properties of the median line

(LINESTYLE=, LINETHICKNESS=, CONTRASTCOLOR=)

GraphBoxOutlier marker properties of outliers

(MARKERSYMBOL=, MARKERSIZE=, CONTRASTCOLOR=)

GraphBoxWhisker line properties of whiskers and caps

(LINESTYLE=, LINETHICKNESS=, CONTRASTCOLOR=)

Attributes and Values for the GraphBox Style Element

Attribute Value(s) Description

CONNECT= "MEAN" | "MEDIAN" | "Q1" | "Q3" |
"MIN" | "MAX"

statistic to connect with line

CAPSTYLE= "SERIF" | "LINE" | "BRACKET" shape at ends of whiskers

DISPLAYOPTS= "<CAPS> show caps at end of whiskers

<FILL> show filled boxes

<MEAN> show a marker for the mean

<MEDIAN> show a line for the median

<OUTLIERS> show markers for the outliers

<CONNECT> show line connecting same
statistic on multiple boxes

<NOTCHES>" show notched boxes

The Displayopts attribute of GraphBox lists the general features that will be displayed. The
following diagram shows the standard display for box plots, as defined by the DEFAULT
style. The keywords that are related to the appearance features are annotated:

Changing Boxplot Display 307

The two display options that are not the default are CONNECT (show connect lines) and
NOTCHES.

The STATISTICAL style is derived from the DEFAULT style and inherits the GraphBox
element from the parent DEFAULT style. The following code generates a box plot for the
STATISTICAL style:

title "Statistical Style";
ods listing style=statistical;

proc sgplot data=sashelp.heart;
 hbox diastolic /
 category=weight_status;
run;

308 Chapter 17 • Managing the Graph Appearance with Styles

For this example, we want to change the following attributes on the default box plot:

• By default, serif caps are displayed at the end of the fences. We want to remove those
caps from the fence lines.

• By default, the boxes are filled. We want to display empty, notched boxes.

• By default, the mean values are represented by hollow diamonds. We want to display
filled diamonds and slightly reduce their size.

• By default, the marker symbols for the outliers are hollow black circles. We want to
change the size and shape of the marker symbols, and again reduce their size.

To make these changes, we can derive a new style from the STATISTICAL style and set
the attributes that we want to change. Any attribute settings that we do not change will be
inherited from the parent STATISTICAL style. The following style definition will effect
the desired changes:

proc template;
 define style Styles.Boxplot;
 parent = styles.statistical;
 style GraphBox from GraphBox /
 capstyle = " line "
 displayopts = " caps median mean outliers notches ";
 style GraphBoxMean from GraphBoxMean /
 markersymbol=" diamondfilled "
 contrastcolor=GraphColors("gcdata1")
 markersize = 5px;
 style GraphOutlier from GraphOutlier /
 markersize = 5px
 markersymbol = " x "
 contrastcolor = GraphColors(" gcdata2 ");
 end;
run;

• The DEFINE STYLE statement assigns the name BOXPLOT to our new style, and sets
the STATISTICAL style as the parent style.

• On the GraphBox style element, the CAPSTYLE= attribute is set to LINE, which
removes the serif caps from the end of the fences. The DISPLAYOPTS= attribute drops

Changing Boxplot Display 309

the FILL value from the display list and adds the NOTCHES value; these changes
determine that the graph will display empty, notched boxes.

• On the GraphBoxMean style element, the marker symbol is changed to a filled diamond
and the marker size is reduced to 5 pixels (the default is 9 pixels). The
CONTRASTCOLOR= attribute is set to GCDATA1 (the default is GCDATA).

• On the GraphBoxOutlier style element, the marker symbol is changed to an X and the
marker size is reduced to 5 pixels (the default is 7 pixels). The CONTRASTCOLOR=
attribute is set to GCDATA2 (the default is GCOUTLIER).

The following code generates a box plot for the BOXPLOT style:

title "Boxplot Style";
ods listing style=styles.boxplot;

proc sgplot data=sashelp.heart;
 hbox diastolic /
 category=weight_status;
run;

When making such style changes remember that you are affecting all box plot displays for
all procedures that produce box plots when this style is in effect. It is possible to change
the box plot appearance for specific procedures, but to do this, a specific graph template
must be modified, not a style template.

For a comprehensive description of the style elements affecting ODS graphics, see the
section for the style elements affecting template-based graphics in the Appendix for ODS
Style Elements of the SAS Output Delivery System: User's Guide.

310 Chapter 17 • Managing the Graph Appearance with Styles

Chapter 18
Executing Graph Templates

Techniques for Executing Templates . 311

Minimal Required Syntax . 312

Managing the Input Data . 313
Filtering the Input Data . 313
Performing Data Transformations . 313

Initializing Template Dynamics and Macro Variables . 314

Managing the Output Data Object . 316
Setting Labels and Formats for the Output Columns . 316
Setting a Name and Label for the Output Data Object . 316
Viewing the Data Object Name and Label in the Results Window 317
Setting a Name for the Output Image File . 317
Converting the Output Data Object to a SAS Data Set . 317

Techniques for Executing Templates
Compiled graph templates can be executed using either the PROC SGRENDER statement
or a DATA step. Both techniques offer the same functionality but differ in their syntax.
The SGRENDER syntax is simpler, but any required data manipulations must be completed
before the PROC SGRENDER statement is used. The DATA step syntax is more complex,
but it can integrate data manipulations with the graph execution.

Both PROC SGRENDER and a DATA step can be used to

• specify the input template

• specify the input data set

• associate a label with input variable(s) using a LABEL statement

• associate a format with input variable(s) using a FORMAT statement

• filter input data using a WHERE statement or WHERE= input data set option

• assign values to dynamic variables for substitution in the template

• name the output data object

• label the output data object.

The following sections show how to use both SGRENDER and a DATA step to generate
graphs from compiled GTL templates.

311

Minimal Required Syntax
Consider the following simple GTL template definition:

proc template;
define statgraph mygraphs.scatter;
 begingraph;
 layout overlay;
 scatterplot X=height Y=weight;
 endlayout;
 endgraph;
end;
run;

Both PROC SGRENDER and the DATA step can be used to execute this template. Both
techniques minimally require you to specify the input data source and the template name.
Behind the scenes in both cases, an ODS data object is populated and bound to the template.
The data object is then passed to a graph renderer, which processes the data and graph
request to produce an output image.

The PROC SGRENDER syntax is simple. It uses the DATA= option to specify the data
source and the TEMPLATE= option to specify the template to use for rendering the graph:

proc sgrender data=sashelp.class template=mygraphs.scatter;
run;

The DATA step syntax is slightly more complex. To execute a GTL template, the DATA
step FILE and PUT statements provide syntax that is specific to ODS. You must minimally
specify the following:

data _null_;
 set sashelp.class;
 file print ods=(template="mygraphs.scatter");
 put _ods_;
run;

• The DATA step uses keyword _NULL_ for the data set name so that the DATA step
executes without writing observations or variables to an output data set. The input data
source is defined with a SET statement. This approach is appropriate in the current
example, but the input data source can be defined with any appropriate DATA step
syntax (INPUT with DATALINES, INPUT with INFILE, SET, MERGE, UPDATE,
and so on).

• FILE PRINT ODS directs output to ODS. PRINT is a reserved fileref that is required
when executing a GTL template. It directs output that is produced by any PUT
statements to the same file as output that is produced by SAS procedures. The
TEMPLATE= specification is required to specify the input template name.

• The PUT _ODS_ statement, also required, writes the necessary variables to the output
object for each execution of the DATA step.

Note: The necessary variables for the output data object are the ones defined by the graph
template (in this case, HEIGHT and WEIGHT), not the input data source. As with other
DATA step or procedure processing, if you know exactly which variables the template
uses, you can restrict the input variables with DROP= or KEEP= input data set options
for slightly more efficient processing.

312 Chapter 18 • Executing Graph Templates

Managing the Input Data

Filtering the Input Data
If you do not need all of the variables or all of the data values from the input data source,
you can use WHERE statements or input SAS dataset options (for example, OBS= or
WHERE=) to control the observations that are processed. The filtering techniques can be
used whether the GTL template is executed with PROC SGRENDER or with a DATA step.

In the following example, the first PROC SGRENDER uses a WHERE statement to select
only female observations for the graph. The second PROC SGRENDER uses the OBS=
input dataset option to limit the number of observations used in the graph.

/* plot only observations for females */
proc sgrender data=sashelp.class template=mygraphs.scatter;
 where sex="F";
run;

/* test the template */
proc sgrender data=sashelp.class(obs=5)
 template=mygraphs.scatter;
run;

Performing Data Transformations
When using PROC SGRENDER, any required data transformations or computations must
take place before a template is executed. The transformations therefore require an
intermediate step. For example, the following code performs data transformations on the
HEIGHT and WEIGHT variables that are in the data set SASHELP.CLASS. The
transformations are stored in a temporary data set named CLASS, which is then used on
PROC SGRENDER to produce a graph:

data class;
 set sashelp.class;
 height=height*2.54;
 weight=weight*.45;
 label height="Height in CM" weight="Weight in KG";
run;
proc sgrender data=class template=mygraphs.scatter;
run;

When executing a template with a DATA step, the same DATA step that builds the data
object can perform any required data transformations or computations. An intermediate
data set is not needed. This next example produces the same graph that the previous example
produced with PROC SGRENDER:

data _null_;
 set sashelp.class;
 height=height*2.54;
 weight=weight*.45;
 label height="Height in CM" weight="Weight in KG";
 file print ods=(template="mygraphs.scatter");
 put _ods_;
run;

Performing Data Transformations 313

Initializing Template Dynamics and Macro
Variables

A useful technique for generalizing templates is to define dynamics and/or macro variables
that resolve when the template is executed.

You can create new macro variables or use the automatic macro variables that are defined
in SAS, such as the system date and time value (SYSDATE). Both types of macro variables
must be declared before they can be referenced. Whereas automatic macro variables do not
require initialization, you must initialize any macro variables that you create with the
variable declarations. The macro variable values are obtained from the current symbol table
(local or global), so SAS resolves their values according to the context in which they are
used.

The following template declares the dynamic variables XVAR and YVAR, and the macro
variables STUDY and SYSDATE:

proc template;
define statgraph mygraphs.regfit;
 dynamic XVAR YVAR;
 mvar STUDY SYSDATE;
 begingraph;
 entrytitle "Regression fit for Model " YVAR " = " XVAR ;
 entryfootnote halign=left STUDY halign=right SYSDATE ;
 layout overlay;
 scatterplot X=XVAR Y=YVAR ;
 regressionplot X=XVAR Y=YVAR ;
 endlayout;
 endgraph;
end;
run;

• The DYNAMIC statement declares dynamic variables XVAR and YVAR. On the
statements that later execute this template, you must initialize these dynamics by
assigning them to variables from the input data source so that they have values at
runtime.

• The ENTRYTITLE statement concatenates dynamic variables XVAR and YVAR into
a string that will be displayed as the graph title. At runtime, the dynamics will be
replaced by the names of the variables that are assigned to the dynamics when they are
initialized.

• The SCATTERPLOT and REGRESSIONPLOT statements each reference the
dynamics on their X= and Y= arguments. At runtime for both plots, the variable that
has been assigned to XVAR will provide X values for the plot, and the variable that
has been assigned to YVAR will provide Y values.

• The MVAR statement declares the macro variable STUDY. Because STUDY is not a
SAS automatic macro variable, it will be created for use in this template. On the
statements that later execute this template, you must initialize a value for STUDY.

The MVAR statement also declares the automatic macro variable SYSDATE. At
runtime, the current system date and time will be substituted for this variable.

• The ENTRYFOOTNOTE statement references both of the macro variables STUDY
and SYSDATE. The value that you assign to STUDY will be displayed as a left-justified

314 Chapter 18 • Executing Graph Templates

footnote, and the runtime value of SYSDATE will be displayed as a right-justified
footnote.

As with all GTL templates, the MYGRAPHS.REGFIT template can be executed with either
a PROC SGRENDER statement or a DATA step. Either way, any dynamics and/or new
macro variables that are declared in the template must be initialized to provide runtime
values for them. The following example executes the template with PROC SGRENDER:

%let study=CLASS dataset;
proc sgrender data=sashelp.class template=mygraphs.regfit;
 dynamic xvar="height" yvar="weight";
run;

• The %LET statement assigns string value "CLASS data set" to the STUDY macro
variable.

• PROC SGRENDER uses the DYNAMIC statement to initialize the dynamic variables
XVAR and YVAR. XVAR is assigned to the input variable HEIGHT, and YVAR is
assigned to the input variable WEIGHT.

The DATA step uses the DYNAMIC= suboption of the ODS= option to initialize dynamics.
Macro variables can be initialized from the existing symbol table. You can update the
symbol table during DATA step execution with a CALL SYMPUT or CALL SYMPUTX
routine. The following example executes the MYGRAPHS.REGFIT template with a
DATA step:

data _null_;
 if _n_=1 then call symput("study","CLASS dataset") ;
 set sashelp.class;
 file print ods=(template="mygraphs.regfit"
 dynamic=(xvar="height" yvar="weight"));
 put _ods_;
run;

• The CALL SYMPUT routine initializes the macro variable STUDY with the string
value "CLASS dataset." The macro variable only needs to be initialized once, so the
IF statement limits the initialization to the first observation (_N_ = 1).

• The DYNAMIC= suboption initializes the dynamic variables XVAR and YVAR.
XVAR is assigned to the input variable HEIGHT, and YVAR is assigned to the input
variable WEIGHT.

For a more complete discussion of this topic and additional examples, see Chapter 14,
“Using Dynamics and Macro Variables to Make Flexible Templates,” on page 251.

Initializing Template Dynamics and Macro Variables 315

Managing the Output Data Object

Setting Labels and Formats for the Output Columns
By default, the columns in the output data object derive variable attributes (name, type,
label, and format) from the input variables. However, using the LABEL and FORMAT
statements, you can change the label and format of the corresponding output object column.

The LABEL and FORMAT statements are available on PROC SGRENDER and on the
DATA step. The following example assigns labels to the HEIGHT and WEIGHT variables
that are used in the MYGRAPHS.SCATTER template. It also assigns a format to the
WEIGHT variable.

proc sgrender data=sashelp.class template=mygraphs.scatter;
 label height="Height in Inches" weight="Weight in Pounds";
 format weight 3.;
run;

Setting a Name and Label for the Output Data Object
When the output data object is created, it is assigned a name and a label. The following
table shows the default names and labels, depending on whether the corresponding GTL
template is executed with a PROC SGRENDER statement or a DATA step:

Option

Default Name with

PROC SGRENDER

Default Name with

DATA Step

OBJECT= name SGRENDER FilePrintn (each execution of the DATA
step increments the object name :
FilePrint1, FilePrint2, and so on)

OBJECTLABEL="string" The SGRENDER
Procedure

same as object name

Using either PROC SGRENDER or a DATA step, you can use the OBJECT= option to set
a name for the output data object. You can use the OBJECTLABEL= option to set a
descriptive label for the data object. The following example sets the object name and label
on PROC SGRENDER:

/* set object name and label on PROC SGRENDER */
proc sgrender data=sashelp.class template=mygraphs.scatter
 object=Scatter1
 objectlabel="Scatter Plot 1" ;
run;

This next example sets the object name and label on a DATA step:

/* set object name and label on a DATA step */
data _null_;
 set sashelp.class;
 file print ods=(template="mygraphs.scatter"
 object=Scatter2
 objectlabel="Scatter Plot 2");

316 Chapter 18 • Executing Graph Templates

 put _ods_;
run;

Viewing the Data Object Name and Label in the Results Window
When a GTL template is executed, an ODS data object is populated and bound to the
template. The data object is assigned a name, and that name can be used to reference the
object on various ODS statements, such as ODS SELECT, ODS EXCLUDE, and ODS
OUTPUT. The data object is also assigned a label.

Object names and labels appear in the Results window. To view them,

1. Open the Results window if it is not already open (choose View ð Results).

2. Right-click on the graph and choose Properties to view the object properties.

The following figure shows the output objects that were created in “Setting a Name
and Label for the Output Data Object” on page 316. The Results window shows the
two objects that were created, and the Scatter2 Properties window shows the properties
for the second object, which was named Scatter2.

Setting a Name for the Output Image File
By default, the output image file is assigned the same name as the output data object. You
can use the IMAGENAME= option in the ODS GRAPHICS statement to assign an
alternative name to the output image file. For example, the following code assigns the
filename regfit_heightweight to the output image file:

ods graphics / imagename="regfit_heightweight";

proc sgrender data=sashelp.class template=mygraphs.regfit;
 dynamic xvar="height" yvar="weight";
run;

Converting the Output Data Object to a SAS Data Set
A data object can be converted to a SAS data set with the ODS OUTPUT statement.
Generally, you identify the data object to convert, and assign it a data set name.

When a GTL template is executed with PROC SGRENDER, the output data object is
always named SGRENDER. Thus, you can identify the data object by that name in the

Converting the Output Data Object to a SAS Data Set 317

ODS OUTPUT statement. The following example converts the data object to a SAS data
set named REGFIT1:

ods output sgrender=regfit1;

proc sgrender data=sashelp.class template=mygraphs.regfit;
 dynamic xvar="height" yvar="weight";
run;

Because the output object name from the DATA step changes with each execution, it is
handy to use the OBJECT= option on the DATA step FILE statement to set the object name
so that it is easy to identify for the conversion.

The following example assigns the name DATAOBJ to the data object and uses that name
to convert the data object to a SAS data set named REGFIT2:

ods output dataobj=regfit2 ;

data _null_;
 if _n_=1 then call symput("study","CLASS dataset");
 set sashelp.class;
 file print ods=(template="mygraphs.regfit"
 dynamic=(xvar="height" yvar="weight")
 object=dataobj);
 put _ods_;
run;

318 Chapter 18 • Executing Graph Templates

Chapter 19
Managing Graphical Output

Introduction . 319

SAS Registry Settings for ODS Graphics . 320

ODS Destination Statement Options Affecting ODS Graphics 321

ODS GRAPHICS Statement Options . 323

Common Tasks . 325
Controlling the Image Name and Image Format . 325
Controlling the Image's Output Location . 325
Controlling Graph Size . 326
Understanding Graph Scaling . 328
Controlling DPI . 331
Controlling Anti-Aliasing . 332
Creating a Graph that Can Be Edited . 335
Creating a Graph to Include in MS Office Applications . 337
Controlling Data Tips . 337

Creating Shared Templates . 339

Introduction
Whenever you run a program that creates ODS Graphics output, several details are handled
by default. Among them are the following:

• output file characteristics (file path and filename)

• image characteristics (format, name, DPI, size)

• ODS style used

• when anti-aliasing is used

• whether fonts and markers are scaled when graph size is changed

• whether the graph that is created can be edited

• whether data tips are produced.

In addition to the actual template code, you have a great deal of control over the environment
in which ODS graphs are produced. Knowing what options are available and how to adjust
these options gives you the maximum control in producing the best possible graphs for
your needs.

Three areas work in conjunction with each other to control all aspects of graph creation:

319

SAS Registry Provides a repository of defaults for many options that affect ODS
Graphics

ODS Destination statement Provides options specific to destinations, such as HTML, PDF,
and RTF

ODS GRAPHICS statement Provides many global options that affect ODS graphics

You often need to add options to both the ODS destination statement and the ODS
GRAPHICS statement to get the desired output. Resetting SAS registry keys serves to
configure your default ODS Graphics environment.

SAS Registry Settings for ODS Graphics
The SAS Registry is a special SAS itemstore file that is stored in your SASUSER storage
location. It contains the default settings for many SAS products and their features. You can
browse or edit this hierarchical file with PROC REGISTRY, or with the Registry Editor
window. The window can be accessed with the global REGEDIT command from a Display
Manager session. When you issue the command, the main Registry Editor window opens:

If you expand the ODS folder, you will see a sub-folder for ODS GRAPHICS, which
contains three registry keys.

Registry Key Use

Default State Determines whether the ODS Graphics environment is active by
default

320 Chapter 19 • Managing Graphical Output

Registry Key Use

Design Height Determines the default height of a graph that is generated with
GTL

Design Width Determines the default width of a graph that is generated with GTL

If you were to change the Default State from Off to On, it would make the ODS
Environment active in every SAS session. This implies that if you run a procedure that
normally requires you to activate the ODS Graphics environment with the ODS
GRAPHICS ON; statement, you would not have to issue this statement—ODS graphs
would be automatically produced every time you run an ODS graphics-enabled procedure
such as UNIVARIATE, ARIMA, or REG.

Note: The SAS/GRAPH procedures such as SGRENDER, SGPLOT, SGPANEL, and
SGSCATTER only produce template-based graphics. They internally activate the ODS
Graphics environment if it is not active and are unaffected by the Default State key
value.

The Design Height and Design Width keys control the default graph size for all graph
templates. The 640px by 480px size represents a 4/3 aspect ratio. If you change these values,
any new or existing graph templates are affected unless you explicitly set a
DESIGNWIDTH= or DESIGNHEIGHT= option in the BEGINGRAPH statement in the
graph template definition. For details, see “Controlling Graph Size” on page 326.

ODS Destination Statement Options Affecting ODS
Graphics

Each ODS destination has options that govern aspects of your ODS Graphics output. The
following table shows the options for the most commonly used destinations.

ODS Destination Statement Options Affecting ODS Graphics 321

Table 19.1 ODS Destination Options that Affect ODS Graphics

ODS Destination Options for ODS Graphics Description

LISTING Creates a stand-alone image. The
default image format is PNG.

GPATH="directory-spec" Indicates the directory where images
are created. The default is the current
working directory.

IMAGE_DPI=number Specifies the image resolution in dots
per inch for output images.
IMAGE_DPI=100 is the default.

STYLE= style-definition Specifies the style to use.
STYLE=LISTING is the default.

SGE= OFF | ON SGE=ON enables creation of
corresponding SGE file(s), which can
be edited with the ODS Graphics
Editor. The SGE file(s) have the same
name as the image file(s). SGE=OFF is
the default.

PDF Creates embedded image(s) in a PDF
document. The default image format is
PNG.

DPI=number Specifies the image resolution in dots
per inch for output images. DPI=200 is
the default.

STYLE= style-definition Specifies the style to use.
STYLE=PRINTER is the default.

RTF Creates embedded image(s) in RTF
document. The default image format is
PNG.

IMAGE_DPI=number Specifies the image resolution in dots
per inch for output images.
IMAGE_DPI=100 is the default.

STYLE= style-definition Specifies the style to use. STYLE=RTF
is the default.

322 Chapter 19 • Managing Graphical Output

ODS Destination Options for ODS Graphics Description

HTML Creates stand-alone image(s) and the
HTML page. Image(s) are referenced in
the HTML page. The default image
format is PNG.

GPATH="directory-spec" Indicates the directory where images
are created. If not specified, the PATH=
"directory-spec" is used.

IMAGE_DPI=number Specifies the image resolution in dots
per inch for output images.
IMAGE_DPI=100 is the default.

STYLE= style-definition Specifies the style to use.
STYLE=DEFAULT is the default.

ODS GRAPHICS Statement Options
The ODS GRAPHICS statement is the primary statement that controls the runtime
environment for producing template-based graphs. In a sense, is it similar to the
GOPTIONS statement for GRSEG-based graphs, but completely independent of that
statement. The GOPTIONS statement does not affect template-based graphical output and
the ODS GRAPHICS does not affect GRSEG-based graphs.

All options for the ODS GRAPHICS statement are global to a SAS session, unless

• the graphics environment is disabled with the ODS GRAPHICS OFF; statement.

• the RESET or RESET= option of the ODS GRAPHICS statement is used to return the
default state to all options or a specific option.

The following table shows some of the available options. For a complete and more detailed
explanation of all available options, see the documentation of the ODS GRAPHICS
statement in SAS Output Delivery System: User's Guide.

Table 19.2 Partial Listing of ODS GRAPHICS Statement Options

Task Option

Specify the threshold for
allowing anti-aliasing.

ANTIALIASMAX= positive-integer

The default is 600 markers and/or lines.

Specify whether graph
rendering uses anti-aliasing.

ANTIALIAS= ON | OFF

The default is ON.

Specify whether to draw a
border around any graph.

BORDER= ON | OFF

The default is ON.

ODS GRAPHICS Statement Options 323

Task Option

Specify the height of any graph. HEIGHT= dimension

Supported dimension units include SPX (special pixels), PX
(pixels), IN (inches), CM (centimeters), and MM
(millimeters). This option overrides the design height specified
by the template definition. The default unit is SPX. It is
recommended you always provide a unit such as PX, IN, CM,
or MM with the dimension value.

Specify the image format used
to generate image files.

IMAGEFMT= STATIC | image-format

Supported formats include PNG, GIF, JPEG, WMF, TIFF,
PDF, PS, and others. The keyword STATIC is the default,
which means to automatically select the best format, based on
the output destination.

Specify whether data tips are
generated.

IMAGEMAP= OFF | ON

The default is OFF.

Specify the base image
filename.

IMAGENAME= "file-name" (no path information)

The default is to use the invoking procedure name as the base
name.

Control whether legend(s) are
drawn.

MAXLEGENDAREA=n

Specifies an integer that is interpreted as the maximum
percentage that a legend can occupy in the overall graphics
area. The default integer is 20.

Reset one or more ODS
GRAPHICS options to its
default. RESET by itself is the
same as RESET=ALL.

RESET | RESET= option

The option can be ALL, HEIGHT, WIDTH, INDEX, and other
options.

By default, each time you run a procedure, new images are
created and numbered incrementally using a base name, such
as SGRender, SGRender1, SGRender2, and so on. RESET will
reset to the base name without the increment number. This is
handy if you run a PROC several times and are interested only
in the images from the last run (the previous ones will be
overwritten). This option is positional, so it typically comes
first.

Specify whether the content of
any graph is scaled
proportionally.

SCALE = ON | OFF

The default is ON.

Specify the maximum number
of distinct mouse-over areas
allowed before data tips are
disabled.

TIPMAX=n

The default number is 500.

324 Chapter 19 • Managing Graphical Output

Task Option

Specify the width of any graph. WIDTH= dimension

Supported dimension units include SPX (special pixels), PX
(pixels), IN (inches), CM (centimeters), and MM
(millimeters). This option overrides the design width specified
by the template definition. The default unit is SPX. It is
recommended you always provide a unit such as PX, IN, CM,
or MM with the dimension value.

Common Tasks
The following sections show the coding that is necessary to accomplish several common
tasks for managing ODS graphics output.

Controlling the Image Name and Image Format
To control the image name and image format for ODS Graphics output, use the
IMAGENAME= and IMAGEFMT= options in the ODS GRAPHICS statement.

The following example creates a GIF image named REGPLOT:

ods graphics / imagename="regplot" imagefmt=gif;

Note: Unless you have a special requirement for changing the image format, it not
recommended that you do so. The default PNG (Portable Network Graphics) format is
far superior to other formats, such as GIF, in support for transparency and a large
number of colors. PNG images require much less disk storage space than JPEG or TIFF
formats.

The assigned name REGPLOT is treated as a "root" name and the first output created is
named REGPLOT. Subsequent graphs are named REGPLOT1, REGPLOT2, and so on,
with an increasing index counter. All graphs in this example will be GIF images.

If you are developing a template and its takes several submissions to get the desired output,
you might want to use RESET or RESET= option to force each output to replace itself:

ods graphics / reset=index ... ;

This specification causes all subsequent images to be created with the default or current
image name.

The options in the ODS GRAPHICS statement are global to the SAS session. These options
are in effect until you

• disable the ODS graphics environment by submitting the statement ods graphics
off;

• reset all options to their defaults submitting the statement ods graphics / reset;

• reset specific options submitting the statement ods graphics / reset=option;

Controlling the Image's Output Location
To control the image location (path) for ODS Graphics output, use the PATH= or GPATH=
option on the ODS destination statement.

Controlling the Image's Output Location 325

ods listing gpath="C:\ODSgraphs";

ods html gpath="C:\ODSgraphs";

For the HTML destination, the PATH= option is used to indicate whether the HTML page
is stored. If GPATH= is not used, images are stored at the PATH= storage location. Use
PATH= and GPATH= together when you want to store images in a different storage
location. The (URL= NONE | url-spec) sub-option specifies a Uniform Resource
Locator for the PATH= or the GPATH= options.

For example, the following program will create an HTML page named u:\public_html
\report.html:

ods graphics / reset imagename="graph";
ods listing close;
ods html style=statistical
 path="u:\public_html"
 gpath="u:\public_html" (url=none)
 file="report.html";

proc sgrender data=sashelp.heart template=modelfit
 des="Regression Fit plot";
run;
proc sgrender data=sashelp.heart template=distribution
 des="Distribution of Cholesterol";
 dynamic var="Cholesterol";
run;
ods html close;
ods listing;

The graphs produced are named graph.png and graph1.png and are stored in u:\public_html
\. The (URL=NONE) suboption prevents any path or URL information from being included
in the SRC=" " attribute of the tag. This creates relative references to the images
in the html source:

<img alt="Regression Fit" src="graph.png" style=" height: 480px; width: 640px;"
border="0">

<img alt="Distribution of Cholesterol" src="graph1.png" style=" height: 480px; width:
640px;" border="0">

For ODS destinations such as RTF or PDF, the image is embedded in the document that is
created by that destination.

Controlling Graph Size

Overview
By default, the size of the graph that you create with ODS Graphics is governed by the
following:

• settings for ODS Graphics in the SAS Registry

• the size indicated by the DESIGNWIDTH= and DESIGNHEIGHT= options of the
BEGINGRAPH statement

• the WIDTH= and HEIGHT= options of the ODS GRAPHICS statement.

326 Chapter 19 • Managing Graphical Output

BEGINGRAPH Statement
When creating a graphics template, you often want to control the design width and design
height, especially for multi-cell graphs.

BEGINGRAPH / DESIGNWIDTH= dimension DESIGNHEIGHT= dimension;

In addition to specifying sizes in several units, you can also refer to the current registry
settings with the constants DEFAULTDESIGNWIDTH and
DEFAULTDESIGNHEIGHT.

In the following example, the intent is to produce a square graph (equal height and width)
in order to reduce unused graphical area. The design width is set to the default internal
height (DEFAULTDESIGNHEIGHT).

proc template;
 define statgraph squareplot;
 dynamic title xvar yvar;
 begingraph / designwidth=defaultDesignHeight;
 entrytitle title;
 layout overlayequated / equatetype=square;
 scatterplot x=xvar y=yvar;
 regressionplot x=xvar y=yvar;
 endlayout;
 endgraph;
 end;
run;

If this template were executed with the following SGRENDER specification, a 480px by
480px graph would be created:

proc sgrender data=mydata template="squareplot";
 dynamic title="Square Plot" xvar="time1" yvar="time2";
run;

If a 550px width or height were set on an ODS GRAPHICS statement before the template
is executed with the SGRENDER procedure, a 550px by 550px graph would be created,
maintaining the 1:1 aspect ratio:

ods graphics / width=550px;
proc sgrender data=mydata template="squareplot";
 dynamic title="Square Plot" xvar="time1" yvar="time2";
run;

Controlling Graph Size 327

/* Setting a 550px height would create the same size graph */
ods graphics / height=550px;
proc sgrender data=mydata template="squareplot";
 dynamic title="Square Plot" xvar="time1" yvar="time2";
run;

When no DESIGNWIDTH= or DESIGNHEIGHT= option is specified in the
BEGINGRAPH statement, graphs are rendered with the registry defaults, unless changed
by the ODS GRAPHICS statement HEIGHT= or WIDTH= options.

Examples for sizing multi-cell graphs are discussed in Chapter 9, “Using a Simple Multi-
cell Layout,” on page 143, Chapter 10, “Using an Advanced Multi-cell Layout,” on page
155, and Chapter 11, “Using Classification Panels,” on page 185.

Understanding Graph Scaling
ODS graphics uses style information to control the appearance of the graph. Style
definitions contain information about fonts, color, lines, and markers, and they also contain
settings such as font size and marker size. When a graph is rendered at a size larger or
smaller than its design size, scaling takes place by default.

ods graphics / width=480px height=360px scale=on ;

If you turn off scaling, the font sizes, marker sizes, and so on revert to the sizes that are
defined in the style. To accommodate the larger font sizes for the titles, footnotes, axis
labels, tick values, and data labels, the wall area and contained graphical components
automatically shrink.

ods graphics / width=480px height=360px scale=off ;

328 Chapter 19 • Managing Graphical Output

In general, having the fonts scale up or down as the graph size increases or decreases is
desirable. However, in some cases you might want greater control of the font sizes.

The examples in this document were created with different styles that varied only in the
font sizes that they used. In some cases, smaller graphs look better when rendered in a
smaller set of fonts. The style examples below use the LISTING style as a parent, but you
could use any style as the parent. The DOCIMAGE style keeps fonts close to the default
sizes and weights, while the DOCIMAGE_SMALL style reduces the font sizes by a few
points. See Chapter 17, “Managing the Graph Appearance with Styles,” on page 299 for a
discussion of defining you own styles and what parts of the graph are affected by various
style elements.

proc template;
 define style docimage;
 parent=styles.listing;
 style GraphFonts from GraphFonts
 "Fonts used in graph styles" /
 'GraphDataFont' = ("<sans-serif>, <MTsans-serif>",8pt)
 'GraphUnicodeFont' = ("<MTsans-serif-unicode>",10pt)
 'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",10pt)
 'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",12pt,bold)
 'GraphFootnoteFont' = ("<sans-serif>, <MTsans-serif>",10pt)
 'GraphTitleFont' = ("<sans-serif>, <MTsans-serif>",12pt,bold);
 end;

 define style docimage_small;
 parent=styles.listing;
 style GraphFonts from GraphFonts
 "Fonts used in graph styles" /
 'GraphDataFont' = ("<sans-serif>, <MTsans-serif>",6pt)
 'GraphUnicodeFont' = ("<MTsans-serif-unicode>",8pt)
 'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",8pt)
 'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",8pt,bold)
 'GraphFootnoteFont' = ("<sans-serif>, <MTsans-serif>",8pt)

Understanding Graph Scaling 329

 'GraphTitleFont' = ("<sans-serif>, <MTsans-serif>",10pt,bold);
 end;
run;

The previous two graphs were created the DOCIMAGE style. These next two graphs were
created with the DOCIMAGE_SMALL style.

In both of these graphs that use the DOCIMAGE_SMALL style, the text in the graph is
still legible whether scaling is on or off. Also, more space is available to the graphical
elements in the output.

330 Chapter 19 • Managing Graphical Output

Controlling DPI
All ODS destinations use a default DPI (dots per inch) setting when creating ODS Graphics
output. By default, LISTING and HTML use 100 dpi, while RTF and PDF use 200 dpi.
Graphs that are rendered at higher DPI have greater resolution and larger file size. Although
DPI can be set to large values such as 1200, from a practical standpoint, settings larger than
300dpi are seldom necessary for most applications. Also, setting an unrealistically large
DPI like 1200 could cause an out-of-memory condition. Note that the ODS option for
setting DPI is not the same for all destinations. For the LISTING and HTML destinations,
use the IMAGE_DPI= option. For the RTF and PDF destinations, use the DPI= option.

ods graphics / width=480px height=360px scale=off;
ods listing image_dpi=100 style=docimage_small;

ods graphics / width=480px height=360px scale=off;
ods listing image_dpi=200 style=docimage_small;

Controlling DPI 331

In these examples, the text in the 200 dpi graph is slightly more legible. Markers and lines
are also more legible.

Controlling Anti-Aliasing
Anti-aliasing is a graphical rendering technique that improves the readability of text and
the crispness of the graphical primitives, such as the markers and lines. By default, ODS
Graphics uses anti-aliasing.

Note: Titles, footnotes, entry text, axis labels, tick values, and legend text is always anti-
aliased. Graphical components related to the data, such as markers, lines, and data
labels, are affected by the ANTIALIAS= and ANTIALIASMAX= options, as discussed
in this section.

To see how much the graph quality is improved with anti-aliasing, you can turn this feature
on and off with the ANTITALIAS= option in the ODS GRAPHICS statement.

ods graphics / antialias=on;
ods listing image_dpi=100;
proc sgrender data=sashelp.class template=fitline;
run;

332 Chapter 19 • Managing Graphical Output

ods graphics / antialias=off ;
ods listing image_dpi=100;
proc sgrender data=sashelp.class template=fitline;
run;

The following image shows a zoomed-in view of a portion of the anti-aliased image
(100dpi). Notice that the text, markers, and line appear fuzzy because of the anti-aliasing
algorithm.

Controlling Anti-Aliasing 333

This next image shows a zoomed-in view of the image (100dpi) that has anti-aliasing turned
off. Notice that the text, markers, and line are not fuzzy but have a jagged appearance.

If the image is created at 300dpi, the combination of anti-aliasing and higher resolution
produces a very high quality image.

The non-anti-aliased image at 300dpi, is good but still has jagged edges.

To perform anti-aliasing requires additional computer resources (CPU, memory, and
execution time). Graphs that have a lot of markers, lines, and text use even more resources.
Filled or gradient 3D surface plots might require even more resources.

334 Chapter 19 • Managing Graphical Output

Setting a higher DPI increases anti-aliasing resources. At some point, ODS Graphics deems
that anti-aliasing requires too many resources and it turns the feature off. When this
happens, you will get a non-anti-aliased rendered graph and a message in the SAS log
similar to the following :

NOTE: Marker and line antialiasing has been disabled because the threshold has
 been reached. You can set ANTIALIASMAX=5700 in the ODS GRAPHICS
 statement to restore antialiasing.

If you want anti-aliasing for a graph that caused the anti-aliasing to be disabled, you must
set a higher threshold (at least 5700) for anti-aliasing with the ANTIALIASMAX= option
of the ODS GRAPHICS statement.

ods graphics / antialiasmax=5700;

The number that is specified on the ANTIALIASMAX= option represents the maximum
number of observations in the data to be anti-aliased before anti-aliasing is disabled.

Creating a Graph that Can Be Edited
SAS provides an application called the ODS Graphics Editor that can be used to post-
process ODS Graphics output. With the editor, you can edit the following features in a
graph that was created using ODS Graphics:

• Change, add, or remove titles and footnotes.

• Change style, marker symbols, line patterns, axis labels, and so on.

• Highlight or explain graph content by adding annotation, such as text, lines, arrows,
and circles.

For example, suppose the following template is used to create box plots in a graph and you
want to indicate that the labeled outliers are far outliers (more than 3 IQR above 75th
percentile).

proc template;
 define statgraph boxplot;
 begingraph;
 entrytitle "Deceased Subjects in Framingham Heart Study";
 layout overlay;
 boxplot y=mrw x=bp_status / datalabel=deathcause
 spread=true labelfar=true;
 endlayout;
 endgraph;
 end;
run;

To create ODS Graphics output that can be edited, you must specify the SGE=ON option
in the ODS LISTING destination statement before creating the graph:

ods listing sge=on;

proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
run;

When SGE=ON is in effect, an .SGE file is created in addition to the image file normally
produced. From the Results Window, you can open the .SGE file in the ODS Graphics
Editor by selecting Open in the icon. You can also open the .SGE file directly from the

Creating a Graph that Can Be Edited 335

Windows file system. The .SGE file is always created in the same location as the image
output. Here is the image output.

The following figure shows the Graphical User Interface for the ODS Graphics Editor after
some of the annotation has been completed.

You can save your annotated graph as an .SGE file or as an image file. If you save it as
an .SGE file, you can open it again for further editing.

Note: Changes that are made in the ODS Graphics Editor do not affect the compiled
template code.

336 Chapter 19 • Managing Graphical Output

After you are finished creating editable graphics, you should either close the ODS
destination (in this case LISTING) or specify SGE=OFF to discontinue producing .SGE
files and avoid the extra computational resources used to generate the extra .SGE files:

ods listing sge=off;

Creating a Graph to Include in MS Office Applications
The default height for a graph is 480 pixels. At a 100 dot per inch (DPI) setting, you can
consider the default height to be 4.8 inches. If you render a graph at 480 pixels and 100
DPI, insert it into a document like an MS Office application, and then print the page, the
graph height on paper will be 4.8 inches and all font sizes will look right in their point
weights. You can render the graph at a higher DPI to get higher quality graphs. As long as
the graph is then inserted in the document as a 4.8 inch graph, it will work as expected.

To alter the graph size or DPI for a graph that you want to include in an MS Office
application, one technique that produces good results is to create a stand-alone image that
is sized appropriately and has high resolution, say 200 DPI or 300 DPI.

ods graphics / reset width=5in imagename="fitplot" imagefmt=png
 antialias=on;
ods listing gpath="\ODSgraphs" image_dpi=200 style=analysis;

proc sgrender data= . . . template= . . .;
run;

This code produces a 5 inch, 200 DPI image \ODSgraphs\fitplot.png, which can
be inserted into Word or PowerPoint documents. When only the WIDTH= or HEIGHT=
option is specified in the ODS GRAPHICS statement, the design aspect ratio of the graph
is maintained. Also, check the SAS log to ensure that anti-aliasing has not been disabled.
If it has been disabled, add the ANTIALIASMAX= option (see “Controlling Anti-
Aliasing” on page 332 for a discussion of anti-aliasing).

After inserting the graph into the MS Office document, you can change the picture size
with good results (while maintaining aspect ratio). If you find that the text in the graph is
too large or too small, recreate the graph with different font sizes using the techniques
discussed in “Understanding Graph Scaling” on page 328.

To create good looking graphs for a two-column MS Word document where each column
is about 3.5 inches wide, use a graph width of 3.5 inches. If the original graph has a default
width of 640 pixels, you can set WIDTH=3.5IN in the ODS GRAPHICS statement to get
a smaller graph with appropriately smaller fonts. In this case, the fonts will not be exactly
the right point size, but they will be scaled smaller using a non-linear scaling factor.

Controlling Data Tips

Creating a Graph with Data Tips in an HTML Page
Data tips (sometimes called tooltips) can be displayed by graphs that are included in HTML
pages. When data tips are provided, you can "mouse over" parts of a graph, and text balloons
open to show information (typically data values) that is associated with the area where the
mouse pointer rests. Nearly all plot statements in GTL create default data tip information.
However, this information is not generated unless you request it with the IMAGEMAP=
option in the ODS GRAPHICS statement:

ods html file=". . ." path=". . ." (url=none);
ods graphics / reset width=5in imagemap=on ;

Controlling Data Tips 337

proc sgrender data= . . . template= . . .;
run;

ods graphics / reset;
ods html close;

Using the following simple template, we can show how the default data tips look when the
mouse pointer hovers over a data point:

layout overlay;
 scatterplot x=height y=weight / group=sex name="s";
 discretelegend "s";
endlayout;

Creating a Graph with Custom Data Tips in an HTML Page
GTL supports plot statement syntax that enables you to suppress or customize the default
data tip information. Here is an example:

layout overlay;
 /* scatter points have enhanced tooltips */
 scatterplot x=height y=weight / group=sex name="s"
 rolename=(tip1=name tip2=age)
 tip=(tip1 tip2 X Y GROUP)
 tiplabel=(tip1="Student Name")
 tipformat=(tip2=2.);
 discretelegend "s";
endlayout;

338 Chapter 19 • Managing Graphical Output

The ROLENAME=, TIP=, TIPLABEL= and TIPFORMAT= options are common to most
plot statements in GTL.

ROLENAME defines one or more name / value pairs as role-name = column-name, where
column-name is some input data column that does not participate directly in the plot. In
this example, we want the NAME and AGE column values to show in the tip. Notice that
the choice of role names is somewhat arbitrary. The TIP1 and TIP2 role names are added
to the default role names X, Y, and GROUP.

The TIP= option defines a list of roles to be displayed, and it also determines their order
their order in the display. Notice that it is not necessary to request all default roles. For
example, it might be obvious from the legend that the GROUP role does not really need to
be in the data tip, so in that case you would specify:

tip=(tip1 tip2 X Y)

For any role, the default tip label is 1) the data label, or 2) the name of the column that is
associated with the role. If you want other label text displayed, use the TIPLABEL= option:

tiplabel=(tip1="Student Name" group="Group")

For any role, you can assign a format to the display of tip values.

Creating Shared Templates
When creating templates (especially with dynamics that generalize the usefulness of the
template), you typically want to enable several people to create graphs from the template.
To enable access to templates, you must store the "public" templates in a directory that is
accessible to others. PROC TEMPLATE can store templates in specified SAS libraries and
within specific item stores. By default, templates are stored in SASUSER.TEMPLAT , but
another library.itemstore can be specified with the STORE= option in the DEFINE
statement.

libname p "\\public\templates";

proc template;
 define statgraph graphs.distribution / store=p.templat ;
 ...

Creating Shared Templates 339

 end;
 define statgraph graphs.regression / store=p.templat ;
 ...
 end;
run;

When this template code is submitted, you see the following notes in the SAS log:

NOTE: STATGRAPH 'Graphs.Distribution' has been saved to:
PUBLIC.TEMPLAT
NOTE: STATGRAPH 'Graphs.Regression' has been saved to:
PUBLIC.TEMPLAT

After shared templates are compiled and stored, others can access them to produce graphs.

libname p "\\public\templates" access=readonly;

ods path reset;
ods path (prepend) p.templat(read) ;

proc sgrender data= ... template=graphs.distribution;
 dynamic var="height";
run;

Manipulating the ODS search path is the best way to make the templates publicly available.

Note that this code did not replace the path but rather added an item store at the beginning
of the path. This is done to allow access to all SAS-supplied production templates, which
are stored in SASHELP.TMPLMST.

ods path show;

Current ODS PATH list is:
1. P.TEMPLAT(READ)
2. SASUSER.TEMPLAT(UPDATE)
3. SASHELP.TMPLMST(READ)

340 Chapter 19 • Managing Graphical Output

Appendix 1
SAS Keywords for Unicode
Glyphs

Greek Letters . 341

Special Characters . 343

Greek Letters

Keyword Glyph Unicode Description

alpha α 03B1 lowercase alpha

beta β 03B2 lowercase beta

gamma γ 03B3 lowercase gamma

delta δ 03B4 lowercase delta

epsilon ε 03B5 lowercase epsilon

zeta ζ 03B6 lowercase zeta

eta η 03B7 lowercase eta

theta θ 03B8 lowercase theta

iota ι 03B9 lowercase iota

kappa κ 03BA lowercase kappa

lambda λ 03BB lowercase lamda

mu μ 03BC lowercase mu

nu ν 03BD lowercase nu

xi ξ 03BE lowercase xi

omicron ο 03BF lowercase omicron

341

Keyword Glyph Unicode Description

pi π 03C0 lowercase pi

rho ρ 03C1 lowercase rho

sigma σ 03C3 lowercase sigma

tau τ 03C4 lowercase tau

upsilon υ 03C5 lowercase upsilon

phi φ 03C6 lowercase phi

chi χ 03C7 lowercase chi

psi ψ 03C8 lowercase psi

omega ω 03C9 lowercase omega

alpha_u Α 0391 uppercase alpha

beta_u Β 0392 uppercase beta

gamma_u Γ 0393 uppercase gamma

delta_u Δ 0394 uppercase delta

epsilon_u Ε 0395 uppercase epsilon

zeta_u Ζ 0396 uppercase zeta

eta_u Η 0397 uppercase eta

theta_u Θ 0398 uppercase theta

iota_u Ι 0399 uppercase iota

kappa_u Κ 039A uppercase kappa

lambda_u Λ 039B uppercase lambda

mu_u Μ 039C uppercase mu

nu_u Ν 039D uppercase nu

xi_u Ξ 039E uppercase xi

omicron_u Ο 039F uppercase omicron

pi_u Π 03A0 uppercase pi

rho_u Ρ 03A1 uppercase rho

342 Appendix 1 • SAS Keywords for Unicode Glyphs

Keyword Glyph Unicode Description

sigma_u Σ 03A3 uppercase sigma

tau_u Τ 03A4 uppercase theta

upsilon_u Υ 03A5 uppercase upsilon

phi_u Φ 03A6 uppercase phi

chi_u Χ 03A7 uppercase chi

psi_u Ψ 03A8 uppercase psi

omega_u Ω 03A9 uppercase omega

Special Characters

Keyword Glyph Unicode Description

prime 00B4 single prime sign

bar 0305 combining overline *

bar2 033F combining double
overline *

tilde 0303 combining tilde *

hat 0302

Special Characters 343

344 Appendix 1 • SAS Keywords for Unicode Glyphs

Appendix 2
SAS Graph Style Elements for
GTL

Graphical Style Elements . 345

Graphical Style Attributes . 352

Graphical Style Elements

Style Element
Recognized
Attributes

Attribute Values

(DEFAULT Style)

Graph
Affects outer border appearance
and background color.

BorderColor

BorderWidth

CellPadding

CellSpacing

inherited

inherited

0

inherited

GraphBackground
Affects background of the graph.

Color

Transparency

Colors('docbg')

not set

GraphWalls
Affects wall(s) bounded by axes.

Color

Transparency

FrameBorder

LineThickness

LineStyle

ContrastColor

GraphColors('gwalls')

not set

on

1px

1

GraphColors('gaxis')

GraphLegendBackground
Affects background color of the
legend.

Color

Transparency

Colors('glegend')

not set

GraphTitleText
Affects text font & color for
title(s).

Font

font-attributes*

Color

GraphFonts('GraphTitleFont')

not set

GraphColors('gtext')

* font attributes include FontFamily, FontSize, FontStyle, FontWeight

345

Style Element
Recognized
Attributes

Attribute Values

(DEFAULT Style)

GraphFootnoteText
Affects text font & color for
footnote(s).

Font

font-attributes*

Color

GraphFonts('GraphFootnoteFont')

not set

GraphColors('gtext')

GraphLabelText
Affects text font & color for axis
labels and legend title.

Font

font-attributes*

Color

GraphFonts('GraphLabelFont')

not set

GraphColors('glabel')

GraphValueText
Affects text font & color for axis
tick values and legend values.

Font

font-attributes*

Color

GraphFonts('GraphValueFont')

not set

GraphColors('gtext')

GraphDataText
Affects text font and color for
point / line labels.

Font

font-attributes*

Color

GraphFonts('GraphDataFont')

GraphColors('gtext')

GraphBorderLines
Affects border around graph wall,
legend border, borders to
complete axis frame.

ContrastColor

LineThickness

LineStyle

GraphColors('gborderlines')

1px

1

GraphOutlines
Affects outline properties for fill
areas such as bars, pie slices,
boxplots, ellipses, histograms.

ContrastColor

LineStyle

LineThickness

GraphColors('goutlines')

1

1px

GraphAxisLines
Affects X, Y and Z axis lines.

ContrastColor

LineStyle

LineThickness

TickDisplay

GraphColors('gaxis')

1

1px "outside"

GraphGridLines
Affects horizontal and vertical
grid lines drawn at major tick
marks.

ContrastColor

LineStyle

LineThickness

Transparency

DisplayOpts

GraphColors('ggrid')

1

1px

not set

"auto"

GraphReference
Affects horizontal and vertical
reference lines and drop lines.

ContrastColor

LineStyle

LineThickness

GraphColors('greferencelines')

1

1px

GraphHeaderBackground
Affects background color of the
legend title.

Color

Transparency

Colors('gheader')

not set

* font attributes include FontFamily, FontSize, FontStyle, FontWeight

346 Appendix 2 • SAS Graph Style Elements for GTL

Style Element
Recognized
Attributes

Attribute Values

(DEFAULT Style)

GraphUnicodeText
Affects text font for Unicode
values.

Font

font-attributes*

Color

GraphFonts('GraphUnicodeFont')

not set

GraphColors('gtext')

GraphAnnoText
Affects annotation text in
SGEditor.

Font

font-attributes*

Color

GraphFonts('GraphAnnoFont')

not set

GraphColors('gtext')

GraphAnnoLine
Affects annotation lines in
SGEditor.

ContrastColor

LineStyle

LineThickness

GraphColors('gcdata')

1

1px

GraphAnnoShape
Affects annotation closed shapes
(circles, squares, and so on) in
SGEditor.

Color

ContrastColor

MarkerSymbol

MarkerSize

LineThickness

LineStyle

Transparency

GraphColors('gdata')

GraphColors('gcdata')

"starfilled"

12px

2px

1 not set

* font attributes include FontFamily, FontSize, FontStyle, FontWeight

Style Element

Recognized

Attributes

Attribute Values

(DEFAULT Style)

TwoColorRamp
Affects gradient contours /
surfaces / markers / data labels
with continuous color response.

StartColor

EndColor

GraphColors('gramp2cstart')

GraphColors('gramp2cend')

TwoColorAltRamp
Affects line contours / markers /
data labels with segmented range
color response.

StartColor

EndColor

GraphColors('gconramp2cstart')

GraphColors('gconramp2cend')

ThreeColorRamp
Affects gradient contours /
surfaces / markers / data labels
with continuous color response.

StartColor

NeutralColor

EndColor

GraphColors('gramp3cstart')

GraphColors('gramp3cneutral')

GraphColors('gramp3cend')

ThreeColorAltRamp
Affects line contours / markers /
data labels with segmented range
color response.

StartColor

NeutralColor

EndColor

GraphColors('gconramp3start')

GraphColors('gconramp3cneutral')

GraphColors('gconramp3end')

Graphical Style Elements 347

Style Element

Recognized

Attributes

Attribute Values

(DEFAULT Style)

GraphDataDefault
Affects primitives related to non-
grouped data items; Color applies
to filled areas; ContrastColor
applies to markers and lines.

Color

ContrastColor

MarkerSymbol

MarkerSize

LineStyle

LineThickness

StartColor

NeutralColor

EndColor

GraphColors('gdata')

GraphColors('gcdata')

"circle"

7px

1

1px

GraphColors('gramp3cstart')

GraphColors('gramp3cneutral')

GraphColors('gramp3cend')

GraphOutlier
Affects outlier data for the graph.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors('goutlier')

GraphColors('gcoutlier')

7px

"circle"

42

2px

GraphFit
Affects primary fit line such as a
normal density curve.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors('gcfit')

GraphColors('gfit')

7px

"circle"

1

2px

GraphFit2
Affects secondary fit line such as
a kernel density curve.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphColors('gcfit2')

GraphColors('gfit2')

7px

"X"

4

2px

GraphConfidence
Affects primary confidence lines
and bands. Color for bands,
ContrastColor for lines.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

Transparency

GraphColors('gcconfidence')

GraphColors('gconfidence')

7px

"triangle"

1

1px

not set

348 Appendix 2 • SAS Graph Style Elements for GTL

Style Element

Recognized

Attributes

Attribute Values

(DEFAULT Style)

GraphConfidence2
Affects secondary confidence
lines and bands. Color for bands,
ContrastColor for lines.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

Transparency

GraphColors('gcconfidence2')

GraphColors('gconfidence2')

7px

"diamond"

4

1px

not set

GraphPrediction
Affects prediction lines. Color for
bands, ContrastColor for lines.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

Transparency

GraphColors('gcpredict')

GraphColors('gpredict')

7px

"plus"

4

2px

not set

GraphPredictionLimits
Affects prediction limits. Color
for bands, ContrastColor for lines.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

Transparency

GraphColors('gcpredictlim')

GraphColors('gpredictlim')

7px

"chain"

2

1px

not set

GraphError
Affects error line or error bar fill.
ContrastColor for lines, Color for
bar fill.

ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

Transparency

GraphColors('gcerror')

GraphColors('gerror')

7px

"asterisk"

1

1px

not set

GraphBand
Affects display options for
confidence bands.

DisplayOpts "fill"

GraphBox
Affects display options for box
plots.

DisplayOpts

CapStyle

Connect

"fill caps mean median outliers"

"serif"

"mean"

Graphical Style Elements 349

Style Element

Recognized

Attributes

Attribute Values

(DEFAULT Style)

GraphBoxMean
Affects marker for mean.

ContrastColor
MarkerSize
MarkerSymbol

GraphColors('gcdata')

9px

"diamond"

GraphBoxMedian
Affects line for median.

ContrastColor

LineStyle

LineThickness

GraphColors('gcdata')

1

1px

GraphBoxWhisker
Affects box whiskers and serifs.

ConstrastColor

LineStyle

LineThickness

GraphColors('gcdata')

1

1px

GraphContour
Affects display options for
contours.

DisplayOpts

StartColor

NeutralColor

EndColor

"LabeledLineGradient"

GraphColors('gramp3cstart')

GraphColors('gramp3cneutral')

GraphColors('gramp3cend')

GraphEllipse
Affects display options for
confidence ellipses.

DisplayOpts "outline"

GraphHistogram
Affects display options for
histograms.

DisplayOpts "fill outline"

GraphBlock
Affects fill color for block plots.

Color GraphColors('gblock')

GraphAltBlock
Affects alternate fill color for
block plots.

Color GraphColors('gablock')

GraphConnectLine
Affects line for connecting boxes
or bars.

ContrastColor

LineStyle

LineThickness

GraphColors('gcdata')

1

1px

Style Element Style Attributes

Attribute Values

(Default Style)

GraphData1
Affects primitives related to 1st
grouped data items. Color applies
to filled areas, ContrastColor
applies to markers and lines.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata1')

GraphColors('gcdata1')

'circle'

1

not set

not set

350 Appendix 2 • SAS Graph Style Elements for GTL

Style Element Style Attributes

Attribute Values

(Default Style)

GraphData2
Affects primitives related to 2nd
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata2')

GraphColors('gcdata2')

'plus'

4

not set

not set

GraphData3
Affects primitives related to 3rd
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata3')

GraphColors('gcdata3')

'x'

8

not set

not set

GraphData4
Affects primitives related to 4th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata4')

GraphColors('gcdata4')

'triangle'

5

not set

not set

GraphData5
Affects primitives related to 5th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata5')

GraphColors('gcdata5')

'square'

14

not set

not set

GraphData6
Affects primitives related to 6th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata6')

GraphColors('gcdata6')

'asterisk'

26

not set

not set

GraphData7
Affects primitives related to 7th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata7')

GraphColors('gcdata7')

'diamond'

15

not set

not set

Graphical Style Elements 351

Style Element Style Attributes

Attribute Values

(Default Style)

GraphData8
Affects primitives related to 8th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata8')

GraphColors('gcdata8')

not set

20

not set

not set

GraphData9
Affects primitives related to 9th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata9')

GraphColors('gcdata9')

not set

41

not set

not set

GraphData10
Affects primitives related to 10th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata10')

GraphColors('gcdata10')

not set

42

not set

not set

GraphData11
Affects primitives related to 11th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata11')

GraphColors('gcdata11')

not set

2

not set

not set

GraphData12
Affects primitives related to 12th
grouped data items.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

GraphColors('gdata12')

GraphColors('gcdata12')

not set

not set

not set

not set

Graphical Style Attributes

Style Attribute Type Examples

352 Appendix 2 • SAS Graph Style Elements for GTL

CapStyle
Affects shape of line at end
of box whisker.

string

Valid Values:
"serif" | "line" | "bracket "

CapStyle="line"

Color
Affects background color
of the graph, walls, or floor.
Affects the color of text.

color Color= colors("docbg")

Color=blue

Connect
Affects box plot connect
line.

string

Valid Values:
"median" | "mean" | "Q1" |
"Q3" | "min" | "max"

Connect="median"

ContrastColor
Affects color of line or
marker.

color ContrastColor=
GraphColors("data")

ContrastColor=#ffffff

DisplayOpts
Affects displayed features
of box plots, ellipses,
histograms, bands,
contours, and grid lines.

string of one or more options DisplayOpts="fill | caps |
mean | median | outliers |
connect | notches"

DisplayOpts="fill | outline"

DisplayOpts="fill | outline"

DisplayOpts="fill | outline"

DisplayOpts="LabeledLineG
radient"

DisplayOpts="auto | on | off "

Font
Affects all text font
attributes

aggregate definition in
parentheses

Font=(" 'Courier New',
Courier, monospace", 4, bold
italic)

FontFamily
Affects font family.

string FontFamily="Courier New"

FontSize
Affects font size.

dimension or integer 1-7
indicating relative size

FontSize=10pt

FontSize=3

FontStyle
Affects font style.

enumeration

Valid Values:
italic | roman | slant

FontStyle=italic

FontWeight
Affects font weight.

enumeration

Valid Values:
light | medium | bold

FontWeight=bold

FrameBorder
Affects graph wall border.

boolean

Valid Values:
On | Off

FrameBorder=on

Graphical Style Attributes 353

EndColor
Affects contours, and also
gradient legends. Final
color that is used with a 2-
or 3-color ramp.

color EndColor=blue

LineStyle
Affects border lines, axis
lines, grid lines, and
reference lines.

positive integer

Valid Values:
1 (solid line)

2 - 46 (dashed/dotted line)

LineStyle=2

LineThickness
Affects width thickness of
lines.

dimension LineThickness=2px

LineThickness=2%

MarkerSize
Affects marker size.

dimension MarkerSize=5px

MarkerSize=3%

MarkerSymbol
Affects marker used.

string MarkerSymbol="circle"

NeutralColor
Affects contours, and also
gradient legends. Middle
color that is used with 3-
color ramp.

color NeutralColor=white

StartColor
Affects contours, and also
gradient legends. Initial
color that is used with a 2-
or 3-color ramp.

color StartColor=red

TickDisplay
Affects placement of all
axis tick marks.

string

Valid Values:
"inside" | "outside" |
"across"

TickDisplay = "across"

Transparency
Affects backgrounds, fills,
lines, and markers.

number

Valid Values:
0.00 (opaque)

1.00 (transparent)

Transparency=0.25

354 Appendix 2 • SAS Graph Style Elements for GTL

Appendix 3
Values for Marker Symbols and
Line Patterns

Values for Marker Symbols . 355

Values for Line Patterns . 355

Values for Marker Symbols
The following symbols can be used with the Graphics Template Language:

Values for Line Patterns
The following line patterns can be used with the Graphics Template Language. A line
pattern can be specified by its number or name. Not all patterns have names. We recommend
that you use the named patterns because they have been optimized to provide good
discriminability when used in the same plot.

355

356 Appendix 3 • Values for Marker Symbols and Line Patterns

Appendix 4
SAS Formats Not Supported

Using SAS Formats . 357

Unsupported Numeric Formats . 357

Unsupported Date and Time Formats Related to IS0 8601 358

Other Unsupported Date and Time Formats . 358

Unsupported Currency Formats . 359

Using SAS Formats
SAS formats can be assigned to input data columns with the FORMAT statement of the
SGRENDER procedure. Additionally, several GTL statement options enable a SAS format
as an option value. Examples include the TICKVALUEFORMAT= option for formatting
axis tick values, and the TIPFORMAT= option for formatting data tips.

Not all SAS formats are supported in the GTL or with the SGPLOT, SGSCATTER,
SGPANEL, and SGRENDER procedures. The tables in the following sections show the
character and numeric SAS formats that are not supported.

When the GTL encounters an unsupported format, a note similar to the following is written
to the SAS log:

NOTE: TICKVALUEFORMAT=bestx. is invalid. The format is invalid or unsupported.
 The default will be used.

Unsupported Numeric Formats
The following numeric formats are not supported in the GTL:

BESTD BESTX D FLOAT FRACT

FREE IB IBR IEEE IEEER

ODDSR PCPIB PD PIB PIBR

357

PK RB SSN WORDF WORDS

Z ZD

Unsupported Date and Time Formats Related to IS0
8601

The following date and time formats are not supported in the GTL:

$N8601B $N8601BA $N8601E $N8601EA $N8601EH

$N8601EX $N8601H $N8601X B8601DA B8601DN

B8601DT B8601DZ B8601LZ B8601TM B8601TZ

E8601DA E8601DN E8601DT E8601DZ E8601LZ

E8601TM E8601TZ IS8601DA IS8601DN IS8601DT

IS8601DZ IS8601LZ IS8601TM IS8601TZ

Other Unsupported Date and Time Formats
The following date and time formats are not supported in the GTL:

HDATE HEBDATE JDATEMDW JDATEMNW JDATEWK

JDATEYDW JDATEYM JDATEYMD JDATEYMW JDATEYT

JDATEYTW JNENGO JNENGOT JNENGOTW JNENGOW

JTIMEH JTIMEHM JTIMEHMS JTIMEHW JTIMEMW

JTIMESW MDYAMPM MINGUO NENGO NLDATEYQ

NLDATEYR NLDATEYW NLDATMYQ NLDATMYR NLDATMYW

NLSTRMON NLSTRQTR NLSTRWK PDJULG PDJULI

TWMDY XYYMMDD YYQZ

358 Appendix 4 • SAS Formats Not Supported

Unsupported Currency Formats
The following currency formats are not supported in the GTL:

EURFRATS EURFRBEF EURFRCHF EURFRCZK EURFRDEM

EURFRDKK EURFRESP EURFRFIM EURFRFRF EURFRGBP

EURFRGRD EURFRHUF EURFRIEP EURFRITL EURFRLUF

EURFRNLG EURFRNOK EURFRPLZ EURFRPTE EURFRROL

EURFRRUR EURFRSEK EURFRSIT EURFRTRL EURFRYUD

EURTOATS EURTOBEF EURTOCHF EURTOCZK EURTODEM

EURTODKK EURTOESP EURTOFIM EURTOFRF EURTOGBP

EURTOGRD EURTOHUF EURTOIEP EURTOITL EURTOLUF

EURTONLG EURTONOK EURTOPLZ EURTOPTE EURTOROL

EURTORUR EURTOSEK EURTOSIT EURTOTRL EURTOYUD

Unsupported Currency Formats 359

360 Appendix 4 • SAS Formats Not Supported

Appendix 5
Memory Management for ODS
Graphics

ODS Graphics uses Java technology to produce its graphs. Most of the time this fact is
transparent to you because the required Java Runtime Environment (JRE) and Jar files are
included with SAS software installation and the Java environment is automatically started
and stopped for you. When Java is started, it allocates a fixed amount of memory that can
grow up to the value set for the -Xmx suboption in the JREOPTIONS option (discussed in
a moment). This memory is independent of the memory limit that SAS sets for the SAS
session with its MEMSIZE= option.

Normally, the memory limit for Java is sufficient for most ODS Graphics applications.
However, some tasks are very memory intensive and might exhaust all available Java
memory, resulting in an OutOfMemoryError condition. You might encounter Java memory
limitations when

• the product of the output size and the DPI setting results in very large output

• a classification panel has a very large number of classifier crossings

• a scatterplot matrix has a large number of variables

• creating 3D plots and 2D contours, which are memory intensive to generate

• a plot has a very large number of marker labels

• a plot uses many character variables or has a large number of GROUP values

• using the SG Editor to edit a graph with a large amount of data.

If you encounter a Java OutOfMemoryError, you can try executing your program again by
restarting SAS and specifying a larger amount of memory for Java at SAS invocation.

To determine what the current Java memory settings are, you can submit a PROC
OPTIONS statement that will show the value of the JREOPTIONS option:

proc options option=jreoptions;
run;

After you submit this procedure code, a list of JREOPTIONS settings is displayed in the
SAS log. The JREOPTIONS option has many suboptions that configure the SAS Java
environment. Many of the suboptions are installation and host specific and should not be
modified, especially the ones that provide installed file locations. For managing memory,
look for the -Xms and -Xmx suboptions:

-Xms
Use this option to set the minimum Java memory (heap) size, in bytes. Set this value
to a multiple of 1024 greater than 1MB. Append the letter k or K to indicate kilobytes,
or m or M to indicate megabytes. The default is 2MB. Examples:

-Xms6291456
-Xms6144k
-Xms6m

361

-Xmx
Use this option to set the maximum size, in bytes, of the memory allocation pool. Set
this value to a multiple of 1024 greater than 2MB. Append the letter k or K to indicate
kilobytes, or m or M to indicate megabytes. The default is 64MB. Examples:

-Xmx83886080
-Xmx81920k
-Xmx80m

As a general rule, you should set the minimum heap size (-Xms) equal to the maximum
heap size (-Xmx) to minimize garbage collections.

Typically, SAS sets both -Xms and -Xmx to be about 1/4 of the total available memory or
a maximum of 128M. However, you can set a more aggressive maximum memory (heap)
size, but it should never be more than 1/2 of physical memory.

You should be aware of the maximum amount of physical memory your computer has
available. Let us assume that doubling the Java memory allocation is feasible. So when
you start SAS from a system prompt, you can add the following option:

-jreoptions (-Xmx256m -Xms256m)

Aternatively, you might need to specify the setting in quotation marks:

-jreoptions '(-Xmx256m -Xms256m)'

The exact syntax varies for specifying Java options, depending on your operating system,
and the amount of memory that you can allocate varies from system to system. The set of
JRE options must be enclosed in parentheses. If you specify multiple JREOPTIONS system
options, SAS appends JRE options to JRE options that are currently defined. Incorrect JRE
options are ignored.

If you choose to create a custom configuration file, you would simply replace the existing
-Xms and -Xmx suboption values in the JREOPTIONS=(all Java options) portion of the
configuration file.

For more information, see the SAS Companion for your operating system.

362 Appendix 5 • Memory Management for ODS Graphics

Glossary

anti-aliasing
a rendering technique for improving the appearance of text and curved lines in a graph
by blurring the jagged edges normally present. The degree of improvement is relative
to the nature of the graphical content (for example, vertical and horizontal lines do not
benefit from anti-aliasing). Extra processing is required to perform anti-aliasing.

attribute bundle
a common collection of visual properties associated with a graphical primitive such as
a line, marker, or text. For example, all lines have visual properties of pattern, thickness,
and color. All markers have visual properties of symbol, size, weight, and color.
Attribute bundles can be associated with style elements in order to indirectly assign
visual properties. See also marker properties, line properties, and text properties.

axis
a graphical element used to locate or identify the values of other graphical elements,
such as points or bars. An axis consists of an axis line with tick marks, tick values, and
a descriptive label. Not all parts of the axis need to be displayed. An axis is typically
an interval axis (linear, log, or time) or a discrete axis. A two-dimensional graph can
have up to four independent axes: X, Y, X2, and Y2. A three-dimensional graph has
three independent axes: X, Y, and Z. See also Cartesian coordinate system.

axis offset
the gaps that normally appear at the ends of an axis line. The gaps enable markers, bars,
and other graphic primitives that are drawn at extreme data values to be rendered
without clipping. An offset can also be used to add extra space between an axis line
and visual elements in the graph. An offset distance is expressed as a value from 0 to
1, which represents a percentage of axis length to the axis data minimum or axis data
maximum. An offset can be specified for either end of any axis.

axis threshold
a numerical bias from 0 to 1 that determines whether an extra tick is added at either
end of a non-discrete, interval axis. If the minimum and maximum thresholds are set
to 0, then no ticks are added beyond the actual data range. If both minimum and
maximum thresholds are set to 1, then the data range is completely bounded by the first
and last ticks.

axis tick
a short line segment perpendicular to the axis line. A tick can cross the axis line, or be
drawn from the axis inside or outside the wall.

363

axis tick value
a formatted data value represented by a tick.

axis type
a keyword denoting axis functionality. For example, the axis type of interval axes can
be LINEAR, TIME, or LOG. The axis type of a discrete axis is DISCRETE.

axis viewport
the range of values displayed on an interval axis. This range can be larger or smaller
than the actual data range of the axis. An axis viewport that is larger than the data range
effectively zooms out from the plot or plots. An axis viewport that is smaller than the
data range zooms in on the plot or plots.

background
a property of a layout container, a legend, or text. A background can be fully transparent
or fully opaque. If opaque, the background is drawn with a fill color.

band plot
a plot that draws a horizontal band using two Y values for each X value, or that draws
a vertical band using two X values for each Y value. A band plot is typically used to
show confidence, error, prediction, or control limits. The points on the upper and lower
band boundaries can be joined to create two outlines, or the area between the boundaries
can be filled.

binned data
data that has been summarized or transformed in some way to facilitate its rendering
by a parameterized plot. Continuous numeric data is typically binned by setting a bin
width (interval size) and then computing the number of bins, or by setting the number
of bins and computing the bin width. A histogram is often used to represent binned
data.

bins
numeric intervals into which continuous numeric data can be categorized.

block
another term for statement block.

block plot
a plot that displays one or more rectangles (blocks) along an axis, where each rectangle
identifies a block of consecutive observations having the same value for a specified
block variable. The first block begins at the start of the axis (mapped to the values of
a specified variable), and represents the first observation’s block value, and continues
through consecutive observations having the same block value. A change in the block
variable’s value ends the first block and starts the second, which continues through
consecutive observations until the block value changes again. The last block extends
to the end of the axis.

border
the outermost outline of a graph, a layout container, or a graphical element (for example,
a legend or text).

category variable
a classification variable with a finite number of distinct (discrete) values. These
variables are typically used to split data into subsets. For example, in a bar chart, each
unique value is displayed as a bar on a DISCRETE axis.

364 Glossary

cell
a distinct rectangular subregion of a graph that can contain plots, text, or legends. A
display unit of a layout container. Some layouts, such as OVERLAY, have only one
cell, which has one plot area. Other layouts, such as GRIDDED, have a rectangular
grid of cells. Each cell can also be populated with another layout container or be left
empty.

cell block
a block beginning with a CELL statement and ending with an ENDCELL statement
that defines the graphical content of a cell. The cell block is available only within a
LATTICE layout.

cell header
a graphical element (typically text or a legend) that is aligned at the top of a cell and
provides information about the cell contents. A cell header is defined within a cell block,
which is available only within a LATTICE layout.

child block
a block that is contained within another block when two or more blocks are nested. For
example, a CELLHEADER block is always a child of a CELL block.

classification level
for a single classification variable, each unique value is regarded as a classification
level. For two or more variables, a classification level is one of the unique combinations
(crossings) of the unique values of each variable. For example, if three variables have
four, two, and three distinct values, there are 24 classification levels.

classification panel
a multi-cell graph created by a layout, such as DATAPANEL, in which the number of
cells is determined by the number of classification levels of one or more classification
variables. Each cell displays a common plot based on subsets of the input data.

classification variable
a variable whose values classify the observations in a data set into different groups that
are meaningful for analysis.

clip
to truncate a plot or graphical element (such as a line, marker, or band) when it reaches
a boundary such as a plot wall.

column
a vertical component of a table. Each column has a unique name, contains data of a
specific type, and has certain attributes. A column is analogous to a variable in SAS
terminology. In the Graph Template Language a column can also be a set of layout
cells, stacked vertically and sharing the same alignment.

column axis
an external axis appearing above or below a column of cells and serving as a common
reference for the column of a multi-cell layout, such as a LATTICE, DATAPANEL,
or DATALATTICE layout.

column gutter
the space between columns of cells in a multi-cell layout.

Glossary 365

column header
text that labels the column contents in a multi-cell layout. This text can be aligned above
or below the cells in a column. In a LATTICE layout, the column header is not restricted
to text (it can contain a plot or a legend, for example).

column major order
an order for populating cells of a layout or entries in a legend when the number of rows
is specified. By default, cells or entries are filled starting from the top left and moving
down. When the bottom row of the first column is filled, a new column begins filling
to the right of the previous column, and so on until all content items have been placed
in cells or entries. There might be empty cells or entries in the last column.

column weight
in a LATTICE layout, the proportion of width allotted to a specific column of the layout.
The sum of all column weights is 1.

computed plot
a plot in which input data is internally summarized or otherwise transformed to create
new data that is actually rendered by the plot. Examples of computed plot statements
are BARCHART, BOXPLOT, HISTOGRAM, ELLIPSE, and REGRESSIONPLOT.

conditional logic
syntax that enables one set of statements or an optional alternate set of statements to
execute at run time. In the Graph Template Language, an IF/ENDIF block defines
conditional logic: IF (condition) statements; ELSE statements; ENDIF; The ELSE
statement is not required.

continuous legend
a legend that shows a mapping between a color ramp or color segments and
corresponding numeric values. Plots that support a COLORMODEL= option can use
this type of legend.

crossing
a combination of the unique values of one or more classification variables. See also
classification level.

cube
in three-dimensional graphics, the outlines formed by the intersection of three pairs of
parallel planes; each pair is orthogonal to the primary X, Y, and Z axes. The display of
the cube is optional.

data object
a transient version of a SAS data set created by ODS. When an input SAS data set is
bound to a compiled graph template, an ODS data object is created, based on all the
columns requested in the template definition and any new columns that have been
directly or indirectly computed. A data object can persist when used with the ODS
OUTPUT statement.

data tips
data or other detailed information that is displayed when a user positions a mouse
pointer over an element in a graph. For example, a data tip typically displays the data
value that is represented by a bar, a plot point, or some other element.

366 Glossary

define block
in the TEMPLATE procedure, a define block (beginning with a DEFINE statement and
ending with an END statement) creates various types of templates, including
STATGRAPH, STYLE, and TABLE.

dependent plot
a plot that cannot be rendered by itself. Dependent plots must be overlaid with a stand-
alone plot. Dependent plots do not provide data ranges to establish axes.
REFERENCELINE, DROPLINE, and LINEPARM statements produce dependent
plots. See also stand-alone plot.

dependent variable
a variable that is observed to change in response to the independent variables. In a
function y=f(x), the value of the dependent variable y is a function of the independent
variable x. For example, in a Graph Template Language REGRESSIONPLOT
statement, the Y variable is the dependent variable.

design size
the intended size of a graph that is specified in the graph template definition. The
DESIGNHEIGHT and DESIGNWIDTH options of the BEGINGRAPH statement set
the intended height and width, which are used to determine the scale factors when the
graph is resized. The intended height and width are used unless overridden by the ODS
Graphics statement HEIGHT or WIDTH options when the template is executed.

device-based graphic
a graph created with traditional SAS/GRAPH software that requires DEVICE
specification. ODS graphics (template-based graphics) do not use device technology.

discrete axis
an axis for categorical data values. The distance between ticks has no significance. A
bar chart always has a discrete axis.

discrete legend
a legend that provides values or descriptive information about graphical elements in a
grouped or overlaid plot.

dots per inch
a measure of the graph resolution by its dot density. Short form: DPI.

DPI
See dots per inch.

drop line
a line drawn from a point in the plot area perpendicular to an axis.

dynamic variable
a variable defined in a template with the DYNAMIC statement that can be initialized
at template run time.

equated axes
in two-dimensional plots, axes that use the same drawing scale (ratio of display distance
to data interval) on both axes. For example, an interval of 2 on the X axis maps to the
same display distance as an interval of 2 on the Y axis. The aspect ratio of the plot
display equals the aspect ratio of the plot data. In other words, a 45-degree slope in data
will be represented by a 45-degree slope in the display. Equated axes are always of

Glossary 367

TYPE=LINEAR. The number of intervals displayed on each axis does not have to be
the same.

external axis
an axis that is outside all cells of a layout. An external axis represents a common scale
for all plots in a row or column of a multi-cell layout.

fill
to apply a color within a bounded area. Many plots, such bar charts and band plots,
have bounded areas that can be filled or unfilled. When filled, a color is applied. When
unfilled, the areas are transparent.

fit policy
one of several algorithms for avoiding tick-value collision when space allotted to a
predefined area does not permit all the text to fit. For example, an axis might have a
THIN policy that eliminates the display of tick values for alternate ticks. A ROTATE
policy would turn the tick values at a 45-degree angle. A TRUNCATE policy would
truncate all long tick values to a fixed length and add an ellipsis (. . .) at the end to imply
truncation. A STAGGER policy would create two rows of tick values with consecutive
tick values alternating between rows. A compound policy such as STAGGERROTATE
could be used to automatically choose the best fit policy for the situation.

footnote area
the region below the graph area where text produced by ENTRYFOOTNOTE
statements appears.

frequency variable
in an input data set, a non-negative and non-zero integer variable that represents the
frequency of occurrence of the current observation, essentially treating the data set as
if each observation appeared <userSuppliedValue>n</userSuppliedValue> times,
where <userSuppliedValue>n</userSuppliedValue> is the value of the FREQ variable
for the observation.

fringe plot
a plot consisting of short, equal-length line segments drawn from and perpendicular to
an axis. Each observation of a numeric variable corresponds to the location for a line
segment.

function
a computational routine that returns a value. In the Graph Template Language, all SAS
functions that can be used in SAS WHERE expressions are supported. Many functions
for statistical computations are available in the Graph Template Language.

glyph
a letter, character, punctuation mark, pictogram, or symbol that is rendered in the
context of some written language. A typeface (font) consists of a coordinated set of
glyphs. See also Unicode.

graph
a visualization created by SAS/GRAPH software. A graph that is created by the ODS
Graphics system can contain titles, footnotes, legends, and one or more cells, and is
typically saved as an image or an SGE file. A generic term for final graphical output
without regard to content or format.

368 Glossary

graph(ical) area
the region where the visualization displays between the title area and footnote area. The
graphical area consists of one or more cells. See also title area and footnote area.

graph(ics) template
See ODS Graphics template.

grid
rows and columns of a multi-cell layout.

gridded data
input that contains at least three numeric variables. Two of the variables are treated as
X and Y variables and the third variable Z is treated as if it were a function of X and
Y. The X and Y variable values occur at uniformly spaced intervals (although the size
and number of intervals might be different for X and Y). All X,Y pairs are unique, and
Z values are interpolated so that every X,Y pair has a Z value. Raw data that has at least
three numeric variables can be converted to gridded data with the G3GRID procedure
(in SAS/GRAPH). The procedure offers both bivariate and spline interpolation methods
for computing Z values.

group index
a numeric variable with positive integer values that correspond to values of a group
variable. The index values are used to associate GraphData1 –
GraphData<userSuppliedValue>N</userSuppliedValue> style elements with group
values.

group variable
an optional classification variable supported by many plot types that enables the data
for each distinct group value to be rendered in a visually different manner. For example,
a grouped scatter plot displays a distinct marker and color for each group value. A series
plot displays a distinct line pattern and color for each group value.

gutter
the space between columns or rows of cells in a multi-cell layout.

image format
a file format that displays a graphical representation. PNG, GIF, TIFF, and JPEG are
examples of image formats, each with different characteristics.

image map
in an HTML file, the information contained in the map tag. This information can be
used by a browser to display data tips on the image. See also data tip.

independent variable
a variable that persists and affects dependent variables. For a function y=f(x), the value
of the dependent variable y is a function of the independent variable x. For example in
a REGRESSIONPLOT statement, the X= variable is the independent variable.

inset
a graphical element such as a legend, line of text, or a table of text that is embedded
inside of a graph's plot area.

interval axis
an axis where the distance between tick marks represents monotonically increasing or
decreasing numeric units of some scale (like a ruler). The standard interval axis is called
a LINEAR axis. Specialized interval axes include a TIME axis and a LOG axis.

Glossary 369

layout
a generic term for a rectangular container that lays out the positions and sizes of its
child components.

layout block
a block beginning with a LAYOUT statement and ending with an ENDLAYOUT
statement.

layout grid
a multi-cell layout arranged as a grid of cells in rows and columns.

layout type
a keyword indicating the functionality of the layout. For example OVERLAY,
LATTICE, and DATAPANEL are layout types.

legend
a compound graphics element that provides information about other graphical elements
in plots. See also discrete legend and continuous legend.

legend entry
a combination of a graphical element such as a marker or line along with text describing
the value or use of the graphical element. A discrete legend can have several legend
entries.

legend title
text that explains how to interpret the legend.

line property
a value that defines the pattern, thickness, or color of a line. By default, the value for
a line property is derived from a style element in the current style. See also attribute
bundle.

linear axis
an interval axis with ticks placed on a linear scale.

log axis
an axis displaying a logarithmic scale. A log axis is useful when data values span orders
of magnitude.

macro variable reference
in a template definition, a reference to a macro variable that has been declared with
MVAR or NMVAR statements. These references are meant to be resolved at template
run time and should not be preceded with an ampersand. If a standard macro variable
reference (a name preceded with an ampersand) appears in a template definition, it is
resolved at template compile time.

marker
(1) a symbol such as a circle, triangle, or diamond that is used to indicate the location
of a data point in a plot. (2) a type of annotation that is used in SAS/GRAPH ODS
Graphics Editor to highlight particular data in a plot or graph.

marker property
a value that defines the symbol used as a marker, or its size, weight, or color. By default,
the value for a marker property is derived from a style element in the current style. See
also attribute bundle.

370 Glossary

multi-cell layout
a layout that supports a rectangular grid of cells, each of which can contain a graphical
element, such as a plot, a legend, a nested layout, and so on.

nested layout
a layout block that appears within the scope of another layout block.

ODS
See Output Delivery System.

ODS Graphics
an extension to ODS that is used to create analytical graphs using the Graph Template
Language.

ODS Graphics Editor
an interactive application that can be used to edit and annotate ODS Graphics output.

ODS Graphics template
a template of the type STATGRAPH that is defined with the TEMPLATE procedure.
A graphics template contains the definition of a graph (as Graph Template Language
statements) and references to data columns.

opaque
a property of a background. Opaque backgrounds are filled with a color. Non-opaque
backgrounds are transparent.

outlier
a data point that differs from the general trend of the data by more than is expected by
chance alone. An outlier might be an erroneous data point or one that is not from the
same sampling model as the rest of the data.

Output Delivery System
a component of SAS software that can produce output in a variety of formats such as
markup languages (HTML, XML), PDF, listing, RTF, PostScript, and SAS data sets.
Short form: ODS.

overlay
a plot that can be superimposed on another plot when specified within an overlay-type
layout. A common overlay combination is a fit line on a scatter plot.

overlay layout
a type of layout that supports the superimposition of graphical components, such as
plots, legends, and nested layouts.

padding
space added inside the border of a graphical component, such as a layout or a legend.

panel
a graph with multiple cells.

parameterized plot
a non-computed plot that requires parameterized data. The Graph Template Language
offers several plots in both computed and parameterized versions, for example,
BARCHART and BARCHARTPARM. Some computed plots such as
REGRESSIONPLOT can be emulated with a SERIESPLOT if the input data
represented points on a fit line.

Glossary 371

parent block
when two or more blocks are nested, any layout block that contains one or more layout
blocks is a parent of the contained blocks.

plot
a visual representation of data such as a scatter plot, a series line, or a histogram. In the
ODS Graphics context, plot is a generic term for the graphical element or elements
drawn by a plot statement. Multiple plots can be overlaid in a cell to create a graph.

plot area
the space, bounded by the axes, where a visual representation of data, such as a scatter
plot, a series line, or a histogram, is drawn.

plot type
a plot family such as bar chart (which would include horizontal, vertical, and grouped
bar charts), or a classification scheme for plots based on some useful criteria, such as
whether the plots are computed or parameterized.

primary axis
the X or Y axis contrasted to the X2 or Y2 secondary axis.

primary plot
the plot in an overlay that determines axis features, such as axis type and axis label.

prototype layout
an overlay plot composite that appears in each cell of a classification panel. Each
instance of the prototype represents a different subset (classification level) of the data.

regression plot
a straight or curved line showing a linear or higher order regression fit for a set of points.

required argument
a variable or constant that must be specified in order to evaluate an expression or render
a plot, legend, text, or a layout. For example, a scatter plot has two required arguments:
X=column and Y=column.

response variable
See dependent variable.

rich text
a generic term for text that can have different font characteristics (color, family, size,
weight, style) on a character-by-character basis and can also be used as a superscript
or subscript. All text statements in GTL support rich text.

role
a generic term for the purpose a variable serves in a plot or the keyword used to
designate the assigned variable. All plots have predefined roles and most plots support
user-defined roles that can be used for data tips. For example, a series plot has
predefined roles named for X , Y, GROUP, DATALABEL, CURVELABEL, and
INDEX. Additional roles can be added to specify the content of data tips.

row
a set of layout cells that are side-by-side and share the same alignment.

row axis
an external axis appearing on the left or right of a row of cells in a multi-cell layout.

372 Glossary

row gutter
space between rows of cells of a multi-cell layout.

row header
typically, the text that identifies the row contents in a multi-cell layout. This text can
be aligned to the right or left of the cells in a row. The row header is not restricted to
text (it can contain a plot or a legend, for example).

row major order
an order for populating cells of a layout or entries of a legend when the number of
columns is specified. For example, in the default case: Start at the top left and fill cells
or entries left-to-right. When the right-most column is filled, begin a new row below
the previous row. Continue this until all content items have been placed in cells or
entries. There might be empty cells/entries in the last row.

row weight
in a LATTICE layout, the proportion of height allotted to a specific row of the layout.
The sum of all row weights is 1.

secondary axis
the X2 or Y2 axis as contrasted to the X or Y primary axis.

SGE file
a file created in the ODS Graphics environment that contains an editable graph. Such
files have a .SGE file extension and can be edited only with the ODS Graphics Editor.
You can edit SGE files from the SAS Results window or by opening the SGE file from
within the ODS Graphics editor.

sidebar
an area of certain multi-cell layouts external to the grid of cells where text or other
graphical elements can appear. The LATTICE, DATAPANEL, and DATALATTICE
layout support four sidebar areas (TOP, BOTTOM, LEFT, and RIGHT).

single-cell layout
a layout type that supports only one cell. The OVERLAY, OVERLAY3D, and
OVERLAYEQUATED layouts are examples of single-cell layouts.

sparse data
in classification panels with two or more classifiers, some crossings of the classification
values might not be present in the input data. Such input data is called sparse data. By
default, a DATAPANEL layout does not generate cells for sparse data, but if requested,
it can produce empty cells as place holders for the non-existent crossings.

stand-alone plot
a plot that has its own data range and can therefore appear by itself in a layout.

statement block
a group of statements that has both a logical beginning and ending statement. For
example, a LAYOUT statement along with its ENDLAYOUT statement and all
contained statements are a block. Some blocks can be nested within other blocks.

style
an ODS template that can be used to control the visual aspects (colors, fonts, lines,
markers, and so on) of a graph or table. A style consists of many style elements and
each style element is made up style attributes. Style templates are created with the
DEFINE STYLE statement of the TEMPLATE procedure.

Glossary 373

style attribute
a visual property such as a color, line pattern, or font property that has a reserved name.
For example, COLOR, FONTFAMILY, FONTSIZE, FONTWEIGHT, and
FONTSTYLE are all styles attributes of the style elements such as GraphTitleText,
GraphLabelText, and so. Style attributes are collectively referenced by a style element
within a style definition.

style element
a named collection of style attributes that affects a specific part of ODS output. For
example, the GraphTitleText style element specifies the color and font properties of
title text and possibly other text in the graph. See also style attribute.

style reference
a part of the Graph Template Language syntax that indicates the current value of a
specific attribute of a specific style element. For example,
SIZE=GraphTitleText:FontSize means to assign to SIZE the value of the FontSize
attribute of the GraphTitleText style element from the current style.

template
a compiled entry in a template store (item store). Common templates types include
STATGRAPH, STYLE, and TABLE.

template compile time
the phase when the source program of a template definition is submitted. The syntax
of the definition is evaluated for correctness. If no errors are detected, the definition is
converted to a binary format and stored for later access.

template definition
the TEMPLATE procedure source program that creates a template. A template
definition can be generated from a compiled template. Also called the template source.

template run time
the actions performed when a compiled template is bound to a data object and then
rendered to produce a graph. Run-time errors can occur that prevent a graph from being
produced.

template store
an item store that contains definitions that were created by the TEMPLATE procedure.
Definitions that SAS provides are in the item store Sashelp.Tmplmst. You can store
definitions that you create in any template store to which you have write access. See
also item store.

template-based graphic
SAS/GRAPH output where a compiled ODS template of the type STATGRAPH is
used to produce graphical output, that is, a graph produced within the ODS graphics
environment as opposed to a graph produced in the traditional device-based
environment.

text properties
a common set of characteristics that can be specified for any text string: COLOR,
FAMILY, SIZE, WEIGHT, and STYLE. By default, values for these properties are
derived from a style element in the current style. See also attribute bundle and style
attribute.

374 Glossary

time axis
an axis type that displays only SAS date, time, or datetime values. Axis tick value
increments can be specified as time or date intervals, such as MINUTE, HOUR, DAY,
WEEK, MONTH, QUARTER, or YEAR.

title area
the region above the graph area where text produced by ENTRYTITLE statements
appears.

transparency
the degree to which a graphic element (such as a marker or filled area) is opaque or
transparent. Transparency is indicated with a number from 0 (completely opaque) to 1
(completely transparent).

Unicode
an encoding system that provides a single comprehensive mapping of all characters
(glyphs) in all languages to unique numeric values called code points.

viewport
See axis viewport.

wall
the area bounded by orthogonal axis pairs. In two-dimensional graphs, there is one wall
bounded by the XY axes. In three-dimensional graphs, there are three walls, bounded
by the XY, YZ, and XZ axes. A wall has an optional outline and can be opaque or
transparent.

weight variable
a positive numeric variable in the input data set that represents a weight to be applied
to the current observation.

Glossary 375

376 Glossary

Index

A
ACROSS= option

DISCRETELEGEND statement 133
advanced multi-cell layout

See LAYOUT LATTICE statement
anti-aliasing

for graphics output 323, 332
ANTIALIAS= option

ODS GRAPHICS statement 323
ANTIALIASMAX= option

ODS GRAPHICS statement 323
ASORT function 262
AUTOALIGN= option

ENTRY statement 113, 272
in legend statements 123
LAYOUT GRIDDED statement 275

axis features
avoiding tick value collision 71, 74
axis line and wall outline 79
converting tick values to integers 70
data range on LINEAR axes 66
DISCRETE axes 59
displaying a secondary axis 58
displaying grid lines 58
displaying select features 58
equivalent primary and secondary axes

66
general principles 53
how affected by plot statements 55
how axis label is determined 61
how axis range is determined 61
how axis type is determined 59
how constructed 55, 59
how tick values are determined 64
in overlay-type layouts 53
in OVERLAYEQUATED layouts 227
LINEAR axes 59, 69

LOG axes 59, 75
log axis with log data 79
mapping data columns to axes 55
offsets on axes 67
primary plot and 61
scaling the tick values 70
setting axis type 76
specifying alternate short label 63
specifying an axis label 62
specifying axis options 58
style elements that control features 81
suppressing the axis label 58
suppressing tick marks 58
terminology 54
thresholds on axes 64
TIME axes 59, 72
turning off the wall outline 80

axis labels
on computed plots 63
specifying an alternate short label 63
specifying on an axis 62
suppressing on an axis 58
why truncated 63

axis options
BASE= suboption 76
DISPLAY= option 58
DISPLAYSECONDARY= option 58
INTERVAL= option 72
OFFSETMAX= 67
OFFSETMIN= 67
THRESHOLDMAX= 64
THRESHOLDMIN= 64
TICKINTERVALSTYLE= option 77
TICKVALUEFITPOLICY= option 71
TYPE= 59, 76
VIEWMAX= 61
VIEWMIN= 61

377

X2AXISOPTS= 58
XAXISOPTS= 58
Y2AXISOPTS= 58
YAXISOPTS= 58

B
BACKGROUND= option

in text statements 111
BACKGROUNDCOLOR= option

in layout statements 32
in legend statements 125
LAYOUT GRIDDED statement 277

BANDPLOT statement 44
and SERIESPLOT statement 27
categorized by plot type 23
used for a fit plot 27

BARCHART statement
categorized by plot type 23

BARCHARTPARM statement 40
categorized by plot type 23
with a BLOCKPLOT 296

BASE=
axis log base 76

BEGINGRAPH statement
See also templates
DEFAULTDESIGNHEIGHT keyword

327
DEFAULTDESIGNWIDTH keyword

327
DESIGNHEIGHT= option 153, 182,

194, 321, 327
DESIGNWIDTH= option 153, 182,

194, 321, 327
BIHISTOGRAM3DPARM statement

and gaps among axis tick values 243
categorized by plot type 24
displaying percentages on Z axis 240
eliminating bins that have no data 240
labeling axes with endpoints 242
setting bin width 241
with PROC KDE 238

BLOCKPLOT statement
categorized by plot type 23
CLASS= option 296
creating an inset 293
DATATRANSPARENCY= option 295
DISPLAY= option 294
FILLTYPE= option 295
LABELATTRS= option 294
LABELPOSITION= option 294
VALUEATTRS= option 294
VALUEHALIGN= option 294
VALUEVALIGN= option 294

blocks
See layout blocks

See statements
BORDER= option

in layout statements 32
in legend statements 127
in text statements 111
ODS GRAPHICS statement 323

BORDERATTRS= option
in layout statements 32
in legend statements 127

borders
for graphics output 323

BOXPLOT statement
categorized by plot type 23

BOXPLOTPARM statement
categorized by plot type 23

C
CALL SYMPUT routine

on a DATA step 315, 318
using to create insets 283

CapStyle style element 353
CELL block

in a LAYOUT LATTICE statement
162

CELL HEADER block
in a LAYOUT LATTICE statement

162
CELLHEIGHTMIN= option

classification panels 196
CELLWIDTHMIN= option

classification panels 196
CLASS= option

BLOCKPLOT statement 296
classification panels

adding gutters between panels 193
adding insets 219, 288
adjusting the graph size 194
and panel axis features 198
and the size of panel cells 195
CELLHEIGHTMIN= option 196
CELLWIDTHMIN= option 196
CLASSVARS= argument 186
COLUMNAXISOPTS= option 200
COLUMNDATARANGE= option 198
COLUMNGUTTER= option 193
COLUMNHEADERS= option

(DATALATTICE layout only) 202
COLUMNS= option 191
COLVAR= argument 188
controlling classification headers 202
controlling headers 206
difference between DATAPANEL and

DATALATTICE layouts 190
graph aspect ratio 194

378 Index

HEADERBACKGROUNDCOLOR=
option 203

HEADERLABELATTRS= option 203
HEADERLABELDISPLAY= option

202
HEADEROPAQUE= option 203
INSET= option 219, 288
INSETOPTS= option 219, 288
LAYOUT DATALATTICE statement

186
LAYOUT DATAPANEL statement

186
LAYOUT PROTOTYPE statement 186
ORDER= option (DATAPANEL layout

only) 191
overview 185
PANELNUMBER= option 212
restrictions on the PROTOTYPE layout

190
ROWAXISOPTS= option 200
ROWDATARANGE= option 198
ROWGUTTER= option 193
ROWHEADERS= option

(DATALATTICE layout only) 202
ROWS= option 191
ROWVAR= argument 188
setting axis options 200
SKIPEMPTYCELLS= option 208
SPARSE= option (DATAPANEL layout

only) 214
START= option 192
using sidebars 204
with parameterized plots 202

CLI= option
REGRESSIONPLOT statement 26

CLM= option
REGRESSIONPLOT statement 26

COLLABEL function 261
COLNAME function 261
COLORMODEL= option

SURFACEPLOTPARM statement 247
COLORMODEL= option

CONTOURPLOTPARM statement 138
SCATTERPLOT statement 138
SURFACEPLOTPARM statement 138

COLUMNAXIS statement
in a LAYOUT LATTICE statement

166
COLUMNAXISOPTS= option

classification panels 200
COLUMNDATARANGE= option

classification panels 198
COLUMNGUTTER= option

classification panels 193
LAYOUT GRIDDED statement 146,

274

LAYOUT LATTICE statement 160
using to space inset text 274

COLUMNHEADERS= option
classification panels (DATALATTICE

layout only) 202
COLUMNS= option

classification panels 191
LAYOUT GRIDDED statement 144
LAYOUT LATTICE statement 158

COLUMNWEIGHTS= option
LAYOUT LATTICE statement 178

COMMONAXISOPTS= option
LAYOUT OVERLAYEQUATED

statement 229
computed plots 44
conditional logic 265
confidence limits

generating with REGRESSIONPLOT
statement 26

on a fit plot 27
CONTINUOUSLEGEND statement

See legends
CONTOURPLOTPARM statement

categorized by plot type 23
COLORMODEL= option 138
CONTOURTYPE= option 138
NHINT= option 138
NLEVELS= option 138
REVERSECOLORMODEL= option

138
CONTOURTYPE= option

CONTOURPLOTPARM statement 138
CORROPTS= option

SCATTERPLOTMATRIX statement
286

CSS function 262
CUBE= option

LAYOUT OVERLAY3D statement
234

CURVELABEL= option
in plot statements 35
labeling drop lines 102
labeling plot lines 102
labeling reference lines 102

CURVELABELATTRS= option
in plot statements 35

CURVELABELLOCATION= option
in plot statements 35

CURVELABELLOWER= option
in plot statements 35

CURVELABELPOSITION= option
in plot statements 35

CURVELABELUPPER= option
in plot statements 35

CV function 262
CYCLEATTRS= option

Index 379

varying visual properties of overlaid plots
131

D
data, input

filtering 313
generating with a procedure 26
transforming 313

data, output
See output data object

data object
building with SGRENDER procedure

13
data points

labeling 102
text properties for labels 103

data range
setting on LINEAR axes 66, 69
setting on TIME axes 75

DATA step
NULL keyword 312
and the output data object 316
CALL SYMPUT routine 315, 318
executing GTL templates 311
FILE statement 312
filtering the input data 313
FORMAT statement 316
LABEL statement 316
OBJECT= option 316
OBJECTLABEL= option 316
OBS= option 313
ODS= option 315
PUT statement 312
syntax for executing GTL templates

312
transforming the input data 313
WHERE statement 313

data tips
for graphics output 324, 337, 338
setting maximum mouse-over areas 324

DATA= argument
SGRENDER procedure 13

DATA= option
SGRENDER procedure 312

DATALABEL= option
in plot statements 35
labeling data points 102

DATALABELATTRS= option
in plot statements 35

DATALATTICE layout
See classification panels

DATAPANEL layout
See classification panels

DATATRANSPARENCY= option
BLOCKPLOT statement 295

in plot statements 33
Default State

in SAS Registry 320
DEFAULTDESIGNHEIGHT keyword

BEGINGRAPH statement 327
DEFAULTDESIGNWIDTH keyword

BEGINGRAPH statement 327
DEFINE statement

naming a GTL template 11
specifying type of template 11

DENSITYPLOT statement
categorized by plot type 23

dependent plot statements 24
descriptive text

See text
Design Height

in SAS Registry 321
Design Width

in SAS Registry 321
DESIGNHEIGHT= option

BEGINGRAPH statement 153, 182,
194, 321, 327

DESIGNWIDTH= option
BEGINGRAPH statement 153, 182,

194, 321, 327
DISCRETE axes 59
DISCRETELEGEND statement

See legends
DISPLAY= option

BLOCKPLOT statement 294
in plot statements 33
managing axis display 58
primary-axis display features 58

DISPLAYCLIPPED= option
DISCRETELEGEND statement 133,

136
DISPLAYSECONDARY= option

displaying a secondary axis 58
secondary-axis display features 58

DOWN= option
DISCRETELEGEND statement 133

DPI= option
ODS PDF destination 322

drop lines
labeling 102
text properties for labels 103

DROPLINE statement
categorized by plot type 24

DSORT function 262
DYNAMIC statement

See dynamics
dynamic variables

See dynamics
dynamics

and quotation marks 253
declaring 251, 314

380 Index

initializing 253, 315
initializing on SGRENDER procedure

315
location in a template 251
overview 251
referencing 252, 314
syntax in a template 251
using in text 108
using on templates 314
using to create insets 278

E
edit-ready graphs

for graphics output 322, 335
ELLIPSE statement

categorized by plot type 23
ELLIPSEPARM statement

categorized by plot type 23
ENTRY statement

adding descriptive text to a graph 102,
106

adding text to a graph 29
AUTOALIGN= option 113, 272
controlling the text 107
creating an inset 272, 273
HALIGN= option 113, 272, 273
horizontal alignment of text 108
in a LAYOUT LATTICE statement

162
PAD= option 274
rich text for 107
ROTATE= option 177
subscripts and superscripts 108
text background, borders, and padding

111
Unicode codes 109
VALIGN= option 113, 272

ENTRYFOOTNOTE statement
adding a footnote to a graph 29, 105
and size of graphical area 106
controlling the text 107
horizontal alignment of text 108
location in a template 105
rich text for 107
SHORTTEXT= option 112
subscripts and superscripts 108
text background, borders, and padding

111
text properties for 102
TEXTATTRS= option 107
TEXTFITPOLICY= option 112
Unicode codes 109

ENTRYTITLE statement
adding a title to a graph 29, 105
and size of graphical area 106

controlling the text 107
horizontal alignment of text 108
location in a template 105
rich text for 107
SHORTTEXT= option 112
subscripts and superscripts 108
text background, borders, and padding

111
text properties for 102
TEXTATTRS= option 107
TEXTFITPOLICY= option 112
Unicode codes 109

EQUATETYPE= option
LAYOUT OVERLAYEQUATED

statement 227
EVAL function

See expressions
See functions

EXISTS function 261
EXPAND function 261
expressions

and type conversion 260
building a text string 260
compared to SAS WHERE expressions

260
computing a constant 260
creating a new column 260
meaning in statement syntax 260
overview 259

EXTRACTSCALE =
axis tick values 70

F
FILE statement

on a DATA step 312
FILLATTRS= option

in plot statements 33
FILLTYPE= option

BLOCKPLOT statement 295
fit plot

with BANDPLOT statement 27
with confidence limits 27
with procedure-output data 26
with REGRESSIONPLOT statement 25

Fonts style element 302
footnotes

See ENTRYFOOTNOTE statement
FORMAT statement

on a DATA step 316
with the SGRENDER procedure 316

formats
See SAS formats

FRINGEPLOT statement
categorized by plot type 24

functions

Index 381

ASORT 262
COLLABEL 261
COLNAME 261
CSS 262
CV 262
DSORT 262
EXISTS 261
EXPAND 261
general functions 261
KURTOSIS 262
LCLM 262
MAX 262
MEAN 262
MEDIAN 263
MIN 263
N 263
NMISS 263
NUMERATE 262
overview 261
P1 263
P25 263
P5 263
P50 263
P75 263
P90 263
P95 263
P99 263
PROBT 263
PUT 278
Q1 263
Q3 263
QRANGE 263
RANGE 263
SKEWNESS 263
STDDEV 263
STDERR 263
STRIP 278
SUM 263
summary statistic functions 262
SUMWGT 263
T 263
UCLM 263
using to create insets 278
USS 263
VAR 264

G
glyphs

Greek letters 341
special characters 343

GPATH= option
ODS HTML destination 323
ODS LISTING destination 322
output location for images 325

graph borders 323

graph scaling
in graphics output 328

Graph style element 345
graph styles

See ODS styles
GraphAltBlock style element 126, 350
GraphAnnoFont style element 303
GraphAnnoLine style element 347
GraphAnnoShape style element 347
GraphAnnoText element 104
GraphAnnoText style element 347
GraphAxisLines style element 79, 346
GraphBackground style element 345
GraphBand style element 349
GraphBlock style element 126, 350
GraphBorderLines style element 346
GraphBox style element 307, 349

Displayopts attribute 307
GraphBoxMean style element 307, 350
GraphBoxMedian style element 307, 350
GraphBoxOutlier style element 307
GraphBoxWhisker style element 307,

350
GraphConfidence style element 348
GraphConfidence2 style element 349
GraphConnectLine style element 350
GraphContour style element 350
GraphData1 style element 131, 350
GraphData10 style element 352
GraphData11 style element 352
GraphData12 style element 352
GraphData2 style element 351
GraphData3 style element 351
GraphData4 style element 351
GraphData5 style element 351
GraphData6 style element 351
GraphData7 style element 351
GraphData8 style element 352
GraphData9 style element 352
GraphDataDefault style element 348
GraphDataFont style element 303
GraphDataText element 104
GraphDataText style element 203, 346
GraphEllipse style element 350
GraphError style element 349
GraphFit style element 348
GraphFit2 style element 348
GraphFonts style element 302
GraphFootnoteFont style element 303
GraphFootnoteText element 104
GraphFootnoteText style element 346
GraphGridLines style element 346
GraphHeaderBackground style element

126, 346
GraphHistogram style element 350
graphics output

382 Index

and BEGINGRAPH statement 327
and SAS Registry 320
anti-aliasing 323, 332
edit-ready graphs 322, 335
font sizes 328
for MS Office applications 337
graph borders 323
graph height 324
graph scaling 328
graph width 325
image DPI (dots per inch) 331
image format 324
image resolution 322, 337
imagemap for data tips 324, 337, 338
managing 319
naming output files 317, 324
ODS destination options 322
ODS styles 322
output destinations 319
output directory for images 322
REGEDIT command 320
reset ODS GRAPHICS options 324
scale graphs proportionally 324
setting an image name 325
setting image format 325
shared templates 339
text in a graph 101

GraphLabelFont style element 303
GraphLabelText element 104
GraphLabelText style element 346
GraphLegendBackground style element

345
GraphOutlier style element 348
GraphPrediction style element 349
GraphPredictionLimits style element 349
GraphReference style element 346
GraphTitleFont style element 303
GraphTitleText element 104
GraphTitleText style element 345
GraphUnicodeFont style element 303
GraphUnicodeText element 104
GraphUnicodeText style element 347
GraphValueFont style element 303
GraphValueText element 104
GraphValueText style element 346
GraphWalls style element 79, 277, 345
grid lines

displaying on an axis 58
GRIDDED layout

See LAYOUT GRIDDED statement
GROUP= option

in plot statements 36

H
HALIGN= option

ENTRY statement 113, 272
in layout statements 32
in legend statements 122
LAYOUT GRIDDED statement 275
on text statements 108
using to align insets 273

HEADERBACKGROUNDCOLOR=
option

classification panels 203
HEADERLABELATTRS= option

classification panels 203
HEADERLABELDISPLAY= option

classification panels 202
HEADEROPAQUE= option

classification panels 203
height

for graphics output 324
HEIGHT= option

ODS GRAPHICS statement 136, 154,
183, 195, 324, 328

HISTOGRAM statement
categorized by plot type 23

HISTOGRAMPARM statement
categorized by plot type 24

I
if-else statement

how and why used 266
nesting to form ELSE IF logic 266
overview 265
requirements for the conditional code

266
IMAGE_DPI= option

ODS HTML destination 323
ODS LISTING destination 322, 337
ODS RTF destination 322

IMAGEFMT= option
ODS GRAPHICS statement 324

IMAGEMAP= option
ODS GRAPHICS statement 324

IMAGENAME= option
ODS GRAPHICS statement 317, 324

images
default height in SAS Registry 321
default width in SAS Registry 321
format for graphics output 324
height for graphics output 324
names for graphics output 317, 324
output location 325
resolution for graphics output 322
scale for graphics output 324
width for graphics output 325

INDEX= option
in plot statements 36
mapping grouped data values 130

Index 383

INSET= option
classification panels 219
in classification panels 288
SCATTERPLOTMATRIX statement

286
INSETOPTS= option

classification panels 219
in classification panels 288
SCATTERPLOTMATRIX statement

287
insets

adding to a classification panel 288
adding to a SCATTERPLOTMATRIX

graph 285
aligning on an axis 293
changing background fill 277
creating as table of text 148, 273
creating with a BLOCKPLOT statement

293
creating with an ENTRY statement 272,

273
creating with computed values 278
displaying title text for 275
overview 271
passing values to 280
positioning in a LATTICE layout 276
positioning in an OVERLAY layout

272, 275
INTEGER= option

formatting axis tick values 70
INTERVAL=

axis tick values 72
item stores

storing a template 12

J
Java environment

See memory management
JREOPTIONS option

managing Java memory 361

K
KURTOSIS function 262

L
LABEL statement

on a DATA step 316
with the SGRENDER procedure 131,

316
LABELATTRS= option

BLOCKPLOT statement 294
LABELPOSITION= option

BLOCKPLOT statement 294

labels
for data points 102
for drop lines 102
for legends 102
for plot lines 102
for reference lines 102
text properties for 103

LATTICE layout
See LAYOUT LATTICE statement

layout blocks
BACKGROUNDCOLOR= option 32
BORDER= option 32
BORDERATTRS= option 32
compared 30
CYCLEATTRS= option 131
features supported 31
HALIGN= option 32
OPAQUE= option 32
PAD= option 32
VALIGN= option 32

layout containers
See layout blocks

LAYOUT DATALATTICE statement
See also classification panels
compared with other layouts 31

LAYOUT DATAPANEL statement
See also classification panels
compared with other layouts 31

LAYOUT GRIDDED statement
adjusting graph size 153
and empty cells 145
AUTOALIGN= option 275
BACKGROUNDCOLOR= option 277
COLUMNGUTTER= option 146, 274
COLUMNS= option 144
compared with other layouts 31
creating an inset 148, 273
defining cells 146
displaying title text 275
HALIGN= option 273, 275
ORDER= option 144, 273
overview 143
row and column sizes 150
ROWGUTTER= option 146
ROWS= option 144
setting grid dimensions 144
setting gutters 146
setting up a grid 144
sizing issues 150
VALIGN= option 275

LAYOUT LATTICE statement
adding cell headers 162
adding sidebars 175
adjusting graph size 182
and empty cells 159
and insets 276

384 Index

background color in cell headers 163
cell axes 174
CELL block 162
CELL HEADER block 162
cell headers 156
column and row headers 156
COLUMNAXIS statement 166
COLUMNGUTTER= option 160
COLUMNS= option 158
COLUMNWEIGHTS= option 178
compared with other layouts 31
defining a basic lattice 158
defining cells 160
external axes 157, 165, 172
external axes, restrictions 165
external axes and empty cells 167
external secondary axes 166
internal axes 164
layout features 156
nested GRIDDED layout 163
ORDER= option 159
overview 155
rotating header text 177
ROWAXIS statement 166, 176
ROWDATARANGE= option 172
ROWGUTTER= option 160
ROWHEADERS block 176
ROWS= option 158
ROWWEIGHTS= option 178
setting grid dimensions 158
setting gutters 160
SIDEBAR block 175
sidebars 156
sizing issues 182
SKIPEMPTYCELLS= option 168
transforming the input data 170
uniform axis ranges 164
uniform axis ranges, restrictions 165
union of axes 157
using column or row headers 176

LAYOUT OVERLAY statement
and appearance options 46
and graph axes 53
and grouped data 44
and insets 272
and multiple axes 42
and plot axes 49
and primary plots 49
avoiding plot conflicts 49
common overlay combinations 40
compared with other layouts 30
computed plots 44
CYCLEATTRS= option 131
nested in a GRIDDED layout 152
overview 39
parameterized plots 44

plots with incompatible data 50
restrictions 47
specifying axis options 58
stacking order 41
statements allowed in layout 47
VIEWMAX= option 61
VIEWMIN= option 61
X2AXISOPTS= 58
XAXIS= option 55
XAXISOPTS= 58
Y2AXISOPTS= 58
YAXIS= option 55
YAXISOPTS= 58

LAYOUT OVERLAY3D statement
and bivariate histograms 238
and surface plots 244
compared with other layouts 31
CUBE= option 234
data requirements 238
defining a viewpoint 236
defining axes 237
displaying cube lines 234
displaying filled walls 235
overview 233
ROTATE= option 236
TILT= option 236
WALLDISPLAY= option 235
ZOOM= option 236

LAYOUT OVERLAYEQUATED
statement

axis features 229
COMMONAXISOPTS= option 229
compared to OVERLAY layout 226
compared with other layouts 30
display features 227
EQUATETYPE= option 227
overview 225
types of axes 227
when to use 226
XAXISOPTS= option 229
YAXISOPTS= option 229

LAYOUT PROTOTYPE statement
See classification panels

LCLM function 262
LEGENDLABEL= option

in plot statements 34
labeling legends 102

legends
ACROSS= option

(DISCRETELEGEND only) 133
adding to a graph 118
and a continuous response variable 120
and plot statements 28
and the ODS GRAPHICS statement

136

Index 385

arranging entries into columns and rows
132

assigning legend entry labels 131
AUTOALIGN= option 123
automatically aligning an inside legend

123
BACKGROUNDCOLOR= option 125
BORDER= option 127
BORDERATTRS= option 127
borders for 127
changing entry font sizes 137
continuous legends 137
CONTINUOUSLEGEND statement 28,

118
controlling whether legend is drawn

324
discrete legends 128
DISCRETELEGEND statement 28,

118
DISPLAYCLIPPED= option

(DISCRETELEGEND only) 133,
136

displaying inside of plot wall 123
displaying outside of plot wall 122
DOWN= option (DISCRETELEGEND

only) 133
dropped legends 135
HALIGN= option 122
identifying overlaid plots 119
label for 102
legend wrapping 133
linking to plots 118
LOCATION= option 121
mapping grouped data values 130
NAME= option in plot statements 118
OPAQUE= option 125
options to control wrapping 133
ORDER= option (DISCRETELEGEND

only) 133
ordering entries for grouped plots 128
ordering entries for non-grouped plots

130
organizing entries in a fixed number of

columns 133
organizing entries in a fixed number of

rows 134
plots that can use continuous legends

137
positioning a continuous legend 140
positioning options 121
showing group values 119
size issues in discrete legends 135
syntax 118
text properties for 127
text properties for legend titles 103
title borders 126

title for 102
TITLE= option 126
TITLEATTRS= option 127
TITLEBORDER= option 126
titles for 126
types of in GTL 118
using color gradients in a continuous

legend 140
VALIGN= option 122
VALUEATTRS= option 127, 137

line patterns
available patterns in GTL 355

LINEAR axes 59
data range on 66
EXTRACTSCALE = option 70
formatting tick values 70
INTEGER = option 70
setting data range 69
setting tick values 69

LINEATTRS= option
available line patterns 355
in plot statements 33

LINEPARM statement
categorized by plot type 25

LOCATION= option
in legend statements 121

LOESSPLOT statement
categorized by plot type 23

LOG axes 59
overview 75
setting log base 76
setting tick intervals 77

M
macro variables

and ampersand (&) preface 252
and current symbol table 253, 314
automatic macro variables 253, 314
data type when resolved 252
declaring 251, 314
difference between MVAR and NMVAR

252
finding runtime values 253
initializing 253, 315
location in a template 251
overview 251
passing values to insets 280
referencing 252, 314
syntax in a template 251
using in text 108
using on templates 314

marker symbols
available symbols in GTL 355

MARKERATTRS= option
available marker symbols 355

386 Index

in plot statements 33
MARKERCOLORGRADIENT= option

SCATTERPLOT statement 138
MAX function 262
MAXLEGENDAREA= option

ODS GRAPHICS statement 136, 324
MEAN function 262
MEDIAN function 263
memory management

in Java environment 361
JREOPTIONS option 361

MIN function 263
MODELBAND statement 44

and REGRESSIONPLOT statement 26
categorized by plot type 24

MS Office applications
graphics output for 337

multi-cell layout, advanced
See LAYOUT LATTICE statement

multi-cell layout, simple
See LAYOUT GRIDDED statement

MVAR statement
See macro variables

N
N function 263
NAME= option

in plot statements 34, 118
naming graphs 17
NEEDLEPLOT statement 43

categorized by plot type 24
NHINT= option

CONTOURPLOTPARM statement 138
NLEVELS= option

CONTOURPLOTPARM statement 138
NMISS function 263
NMVAR statement

See macro variables
NOTES statement

syntax 251
NUMERATE function 262

O
OBJECT= option

DATA step 316
SGRENDER procedure 316

OBJECTLABEL= option
DATA step 316
SGRENDER procedure 316

OBS= option
on a DATA step 313
SGRENDER procedure 313

ODS destinations 14
and graphics output 322

DPI= option 322
GPATH= option 322
HTML destination 15, 323
IMAGE_DPI= option 322, 337
LISTING destination 14, 322
PDF destination 322
RTF destination 322
SGE= option 322, 335
STYLE= option 16, 322

ODS Graphics
default state in SAS Registry 320
in SAS/STAT 2
modifying shipped templates 2
ODS Graphics Editor (GUI editor) 2,

322
ODS GRAPHICS statement 2
SG procedures 3

ODS GRAPHICS statement 2
and graphics output 323
ANTIALIAS= option 323
ANTIALIASMAX= option 323
BORDER= option 323
HEIGHT= option 136, 154, 183, 195,

324, 328
IMAGEFMT= option 324
IMAGEMAP= option 324
IMAGENAME= option 17, 324
MAXLEGENDAREA= option 136,

324
naming an output image file 317
OFF option 323
RESET= option 17, 154, 323, 324
SCALE= option 324, 328
TIPMAX= option 324
WIDTH= option 17, 136, 154, 183, 195,

325, 328
ODS LISTING statement

STYLE= option 16
ODS PATH statement

controlling ODS search paths 304
ODS styles

ANALYSIS style 301
and legend background color 126
assigning a style to a graph 16
CapStyle style element 353
COLOR= text property 103
DEFAULT style 300
defining a style for axis walls 79
defining a style for box plots 306
defining a style for fonts 302
elements that control axis features 81
FAMILY= text property 104
Fonts style element 302
Graph style element 345
GraphAltBlock style element 126, 350
GraphAnnoFont style element 303

Index 387

GraphAnnoLine style element 347
GraphAnnoShape style element 347
GraphAnnoText element 104
GraphAnnoText style element 347
GraphAxisLines style element 79, 346
GraphBackground style element 345
GraphBand style element 349
GraphBlock style element 126, 350
GraphBorderLines style element 346
GraphBox style element 307, 349
GraphBoxMean style element 307, 350
GraphBoxMedian style element 307,

350
GraphBoxOutlier style element 307
GraphBoxWhisker style element 307,

350
GraphConfidence style element 348
GraphConfidence2 style element 349
GraphConnectLine style element 350
GraphContour style element 350
GraphData1 style element 131, 350
GraphData10 style element 352
GraphData11 style element 352
GraphData12 style element 352
GraphData2 style element 351
GraphData3 style element 351
GraphData4 style element 351
GraphData5 style element 351
GraphData6 style element 351
GraphData7 style element 351
GraphData8 style element 352
GraphData9 style element 352
GraphDataDefault style element 348
GraphDataFont style element 303
GraphDataText element 104, 203
GraphDataText style element 346
GraphEllipse style element 350
GraphError style element 349
GraphFit style element 348
GraphFit2 style element 348
GraphFonts style element 302
GraphFootnoteFont style element 303
GraphFootnoteText element 104
GraphFootnoteText style element 346
GraphGridLines style element 346
GraphHeaderBackground style element

126, 346
GraphHistogram style element 350
GraphLabelFont style element 303
GraphLabelText element 104
GraphLabelText style element 346
GraphLegendBackground style element

345
GraphOutlier style element 348
GraphPrediction style element 349

GraphPredictionLimits style element
349

GraphReference style element 346
GraphTitleFont style element 303
GraphTitleText element 104
GraphTitleText style element 345
GraphUnicodeFont style element 303
GraphUnicodeText element 104
GraphUnicodeText style element 347
GraphValueFont style element 303
GraphValueText element 104
GraphValueText style element 346
GraphWalls style element 79, 277, 345
JOURNAL style 301
JOURNAL2 style 301
LISTING style 300
ODS PATH statement 304
ODS search paths 304
ODSTEMPLATE command 299
parent styles 302
recommended parent styles 300
registry keys for fonts in MS Windows

303
SIZE= text property 104
STATISTICAL style 301
style attributes 352
style elements available 345
STYLE= text property 104
STYLES directory of

SASHELP.TMPLMST 299
text properties in 103
ThreeColorAltRamp style element 347
ThreeColorRamp style element 347
TwoColorAltRamp style element 347
TwoColorRamp style element 347
viewing a template's source code 299
WEIGHT= text property 104

ODS= option
on a DATA step 315

ODSTEMPLATE command
finding a compiled template 13
opening the Templates window 299
viewing a style definition 299

OFF option
ODS GRAPHICS statement 323

Office (MS) applications
graphics output for 337

OFFSETMAX=
axis offsets 67

OFFSETMIN=
axis offsets 67

offsets
on axes 67

OPAQUE= option
in layout statements 32
in legend statements 125

388 Index

ORDER= option
classification panels (DATAPANEL

layout only) 191
DISCRETELEGEND statement 133
LAYOUT GRIDDED statement 144,

273
LAYOUT LATTICE statement 159

output
See graphics output

output data object
and template execution 312
converting to a SAS data set 317
default label 316
default name 316
labeling 316
naming 316
setting data-column formats 316
setting data-column labels 316
viewing in the Results window 317

OVERLAY layout
See LAYOUT OVERLAY statement

OVERLAY3D layout
See LAYOUT OVERLAY3D statement

OVERLAYEQUATED Layout
See LAYOUT OVERLAYEQUATED

statement

P
P1 function 263
P25 function 263
P5 function 263
P50 function 263
P75 function 263
P90 function 263
P95 function 263
P99 function 263
PAD= option

ENTRY statement 274
in layout statements 32
in text statements 111
using to space inset text 274

PANELNUMBER= option
classification panels 212

parameterized plots 44
PATH= option

output location for graphics output 325
PBSPLINEPLOT statement

categorized by plot type 23
plot lines

labeling 102
text properties for labels 103

plot statement
using procedure output data 26

plot statements
and legends 28

axis labels on computed plots 63
BANDPLOT 23, 44
BARCHART 23
BARCHARTPARM 23, 40, 296
BIHISTOGRAM3DPARM 24
BIHISTOGRAM3DPARM statement

238
BLOCKPLOT 23, 293
BOXPLOT 23
BOXPLOTPARM 23
categorized by type 22
computed plots 21
concepts for using 25
CONTOURPLOTPARM 23
controlling text in a graph 101
CURVELABEL= option 35
CURVELABELATTRS= option 35
CURVELABELLOCATION= option

35
CURVELABELLOWER= option 35
CURVELABELPOSITION= option 35
CURVELABELUPPER= option 35
DATALABEL= option 35
DATALABELATTRS= option 35
DATATRANSPARENCY= option 33
DENSITYPLOT 23
dependent plots 24
DISPLAY= option 33
DROPLINE 24
ELLIPSE 23
ELLIPSEPARM 23
features supported 33
FILLATTRS= option 33
FRINGEPLOT 24
graphics types 22
GROUP= option 36
HISTOGRAM 23
HISTOGRAMPARM 24
how they affect axis features 55
INDEX= option 36
LEGENDLABEL= option 34
LINEATTRS= option 33
LINEPARM 25
LOESSPLOT 23
MARKERATTRS= option 33
MODELBAND 24, 44
NAME= option 34
NEEDLEPLOT 24, 43
overview 21
parameterized plots 21
PBSPLINEPLOT 23
plots with incompatible data 50
primary plots 22
REFERENCELINE 25, 40
REGRESSIONPLOT 23, 44
ROLENAME= option 37

Index 389

SCATTERPLOT 24, 43
SCATTERPLOTMATRIX 23
SERIESPLOT 24, 293
stand-alone, 2D, computed 23
stand-alone, 2D, parameterized 23
stand-alone, 3D, parameterized 24
stand-alone plots 22
STEPPLOT 24
SURFACEPLOTPARM 24
SURFACEPLOTPARM statement 245
TEXTATTRS= option 33
TIP= option 37
TIPFORMAT= option 37
TIPLABEL= option 37
VECTORPLOT 24
XAXIS= option 37
YAXIS= option 37

primary plots
avoiding plot conflicts 49
determining axis features 62
overview 22

PRIMARY=
axis features 61

PRIMARY= option
avoiding plot conflicts 49

PROBT function 263
PROC SGRENDER statement

See SGRENDER procedure
PROC TEMPLATE statement

See templates
PROTOTYPE layout

See classification panels
PUT function

using to create insets 278
PUT statement

on a DATA step 312

Q
Q1 function 263
Q3 function 263
QRANGE function 263

R
RANGE function 263
reference lines

labeling 102
text properties for labels 103

REFERENCELINE statement 40
categorized by plot type 25

REGEDIT command
opening Registry Editor window 320

Registry Editor window
settings for ODS Graphics 320

REGRESSIONPLOT statement 44

and MODELBAND statement 26
and SCATTERPLOT statement 25
categorized by plot type 23
CLI= option 26
CLM= option 26
generating confidence limits 26
used for a fit plot 25

RESET= option
ODS GRAPHICS statement 154, 323,

324
Results window

viewing graphics output 14
REVERSECOLORMODEL= option

SURFACEPLOTPARM statement 247
REVERSECOLORMODEL= option

CONTOURPLOTPARM statement 138
SCATTERPLOT statement 138
SURFACEPLOTPARM statement 138

ROLENAME= option
in plot statements 37

ROTATE= option
ENTRY statement 177
LAYOUT OVERLAY3D statement

236
ROWAXIS statement

in a LAYOUT LATTICE statement
166, 176

ROWAXISOPTS= option
classification panels 200

ROWDATARANGE= option
classification panels 198
LAYOUT LATTICE statement 172

ROWGUTTER= option
classification panels 193
LAYOUT GRIDDED statement 146
LAYOUT LATTICE statement 160

ROWHEADERS block
LAYOUT LATTICE statement 176

ROWHEADERS= option
classification panels (DATALATTICE

layout only) 202
ROWS= option

classification panels 191
LAYOUT GRIDDED statement 144
LAYOUT LATTICE statement 158

ROWWEIGHTS= option
LAYOUT LATTICE statement 178

runtime programming constructs
in GTL 259

S
SAS formats

error message in log 357
unsupported currency formats 359
unsupported date and time formats 358

390 Index

unsupported numeric formats 357
using 357

SAS Registry
and graphics output 320
Default State for ODS Graphics 320
Design Height for ODS Graphics 321
Design Width for ODS Graphics 321
opening with REGEDIT command 320

SAS/STAT 2
SASUSER.TEMPLAT item store

storing templates 12
SCALE= option

ODS GRAPHICS statement 324, 328
scaling graphs proportionally

for graphics output 324
SCATTERPLOT statement 43

and REGRESSIONPLOT statement 25
categorized by plot type 24
COLORMODEL= option 138
MARKERCOLORGRADIENT= option

138
REVERSECOLORMODEL= option

138
SCATTERPLOTMATRIX statement

adding an inset to the graph 285
categorized by plot type 23
CORROPTS= option 286
INSET= option 286
INSETOPTS= option 287

SERIESPLOT statement
and BANDPLOT statement 27
categorized by plot type 24
with a BLOCKPLOT 293

SGE= option
ODS LISTING destination 322, 335

SGPANEL procedure 3
SGPLOT procedure 3
SGRENDER procedure 17

and the data object 13
and the output data object 316
DATA= argument 13
DATA= option 312
DYNAMIC statement 315
executing a compiled template 13
executing GTL templates 311
filtering the input data 313
OBJECT= option 316
OBJECTLABEL= option 316
OBS= option 313
syntax for executing GTL templates

312
TEMPLATE= argument 13
TEMPLATE= option 312
transforming the input data 313
WHERE statement 313
with a FORMAT statement 316

with a LABEL statement 131, 316
SGSCATTER procedure 3
SHORTTEXT= option

in titles and footnotes 112
SIDEBAR block

LAYOUT LATTICE statement 175
simple multi-cell layout

See LAYOUT GRIDDED statement
simple plot layouts

See LAYOUT OVERLAY statement
sizing graphs 17
SKEWNESS function 263
SKIPEMPTYCELLS= option

classification panels 208
LAYOUT LATTICE statement 168

SPARSE= option
classification panels (DATAPANEL

layout only) 214
stand-alone plot statements 23
START= option

classification panels 192
statements

blocks 20
categories of 21
general syntax for 19
layout blocks 30
nested blocks 20
overview 19
parent-child relationships 20
plot statements 21

STATGRAPH statement
See templates

Statistical Graphics (SG) procedures 3
SGPANEL procedure 3
SGPLOT procedure 3
SGSCATTER procedure 3

STDDEV function 263
STDERR function 263
STEPPLOT statement

categorized by plot type 24
STRIP function

using for insets 278
style elements

See ODS styles
STYLE= option

ODS HTML destination 323
ODS LISTING destination 322
ODS LISTING statement 16
ODS PDF destination 322
ODS RTF destination 322

styles
See ODS styles

subscripts and superscripts 108
SUM function 263
SUMWGT function 263
SURFACECOLORGRADENT= option

Index 391

SURFACEPLOTPARM statement 138
SURFACECOLORGRADIENT= option

SURFACEPLOTPARM statement 247
SURFACEPLOTPARM statement

and missing Z values 245
categorized by plot type 24
COLORMODEL= option 247
COLORMODEL= option 138
default features 245
REVERSECOLORMODEL= option

247
REVERSECOLORMODEL= option

138
SURFACECOLORGRADENT= option

138
SURFACECOLORGRADIENT= option

247
SURFACETYPE= option 246
with PROC G3GRID 246

SURFACETYPE= option
SURFACEPLOTPARM statement 246

SYMPUT
See CALL SYMPUT routine

T
T function 263
TEMPLATE procedure

defining a style template for fonts 302
DYNAMIC statement 251
MVAR statement 251
NMVAR statement 251
NOTES statement 251

TEMPLATE statement
See templates

template store
for shared templates 339

TEMPLATE= argument
SGRENDER procedure 13

TEMPLATE= option
SGRENDER procedure 312

templates
anti-aliasing 323
BEGINGRAPH statement 11
browsing the compiled source 13
compiling 12
creating 10
DATA step 311
DEFINE block 11
directing output 14
dynamics on 251
edit-ready graphs 322, 335
executing 13, 311
filtering the input data 313
finding in an item store 13
formatting output columns 316

graph block 11
graph borders 323
graph footnotes 105
graph height 321, 324
graph titles 105
graph width 321, 325
image format 324
image resolution 322, 337
imagemap for data tips 324, 337, 338
labeling output columns 316
layout block 12
line patterns available 355
macro variables on 251
managing graphics output 319
marker symbols available 355
modifying graph appearance 16
modifying shipped templates 2
naming 11
naming output files 14, 17, 324
ODS destinations 14, 322
ODS styles 16, 322
ODSTEMPLATE command 13
output directory for images 322
overview 9
reset ODS GRAPHICS options 324
Results window 14
runtime programming constructs 259
SASUSER.TEMPLAT item store 12
scaling graphs proportionally 324
SGRENDER procedure 13, 17, 311
shared templates 339
sizing graphs 17
specifying graph contents 12
STATGRAPH statement 9
style elements available 345
transforming the input data 313
viewing graphics output 14

Templates Browser window
browsing a compiled template 13

Templates window
finding a compiled template 13

text
adding and changing in a graph 101
BACKGROUND= option 111
BORDER= option 111
COLOR= property 103
CURVELABEL= option 102
DATALABEL= option 102
ENTRY statement 102, 106
ENTRYFOOTNOTE statement 105
ENTRYTITLE statement 105
FAMILY= property 104
GraphAnnoText element 104
GraphDataText element 104
GraphFootnoteText element 104
GraphLabelText element 104

392 Index

GraphTitleText element 104
GraphUnicodeText element 104
GraphValueText element 104
Greek letters 341
horizontal alignment of 108
LABEL= option 102
LEGENDLABEL= option 102
PAD= option 111
positioning entry text 113
rich text for strings 107
SIZE= property 104
special characters 343
STYLE= property 104
subscripts and superscripts 108
text properties for 103
TITLE= option 102
Unicode codes 109
Unicode glyphs 341
using dynamics and macro variables

108
WEIGHT= property 104

TEXTATTRS= option
in plot statements 33
on text statements 107

TEXTFITPOLICY= option
in titles and footnotes 112

ThreeColorAltRamp style element 347
ThreeColorRamp style element 347
THRESHOLDMAX=

axis thresholds 64
THRESHOLDMIN=

axis thresholds 64
thresholds

on axes 64
tick marks

suppressing on an axis 58
tick values

avoiding collision 71, 74
converting to integers 70
formatting on LINEAR axes 70
formatting on TIME axes 74
how determined on an axis 64
scale 70
setting on LINEAR axes 69
setting on TIME axes 72

TICKINTERVALSTYLE=
axis tick intervals 77

TICKVALUEFITPOLICY
axis tick values 71

TICKVALUEFORMAT =
axis tick values 70, 74

TICKVALUEFORMAT=
XAXISPOTS= option 172

TICKVALUELIST = option 69, 75
TILT= option

LAYOUT OVERLAY3D statement
236

TIME axes 59
formatting tick values 74
overview 72
setting data range 75
setting tick values 72

TIP= option
in plot statements 37

TIPFORMAT= option
in plot statements 37

TIPLABEL= option
in plot statements 37

TIPMAX= option
ODS GRAPHICS statement 324

TITLE= option
defining a title for a legend 102
in legend statements 126

TITLEATTRS= option
in legend statements 127

TITLEBORDER= option
in legend statements 126

titles
See ENTRYTITLE statement

TwoColorAltRamp style element 347
TwoColorRamp style element 347
type conversion

expressions 260
TYPE=

axis type 59, 76

U
UCLM function 263
Unicode codes 109
Unicode glyphs

Greek letters 341
special characters 343

USS function 263

V
VALIGN= option

ENTRY statement 113, 272
in layout statements 32
in legend statements 122
LAYOUT GRIDDED statement 275

VALUEATTRS= option
BLOCKPLOT statement 294
in legend statements 127, 137

VALUEHALIGN= option
BLOCKPLOT statement 294

VALUEVALIGN= option
BLOCKPLOT statement 294

VAR function 264
VECTORPLOT statement

Index 393

categorized by plot type 24
VIEWMAX=

axis data range 61, 66
VIEWMIN=

axis data range 61, 66

W
WALLDISPLAY= option

LAYOUT OVERLAY3D statement
235

WHERE statement
on a DATA step 313
SGRENDER procedure 313

width
for graphics output 325

WIDTH= option
ODS GRAPHICS statement 136, 154,

183, 195, 325, 328

X
X2AXISOPTS= option

DISCRETEOPTS= 61
general syntax 58
LINEAROPTS= 61
LOGOPTS= 61
TIMEOPTS= 61

XAXIS= option
in plot statements 37
mapping data columns 55

XAXISOPTS= option
DISCRETEOPTS= 61
general syntax 58
LAYOUT OVERLAYEQUATED

statement 229

LINEAROPTS= 61
LOGOPTS= 61
SHORTLABEL= 63
TIMEOPTS= 61
VIEWMAX= 66
VIEWMIN= 66

XAXISPOTS= option
TICKVALUEFORMAT= 172

Y
Y2AXISOPTS= option

DISCRETEOPTS= 61
general syntax 58
LINEAROPTS= 61
LOGOPTS= 61
TIMEOPTS= 61

YAXIS= option
in plot statements 37
mapping data columns 55

YAXISOPTS= option
DISCRETEOPTS= 61
DISPLAY= 152
general syntax 58
LAYOUT OVERLAYEQUATED

statement 229
LINEAROPTS= 61
LOGOPTS= 61
TIMEOPTS= 61

Z
ZOOM= option

LAYOUT OVERLAY3D statement
236

394 Index

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to yourturn@sas.com.
Include the full title and page numbers (if applicable).

• If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/spn

	Contents
	ODS Graphics
	Overview of ODS Graphics
	Automatic Graphics from SAS Analytical Procedures
	Modifying Templates for Automatic Graphs
	The ODS Graphics Editor
	Creating Graphs Using SAS/GRAPH Statistical Graphics Procedures
	The Graph Template Language
	Overview
	Defining the Graph Template
	Creating the Graph
	When GTL is Needed

	ODS Graphics and SAS/GRAPH
	Sample of ODS Graphics Output

	Quick Start
	Steps for Creating a Graph Using GTL
	About the Examples in this Documentation
	Creating a Graph Template
	Quick Look at a GTL Graph Definition
	More Detailed Look at a GTL Graph Definition
	Compiling the Template

	Executing the Template to Produce the Graph
	Managing the Graphical Output
	Directing Output to ODS Destinations
	Modifying Graph Appearance with Styles
	Controlling Physical Aspects of the Output

	Overview of Basic Statements and Options
	Introduction to GTL Statements
	Statements
	Blocks

	Categories of Statements
	Overview
	Plot Statements—Terminology and Concepts
	Legend Statements
	Text Statements
	Layout Containers

	Features Supported by Layout, Legend, and Text Statements
	Backgrounds
	Borders
	Padding
	Positioning

	Features Supported by Many Plot Statements
	Plot Features to Be Displayed
	Plot Appearance
	Plot Transparency
	Plot Identification
	Labels for Plot Features
	Grouping
	Axis Assignment
	Data Tips

	Using a Simple Single-cell Layout
	The LAYOUT OVERLAY Statement
	Common Overlay Combinations
	How Plots are Overlaid
	Statements Allowed in the Overlay Container
	Restrictions on Allowed Statements
	Restrictions on Statement Combinations
	Avoiding Plot Conflicts
	Plots with Incompatible Data

	Managing Axes in an OVERLAY Layout
	Introduction to Axis Management
	Axis Terminology
	How Plot Statements Affect Axis Construction
	Specifying Axis Options
	Default Axis Construction and Related Options
	Determine Axis Type
	Apply Axis Options
	Determine Axis Data Range
	Determine Axis Label
	Determine Axis Tick Values
	Apply Axis Thresholds
	Apply Axis Offsets

	LINEAR Axes
	Setting the Axis Data Range and Tick Values
	Formatting Axis Tick Values
	Avoiding Tick Value Collisions

	TIME Axes
	Overview
	Setting the Tick Values
	Formatting Axis Tick Values
	Avoiding Tick Value Collisions
	Setting the Axis Data Range

	LOG Axes
	Overview
	Setting the Log Base
	Setting the Tick Intervals

	Axis Line versus Wall Outline
	Axis Appearance Features Controlled by the Current Style

	Managing Graph Appearance: General Principles
	Default Appearance Features in Graphs
	Evaluating Supplied Styles
	Attributes as Collections of Related Options
	Overview
	LINEATTRS Option
	MARKERATTRS Option
	TEXTATTRS Option

	Appearance of Non-grouped Data
	Appearance of Grouped Data
	Using Custom Styles to Control the Appearance of Grouped Data
	Making the Appearance of Grouped Data Independent of Data Order
	Recommendations

	Adding and Changing Text in a Graph
	Text Strings in Graphs
	Text Properties and Syntax Conventions
	Text Statement Basics
	Using Titles and Footnotes
	Using Text Entries in the Graphical Area

	Managing the String on Text Statements
	Text Statement Syntax
	Using Rich Text
	Horizontally Aligning Text Items
	Generating Text Items with Dynamics, Macro Variables, and Expressions
	Adding Subscripts, Superscripts, and Unicode Rendering
	Using Unicode Values in Labels

	Using Options on Text Statements
	Options Available on All Text Statements
	Setting Text Background, Borders, and Padding
	Managing Long Text in Titles and Footnotes

	ENTRY Statements: Additional Control
	Features Available for ENTRY Text
	Positioning ENTRY Text
	Rotating ENTRY Text

	Adding Legends to a Graph
	Introduction to Legend Management
	Some of the Uses for a Legend
	Types of Legends in GTL
	General Syntax for Using Legends
	Example Legend Coding for Common Situations

	General Legend Features
	Positioning Options
	General Appearance Options

	Features of Discrete Legends
	Ordering the Legend Entries for a Grouped Plot
	Ordering the Legend Entries for Non-grouped Plots
	Arranging Legend Entries into Columns and Rows
	When Discrete Legends Get Too Large

	Features of Continuous Legends
	Plots That Can Use Continuous Legends
	Positioning a Continuous Legend
	Using Color Gradients to Represent Response Values

	Using a Simple Multi-cell Layout
	The LAYOUT GRIDDED Statement
	Defining a Basic Grid
	Setting Grid Dimensions
	Setting Gutters
	Defining Cells

	Building a Table of Text
	Using a Single Layout
	Using Nested Layouts

	Sizing Issues
	Row and Column Sizes
	Adjusting Graph Size

	Using an Advanced Multi-cell Layout
	The LAYOUT LATTICE Statement
	Defining a Basic Lattice
	Setting Grid Dimensions
	Setting Gutters
	Defining Cells
	Adding Cell Headers

	Creating Uniform Axes Across Rows or Columns
	Internal Axes
	Uniform Axis Ranges
	External Axes

	Defining a Lattice with Additional Features
	Overview
	Transforming the Input Data
	Using External Axes
	Using Cell Axes
	Adding Sidebars
	Using Column or Row Headers
	Adjusting the Sizes of Rows and Columns

	Adjusting the Graph Size

	Using Classification Panels
	Introduction
	Classification Panels in the GTL
	The LAYOUT DATAPANEL Statement
	The LAYOUT DATALATTICE Statement
	Coding Distinction Between DATAPANEL and DATALATTICE
	The LAYOUT PROTOTYPE Statement

	Organizing Panel Contents
	Overview
	Grid Dimensions and Cell Population Order
	Gutters
	Graph Aspect Ratio
	Cell Size
	Prototype Orientation

	Setting Panel Axis Features
	Controlling Data Ranges of Rows or Columns
	Setting Axis Options

	Controlling the Classification Headers
	Using Sidebars
	Controlling the Interactions of Classifiers
	Appearance of the Last Panel
	User Control of Panel Generation
	Sparse Data

	Using Non-computed Plots in Classification Panels
	Adding an Inset to Each Cell
	Using PROC SGPANEL to Create Classification Panels

	Using an Equated Layout
	The LAYOUT OVERLAYEQUATED Statement
	Basic Display Features of Equated Plots
	Types of Equated Axes
	Defining Axes for Equated Layouts

	Using 3D Graphics
	The LAYOUT OVERLAY3D Statement
	Basic Display Features of 3D Graphs
	Managing the Display of Cube Lines
	Displaying a Fill in the Graph Walls
	Defining a Viewpoint
	Defining Axes

	Data Requirements for 3D Plots
	Overview
	Producing Bivariate Histograms
	Producing Surface Plots

	Using Dynamics and Macro Variables to Make Flexible Templates
	Introduction to Dynamics and Macro Variables
	Declaring Dynamics and Macro Variables
	Referencing Dynamics and Macro Variables
	Initializing Dynamics and Macro Variables

	Using Conditional Logic and Expressions
	Constructs Available for Runtime Programming
	Expressions
	Functions
	Overview
	General Functions Supported Only in GTL
	GTL Summary Statistic Functions

	Conditional Logic

	Adding Insets to a Graph
	Uses for Insets in a Graph
	Creating a Simple Inset with an ENTRY Statement
	Creating an Inset as a Table of Text
	Positioning an Inset
	Creating an Inset with Values that are Computed in the Template
	Creating an Inset from Values that are Passed to the Template
	Overview
	Creating a Template that Uses Macro Variables
	Defining a Macro to Initialize the Variables and Generate the
Graph
	Executing the Macro

	Adding Insets to a SCATTERPLOTMATRIX Graph
	Adding Insets to Classification Panels
	Creating an Axis-Aligned Inset with a Block Plot

	Managing the Graph Appearance with Styles
	ODS Style Templates
	Changing Fonts in a Style Template
	Controlling ODS Search Paths
	Changing Boxplot Display

	Executing Graph Templates
	Techniques for Executing Templates
	Minimal Required Syntax
	Managing the Input Data
	Filtering the Input Data
	Performing Data Transformations

	Initializing Template Dynamics and Macro Variables
	Managing the Output Data Object
	Setting Labels and Formats for the Output Columns
	Setting a Name and Label for the Output Data Object
	Viewing the Data Object Name and Label in the Results Window
	Setting a Name for the Output Image File
	Converting the Output Data Object to a SAS Data Set

	Managing Graphical Output
	Introduction
	SAS Registry Settings for ODS Graphics
	ODS Destination Statement Options Affecting ODS Graphics
	ODS GRAPHICS Statement Options
	Common Tasks
	Controlling the Image Name and Image Format
	Controlling the Image's Output Location
	Controlling Graph Size
	Understanding Graph Scaling
	Controlling DPI
	Controlling Anti-Aliasing
	Creating a Graph that Can Be Edited
	Creating a Graph to Include in MS Office Applications
	Controlling Data Tips

	Creating Shared Templates

	SAS Keywords for Unicode Glyphs
	Greek Letters
	Special Characters

	SAS Graph Style Elements for GTL
	Graphical Style Elements
	Graphical Style Attributes

	Values for Marker Symbols and Line Patterns
	Values for Marker Symbols
	Values for Line Patterns

	SAS Formats Not Supported
	Using SAS Formats
	Unsupported Numeric Formats
	Unsupported Date and Time Formats Related to IS0 8601
	Other Unsupported Date and Time Formats
	Unsupported Currency Formats

	Memory Management for ODS Graphics
	Glossary
	Index

